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PREFACE

The object of the present volume is to set forth in some detail the
present status of the problem of analyzing and interpreting that very
extensive set of data known as economic time series. This perplexing
problem has engaged the attention of economists and statisticians for
many years, but the extraordinary intensity with which it has been
attacked during the past decade attests the importance which it has
for modern economic development,

Sinee its beginning the laboratory of the Cowles Commission for
Research in Economics has had as a major interest the investigation
of the nature and action of stock price series. In the course of this
investigation a number of intereating but difficult problems were en-
countered concerning the nature of economic time series in general,
and the relation of these series to the basic postulates of economic
theory in particular. To most of these questions only partial answers
were discovered in the literature and in many cases these answers
were not accompanied by careful statistical analyses. Therefore, it
secmed to the author that a systematic treatise on the nature of eco-
nomic series might fill a present need.

To one who works with statistical data it soon becomes apparent
that the conclusions derived at the end of a process of analysis are
intimately related to the postulates which underlie the tools employed
in the investigation. The employment of a linear trend for the refer-
ence of residuals, or the graduation of a series of production data by
means of the logistic curve, implies economic assumptions which must
be carefully defined and subjected to realistic criticism. That is to
say, conclusions mathematically derived are no better than the postu-
iates upon which they rest. Hence it has seemed necessary to make a
careful re-examination of the various mathematical devices which
have been used in the study of economic data in order to appraise
their weakness and their strength, and to define the range of their
validity. '

There is a perpetual fascination in economic time series, derived
not only from their immense importance in the lives of all of us, but
also from their statistical nature. Differing from the series encoun-
tered in the experiments of physical science, every economic time se-
ries possesses a large random element. But the series themselves are
not random, in spite of some popular belief to the contrary, nor are
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THE ANALYSIS OF ECONOMIC TIME SERIES

they sufficiently regular to satisfy most mathematical postulates.
Hence, in many instances, the analysis must proceed from a descrip-
tion of the differences between random series and series that are not
random. Correlations take the place of functions and serial relation-
ships replace the more familiar functional equations of the exact
gciences.

In the course of preparing so extensive a manuscript the author
has become indebted to many people. Foremost among these is Mr.
Alfred Cowles, president of the Cowles Commission, who for nearly a
decadz has liberally supported a scientific laboratory devoted to the
investigation of problems in economic theory and economic statistics.
His personal interest in these investigations and his own scien-
tific contributions to the subject have been a source of inspiration
and satisfaction to the author.

From Mr, Dickson H. Leavens, managing editor of Econometrica
and resecarch associate of the Cowles Commission, the author has re-
ceived services too numerous to mention. Mr. Leavens assumed full
editorial supervision of the manuscript and the planning of the charts
is to be credited entirely to him,

During the preparation of the book the author received many
suggestions from Dr. C. F. Roos, former research direcior of the
Cowles Commission, and from Professor T. 0. Yntema, the present
research director. Their broad knowledge of economic problems was
placed generously at his disposal.

A special debt of thanks is also due Professor Gerhard Tintner
of Iowa State College, who read the entire proof carefully and offered
many valuable suggestions. His exceptionally wide acqunaintance with
economic and statistical literature, especially that of European
schools, has made his criticism of great value.

To Mr, Herbert E. Jones, research associate of the Cowles Com-
mission, the author is indebted for a number of essential contributions
to the book. Mr. Jones undertook a thorough investigation of prob-
lems relating to the theory and application of serial correlation. In
particular, he studied the properties of random series and then ap-
plied his analysis to the problem of determining the nature of the
structural elvments in economic time series. Much of the material in
Chapters 3 and 4 is derived from his studies.

Throughout the long and arduous calculations presented at many
places in the book the laboratory staff of the Cowles Commission has
played an indispensable role. The brunt of this work has been assumed
by Mr. Forrest Danson, research associate of the Cowles Commission
and director of the computing laboratory. The author is especially
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PREFACE

indebted to him. In this phase of the work numerous computations
were made by Miss Emma Manning, Miss Anne M. Lescisin, Mr. Ed-
ward Morris, and Mrs. Martha Belschner Swanson. Miss Kathryn
Withers did the arduous work of inking and lettering the charts and
Miss Mary Jo Lawley helped in preparing the manuscript for the
printer.

To the great experience of Professor Irving Fisher in monetary
theory and to the statistical studies of Mr. Carl Snyder on economic
trends and the theory of prices the author owes & special debt. From
conversations with Professor Ragnar Frisch of Oslo, Norway, and
from his writings, more particularly his studies of harmonic analysis,
confluence analysis, and the dynamics of cycles, the author has derived
many valuable suggestions. Professor J. W. Angell of Columbia Uni-
versity very kindly supplied the author with monetary data which
would otherwise have been inaccessible to him.

The author would also like to acknowledge his appreciation of
the critical advice received from Dr. John Smith, research associate of
the Cowles Commission, who has brought to bear upon the analysis a
broad knowledge of statistical sampling. His criticism has been par-
ticularly valuable in connection with some of the material in Chapter
5. From other colleagues in the research staff of the Cowles Commis-
sion many helpful suggestions have been received. Professor Francis
McIntyre, Dr. Abraham Wald, Dr. Edward N. Chapman, and the late
Mr. W. F. C. Nelson all brought unique experience to bear upon cer-
tain aspects cf the problem.

During the preparation of the book a series of conferences on eco-
nomic problems was held in Colorado Springs under the auspices of
the Cowles Commission. Some 200 lectures were given at these con-
ferences and the author received many valuable suggestions both from
the lectures and from informal conferences with the speakers. The
effects of this unusual experience will be noted in many parts of the
book.

The appraisal of the author’s debt would not be complete without
mention also of the help received in two other statistical laboratories,
one at [ndiana University and the other at Northwestern University.
In the operation of these laboratories the author has been particularly
indebted to Dean Fernandus Payne of Indiana University and to Pro-
fessor E. J. Monlton of Northwestern University, both of whom have
taken a personal interest in the work. In both laboratories many of
the author’s students contributed generously of their time. Colleagues
in the departments of both physics and astronomy gave generously of
their information at various stages of the writing of the manuscript.
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Finally, but not least, the avthor must acknowledge his debt to
the Principia Press and to its editor, Professor J. R. Kantor, who has
extended in every way his cordial co-operation. The manuscript has
been put into type and printed by the Dentan Printing Company of
Colorado Springs, who have met all the unusual requests incidental to
the production of a mathematical and statistical treatise with unfail-
ing cheerfulness.

From these acknowledgmenta it will be apparent that the present
work is in many respects a collaborative effort. Such virtues as the
work may have are to be shared by those who have been mentioned
here; unfortunately, the responsibility for the errors must be assumed
only by the author himself.

H. T. Davis.
Northwestern University
Evanston, Illinois
November, 1841
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CHAPTER 1

HISTORY OF THE PROBLEM
1. Time Series

rernaps one or the most difficult and one of tha most-impor-
tant problems confronting the science of econometrics is thav of the
analysis and the interpretation of time series. By a fime series we
shall mean a series of data observed successively in time.-Such a se-
ries we may represent for purposes of discussion in the following
sequence:

(1) y1:y2!y3;"'.lyt,"'!yh"-
For convenience, we may abbreviate this sequence by writing
(2) Y=Y, t:1:213y"'3N'

- In the development of the subject which we contemplate, the
items of the time series will generally refer to economic data, although
the arguments, for the most part, can be applied equally well to time
sequences studied in the analysis of physical, biological, psychological,
and other like phenomena. In economics the items in the time series
are usually observations made monthly, quarterly, or yearly, although
some series such as the Dow-Jones stock-market averages are given
daily, hourly, and even at intervals as short as 20 minutes. When the
items are sufficiently closely spaced, it is usually convenient to em-
ploy the functional notation

y=y()
instead of series (2), the variable ¢ being assumed continuous over
+ome basic interval, {, = t = ;.
Much of the present literature on the subject of economic time
series is to be found classified under the generie title of “4he theory
of business cycles,” where the term business cycle is generally as-

sumed to mean the more or less periodic alterations of business be-
tween prosperity and depression.

2. Astronomical Time Series

Historically the investigation of time series began with the as-
tronomers and it will be well for us to keep this fact in mind as we

_1—



2 THE ANALYSIS OF ECONOMIC TIME SERIES

proceed. Their problem and that of the economists are essentially
the same and the methods which they have employed in untangling
the complex motions and interactions of the heavenly bodies contain
much that is illuminating in an analysis of the complicated behaviour
of economic series,

The astronomers, however, were much more fortunate than the
economists in one very important matter. The structure of their se-
ries as it applied to planetary motion was determined by one or two
dominating causes. The motions of the planets were influenced mainly
by the excessive mass of the sun and secondarily by the mass of
Jupiter. Thus, assuming that the mass of the earth is unity, the
masses of the sun and the other planets are in the following ratios:
Sun, 332,000; Jupiter, 318.4; Saturn, 95.2; Neptune, 16.9; Uranus,
14.6; Venus, (.876; Mars, 0.108; Mercury, 0.037. Yet, in spite of this
unusual dominance of the sun, one mathematical equation in the set
which determines the motlon of the moon reaches the incredible
length of 170 pages. The economists may learn patience from the as-
tronomers, who have needed three centuries to attain the contrel
which they now have over the elements of their time series. One
should also observe that there is no complete agreement . about the
masses of the sun and the planets as given above and estlmates of
values vary considerably.

It is well known that the problem of three bodies, that i is to say,
the determination of the motions of three bodies moving under their
mutnal gravitational influences, has never been completely solved,
Hence, the general problems of four, five, or more bodies is almdst
hopelessly difficult. But when one dominating influence exists, such as
the dominance of the mass of the sun over the masses of the planets,
then the approximation to a complete solution is relatively accurate.
It is for this reason, and this alone, that the astronomers have gained
80 complete a mastery over their time series, Because of this fact, the
probable errors in their solutions have been so greatly reduced that
an anomaly as small as 40 seconds of are per century in the precession
of the perihelion of Mercury is within the limits of their precision.

The astronomers have had also a second great factor in their
favor, namely the possibility of formulating an a priori theory which
would explain many of their phenomena, and, by extrapolation, lead
to accurate prediction. This theory was que to Sir Isaac Newton
(1642-1727) and was called Newton’s theory of universal gravitation.
The history of its formulation is worth our attention. After the ad-
mirable collection of data relating to the motion of the planets had
been made by Tycho Brahe (1546-1601), these data were statistically
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analyzed by Johannes Kepler (1571-1630). Because of the dominat-
ing influence of the sun, as we have previously pointed out, Kepler
was able to formulate his three famous laws of planetary motion. The
first of these stated that the planets move in elliptical orbits with
the sun at the focus; the second that the line which connects the planet
with the sun sweeps out equal areas in equal times; the third that the
cubes of the mean distances of any two planets from the sun are to
each other as the squares of their periods of revolution about the sun.
It was Newton’s great aclfjevement to show that these laws are con-
sequences of the proposition that two bodies attract one another with
a force which varies directly with their masses and inversely as the
square of the distance between them.

The following quotation from Harcld Hotelling bears pertinently
upon this important aspect of the problem of time series:

Sir Isaad Newton set a bad example for statisticians in his mode of eatab-
lishing the relation which has been the admired model of scientific achievement
for two centuries and a half. Were the solar system subject to & complicated set
of unknown forces of as great an order of magnitude as the sun’s attraction—
such a get, for example, as may exist in a nebula or near & multiple star—New-
ton could not have established gravitation by means of Kepler’s laws, which deal
with an orbit as 2 whole. A statistical method would have been necessary; New-
ton would hsy‘ been obliged to study the curvature of paths and the acceleration
at various points by means of the second differences of the coordinates of the
planets’ positions, and then to investigate the correlation between the accelera-
tion, thus’determined, of one body toward another and the distance between the
two. '

A great historic method of sgcientific discovery has thus arisen from an
astronomieal accident. If only our tyrannical sun were amaller, the family of
planets would enjoy some of the chaos of democratic societies, and the astronomer
would be cloger to the statigtician. Science would have arisen later and statistica
earlier. Those astronomers who still feel a suspicion of quackery about statis-
tical methods, particularily correlation, may reflect on how narrowly their own
seience miszed having to wait for these very ‘methoda before emerging from the
embryonic stage. -

A feature of Newton’s law of gravitation more suitable for emulation by stat-
isticians than its mode of discovery is the determination of the constants. Of
the various constants appearing in the integrated equations of motion, not all
are of equal importance, and not all are determined finally from the same data.
The constants of integration which determine the eccentricity, size and position
of the orbit and the times at which the planet passes perihelion are of distinectly
less interest than the constants which appear in the differential equation, Of
the three latter, the masses of the {wo bodies are of small importance compared
with the value of the universal constant of gravitation. In general the con-
stants in a differential equation expressing a physical law have a different status
from constants of integration, which may change as a result of perturbations.!

1 “Differential Equations Subject to Error and Population Estimates,” Jour-
nol of the American Statietical Aasociation, Vol, 22, 1927, pp. 287-288.
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The astronomers themselves have from time to tume experienced
the same pitfalls which await the unwary statistician who attempts
generalizations from insufficient data. Kepler himself associated the
distances of the planets from the sun with certain geometrical con-.
structions based upon the five regular geometrical solids. He conclud-
ed that the knowledge of the planetary system as it existed in his day
was closed since only five regular solids existed and these were neces-.
sary and sufficient for his cosmology. The discovery of Uranus in:
1781 completely destroyed his system. An even more noted example
is found in “Bode’s law,” due originally to Johann D. Titus of Witten-
berg, but given prominence in 1772 by Johann E. Bode (1747-1826).
Bode’s law states that the relative distances of the planets from the
sun, the earth being at unit distance, are determined as follows: write
down a series of 4’s, to these add successively the numbers 0, 3, 6,
12, 24, 48, 96, etc., and finally divide by 10. This interesting statis-
tical observation preceded the discovery of Uranus in 1781, which
fitted nicely into the scheme, and called attention to the gap at 2.8,
which led to the discovery of the astercid Ceres at the proper distance.
But unfortunately the discovery of Neptune at 30 instead of 3% and
Pluto at 40 instead of 77 destroyed the validity of the law. What was
needed was some unifying principle from which Bode’s law conld he
deduced as a special case. The explanation of the relative positions
of the planets remains today an unsolved and perhaps unsolvable prob-
lem of astronomy.

3. Economic Time Series

The time series most interesting to the economists do not have
the happy circumstances which attend the time series of the astrono-
mers, One factor does not, in general, dominate an economic series,
but there exists on the contrary a complex of factors of approxi-
mately equal weights which affects their behavior. These factors are
usually interrelated and this interrelation for the most part cannot
be determined a priori. At the present stage pf economic science the
range of the validity of economic laws must he tested and defined by
the analysis of statistical data. The conclusions, therefore, must be
hedged by probabilities as to their causal significance. With the
example of Bode’s law before us, we must state the degree of this
validity most warily.

In order to have a point of departure for a statement of the prob-
lem presented by economic time series, let us consider the graphical
representation of data given in Figure 1. These data represent the
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Cowles Commission-Standard Statistics index of .industrial stock
prices from 1871 to 1940. For our present purpose there are four
observations to be made about this time series.

INDEX INDEX
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FIGURE 1.—CowWLEs COMMISSION--STANDARD STATISTICS INDUSTRIAL
STocK PRICE INDEX, 1926 =— 100.

In the first place we observe that the series has a secular trend,
that is to say, there has been a persistent tendency for stock prices
to advance throughout the period under observation. This tepdency,
called by Carl Snyder the inertia of economic series, is not always
positive, nor is it always represented by a straight line. Thus, if we
examine the trend of wholesale commeodity prices (see Figure 2)
from the period of the Civil War to the period of the panic of the
early nineties, we should find a steady decline in the time series
which would be accurately described by a straight line with a nega-
tive slope. On the contrary, the time series which describes the growth
of automobile production in the United States from 1908 to 1929 (see
Figure 4) shows an advance that cannot be adequately described by
a straight-line trend. The logistic curve, which has been widely used
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to discuss the growth of population, is both theoretically and prac-
tically adapted to the deseription of the secular characteristics of the
automobile production series. This point will be more adequabely
treated at another place.

The second point to be observed is the existence of numerous
small erratic movements in the items of the series. The series does
not appear to advance smoothly, and there is sufficient random mo-
tion in the differences between successive items to make month-by-
month forecasting, without other evidence, a matter of much difficulty.
The determination of the magnitude of this erratic element and the
attainment of some reasonable explanation of its cause comprizse two
of the important aspects of the problem of economic time series.

If one will examine carefully the structure of the time series for
the period prior to the beginning of the great bull market which cul-
minated in 1929, he will observe that the series has a tendency fo a
more or less regular periodicity. That is to say, the series tends to
oscillate in a fairly constant manner about a linear secular trend, and
the time between successive peaks and successive lows does not show
abnormal variation from a constant value of approximately 40
months. One of the outstanding problems presented to the statistician
by economic time series results from this observation. Is this ten-
dency to oscillation a fundamental characteristic of certain economic
time series? Can it be accurately described by means of elementary
harmonics such as those represented by series of sines and cosines?
If the phenomenon is real in the'sense that it can be expected to per-
sist from one long period to another, then what a priori reason can
be given for its existence? The theory of business cycles, which has
been so0 intensively developed in recent times, has attempted to give
a critical examination of these perplexing problems.

The fourth observation which we should make of the industrial
stock price series exhibited in Figure 1 relates to the end of the in-
terval. Here we note & sudden and remarkable effacement of the
structures which we observed in the earlier part of the series. A
huge peak arises abruptly from the line of trend and this is followed
by an abnormal depression, which is, in turn, succeeded by a second,
but lower peak. It might almost be believed that one observed in the
series the evidence of an elastic dynamical system, oscillating with
its characteristic period under a succession of small erratic shocks,
to which there had suddenly been delivered a tremendous blow. Such
abnormal displacements of the elements of economic time series are
called economic crises, and a great deal of attention has been paid to
them by economic theorists. We might, perhaps, for purposes of de-
scription, define as a crisis in an economic series any variation which
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exceeds three times the standard deviation of the previous residuals
of the series from an established trend.

#Ragnar Frisch has commented as follows on this dynamical as-
pect of economic series: .

The majority of the economic oscillations which we encounter seem to be
explained most plausibly as free oscillations. In many cases they seem to be pro-
duced by the fact that certain exterior impulses hit the economic mechaniam and
thereby initiate more or less regular oseillations.

The most important feature of the free oscillations is that the length of the
cycles and the tendency toward dampening are determined by the intrinsie strue-
ture of the swinging system, while the intensity (the amplitude) of the fluctua-
tions is determined primarily by the exterior impulise. An important consequence
of this is that a more or less rezular fluctuation may be produced by a cause
which operates irregularly. There need not be any synchronism between the
initiating force or forces and the movement of the swinging system. This fact

-has frequently been overiooked in economic eycle analysis.?

It is perhaps worth our while to dwell a moment upon this in-
triguing specuiation. 1f this dynamical aspect of economic time se-
ries may be regarded as having some validity, particularly since the
production of real wealth such as coal, iron, electricity, wheat, etc.
lies at the heart of the economic system, then it would be reasonabie
to employ in the analysis of time series those same mathematical
models which have been so efficacious in the domains of engineering
and physics. We shall see later as we develop our theme, that certain
aspects of our analysis are indeed drawn from these more exact sci-
entific disciplines; and thus, perhaps, the divergencies which develop
because of the presence of the erratic element may be a fair measure
of the psychic element often referred to as human variability, which
exhibits so conspicuous a presence in the vagaries of the time serjes
of economics, and is so conspicuously absent from the data of physi-
cal science. -

4. Types of Time Series

One cannot go far in the study of economic time series before he
observes that he is dealing with many types of these series, which
differ widely from one another. Among several great classes two are
conspicuous the first being what we may characterize as the class of
price series, and the second as the class of production geries. An ex-
ample of the former is the index of industrial stocks which we dis-
cussed in the preceding section; an example of the latter is the pro-
duction of pig iron. It is obvious, however, that all economic time
series cannot be included in one or the other of thése classes, as we

?“Propagation Problims and Impulse Problems in Dynamiec Economies,”
{rom Economic Essays in Honor of Gustav Cassel, London, 1933, p. 171.
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see from the existence of indexes of inventories, of unemployment, of
the ratio of stock dividends to stock prices, etc. )

However, by far the largest number of time series which age of
interest to the economist are connected in one way or another with
production and price. The theory of index numbers, to the develop-
ment of which the notable treatise on The Making of Index Numbers
by Irving Fisher, published in 1922, contributed greatly, was de-
vised to represent the time series of economics in suitable form for
analytical treatmen*. This subject is now so generally known to the
economist and the statistician that we shall not attempt a résumé of
it in this book.®

The study of economic time series, particularly those series which
relate to the price and the production of the same commodity X, has
afforded considerable insight into the nature of the relationships called
supply and demand. A vast literature has accumulated around the
concepts invoked by these relationships and the idea of curves of sup-
ply and curves of demand has been familiar to economists since the
days of Augustin Cournot (1801-1877). In his classical treatise en-
titled Recherches sur les principes mathématiques de la théorie des
richesses published in Paris in 1838 Cournot developed the concept of
a curve of demand intersected by a curve of supply, the point of inter-
section determining the selling price of the commodity under con-
sideration.

It will be clear thdt the actual determination of curves of supply
and demand must present unusual problems to the statistician. For
this computation he should have under observation a set of ideal com-
muntities in which the price of a given commodity differed widely and
for which the ensuing demand was known. Such an ideal statistical
situation obviously cannot be attained, particularly when modern
methods of transportation and communication tend to keep prices
within reasonably uniform limits. How, then, can he hope to deter-
mine approximations to the static supply and demand curves, which,
occupy so important a position in economic theories that follow the
tradition of the schools of Léon Walras (1834-1910) gnd Alfred Mar-
shall (1842-1924) ™

8 The theory of index numbers iz still a lively subject of investigation. For
recent developments in_this field, particularly as they relate to the economic sig-
nificance of index numbers, the reader is referred to R. Friach, “Annual Survey
of General Economic Theory: The Problem of Index Numbers,” Econometrics,
Vol. 4, 1936, pp. 1-38, )

41In order to see the dominance of this concept in Marshallian thought one
may refer to Marshall’s treatise, Principles of Economics {8th edition), London
1936, Book III, Chapter IV, “The Elastieity of Wants,” and III of his “Mathe-
metical Appendix.”
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In order to derive his curves of supply and demand the statisti-
cian has only the time series of price and production. From these
dynamic data he must derive a static curve of demand with a nega-
tive tangent and a static curve of supply with a tangent of the other
sign. He is like the stranger in Aesop’s fable, who must blow cold
with his breath to cool his porridge and then blow hot to warm his
hands.

It is a curious fact that the first attempt to construct a statisti-
cal demand curve was not made until 1914, when R. A, Lehfeldt pub-
lished a paper on the demand for wheat® and H. L. Moore produced
a number of interesting curves in his book on Economic Cycles: Their
Law and Cause.® In his introduction Lehfeldt commented on the sit-
vation as follows:

The writer ¢an remember, as a student, meeting with the “entropy” as a
mysterious abstraction, enshrined in the writings of Lord Kelvin and others, but
which no one dreamed of vulgarizing by the attachment of numerical values.
Now every engineer’s pocket-book contains tables of the entropy of different sub-
stances, and that most useful gquantity is made available t¢ the vulgar,

Elasticity of demand, or of supply, as defined in theoretical writings on eco-
nomics is an equally important quantity; but when, after hearing about curves
of demand, the student comes with the question, “How are these curves obtained?”
one has to confess that they are not obtained, but rest in the limbo of abstrac-
tions. It would seem, therefore, that the roughest attempt to measure a co-
efficient of elasticity would be better than none, and would serve to make the
concept of more real use.

The difficulties which are inherent in this problem will be dis-
cussed later in the bock, It is sufficient here to show that the deter-
mination and interpretation of supply and demand curves, together
with all the problems associated with them, may be looked 2t from
the point of view of the theory of time series. It should be pointed
out, howeveg-, that the determination of supply and demand curves
zan also be made by means of the data derived from a study of family
budgets. An extensive review of the various theories which apply in
this situation will be found in Chapter 8 of The Theory and Measure-
ment of Demand by Henry Schultz. The reader will also find an ac-
tount in Famaly Ezxpenditure by R. G. D. Allen and A. L. Bowley.

. Eeonomie Crises and Their Szgmﬁcance

In Qiscussmg the four significant characteristics of the industrial
stock price series given in Figure 1, attention was called to the re-
markable peak which arose abruptly from the trend prior to 1929 and

8 “The Elasticity, of- Demand for Wheat,” Econemic Journal, Vol. 24, 1914,

pp. 212-217.
& New York, 1914, viii + 40 pp. In particular, Chapters 4 and 5.
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which has established such excessive perturbations in the successive
parts of the series. Since this crisis is a typical phenomenon of eco-
nomic time series and since the spectacular character of such events
early attracted the attention of students, it will not be out of place
to sketch the history of a few of them and to comment on their sig-
nificance in the general theory of time series.

Historically, economic crises were regarded as unfortunate epi-
sodes, which destroyed the rhythm of ideal states of equilibrium. Al-
though their disruptive influence was recognized, these crises were
unwelcomed events which tended to disturb the “normal” state of a
smoothly organized social order.

Although minor crises are common events in the history of eco-
nomics, crises as severe as that of 1929 are exceedingly rare, occur-
ring, perhaps, on the average of once a century. The first of these
speculative catastrophes of which we have any definite record was the
tulip mania, which gripped Holland between the years 1634 to 1637
and which impoverished that state for about half a century thereafter.

Tulips were introduced into Holland toward the end of the six-
teenth century and slowly.gained favor with horticulturists, who be-
gan to vie with one another in the development of rare types of the
flower, Just where the mania really started is still a matter of debate,
some evidence having been found to indicate that disputes over tulips
began as early as 1611. Munting in his book Beschrijven der Kruyden
says that the origin of the mania was in France where the nobility,
particularly in Paris, paid as high as several thousand florins for a
single flower.

The tulip mania was a speculation in tulip bulbs, which reached
the same fantastic heights as those attained in later years by specu-
lations in stocks. It is difficult, without adequate statistical data, to
chart the course and magnitude of the speculative fever, but the fol-
lowing data, which interpret the payment for one “Vicerey” tulip in
terms of commodities, furnish excellent evidence as to the extraor-
dinary character of the speculation:®

Commodities Value in Florins Commodities Value in Florins

2 loads of wheat T 448 4 barrels of beer 2

4 loads of rye 558 2 barrels of butter 192

4 fat oxen 480 1000 pounds of cheese 120

8 fat pigs 240 1 complete bed 100

12 fat sheep . 120 1 suit of eclothes 80

2 hogsheads of wine 70 1 silver beaker 60
Total _ 2500

T The author is indebted for this accomnt ¢
Murray, “The Intreduction of the Tulip, e Tulatein s e by -

; and the Tuli in,"” rnal
Royal Horticultural Society, Vol. 35, 1909-10, Dp.els—%(;?m‘m’ Jou of the
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Another example is a bookkeeper’s entry:

Sold to N. N. a “Semper Augustus,” weighing 128 azen,® for the sum of 4600
florins. Above this sum a new and well made carriage and two dapple grey horses
and all accessories, to be delivered within four weeks, the money to be paid im-
mediately.

~ The following schedule of some of the prices paid as given by
Munting is also illuminating:

59 azen Admiral Liefkens 1015 florins
214 ¢ Van der Eyck 1820
523 « Grebba 1486 ¢
106 Schilder 1616 ¢
200 Semper Augustus 6500
410 = Viceroy 3000

1000 * Gouda 3600 *

One of the best commentaries on the period was a picture en-
titled: “Flora’s Fool’s Cap, or Representations of the wonderful year
1637, when one fool hatched another; the people were rich without
property, and wise without understanding.”

When the inevitable deflation of the speculation finally occurred
in 1637 liquidations took place around five to ten per cent of the spec-
ulative values.

Nearly a century after the tulip mania we find occurring simul-
taneously the two great speculations of England and France. The
first of these is called the South Sea Bubble and the second the Mis-
sisgippi Scheme, or the Mississippi Bubble.

The South Sea Bubble originated with the incorporation of the
South Sea Company in 1711, which was granted a monopoly of the
British trade with South America and the Pacific Islands. After a
very successful beginning the company offered in 1719 to assume the
national debt of £51,300,000 and to pay £3,500,000 for the privilege.
The scheme back of this offer was to persuade the annuitants of the
state to exchange their holdings for South Sea stock at a high pre-
mium. and thus to amortize the debt with a comparatively small issue
of stock. The company would still get interest from the government
of about £1,500,000. In competition with -the Bank of England the
company raised its offer to £7,667,000 and this was accepted in 1720.

The speculative boom started immediately thereafter. In a few
weeks half the annuitants had exchanged their government securities
for the stock of the company and a tremendous inflation of values
resulted. The stock of the company was quoted at 128} at the begin-
ning of the year, but by June it reached 890 and by July the dizzy
height of ¥0060. The maximum quotation seems to have been 1050 on

$ One gram is stightly more than 20 azen.
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June 24, but by July 31 it was still quoted at 930. In August the re-
cession began and from a quotation of 880 on August 18 it had fallen
to 150 by September 25. A short recovery raised the level to 200 on
November 10, but by November 28 it had reached 135. Thus in the
course of a single year the finances of the government had been badly
shaken and many thousands of people ruined. It is interesting to
note that not alone are the foolish and the greedy engulfed-in these
terrifying maelstroms of speculation. It is a matter of record that
the eminently wise Sir Isaac Newton lost £20,000 in the South’Sea
Bubble. Extenuating circumstances have been argued in his behalf
to show that he was not carried away by the madness of the period;
he was nevertheless a victim of it.*

The Missizsippi scheme, which ran its course simultaneously in
France, centered around the romantic figure of John Law (1671-
1729), a Scotch financier. On May 20, 1716 Law was authorized to
establish a Bangue générale, later converted into the Bangue royale,
in France with a capitalization of 6,000,000 livres, divided into 1200
shares. The bank was empowered td issue demand notes payable in
the money mentioned on the day of issue and in April of the follow-
ing year the government decreed that these notes would be received
in payment of taxes. The popularity of the notes was immediate and
the issue soon increased tenfold. The Mississippi scheme was then
inaugurated with the foundjng of the Compagnie de la Louisiane ou
d'Occident to exploit the riches of the Province of Louisiana and the
country bordering on the Mississippi. This company later absorbed
the Compagnies des Indes Orientales et de la Chine and assumed the
name of the Compagnie des Indes. The first issue of 200,000 shares
was made at 500 livres, but this issue was subsequently supplemented
by other issues at 550 livres, 1000 livres, and finally 5000 livres.
Back of this extraordinary inflation _was the assumption of Law
that scarcity of money restricts commerce. and that this scarcity
can be remedied by the issue of paper currency against physical prop-
erties. These physical properties were represented in his preject by
the unlimited wealth presumed to exist in the undeveloped lands along
the Mississippi. Since these lands were pictured as being of untold
value it seemed only logical that an almost unlimited currency could
be issued against them. This in turn elevated their nominal value,
which permitted a new currency, and so the fatal spiral continued.

The speculation reached its climax in November, 1719 when six
shares c_af stock_of the royal bank were sold for 10,000 livres, But ‘si)on
a reaction set in and the desire of speculators grew*to convert these

See L. T. Mote, Isaac Newton, A Biography, New York, 1934 0pa 651-655.
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paper holdings into the more tangible form of specie. Three wagons
were required to remove the metal demanded by Prince de Conti for
liis paper holdings. The death blow to the scheme was dealt in May,
1720 when a decree was issued by the government with the intent of
gradually reducing the notes of the bank to half their value. Panic
ensued and by September a single gold mark purchased 1800 livres
in bank notes, which had been valued ten months before at 160,000
livres in specie.’® :

Proceeding to the beginning of the nineteenth century, when
more accurate statistical data exist for the measurement of these
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financial cataclysms, we observe that the century begins with a com-
modity inflation. Figure 2 shows the index of wholesale commodity
prices for the United States from 1797 to the present time. Three
mflationary peaks are observed in the data, all possessing more or less
the same charaeteristic patterns. This is exactly what would be ex-
pected since they were all the results of wars. We also note that the
three maxima occur at intervals of approximately fifty years, the
exact dates being November, 1814, August, 1864, and May, 1920. The
intervals are thus 49 years and 9 months and 55 years and 9 months
regpectively. .
" This observation, based upon the tenuous example of just three
¢ An exceHent mccount of this inflation togethér with tables of index num-
bers of prices and wages will be found in E. J, Hamilton, “Prices and Wages at
Paris under Jghn Law's System,” Quarterly Jowrnal of Eeconomics, Vol, 51, 1936,

pp. 42-70. Alse “Prices and Wages in Southern France under John Law’s Sys-
tem,” Econemic Hestory (Supplement), 1837, pp. 441-461.
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inflations, has led to the assumption of a fifty-year cycle in prices.
This assumption rests upon the hypothesis that great upheavals tend
to occur at regular intervals of fifty years, since 25 years are neces-
sary for the deflation of the last and 25 years more to build up eco-
nomic strength for the next. Some additional evidence for this view
is furnished by Sir William Beveridge’s periodogram of wheat prices
in England, an account of which will be given later in the book. But
perhaps the most interesting indirect support of the hypothesis ia
found in the dates of the three Punic wars. These wars were waged be-
tween the ancient powers of Rome and Carthage. Here we see two
dominant nations struggling for supremacy and we may presume that
their economies were essentially closed within the territories over
which they held sovereignty. That is to say, there apparently existed
no third element which might interfere with the natural processes of
inflation and deflation within their respective boundaries. The dates of
the three wars were 264-241 B.C., 218-201 B.C., and 149-146 B.C. If
we presume that the last date in each case was approximately the date
of maximum inflation in prices, then the intervals of the cycle would-
be 40 and 55 years respectively, a fair agreement with the intervalg in
the cycles of the past century and a half, s

We may conclude from all of this that economies from time to
time experience great inflationary movements which, after running
their course, end in sudden and devastating depressions. These criti-
cal periods fortunately are fairly rare events occurring probably not
more often than once or twice a century.

10 1 3 3 3 =
cussed by N B, Kondratell in his paper, SThe Lo Wevss 1 Boommir Loy
Roview of Economic Statistics, Vol. 17, 1935, pp. 105-115, & translation of an ar .
ticle published in the Archiv fiir Sozialwissenschaft und Sozialpolitik, Vol, 58,

1926, pp. 573-609. Kondratieff reaches the conclusion that “on the basi 2
available data, the existence of long waves of cyclical character is veﬂa;‘r’bb'gbk.h’o'
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8. The Problem of Trends

The problem of defining the trend of an economic series is one
of the most difficult matters which we encounter on the threshold of
an analysis of economic time series. By a trend, or as it is more com-
monly called, a secular trend, we mean that characteristic of the series
which tends to extend consistently throughout the entire period.

Wesley C. Mitchell in his treatise on business cycles appraises
the present status of the problem as follows:

Secular trends of time series have been computed mainly by men who were
concerned to get rid of them. Just as economic theorists have paid slight atten-
tion to the “other things” in their problems which they suppose to “remain the
same,” 50 the economic statisticians have paid slight attention to their trends
beyond converting them into horizental lines. Hence little is yet known about
the trends themselves, their characteristics, similarities, and differences. Even
their relations to cyclical fluctuations have been little considered. Here lies in
obseurity a heap of problems, waiting for properly equipped investigators to
exploit.11 ‘

To Carl Snyder, as we shall show in a later chapter of the book,
the trend is the dominating characteristic of most economic time
series. For him the minor jiggles of the series are but inconsequential
vagaries,.the impertance of which are entirely submerged in the secu-
lar sweep of economic development. Thus he says:

The picture that these measures [the per capita growth of production and
trade in the United States from about 1800 to 1929 . . . varying but little from
an average of about 2.8 per cent per annum . .. ] gives is that of an amazingly
even rate of growth not merely from generation to generation but actoally of each
separate decennium throughout the last century. As if there was at work a kind
of momentum or inertia that sweeps on in spite of all obstacles.’?

This macroscopic view of the problem of time series tends,to
minimize the importance of eyclical variations and perhaps denies
validity to investigations which focus on the finer structure of the
time movements. This view also emphasizes the need for a closer
-scrutiny of what we shall mean by the term secular trend itself. Thus
the data from which Snyder draws his concliusions are time series a
century in length. Perhaps, indeed, he is examining only one-quarter
of an economic eycle four centuries in length and economists, analyz-
ing the series of industrial production a century hence, may have a

11 Busingas Cycles, The Problem and Its Setting, New York, 1927, xxii 4
489 pp.: in particular, pp. 212-213.

12 “The Concepts of Momentum and Inertia in Economics,” Chapter 4 in
Stabilization of Ern.ployment, Edited by C. F. Roos, Bloomington, Ind., 1933, PP

76-77. See Capitalism the Creator, New York, 1940, xii + 473 pp., which
amplifics the Mertial theory.
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totally different concept of the pattern. Thus, if one examines the
temporal data which show the annual change in the dominance of the
Roman people, he will find a secular increase until about the period
of Augustus followed by two centuries of prosperity, and then a slow-
ly accelerating decline until the end of the empire. This is graphically
portrayed in Figure 3.1%

If one wished to examine all economic time series from the point
of view of the theory of cycles, he might défine trends as portions of
harmonic ares with periods greater than the length of the data under
analysis. It is, indeed, significant that the elements of a periodogram
are essentially independent of secular trends and that the mathemati-
cal investigation of short cycles may be pursued without first remov-
ing the trends from the data. s

In general, economists have considered four types of trend litﬁ.
The first of these is the straight-line trend with the data graphed to
an arithmetic scale. This is the true linear trend. Its use may be
justified, lacking a priori evidence in favor of a different trend, on
the basis of simplicity. Ingenious and simple methods have been de-
vised for fitting it to the data. Residuals from it may be easily cal-
culated; their standard deviations may be computed and their corre-
lations with other residuals found without caleulating other constants
than the variance and the zeroth and first moments of the raw data.

Extrapolation with linear trends is more common than with
other types of trends. For most economic data the slope of the trend
is small and unrealistic values do not appear for reasonable extensions

of the line. The probable errors of the two parameters ¢ and & in the
trend

y=a+bt,

are known and the limitations of an extrapolation based upon them
can be computed, as we shall show later in the book. An extensive in-
vestigation of this point was undertaken by the laboratory of the
Cowles Commission. This experiment, which will be. more carefully
analyzed later, consistedsin the examination of the trends fitted to 100
years of rail stock prices, the period being from 1831 to 1930. A
frend of 20 years (1831-1850) was first fitted to the data and then
extrapolated .for four years as a forecast. A similar peri'od of four
years was then deleted from the beginning of the series and the actual
data from 1851 to 1854 were added to determine a new trend. This

2 This point of view has been. expressed by G. U. Yule in his ey, “Wh
Do We Sometimes Get Nonzense Correlations between T4 Serie ,,:,)a mair’ %
the Royal Statistical Society, Vol. 89, 1928, ?):) f—gzen Time Seriea? of
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process was continued throughout the entire century, 21 forecasts of
secular trends being thus recorded. The resulting 21 determinations
of the parameters ¢ and b are perhaps the only data in existence
which throw light upon the nature of the actual distributions of these
parameters in realistic economic time series. Since the interpretation
of results is extensively developed in another part of the book, it will
suffice here to state that the distribution of the differences in ¢ and b
from trend to trend, that is to say, the distribution of 4a and 4b,
yielded the following values:

For d4a: A =3.3201, +~5.4862, Skewness==0.0364, £, =—1.8992,
For A4b: A = 0.008199,'¢ = 0.143544, Skewness == —0.0184, 8, —=2.4644.

v The small values of §;, which for normal distributions should
equal 3, indicate an excessive disturbance in the trends and one must
conclude that the use of linear trends throughout the entire period of
100 years was not warranted without further hypothesis. This ex-
ample throws vivid light upon the question of why the “normal” lines
of one peried are not the normal lines for a second and, perhaps, eon-
tiguous period.

The second favorite trend of statisticians is a straight line fitted
to data which are graphed on a logarithinic scale. Unless warily used
this is a dangerous trend to employ, particularly if it is to be extra-
polated for any distance or used as the criterion for a normal period.
The reason for this is apparent when we write the linear expression

logoy—a-+bt,
in the form ‘
y==Ae*, where A=10%, B = (log.10)b.

The expression on the right of this equation is called the expo-
nential function, or the function of compound interest. For positive
values of B, the quantity increases with rapidly increasing accelera-
tion, and even a moderate ext.zzapolation can lead to completely un-
realistic values. . , .

A third trend is the so-called logistic, or curve of growth, which
was given currency in the biological and population studies of Ray-
mond Pearl and L. J. Reed.’* The logistic curve appears to have been

12 The use of this curve in population studies is to be found in the following
papers by Pearl and Reed: “On the Rate of Growth of the Population of the
United States since 1790 and its Mathematical Representation,” Proc. Nat. Acad-
emy of Science, Vol. §, 1920, pp. 275-288; “On the Mathematical Theory of Papu-
lation Growths,” Metron, Vol. 3, 1923, pp. 6-19; “The Probable Error of Certain

Constants of the Population Growth Curve,” American Journal of Hygiene, 1924,
An extensive account is riven in Chapter 24, Studies in Human Biclogy, by Ray-
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employed as early as 1844 by P. F. Verhulst,* but its application in
economics is subsequent to the work of Pearl and Reed. The most ex-
tensive use of this curve as a trend for production data has been made
by S. S. Kuznets,'s who fitted logistics to some 50 or more series such
as the production of wheat, corn, potatoes, cotton, pig iren, Portland
cement, coal, copper, lead, ete. He also studied by this means the
growth of bank clearings in New York City, Boston, Chicago, and
Philadelphia, the growth of railroads, and the tonnage cleared from
various countries. Modern industrial development, which, as one sees
from the conclusions of Snyder, has progressed so uniformly over the
past century, has furnished series admirably adapted to graduation
by means of the logistic curve.

The logistic curve seems to be especially well designed for the
description of the growth of new industries, for population studies,
and for production series which depend upon the growth of popula-
tion itself. The curve has been subjected to numerous biological tests
such as the growth of bacterial culture® and the growth of a popula-
tion of drosophila (fruit flies) under controlled experimental con-
ditions.'” The unusual success of this curve in. such varied fields
of application has suggested that the basis of this success may be
found in the fact that the law of formation of a chemical substance
by autocatalysis may in some instances be described by the logistic.'®
Whether this relationship is merely an analogy or a real connection
of chemical processes with the process of biological growth is still
unknown. An admirable account of the present status of the prob-
lem is to be found in Lotka’s Elements of Physical Biology, Chapter 7.

The characteristics of the logistic curve which make it so attrao-
tive to the statisticians who examine modern production data are re-

mond Pearl, Baltimore, 1924, A comprehensive article is also due to H, Hotelling :
“Differential Equations Subject to Error, and Population Estimates,” Journal of
the Amer. Statistical Association, Vol. 22, 1927, pp. 283314, The errors of fore-
cagting from the curve have been estimated by H, Schultz in “The Standard
Error of a Forecast from g_Curve." Journal of the American Statistical Assoeta-
tion, Vol. 25, 1930, pp. 139-185. See also, E. B, Wilson (with Ruth R. Puffer),
“Least Squares and Laws of Fopulation Growth,” Proceedings of the American
Art.:ade'in? of érts g:z% Sm:noles, Vol. ft58, 193%. g}p. 285-382; Victor 5. von Szeliski,
“Population Grow ue to Immigration an atural I " man Bi
February, 1936, pp. 25-37. & ural Increase,” Human Biology,
1 Mem. Acad. Roy. Bruxelles, Vol. 18, 1844, p. 1; Val. 20, 1846, p. 1.
15 Secular Movements in Production and Prices, Boston, 1930, xxiv 4 536 pp.
:: g 1? T]l'xorrc\ltosn,LArgwlf: of fpplied Biology, 1922, p. 265, .
- Pearl and 5. L. Parker, American Naturelist, Vol. 55, > ;
56, 1923’ "'T"O% " ’ ‘ ol. 55, 1921, p-503; Vol.
. '23ee T. B. Robertson, Archiv fiir die Entwickelungsmechanik der Organ-
Gmt,h‘ro"dzg" 1907, p. 41:9;;01. V2V6' 6908;1 13 108, Also The Chenu'cals rBamg of
rowth an enescence, : - Qatwald, Die zeitlithe s |
Entuickelungsvorgange, Leipzig, 1908, n Bigenschaften der
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vealed in the graph shown in Figure 4, which gives the logistic fitted
to the data for automobile production in the United States. As one
sees from the graph, the logistic curve may be regarded as a transi-
tion trend line intermediate between a lower initial level and an upper
stable level. In such a transition curve there must necessarily be a
point of inflection, where the rate of increase of production begins
to decline. In the example, this point was midway between 1920 and
1921.
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FIGURE 4.—PRODUCTION OF PASSENGER AUTOMOBILES IN THE UNITED STATES
(12-MONTH MOVING AVERAGE}, FITTED WITH LOGISTIC

The existence of an upper asymptote, the line of maturity, is the
distinguishing feature of the logistic which makes it superior to the
pure exponential functian in applications to economic time series. In
the example, the data used for fitting the logistic were taken for the
vears from 1913 to 1927 and the curve was then extrapolated to 1938.
The range chosen, since it included the eritical inflection point, was
probably sufficient for attaining some extrapolation validity. A gross
overproduction in 1929 was indicated by the trend and a gross under-
production was similarly shown .for the period from 1930 to 1935.
Although, as we shall show when we make a more critical examina-
tion of the curve later in the book, the extrapolation over so long a
period with so short a base is not statistically valid, it is a matter of
some interest to note that the forecasted normal preoduction was again
attained by 1937.

The curve itself is representea by the formula

. k
VEIThew
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and numerous methods have been devised for determining the three
essential parameters. The values of the upper and lower asymptotes
are given by the lines y = 0 and ¥ = k. The point of inflection is de-
fined by the co-ordinates t = + (log. b) /&, y = 3k

The differential equation of the logistic, namely

dy _
ar

where a and g are positive constants, shows that the growth of y is
stimulated directly by the magnitude of ¥, but that it is checked by a
factor proportional to the square of .

The logistic curve is closely related to the older Gompertz curve,

y=ka*, b<1,.

which was used by Benjamin Gompertz to graduate the data of the
mortality table. The logistic curve, perhaps, derives some theoretical
validity from the arguments used by Gompertz in his original paper
presented to the Royal Society in 1825. There Gompertz assumed
“that death may be the consequence of two generally coexisting
causes ; the one, chance, without previous disposition to death or de-
terioration; the other, a deterioration, or increased inability to with-
stand destruction.” Regarding the second cause Gompertz then pro-
posed to consider the effect of supposing that “the average exhaustion
of a man’s power to avoid death to be such that at the end of equal
infinitely small intervals of time he lost equal portions of his remain-
ing power to oppose destruction which he had at the commencement
of these intervals.”

If I. represents the number out of a given initial population that
are alive at age r, then the pro’bablhty of death in the interval ¢ is
given by — (L. — L) /I., or when t is an infinitesimal, by - dL./1, .
This, by the Gompertz assumption, is equal to B b* dx , where B and
b are constants to be determined from the data. We thus obtain the
equation —dl,/l, = B b* dx, which y:elds, on integration, th{ Gom-
pertz curve.

It is of interest to note that if Gompertz had' formulated his as-
sumptions as to the pfobability of death in the form —dlL /I =
(A + B b*)dx, where A represents the constant probability due to
chance and affecting all ages alike, and B b* is the chance due to in-
creasing inability to avoid destruction. then the equation for I, would
have assumed the form

=ay— ﬂy H

ll = k_"r' a>*
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This formula is due to Makeham, who proposed it in 1860.*¢
In appraising the general value of the logistic and Gompertz
trends in production data Kuznets reaches the following conclusion:

The tg‘mple logistic and Gompertz curves, mostly the former, describe well
the long-time movementa of growing industries, and, with certain modifications,
those of declining industries. . ..

The significance of [this] conclusion should be made clear to prevent over-
valuation. The good desecription of the series yielded by the logistic and Gom-
pertz curves should not lead one to.infer that they are the only ones that yield
such description, that they embody the law of growth and are for that or for
some other reason the superior forecasting curves, In forming a good descrip-
tion of the long-time movements, these curves only corroborate the general as-
sumption concerning the decline in the percentage rate of industrial growth
(within specific industries) and lJend some weight to the hypothesis which makes
this decline a function of the level attained and of a finite limit. The conclusion
of the statistical analysis supports therefore only a limited historical generaliza-
tion. But the specific constants arrived at in the process of fitting have in them-
selves scarcely any forecasting value, nor are the forms of the equations to be
treated as expressions of “a law of growth.”2¢

A. F. Burns in his study Production Trends in the Uniled States
Since 1870™ has challenged the use of the logistic curve as a complete
description of the growth and decline of industry and has replaced it
by the exponential

(1) y:eﬂ‘b'-ﬁl"’.

It should be noted, however, that the general logistic, obtained by
replacing at by a polynomial, essentially includes equation (1) for
sufficiently large values of £. The general logistic is able to describe
any phenomenon at least as well as equation (1).

Burns’ argument against the use of the logistic follows:

It is difficult, therefore, to find any scund rational basis for the notion that
industries grow until they approximate some maximum size and then maintain
a stationary position for an indefinite period. Nor is the notion at all supported
by experience: the production records of our industries practically never evi-
dence a plateau at the apex: «once an industry has ceased to advance, it rarely
remains at a stationary level for any length of time, but rather soon embarks
on a career of gecadence. It is possible, of course, to formuiate a “law of decline,”
give it expression in a “senescence curve,” splice this curve on to a “growth
curve” at the apex, and in this way achieve a complete description of an indus-
try’s development. But such procedure is arbitrary, even unsound if it pre-sup-
poses a break im the underlying causation, and it involves an inelegant mode of

1® For an account of these matters see the Inatitute of Actuaries Tezt Book,
Part 2, by George King, First edition, London, 1887; in partiealar, Chapter 8.

20 (h)'p ecit., pp. 197-198. .

#1 New York, 1984, xxxii | 363 pp; eee, in particular, Chapter 4.
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mathematical expression. Both analysis and history require that if a “law of
growth” of industries is te be formulated, it should be sufficiently general to
subsume the periods of both advance and decline®* )

A fourth type of trend favored by statisticians is 2 moving aver-
age: that is to say, the trend values are computed from the dath values
by means of the formula

A
E W. x"“l
=i
A
W,

a=A

(2) Y=

where W, is a weight function. Usually W, is a constant or the bi-
nomial coefficient W, = ;1.Ca.,. The parameter i of the moving aver-
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FIGURE 5.—S8ERIES oF RANDOM ITEMS ( ) SMoOTHED BY A MovING

AVERAGE ( } oF TWELVE UNITS.

age is generally chosen sufficiently large to remove minor variations
in the data. The quantity 24 + 1 is called the length of the moving av-
erage and should be chosen equal to, or some multiple of, the periodic
movement which is to be removed from the data. Thus seasonal varia-
tion can be eliminated by a moving average of 12 months.

It is clear that for continuous data, y(f), the equivalent of for-
mula (2) may be written

@) gy =JAWE) 2(tta)ds (AW (r—t) 2(r) dr

AW()ds — T [AW(s) ds
ne Ibid., pp. 170-171.
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The moving average has several interesting advantages. It pos-
sesses a useful simplicity and can be employed with great advantage
in smoothing difference series derived from economic series. Its length
may be adjusted to remove certain cycles, such, for example as sed-
sonal variation, without essentially interfering with others. The mov-
ing average has been employed advantageously in the technique of the
variate difference method to remove from the data the erratic element
suggested by that method. The accompanying graph, Figure 5, shows
how 2 series of random elements may be smoothed by the use of mov-
ing averages.

It is obvious that numerous other trends might be defined, but
the four which we have described above are by far the most common
ones in use in the study of economic time series. A natural extension
of the linear trend is found in polynomial trends of higher degree.
The parabola .

y=ea+bt+ct

has been occasionally employed and examples may be found where
the more general polynomial

y=a,t+ta, t+af +a,?+.-4aq,

has been used for a trend. Such trends, however, must be employed
with great caution and usuaily only in those cases where they are
justified by some a priori consideration., Lacking such a priori va-
lidity, one will find extrapolations based upon them an unsound sta-
tistical procedure. A theory of the standard error of polynomial
trends is helpful as a guide to one’s judgment in this connection. Un-
fortunately such standard errors show that the region of uncertainty
for polynomials of higher degree than the first opens up almost ex-
plosively at the end of the period of the known data and extrapolation
is automatically limifed. An extensive account of the theory of the
standard error of trends was published in 1929 by H. Working and
H. Hotelling.?* A novel extension of these ideas to the standard error
of a forecast from a curve was made the next year by the late Henry
Schultz, who applied certain concepts of K. F. Gauss to the interpre-
tation of economic time series. This problem will be more fully dis-
cussed in a later chapter of the book.

If the object of the investigator is merely to detemne a trend

¥ “Applications of the Theory of Error to the Interpretation of Trends,”

edings of the American Statistical Association, Vol. 24, 1929, pp. 73-85.

32 “The Standard Error of a Forecast from a Curve,” Journal of the Ameri-
can Statistical Association, Vol. 25, 1930, pp. 139-185.
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for the purpose of describing the historical movement of the series,
then one criterion which is employed by some writers in the use of
polynomials is to determine the degree of the curve such that the
residuals from it form a normal distribution. This determination,
unfortunately, is not unique and should be regarded as a necessary
rather than a sufficient condition. An interesting example of this is
furnished by the data on rail stock prices between 1859-1878. The
residuals from a straight-line trend fitted to the series showed 2 strong
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FIGURE 6.—INDEX OF RAIL STOCK PRICES WITH LINEAR (a) AND CuUBIC
(b} TreNps FITTED.
This graph shows how the use of a polynomial trend has reduced the distribution
of the deviations to a normal form.

tendency to a U-shaped distribution, as one may observe from the
graph in Figure 6. The use of a polynomial trend immediately reduces
this distribution to normal form.

7. The Evidence for Cycles

In the analysis of empirical data in any branch of science, the
search is necessarily for relations which may exist between two or
more of the measurable quantities which are the object of the investi-
gation. These relationships, if they exist and are to be recognized
as valid, must exhibit themselves in more or less well-defined patterns.
But this is not enough to give them general recognition. The patterns
must persist, If they are discovered in one set of experiments, then
they must also be discovered in a second and independent set of ex-
periments performed under identical conditions. In the case of time se-
ries, the patterns discovered in one period must again exhibit them-
selves in another, or'else valid reasons be advanced for their efface-
ment. But even this criterion of continuity is not sufficient to establish
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laws of science. The final stage is to give a priori arguments for the
existence of the patterns; that is to say, to explain the nature of the
phenomena which have been discovered from the data. It is probably
needless to add that in emerging sciences such as that which is the ob-
ject of this book it is not always possible to give full validity to the
relationships discovered or suspected. The laws of economics are for
the most part only specious probabilities whose truth must be forti-
fied by more data and further analysis.

To illustrate this point we might consider one of the most inter-
esting discoveries made by V. Pareto in his exploration of economic
data. Before the time of Pareto, or for that matter, for as long as
history gives us evidence, it has been observed that there have existed
in every commonwealth classes of varying degrees of wealth. The
poorest class has always far outnumbered the richest and at times,
as in the period of the French Revolution (1789-1795), or in that of
the more recent Russian Revolution (1917-1919), the misery of the
masses has found expression in widespread conflagration. The ques-
tion proposed by Pareto was essentially this: Does there exist a fixed
pattern, or norm, for the distribution of income in stable economies?
That is to say, given the N inhabitants of a country and a scale of
income measured by z, does there exist a funetion ¢(z) such that
N ¢ (z) gives the distribution of incomes? It was a prime empirical
discovery that there does exist such a function, which is perhaps in-
dependent of nations, political philosophies, and periods of time, This
proposition will be subjected to statistical review in a later chapter.
But can we say that the observation of Pareto is a law of economics?
Although a liberal interpretation of the evidence discovered to date
seems to point to the truth of Pareto’s proposition, it would be rash
to affirm that this is a law of economics until a priori reasons have
been advanced to show why Pareto’s function must characterize the
distribution. ,

In economic time series the most plausible structure to be as-
sumed is that of trend, particularly in an increasing economy where
biological growth functions appear to have validity. We have already
explored these possibilities. And next to trends, the most probable
structure to be investigated would be that of eycles, that is to say, the -
more or less regular variations about established trends. Naturally
these movements would not be entirely uniform, since the vagaries
of human ‘conduet might be expected to alter both their amplitudes
and their periods. But if a genuine cycle is to be observed, this varia-
tion should lie within well-defined limits of statistical error.

In a later chapter of the book -we shall discuss in more complete
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for the purpose of describing the historical movement of the series,
then one critericn which is employed by some writers in the use of
polynomials is to determine the degree of the curve such that the
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tendency to a U-shaped distribution, as one may observe from the
graph in Figure 6. The use of a polynomial trend immediately reduces
this distribution to normal form,

7. The Evidence for Cycles

In the analysis of empirical data in any branch of science, the
search is necessarily for relations which may exist between two or
more of the measurable quantities which are the object of the investi-
gation. These relationships, if they exist and are to be recognized
as valid, must exhibit themselves in more or less well-defined patterns.
But this is not enough to give them general recognition. The patterns
must persist. If they are discovered in one set of experiments, then
they must also be discovered in a second and independent set of ex-
periments performed under identical conditions, In the case of time se-
ries, the patierns discovered in one period must again exhibit them-
selves in another, or'else valid reasons be advanced for their efface-
ment. But even this c¢riterion of continuity is not sufficient to establish
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laws of science. The final stage is to give a priori arguments for the
existence of the patterns; that is to say, to explain the nature of the
phenomena which have been discovered from the data. It is probably
needless to add that in emerging sciences such as that which is the ob-
ject of this book it is not always possible to give full validity to the
relationships discovered or suspected. The laws of economics are for
the most part only specious probabilities whose truth must be forti-
fied by more data and further analysis.

To illustrate this point we might consider one of the most inter-
esting discoveries made by V. Pareto in his exploration of economie
data. Before the time of Pareto, or for that matter, for as long as
history gives us evidence, it has been observed that there have existed
in every commonwealth classes of varying degrees of wealth. The
poorest class has always far outnumbered the richest and at times,
as in the peried of the French Revolution (1789-1795), or in that of
the more recent Russian Revolution (1917-1919), the misery of the
masses has found expression in widespread conflagration. The ques-
tion proposed by Pareto was essentially this: Does there exist a fixed
pattern, or norm, for the distribution of income in stable economies?
That is to say, given the N inhabitants of a country and a scale of
income measured by z, does there exist a function ¢(z) such that
N ¢(zx) gives the distribution of incomes? It was a prime empirical
discovery that there does exist such a function, which is perhaps in-
dependent of nations, political philosophies, and periods of time. This
proposition will be subjected to statistical review in a later chapter.
But can we say that the observation of Pareto is a law of economics?
Although a liberal interpretation of the evidence discovered to date
seems to point to the truth of Pareto’s proposition, it would be rash
to affirm that this is a law of economics until a priori reasons have
been advanced to show why Pareto’s function must characterize the
distribution. )

In economic time series the most plausible structure to be as-
sumed is that of trend, particularly in an increasing economy where
biological growth functions appear to have validity. We have already
explored these possibilities. And next to trends, the most probable
structure to be investigated would be that of cycles, that is to say, the
more or less regular variations about established trends. Naturally
these movements would not be entirely uniform, since the vagaries
of human ‘conduct might be expected to alter both their amplitudes
and their periods. But if a genuine eyele is to be observed, this varia-
tion should lie within well-defined limits of statistical error.

In a later chapter of the book we shall discuss in more complete
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detail the evidence for the assumption of cyclical variation. It will
be sufficient here to indicate the present status of the problem.

The first cause of cyclical variation would naturally be found in
the seasons of the year. Many economic series exhibit this seasonal
fluctuation, while others show little if any variation from this cause.
Agricultural production and most industries which depend essentially
upon agricultural production will show substantial seasonal variation.

As an example we might consider the index of freight-car load-
ings. When crops are moving in the fall, loadings reach their peak.
In any year there will be a rapid decline in loadings in November and
December. The index number for this time series will always end the
year below the annual average, while the index for August, Septem-
ber, and October will be above. This seasonal factor, having thus
been observed for a number of years, must always be discounted in
estimating the general status of business by means of this index.
Since freight-car loadings are found to correlate highly with indus-
trial production, this index is watched with interest by those desirous
of knowing the condition of the country’s economy. The normal sea-
sonal decline in the late fall and the corresponding seascvnal rise in
the late summer, as we have already stated, must accordingly be dis-
counted in estimating the normal trend of business.

But undue emphasis must not be placed upon the season factor
since this variation is frequently a relatively unimportant part of the
total variation of economic time series. For such comparative pur-
poses it is convenient to have some measure of cyelical variation,
whether this be scason or otherwise, and this measure is found in the
concept of the erergy of the series. The measure of energy, which
we shall designate by the letter E, will be explained later. It is suf-
ficient at present to know that in the index of freight-car loadings
over the period from 1919 to 1932 the energy attributable to the sea-
sonal factor was just 11.87 per cent of the total energy observed in
the variation of the series. The remainder was concentrated in the
trend and in the erratic element and, perhaps, in other longer or
shorter cyclical movements,

A second pattern which has been generally observed in economic
time series is that of the 34-year cycle, frequently referred to as the
40-month cycle, since its definition is not sharp and it may vary from
36 to 48 months. The evidence for the existence of this cycle is quite
clear, although the explanation of its cause is not yet entirely satis-
factory. In a later chapter in the book we shall give at length the evi-
dence for the existence of the cycle. It is sufficient for the present
exposition to note that for the period from 1897 to 1914, the energy
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of this cycle in the prices of industrial stocks was as large as 48 per
cent after the frend had been removed and that for the period from
1914 to 1924 the energy increased to 74 per cent. In the disruptive
economy of the bull market the 40-month pattern was largely effaced
in stock price series, although it was still discernible in production
data. In their noteworthy book entitled Business Annals, W. L.
Thorp and W. C. Mitchell reached the conclusion that in the 127 years
of business which they analyzed there had been 32 cyeles with an
average length of not quite four years, This cycle appears to be a
phenomenon of American business, since the corresponding European
cycle is somewhat longer with an average length of five years.#

A third cycle with a more or less statistical validity is that of
nine or ten years. The reasons for this cycle are as obscure as those
which cause the 40-month eycle and the statistical evidence is not
quite 80 clear. The analysis of American industrial activity from 1830
to 1930 shows that 17.36 per cent of the variation is concentrated
around 9 years. A very comprehensive analysis of monthly data by
E. B. Wilson over the period from 1790 to 1929 confirms the existence
of this concentration although the energy in the period from 1790 to
1859 appears to be divided between two periods of 90 and 120 months
respectively.”* A more comprehensive analysis of this phenomenon
will be given later, Further confirmation of the reality of the 9-year
cycle is found in work by B. Greenstein on business failures between
1867 and 1932.

The building cycle, which appears to fluctuate between fifteen
and twenty years, is a fourth pattern that deserves serious considera-
tion. Nearly every production series shows the influence of this cycle
and at times it has been the dominating characteristic of the move-
ment of business and industrial production in general. Such, indeed,
was the case in the permd around 1929 when the ]Og‘lstic growth of
automobiles was nearing completion.

A fifth phenomenon of great interest is found in the 50-year war
eyele, which is found particularly in the index of commodity prices.
Unfortunately our data do not penetrate far enough into the past to
confirm with high probability this strange and important pattern. Its
origin probably lies hidden somewhere in human psychology and its
relationship to the average duration of human life. The energy of
this movement iz as great as 59.28 per cent in an analysis of Ameri-
can price data from 1830 to 1930 and would be certainly as great or

2% Empirical evidence for this will be found in G. Tintner, Prices in the
Trade Cyele, Vienna, 1936, pp. 4647,

# Wilson, himself, was skeptical as to the validity of the 9-year c¢yele, His
arguments wﬂl be given in Chapter 7.
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greater if the analysis had extended through the inflationary period
of the Napoleonic wars. The energy of this cyele in Sauerbeck’s in-
dex numbers of general wholesale prices in England from 1818 to
1913 is not less than 24 per cent and the analysis of wheat prices in
Europe from 1500 to 1869 by Sir William H. Beveridge shows some
concentration of energy in the neighborhood of 50 years.

In an analysis of data pertaining to the trade cycles of France,
England, Germany, and the United States, N. D. Kondratieff in the
article referred to in Section 5 has reached the conclusion that long
waves of an essentially cyclical character exist as a permanent pat-
tern in economic time series. He thus says that the long cycles “are a
very important and essential factor in economic development, a fac-
tor the effects of which can be found in all the principal fields of
social and economie life.”

The purposes of this introduction have probably been served by
this brief comment on the problem of determining the periodic be-
havior of economic time series. We shall turn now to a short exam-
ination of some of the methods which have proved most useful in
such investigations,

& Harmonic Analysis

It is natural in the discussion of cyclical phenomena in economic
time series that one should turn to the theories which have been so
successfully employed by the astronomers and the physicists for more
than a century.

The problem of harmonic analysis, by which we mean the prob-
lem of discovering the constituent periodicities which enter into the
construction of a given series of data arranged in a time sequence,
begins probably with a memoir published by J. L. Lagrange (1736-
1813) in 1772.%

Although it was known to Leonhard Euler (1707-1783) that an
analytic funetion eould be represented by means of a series of sines
and cosines, namely, by the series

(1) y(t) =} Ao + 3 4, cos(nat/a)

+§B.sin(nnt/a) , @A=t=a,

the full significance of this development and its application to applied

26 “Recherches sur la manitre de former des tables des plandtes,” Oeuvres,
Vol. 8, pp. 505-627; “Sur les interpolations,” QCeuvres, Vol. 7, pp. 536-553, in
particular, pp. 541 et seq.
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This equation has for its solution the function
y=C+ 5} C, etnii-ta)
=n

where the quantities r, are the roots of the equation
(3) : ris— P2 Pyt 2P =0,

The coefficients of (2) are determined from the data by the meth-
od of least squares. Hopfner makes an essential contribution when he
shows that the method is applicable only when the interval, d, of the
observations is less than 4,, where 1, is the smallest frequency ob-
served in the data, that is, that d < 2 a/r,, where 7, is the largest root
of equation (3).

The most widely used method of harmonic analysis, however, is
that which employs the idea of periodogram. This term was intro-
duced by Sir Arthur Schuster {1851-1934), who developed his theory
in a number of papers and applied it successfully in the study of sun-
spots, the periodicity of earthquakes, terrestrial magnetism, etc.

A periodogram is the graph of either y = R, or y = R,*, where
R is computed over either the Fourier or the arithmetic sequence. The
theory of Schuster has been somewhat modified by E, T. Whittaker
and G. Robinson, who constructed their periodogram from values of
the correlation ratio as it relates to each value of the arithmetic se-
quence.”

The significance of the Schuster periodogram has been exten-
sively debated. Schuster himself gave a method for testing-the reality
of a period revealed by his analysis. This criterion was significantly
modified by Sir Gilbert Walker in 1914.>* R. A. Fisher gave a some-
what different approach to the problem of significance in 1929,*¢ and

31 “On Interferenge Phenomena,” Philosophical Magazine, Vol. 3T (6), 1834,
p& 509-545; “On Lunar and Solar Periodicities of Earthquakes,” Proc nge of
the Royal Soec. of London, Vol. 61 (A), 1897, pp. 456-465; “On Hidden Periodic-
ities,” Terrestrial Magnetism, Vol. 3, 1898, p. 18; “The Periodogram of Magnetic
Declination,” Transactions of the Cambridge Philosophical Soe., Vol, 18, 1900, pp.
107-185; The Theory of Optics, London, 1904; “The Periodogram and ite Optical
Analogy,” Proceedings of the Royal Soc. of London, Vol. 7T {A), 1906&13. 136-
140; “On the Periodicities of Sunspots,” Philosophical Transactions of Royal
Soe. of London, Vol. 206 (A), 1906, pp. 69-100.

32 The Caleulus of Observations, London, 1924, Chapter 18. See also Albert
Edgle, Fourier's Theorem and Harmonic Analysis, London, 1925, Chapter 8.

33 Indicn Met. Memoirs, Vol. 21, 1914; "On Periodicity,” Quart, Journal R
Met. Soc., Vol. 51, 1925, pp. 837-346; Memoirs of the Royal Mel, Soc. of on,
Vol 1, No. 9, 1927; Vol, 3, No. 25, 1930; Monthly Weather Review, Vol. 59, 1981,
g?. 27';—278 :» Proceedings of the Royal Soc. of Londom, Vol. 181 (A), 1931, pp.

54 “Togty of Significance in Harmonie At;alysis," Proc. Royal Soo. of Leomdon,
Vol. 125 -(A), 1929, pp. 54-59.
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J. Bartels, employing concepts involved in the theory of the “random
walk” problem of Karl Pearson,® gave still another test.®® Some of
these theories will be extensively discussed in Chapter 5 of this book.

Excellent summaries and examples illustrating the determina-
tion of significant periods in statistical data have been given by E. B,
Wilson, B. Greenstein, D. Brunt, and K. Stumpff3* The last has given
an extensive bibliography of the subject.

In a paper of great analytical ingenuity, Norbert Wiener intro-
duced the idea of an integrated periodogram.®® Wiener’s method be-
gan with the definition of the lag-correiation function

7(t) =lim ! s’y(t +8) y(s) ds,

o éz -
which may be shown to exist for a large class of functions. Then the
integrated periodogram of y(f) is defined to be the function

2 p= sin ut
R(u)=;f r(t) ~——dt .

If (s} is defined by the series
y(s) = § (A, €08 18 + B, sin 1,8) ,
then it follows that
r(8) =3 S R, cos At .

H=1

Consequently, noting the integral

: 0, i>u

@ t ? »
P(u)zEJ‘ S cositat=ly, i=u,
o t 1, i<u

we get

. 33“A Mathematical Theory of Random Migration,” (Mathematical Contribu-
twré.; ;o the Theory of Evolution, 15), London, 1906: also Natuwre, Vol. 72, 1905,
P .

3¢ “Random Fluctuations, Persistence, and Quasi-Persistence in Geophysical
and Cosmical Pericdicities,” Terrestrial Magnetism, Vol. 40, 1935, pp. 1-60.

51 E. B. Wilson, “The Periodogram of Business Activity,” Quarterly Jowrnal
of- E’conmtcs, Vcl..48,_ 1934, pp. 375-417; B. Greenstein: “Periodogram Analysis
with Special Application to Business Failures,” Econometrica, Vol. 3, 1935, Pp.
170-198; D. Brunt, The Combination of Observations, Second edition, Cambridge,
1921; K. Stumpif, Grundlagen und Methoden der Periodenferschung, Berlin,
1937, vii + 332 pp.

137 ;55 'B‘Generalized Harmonic Analysis,” Acta Mathematica, Vol. 55, 1930, pp.
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may

Ru) =§§=}1R..2 .

R({u) is thus a nondecreasing function, which makes abrupt
jumps in the neighborhood of the periods. The magnitude of these
jumps determines the significance of the period and measures the
energy in the spectrum of the function under analysis.

Wiener generalized his method so that it might be applied to the

relationships between several functions. Thus we may replace r{t)
by

1 [
() =i 2af i (s + 1) ds,
ris (1) iim vi(s) vl ) ds

| and R (u)by

sin ut

; dt .

2 -]
Ry =2 [ r
a 0
The matrix ||R;;{%)|| is called by Wiener the coherence matrix
since it “‘determines the spectra of all possible linear combinations of
¥, (L), -+, yu(£}.” Practical application of the method of Wiener has
been made by G. W. Kenrick.®
The idea of studying the harmonie behavior of time series by
means of their autocorrelations apparently originated with H. H.
Clayton in 1917, who used the method in a meteorological study.* A
similar application was made in 1927 by Dinsmore Alter, who recog-
nized the importance of the method in the analysis of time series and
gave considerable currency to correlation periodograms.s

9. The Advantages and Limitations of Harmonic Analysis

We have seent from the discussion of the preceding section that
: Fourier series provide us with a very powerful tocl for exploring the
'[ harmonic structure of economic time series. The theory may be seen
‘to be one of great generality since a series that is entirely erratic can
be completely represented by a Fourier series provided a sufficiently
large number of terms is used. This, of course, i not a unique char-
acteristic of Fourier series, since many other orthogonal systems have
the same properties.

89 “The Analysis of Irregular Motions with Applications to the Energy-fre-
quency Spectrum of Static and of Telegraph Signals,” Philosophical Magazine,
Vol. 7, Sertes 7, 1929, pp. 176-196.

#0 “Ffect of Short Period Variation of Solar Radiation on the Earth’s At-
mosphere,” Smithsonian Miscellaneous Collections, Vol, 68, Neo. 3, 1917.

1“4 Group or Correlation Periodogram, with Application to the Rainfall
of the British Isles,” Monthly Weather Review, Yol 55, 1927, pp. 263-266.
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One of the principal advantages enjoyed by the method of Four-
ier series is that it furnishes us with an accurate measure of the
amount of the total movement of the series which may be concentrat-
ed in one of the harmonics, The magnitude of the ratio

R:(T)
E(T)=—3",
where R*(T) = A*(T) + B2(T) and o* is the variance of the data,
determines the amount of variation which may be attributed to the
harmonic of period T. The quantity E(T) is called the energy of the
harmonic. If two periods, T and 7”, belong to the Fourier sequence,
then their energies are strictly additive and the sum is the energy of
the two harmonies.

Moreover, by means of the energy of ohe or more harmonics we
may estimate the change in the variance of the data if these harmon-
ies are removed, that is to say, if the data are corrected for them.
Thus if o* is the variance of the original data, ¢, the new variance,
and 3 E, the total energy of the n harmonics which are to be removed,
then the relationship between the two variances is given by the equa-
tion

o= (1 -3 E,.) o*.

This equation is strictly true if the harmonics belong to the
Fourier sequence, but only approximately so otherwise since the ener-
gies associated with periods that do not belong to the Fourier se-
quence are not additive. _

While the magnitude of the energy in any harmonic or series of
harmonics is an important measure of the statistical significance of
the periods, it is frequently necessary to express this significance in
terms of probabilities. Such is the case where the energy observed
is small.

We have mentioned in the preceding section the existence of such
measures and the underlying theory of them will be developed in a
Iater chapter. One may note, however, that they are attained by com-
paring the obhserved distribution of energies with that to be expected
from a series of random values. The probability of obtaining by
chance a given harmonic of energy E(T) is expressed in terms of a
parameter k(T)y = iN E(T), that is, P = P(k).

Thus in the example of the seasonal factor in freight-car load-
ings discussed in Section 7, the number of items in the data was 168,
and k¢ was accordingly equal to 10.07. It will be shown later that
P(10.07) for N = 168 is approximately 0.004, which means that so
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large an energy would be found in a component of a random series
only four times in a thousand. This probability would have been in-
creased if the data had first been corrected for trend. Hence, lacking
a priori reason for the existence of the seasonal factor, we should
still have been able to attribute high significance to the reality of
the phenomenon. '

One of the principal objections advanced to the use of harmonie
analysis in economie¢ data is that the cycles are necessarily very ir-
regular and hence that periodic, or almost periodic, movements ob-
served in one era may fail to appear in another. Even though they
may appear their amplitudes will usually alter and the lengths of their
periods change. Hotelling has raised the following criticism along
these lines:

. .. we might suspect that each crisis was to be regarded as a distinctive event,
with its own oscillgtions, which were not part of a long-continuing oscitlation em-
bracing them all. In these cireumstances harmonic analysis of a long economic
series resembled harmonic analysis of 4 man’s temperature since his birth. There
would be a sharp increase and decrease, with possible oscillations, each time he
got a divease; but these would not combine seriatim to give something discernible
by means of any of the periedograms+¢

The objection raised by Hotelling is certainly valid. There is the
strongest evidence to show that periods change from one era to an-
other and that significant amplitudes observed in one section of the
data fail to appear in another. The periodogram is sometimes too
rigid as we have described it in the preceding section to reveal the
nature of these changes. Its energies are only the average energies
found in the whole of the data. Thus Sir Arthur Schuster’s periodo-
gram of sun spots from 1750 to 1900 revealed a period of high sig-
nificance at T = 11.25 years. But the data from 1750 to 1826 showed
that the major energy was concentrated in periods of 9.25 and 13.75
years, while the data from 1826 to 1900 reaffirmed the significance
of the period shown by the complete periodogram. Even more inter-
esting from our point of view is the history of the 40-month cycle in
stock price data. The periodogram of the Cowles Commission All
Stocks index (1880-1896) shows a period with energy equal to 0.27
at T = 35; the Dow-Jones averages of industrial stock prices reveal
that the period has now advanced to 7 == 41 and the energy to 0.48 in
the subsequent data from 1897 to 1918. In the next era from 1914 to
1924 the period has dropped back to 38, while the energy has in-
creased to 0.74. And finally the entire atructure is effaced in the dis-
ruptive events which developed during and after the great bull mar-

2 Eeonometrica, Vol. 1, 1983, p. 436.
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ket of 1929, It is an interesting question to ask whether or not the
pattern of the 40-month cycle will emerge after the disturbances of
the great speculation have subsided.

10. The Erratic-Shock Theory of Economic Time Series

If one assumes that the periods observed in many economic time
series are real and permanent patterns, effaced at times by unusual
events, but recurring again when the effects of the disturbances have
died away, then it is necessary to account for them. Those who ap-
proach the problem with a training in mechanics are wont to view
these oscillations, irregular and varying as they may appear, as evi-
dences of something akin to the vibrations characteristic of elastic
solids. A taut string, plucked at the center, will vibrate in a pattern
which depends wholly upon the elastic forces to which it is subjected.
Weighted at different points with beads, it will oscillate in another
manner, but always according {o the inherent elasticities and the in-
ertial properties of the loaded string. Can an economic time series
be regarded from this point of view, where the elastic constants are
more or less permanent characteristics of the economic system itself?

This question has been answered by different people in different
ways, Harold Hotelling in a brilliant essay has assumed that “the-
ories of the business cycle fall into two classes, considering respec-
tively what are called in mechanies free and forced oscillations.”’*

Forced oscillations, which depend upon forces external to the
system itself, must have origins which are noneconomic. Hotelling
cites as such possible origins the theory of H. L. Moore, which at-
tempted to explain the variation in prices and production by the
changes in phase of the planet Venus, Another such theory is that
of sunspots, which are assumed to cause disturbances in terrestrial
phenomena and hence to react upon the economic system. About such
external theories Hotelling makes the comment:

The trouble with all such theories is the tenuousness, in the light of physics,
of the long chain of causation which they are forced to postulate. Even if & sta-
tistical test should yield a very high ccrrelation, the odds thus established in
Tavor of such an hypothesis would have to be heavily discounted on account of its
strong a priori improbability.

In contrast to forced oscillations we find the theory of free oscil-
lations, which depends only upen the internal structure of the sys-
tem. Thus Hotelling cites the case where the high price of hogs and

43 “Differential Equations Subject to Error, and Population Estimates,”
Journal of the American Statistical Association, 1927, pp. 283-314,
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the low price of corn lead to overproduction in the first instance and
underproduction in the second. This in turn reverses the price struc-
ture and cyclical fluctuations ensue. The causes of variations are here
apparent and for this reason any observed correlations derive more
significance than those which may have appeared in an attempt to
test the theory of forced oscillations. Hotelling cites the variations
due to monetary conditions as another example of the free variety.

One objection which can be raised against this general point of
view is found in the fact that the variations in economic series do not
damp out. In the case of the plucked string there is a constant de-
crease in the deviations from the equilibrium position and in time the
string will come to rest. This is fundamentally true for all elastic
systems which are not constantly supplied with new energy from
some source external to themselves. It must certainly be true also
for an economic time series, if this is to be explained on any satis-
factory mechanical basis.

The double observation that economic series appear to be quite
erratic and yet in many cases tend to conform to a somewhat irregu-
lar cyclical pattern which does not damp out over long periods of
time has led to the theory that the energy which maintains the move-
ment is derived from a series of erratic shoecks imposed from time to
time upon the system. Thus says Ragnar Frisch about this possi-
bility:

There are several alternative ways in which one may approach the impulse
problem and try to reconcile the results of the determinate dynamie analysis with
the facts. One way which I believe is particularly fruitful and promising is to
study what would become of the sclution of a determinate dynamic system if it
were exposed to a stream of erratic shocks that constantly upsets the continuous
evolution, and by so doing introduces into the system the energy necessary to main-
tain the swings. If fully worked out, I believe that this idea will give an inter-
esting synthesis between the stochastical point of view and the point of view of
rigidly determined dynamical laws.+4

The origin of this interesting idea is attributed by Frisch to Knut
Wicksell. We quote Frisch on this historical point:

Enut Wicksell seems to be the first who has been definitely aware of the two
types of problems in economic cyele analysis — the propagation problem and the
impulse problem—and also the first who has formulated explicitly the theory
that the source of energy which maintains the economic ¢ycles is erratic shocks.
He conceived more or less definitely of the ecoenomic system as being pushed
along irregularly, jerkingly. New innovations and exploitations do not come regu-
larly he =ays. But, on the other hand, these irregular jerks may cause more or

. _¥“Propagation Problems and Impulse Problems in Dynamic Economies,”
in Eeonomic Essays in Honour of Gustav Cassel, 1933, pp. 197-198.
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less regular cyclical movements. He illustrates it by one of those perfectly simple
and yet profound illustrations: “If you hit a wooden rocking-horse with a club
the movement of the horse will be very different to that of the club.”

Wicksell's idea on this matter was later taken up by Johan Akerman, who in
hig doctorial dissertationss discussed the fact that small fluctuations may be able
to generate larger ones. He used, among others, the analogy of a stream of water
flowing in an uneven river bed. The irregularities of the river bed will cauae
waves on the surface. The irregularities of the river bed illustrate in Akerman's
theory the seasonal fluctuations; these seasonals, he maintains, create the longer
cycles, Unfortunately Akerman combined thege ideas with the idea of a sym-
chronism between the shorter fluctuations and the longer ones. He tried, for
instance—in my opinion in vain—to prove that there alweys goes an exact num-
ber of seasonal fluctuations to each minor business ¢ycle. This latter idea is, to
my mind, very misleading. It is also, as one will readily recognize, in direct op-
position to Wicksell’s profound remark about the rocking-horse.

The erratic-shock theory was made the basis of a penetrating
-~ analysis of the nature of the periodicity observed in sunspot data by
G. U. Yule. *¢ His approach to the subject was through the mechanism
of serial correlations and the relationships between the original data
and their second differences. A more careful survey of his results
will be given later in this book. A similar idea was independently ad-
vanced by E. Slutzky, who exhibited a striking similarity between an
index of English business for 18556—1877 and a series formed from the
10-term moving average of a series of random numbers.*” Slutzky’s
graph is exhibited below in Figute 7. _

From a series of ingenious statistical experiments Slhutzky arriv
at the following general observations: “The summation of random
causes generates a cyclical series which tends to imitate for a number
of cycles a harmonic series of a relatively small number of sine curves.
After a more or less considerable number of periods every regime
becomes disarranged, the transition to another regime occurring some-
times rather gradually, sometimes more or less sbruptly, around cer-
tain critical points.”

Yule’s point of view, which started from a consideration of just
what information one can derive from a Schuster periodogram, merits
further comment. His principal interest is in the nature of errors
which a statistical series with sinusoidal characteristics may be pre-
sumed to have. We quote his observations as follows:

4 Det ekonomiska livets rytmik, Lund, 1928,

. %"“0On a Method of Investigating Periodicities in Disturbed Series, with spe-
cia! reference to Wolfer’s Sunspot Numbers,” Philosophical Transactions of the
Royal Society, Vol. 226 (A), 1927, pp. 267-298.

47 “The Summation of Random Causes as the Source of Cyclic Processes,”
Econometriea, Vol. 5, 1987, pp. 105-146; originally printed in Russian in

Problems of Economic Conditions, edited by The Conjunct Institute, Moskva
(Moscow), Vol. 3, No. 1, 1927, 4 juncture Institute, Mos
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The left-hand and lower scales refer to the Business Index; the right-hand and
upper scales to the Random Series.

If we take a curve representing a simple harmonic function of the time and
superpose on the ordinates small randomn errors, the only effect is to make the
graph somewhat irregular, leaving the suggestion of periodicity still quite clear
to the eye . . . If the errors are increased in magnitude . . . , the graph becomes
more irregular, the suggestion of periodicity more obscure, and we have only
sufficiently to increase the “errors” to mask completely any appearance of period-
icity. But, however large the errors, periodogram ansalysis is applicable to such
& curve, and, given a sufficient number of periods, should yield a close approxi-
mation to the pericd snd amplitude of the underlying harmenic funetion,

When periodogram analysis is applied to data respecting any physical phe-
nomenon in the expectation of eliciting one or more true periodicities, there is
usually, as it seems to me, a tendency to start from the initial hypothesis that the
periodicity or periodicities are masked solely by such more or less random super-
posed fluctuations — fluctuations which do not in any way disturb the steady
course of the underlying periodic function or functions. It is true that the periode-
gram itself will indicate the truth or otherwise of the hypothesis made, but there
geemns no reasen for assuming it to be the hypothesis most likely & priori.

1f we observe at short equal intervals of time the departure of a simple har-
ronic pendulum from its position of rest, errors of observation will eause super-
posed fluctuations of the kind supposed ... But by improvement of apparatus and
automatic methods of recording, let vz say, errors of observation are practically
eliminated. The recerding apparatus is left to itself, and unfortunately boys get
into the room and start pelting the pendulum with peas, sometimes from one
side and sometimes from the other. The motion is now affected, not by superposed
fluctuations but by true disturbances, and the effect on the graph will be of an
entirely different kind. The graph will remain surprisingly smooth, but amplitude
and phase will vary continuously.
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The second assumption attracted the attention of Ragnar Frisch
who devised a method, based upon operators, of harmonically analyz-
ing a series 8o as to detect these changes in phase and amplitude,*® It
is possible also to attain results similar to those of Frisch by a slight
modification of Schuster’s periodogram analysis. These statistical de-
tails will be considered in another chapter.

The concept of a “business cycle of varying length” has béén at-
tacked by various statisticians. The question of the “degrees of free-
dom” to be allowed in the description of a time series is cbviously in-
volved. Any set of orthogonal functions which has the closure prop-
erty can be combined linearly to describe within any specified error
the components of any economic time series. But if the allowed error
is sufficiently small a Jarge number of functions may be required and
the number of degrees of freedom will be large. Does the concept of a
changing harmonic analysis remove this difficulty, or does it merely
disguise the fact that an essentially large number of degrees of free-
dom has been employed?

Hotelling, who has been one of the critics of the method, would
argue as follows, Let us consider the funetion

(1) y=A(t) cos[ t+a(t)],

2n

T(t)
where A (1), a(t), and T(Z) all vary independently of one another. It
is clear that by a proper choice of the three functions an enormous
variation from a simple sinusoid could be effected, let us say, from the
exact harmonic obtained by replacing the three variable functions by
their mean values. Obviously a changing harmonic of type (1) would
have many degrees of freedom under certain choices of the arbitrary
functions and the definition of what we meant by degrees of freedom
would depend upon the nature of the variations themselves,

But if 4 (¢), (), and T(¢) vary within a narrow range a har-
monic analysis of ¥ would reveal the average values of these functions.
Hotelling holds that such is a legitimate use of this powerful tool,
but he warns that “harmonic analysis and the periodogram are not
suited either to detect or to use in predicting any tendency to free
vibration which is subject to serious disturbance. To detect vibratory
tendencies in a time series we must study the correlation of short-
term changes of the variable with the magnitude of the variable.”+

o8 ut . ) , .
cal Serics.: Shandingois 4r ot ep i 1908, bE o gog Ponents in Empiri-

+* “Differential Equations Subject to Error, and Population Estimates,” Jour-

'2';10 of the American Statistical Assoeiation, 1927, pp. 283-314; in particular, P



HISTORY OF THE FROBLEM 41

That is to say, in Hotelling’s view, the relationship between y,
¢, and ¥” is the important measure of time series. He calls attention,
however, to the fact that in random series the correlation coefficient
between y and 3" is —2/v/6 = —0.816 (see Chapter 4, Section 4), a
large correlation, so one must be cautious in relying solely upon this
relationship. He summarizes with the remark: “The conclusion seems
inescapable that the relative importance of free oscillations and mere
random wiggles is fairly measured by the coefficient of correlation
between a series and its second differences, and that the period may
be determined from the regression equation.”s®
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Freure 8.—SINE CURVE PLUS RANDOM SERIES: (a) WHEN RANDOM COMPONENT
IS OF SMALL AMPLITUDE; (b) WHEN RANDPOM COMPONENT I8 OF LARGE AMPLITUDE.
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It is instructive to observe graphically the difference between
the two types of disturbances discussed by Yule, the first a regular
sinusocidal wave upon which has been superimposed a set of random
fluctuations, the second a sinusoidal curve that has been disturbed by
impulses which may change not only the amplitude, but the phase and
the period also.

The first type of disturbance is graphically represented in Figure
8, taken from Yule, which shows the ordinates of a true sine curve to
which have been added the elements of a random series. In curve (a)
the magnitude of the random series is small with respect to the ampli-
tude of the sine curve; in curve (b) the magnitude of the random
series is large. But even in the second case the regularity of the
movement has not been completely masked and a harmonic analysis
of the elements will immediately reveal the existence of the harmonie.

s¢ Ihid., p. 291,
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In order to illustrate the second type of disturbance a simple
experiment was performed by the Cowles Commission. A galvanom-
eter was set up and by means of a system of weights was constrained
to oacillate in three separate periods. These were in the ratio 22: 43:
62, to simulate the three periods observed in the Dow-Jones industrial
averages. A series of erratic impulses, irregularly spaced and of a
magnitude about equal to the momentum of the galvanometer, was
then imposed upon the system and motion pictures were taken of the
ensuing deflections.
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FIGURE 9.—GALVANOMETER QSCILLATIONS: (a) FREE;
{b) UnpEr ERRATIC IMPULSES,
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Figure 9 shows the free oscillations, measured from a mean of
91.2, for the period 22, together with the actual deflections observed
after erratic impulses were imposed on the motion. It is clear that the
magnitude of the impulses was sufficient to cause a large disturbance
in the normal swing. Although the phase did not appear to have been
changed, the periodogram given later in the book shows that about
29.2 per cent of the energy was moved into a period of 66 units, an-
other 20.22 per cent into a period of 34 units, while only 8.30 per cent
remained in the original cycle of period 22 units. It is thus clear that
such a set of impulses would largely mask the elastic structure of
the system and the true period could not be ascertained bv a simnle
inspection of the periodegram.
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11. Historicel Summery of Application of Harmonic Analysis

In former sections we have reviewed somewhat cursorily the
trend of veflection about the nature of economic time series and the
type of analysis that might be necessary to untangle the structural
from the erratic in them., The physicist who has applied so success-
fully the theory of harmonics to the flow of heat in solids, the conduc-
tion of electricity in wires, the vibration of drum heads, and the like,
is beset by no such problems as those which confront the meteorologist
and the economist. His erratic element is usually of the order of his
precision of measurement. Mathematical theory and observation
agree to within an ingignificant penumbra of uncertainty, which can
be reduced at will by merely sharpening the tools of observation. But
not so with those whose data consisted of empirical measurements
which were subject to unknown errors of such size as to modify not
only the amplitudes and the phases of the motion, but even the periods
themselves,

In a later chapter some of these series will be subjected to har-
monic analysis and the difficulties specifically pointed out. It will be
sufficient here to mention one or two of these studies, which have come
to play an important part in directing the speculation about the na-
ture of economic time series.

The first and one of the most important of these investigations
was the pericdogram of Wolfer’s sunspot numbers, constructed by Sir
Arthur Schuster (1851-1934) in 1906. The mystery of sunspots has
plagued the astronomers for many years, Their origin and meaning,
their cjcles, and their varying amplitude, constitute a subject for
perennial speculation. Sir William Herschel thought to find in them
the cause of variation in terrestrial crops and hence the secret of
fluctuations in business.® Thig led William Stanley Jevons many years
fater to explore the possibility of explaining crises and depressions in
terms of solar variations, a possibility which has never been com-
pletely discredited because of a persistent correlation,

The interest for economics in sunspots seems, however, to lie in
ancther direction. In these data we have a phenomenon, expressed as
a time series, for which no a priori explanation is universally accepted
by the astronomers. That the phenomenon is periodic is unquestion-
able, but there remains doubt as to the nature of the periodicity. Hence
the data on sunspots provide an almost perfect example upon which to
test methods of periodogram analysis, which might be applicable to

st “Obgervations Tending to Investigate the Nature of the Sun,” Phil. Trans-
actions of Royal Soc. of London, 1801, pp. 265-318,
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the more variable and less regularly periodic phenomena of economics.

Thus the periodogram of sunspots given by Sir Arthur Schuster
is highly instructive to the economist. For the entire period analyzed
by Schuster, 1750-1900, about 35 per cent of the total variation is ac-
counted for by a single period of 11.25 years. But in the first half of
the period (1750-1826), the importance of this period is entirely lost
and we find a concentration of energy occurring at 7 ==9.25 years and
T=1375 years. But in the second half of the period (1826-1900)
nearly 85 per cent of the variation is found in the 11-year component.
What is the cause of this variation? How great is the erratie element?
Is the phenomenon itself a regular movement disturbed by random
impulses, or is it a regular movement to which random variations have
been added? As we have seen in the last section, these questions led
Yule to reinvestigate the sunspot periodogram from the instructive
point of view of what a periodogram might reveal in a series disturbed
by erratic impulses.

One of the most ambitious periodograms ever constructed is that
due to Sir William Beveridge, who published his results in 1922. This
was a harmonic analysis of wheat prices in western Europe over a
range of approximately 300 years from 1545 to 1845.5% The resuits of
this study will be given later in this book,

The economists were perhaps first introduced to periodogram
analysis by H. L. Moore, whose classical study on Economic Cycles:
Their Law and Cause, published in 1914, contained an account of
Fourier series and a periodogram of rainfall in the Ohio valley,

In Chapter 7 an exiensive account will be given of the results of
these and numerous other periodograms which have been made of
economic time series gince these classical memoirs first appeared.
Thus, it will be sufficient here merely to refer to the following remark
of Lord Kelvin:

The first thing that in my opinion ought to be done towards making the
observations useful for scientific purpeses is to perform that kind of more perfect
averaging which is afforded by the harmonic analysis. There is a certain amount
of averaging dome, but that is chiefly daily averages, with monthly averages, and
vearly averages; but the more perfect averaging of the harmonic analysis would
give the level of the variation of the phenomenon.5?

12. The Theory of Business Cycles

The theory of the business cycle, a term applied to the more or

%2 “Wheat Prices and Rainfall in Western Europe,” Journal of the Royal
Statistical Society, Vol. 85, 1922, pp. 412-459.

% From testimony given by Lord Kelvin before the Meteorological Committee
of the Royal Society, 1876,
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less periodic alternations of business between prosperity and depres-
sion, was necessarily a product of the present century. On the one
hand it required the need of a competent theory of index numbers and
more adequate statistical techniques, and on the other hand, a broader
knowledge of the various series, the composite variation of which
might be regarded as a measure of the fluctuations in business itself.
Both of these needs have been supplied in recent years.

The theory of business cycles probably should be regarded as
having had its origin in the notable work of J. C. L. de Sismondi
(1773-1842) entitled the Nouveauzr principes d’économie politique,
published in 1819. This treatise called attention to the importance of
the study of commercial erises and advanced some of the theories con-
cerning them which have been incorporated into modern explanations
of these events,

This problem, however, struck little fire in the scientific mind
until the era of William Stanley Jevons nearly a half century later,
when the awakening of modern commerce and the increasing tempo
of industrial activity began to make insistent demands for a better
understanding of economic phenomena. The publication of Clement
Juglar’s Des crises commerciales et de leur retour périodique in 1860
furnished new evidence for the roughly periodic character of business
activity and called attention to the need for statistical data and their
analysis. Philosophical treatises such as the Inquiry into the Nature
and Causes of the Wealth of Nations (1776 by Adam Smith (1723
1790} or the Principles of Political Economy (1848) by John Stuart
Mill (1806-1873) could not supply the need for empirical evidence.

It must not be assumed that the author disparages works of
speculation. Far from it! But the highest form of speculation is that
which is guided by the facts of the world. The great superiority of
Newton’s cosmology over that of René Descartes was due to the fact
that the former’s speculation, in contrast to that of the latter, was
based upon the tables of Tycho Brahe and the statistical discoveries of
Johannes Kepler. Works of speculation written in advance of the ac-
cumulation of data often serve to focus attention upon the variables
to be examined. It is for this reason that the remarkable work of
A. A. Cournot (1801-1877) entitled Recherches sur les principes
mathématiques de la théorie des richesses (1838) deserves particular
attention. Therein one finds careful definitions of those functions and
concepts which must be subjected ultimately to the scrutiny of data.
Modern economics may perhaps be dated from the time when the
contents of Cournot’s volume struck fire in the minds of W. S. Jevons
(1835-1882), Léon Walras (1834-1910), F. Y. Edgeworth (1845-
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1926), V. Pareto (1848-1923), A, Marshall (1842-1924), and others
of that time. Attention was finglly focused upon the measurable ele-
ments and, since the first work of these writers, there has been a
remarkable increase in the accumulation and analysis of statistical
material bearing upon the phenomena of economies.

The modern theory of business cycles may perha.ps be dated from
the publication in 1862 of W. S. Jevons’ work entitled On the Study
of Periodic Commercial Fluctuations. Jevons was the father of index’
numbers. He wrote on secular trend and seasonal variations. His
analysis of British prices over a long period of years gave new con-
cepts to the movement of business and suggested many problems, the
solution of which has become the goal of modern statistical methods.
The work of Jevons was materially forwarded by Edgeworth.

The invention of correlation analysis by Sir Francis Galton (1822—
1911) in the last gquarter of the nineteenth century and its develop-
ment through the heroic labors of Karl Pearson (1857-1936) placed
a new and powerful tool into the hands of statistical analysists. There-
fore, “by the time writers upon business cyclies began to make sys-
tematic use of statistics—say in the decade beginning in 1900—they
could utilize many methods already developed by mathematicians, an-
thropometrists, biologists, and economists, and many data already col-
lected by public and private agencies.”™

The problem of secular trend was discussed in 1884 by J. H.
Poynting, and in 1901 by R. H. Hooker. The use of correlation was
invoked to discugs the relationship between residuals from trends and
an extensive investigation was undertaken by numerous people to in- -
terpret the significance of the results. An account of the history of
this problem will be given in Section 14.

In 1914 H. L. Moore published his stimulating study on Economic
Cycles: Their Law and Cause in which harmonic analysis and correla-
tions were freely employed. In 1915 Warren M. Persons made the
first of his business barometers and in 1917 began his work at Har-
vard on business cycles, which has exerted so wide an influence both
at home and abroad.

The World War stimulated the collection of statistics; from the
problems presented by that great struggle it became apparent that
the complex economic system of the twentieth century could not be
properly understood without a much better knowledge of the past
behavior of prices, production, wages, money, and other fundamental
constituents of the business cyecle. These series have been assembled

8¢ Wealey C. Mitchell, Buriness Cycles, New York, 1928, p. 199.



HISTORY OF THE PROBLEM 4

with bewildering rapidity. . Whereas in 1900 only the most meager
data existed for an understanding of the behavior of economic vari-
ables in the nineteenth century, we now possess some series going
back as far as the Middle Ages. A reasonably complete understand-
ing of economic variation in the nineteenth century is now possible,
and most of the variables have been defined for the twentieth. The
work of Carl Snyder on nineteenth-century trends, the data assembled
by the Cleveland Trust Company under the direction of Col. Leonard
Ayres, recent knowledge about prices in Spain in the fifteenth and
sixteenth centuries resuiting from the heroic labors of E. J. Hamil-
ton, common-stock indexes from 1871 published by Alfred Cowles,
the price studies of G. F. Warren and F. A, Pearson, the index of
rail stock prices of F. R. Macaulay, the numerous new series fur-
nished by the Standard Statistics Company, the heroic exploration of
early European prices made under the direction of Sir William Bev-
eridge and E. F. Gay,”® together with the data assembled by numer-
ous government agencies both 2t home and abroad, constitute an im-
pressive volume of material for the digestion of the economist.

In the analysis of this great body of data one of the principal
problems is to find the interactions between different variables. Thus,
the periodic advances and declines in industrial production about a
“normal” trend should reflect their influence upon the price of stocks.
The volume of bank clearings, variations in the rate of interest, the
price of wholesale commodities, etc., should all exhibit common inter-
actions significant in interpreting the business cycle. The principal
tool for this analysis is found in the theory of multiple regressions.

But here some delicate problems are introduced. Which shall be
the independent variables and which the dependent variable? How
shall the errors of estimate be determined? What is the magnitude
of the erratic elements in the variables considered? The difficulties
in the situation can be explained by a simple example. Thus, let us
suppose that we have a table of data which gives the values: (1) of
z, the displacements of a swinging pendulum bob from its point of
equilibrium; (2) of y, the velocity of the displacements expressed as
the first derivative of x; and (3) of 2 the acceleration of the dis-
placements expressed as the second derivative of z. If the data are
observations, a small erratic element will exist in al! these measure-
ments. Which of the three variables shall be considered as the depen-
dent variable? If either z or z i3 assumed to have this preference,
then the resulting regression will accurately describe the motion. But

_, " See, for example, M. J. Elsas, Umriss einer Geschichte der Preise und
Lokne in Deutschlond, Vol. 1, Leiden, 1936, 808 pp.
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if y is chosen, no answer is possible since we know that in the regres-
gion equation the coefficient of y is nearly zero, unless large frictional
forces are present. In ordinary statistical procedure it is difficult to
recognize the presence of such a statistical zero among the coefficients,
unless something is actually known about the size of the errors in the
measurements,

Ragnar Frisch has invented a rather complicated techniqife for
dealing with this problem of linear dependence, a method which he
has called confluence onalysis.>®* In this analysis each .variable is
treated as having egual errors. Another method, called the method
of factor analysis, is due to the psychologists, under the leadership of
L. L. Thurstone.”” who had encountered the same difficulty as that of
the economist in attempting to separate his factors in psychologicsl
studies. The problem has also been discussed by H. Hotelling,*® C. F.
Roos,” H. E. Jones,*® and others. An extensive account of the diffi-
culties will be found in a work by T. Koopmans on Linear Regression
Analysis of Economic Ttme Series,* who surveys the various points
of view and includes an account of the weighted regression of M. J.
van Uven,

In a recent monograph John H. Smith has made a comprehensive
survey of the problem of the statistical deflation of an economic se-
ries, by which is meant “the process of adjusting a series for the
effects of one or more variables which affect it.””** In this study spe-
cial attention is devoted to the problem of the specification of a uni-
verse and of conditions of sampling for the data of economic time
series.

To the writer it seems impossible by straight statistical methods
to answer the question of linear dependence between economie vari-
ables. Knowledge must necessarily be introduced from outside of the
data themselves. This knowledge must give some estimate of the er-
rors of the respective variates, and should yield an a priori presump-
tion as to the dependence of one of the variables upon the others.

56 Statistical Confluence Analysis by Means of Complete Regression Systems,
Oslo, 1934, 192 pp. See algo “Correlation and Scatter in Statistical Variables,”
Noni:c %atgtwdl Jmftmal,d Vol: 1, 1929, pp. 36-102.

" The Vectors of Mind, Chicago, 1935. See also, “Multiple Facto is,"”
chgtiltqua]ml I.Eeziew,c Vol. 138, 1931, pp. 406427, P v Analysis

‘Analysis of a Complex of Statistical Variables into Principal Components,”
Journal of Ed. Psychology, Vol. 24, 1933, pp. 417441, 498-520, ponemts,

8 “A General Invariant Criterion of Fit for Lines and Planes where All
Vm:)tes ﬁ?r% Sltxhjectfta;z Error,” Mlgcron, Vol. 13, 1937, pp. 3-20. -

“The Nature of Regression Functions in the Correlation Analysi i
Series,” Econometrica, Vol. 5, 1937, pp. 306-325. n Analysis of Time

81 %urlem, 19!3)6. 132 pp.

¢1a Statistical Deflation in the Analysiz of Ecomomic Series, A dissertati
distributed by the University of Chicago Libraries, 1941, vi + 123 pp. spertation
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Otherwise any deduction must be regarded as possessing the same in-
ferential value as if it were derived from an inverse probability
judgment. :

138, Mathematical Attempts to Account for Cycles

Once it is decided that cycles of a regular and permanent pat-
tern actually exist in one or more economic series, it becomes a matter
of importance to account for their existence. This means essentially
that a system of dynamics must be established. Several notable at-
tempts have been made in this direction.

We must observe first that the evidence of the pericdogram in-
dicates that no cycle of a reasonably permanent form accounts for a
large percentage of the energy of the observed variation. Thus, the
well-defined 40-month component contains, for any extensive range
of the variable, a total of not more than half the energy of the motion.
Hence no simple mechanism can expect to give more than a partial
explanation; but any complex mechanism is likely to become too com-
plicated both mathematically and statistically. Such, for example, is
the criticiam of the equilibrium theory of Léon Walras, which ac-
counts presumably for the entire mechanism of production, but which
must be formulated for any real economy in terms of thousands of
equations.

In an attempt to find some unifying principle for the great
complex of price and production factors which make up the economic
system, one turns as always to the model of physics. This science was
fortunate in having among its founders men who asked the question:
“What does nature minimize?" The following metaphysical specula-
tion of Leonhard Euler contained within it the principle of least ac-
tion, which was to prove in later years to be the most cherished prin-
ciple of physies: '

As the construction of the universe is the most perfeect possible, being the
handiwork of an all-wise Maker, nothing can be met in the world in which some
maximal or minimal property is not displayed. There is, consequently, no doubt
but that ali the effects of the world can be derived by the method of maxima and
minima from their final canses as well as from their efficient ones.*

It is also natural to ask for the phenomena of economics: “Does
there exist also a maximizing or a minimizing principle on which the
dynamics of time series may be founded?’ The answer to this ques-
tion is still obscure, but an intriguing suggestion has been offered by

2 Methodus inveniendi lineas curvas, marimi minimive proprietats gaudentes,
Lausanne, 1744, p, 245,
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G. C. Evans and C. F. Roos.® This suggestion is merely the simple
proposition that the elements of the economic system adjust them-
selves so that profits may be maximized. This principle may be formu-
lated somewhat as follows: Let us assume that the profits II over
a period of time from ¢ = t, to t = &, are given by the integral

E
(1) o= | [py—Q)]dt,

ty
where p is the price, ¥ the demand, and Q(u) the cost of manufactur-
ing and marketing % units, Then the principle of maximum profits
asserts that the variable elements in this integral are to be-so ad-
justed that the integral assumes its largest possible value. In the -
language of the calculus of variations, it is necessary that the first
variation of I7 shall be zero; that is,

dIr=0,.

There are great analytical and statistical difficulties in the way
of testing the validity of this principle. In equation (1) it has been
formulated for a single commodity and a single price, but obvicusly
it must be ‘extended to take account of the variation in all commod-
ities and all prices. Cost functions are carefully guarded by manu-
facturing corporations and their nature ean only be inferred from
profits and production data. The character of price variation with
variable demand is also imperfectly known.

Simplifying assumptions such as the propositions (1) that demand
varies linearly with price and the rate of change of price, that is,

y(t) =ap'(t) +Bp(t) +y;

and (2) that cost is a quadratic function of the number of units pro-
duced, lead to a linear differential equation of the second order in
price. If the parameters are properly chosen this equation will ac-
count for sinusoidal oscillations in price. The further assumption that

3 See, for example, G. C. Evans, “A Simple Theory of Competition,” Ameri-
can Muathematioal Monthly, Vol. 28, 1922, pp. 371-380; “Dynamiea of Mondpoly,”
thid., Vol. 81, 1924, pp. T7-83; Mathematical Introduction to Economica, New
York, 1830, xi + 177 pp., in particular, Chapter 15 and Appendix II. See also
C. F. Roos; “A Mathematical Theory of Competition,” Americon Journal of
Mathematica, Vol. 57, 1925, pp. 163-176; “A Dynamical Theory of Economics,”
Journal of Political Economy, %ol. 36, 1927, pp. 632—666; “A Mathematical Theory
of Depreciation and Beplacement,” American Journal of Mathematics, Vol. 50,
1928, pp. 147-16T; “The Problem of Depreciation in the Caleulus of Variations,”
Bulletm of The Amerieom Math. Soc., March-April, 1928; “Fluctuations and Eco-
nomic Crises,” Journa! of Political Economy, Vol. 38, 1930, pp. 501-522; “Theo-
-retical-Studies of Demand,’ Ecoxometrica, Vol. 2,'1934, yp. 78-80; Dynamic Eco-
nomics, Bloomington, Ind., 1984, xvi + 275 pp.
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demand also varies with a factor external to the priee system itseif
leads to a linear differential equation of second order with an impuise
function for its second term. The general character of this impulse
function affords the possibility of accounting for many of the fune-
tional as well as erratic characteristics of price series. A more exten- -
sive account of the possibilities inherent in this method will be given
later in the book.

There are many who decry the principle of maximum profits. It
seems a sordid and egocentric maxim for mankind to follow. The
collectivist theory would replace it by the principle of maximum pro-
duction and maximum distribution of the things produced. Others
would apply the doctrine of hedonism and maximize human satisfac-
tion, measured, perhaps, by the utility function of Jevons or the
ophelimity of Pareto. But unfortunately seience can only observe and
interpret. It cannot change the nature of its objects of investigation.
The physicist, perhaps, was disappointed when he found that nature
did not choose to conserve energy, but rather to minimize the much
more subtle quantity which we call action. So also, perhaps, the per-
versity of human nature has established the profit motive as the dom-
inating principle of all enduring economic systems.

Anocther very suggestive method of accounting mathematically
for cycles in the fundamental economic series is found in what has
been called the macrodynamic theory. This term, suggested by Rag-
nar Frisch, is applied to those “processes connected with the func-
tioning of the economic system as a whole, disregarding the details
of disproportionate development of special parts of that system.”

The essential assumption of this theory is that the lag between
the orders for goods and their subsequent delivery plays a funda-
mental role in the creation of cyclical variation in economic series.
The theory, as formulated by M. Kalecki in 1933, leads to a mixed
difference-differential equation of the form

w(t) +tau(t—0) +dbu(t) =0,

Since the mathematical and statistical details of this method are
difficult to describe, we shall postpone discussion until a later chap-
ter. The possibilities of the method have been explored by Frisch,
J. Tinbergen, and others. Tinbergen gave a comprehensive survey
of this and other methods in 1935.%4 The preliminary success of this
approach to the problem of economic variation affords great promise

" “Annual Survey:; Suggestions on Quantitstive Business Cyele Theory”
Econometrica, Vol. 3, 1985, pp. 241-308. >
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provided the necessity of including too many factors does not Jead
to too much mathematical and statistical complexity.

14. Historical Summary of the Theory of Serial Correlation

The idea associated with the name serial correlation apparently
had its origin in a paper by the British physicist J. H. Poynting, who
attempted to ascertain the relationships between the movements of
wheat prices in England, France, and Bengal and of cotton and silk
imports into Great Britain.®* While Poynting did not actually com-
pute a serial correlation his analysis attracted attention to the prob-
lem of the interaction of economic time series and the inevitable use
of correlations in the study of such relationships. Poynting’s method
consisted mainly in a use of moving averages to smooth out random
fluctuations and a comparison of the residuals with respect to com-
mon harmenic terms. ,

The first actual use of serial correlations seems to have been
made by R. H. Hooker, who studied by means of them the relation-
ship between the British marriage rate and the index of irade.®®

In order to clarify the history let us first define a serial correla-
tion. Thus, let us consider two variates {x;} and {¥:}, which, for sim-
plicity of exposition, we shall assume have zero means and unit vari-
ances. Then their serial correlation can be written in the simple form

N
=2 Lilise
i=1
where ¢t may be positive or negative. It is somefimes more convenient
to define the correlation in the continuous form

r(t) —_~-21; f"x(s) y(s+t) ds .

It is customary to call the serial correlation of a variate with it-
self an autocorrelation. When the variates are different we shall
speak of the correlation as a lag correlation.

The first movement in the use of the new function was in the de-

velopment of the wariate difference method of time-series analysis.
This method assumes that the elements of a time series consist of two

85 %A Comparison of the Fluctuations in the Price of Wheat and in the Cot-
ton and Silk Imports into Great Britain,” Journal of the Royel Statistical Society,
Vol. 47, 1884, pp. 34-64.

88 “Correlation of the Marriage-Rate with Trade,” Journal of the Royal Sia-
tistical Society, Vol, 64, 1901, pp. 485-492.
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parts, one containing the structural part and the other the random or
stochastic (aleatory) variation. Thus we might write

=&+ &,

where &; is the structural part and &; is the random variation.

Now it was soon observed that if the differences of increasing
order are taken of the elements of a time series, the corresponding
variances, when properly defined, diminish to a certain limiting value.
This limiting variance is assumed fo be the variance of the erratic
element, and hence the nature of &; can be inferred from the order of
the difference which first yields this value. A more extensive account
of this method will be given later in the book.

The variate difference method was a fruitful field for the devel-
opment of the calculus of serial correlation. Thus an extensive con-
troversy developed over “Student’s” sweeping theorem published in
1914 which asserted that .

. . . if we wish to eliminate variability due to position in time or space and to
determine whether there is any correlation between the residual variations, all
that has to be done is to correlate the 1st, 2nd, 3rd, -- - , nth differences between
successive values of the other variable, When the correlation between the two
nth differences is equal to that between the two (n-1)th differences, this value
gives the correlation required.’’

Unfortunately for the generality of the theorem, several restric-
tive hypotheses were necessary. Although the correlation of the two
variates {z;} and {y:} was assumed different from zero, their respec-
tive autocorrelations as well as their serial correlations were assumed
to vanish. Moreovers the time element entered into each variate as a
polynomial of the nth degree.

The possibilities suggested by this analysis were developed vari-
ously by Beatrice M. Cave and Karl Pearson,*® Oscar Anderson,”
Warren M. Persons,” G. U. Yule,” and others. The most extensive

97 “The, Elimination of Spurious Correlation Due to Position in Time or
Space,” Biometrika, Vol. 10, 1914, pp. 179-180.
. %" “Numerical Illustrations of the Variate Difference Correlation Method,”
Biometrika, Vol, 10, 1914, pp. 340 et seq. .
. % “Nochmals iiber die ‘Elimination of Spuricus Correlation Due to Position
in Time and Space,’” Biemetrika, Vol. 10, 1914, pp. 269 et seq.: “Ueber ein neues
Verfahren bei Anwendung der Variate Difference Methode,” Biometrika, Vol. 16,
1923, pp. 134 et seq.; “Ueber die Anwendung der Differenzenmethode (Variate
Difference Method) bei Reihenausgleichungen, Stabilititsuntersuchungen und
Korrelationsmessungen,” Part 1, Biometrike, Vol, 18, pp. 293 et seq., Part 2,
thid., Vol. 19, 1927, pp. 53 et seq. o
™ “On the Variate Difference Correlation Method end Curve Fitting,” Quar-
terly Publications of the American Statistieal Society, Vol. 15, 1917, pp. 602-642,
. "1 “On the Time-Correlation Problem, with Especial Reference to the Variate-
Difference Correlation Method,” Journal of the Royal Statistical Soctety, Vol. 84,
1921, pp. 497-526.
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account of the theory is to be found in the researches of Anderson,
which culminated in a volume entitled Die Korrelationsrechnung n
der Konjunkturforschung, published in 1929. An extensive applica-
tion of the methods of the variate difference calculus to economic data
has been made by Gerhard Tintner in a work entitled Prices in the
Trade Cycle.® Tintner has also prepared an account of the method
in English with tables facilitating its application.™

The use of serial correlations as a means of comparing the inter-
actions of economic variables was soon recognized. Thus we find H.
L. Moore in 1914 computing the lag correlation between the yield per
acre of crops and the production of pig iron. By this means he
reached the conclusion “ . . . that the cycles in the yield per acre of
crops are intimately related to the cycles in the activity of industry,
and that it takes between one and two years for good or bad crops to
produce the maximum effect upon the activity of the pig-iron indus-
try.”™ Warren Persons in his study of the variate difference method
previously referred to made extensive use of serial correlation in
studying the relationship between 21 American economic time series,
and this method strongly colored his views with regard to the con-
struction of a business barometer.” He summarized his technique of
analyzing time series in a paper published in 1922, which contained
his well-known example of the lag between the production of pig iron
and the interest rate on 60— to 90—day commercial paper.” :

These studies were followed by a series of papers by G. U. Yule,
which may be said to have founded the calculus of serial correlations.
The first of these was the critique of the variate difference method to
which reference has already been made; the second was Yule’s classi-
cal answer to the question: “Why do we sometimes get nonsense
correlations between time series?”;?* the third was an investigation
of the periodicities in Wolfer’s sunspot numbers, the point of view of
which was discussed in Section 10. These papers furnished the stimu-
lus for a number of investigations among which may be mentioned
the work of Slutzky on “the summation of random causes as the

12 Veriffentlichungen der Frank rter Gesellschaft Konjunkturforschung,
Heft 4, Bonn, 1929, 4 hu far ! 4 i

78 Vienna, 1986, xii -+ 208 pp. + two sets of phs.

4 The Variate Difference Method, Cowles Commission Monograph No. B,
Bloomington, 1940, 175 pp.

78 Economic Cycles: Their Low ond Cause, New York, 1914, p. 110,

¢ “Construction of & Business Barometer Based upon Annua! Data,” Ameri-
can Foonomic Review, Vol. 6, 1916, pp. 739-769.

. 1" *“Correlation of Time Series,” Journal of the American Statistioal Associa-
tion, Vol. 18, 1922-28, pp. 718-726; republished as Cg:lpter 10 in the Hondbook of
Mathematica! Statistios, edited by H. L. Riets, Cambridge, Mass., 1924,

18 Journal of the Royal Siotistioal Society, Vol. 89, 1926, pp. 1-64.
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source of cyclic processes,”” the theory of chapgging harmonics of
Ragnar Frisch,® a paper by Sir Gilbert Walker on the relationship of
periodogram analysis to serial correlations,® and a recent extensive
work by Herman Wold entitled A Study in the Analysis of Stationary
Time Series.®

The point of view of Yule which seems to have had the greatest
influence may be briefly summarized as follows: Let us assume a mo-
tion defined by the difference equation

1) Au(t) + pult +1) =¢(t + 2h),

where we empioy the notation Au{f) = u(t + k) — u(t), u =4 8in’s,
==xnh/T,and ¢(&) is an impressed force defined by erratic impulses.
The solution of this equation can be shown to have the form

— . 27 sin 48
(2) w(t) =Asin (€ +1) +(8) + —-¢(t—h)
sin 63 + sin8s .
+ sinzs‘f’(t'—zh) +-si—n2-s-¢(t'—-3h) 4.,

Now Yule observed that if the impressed force was defined by a
set of small erratic fluctuations, the simple harmonie motion repre-
sented by the first term of the right-hand member of (2) was dis-
turbed. But the disturbed motion was not erratic and the resulting
graph (see Chapter 3, Section 7) preserved its sinusoidal appear-
ance. Yule was also struck by the fact that even though the harmonie
term were entirely removed, “the graph would present to the eye an
appearance hardly different from that of the” complete series. This
case, said Yule, “would correspond to that of a pendulum initially at
rest, but started into movement by the disturbances.”

Sir Gilbert Walker connected the analysis of Yule with that of
serial correlation in the following manner: If a2 motion is defined by
the general linear difference equation

(8) u(t) =g, u(t—1) + g u(t—2) + -+ + g, u{t—s) + 4(t),

where the g, are constants and ¢ (%) is an impressed force defined by
random impulses, then the serial-correlation function of the solution
is defined by the difference equation

(4) r(ty=g.r(t—1) + gsr(t—2) + ... + g, r(t—3).

1 See Section 10.
% Loe, ¢it,, Section 10. ) .
. W “0Qn Periodicity in Series of Related Terms,” Procsedings of the Reyal So-
osty of London, Vol. 181 (A), 1981, pp. 518-632.
# Uppsala, 1988, viil 4 214 pp.
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Walker then employed the graph of r(#), which is much smooth-
er in general than the graph of u(%), to determine the natural periods
of the original series. He illustrated his method by applying it to the
quarterly values of pressure at Port Darwin, Australia, a key center
of world weather.

Wold in his work referred to above makes a very complete and
systematic investigation of the relationships between (%) and r(t)
as given by (3) and (4). To equations of type (3) he gives the name
stochastic difference equations. He emphasizes the important propo-
sition that while {#) can be inferred from (3), the inference is not
reversible and one cannot then infer (3) from (4). This conclusion
is in agreement with the analysis of the author given in Section 3 of
Chapter 3, where the problem of inverse lag correlation is considered.
Many primary series can have the same serial-correlation function
and from this it can be inferred that they are harmonically equiva-
lent. But even when they are harmonically equivalent, they may not
be the sanre for this reason, sinece they may possess continuous spec-
tra of different intensities, Wold’s beok gives several iHuminating
examples of the pitfalls inherent in this method of analysis.

15. The Analysiz of Random Series

It will be clear from the foregoing discussion that the nature of
random series should constitute an essential chapter in the analysis
of time series. By such a series we mean one whose autocorrelation
function is zero, within statistical limits, for every positive and nega-
tive lag.

Although the nature of such series had been investigated as early
as 1906 by C. Goutereau in studying the variability of temperature,*
the first systematic theory of random numbers was made by G. U.
Yule in his analysis of nonsense correlations published in 1926. Here
we learn for the first time that when random numbers are subjected
to certain Kkinds of linear operations, the resulting series are no longer
random. Thus, for example, the autocorrelation function of the nth
differences of random series is equal to (—1)}* 2,C,_/2xC. , where ,.C,
is a binomial coefficient. Moving averages of random numbers yield
significant serial correlations; and more surprising vet, successive
accumulations of random series rapidly converge into a perfect sinu-
soid of period equal to the length of the series itself.

& “Sur la variabilité de 1a température,” Annuaire de la Soc. Mét. de France,
Vol, 54, 1906, pp. 122-127; summarized by E. W. Woolard in Monthly Weather
Review, Vol. 49, 1921, pp. 182-138.
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Such discoveries led E. Slutsky, as we have previously observed,
to the development of his thesis that the summation of random causes
may be the source of cyclic processes in economic time series. This
author stated an interesting resuit which he called the “sinusoidal
limit theorem.” Applied to random series, it yields the following re-
sult: From the elements of a random series {z;}, we form a new se-
ries by n iterated summations by 2, followed by the forming of the
mth differences; then if m/n is kept constant, the difference series
will tend to a sine curve of period T = 2a/(arc cos r,), where
= (1—-m/n)/{(1+m/n), as n tends toward infinity.**

The theory of runs is closely related to the theory of random se-
ries and has been developed by those interested in the nature of time
series. Investigations of particular interest in this field have been
made by L. Besson,* L. Bortkiewicz,*® and Herbert E. Jones.®” The
last, in particular, has developed a systematic formulation of the
problem and, together with Alfred Cowles, has applied the theory to
an interpretation of the movements of the stock market.*

The theory of runs is concerned with the direction of changes in
time series, that is fo say, with the signs of the first differences. Ob-
viously these first differences may be plus, minus, or zero. A run is
then defined as a sequence of like signs and its length is the number
“of like sigms, zero generally being regarded as having the sign of the
preceding difference. A reversal, as contrasted with a sequence, oc-
curs when a plus sign is followed by a negative, or vice versa. The
ratio of sequences to reversals is defined by the fraction

_E®

where E (S) is the expected number of sequences and E (R) is the
expected number of reversals. For a random series it can be shown
that o = }, while for a cumulated random series p = 1.

The principal problems of the theory of runs are (1) to deter-
mine the ratio of sequences to reversals for different types of series:
(2) to determine the distribution of the expectation E(R); and (3)
to determine the standard errors of the distribution. For example,

& Slutsky, op. eit.,, pp. 130-131, pp. 142-145.

* 1. Besson, “On the Comparison of Meteorological Data with Results of
Chance,” translated and abridged by E. W. Woolard, Monthly Weather Review,
Vol. 48, 1920, pp. 89-94.

% L. Bortkiewicz, Die Iterationen, Berlin, 1917, p. 83,

82 H. E. Jones, “The Theory of Runs as Applied to Time Series,” in Cowles
Commission, Report of Third Annual Research Conference - - 1987, gp. 33-36.

8 Alfred Cowles, 3rd and H. E. Jones, “Some a Posteriori Probabilities in
Stock Market Action,” Econometrica, Vol. 5, 1937, pp. 280-294,
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Jones has shown that oz, = (2n—4)/3 for random series and
oary = (m—2)4/2 for cumulated random series, where n is the num-
ber of observations. A more extensive account of this theory will be
given later in the book.

Another direction in which the theory of random series has
moved is that of the definition of functions of random variables, Thus
let £ be a random, or stochastical variable, which is characterized
wholly by its cumulative distribution function, F (#). That is to say,
F (u) defines the probability that ¢ is less than or equal to % . If then,
¥ (£) is a given function, what meaning can be assigned to the symbol
¥y (&) ? The basis of this new analysis is to assume that the expected
value of ¥(£), designated by E[y(£)], is given by

Eln )= f“y(a) dF (x).

This theory is developed in extenso by H. Cramer in his book en-
titled Random Variables and Probability Distributions, published in
1937.* The application of the propositions thus developed to the the-
ory of time series has been made by H. Wold in his work on stationary
time series previously referred fo.

Closely related to the idea of the random variable is the earlier
problem of the random walk first proposed by Karl Pearson in 1905.*
This problem he states ag follows:

A man atarts from a point O and walks a distance I in a straight line; he
then turns through any angle whatever and walks a distance I in a second straight
line. He repeats this process n times. I require the probability that after these n
gtretches he is at a distance between » and (r + dr) from his starting point, O.

The expected distance after = repetitions, E[L(n}], is merely

Ivn. If we designate this value by M, then the desired probability
is merely ¢(r) dr, where the frequency function is given by

40 =2, goun.

Since random variation is found in many phenomena interesting
to the physiciat, as in the case of the Brownian movement of amall
particles; to meteorologists, as in vagaries of the weather; to astron-
omers, as in the light variations of variable stars; there has been
assembled a large collection of special problems in the theory of prob-
ability which belong essentially to this field. It would be too far re-

® Cambridge, 1937.
* “The Random Walk,” Naturs, Vol. T2, 1906, p. 294.
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moved from our immediate objectives, however, to do more than to
indicate the existence of such problems.

16. The Present Status of the Problem

In the preceding sections of this chapter we have traced the de-
velopment of the theories about the nature of economic time series.
The problem, it will be observed from the historical references,.is
relatively new in science. The theory of statistics as it applied to fre-
quency distributions had reached a high state of development by the
beginning of the twentieth century; the problem of time series was
scarcely formulated and even the data which it was to interpret were
not available in abundance until after the world war.

The problem of single time series, as it has presented itself above,
is concerned with three things: first, the determination of a trend;
second, the discovery and interpretation of ¢yclical movements in the
regiduals; third, the determination of the magnitude of the erratic
element in the data,

This preliminary problem, once solved, leads immediately into
the more complex one of discovering valid interactions of one time
series with another. Upon the discovery of such relationships the
hope of establishing a firm science of economies inevitably rests, From
them there will come ultimately the power of prediction, which is the
final test of any mature science.

The problems of economic time series are still far from a solu-
tion. But only by careful tests and frequent rescrutiny of both sta-
tistical methods and basic theories can one hope to make progress in
the development of this difficult science,



CHAPTER 2

THE TECHNIQUE OF HARMONIC ANALYSIS
1. Harmonic Analysis

We have shown in the first chapter the interest which has been
taken by mathematical economists in the theory and application of
methods of harmonic analysis since the work of H. L. Moore, Sir Wil-
liam Beveridge, and others exhibited its potential usefulness in the
analysis of economic time series. The underlying concepts of har-
menic analysis, however, present many problems of a difficult mathe-
matical nature and there is not yet a uniformity of opinion regarding
the interpretation and the significance of results obtained by these
methods. Hence, it would seem not only useful, but quite necessary,
to make a careful examination of the assumptions which underiie the
basic formulas of the theory. This analysis has been undertaken in
the present chapter.

In the beginning it will be useful to examine certain mathemati-
cal models in order better to appreciate the exact contents of the theo-
rems which we propose to use in exploring the harmonic constituents
of economic time series. The relationship between the method of
Fourier and the method of Schuster will be carefully studied. More-
over, since systems of orthogonal functions other than those which
appear in Fourier series have been used by certain econometrists in
the study of trends and the correlation of the residuals from these
trends, it will be useful to indicate the nature of this generalization
and the assumptions which underlie it. Considerable misapprehen-
sion upon this point seems to exist as has recently been pointed out
by C. F. Roos.!

No attempt will be made in this chapfer to discuss the signif-
icance of results obtained by harmonic analysis. This fundamental
problem is intimately connected with the concept of the degrees of
freedom possessed by a time series. It is necessary, therefore, to defer
discussion of the question of significance until a later chapter where
the problem of the freedom of the oscillation may be more success-
fully attacked.

2‘6_;%‘; C. F. Roos, Dynamic Economics, Bloomington, 1934, Appendix 1, pp.

— 60 —



THE TECHNIQUE OF HARMONIC ANALYSIS 61

2. Fourter Sertes

The problem of Fourier series is that of representing a function,
either continuous or with a definite number of finite diacontinuities
as exhibited by a set of discrete data, by means of a series of funda-
menta] harmonics,

By a harmonic we mean a term of the form

2at 2nt
y—A cos —— T + B gin 7

an expression which may also be written in the form
=/ A?* + BZ cos (2 at_ a)

where @ = arc tan B/A.
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FIGURE 10.—GRAPHICAL REPRESENTATION OF THE HARMONIC TERM :
y~—6 cos (27t/12) -} B gin (2w¢/12) = 10 coa [ (27£/12) —a],
where a=—58° 8 — (.3019 radians,

The value T is called the period of the harmonic, the reciprocal,
1/T, the frequency, the quantity v A? + B? the amplitude, and a the
phase angle. We shali sometimes refer to A and B as the eomponents
of the harmonic. Figure 10 shows a typical harmonic term.

A series of the form

(1) y=31A4,+ A,cos(at/a) + A, cos(2at/a) + A, cos(3at/a) + .--
+ Bl sin(at/a) + B, sin(2at/a) + B, sin{(3at/a) + .

is called a Fourier series.
The principal theorem of Fourier series may be stated with suf-
ficient generality for the analysis of economic time series as follows:

If f(1) is a single-valued function which has a derivative through-
out the interval —a = t < ¢ except for a finite number of poinls at
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which it has finite discontinuities, and for other values of i i defined
by the equation
f(t+20) =f(t),

then f(t) can be represented by means of the Fourier series (1),
where the coefficients are determined from the inlegrals

) A.::% L f(8) cos(nas/a) ds ; B..:"_ll L‘ f(3) sin(nns/a) ds .

The Fourier series gives the value
hm MG +e) +7(E—8)].

For a proof of this theorem, the reader is referred to standard
treatments of the subject.! The theorem has been stated for much
more general types of functions than those which occur in the analy-
sis of statistical data.

As sn example of the application of the theorem, let us consider the Fourier
representation of the following function:

148/, for—A=t=0;
9) Fy={1—1t/x, for 0=Zt=);
0 , for-—aStS—\, AE=EtSu.

This fanction is represented graphically in Figure 11,

Y Y
1.0 A Lo
P
0.3 - W AN N o T K]
7 i 1 [+]
- -A Q 3 ‘e -1 0 +1
FIGURE 11 —CONTINUOUS FUNCTION FIGURE 12—FOURIER APPFROTIMATIONS
WITH DISCONTINUVITIES IN ' OoF CONTINUOUS FUNCTION.
DERIVATIVE. (a) First approximation,

(b) Second approximation.

Since the function is symmetric about the origin, no sine terms will ap)
in its Fourier expansion. Employing formulas (2) for the computation of the
3 See E, T, Whittaker and G. N. Watson, ACourscmHodamAm'r
Trwo-

edition, 1915, pp. 167-169. For modern generaluahons see A, Zygm
nomatrical Sories, Warsaw, 1985, 331 pp.
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coeficients of the peries, and adopting the convenient abbreviations

=xa lnw
= ] —-E #,
we get
1
.{"::; f.f(t) cos (nwt/o) di=—p(sin?g/81), A,=—=.
-

The series representing the function is thus

o in2 ¢
“ f(t)=%#+_4_z sm (%“Wﬂlmur -

T e n? a

If # == 1, we have as a special case the series

1 mt 1 bt
f(‘)-—-%+-—-[¢06-—+ COB —— - — 08—~ - + -+ ] .
@ 26 a

The sum of the first n terms of this series iz called the nth approximation to
the function. Successive approximations are given in Figure 12,

Later in our discussion of serial correlation functions, it will be important
to refer again to this special example. We shall, therefore, consider gne other
special case, namely the one for which 4 = 1/3,

Substituting in formula (1) the values obtained from formulas (2), we ob-
tain the following explicit expansion:

fi8) = 1+12§ sin2(nr/6) nwi
T8 T2 et n? cos a

__1 i wt 8 2wt 4 37¢ 8 4¢t+ 1 bt

g m g ety T et

+1 B’I'a't+3 8'lrt+4 m+3 10t 1 117t

49 864 @ 81 100 121 o

1 137t 8 147t 4 157t -

4+ o8 —— F — 08—~ + — o ——} .- ],

169 ¢ 196 a 228 [

A few of the approximation ¢urvea sre shown in Figure 18. One of the in-
teresting observations to be made about this example is that the Fourier series
approximates zero over two-thirds of the range. In order to sccomplish this ap-
proximation, however, it is necessary to nse a considerably larger number of
terms of the expansion than in the first example.

In the applications which we contemplate it haa seemed desira-
able to define the Fourier coefficients in the symmetric form given in
formulas (2). N much of the numerical work in harmonic analysis,
however, the deth are given over the range of 0 = ¢t = 2¢, in which
case the Fourier coefficients assume the form

P 1 ﬂat . __1 , mal
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10 +1.0
I ]
Is
’
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4 {<) -
_— / / J/ \“\ \K e
0 e T dacy 0
-0.2 1 i ) i i i 1 . i 1 1 1t 1t ] 1 0.2
-l 0 +0.
FicuRE 13.—FOURIER APPROXIMATION OF A FUNCTION.
{a} First approximation, (¢) Third approximation,
{b) Second approximation, (d) Fourth approximation.
where
gt) =f{t —a).

This formulation is particularly advantageous when the data are
given in discrete form. Thus, if we have the data f,, fa, fs, -, fs,
it is usually convenient to define the Fourier coefficients in the form

2 X 2nnd 2nnt
(6) An—ﬁ“g ftcos—lv—, By = E ftsul—-ﬁ-—

which are seen to be equivalent to 4’ and B’, in (5).
The relationship between A'., B', and A,, B., as defined by for-
mulag (2), is seen to be one of sign only. That is to say, we have

(N A,=cosnnA's, B.=cosnab,

This is readily proved by making in the integrals of (2) the
transformation s = ¢ — ¢ . We thus obtain

cos nn

s
A.= f f(t—a) cosl%'fdt=cosnnA'..,

co8 nn

B.= Eat =cosnn B..

f f(t—a) sm

3. The Theorems of Beasel and Parseval and Their Significance
We next introduce two theorems associated with the Fourier co-
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efficients, which have special significance in the statistics of trends.
These are the so-called inequality of Bessel and the theorem of Par-
seval, the first of which we have already described in the first chapter.

In order to derive the first of these, let us assume that a function

f(¢) has been apprommated by the first N harmonics of a Fourier
series, that is,

N N
(1) f(8) =440+ S Aveos "2 + S By sin B2
where the symbol ® means “is approximated by.”
Let us now represent the right-hand member of (1) by f.(t) and
consider the integral of the square of the residual, that is,
1(* 1 e
= ve ~rwre=:[1ren -2f0 Ao + o) .
-3 -l
Taking account of the well-known integrals

f.sm-”—?ism—-dtﬂ rcos-——cos-—-dt-—o, m¥*n,
-

lf's' _dt__f —-dt 1,
a -

- mant ¢
f 8in v cos TA0 gt =0 ,
. a a

(2)

for all integral values of m and n, and observing the definitions (2)
of Section 2, we readily obtain the following value for the integral I:

I———f fr(t)ydt — (4 A2+ R+ R+ R+ + Rs),

Rr=As2+B..

Moreover, since the integrand of the integral is positive or zero,
the integral itself is positive or zero, and we thus obtain the Bessel
tnequality for Fourier coefficients:

(3) }A.,'+Rl'+R,'+R,’+---+R,’§;I.P(t)dt.

It has been proved that the sign of equality will hold for all
functions 7(¢) of integrable square, provided N = %, This property
of the complete Fourier sequence is known as the closure property.

Several interesting statistical conclusions may be derived from
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the Ressel inequality. The first of these is the statement that the vari-
ance, o*, of the function f(#) is expressible in terms of the Fourier co-
efficients according to the following formula:

(4) w=43 (A..=+B,.=)=&§R.=.

This is easily proved by noting that the arithmetic average of
f(t) is equal fo {4A,. Hence we have

2—1 y - 2 — 1 2 2y — 3
s=g [P0 - GaNI@t=13 (42 + B =13 R

Similarly we may prove that if f,(f) is the right-hand member
of (1), then the variance, «,%, of the residual function

is given by

(5) U!'z:&I:":‘%‘(R!Nﬂ"{"RzNW'{'RzNﬂ +.0)

This is easily proved by noting that the average of A(t) is zero.
Hence its variance is equal to 3J, and, from the closure property of
the Fourier sequence, this quantity may be identified immediately
with half the sum of the squares of the coefficients with subsecripts
greater than N .

In illusiration, consider the first example given in Section 2, By formula
{4) of Section 2 and by expansion (4) of Section 3, we at once obtain for the
variance

8 = gint(H%nTp) 1 1
o2 — Py —=—p——p3
qr-l,ﬂ 1l n4 a3 4
If we set x — 1/3, and evaluate the first nine coefficients of (4), we shall
obtain

1
ot == [ (0.30396) % + (0.22797) + (0.13510)2 + -~ - + (0.015011)7]

==0.08325,

8 value which is to be compared with the exact variance of 0.08333. It is thua
clear that nine terms (note that one is zero) of the Fourier expansion give a
very close fit to the original function. We may, in fact, say that there exists an
equivalence of 0.08325/0.8333 or 99.90 per cent between the function and the
first nine terms of its Fourier representation.

The theorem of Parseval is associated with the Fourier coef-
ficients of two functions f(£) and g (¢). Thus let us suppose thaf both

8 For this reduction sec the author’s Tabdles of the Higher Mathematicnl
Functions, Vol. 2, 1935, pp. 18-19. f i
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satisfy the conditions of the theorem of Section 2 and that their Four-
ier coefficients are respectively:

f(t) :4As, A1, 42,44, ;By,B; By,
g(t) : 30,8y, 82,85, 30y, ba, by,eee.
Parseval's theorem then states the following eguivalence:

(—]!‘f'f(t)a(t) dt=3 A0+ 3 Auty+ 3 Buba.

This result is derived as an immediate conclusion from the in-
tegrals given in (2) above.

The theorem of Parseval has its interest for us in connection
with the correlation of the two functions f(£) and g(¢). Thus, desig-
nating the correlation coefficient by r;,, the standard deviations by
oy and o, , and noting (4), we immediately derive

1 a
g | U® 14100 ~ yee

Frg=—

Tt Oy

(6)
X A.0.+3B.b,
V(AT BY) XS @k + 6y7)

It should be noted that if f(¢) and g(¢) are reduced by subtract-
ing from each function the first N harmonic terms, then the correla-
tion between the residuals is obtained from formula (6} by summing
from N-+1 instead of from 1.

4. The Technique of Harmonic Analysis

Harmonice analysis is essentially the fechnigue of determining
the principal harmonic elements of a given function or set of data.

Let us first examine the problem from the point of view of the
Fourier series

[ [ -]
(1) f(f)=§Ao+2A,.cosﬂt-+EB,cos-nfi,
n=l a n @
where, as before, the coefficients are determined by the integrals

_1 e nng _1 [* . mas
(2) A"_'ui-.[‘f(s) cos—a-ds, B'_E J:.f(s) sm—a—ds.
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The quantity
B = R32 A2+ B2
T2 T 2
will be called the energy of the nth harmonic term.* The period of the
nth harmonic is obviously equal to T =2a/n; hence, the energy may
be regarded as a function which depends upon the period. This de-
pendence we can represent by writing

E=ER(T), 0<T<2a.

The graph of this function is called a periodogram. Obviously
the periodogram constructed from the coefficients of a Fourier series
is determined only for the periods

T_Za 2¢ 2a Z2a 2a
—T'T?.-'-:S_’_tf" n;"s"'o

This array of periods, as we have said in the first chapter, is
called the Fourter sequence. A periodogram constructed over this
sequence has the advantage that the sum of the squares of the ordi-
nates equals fwice the variance of f(s), that is,

(3) R+ R*+R2+R2+ ... =24,

Since, however, the problem of harmonic analysis is to determine
the dominating harmonics in a series of data or in a given function,
the periods of which may not belong to the Fourier sequence, it is
generally desirable to compute the periodogram over the arithmetic
sequence: +=—1,2,8,4,---,a.

In order to understand better the nature of a periodogram, let
us construct one for the typical harmonic f() — A sin (kf + B).

An easy -calculation of A, and B, yields

e sin(ka + na) _ sin(ka — na)
A..—Asmﬁ[ ka + na ka — na ]’
_ sin(ka — na)  sin(ka + na)
B=A e [ 2R e,

+ Strictly spesking, the total energy of a physical system represented by the
Fourier series (1) is equal to

1 o«
EZECnAo’ +ZXC,R,?2,
n=1 :
where the C, are weifthting factors determined from the physical conditions of
the problem.



THE TECHNIQUE OF HARMONIC ANALYSBIS 69

from which we derive

Ra= A [in’(ka + nn) + sin?(ka — nn)

(ka + na)? {(ka — na)?
sin (ka + nx) sin(ke — m)]

—~ 2 co8 28 R p——

If we make the abbreviations ¥ = 2a/P and n = 2&/T, then the
value of B* can be expressed in terms of the period, P, of the har-
monic¢ and of the trial period 7' :

A? rain? 2a(e/P + a/T) sin!2a(e/P —a/T)
4 YD) = 4:rc' [ (a/P + a/T)* (a/P a/T)’
_ sin 2z (a/P + a/T) sin 2a(a/P ~ a/T')
2eos2s a/Py — (a/T)" J:

For purposes of discussion, it will be convenient to make the fur-
ther abbreviation a/P=u, a/T =r. Then R*(T) can be written

: A? rsin?2a(u + r 8in?2a(u—r
R JUE S [ o f‘) L oz (’)‘ )
o 8in 2x(u + 1) sin 23(;: 7) J
}1 - 1'
It is clear that the dominating term in this expression is the
function

—2cos 28

8in®* 2a(u — 1)

(e — )2
which has its maximum value of 42* when r = p. For this limit (b)
assumes the following value:

(6)

- i
nmm(r):A,_i_A:[sm dap cos2ﬁsm4an.
T=p

16 u? ® 2un

Since, in general, # > 1, the second term of this expression will
be small compared with the ﬁrst and R2(-) will have a maximum
value in the neighborhood of r = «. This is the fundamental idea
which underlies the use of periodogram analysis in the discovery of
hidden periodicities.

Since (6) is the dominating term of R?(r), it is clear that this
function will also have minima in the neighborhood of the value of r

which makes (8) zero. Such zero values are obtained from the egua-
tion
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2([‘ - T) =m,
where m is an integer, or, in terms of T,
(1) T=P/(1—iPm/a}.

In order to find the breadth of the peak around the maximum or-
dinate of the periodogram, we compute from formula (7) the values
corresponding to m = 1 and m = —1 and form their difference 4.
We thus get

(8) T,=P/(1—3}P/a), T.=P/(1+1P/a);
and hence the approximate breadth of the peak is found to be

_ P
a[l—{(P/a)?]

Thus if a series of 300 items contained periods of 12, 25, 44, and
60 units, the periodogram would reveal four peaks, the widths of
which would be respectively 1, 4, 13, and 26 units. It i3 obvious that
very little interference would be encountered in such a periodogram.
If, however, the series contained only 200 items, then some interfer-
ence might be expected between the peaks corresponding to the peri-
ods 44 and 60, since the widths would be respectively 21 and 44 units.

If the breadth of the peak, 4, can be accurately determined from
the periodogram, it is clear that the value of the period can be deter-
mined from formula (9). Thus we should have

(P/a)?
1—3(P/a)*’

(9) 4=T7T,—-T, ~pP.(P/a) .

4
r]

‘Hence, solving for P, we get

- (4/a)
10y P= I TT a7

In our later application of harmonic analysis to economic time
series it will be convenient to have a standard symbol for the energy
attributable to a single harmonic term or to a set of them.

Consequently, we shall say that the energy associated with a
single period T will be

R (T

E@ = 20t °

and for a set of » harmonic terms,
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(1) - zE=2

From Bessel’s theorem cited in the preceding section, it is clear
that the variance, ¢.%, of the series after n terms have been removed
is given by the formula

(12) o= (1—-3E,).

Similarly, the theorem of Parseval enables us to define the mu-
tual energy of two series, f(#) and g{t), in terms of their correlation
coefficient. We shall define the mutual energy of the iwo series, name-
ly E,,, by the formula

_ Z(Adty + Baba) _
- 2ara, e

If the two series are reduced by n common harmonies, then we
have the reduced mutual energy, E*,, equal to the reduced correlation
coefficient, %, . .

This relationship may be put in terms of the original correlation
coefficient, 7y, , and the two corresponding energies, ¥, and E, , if we
employ the abbreviation

(13) Ey

S (4.2, + Bb,)
(14) ra="

2as0,71y

In terms of this notation, it follows readily that the reduced mu-
tual energy becomes

'rfﬂ(]- - 1‘,,)
VII-E)(1-E)
These formulas are exact if the energies are computed strictly

over the periods of the Fourier sequence; otherwise, they are only
approximate and must be applied with caution.

(15) E*ty=17"=

5. A Mathematical Example

As a simple illustration of the application of the theory of the last section
a‘nd in order to study the characteristics of a pure harmonic term, let us con-
gider the anaiysis of the function

2wt T
=100sin{ — + -~ 1,
v=100sin (%4 7).
over an assumed range of length 20 — 204,

Employing formula (5) of the preceding section, and noting that con 2 8 = 0,
we see that we can write
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100\ 2 gin2 27 (p - 1) 8in2 27 (g — T}
R¥7) = 5 ’

27 (n+ )2 (h—1)2
where s =™ a/P = 102/48 — 2.37209. It will be more convenient, however, to
represent R? as a function of fractions of half the range, so we replace 7 by 1/z,

where x — T/a.
Hence we consider the function

[gin2 27 (2.87209 4+ 1/z)  sin? 27 (2.37209 — 1/x)
{2.37209 4 1/x)2 (237209 — 1/2)%

The two phase components, A, and B, , the sum of whose squares is B?, may
be written in terms of the variable x as followa:

100 [ sin 27 (2.37209 4 1/2)  sin 27 (2.37209 — 1/=) ]
A(x) ——=sin-7 .

Ri(x) = 253.3030

2w g (287200 + /) - (237209 —1/z)

100 1 [ =in27(2.37209 — L/x) sin 277 (2.37209 4 1/x)
Bz =—oco8 -7 - _—
2 4+ | (2.37209 — 1/x) (2.37209 + 1/x)
The values of A{z), B(z), R?(xz), and R(x) are given in the following
table and the values of R(x) are graphically represented in Figure 14,

z Alx) B(£) R2(2) E{z)] = 4(2) B(s) RE(2) L 204
0.10 —0.4072 —1.7170 3.1139 1.96 [ 0.50 23.6288 19.9219 956.1787 | 30.91
0.16 0,3700 —0.2302 0.1899 0.44 | 0.51 16.7268 12.2189 420.0872 | 20.71
0,20 —2.0081 —4.2068 21.7254 4.66 || 0.52 R.6245 7.1667 125.8004 | 11.21
0.2222 2.6287 4.9867 317772 5.64 [ 0.53 4.7808 —0.4963 28.0005 | 4.81
0.26 —8.5300 —9,0820 126.2412 | 11.1¢ || .54 —0.1189 —B5.%718 28.8838 5.87
0.27 B.1222 6.4242 107.2405 | 10.36 §| 0.55 —4.2491 —9.247% 108.5785 | 10.18
0.2857 5.8036 B.5632 107.0102 | 10,34 { 0.57 |-—10.3309 | ~—14.2287 309.0411 | 17.58
0.50 —4.7181 —10.9269 28.1196 481 [ 0.80 !-——14.0834 | —15.4362 436.6184 | 20.90
0.81 |—11.6418 —9.3212 222.416% | 14.91 [| 0.61 | —15.0668 | —15.4696 466.3170 | 21.69
0.82 | —14.9072 |-—14.9822 446.6009 | 21,14 [ 0.62 ]-—15.0649 | —14.5338 488,1680 | 20.03
0.33 | —18.1224 | —15.5300 413.6408 | 20.34 | 063 i-—14.7164 | --13.2820 362.9840 | 19.82
0.3388 |—11.3853 |-—14.4119 837.6657 | 18.37 | 0.64 |—14.0808 | —11.7952 837.8957 | 18.8T
0.34 —8.3630 | —10.2636 145.9319 | 12.08 || 0.65 |—13.2181 | ~-10.1459 277.5258 | 16.68
0.36 4.3106 0.0430 18.5831 431 || 0.68 |-—12.1818 —B8.3988 218,8653 | 14.78
0.36 17.2689 13.7253 486.2536 | 22.06 | 0.6667 (—11.3831 —7.1083 181.83905 | 18.47
0.37 307717 28,7629 | 1774.2018 | 42,12 | 0.TO —6.9570 —1.3322 50.1748 7.08
0,38 43,3457 43,2423 | 3748.7462 | 61,28 {f 0.71 —b5.5658 0.2784 81.0556 5.57
0.39 53.8717 56.6505 | 5999.1382 | 77.45 | 0.72 —4.1916 1.7788 20.7338 4.55
0.40 61.6805 66.0067 | 8030.3551 | B9.61 | 0.78 —3.1605 2.8463 18.0030 4.25
0. 68.4893 708276 | 9487.4424 | 87.15 | 0.76 —0.8070 5.6306 30.6818 5.54
0.42 6B.186T 72.9013 | $961.2986 | $9.81 | 0.76 0.8686 6.5125 43.1669 6.57
0.48 67,4681 72.0027 | D7T36.333% | 98.67 | 0.77 1.9708 7.3584 58.0293 7.62
0.44 64,2892 68.1146 | BT72.7000 | 93.66 | 0.50 4.8044 9.1172 106.2056 | 10.81
0,46 59.3435 62.0795 | 7375.6153 | 85.88 j 0.85 7.915% 9.9209 159.1021 | 12.61
0.46 53,0989 54.5105 | BT90.8878 | 76.10 ] 0.90 0.2441 8.5631 159.7801 | 12,80
0.47 48,0172 46.0100 | 4234.5028 | 65.07 i 0.95 $.2271 6.2381 128.990% | 1114
0.48 28,5224 87.1258 | 2862.3008 & 53.50 ! 1.00 8.3078 8.5024 81.2863 8.02
0.49 30,9823 25,8089 | 17€0.0678 @ 41.95 i 2.00 —7.1489 —1.5069 63.3776 7.31

We note that the Fourier sequence is given by the values z — 2.00, 1.00,
0.6667, 0.50, 0.40, 0.333, 0.2857, 0.25, 0.2222, 0.20, ete. Forming the sum of the
R2(z) for these values, we obtain R2(x) — 9924.8978.

Hence, since 202 —2(1%A2) = 10,000, we see that 99.25 per cent of the
energy is accounted for by these ten coefficients.

An inspection of the graph of R{x) clearly shows the existence of the period
at x == 43/102 — 0.4216. One should particnlarly note the existence of the minor
maxima on either side of the major peak. This is a characteristic feature of all
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periodograms and one must be careful not to interpret these minor “shadows” of
the real period as being evidences of other periodicities.

Rix) ) Rix)
100 . 100
80 / 80
- E
60 50

20 F. \ - . 20
1] ""N-—/ e
Q 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 Q.90 1.00
FRACTIONS OF PERIOD

FIGURE 14.-—PERIODOGRAM OF SIMPLE HARMONIC.

If in formulas (8) of the preceding section we divide both sides by e and
invert the resulting equations, then we obtain as the minimum points of the
pericdogram the values

a 1 1
=== 0.5342,
T, »—% 187209
a 1 i
Ty = = Tt ———— = {.3482.

T, s+ % 287209

The difference, A = x, — z, = 0.1860, gives the breadth of the peak. Since
the two minimum points are clearly indicated on the graph at approximately 0.53
and 0.85, we could readily obtain an excellent approximation of the period « if it
were actually unknown. Thus, employing formula (10) of the preceding section,
we get &/a =— 0.583 — 0.35 — 0.18, and hence obtain as the desired approximation

2= P/a— V0.18/{1 + 0.045) = v0.1722 = 0.415.

The error is observed to be only 0.007.

In order to illustrate the effect of interference in a periodegram we shall
consider the periodograms of the two functions

(a) = i <+ = )} 4 100 sin —-t+-
= 1 '
v BOsn( ) ( 3 )

2ot w 2t =
(b = i sin| — 4 -1},
) ¥ SOsm( + - )+ (43 )

over an assumed range of length 2a == 204,
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We note that for the first component in each function we have s — 102/35.7
= 2.85714, and henee its interference band would extend from z, = 1/(x + 0.5)
= 0.2979 to x, — 1/ (s — 0.5) == 0.4242. This range seriously overlaps the inter-
ference band of the second component which, as we have previously calculated,
extends from 0.23482 to 0.5342. The values of the periodograms of (a} and (b)
are computed from the phase funetions 4 (z) and B(x), which are equal to the
sums of the phase functions of each component separately. These values are
given below and the periodograms are represented in Figure 15.

Periodogram Values for Function (a) Periodogram Values for Funetion (b)
z Rim) ¥ Rir) # Riz) [4 R(E)
.30 2.11 0. 40 107.01 0.30 0.52 0.40 62,21
0.31 1.43 Q.41 106.48 .31 8.45 .41 57.92
0,32 8.29 Q.42 102,26 0.32 18,96 0.42 52.87
0.33 14.76 0.43 956.69 0.33 30.57 0.43 46.58
0.34 35.97 0.44 86.75 0.34 41.82 0.44 19.93
0.35 63.10 0.46 T6.47 0.36 51.64 .46 83.54
0.3 70.21 D.48 65.46 0.36 59.24 0.48 27.41
0.37 84.62 0.47 54.26 0.37 63.567 .47 21.72
0.38 96.09 0.48 43.32 0.38 85.48 0.48 16.68
0.39 108.62 0.49 33.01 0.39 G4.89 0.49 12.04
Q.50 8.14

Although the graph of R(x) in each figure resembles the peak of a genuine
period, it is clear that the peak is much too broad to have been derived from a
single harmonic. This example illustrates the importance of checking the theo-
retical breadth of any peak suspected to have arisen from a single component.

Rix) Rix)
150 i

T
=
-
Al 2y

0.4 0.5 0.3 0.4 05
FIGURE 15.—PERIODOGRAMS SHOWING THE EFFECT OF INTERFERENCE
BETWEEN COMPONENTS.

In this figure the difference between the perieds is small.

Part (a} shows the periodogram of a function with two components of peri-
ods equal respectively to 0.35a and 0.42a and with amplitudes equal respectively
to 50 and 100. The dotted lines are the periodograms of the two components.

Part (b) shows the periodogram of a funetion with two components of peri-
ods equal respectively to (.35a and 0.42a but with equal amplitudes of 50. The
dotted lines are the periodograms of the two components,
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6. The Effect of a Linear Trend in Harmonic Analysis

Since many time series may be approximately described by
means of a set of harmenic terms and a linear trend, it is important
to know how the trend affects the components of the harmonic terms.

In order to investigate this problem we shall assume that a series
of data in the interval —a = ¢ = a has the trend

Let us assume further that upon analysis the series has been

found to have also a harmonic term of the form

@) R(t) = A(T) cos —2;-t +B(T) sin 2;* :
where A(T) and B(T) are values obtained from the periodogram.

We now expand y in a Fourier series in the interval —a =t = g,
and thus obtain

(3) 'y-—"y.,+-2;—a[sin%i—%sin27:£+§sinﬂ—---].

Now if in k(%) the period T belongs to the Fourier sequence,
that is, if there is an integer n such that n — 2e¢/T, then the corre-
sponding term in (3) must have been included in the periodogram
value B(T). Hence the coefficient of sin(2af/T) which belongs to the
true harmonic, independent of the trend, must be B(T) diminished
by that part due to the trend.

Since the influence of the trend upon the harmonic is the term

2ma 1 mT

1) 2o = -1,

we obtain as the true harmonic the function

Rty =A(T) cos—?—t + B'(T) sin-z;i .

where we abbreviate

) B(T)=B(T) + (-1)«%71.

If »* is the variance of the original series, then the variance o,*
of the series reduced by the trend and the harmonic term will be

(5) - el =c*— o — oy,
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where o,? is the variance due to the trend and «,* that due to the har-
monie term.
We have already shown above that

o =%[A*(T) + B%(T)] »

For the trend we have

21 —_— —
(6) or ) e 1+ 97 + LR 3
If the series is defined over the interval 0 = £ < 2a instead of the
interval —¢ = ¢ = a, then the only modification in the above analysis
is merely that B’ (T) as given in (4) is replaced by

(7) B'(T) =B(T) +E;-.

4m’a,2[ 1 1 + }___m’a’

Obviously in application the period T will not always belong to
the Fourier sequence. In this case the analysis just given will yield
only an approximation to the reduced variance «,®.

An application of this theory will be found in the second example
of the next section.

The analysis given here for the correction of the harmonic com-
ponents for linear trend can easily be extended to include corrections
for parabolic and higher polynomial trends.

Thus, if the trend is the parabola

Y=y +méit+pit*,

and the data are given over the interval —a = ¢ = a, then the origi-
nal values of A(T) and B(T) must be replaced by the following:

(8
AT(T) =A(T) — (-1)pT*/a*, B(T)=B(T) + (-1)*mT/a.

Similarly, if the data are given over the interval 0 = ¢ = 2a,
and if the origin of the parabola is at { = 0 with respect to this range,
then the harmonic commﬁents A(T) and B(T) are replaced by

(9)
A™(T) =A(T) — pT*/»*, B"(T)=B(T) + (m +20p) T/a.

Applications of these $rrections will be found in Sections 24 and
26 of Chapter 7.
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7. Applicabions to Economic Time Series

Since most economic data are given in discrete form, it will be
desirable to formulate the technique of harmonic analysis somewhat
differently. Thus, let s assume that the data are arranged as a set
of equally spaced items:

Time t, oty by e

Data O T A

where #s., — ¢, is constant.
Then the amplitude of the periodogram corresponding to the trial
period T is given by the function

(1) R=R(T),
where we write
2) " Ry(T)=ANT) + BU(T),
N »
AD=ZZv e, BO =2 Zusin .

Here the quantity N’ is chosen equal to the largest multiple of 7 in
the total frequency N. That is, N' = pT, where p is an integer.
The practical procedure is to arrange the data as follows:

V. Vs s Ys e Yr
Yra Yria Ilr.;g yr+‘ sor Yo
(3) Yera Yares . Yare Yarsa v Uhr

. »

Voura Yeure Yoeonrae ¥oore o Yy

Sums: M, M, M, M, eer My
The functions A(7) and B(T) are theﬁmputed as the sums

r T
(4) A(T)-—:EEM.coe—zf, B(T) =-2—,2M,sin—2f-.
=1 T N t=1 T

) As an example let us consider the evaluation of R(T) for the following data
which give the monthly averages of freight-car loglings for the period 19191932,
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MONTHLY AND ANNUAL AVERAGES OF MEAN WEEKLY FREIGHT-CAR LOADINGS
(unit, 1,000 cars)

Year Jan. Feb. Mar. Apr. May Jume July Aug. Sept. Oct. Nov. Dec.| Annual
Average
1919 728 687 . 69T 1715 69 809 858 892 960 96T 807 68 208
1920 820 Y16 848 731 862 840 901 968 969 1005 8BB4 723 262
1921 ;. T0B 683 692 706 757 765 751 810 841 929 761 €88 767
1922 T02 765 826 728 781 842 8256 8717 936 992 944 838 338
1923 845 842 917 94l Y6 1011 986 1041 1037 1078 978 826 966
1924 868 908 9t 376 896 906 804 a74 1037 1081 976 847 911
1926 921 906 924 941 968 289 986 1080 1074 1107 1024 388 984
1926 « B28 919 969 958 1037 1028 1049 1104 1148 1206 1068 904 1026
1927 946 956 1002 975 1024 9989 97% 1062 1097 1116 956 B3 995
1928 862 897 951 936 1002 986 986 1068 1117 1176 1061 833 963
1929 863 942 962 996 1051 1062 1038 1117 1185 1169 978 835 1014
1830 837 876 883 912 914 930 895 938 431 450 T98 €80 879
1981 T19- 710 735 762 740 748 738 747 13t 6% 656 656 718
1932 B67 561 G666 5567 522 491 4183 526 BTT 634 540 485 548
Av. B0% 816 849 83T /78 887 B4 042 971 14183 838 767 B78

The items in the series are first arranged in horizontal rows for each value '

of T, taking T =05, 6, 7, --- , 26. The sums are then found for each column.
Thus for T — 15, one gets the following arrangement:

Columns )

Values
of the
Monthly
Averages

2 3 4 5 6 1 8 9 16 11 12 13 12 1

728 687 697 TI6 769 809 858 892 960 96T 807 768 820 776 848

731 862 B60 901 968 968 1006 884 723 706 €83 692 706 TBT 766

7651 810 841 929 761 683 T0Z 766 B26 T23 78T B42 826 8TT 986

992 944 838 845 E42 917 D41 975 1011 986 1041 1037 078 978 828

858 908 916 B8T5 E95 906 894 974 1037 1091 HTE B4T 921 506 9%

941 968 983 98¢ 1080 1074 1107 1024 BAE D23 H1% 068 G5 1037 1028

1049 1104 1148 1205 1068 904 946 956 1002 975 1024 989 97% 1062 1097
1116 956 834 862 89T 951 936 1002 985 086 1058 1117 1176 1061 883
893 942 062 996 1051 1052 1038 1117 1135 1169 978 836 837 876 RES

912 814 930 895 938 93L 950 798 680 T TI0 736 752 40 748

788 74T 737 769 665 G655 BB7 h61 GGB 567 522 401 483 526 BTT

ou68 9914 9761 9943 9948 9512 9801 9504 9322 9634 9694 9614

[P P ——
Sums: (M) | 9708 9842 9752

We observe that of the 168 items of the data only 165 are used in the above
array. That is to say, N — 168, while N’ — 11 X 15 — 165.

R(T; R
80 80
- 4
€0 60
& 40
20 u 20
] / T f)
o 5 10 13 20 25 0

Fi1GURE 16.—PERIODOGRAM OF FREIGHT-CAR LOADINGS,
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Proceeding in this manner 21 arrangements of the data are made and the
sums are recorded as in the accompanying table.

FPERIODOGRAM ANALYSIS, FREIGHT-CAR LoOADINGS, 1919-1932

Values of M: corresponding to the periods T

Golumns 5 6 7 8 o 10 1 12 18 1 1

1 28842 23695 21228 IRAET 16312 14430 183235 11326 10B20 10721 9708

2 29107 24619 2123¢ 18820 16031 14417 13079 11476 10801 10488  $B42

3 29234 26487 20933 18121 16393 14366 14206 11887 16651 10423 9762

4 25074 28883 21171 17B49 16087 14262 13286 11717 10768 1053 3968

¥ 29220 24731 20086 18657 16060 14195 18179 12293 10742 10622 9914

s 23154 20935 19127 16128 14010 15399 12416 10883 10758  976L

7 21087 18673 15719 14199 13414 12869 10872 10613 9043

] 17880 15555 14385 13367 13183 11056 10607 9948

9 16027 14587 13386 13596 1OG6T 10447 9812

10 14467 13278 14176 10891 10548 9801

i1 13109 12438 10760 10402 9504

12 10739 107938 10364 9322

18 10904 10475 0584

u 10469 9594

15 ! 9514

(8)* | a2 2138 301 1827 838 617 835 3437 405 835 646
. |

Tuic | 08969 6.1279 0.7942 20065 1.5067 1.0161 0.7188 6.1062 0.8936 0.7184 1.2178

— ——— —

l Values of N¢ corresponding to the periods T

Columas | 16 7 18 19 20 2 22 23 24 265 26

1 | 8047 8022 8041 7834 7264 T61 6266 6587 5767 G845 G4B6

2 i 9180 8191 8300 7218 7440 TOTE 6215 6465 5724 5325  B4Bd

1 { 8895 8245 8731 7208  T0B6 6947 €817 6246 5920 5463 G3IAT

4 ; 8780  BiR4  B4IT 78R €816 7083 6328 6085 8026 5666  E3IR

I ; 9082  $463  BOL 7233 TOB4  T01D  68i%  E9t4 6274 GEEE M6

€ ! 5396 B2z 7680 7208 TISE 8927 6397 5060 6378 G768 B394

T ; 9159 B186 7892 74T TDB6  TO80 6533 6202 6336 5603 G485

s ' 8788 8121 8069 125 7071 TI08 6520 6268 6749 6608 B431

19 9088 8264 8418 7286 7378 7060 6548 6500 6881 5493 G445

’o $240 8230 8271 TEI1 THOT 7250 6618 G637  TRXd 5267 EdsS

1n B7A3 8152 7731 TI66 7166 7098 6206 6624 G169 G330 GATO

12 8536 8164 7862 TH0T  69TT TOG0 6314 €619  5AT9 G186 5434

18 8BOT 7995 7670 MT0 7281 7249 6309 6540 5569 6391 5505

14 P96 8012 S028 T8 7446 70?3 6321 6326 5702 6394 63sL

- 1B 8865 BIN9  B443  T2IS  TIIL 6864 6367 6221 5968 B4R E4ST

16 A527 8026 7827 Te8L  6B26 6798 6295 5955 GEB1 5462 SB44

7 B314 T4B6  T266  TI1 6974 6445 5772 6018 5769 G40

18 7608 7266 7314 6804 4359 5780 6042 E7R0 5426

1) 7432 TZI4 €917 6356 5990 6033 5761  GibY

20 6950 TOE 6354 6116 6444  E86L  GBOT

21 ‘ B984 G235 6247  6TId  E4dz 5625

2 €237 6419 7052  GAl9  B622

n €466 6279 5318 6462

ET I 5360 6211 5381

26 5245 5859

% : 5309

(a)* : BTL 468 1246 33T 691 463 333 BEE 1764 726 318

In/e i LBS46 079238 2.2144 0.6937 1.2244 05166 0.6285 17028 3.0330 LIZ18 0.4442

* The values & are cbtaired by subtracting in each column the smallest value from the largest
valge. The figures in bold face designate these values. The items Sw/¢, are the standard devia-
of the columns divided by the standard deviation of the original series, namely, o = 154.5.
For an explanation, see the mext section.
rd

These columns of M, are now multiplied successively by cos(27t/T) and
sin(271/T), t = 1, 2, 3, -- - , T, summed, and multiplied by 2/N’ to obtain the
values of A(T) and B(T) as given in formula (3). From these the values of
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R2(T) and R(T) are finally computed as the elements of the periodogram. The
resulty of these computations are then tabulated as follows:

PERIODOGRAM OF FREIGHT-CAR LOADINGS, 1919-1932
A—878.42, o—154.50, o2=—23,870.2441, 207 — 47,740.4882

| AT B(T) B B T N A(T) B(T) B3 x

T
5 | 168 0.6904 | — 56544 32.4486 | B.70 18 | 160 | —10.B4T1 16,0918 | 219.5082 [ 14.82.
¢ | 168 | ——40.131¢ ; —28.8)58 | 2177.6869 | 46.67 17T | 153 |— 5.0269 11,6832 | 161.7666 | 12.12
T | 158 0.5473 | 4.23761 19.4501 | 4.4l iB | 182 |— L7398 18.9802 | 263.2730 [ 19.08
8 | 158 4.0634 | — 57848 49.9723 | T.07 19 | 162 3.7861 1— T.1847 66.2879 | 8.08
9 | 162 | — 6.4863 127100 | 203.6147 | 14.27 20 | 160 71— 5.6180 (— &.193% 417138 ¢ &8
10 | 160 11,7245 3.0638 | 146.8498 11212 21 | 168 | — T.0285 6.8383 06.1626 | 9.81
11 ! 165 | — 4.1354 ! — T.7880 77.0098 [ 8.83 22 | 154 | —10.44892 4.4186 | 126.1278 | 11.36
12 168 | —26.0916 |-—T0.9743 | 5666.9430 |76.28 23 | 181 | —11.4128 13,6170 | 312.9748 | 17.89
18 ! 156 | — 3.5037 - T.0614 61.9981 § 7.87 24 | 168 1.1808 18,8861 | $58.0776 | 18.92
14 168 | -— 4.2085 T.7276 7B.1916 | B.A4 26 | 150 1.7146 |— 2.1002 7.3605 | 2.71
16 l 166 | —14.1744 14.6379 | 415.1840 [20.38 28 | 158 {— 1.3075 |— &.T462 47.2076 | .87

The values of R(T) are graphically represented in Figure 16,
which clearly shows the existence of periods at T = 6 and T == 12.
Since these two periods belong to the Fourier sequence, the per cent
of the total energy of the data contained in these periods may be
exactly computed from the formula

R2(6) + R2(12
Per cent of energy — [ (6) 5ot (12) ]= 16.439% .
o
THOUSANDS OF - THOUSANDS OF
CARS PERWEEK CARS5 PER WEEK

1200

1 A A /V_A L\,IAVA J‘]\V._ﬂv_ AI/IA ﬁ‘m
Y I VAT ™
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d- L L ek . " A i I " ‘10

1920 1925 1930
12 1200
1

o W‘ Eadriere
S -
“E N
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or n I 1 " 5 i i L n i _h

1920 1925 . 1930
FI1curE 17.—FREIGET-CAR LOADINGS
Upper curve: Monthly averages of mean weekly loadings, showing seasonal
variations; Lower curve; Same with §- and 12-month cycles removed.
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Figure 17 shows the relative unimportance of seasonal varia-
tions in comparison with secular moves. The lower curve shows graph-
ically the effect of removing the 6- and 12-month cycles from the
original data represented in the upper curve. The residuals, Y,, are
computed from the formula

Y=y, — [A(ﬁ) cos—-zg-t-+3(6) sing-:i

2nt . 2nt

where ¢ assumes the values 1, 2, 3, ..., 168.

A second example of the application of harmonic analysis to economie time
serieg will illustrate how a periodogram may be interpreted. The data chosen are
the monthly averages of the Cowles Commission All Stocks index from 1880 to
1896. The arithmetic average, variance, and total number of items are respee.
tively A = 40.71, o2 — 218830, and N — 204,

. e
| NEVARE
| [\ |

FaX
W/ '
L
[} :\A i i " JV i A Tl

} 10 20 £ r) 3% 0 70 30
Fi1GuRE 18.—PERIODOGRAM OF COWLES COMMISSION ALL STOCKS INDEX, 18850-1806.

An inspection of the periodogram, Figure 18, reveals two principal periods,
one at T—=35 and the other at T'==62. The values of the harmonic components
for these periods are given respectively by A (35) — —1.6127, B(35) = 1.6801,
and A (62) ——3.2710, B(62) = 2.0969. From these we compute R?*{(85) —
6.6216 and R*(62) — 15.0964. Neither T = 35 nor T = 62 belongs o the Fourier
sequence although the former is within one unit of T = 84 and the other 6 units
from F == 68, both of which belong to the sequence. However, we may assums that
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formula (11) of Section 4 holds approximately and hence we can make the follow.
ing estimate of the energy of the movememnt in the series which is accounted for
by the two harmonics:

__ R2(86) + R2(62)
== 5o

E = 0.4939 .

Sinee the components of the energy are not strictly additive, thizs estimate
should be compared with the energy of the adjoining harmoniecs of the Fourier
sequence. This energy is equal ta E(34) -+ E(68) == 0.4047. Hence from 40 to
49 per cent of the total movement of the series is acecounted for by these har-

monics.
We note from the graph of the series, however, that there exists a slight

secular trend in the data. This trend is represented by the equation
(5) ¥ = 45.9403 — 0.052325¢,

where the origin is at the first item of the data and t is months.

Since the slope of the trend is not great, we see from the discussion in Section
6 that the harmonic analysis is not seriously affected by it. Hence a good fit to
the data should be expected from the function

{6)
(1 lt ‘t
y==U(t) + A (35)cos 27 4 B(85)sin ' + A (62)cos e + B(62)sin -2,
35 35 62 62

where ¢ (t) is the trend given by (5).
The values as computed from (8) are recorded below as follows:

H ¥ 3 ¥ t v ¢ )
o a1 1 oar 42.0 108 88.3 156 42.0
3 29 | 55 39.8 107 3.9 159 40.8
T 1 458 | o 37.9 111 38.3 163 37.4
11 r 48.3 | 63 37.2 116 38.6 ;167 84.2
15 49.4 ' 67 38.2 119 38.8 1M1 32.2
19§ 481 IJ i 40.6 122 | 876 176 31.8
22 1 417 78 438 127 | 365 179 32,8
27 6.0 | "9 j 46.4 131 | 861 i 188 34.4
31 451 ¢ 83 | 477 135 | 868 | 187 35.7
35 a7 ;. RT ¢ o4t 13 o3 §oam 36.2
39 4.7 g1 | 449 | 13 v 41z 1 195 36.0
43 46 M 85 ! 422 F T L 484 4 109 35.8
47 488 1 99 39.7 f 161 | 443 1 204 | 365

The graphical representation of equation (6) is shown in Figurs
19. The variance of the residuals as computed from the values in the
table just given is found to equal 6.7942, which indicates that the
trend and the two harmonic terms together have accounted for ap-
proximately

E=100[1 — (6.7942/21.8830)] = 69%

of the total variation.
It is illuminating to estimate the residual variance if the refme-
ments suggested by Sectivn 6 are employed to take account of the
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-l .y P—
1880 1885 1290 . 1895

FiGURE 19.~—~HARMONIC REPRESENTATION OF COWLES COMMISSION
AL SToCKs INDEX, 1880-1896.
(a) Straight-line trend,
{b) Fourier approximation.

effect of the trend upon the components of the harmonic terms. FEm-
ploying formula (7) of Section 6, we see that B(34) and B(62) must
be replaced by

B’ (34) = 1.9801 — 0.5829 =1.3972,
B'(62) ==2.0969 — 1.0325 = 1.0644 ,

Hence the variance of the harmonic term is 7.0999, and since the
variance of the trend is 9.6352, the residual variance will be approxi-
mately

o;* = 21.8830 — 9.6352 - 7.0999 = 5.1479,

A similar computation, using the values for the harmonics
T =34 and T = 68, gives as the expected variance the values o,? =
6.6815. The true variance lies between these two estimates. Hence
the maximum estimate of the per cent of energy that can be accounted
for by the trend and the two harmonics, using the smaller of the two
figures just given, is 76 per cent, an increase of only 7 per cent over
the estimate attained by neglecting the correction for the trend.

8. Other Methods of Harmonic Analysis

Several methods of harmonic analysis have been suggested by
various writers, and some of these have already been mentioned in
the first chapfer. It will be useful to describe four of these in some-
what greater detail.
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The Whittaker-Robinson Periodogram. An interesting and use-
ful periodogram has been devised by E. T. Whittaker and G. Robin-
son based upon the variations in the sequence M, , M, , ---, M given
in (3) of the preceding section. Thus they replace the ordinates of
the Schuster periodogram by the square root of the following ratio:

ot (T) .

a’ ¥
where oy*(T) is the variance of the sequence of the mean values of
the M’s corresponding to the period T, and o* is the variance of the
data.

The theory of this method is as follows: Let us assume that the
elements of the data may be written

hm=A sin(2:ut/P) + B, '

where B, is a part which does not contain the period P and is not
correlated with it. The variance of the data is then given by

d"=iA’+a',’,

where o5? is the variance of the elements B, .

{T) =

Similarly we find
. paT
(17T sin P 278 + (p—1)aTl
H,=Azsin?m(t+n)/P+C.=A——-———-sin[ ]+C“
fove , aT P
sin —

where C, is the sum of the elements B;.
The variance of the values M, is computed from
sin’ga-f
+
sin d -
P
where o.* is the variance of the elements C, .

We now compute n2{T), noting that p* eu® =3 M?, and thus ob-
tain

EM::-__,}Aa

— 1(A/p)*[sin* (pnT/P) /8in* (aT/P)]) + oo'/P*
7T = 3A® + oy’ *

Since o¢® is of the order of p «,?, it ia clear that »* will remain
small, when p is large, provided P is different from T, but that it will
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tend to increase sharply when P is close to T in value. This maximum
may be shown actually to equal

$A* + op*/D
FA? + op?

In the first periodogram of the preceding section the values of
3 M/s have been recorded and from these the Whittaker-Robinson
pericdogram can be constructed immediately. One notes the large
values for T = 6 and T == 12, results in complete agreement with
those obtained from the Schuster periodogram.

Max 7*(T) =

Method of Mazimum Differences. When a preliminary survey of
a set of data is desired, this survey may be accomplished with a mini-
mum of computation in the following manner:

A table of the values of M, is first constructed and the following
differences then computed:

A(T) =M(T) — m(T),

where M (T) is the largest value of M, corresponding to ¢ = T and
m(T) is the smallest value of M,. The fluctuations of 4(T) will in
many cases reveal the essential period in the data if such a period
exists. This method is crude, however, and should be applied with
caution. No measure of the statistical significance of differences be-
tween the various values of 4(T) has been devised.

The values of these differences have been computed for the data
on freight-car loadings given in Section 7. The large values observed
at T = 6 and T = 12 again accord with the findings of the Schuster
periodogram.

Approximate Schuster Pertodogram, An approximation to the
Schuster periodogram can be attained by a simple device, which very
much reduces the labor of computation neceasary when the technique
of the Schuster periodogram is applied to a set of data of any length.

Let us note that the function S(¢) as defined by the graph (a) in
Figure 20 is represented by the following Fourier series:

_4 22t 1 6at , 1 ain 10xt
Similarly, the function C(t) as defined by the graph (b) is repre-
sented by the Fourier series

_4[ 2t 1 Gat 1 _10at _
0(t) =2 [eon S~ goos - +goos g — |
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e Al

-l 1

®
+1 +!
o ]
~1} 4.1
i AL
-27 -T 1] +T +2T

FIGURE 20.—STEP FUNCTION WITH FIRST FOURIER APPROXIMATION.
(2) 0dd function represented by =ines,
(b) Even funetion represented by cosines.

Hence we see that fo a first approximation sin(2at/T) may be
replaced by S(t) and cos(2a/T) may be replaced by C() in formu-
las (2) of Section 4. We should thus have

am=Z fc@ o ds, B =1 [ 56)10) ds;

and the approximate Schuster periodogram is given by

R(T) = vA(T) + B*(T) .

The advantage of this method is found in the obvious simplicity
of the calculations. The errors, however, may be considerable.

Applying this method to the data on car loadings as given in
Section 7, we readily compute A (12) = —33.6412, B (12) = —50.9199,
and hence obtain R(12) = 61.0292. These values may be compared
with their Schuster equivalents, namely, A (12) = —25.0916, B(12)
= —70.9743 , and B (12) = 75.28.

The Method of Serial Correlations. Still another method of har-
monic analysis is found in the use of serial correlations. Since, how-
ever, the next chapter is devoted to this subject, we shall postpone
discussion of this method and its implications until a more adequate
treatment can be given.
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9. The Exact Determination of the Period.

By means of what has been called the secondary analysis of the
periodogram it is possible to determine with considerable accuracy
the value of a period indicated by the periodogram itself,

This determination is made from the analysis of the components
A, and B, for some period T in the-neighborhood of the true period

P . Let us assume that the harmonic term indicated by a peak of the
* periodogram is actually

. 2at
y—=A sxn(?—#ﬁ) ,

and let 7 be some convenient trial period in the neighborhood of P.
Preferably T should belong to the Fourier sequence, since it is then
an exact multiple of the range 2a, although this is not a necessary re-
quirement. Now let the range be divided into p intervals of length
mT, that is, into the intervals (0, mT), {(mT, 2mT), (2mT, 3mT),
-, [(p—1)mT , pmT], where pmT = 2a . In case the series is short,
or if T is large, the value of m may conveniently be assumed to equal 1.

We now consider the rth interval, [(r—1)mT, rm7T], and com-
pute for it the corresponding constants, A, and B, . These are found
to be

1 T ., 2n8 278
(HMTA sin{ 2 + 8) cos 7 ds

A PT |, mT a(2r—-1)mT
= —————sxn———-cos[~———-}—,-———-+ﬁ];

A=

T am T:— P? P

1 T 2ns 2ns
B,=— A sin(—- + 3) sin —- ds
T (r-1)mT P T

A pz . mT [ a{2r—YymT

I_%WSIRTSIR | P +ﬁ].

From these values we then compute the tangent of the phase
constant ¢, , that is,

_ B, -P a(2r—1)mT
tan¢.--——z-:--—§,-tan [-———-—T)-———- +ﬁ] .

Since, by assumption, T is close to P we may replace P/T by 1
and hence may write

tan ¢, = — tan [:u(2r-1) 2;,-2: + 8 J
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mT
tan ¢=tan[2.nmr —a(@r-1) T+ 8 ] .

From this equation we obtain the important result that

0= 2mar — (2r — 1)3'-f-+p.

The change in phase from one interval to the next is thus found
to be

a= ¢, — ¢y = 2ma — 2a(mT/P).
Solving this for P we then obtain
T

(1) P=——T-.
1_2m.n

Hence, if the phase change from group to group is known, we can
determine the value of the period P from this formula.

As an example we shall consider the periodogram of the constructed sine-
comine series as given in Chapter 7. In order to determine accurately the period
observed between the limite T == 38 and T' = b2, the values of the components
are determined for the trial period T — 50, since thia belongs to the Fonrier se-
quence of the 300 items constituting the data.

Since the trial period is large, m is chosen equal to 1. The following table
of the phase conatants is then computed by letting r range from 1 to 6:

r | aum B.(T) tan ¢, $-(in degrees) | $v(In 27 radlans)
1 1.2972 -—19.7€06 ~-15.2402 278° 45 0.7604
3 | —18.0164 —14.9048 11481 228 5%’ Q.8957
§ [ —ld8208 — 0.8874 0.0588 s 24 0.5084
4 | — 99284 11.5280 | — 1.1811 180" 44° 0.3531
L] 0.1418 27.1724 191.8980 89° 42 0.2492
] 12.6028 17.6384 18908 4" 2T 9.1512

Fitting a straight line to r and ¢, (in 27 radizns) we obtain the equation
#, == 0.8800 — 0.1248 r ,

The linear character of the phase is clearly observed in Figure 21,
Sobgtituting the slope valne a == —0.1243(27) in formula (1), we obtain
as the value of P

P=50/(1.1243) = 44.47.

Since by construction the period was actually exactly equal to 44.00, this
agreement is seen to be excellent, particulerly if we observe that T/P == 1.14,



THE TECHNIQUE OF HARMONIC ANALYSIS 89

. .

s g .
\r\ J

P g 4
\ .I

2 e, 2

\

i [~ -

[ ha'zd )

o o0 0.2 6.3 0.4 0.5 0.6 0.7 0.8

FIGURE 21.—INTERVAL CHANGE OF PHASE.

10. Orthogonal Functions

The ideas which we have developed in preceding sections with
respect to harmonic analysis are generalized in many ways by the
theory of orthogonal fumctions, a class of functions which includes
the sine and cosine as special cases. The use of orthogonal functions
has become very important in many phases of statistics. The fact that
linear combinations of them are frequently used as trends in the stady
of economic data amply justifies the inclusion of a description of their
properties in a volume devoted to time series.®

Suppose that we are given a set of functions

Ui(t), Us(t), Us(?), .-, Unl?), .-,

which are defined over some intervala = ¢ = b . If there exists a func-
tion F (), positive over the given interval, such that

) J"’m) Ui(t) Uy(t) dt=0, i#j,

then the functions are said to be orthogonal to one another.* The

& For a discussion of some of the dangers inherent in the blind use of linear
combinations of orthogonal functions, see C. F. Roos, Dynamic Economics, Bloom-
mgton, Ind., 1934, Appendix I. For a comprehensive treatise on the methods of
fitting various systems of functions to statistical data the reader is referred to
M. Sasuly, Trend Analysis of Statistics, Washington, D.C., 1934, xiil + 421 pp.

%The origin of the word orthogonal (rectangular) may be ssecertained from
the following geometrical consideration. Let A and B be two lines emana
from a common origin, with direction cosines equal respectively to (A, 2, , Ay

and (s, #,, 5,). Theén the cosine of the angle #, between A and B, iz given by

L
cosd==JF A n,.
=l

1t A is perpendicular (orthogonal) to B, then # = % 7, and we have the
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function F (¢) is called a weight function and may be chosen equal to
1 without loss of generality, since we need merely define our orthog-
onal set as

V:l(t), Vz(t); Vl(t):"" V“(t),"',

where V,(t) = VF(f) U.(t). There is some advantage, however, in
introducing F (1} explicitly.

The most common orthogonal functions are: (a) the trigono-
metric functions; (b) the Legendre polynomials; (¢) the Hermite poly-
nomials; (d) the Laguerre polynomials; (e) the Bessel functions;
(f) the Tchebycheff polynomials,

For ready reference these well-known sets of functions are listed
here:

mwt | nTi

(a)7 J'sm——sm—dt =0, m¥*n,
a
a nwt
f gin? —dt =a .
a
-3
mt nut
(a') cog —cos —dt—=0, m+*n,
a a
a ‘n’.ﬂ'
I cos?—-dt—a .
a
—-a
1
(b) f P () P (t)dt=0, m+*n,
-1

1
f P2tydt=2/(2n 4 1),
-1
where P,(t), the Legendre polynomials, are given as follows:

1 1
Py(t) ==1, P,(t)=t, P,(t)=§(312—1), P,(t):é(sga_st),

orthogonality eondition
3
i, =0,

n=1

¥ We also note the following biorthogonal relationship:

¢  mat nat
f Bin . cos-a— dt—=0, forallintegral valuesof mand= .
. |
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1 1
P,(t) =§(35t4—30t2 +3), P,%) =§(63t5~70t’ + 1562) ,---,

P () = (2n)! [t* _ n(n—1} i n(n—1) (n—2) (n—3) -t .].
2n(nl)? 2{2n—1) 2:4(2n~—1) (2n—8)
w1
() f — e h (E) A, () dt =0, m£n,
Var

L |
—— e h2(t) dt=n!
mvz—:r

where k, (1), the Hermite polynomials, are given as follows:
ho(8) =1, h,(t)=t, h,(t)=1t2—1, h(t)=1t1—3¢,
h(d) =ttt —6t2 + 8, h(f) =—15— 30 4 15¢,---,

Ry () =t» — :.(__“511._}..”-3 + n(n—1) (::2) (»—38) o N

A second form of the Hermite polynomials is in common use, connected with
k. (t) by the relation

h(f) =2-vH (t/VZ), H,(t)==2h (VZ1),
For H,(t) we have the following orthegonality conditions:

f”w'H,,,tt)H,.tt) dt=0, m#n,

L]
j et Ha(lydt=2rn] V%,

Values of H,(t) are given explicitly as follows:
Hy(t)y=1, H (t)=2t, H,({)=4t2—2, H,{)=8tr—12¢,
H,(t) = 1616 —48¢t2 + 12, H_ () = 3215 — 1603 4 120¢,-- -,

H,(t) = (2t)n_1(.21._'__1_) (2t) ~2 +"{“_1) (::2) n—3) @4 —...
(d) ' fme—' L, ()L (t)dt=0, m%mn,
0

o«
f etLa(t)dt=1,
2

where L, (t), the Laguerre polynomials, are given as follows:
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Lty =1, L(t)=—t+1, Ly(t)={(2—4t+2)/21,
L,(t) = (—* + 912 — 18t -+ 6)/81,

L,(t) = (84— 1615 + T262— 96t + 24)/4!,

Ly (£) = (—t5 + 26¢¢ — 200t + 60082 — 600t + 120)/561, -,

. " nt n?(n—1)2
Ly(t) == (—)a[en— Tt 4 e
e ) LS
3!
() f I (b (B =0, m#n,
L]

f "L (ugh) dt=th B[ R,8) + I3 (8,B)],
[+]

where J (2) and J,(z) are respectively the Bessel functions of first and second
order. The set of values {#,} is determined from either

Jo{pna) =0, or J,(pa)=0.

r 1
——T,(t) T, (t) dt =0, mF*mn,
1o fw-—a

-1

1
I ! T,2(t) dt = a/2m1,
L vVi—#

where T,(t) are the Tchebycheff polynomials defined as follows;
1 3
T,(t) =1, T,(t)=t, T,(t):#—.é, T,(t)-:t!—--;t,
1 5 &
T{)y=tt—8B 4, T, (t)=9—-tt % _—¢,-..,

T, (t) =t — n -2 n{n—38) _ n(n—4) (n—5)

Z.11 24 . 21 2s. 3! +

Functions are also orthogonal with respect to summation, that
is to say, the integral (1) may be replaced by the sum

»
(2) ZF@®) Un(t) Us(t) =0, m+*n,
t=a
In the discrete data of ecomomic time series it is, in fact, more

usual to employ functions which are orthogonal with respeet to sum-
mation rather than those orthogonal over some continuous range. It
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should be noted, however, that such functions can be included in the
previous theory by means of Stieltjes integrals.?
By a Stieltjes integral we mean an integral of the form

I= f'f(x) dv(z),

which is defined as the limit of the sum
In=f(h)[v(z,} —v(a)] + f(&) [v(z:) — v(x,)]
+eoo+ f(tr) [v(b) — v(zy) ],

where v(z) is a function of limited variation in (a,b) and t, is some
value in the interval z, — z.,. If v(2) is constant, except for a
finite number of discontinuities of positive saltus (S;}, at the points
&, &, , &, then I is equal to the sum

I=S1f($1) +Szf(£2) +"' +Sn.f(5-)-

Hence, introducing a step function »{f) of the kind just de-
scribed with a unit saltus at each integer, we can write (2) in the
integral form

f'F(t) Un(t) Us(t) dv(t) =0, m#n.

A few of the functions which are orthogonal with respect to summation are
recorded below. The first set includes the sine and cosine functions, the second
set the Gram polynomials (the analogue of the Legendre polynomials for discrete
summation}), the third set the discrete Hermite polynomials, The pertinent for-
mulas follow:

-1 . 2mw if neither k—m nor k+m is divisible by n,
(a)? ﬁ“TtmTtL—:o’ or i both are divisible by .
-1 2k if 2k is not divisible by n.

" Yeinte—tx=gn,
t=0 L

w1 Ok 2mw it b—m is divisible by n and k+m is not
Loin—tegn—=t=in,  Givigible by n ;
t=0 n n
=-—in, if k—m iz not divisible by n and k-+-m is di-
vigible by n .

! The definition of suck integrals is due to T.-J. Stieltjes {1856-1894), “Re-
¢herches sur les fractions continues,” Annales de la Facultd des Sciences de Tow-
lovse, Vol. 8 (Series 1), J, pp. 1-122; in particular, pp. 70-72.
luﬁon?he‘e identities should be supplemented by the following biorthogonal re-

»1 Lra
ZIin—”—tcou-—-t-_—O,for all values of kend m .
£=0 L
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=1 kT Zm

{a') Feos—teog——1=0, if neither k—m nor k--m is divisible by ».
teo » n
?oay%’f:: n, if 2k is not divisible by n.
"
50
w1 ew S if either k—m or k+m is divisible by =n,
2 cos—tcos t=—#n, but not both;
= —mn,  if both k—m and k-+m are divisible by n.
]
(b) 2 ta(t) {1y =0, m#*n,

t==p

Hd
It =S, ,

to-g

where we abbreviate:0

2 () =A, #()=At, #,()=B+Ct, ¢()=Bt+CE,

2, (t) =C+Et2 + Fts, ¢,(t) =C't + E't3 + F'ts,

#, (1) =D + Gtz + Jt¢ + Jts,

$ () =Dt + Gt I'ts U6 ;

S,=A, S$,=4’, 8,=C,8,=C, §,=F, §,=F,8,=J, §;=7T.
ZpC} P (l) Pu(t) =0, m#n,

t=—p

P
()  ZC u(t) =s,==n12p(2p—1) (2p~2) ... (2p—n+1)/27 ,

where we abbreviate:u!

(2p)!

T 0l py LB e,

$o=1, ¥, {fy=t, ¢, (ty=—p/2, ¢,(t) =13 — % (3p—1}¢,
¥ (0) =t — (3p—2)12 + 3p(p—1)/4, ¢ (L) =t5— B(p-—1)t3

+ (15p* — 26p 1+ 6)t/4,

19 The notations and the explicit values of the constants are found in the
author's Tables of the Higher Mathematical Functions, Volume 2, 1935, pp. 80T~
859, The numerical evalustion of the eonstants over extensive ranges of p is also
found in this work

11 An extensive aceonnt of these functions together with tables of their values
will be found in H, E. H, Greenleaf, “Curve Approximation by Means of Fune-

tions Analogous to the Hermite Polynomials,” Annals of Mathematical Statistios,
Vol. 8, 1932, pp. 204265,
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¥o(t) == 16 — 5(2p—4) t4/2 + (45p*— 106p + 46)t2/4
— 16p(p—1) (p—2) /8,

¥ () == t7 — T(8p—6)19/2 + (106p4 — B16p* 4- 196)13/4 — (106p* — 420ps
+ 441p* — 90} 1/8,

Yo (t) = 18— 14(p—2)2¢ + T(15p* — 56p + 44) t4/2 — (105p* — b25ps
+ T42p — 264) 1#/2 + 106p (p—1) (p—2) (p—8) /16.

11. Minimizing by the Method of Least Squares

Since most work done with regression equations in the theory of
economic time series is in one way or another an application of the
method of least squares, it will be useful to indicate in this section
gome basic results about approximation by this method.

Let us consider that a given function, (), over a range ¢ =
t = b, is to be approximately represented by means of a known fune-
tion, f(¢;a,, a;, -, @,), where the parameters a,,a,,-+:, 8, are to
be determined. The basic postulate of the method of least squares,
in a sufficiently general form for our purpose, affirms that the para-
meters are to be so computed that the integral

1= f’F(t) [(t) — F(t; 0,0y, r, q) a2

gshall be 2 minimum. The function F'(£) is a weighting function, posi-
tive in the interval (a,b).

Equating to zero the partial derivatives of I with respect to the
parameters, we obtain the following system of equations:

tht)f dt ~ fF(t)u(t)det_o, §=1,2,-,m.

In most practical applications in time series, the function f(¢)
- is assumed to be linear in the parameters, that is,
f@)=a, % () +au,(t) +--- +a, us(f).
Introducing this expanded form of f(t) into equations (1), we
then obtain the following set:

3 »
a;f F(t)ugdt+a..f F() uyug dt + .-+

- [ ] [ ]
+a, f F(t) wwadt= f F(tu)ult)dt,
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b
a.lth(t)u,uidt+a.,f F(tyurdt + .-

] b
+a.f F(t)u.u,dt=f F () u(tyult)dt,

] b
auf F(t)mdwa,f F () et dt + -+

(2)

.

3 b
+a.,.f F(t) urdt= f F(t) un (B u(?t) dt.

1f the functions . (t), us(£), -+ , ua{t) form a set of functions
orthogonal with respect to F () over the range (a,b), that is to say, if

j'F(t)u.(t)u.(t)dt:o. mEn,

then system (2) assumes the simpler form

a,,.f'F(t) w(t) dt= f'f'(t) w(t) w(t) dt .
If we employ the abbreviation
]
A= f F(&) w2 (t) dt,

then we can write the approximation of u(¢) in the following con-
venient form:

]
(3) u(t) cvf K(t,8) u(s) ds.

The function, K (¢,5), called the kernel of the integral, will be
geen to have the expansion

K(t,s) =F(s) {*ul(t)ju-;(s)Jr m(tiu-.-.{s) +_._+u..(tiu..(s)].

. We also note that the right-hand member of (3) furnishes a
minimum for I, since we have by explicit calculation the following:
oI i
P P . T
oa.2 4>0, 3, oo,

By means of the results established above, it is now possibie to

0, i#j.
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derive Bessel’s inequalily for the general case of orthogonal functions.
For this purpose we introduce the value '

f(t)=6,u(t) +8:%(t) + -+ ay tu(t)
into the integral 7. Noting th_a.t

rﬁ'(t) i (t) u(t) dt =a; 2,
and also that '

f°F<t> P{E) A=tk + Gty + - + Gt

we readily obtain

1=J"F(t) w (t) dt—zf'ﬁ'(t)u(t) (&) dt + f'F(t)f:(t)dt
=I.F(t) W (t) dt — 2(aM, + G + o0 ) + J.iF(t)f'(t) dt

1] ]
- f F(t) wi(t) dt—fF(t).f‘(t)dt.

Since the integrand of the integral I is positive or zero, the inte-
gral i8 positive or zero, that is, I = 0, and hence we have established
Bessel’s inequality in the general case:

@ 0kt ket et S [ Pty wt) dt.

If the set of orthogonal functions is an infinite set and closed,
that is to say, if there exists no other function outside the set which
is orthogonal to the set, then the sign of equality holds in the Bessel
inequality, and the approximation sign in equation (3) is replaced
by the sign of equality.

The spectrum of the integral equation is then the set of values:
.1,,1,,...,1.....

12. Relationship to the Theory of Multiple Correlation

We shall now indicate the relationship which exists between the
theory of the last section and the theory of multiple linear correlation.
The problem of multiple-correlation analysis, as one sees from
any elementary book on statistics, consists in discussing the relation-
ship between a dependent variable, f(¢), and n independent variables,



98 THE ANALYSIS OF ECONOMIC TIME SERIES

u, (£), ua(t), -+, ua(t). Without loss of generality we can assume
that the averages of all these functions over the range (¢ = ¢t £ b)
are zero. This merely means that the variables are deviations from
their respective averages.

The relationship, assumed hnear, may then be written

Y] f(t) =a,u,(t) + @Gtz (£) +--- + au tn (¥).

The first problem in the theory of multiple correlation, and, in faect,
its distinguishing characteristic, is to determine the values of the
parameters @, , @, , --- , &y in terms of the standard deviations, o;, 0,1,
oz, - , as, and the elementary correlation coefficients, r;; and 7y, , de-
fined in the following sums:

s J.FP(s) ds ,_ Jiui(s) ds 2 (s) wi(s) ds
=, e= T, =T
b
n,--f u;(s)u,(s)ds, L=b—a.
L0'|0'j

In terms of these statistical constants, equations (2) of the pre-
ceding section become

yoq? + GooyoaTy -t OoionTin = oo Th,

Cuogo Ty + Oyas® + oot Cnogontzn = e20(T 2,

(2)
300017 5y + (P27 N Y e +.e+ a"z“nz == onetTrn -
Let us designate by D (i) the determinant
1-2 LEY Tis o T1n
D) = Ta 1—-2 725 - LET
Ta1 Pz Tas -~ 1—1

The solution of equations (2) can be determined provided D (0)
#£ 0. If we designate by by; the cofactor of the element ry; in the de-
terminant D (0), then the solution of the system can be written:
(3) a; = :_’ [Bia Trs + Bia fpa + oo Bin 7] -

Equation (1) can then be written
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t
@) 1@ "Ea:‘m(t)-—wz by Ty u;(-)

(3551

]
=1 [ Keare o,
where we abbrewate

(5) K(ts) =3 b, 28 "’*(t) 2u18)
if=1 Fy

We note that K (£,8) is a bilinear form in the variables ; ({) /o
and u;(s8) /o; . As is well known, its properties are characterized by
the matrix ||b;|| .

Now in most apphcatwns of multlple-correlatlon theory to prob-
lems in economic time series the variables {u;(f)} are chosen either
because, on a priori grounds, there should be a relationship between
them and the primary variable f(f), or because the correlation co-
efficients {r;;} have been observed tc be high. Obviously the most de-
sirable set of variables to select, if that were possible, would be an
orthogonal set, because in that case the correlation coefficients 7i;
would all be zero, ¢ # 7, except when ¢ or § equals f. But since all
the variables are subject to error, and since there are mutual influ-
ences shared by most of them, the possibility of finding an orthogonal
set is practically excluded. As a matter of fact, the greatest danger
in the use of correlation analysis in the theory of economic time se-
ries is found in the possibility that one of the variables may be a
linear combination, except for the erratic element, of one or more of
the others. This linear dependence is sometimes difficult to detect
when the number of variables is at all large. In economic time series
the possibility is always present since one or more of the variables
may share the same set of harmonie terins.

Later in the book the problem of linear dependence will be more
fully discussed. At present we shall set up some of the technical ma-
chinery useful in obtaining a better understanding of the problem.

We ghall recall some results from the theory of higher algebra.
Thus, if we designate by 4,, 12, -+, 4. the roots of the equation

(6) D@)=0,
then the roots, u,, gz, ---, pa, of the equation
() Bu)=|by—du|=0, du=1, &,=0, i%j,

are the reciprocals of the 1; ; that is, u; = 1/4;.
Also, there exists a transformation
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- L3 t
(8) 5—%?—2“;5 nit) , or vi(¥) =j=2 ﬂu:‘,—:-}'

where U7 = ||uy;]} is a normal, orthogonal matrix,'? such that
(9) K(1,8) = u,v,(£) 2(8) + pa¥a(t) v2(8) + oo+ Vs () ¥4 (8).

The matrix U is determined in the following manner. From the
n systems of equations

»
3 ryga; = Aa ,
J=1 .

éfnﬁf’-—”hﬂi -
(16) e e e e e e

»
Zriivi= i,
in

solutions ((11 y By ooy ﬂn), (ﬁl, ﬁz, "ty ﬂn)’ "ty (71, Yo, ", ’ﬂ) are
determined. These values are then normalized by dividing each ele-
ment in the first set by S a?, each element in the second set by
VI B, etc. The n? quantities thus determined form the elements of
the matrix U .

It is obvious that the magnitude of the coefficients 4, , gia, <<« pta
in (9) gives considerable information about the possible linear de-
pendence between the variables. Moreover, it is possible that the new
variables {v; (£} } may actually be more natural variables for the de-
seription of f(¢) than those originally selected.

The multiple-correlation coefficient is defined to be

R= Laraf f(8) [, %, (8) + @, uz(3) +-+-+ a, u, 2)] ds,
where we write
(11) 0= Gy e,? + Qulay? + s+ Gutey? + 20400000570 00

That is to say, we have
1
{12) Rz;[“&ﬁ"n+ﬂ:0:fh+"'+ﬂuﬂn"1s] .
12 By a normal, orthogonal matrix U/ we mean one that has the property
»
U U = llu,)l il =1 Zegupll =184l
k=1

where d,, = 1, 8,,=—0,{ 7 ;5.
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The standard error of estimate of f(t) is then given by thé for-
mula
Standard error of estimate=o,v1 — K*.

As an example let us consider the relationship that ean be established be-
tween f(f) — the Dow-Jones indusirinl averages; w, (¢) = pig-iron production
lagged three months; w, (1) = building-material prices lagged six months; wu,(t)
= gtock sales on the New York Stock Exchange. All data refer to the period
from 1297 to 1913. Pertinent values, taken from the table in Section 2 of Chap-
ter 3, are given as follows: ‘

Variable Moun [ Correlations
[{¢)) 100.72 15.0105 =060, Tnc 0 7'1’7. fra= 0580
#(f) 100.45 163681 fu=0.044, r=0
a(f) 100.82 49085 =9, m
ws(8) 102,44 475022

From the equation D (1) == 0.551468 — 2.435850 » - 32 — A% = 0, we first
compute

A, =0.455T93, A,==0.686861, »,— 1.857366.
The determinant B(0), defined by (7), is next computed and found to ba
148179  —0.70461  —0.27281
B(0) =] —0.70461 1.49566  —0.30202 .
] —0.27281  —0.30202 1.21084

The normal, orthogonal matrix ¥/ is then determined from the systems of
equations (10). We thus obtain

0.69798 —0.71562 0.02660
U==| —038611 ~—0.34536 0.85536 || .
0.60308 0.60714 0.51737
Hence the orthogonal variables {v,(t)} are defined by means of (8) to be

¢
2,(t) =0.69798 "2 _ 011562 2% | 002660 28
o, %y %
v, (t) =_o.380111‘15.1__o.34530 8 | gsssse0®
e % oy
t
va () =0.60308 4. | 0.00714 2D 1 051737 ) |
" % %

In terms of these new variables the quadratic form (5) reduces to (9); that is
K(t.s) =229898 v, (¢) v,(s) + 145592 v,(t) v,(s) + 0.53840 v,(t) v,(s).
One may readily show from the values given above that
o==129564, R —0.38631.



CHAPTER 3

SERIAL CORRELATION ANALYSIS
1. Introduction

Let us assume that we have two series of statistical data, x ()
and (%), which are distributed over a common interval of time,
—a=t=a. It will be convenient occasionally in the analysis to
suppose that @ = « , although this implies neither that the series are
actually distributed over an infinite time interval nor that they have
- any particular analytical behavior with increasing or decreasing
time. Any finite series, such as those of economics which are our
special concern, will be included by the simple device of assuming
that z (£) and y(2) are identically zero whent > @, < —a.

It will be convenient also to make three further assumptions:

(a) thatboth z(f) and y¥(f) are residuals from their mean
values;

(b) that both z(¢) and ¥(t) have been normalized by division
by their respective standard deviations over the range
—e=t=a.

(¢) that for limited ranges of 1, the averages of z(f + 1) and
y (¢ + ) are zero and their standard deviations are unity.

It will be observed that the only essential limitation to our analy-
gis is found in the third assumption. In the actual application of the
theories of this chapter to statistical data, it is usually desirable to test
the validity of (c) and to make proper corrections if these appear to
be necessary. The mathematical analysis, however, is much gimplified
by this asgsumption and in general no gross errors are infroduced by it.

With the limitations thus imposed, we may now define as the
serial correlation function the integral

(1) r(t)=§1-& f'x(s)y(s+t)ds.

If ¢ is a positive quantity, then series ¥ will be said to lag behind
series x; if, on the contrary, t is a negative quantity, then series
will be said to lag behind series y. The reason for this definition is
clearly seen in the lag correlation between pig-iron production, z(t),

— 102 —
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and industrial stock prices, y(t) (represented by the Dow-Jones av-
erages), as shown in Figure 22. The maximum correlation is found
for a negative lag of three months, which shows that pig-iron produc-
tion follows the movements of the stock market, that is to say, the
production series lags behind the stock price series, since the items of
the first three months hence will correlate with the present items of
the second.

¢ o
+1.00 +1.00

+0.50 - /\

37a N
| ) 1\ 5

-D.Sﬂ’ / - ]

| S N

0.50

e L

- 1.00 g Iy N n M - w 1.00
-0 ~&0 - 40 -20 7] +20 +40 +60 +70

Fmtms 22,—LAG-COREELATION GRAPH OF PIG-IRON PRODUCTION WITH
INDUSTRIAL STOCK PRICES.

In many important applications of serial correlation analysis we
are concerned with what is called the autocorrelation function. An
autocorrelation function is merely the serial correlation of a function
with itself, that is,

(2) r(t) =21a. f.:v(s) z(8 +t)ds.

An example of such an autocorrelation is shown in Figure 23,
where z(s) is the industrial stock price series (represented by the
Dow-Jones averages), with trend removed, over the period from 1897
to 1913, It will be observed from the graph that r(¢) is a symmetric
function, that is to say,

r(t)=r(-1).
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This is an important property of the autocorrelation -fun'ction,
from which one derives the fact that the power-series development
of (£) will be in terms of even degree.

0] 0]
4 1.00 +1.00
L J
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+ 0.50 0.50
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- 0.50 0.50
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-70 ~80 -40 -20 0 +20 +40 +60 +70

FIGURE 23.—AUTOCORRELATION GRAPH OF INDUSTRIAL STOCK IRICES.

In order to be able to distinguish between an autocorrelation
function and a serial correlation between two different functions, we
shall apply the term lag correlation to the latter case. That is to say,
a lag correlation is a serial correlation between two different vari-
ablea.

2, Ezamples of.-Lag Correlation

Since a great deal of useful information about the interaction of
economic series can be gained from 2 study of their lag-correlation
funetions, these functions have been computed for thirteen important
time series (each taken as percentage of trend) over the years from
1897 to 1913, This range was chosen because of the unusual stability
of the trends, which makes it an especially good range for exploring
the interdependence of economic series.

The thirteen series, together with their trends, their arithmetic
averages (A), and their standard deviations (¢), are given below as
follows:
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Series Trend A o

X,. Dow-Jones Industrial Avera ¥ = T2.7761 4 0.177873¢( 100.7188 { 156.0151
X,. Pig-Iron Production : ¥ — 55.0134 + 0.267732¢| 100.4479 ] 15.8661
X, Index of High-Grade-Bond Yields | y— 4.3161 4 0.001607¢| 99.6406| 3.71%1
X.. Time-Money Rates = 4.0984 4 0.002364¢) 101.6250 | 28.0490
X,. Industrial Production ¥ == 58.8687 4 0.197273¢( 100.6104 | 15.6961
X, Index of General Prices ¥ =—84.7T985 + 0.158694t| 99.9688 | 1.537b
X.. Bradstreet's Commodity Prices ¥ = B.0921 4 0.012700f| 100.56TT| 4.2948
X, Commercial-Paper Rates y— 4.6518 + 0.004823t| 100.7562 | 17.8462
X, Stock Sales, N.¥. Exchange ¥ —14.6685 — 0.004373¢| 102.4375 | 47.3022
X . Metals and Metal-Produets Prices | y = 88.5552 - 0.034479¢| 101.2344 | 18.2129
X,, Building-Materials Price Index | y=49.3119 + 0.095367¢| 100.3177 | 4.9085
X ,. Bank Clearings outside of :

New York City = 4.1942 | 0.021661¢ 100.1615| 57800
X,,. Loans and Discounts of All

National Banks ¥ — 4009.667 -+ 22.231t| 998594 2.153%

In order to have a basis for the exploration of the interdepen-
dence of the series given above, the lag-correlation function for all of
them was computed over a lag range from —12 to +12 months. Auto-
correlations were also included. The results are given in the follow-
ing table. The sign (—t) indicates that the correlated series precedes
the series named at the top of the table by ¢ months; the sign (+£)
indicates that the correlated series lags £ months behind. The maxi-
mum value of the lag correlation is indicated by the figures in italics.
For example, consider the relationship between the Dow-Jones indus-
trial averages and pig-iron production. It will be observed that the
maximum correlation comes for ¢ = 3, This means that pig-iron pro-
duction follows by three months the industrial averages.

{X,) Dow-JoNES INDUSTRIAL AVERAGES

Serles t=—12 -9 —& —1 ¢ 3 [ ) 12
X, | —0.014 0241 0530 0.804 1.000 0804 0530 0241 —0.014
X, | —0.182 —0.130 —0.036 +0.166 +-0.515 0.685 0.568 0.869 0.180
X, 0.007 —0.142 —0.319 —0.455 —0.558 —0.472 —0.295 —0.0T1L  0.115
X, | —0.322 —0316 —0.271 —0.341 0183 0403 0532 0565 0480
X, | —0.184 —0.132 —0,046 0160 0.514 0687 0.586 0.369 0.189
X, | —0489 —0.412 —0.305 —0.141 —0.032 0177 0.327 0429 0.459
X, | —0222 —0.256 —0.245 —0.110 0276 0480 0.601 0.682 0.563
X, | —0.338 —0.421 —0.431 —0.311 — 0116 0215 0437 0552 0.501
Xy 0.153 0.217 0.327 0492 0539 0318 0.132 —0.002 —0.089
X0 | —0.241 —0.224 —0.098 0139 0500 0656 0.678 0.605 0.481
X, | —0.197 —0.180 ——0.801 0.108 0418 0651 0777 0776 0.678
X, | —0.299 —0207 —0019 0263 0.605 0.680 0.582 0.372 0.184
X, | —0.330 —0.959 —0.269 —0.111 0115 0087 0163 0122 0.092

—
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(X,) Pic-IgoN PRODUCTION

t=—]2

—9 —& —3 [} 3 [ 9 12

e po3e €

- s e ok
5 @

o)
=4

B 3 D B B B

—0.175

0.062 0.340 0.656 1.000 0666 0340 0.062 —0.176

-—0.291 —0.439 —0.558 —0.550 —0.429 —0.204 0006 0.149 0.237
~—0.385 —0.280 —0.117 —0.134 0450 o0.677 0629 0467 0350

—0.177

0.046 0313 0636 0995 0651 0326 0.060 —0.1656

—0431 —0.321 —0.149 0.031 0.080 0.173 0154 0.072 —06.006
—0.338 —0.234 0008 0316 0540 0.588 0544 0368 Q137
—0.512 —0.410 —0.252 0026 0333 0632 0701 0577 0.426

0.166

0290 0.879 0.361 0266 0.089 —0.016 —0.106 —0.071

-—0.330 —0.152 0.084 0.360 0507 0.485 0.39% 0.340 0.253
—0.445 —0.329 —0.113 0187 0.426 0.544 0.552 0.466 0.317

-—0.167

0.057 0242 0608 0718 0.466 0.235 0.046 —0.067

~—0.277 —0.161  0.020 0.257 90460 0222 0.076 --0.074{ —0.115

(X;) 1I¥oEx oF HICH-GEADE-BOND YIRLDS

Hﬁﬁﬁ

T @ - & o

B B B e B B B

t=—12

—o —6 —3 0 3 [ 9 12

0404 0591 0.782 0914 1000 0914 0782 0591 0.404

0.158
0.218
0.440

0.209 0207 0.163 ——0.156 —0.380 —0.507 —0.555 —0.528
0.201  0.1256 ~0.068 —0.433 —0.542 —0.510 —0.399 —0.281
0479 04566 0.362 0396 0.252 0.148 0083 0.084

—&8.118 —0.052 —0.065 —0.181 —0.54% —90.641 —0.707 —0.709 —0.622

0.172

0.276 0.318 0263 0.170 —0.249 -—0.4832 —0.565 —0.566

—0.161 —0.217 —0.350 —0.465 —0.521 —0.447 -—0.364 —0.203 —0.196

-
t

" 0.638 0053 —0.001 —0.161 —0.496 —0.5684 —0.588 —(.569 —0.492

1 0.242 0281 0.263 0.163 —0.190 ——0.329 -—0.409 —0.[2¢ —0.373

= 0.186 0191 0.069 —0.169 —0.478 —0.488 —0.424 —0.348 —0.249
X, 0.6561 0.584 0.55% 0423 0.180 0.299 0234 (.225 0.187

(X,) TMME-MONEY RATES
Series t=—12 —1 —6 —3 ¢ 3 13 ] 12

X, 0103 0265 0419 0662 1.000 0662 (419 02656 0.103
X, 0335 0441 0596 0.6482 0446 0443 —0.106 —0.275 —0.388
X, | —0278 —0.104 0053 0122 0056 0911 —0.055 —0.130 —0.167
X, 0.174 0313 0436 0530 0602 0516 0358 0178 0008
X, | —0.049 0138 0299 0535 04872 053 0548 0364 0.209
X, 0356 0346 0239 0.231 0.219 0.044 —0.038 —0.017 0.068
X, 0220 0403 0560 0.625 0.625 0545 0417 0274 0.181
X, 0046 0235 0423 05649 0615 0588 0460 0267 0.096
JXL' 2 0.301 0467 0.587 0.5% 0.312 0.068 —0.119 —0.229 —0.290

—0.165 —0.001 0.196 0828 0274 —0.179 —0.297 —0.821 —0.282
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(X,) INDUSTRIAL PRODUCTION

t=—12 —9 —& —3 0 3 L] 9 12

Jepepe §

-3

-‘N Il-lH ﬁ“

-

~—0.166 0.048 0311 0645 1.000 0646 0311 0.048 —0.165
—0.408 —0.305 —0.181 0052 0192 0181 0167 0.090 0.011
—0.3562 —0.258 0.004 0216 0539 0589 0562 0382 0.143
—0.616 —0.413 —0.259 0.014 0340 0.619 0.680 0563 0.406

0.162 0.2568 o0.270 0362 0.254 0.061 —0.020 —0.104 —0.085
—0.337 —0.167 0.069 0342 0500 0478 0393 0338 0.282
—0.44% —0.334 —0.116 0.188 0431 0.542 0.545 0454 0.313

(X,) INDEX OF GENERAL PRICES

te—12 —9 —8 -3 (1] 8 L) ] 12

e |8

e

-
[ ]

0318 0464 0684 0790 1000 0790 0684 0464 0318
—0.276 —0.156 0.041 0234 0825 0.045 —0.027 —0.104 —0.251
—0.3860 —0.277 —0.13¢ 0.030 0.095 0.080 0.035 —0.094 —0.223
—0.025 —0.098 —0.167 —0.176 —0.376 —0.492 —0.502 —0.498 —0.465
—0.096 0.013 (110 0.167 0.022 —0.038 —0.141 —0.278 —0.402

009 0187 0271 0296 0176 0.108 —0.005 —0.152 —0.297

0.139 0274 0354 0.28% 02906 0.065 —0.045 —0.169 —0.278

0208 0279 0378 0437 0592 0541 (0464 0310 0.134

(X;) BRADETREET'S COMMODITY PRICES

]
3

=12 —8 —8 —3 L] 3 [] 9 12

- D E o~
=3

-
iy

-
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P4 B DY B b D

-
“w

0.145 0352 0590 0845 1.000 0845 0590 0352 0145
—0.191 —0.033 0186 0393 0561 0592 0546 0391 0207
0.359 0307 0244 0194 0251 0102 0050 0141 0232
0211 0468 0674 0.761 0.701 0.675 0.600 0328 0.204
0021 0244 0443 0576 0.670 0623 0446 0219 0.021
0287 0461 0543 0584 0440 0230 0.011 —0.129 —0.174
~—0.368 —0.206 —0.001 0.068 0.093 —0.285 —0.309 —0.408 —0.420

{(X;) CoMMERCIAL-PAPER RATES

t=—12 —9 —8 —1 9 3 L] 9 12

33H

-
-1

-
=]

¢ Bt B

0.070 0271 0496 0.726 1.000 0.726 0496 0271 0.070
0.351 0356 0258 0.150 0.112 —0.037 —0.069 0.036 0.092
0.288 0478 0618 0527 0574 0431 0258 0106 0.043
0091 0271 0464 0581 0612 0518 0338 0121 —0.048
0368 0531 0609 0489 0189 —0.090 —0.271 —0.8359 —0.381
—0.110 0.064 0227 0.320 0.173 —0.217 —0.338 —0.272 —0.365
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(X,) STocK SALES ON 'rm:: NEw YORK STOCK EXCHANGE

Series t=—]2 —9 —8 —3 0 3 5 b 12
X, 0.245 0.190 0209 0442 1000 0442 0209 0190 0246
X, 0152 0.087 0021 0078 0323 0424 0431 0376 0841
X, 0.073 0.020 —0.001 —0.016 0.148 0272 0372 0412 0408
X, | —0222 —0.264 —0.190 —0.040 0373 0332 0307 0172 0.136
X, | —0434 —0.491 —0.424 —0.390 —0.343 —0.193 —(.088 ——0.106 —0.127

(X,,} METAL AND METAL-PRODUCTS PRICES

Bazies te—12 —9 —8 —3 0 3 ' 6 ] 12
X, 0.248 0.456 0690 0891 1000 0891 0.6%0 0456 0.243
X, 0174 0308 0487 0643 0814 0827 0702 0470 0218
X,o 0.282 03256 0445 0.58% 0516 0299 0012 —0.176 —0.269
X, | —0372 —0.316 —0.171 —0.029 0.103 —0.185 0,268 —0.392 —0.415

(X,;) BunDING-MATERIALZ PRICE INDEX

Seriea | fe—q2 —9 —4 —3 0 ] [ ] [ 12
X, 0.201 0431 0672 0857 1.000 0857 0672 0431 0201
X o 0283 0418 0522 0493 0384 0.167 —0.061 —0.193 —0.211
X, | —0194 —0.048 0.071 0162 0161 —0.116 —0.213 —0.258 —0219

(X,,) BANK CLEARINGS OUTSIDE OF NEW YORK CITY

Beries $=—12 -—4 —4 —8 @ 3 L] 9 iz
X, | —0072 0077 0332 0620 1000 0620 0332 0077 —0.072
X, | —0.248 —0183 —0.042 0179 0488 0354 0172 —0.053 —0.149

{X,;) LoANg aND DISCOUNTS OF ALL NATIONAL BANKS

Saries =12 -9 —& -3 0 3 8 | 12

X, 0264 .0.350 05238 0754 1.000 0.754 05283 0350 0.264

It is clear that these tables can be used in a number of useful

ways and that they reveal numerous interrelations between the eco-
nomic variables for the period under discussion. Whether or not the
period should be regarded as one of typical economic stability is, of
course, open to doubt, but there seemed to be during these years a
remarkable stability in all the trends. We shall, therefore, think of
the relations exhibited by the correlation table as those of a stable
economy as opposed to a disruptive or crisis economy such as that
since 1926,

One of the conclusions which we may reach by a study of the

correlation table is that no economic series in the list forms a signifi-
cant forecasting series for the behavior of stock prices. With the ex-
ception of X, (index of general prices) and X,, (loans and discounts).
all the lag maxima or minima coincide with or follow the stock-market
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averages. This fact is sufficient to account for the failure of all at-
tempts to make a forecaster for the action of stock prices as a whole.

We also note that series X, (pig-ivon production) and X, (indus-
trial production) are essentially equivalent indexes. In their serial
correlations with all the other variables one finds an inconsequential
difference in the ﬁgures which reveals this economic proposition that
the production of pig iron is an adequate measure of industrial pro-
duction as a whole.

There are obvious reasons in the structure of investment for con-
cluding that when the stock market is high vield of bonds will be low,
and conversely. This observation would be found in an inverse correla-
tion between a2 bond-yield index and the index of stock prices. The
correlation between X, (Dow-Jones industrial averages) and X, (in-
dex of high-grade-bond yields) reveals the truth of this observation
in the period under consideration. We have, however, assumed that
the period from 1897 to 1914 was one of comparative economic sta-
bility and it is quite possible, therefore, that the assumption of an in-
verse correlation between these two economic variables would not hold
in other perieds. In order to test this, the intercorrelations (without
lag) were computed for the following five series over 101 years from
1830 to 1930 inclusive and for each quarter of a century:?

1. Business Activity
2. Rail! Bond Prices
3. Wholesale Prices
4. Rail Stock Prices
5. Commercial Paper Rates.

Employing the symbol 7;; for the intercorrelations, where the
subscripts refer to the number of the series, we find the following
table of values:

Correlations Entire Period First Perfod Second Perlod Third Period | Fourth Period
12 (1836-193¢) (1830-1855) (1856-1880) (1881-1905) (190519300
T2 0.0843 0.3186 --0.0451 0.0089 0.1308
Tas 0.1468 0.4088 0.2680 0.4110 0.1517
Y14 0.2862 0.6027 0.4442 0.5279 0.2579
i3 0.1149 0.2046 0.1830 0.1869 —40.0008
a3 —0.2854 0.5768 —0.1096 —0.6098 —0.8290
Y2 0.5983 0.5400 0.2565 D.0983 0.5626
Tas —0.4941 0.1089 —0.5505 —0.4194 —0.3610
Ty 0.2284 0.1867 0.5942 0.6105 —0.4299
Tas 0.1044 0.3794 0.1387 0.3498 0.3450
Tes T —0.3778 0.0756 —0.0147 0.0497 —0.2242

1 The data used in thla analysis were compiled by the Cleveland Trust Com-
bany on a monthly basis.
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The above table serves adequately as an indicator of the stability
or lack of stability of the correlation coefficients from one period to
another, It is unfortunate that the nonexistence of data prevents a
similar set of computations for all the variables included in the table
of autocorrelations, This table may be used, however, in some in-
stances in connection with the other, as, for example, in the relation-
ship between X, (Dow-Jones industrial averages) and X, (index of
high-grade-bond yields) which was the object of the discussion. We
note above that there exists a fairly permanent positive correlation
" between (2) and (4) of magnitude around 0.5. Since presumably in-
terest rates on bonds, because of long issues, remained fairly constant
over considerable periods of time, the yield index for bonds should
fluctuate roughly with the reciprocal of price. Since the price of bonds
correlates fairly highly with the price of stocks over the entire period,
we should expect an inverse correlation with yields. An exception to
this general conclusion would, of course, be observed in the second
and third periods, which, as we know, were periods of crisis.

Attention should also be called to the ease with which regressions
can be constructed between the different variables. Thus we observe
a good correlation between X, and X, and X, and X,, but a low cor-
relation between X, and X, . Designating the respective means, stand-
ard deviations, and intercorrelations by the proper subseripts, we ob-
tain the following data, pertinent for the construction of the desired
regression, from the tables:

For series X, , A, =100.7188, s, = 15,0151 ,
X:, A, = 100.4479, o — 15.8561 ,
X, A,=102.4375, oy = 47.3022 ;
12 —0.515, T, =0.539, 720 — 0.266 .
Employving the well-known formulas
Xi— A, =bi;u(X; — Aj) + b j (Xx — Ax)
*0.6745 05 vV (1—7;) (1-7%uy)

CTie Tis — TaxT
Dise = Tigux kil s Tiyx=— ! ikl v
ik V(1-7u) (1-7r24)

o =wn\1 — %,
we readily compute the following regression ‘
X, =0.3787 X; + 0.1372 X, + 48.6248 * 7.5630 .
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The agreement between the regression line and the data is re-
vealed in Figure 24.

AVERAGE L AVERAGE

150 1%

|

T 3 LI §

0 1 A ] 1 L 1 1 i 1 L L

1900 1905 1910

FIGURE 24.-—DowW-JONES INDUSTRIAL AVERAGES (
REGRESSION CURVE ( ).

8. Inverse Serial Correlation

The problem of inverse serial-correlation analysis is the prob-
lem of inverting the integral

1) r(t)=-2—1a-f.a:(s) y(s + t) ds

for either x(s) or y(s), assuming that one of these functions, to-
gether with r(¢), is known. The restrictions noted in Section 1 are
assumed to hold.

It will be convenient for us first to solve the problem over an in-
finite range. For this purpose we consider the function

2) R(t)=f z(8) y(s + ) ds,
where z (2) and y(s) are assumed to behave at infinity in such 2 man-
ner as to give a value to R(¢) and to the sine and cosine transforms
of R(t). Sufficient conditions for this are well known.

Let us now multiply R(¢f) by €8 and integrate over the infinite
rfange. We thus obtain .

f_:R(t) Pt df = f_:dt f_“x (3) y(s + t) ebi* ds

= fﬂdf f”x(-?) y(s + l)ebirepitiv dg
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Making the transformation 8 + ¢ = p, we then obtain
(3) f “R(t) et dt = f "y (p) e dp f ®z(s) P ds.
If we d;:ignate by a(f) a_nd o' {p) the integrals
a(f) = f"R(t) cosftdt, ()= J:R(t) sin gt dt,

and by a4 (8), b.(8) and a,(B),b,(8) the corresponding transforms of
x(t) and y () respectively, that is,

a(p) = | z(t) cos ptt, ba (B) :f“x(n sin 8¢ dt,

a@) = [Tyt cosptat, b= [Tvy sinptat,
then we shall obtain the following identities by equating the real and
imaginary parts of (3):

(4) a(f) = (B)ay(8) + b, (8) by(h) ,
o' (8) =a,(8) by(B) —ay(B) b.(f) .

Since the case of autocorrelation will be the most interesting to
us in the application of this theory to economic time series, we shall
atate the theorem explicitly for the function

R(t) = j' $(s) (2 +1) ds.

We may thus write:

If the functions ¢ (8) and R (8) exist over the infinite vange from
—o to 4+ , and if the integrals

(5) a(8) = f “$(8) cos g ds
(6) b(8) = [“4(s) sinps ds,
(7N a(B) =f”R(s) cos Sz ds,

exist, then the functions o (8), a(f), and b(B) are connected formally
by the relalionship

8) a(p) =a*(B) + b (8
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The proof of this theorem is merely to observe that (8) is a cor-
ollary of (4). If we set z(t) = y(¢) =¢(¢), then a (ﬁ) is zero and
a{f) reduces to (8).

Two examples of this theorem will illustrate ita application:

Ezomple 1. Let us assume that
— f2a
$() (f) e,

R(t) ———-J-E J.O""r“*‘l'dc=e-lﬂ'.
- -0

Computing the Fourier transforms of ¢#(s) and R(t), ws get

f (8) con 8 -d‘.:@)‘" .-m-mr=\/ f'n(t) cos g tdt.

Fzompls 3. Let us eonsider the rectangular function

vay, —SsSA,
#(s) =
0, >N, 8=,

80 that we obtsin

which is graphically represented in Figure 25.
» 00

2a

o [1] b

FIGURE 26.-—RECTANGULAR FUNCTION,
We readily compute the autocorrelation function to be

Jq‘ $(s) $(s +t)de=1—1t/2, IStan,
(9) R(‘): {A-1)

'(') p(s+t)ds=1+¥2, —DSI350.
-A

The Fourfer transform of R(t) is then found to be
f' R(f)mﬁ‘ﬂ=r(1-m)m3tdt+ f’u-u-m)mp:q
- - . oY

IV
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Similarly the Fourier tranaform of ¢(3) is given by
2gin B2
pveEx
which jz observed to be egual to the square rvot of the Fourier transform of E(£).

-]

o A
f $(8) cos fads—2 J {cos 8 &/ VI) ds==
- o

It will be useful later to have several other transforms of special
forms of R (t). These we give below as follows:
If R(t) = eo, and if § =2 a {/P, then we have

a(P) = f " g-lo cosz_;_t-dt

an 2a

If R(t) = el cos(2at/T), and if § = 2at/P, we get

a{P) = wr_:.;,..e—l“‘! c«os—?%'zco.ﬁg-upE dt
(12) zaz+4n2(1a/r+1,fp)= +a2+4n2(f/T~1/P)3'
1f we define
(A—-8H/(1+ 8, 0=t<1,
(13) Ry = 1+t)/(1—-1), —aA<t=0,
0, it >2,

then we obtain the transform
{14) a(P) = 4ifcos a{Ci(2a) — Ci(a)}
+ sin a{Si(2a) — Si{a)} — sina/2a},

where we abbreviate

e=21/P, Ci(z)=- °_—°°:tdt, .S’i(z}_-:f'sjntdt_

If we denote the function in square brackets by S(a), so that
a{R) = 4iS(a), then a(P) can be defined for practical purposes by
the following table of values:?

2 Computed by E. B. Morria.
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e ' S{u} a 8(a) e 8(a) a 8{a)
- i
2.0 0.1461 27 0.1156 34 0.0849 6.3 0.0164
2.1 0.1419 2.8 0.1111 3.5 0.0808 6.9 0.0144
22 0.1376 29 0.1067 3.6 0.0768 7.5 0.0148
2.3 0.1333 3.0 0.1022 4.0 0.0615 8.4 0.0146
2.4 0.1289 3.1 0.0078 4.4 0.0483 9.4 0.0136
2.5 0.1245 3.2 0.0934 5.0 0.0329 10.8 0.0087
2.6 0.1201 3.3 0.0892 1 5.8 0.0203 15.1 0.00561

We return now to the question proposed in the first paragraph
of this section, namely, the inversion of the integral (2). We shall
first consider the case of the inversion of the autocorrelation function
from which we have the following elegant result.’

If R(t) is the autocorrelation function
(15) Rity= [ ¢(8) ¢(s+8) ds,

and if a(f) is defined by (7), then ¢(8) is given by the following in-
version:

(16) #6) =g [ VatBy cosp(Breos pa df

1 w0
+—27-“L\/a13) sinp(f)sinfsdg,
whi:?e) p(B) i3 en arbitrary odd function of §, that is p{(—p) =
~p(B).

In order to prove this theorem, let us designate the first integral by ¢, (s)
and the second by #,(2). Then, empleying the Fourier transforms : ,

2" o e
f(‘-e)::J? -meosxso(a) ds, g(s)=\/.."2F J:wcnasa:f(z)dx,
fiz) %J:sinzsg(s) de, g(a) =\j_§_ I:aMaz f(z) dz,

we get

Va(a) cosp= “-ﬁl(s) cog fsds— J“Ns) cos B ads —a(pa),

(17
Va(g) sinp—= ‘ﬂ.(c) singsds— fw¢(s] sin fsds=5b(8),

-

! This regult is due to Norbert Wiener.



116 THE ANALYSIS OF ECONOMIC TIME SERIES

since $(a2) = ¢,(s) + 2,(2), and 3, (—8) =9, (8), &, (—s8) = —¢,(9).
Then from equations (17) we obtain
a(8) costp + a(B) sindp = a(8) =a*(8) + bI(B).

Since serial-correlation functions of many economic geries show
a rapid damping, it is probably easier to represent them by means of
Gram-Charlier series than by other types of orthogonal series, Hence
the following discussion of inverse serial correlation is particularly
pertinent. The following result is due to C. Runge:*

If x(8) and y(8) are functions expansible in & Gram-Charlier
geries over the infinite range —« to +w=, that is, if

z(8) =e[x, — H,(8) + z, H.(3) — x4 Hy(s) + =z, H,(s) —--],
y(8) ="y + % H.(3) + 92 Hy(3) +ys Hu(8) +y. Hi(s) +--1],
where H,(8) 8 the nth Hermite polynomial defined by

H,(3) =e"-g-8; e,
then the function
R(t) =f’°a;(s) y(s + t)ds

hag the expangion

R(t) = Vi e[z, + (Zodh + Tgo) B (t) + (To¥s + 2,

+ 230a) Ba () + (Z¥s + Zats + Tty + ZaWo) Ra(E) + -],
where M (1), the second form of the nth Hermite polynomial, is de-

fined by® ‘ i

ha(t) =24 H, (t/1/Z) = ei® j_; ot

The coefficients z, and y, are readily computed from the orthogonality prop-
erty of the Hermite polynomiela. Thus, multiplying y(s) by H.(s) snd inte-
mﬁng between the limits —~« and -+, we obtain

J‘“y(s)H-(c) ds=y, I‘H’H.(l) de=—y, 2" nl V7.

-—a0

4“Ueher eine besondre Art von Integralgleichungen” Mathematische An-
nalen, Vol. 75, 1014, pp. 130-182. See also G. Polya, *“Ueber eine von Herrn. C.
mg)ehmdelte Integralgleichung,’ Mathematische Annalen, Vol. 75, 1914, pp.

? For a discussion of these functionsa, see Chapter 2, Seetion 10.
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That is, we haye
Vo= 2.“!‘/_ y(a)H (s) ds,
and similarly,
1
Ty = Y= z(l)H (e) ds.

Auummgthaxtha coefficients z, andy,mknown.thmthewoﬂnsnts,
of 4, (t) in the development of R(t) are conmected analytically with =, and v,
ina mmple and useful manner.

Thus, lot us construct the three functions

B(ty=g,—2, t + B O—2 BT B,
VO =y, + ¥t + 9,0+ ¥t Ly, B+,
r)=r, +rt+r,B4+r, 8 fr 4.,

From the theorem it is explicitly seen that the coefficients r, may be deter-
mined from the equation

(18) ' (t) =2*(—8) ¥*(8) .

In case r(t) is an autocorrelation function, we then have z(t) = y(t), and
equation (18) is then replaced by

{19) : r*(¢) = z*(—t) z*(t).

If, further, «(t) is an even function, that is, if ®(—t) ==«{t), then (19) re-
duces to the simple form

(20) (t) = [s*(£)13.

The proof of identity (8) is obtained without difficulty from thess results.
Thus, let us assume ¢(a) can be expanded in the series

$(s) =ee e H (o) .
Sl

When this expansion is substitated in (5) and (6), we oblain

(21) am=f'r"w-p-§.¢.a.(-m,
22) b() = J' “etuinpe e, Ho(e) do.
Noting the identities

J‘.H"(l) s fastdea= I-H,N,(t) coafeerde=0,

f'n,mm ain g se=st do = (—1)7 V¥ o-f¥a garst,
* .
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J-NH,, (8) cos Bserds= (—1)" VT e B g,

we are able at once to simplify (21) and (22} as follows:

6(B) = V7 o-B% 3 (—1)" ¢, ,

=0
_ w
b(B) = VT ef 3 (—~1)" by, -
=0
From these expansions we then obtain in an obvious manner the identities
(23) a() +ib(p) = V7 ePYig°(ig) ,
(24) a(f) —ib(B) = VT ePr*(—ip),
where we abbreviate
o
By =T e, 8.
n=0
In similar manner we derive
(25) a(B) =7 e 3 (—1)nr,, prn= T &8/ v (iB) .
n=l
Multiplying equation (23) by (24) and taking account of both (19) and
(25), we immediately obtain the identity (8) previously derived by other means,
namely, '
a{f) = A2(8) + B2(B) .

In the preceding discussion we have considered the problem of in-
version over the infinite range. We now see that the more restricted
problem represented by the serial correlation »(¢) defined by (1) is
easily included in the theory which we have just developed.

In order to show this we merely assume that both z (s) and y(3)
are identically zero outside of the range —e¢ = s = a. Then we can
write

(26) 2 7 (t) =lim f”x(s)y(sﬂ)ds:mt).
Similarly, the transforms
1 @ a
@AW =] fj(s) cospsds, B(P)=, [ (o) sinpsds,

are related to the transforms (5) and (6) by the following:
(28) a{f) =aA(f), b(f) =aB(p).
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Consequently the fundamental identity (8) becomes
29) 2er =220 +B:(B) ,
where we now deﬂne

(30) a(ﬁ)=f“r<t) cos fads.

4. The Lag-Correlation Funciion for a Harmonic Sum

It is frequently important to know the lag-correlation and auto-
correlation functions for sums of harmonic terms. These functions
are most conveniently constructed by using averages in the mean.

Definition: By an average in the meen of a function f{{) we
shall understand the limit

F=lj__1_p-§1—1 J:f(t) dt.
Thus, if we consider the pure harmonic
y=Asgin(ft+a), g=2a/T,
we have for the average in the mean the value

Asinasinfa
B

A
lim—!'—f Asin(ft 4 a) di=lim =0.
Ao 91 a A=co

Definition: By a product in the mean of two functions f(£) and
g{t) we shall understand the limit

R"‘lun—-— J' F(t) g(t) dt ;

and by the second moment in the mean of f () we shall understand
the limit

G= hmﬁff‘(t) dt.

Thus for the two harmonics
n=Asin{ft +a), and y,=Asin(fi +a + 9,

we obtain the following product in the mean:
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R(s) =1i£-;—1 J::A'sin{ﬂt + a) sin(Bt + o+ fg) dt==4 A* cos fis.
Similarly for ¥, , we compute as the second moment in the mean
G=li£_;l J'*A=sin=(pt +a) dt=}Ar.
The same result is obtained for the second moment of t.he mean of

y*, that is, G = § 4*.
Since the autocorrelation function for the harmonic ¢ is given

by 7(8) = R(8)/VG:Gz, we readily obtain
Q) r(8) =4 Atcos fs/3A?=cos fis.

This result can be easily generalized for the lag correlation in the
mean between the two harmonic series

y= A, 8in 2 (¢ + &) + A4, 8in 22 (£ + 05)
T1 T’
oot Ausin e (t+a)
z7=B, 8in 2% (£ + by) + Ba sin 2~ (¢ + ba)
b 3 2

+ ...+ B, sin-f,zf (t+ ba) .
Employing the average in the mean, we readily find the lag corre-
lation between z and y to be

A,B,oosi—“(a.,—b,) +---+A.B,.cos& (an — by)

The autocorrelation function for y can be immediately obtained
from this expression by setting A = B, ¢, =3 + b;. We then have

2n
Al eos-_,i,-l-s+A, cosﬁ-s+ +A,'cosﬁs

@  ro= AP+ A+ -+ AS )

Itis intemting to observe that formula (8) of the pmcedin'g sec-
tion holds between y and r(s), provided the Fourier transforms are
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interpreted as transforms in the mean. Thus we immediately derive

1
lim fcos_ty(t)dt—-iA sm(T-av)—-a,,
1 . 2r _ 2n
gag_ngfsm;[—rw(t)dt-—;A,cos(T;m,)=ﬁ,,

IJEBEE cos——sr(s)ds $A/ (A2 + A3+ .- +A’)=r,.
Diwding' a, and B, by the standard error of ¥, that is, by
F=yWAFTF AT+ F A7,

we get the desired relationship
Ty — (af/o')’ + (ﬁr/“)"

For experimental purposes a synthetic. series was constructed of
the form

y= EAwosz-’-'HzBicos?-“-t
Ti i=1 T

where the following values were used for the constants:

Subacritts (1) T Ay B vEALGES
1 12 7 6 9.2196
2 26 4 3 5.0000
3 44 12 14 18.4391
4 60 3 4 5.0000
] 144 4 b 6.4031

Three hundred values of the series were computed so that the
first period appeared 25 times, the second 12 times, the third 7 times,
the fourth 5 times, and the last 2 times. Substituting the values of
T;, A, and B; in equation (8), one derived the following autocorre-
lation funetion:

2n 2n 2n
r(s) = an “n o
(8) = 01647008128+00484c08258+05589008448

2n 2n
+00484€08§68+00795C“m8.

Since this function was derived on the assumption of limits in
the mean, it is of interest to compare values of r(3) computed directly
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from the function with those obtained by direct autocorrelation of the
series itself. The discrepancies are exhibited in the following table
and are seen to he relatively small. This example, then, justifies the
use of limits in the mean in harmonic series of this type.

] {4) ris} ] ri{s) r{s) 3 r(&) i)
By formula Computed By formula Computed By formula Computed
1] 1.0000 100008 27 —0.4712 | —0.5544 |48 0.7366 0.7955
8 0.7671 0.7718 30 -0.4513 | —0.5222151 0.8832 0.4621
6 0.38569 0.4124 3133 —0.0563 | —0.11671{54 —3.0621 0.0254
9 0.2567 02823136 0.3543 0.3142 57 —0.2117 | —0.1330
11 Q0.1878 0.2124 1 38 0.4265 0.4110; 60 —0.3263 .| —0.2689
15 —0.3323 | —0.2982 {39 0.4141 0.4138; 63 —0.6748 | —0.6362
18 —{0.6868 | —0.6861 |41 0.3890 0.4136; 66 ~—0.,8921 | —0.8953
20 -—-0.7187 | —0.T097 [ 42 0.4114 0.4450 | 69 —{0.6467 | —0.7232
21 —0.6063 | —0.6620143 0.4665 0.5059] 72 —0.2960 | —0.3767
24 —0.4200 | —0.5167 {45 0.6367 0.6839,75 —0.2161 | —0.3671
25 | —04135 | —0.6053[47 | 07506 | 0.7491]

The agreement between the two computations is exhibited graph-
ically in Figure 26.

rig [20)]
+ 1.00 +1.00

T ¢ F T
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o 3 | \ f .
y/ ¥ f o]

—'I_mt L — — 1 X 1 — A -—l.m
—B0 -0 =40 -20 ) * 20 + 40 +60 + 30
FIGURE 26.— AUTOCORRELATION GRAPH OF A FUNCTION WITH FIVE PERIODIC TERMA.

: r{8) computed by formula; - - - - : 7({¢) computed directly from data.

5. The Lag-Correlation Function and Its Harmonic Analysis for
Statistical Datg '

Ip the preceding analysis we have defined the lag-correlation
fanction as an infinite integral or as a limit in the mean. As a matter
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of fact, the lag-correlation function which appears in the analysis of
statistical data is neither of these quantities, but a set of values com-
puted from data over a ﬁmte interval which we may specify as
—a=s8=a.

The arithmetic average is then

Azz"’ f_‘f(s) ds,
and the variance is

.,._—f [f(s) — A]*ds.

'In terms of these guantities the correlation between f(s) and
f(s + t) is given by the formula

(t>~—f Uee) — 4] Uit 1) — 41,

Since the Fourier coefficients A4 (8) and B(ﬂ) are determined by
ap =3 [HO A oipeas,

B(ﬁ)=‘—ll fag-(i)c:-ﬂsinﬁsds,

the factor 2 which appears in the denominator of »(t) but not in
A(f) and B(B) must be accounted for in formula (8) of Section 8.

 Hence, when the preceding theory is applied to statistical data
given over a finite range —a = s = ¢, formula (8) of Seetion 3 must
be replaced by [see formula (29) of Section 3]

W Zap) =A@+ B (O =R .

Moreover, the equality sign holds only when limits in the mean
are understood. For many problems, however, the relationship ex-
bressed in equation (1) is sufficiently close for practical purposes,
when ¢ is large. This may readily be seen from the illustrative ex-
ample of Section 4.

6. Some Examples Useful in the Annlysis of Economic Time
Series—Continuous Spectra

Ij; iz a matter of statistical observation that the autocorrelation
function of certain economic time series may be approximately rep-
Tesented by the function
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_[1-1t, <2,
"(t)”{o, it >4,

provided ¢, where 2a is the range of the data, is sufficiently large.
Hence, the harmonic analysis of this function should throw some
light upon the harmonic properties of the time series themselves. But
we have seen in Section 3 that, given a certain autocorrelation, r(t),
the primary function, ¢ {(¢), from which if was derived is not unique.
There is, as a matter of fact, an infinite set of such functions. Let
~ 8(t) be one of these.
But since the harmonic analysis of r(t) yields also the harmonie

analysis of both ¢(t) and §(¢) through the relationship [see formula
(1) of Section 5]

2a{(f) =Ry, $=2a/T,

it i3 clear that the harmonic properties of amy two functions, ¢ ()
and (1), will be the same provided theee functions have the same
autocorrelation r{¢). Such functions we shall call karmonically equiv-
alent.

This gbservation greatly simplifies the discussion of certain har-
monic analyses since a complex function, ¢ (£}, may frequently be re-
placed by a simpler function, 6(t), harmonically equivalent to the
first, whose properties and spectrum are completely known.

As an example of considerable usefulness, let us consider the
function 8(t) defined as follows:

(1, —»Etsy,
M=) <t =a.
The arithmetic average, , of this function is equal to g, where
= y/a,, and the variance, ¢*, 1s given by ¢ = u(1 — ).
By a direct computation, we readily determine the autocorrels-
tion of 4(t) to be the following:

=
1— 2701 —_—lt, t=2,
r(t) = #'
_:,—, |t|>2’-

We next compute the value of a(#) and thus obtain

a(ﬂ)=—if:r(s)cosﬂsds, f=2x/T,
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2 [Ty 2w 2 T\ . 2ag
==y ) s () e

If o is large with respect to », it is clear ‘that the second term
may be neglected and we thus have merely

2 4TV . 2w
o =75 (o)

Henee, the ordinates of the periodogram of the function #(f) are
given by

R=R(T) = vZa(®
or
_ 4 r . 2ay
1) RN =25 ("2777) sin

If T is large with respect to », it is clear that R (T} will approach
the following limit asymptotieally:

R(TY o2t .
1—pn
We also note that the maximum values of R are found at the roots
of the equation

tanzx=zx, z=2a/T.
The first five of these roots, except the trivial one z = 0, are
x, = 44934, z,=—17.7253, =z,~—10.9041,
z,=14.0662, =z,=17.2208.

If we employ the abbreviation k¥ = 2v/u/(1 — ), then the values of

R{)T) at the roots just given may be computed from the following
table:

u Tp= (3XV) /0y R{Tw)
x, 1.3083» 0.2172k
EN 0.8133~ 0.1284k
2, 0.5762» 0.0913%
z, 0.4467r 0.0709%
iy 0.3649r 0.0580k

As an example, we consider the values 2a = 204, 2» = 12. We
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then compute k& = 0.5, and the periodogram is given by the function
R = R(T), where
12»'

T
=05 — —
R(TH= 0512“ sin T

The graphs of #(¢) and the periodogram are shown in (a) of Figure
217.

viY) ()
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0 F14 49 6V [14 by 2 a ax
@ )

FIGURE 27.—PERIODOGRAMS3 CORRESPONDING TO DIFFERENT
. AUTOCOERRELATION FUNCTIONS.
Primary functions with these autocorrelations have continuons spectra.

A second autocorrelation function which is closely related to the
one which we have just analyzed is the following:

sin (at/1)
(nt/d) ° _
All functions, or series of statistical data, which are harmonical-

Iy equivalent through this autocorrelation function are seen to have
conlinuous speotra from the following computation of 2a(8):

sm(nt/.l)
= [ a2

0, T<2,
iy, =2,
1, T>21.

r(t)=

cosptdt, p=2a/T,
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Considei‘ations similar to those carried out in the first case show
that for data given over a finite range A must be evaluated so that

= __# f =
A.l 41*“”" ﬁl 1/2“,

where 2a is the length of the range of the data.
The graphs of »(f) and the periodogram are shown in (b) of
Figure 27 for the values 2a = 204, 1 =12,

In order to illustrate the application of these ideas to actual economic data,
we shall consider two periodograms taken from the data of Chapter 7. The first
of these is the periodogram of the industrial stock prices in the disruptive period
from 1926 to 1984. Because of the character of the data we kmow that no real
periodicity existed in these prices, and yet an inspection of the periodogram
{(B) in the lower part of (a) in Figure 28] indicates a concentration of energy
for some period greater than 40. The object of the present analysis is to show
that the periodogram is derived from the existence of a continuous spectrum.

We first compute the autocorrelation function of the data, obtaining the fol-
lowing values:

& —— -— 4
3 () t rit)y . H rit)
0 1.0000 12 0.6252 22 0.0732
] 0.9288 15 0.4877 23 0.0292
] 0.8588 18 0.3560 24 —0.0163
9 0.7659 21 0. 1188 27 —{0.1464
1)
. +1.00
S ON\W
J s (';‘\‘ ]
- “\ \/ o Ya 0
-m’ﬁ'}n . . , : e el . . ~-0.99
RM
@
: ® s
! {A) 10
o A . ; . . . T]:
o 10 20 0N 0 30 0 0 10 20 30 0 L -] ]
(% (b

Fioune 28.—FIGUREs SHOWING THE EXISTENCE OF CONTINUOUE SPECTRA
IN EconoMic TIME SERIDS.

We see from the graph [(B) in the upper part of (a) in Figure 28], that the
autocorrelation function approximates a straight line which crosses the t-axis lt

3pproximately ¢, = 24.
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Referring to the theory developed earlier in this section, and noting that the
geries is short, that is 2¢ = 120, we use as the approximate representation of the
autocorrelation the linear function '

sl It

e TPty 7w

and compute 4 from the relationship r(t,) = 0. This gives us the equauion

2ut— 2+t a—=1.

Solving this for # we obtain p = 0.2764, and from this value we compute

"=2\j r 1236, r—1658.
t—u

The periodogram of the resulting continuous specirum is found from the
equation

L

. T
R(T)=1.23672—1r—' T »

where o, the standard deviation of the series, is equal to 79.48,

When one appreciates the fact that the actual elements in the
data which we are analyzing are unknown, the agreement exhibited
between (A) and (B) in the lower part of {(a) in Figure 28 is seen
to be a remarkable one. The conclusion to be derived from this analy-
gig is that there is no true period in the data and the rise noted
in the periodogram after T = 40 is fully accounted for as arising
from a continuous spectrum.

The second example relates to the problem of determining whether or not
there exists a 40-month eycle in the series of industrial stock prices over the period
from 1897 to 1913. This is a much debated proposition to which we shall refer
at length later. In the present analysis we are interested in the problem of how
much of the peak noted in the periodogram [see (b), Figure 28] at T = 41
might be due to the existence of a continuous spectrum.

Graphical representation of the lag-correlation function of stock prices and
the autocorrelation function
sin(Tt/20)

(7t/20)

shows that the two functions are quite similar. Hence we might reasonably ex-
pect the existence of a considerable continuous spectrum in the periodogram of
the actual data.

1f we assume that A — 20, and note that 2a — 204, then the value of k turns
out to be

r{t) =

»

k=2 =40.68 .

J
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Hence, since ¢ == 15.01, the continuous spectrum in the data might be repre-

sented by the periedogram
R fEo=0991, T>40,
= { . T < 40,

One sees from the graph [see lower (b), Figure 28] that this function agrees
very well with the maximum value observed in the periodogram of the data after
T = obh

Thus our analysis would indicate that while the peak at T' = 41
furnishes real evidence in favor of the existence of a 40-month period
in stock prices, the fact that the data may contain a continuous spec-
trum of amplitude as great as 9.91 makes one cautious in accepting

the existence of the 40-month cycle without other evidence than that
furnished by the periodogram itself,

?. Yule’s Theory of Random Variation

In his notable paper of 1927 t0 which we have referred in the first
chapter of this work, G. U. Yule considered the possibility of account-
ing for the deviations of an empirical time series from its true har-
monic motion by means of a random impulse function. Yule’s ideas
are essentially those of the physicist when he considers the behavior
of an elastic system under the influence of an impressed force, except
that, in Yule's case, the impressed force is a series of random shocks.
Yule also chose to employ the machinery of difference equations in-
stead of the more tractable differential equations of the physicist.

Thus Yule began with the difference equation

(1) Au(t) + pu(t +1) =¢ (¢t +2h),
where we define

Au(t) = u(t + h) — u(t), » = 4 sin?s = 2(1 - cos 2s), s = ah/T,

and ¢ (t) is an impressed force acting upon u(%).
If 4(t) is defined as a set of small erratic fluctuations, ¢, «,,
&, &, ete., then u(¢) is & simple harmonic motion disturbed by these

random impulses. The solution of equation (1) may be shown to have
the form

{2) u(t)=Asin%(t+r)+¢(t) sm@

5s ¢~ 1)

sin 63 sin Bs

+ 23'#“ 2h)+

—$(t — 3h) +--
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Let us examine this solution more carefully. We see that it con-
sists of a simple harmonic term and a series, the particular integral,
which we shall for convenience designate by ¥(t). If we assume that
¢{t) is zero for negative values of the argument, then ¥ (nh) is a
finite sum of harmonic terms defined in the following manner by the
erratic fluctuations &, & , &, etc.:

£4 8iD 28 + £4.q 8IN 48 + £4.5 8D 68 + -+ + gy 8in(N+1)28
sin 2s
In order to test his formula, Yule constructed a series of 300
items. He set T = 10k, %{(0) = 0, u(h) = sin 36° = 0.6878, u=
0.3820. The values of ¢(t) were determined by tossing four dice and
computing

¥ (nh) =

Toss of 4 dice — 14 (mean value)
20 ‘

+4 +
- -
o. R /\ 7 Ao\ LAy ]
BBV ARVARVARY)
.
o

50
+4 +4

MARRA

$(t) =

(-4

-
-4

t

-4 i 1 1 -4
L 60 70 () 90 100
Ficure 29.—Pexiopic FUNCTIONS SUBJECT T0 RANDOM FLUCTUATIONS.
: Complete series; ---- : Harmonic component.

}Ience 4 (t) fluctuates between +0.5 and —0.5 and the expected
maxima and minima of ¥ (#) are m(+e) = 2.7532 and m(—e¢) =
—2.7532. The first 100 values are graphically shown in Figure 29, to-
gether with the harmonic term upon which the particular integral
18 superimposed. We note that the expected extremal of |« (t) | , name-
Iy, 1 + m(e) = 3.7532, is not attained by the function, although it is
actually exceeded slightly by five maxima and five mininma in the en-
tire series of 300 items.

We note also the significant fact that both the phase and the
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amplitude are subject to considerable change over the range shown
in the figure. Yule makes the following comments on the experi-
ment: “The series tends to oscillate, since, if we take adjacent terms,
most of the periodic coefficients of the &’s are of the same sign, and
consequently the adjacent terms are partially correlated; whereas, if
we take terms, say 5 places apart, the periodic coefficients of the &'s
are of opposite sign, and therefore the terms are negatively corre-
lated—since adjacent terms represent simply differently weighted
sums of &'s, all but one of which are the same.” A further comment
bears upon the situation when the fundamental harmonic term is
omitted. In this case “the series would reduce to the fundamental in-
tegral zlone, but the graph would present to the eye an appearance
hardly different from that of the figure. The case would correspond
to that of a pendulum initially at rest, but started inte motion by the
disturbances.”

The method of analysis suggested by this study then consists es-
sentially of computing the period of the underlying harmonic by de-
termining that value of & which gives the best fit of the equation

(3) - Ue =K Upy — Upo

to the data. If two underlying harmonics are suspected to exist, then
equation (8) is replaced by

(4) U =R (U F U y) Ry Uy — U

When Yule applied equation (3) to the first 150 items of his own
experimental series he obtained the period T = 10.087. The second
150 items yielded the value T = 9.845, a very satisfactory agreement.

Applied to Wolfer's sunspot numbers over the period 1749-1924,
equation (3) yielded a period of 10.08 years, whereas equation (4)
gave a minor period of 1.42 years and a major period of 11.95 years.

The error of more than 1 year, as given by (3), from the gen-
erally accepted period of 11.256 (Schuster) led Yule to replace equa-
tion (3) by the following:

(5) Ue =Dy Up.y — Dy Ueq,

which yielded a period of 10.600 years for the sunspot numbers.

Now if the e; were all equal to a single positive constant ¢, we
would have

sin (n +1)8 sin (n +2)8

¥i{nk) —
(nh) = sin 8 sin 23 !

which obviously cannot exceed
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&

m(#) = o T e 2]

in absolute value.

But if the &, are random numbers of either sign with an average
value of zero, then P (nh) might be expected to fluctuate more or less
regularly between the values m(+e) and m(—e), where ¢ is the ex-
treme variation of the random numbers. It might happen, however,
that there existed a sequence of values among the &;, which, for some
value of n , agreed in sign with their corresponding multipliers. Then
¥ (nh) could exceed by almoest any given amount the extremal values
just written down. The probability of the existence of such a for-
tuitous distribution of signs is not high, but if the range for » is suf-
ficiently large, then the probability may be made as high as one
wishes that in some part of the range this extreme variation may
take place.

All these observations accord with the actual observed behavior
of economic time series. Such series fluctuate about their trends in a
manner which, for the most part, may be described as a disturbed
sinusoidal pattern. The maxima and minima of such fluctuations as
are observed in one period are exceeded, sometimes greatly, by the
maxima and minima of another. It is this accord between the solu-
tion of Yule and the observed facts about economic time series that
makes the former so attractive as an approach to the statistical de-
scription of economic variation.

The theory of Yule was extended in some respects by Sir Gilbert
Walker and applied by him to the study of atmospheric pressure data
at Port Darwin, “one of the most important centers of world weath-
er.)!'

Although the conclusions regarding the existence of harmonic
structure in the data turned out to be negative, the method itself is
illuminating and furnishes a good illustration of some of the theory
developed in this chapter,

It is first assumed that there exists a linear regression between
the mean deviations u., %, , etc. of the data; that is,

(6) U == s thay T+ Golrs + -0 F Folhes .

If u, is normalized by division by ¢, and if the series is assumed
to be sufficiently long so that neither correlation coefficients nor ¢ are
essentially altered by the neglect of a few terms, then we shall have

_ $4On Periodicity in Series of Related Terms,” Proceedings of the Royal So-
&iety of London, Vol. 131 (A), 1981, pp. 518-532.
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D 5 [ U thn BT =1 ()= o (1) + gt (E=2) + -+ + 2 (E-8).

Hence the autocorrelation function »(¢) is a solution of the dif-
ference equation (6) and the interpretation of the data can be made
directly from the form of r(¢). The procedure is either to compute
(6) and then solve (7), or first to find (7) and then compute the re-
gression (6).

The theory of this chapter, and in particular Section 3, aifords a
further interpretation of the data by providing a mechanism for con-
structing the complete harmonie analysis of the data from the co-
efficients of (6) whether they are determined initially from (6) or
(7).

Walker first determined the autocorrelation of his data over a
range of N = 177 quarters (708 months). He then observed that a
good approximation to the actually observed values was furnished by
the following function:

(8) r(t) =0.19 (0.96)" cos?-l"—zt- +0.15 (0.98)* + 0.66 (0.71)
2nt
== 0,19 €249 cos S + 0.15 €00t + 0,66 -0
o ' rie
1.00 1.00
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F16URE 30.—AUTOCOBRELATION OF SIE GILRFRT WALKER'Y ATMOSPHERIO-
PRESSURE DATA AT PORT DARWIN.

-~———— : Autocorrelation determined from funetion; --«-: Autocorrelation
from actual data.

Both the actual values of the correlation and those computed from
(8} are shown in Figure 30.
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The corresponding difference equation (6) is readily observed to
be

Uy =335 sty — 443 2y + 2.T1 2y — 0.64 %, .

It is now possible by means of (8} to determine the periodogram
of the dats, Thus from equation (29) of Section 3 we have

T 2
9 R(T)=_|-a(T)= ,
(9) (1 \/au( ) vﬁ.v”Tat
where we define
(10) a(T)=f () cos_z,;fdt.
R(T) R(T)
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FIGURE 31.~-PERIODOGRAMS OF SIR GILBFRT WALKER'S ATMOSPHERIC-
PrRESSURE DATA AT PORT DARWIN.
--=-- 1 Actual harmonic analysis of data; : Periodogram determined
from autocorrelation function.

But equation (10) is immediately written down from the for-
mulas (11) and (12) of Section 3. We thus obtain

4.6569 4.6569
1 F164.6034(1 + 12/T)F ' 1+ 164.6934(1 — 12/T)*

7.4257 1927t
1+ 96751L.18/T% ' 1 + 836.5606/7%

a(T) =

+

The function R{T) is graphically represented in Figure 31 together
with the actual values of the periodogram as given by Walker. One



SERIAL CORRELATION ANALYSIS 135

will observe that the function R(T) is a sort of smoothed average of
the values of the periodogram computed from the data directly.

The actual values of the ordinates of the periodogram and of
R(T) are given in the following table:

r Periodogram T Periodogram T R(T)
5.90 0.07 10.5 0.15 4 0.0678
6.12 0.16 11.0 0.24 6 0.0705
6.29 0.05 1.7 0.29 8 0.0983
6.50 0.03 12.5 0.07 10 0.15564
6.67 0.04 13.5 0.29 11 0.2413
7.00 0.10 14.7 0.18 12 0.3867
7.83 0.07 16.0 0.12 13 0.2614
7.66 0.14 17.5 0.21 14 0.2017
8.00 0.11 20.0 0.14 18 0.1696
8.3 0.02 22,0 0.24 18 0.1662
88 0.06 25.0 0.19 : 20 0.1688
9.3 0.14 30.0 0.06 24 0.1768

10.0 0.08 350 0.19 30 0.1876
36 0.1964

8. Lag Correlation and Its Relation to Supply and Demand Curves

One of the most fundamental ideas in the classical theory of eco-
nomics is that of supply and demand. Thus Alfred Marshall com-
ments: “There i8 . .. a good deal of general reasoning with regard to
the relation of demand and supply which is required as a basis for the
practical problems of value, and which acts as an underlying back-
bone, giving unity and consistency to the main body of economic rea-
soning. Its very breadth and generality mark it off from the more
concrete problems of distribution and exchange to which it is sub-
servient; .., "

But the terms supply and demand are used in classical theory in a
sense that is hard to define statistically. Limiting ourselves for the
sake of simplicity to a single commodity, let us consider the demand
for this commodity in terms of price alone. If the commodity were
given away freely, it is clear that the total demand would still be
finite, but, in general, considerably larger than if a price were charged
for it. An example of such a guantity is water, which, in many com-
munities is so nearly free that it is used without thought as to its
cost. Let us designate this maximum demand by y, .

But if a price is charged for the commodity, then amounts smali-
er than ¢, would, in general, be demanded, and if the price became
sufficiently great then smaller and smaller quantities would be pur-
chased until the demand became zero. Let p, designate this price of

s Principles of Economics, 8th ed,, 1920, p. 83,
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zero demand. If vy, the quantity of the commodity demanded at a
price p, be plotted against the price, then a curve similar to the one
shown in Figure 32 would be obtained. This is the classical curve of
demand and it seems but reasonable to assume that it must always
have a negative derivative. One will observe that price is plotted as
an ordinate (see Figure 32) and y as an abscissa contrary to custom
in mathematics. This method of representing prices hag hecame
standard in economic literature.

RO VO,
’.
¢ W
FIGURE 32—DEMAND AND SuUPPLY CURVES.
I. Demand curve, y = ¥(p); 11. Supply curve, » == u(p) .

Most studies on demand consider also what is called the el}!-s—
ticity of demand. If we denote the demand curve by the function
¥ = ¥ {p), then this coefficient is given by the expression

_dyp_dy/y__d(logy)
"3y dp/p dlogp)

Since in the demand curve the derivative dy/dp is negative,
while p/y is positive, the elasticity is essentially negative. For this
reason some writers, notably those who follow Alfred Marshall, pre-
. fer to write the ratio with a negative sign.

If the demand curve is a straight line,

.y_-f-,g:]_'

Ya Pa

then the elasticity is given by the formula
n=1~y/y=~0/(Do ~ P) .
If the elasticity of demand is a constant, », , then we have

dy__ dp
A-—-—-—-’?a—— ’

v p
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from which we get by integration

logy=mnologp +tlogC,
or '
y=Cp».

Closely related to the curve of demand is that of supply. This
curve represents the amount of supplies available as a function of
price. Thus there will exist a price, P, , below which it is unprofitable
to produce the commodity. Let us call P, the price of zero supply. In
general, the available supply, which we shall designate by =, will in-
crease with an increasing price, as is exhibited by curve II in Figure
32. This is certainly true for manufactured goods, where natural lim-
itations are not imposed as in the annual growth of agricultural com-
modities,

Equilibrium price is defined as the ordinate of the point P, where
the curves of supply and demand cross, that is to say, where supply
equals demand, ¥ = u. It is obvious from any casual survey of eco-
nomic data that the point P is not 2 stable one, since it varies from
one period to another,

In this work we are interested in price, not as a fixed point in a
static structure of supply and demand schedules, but rather as a dy-
namic variable which fluctuates from day to day. The most casual
scrutiny of the constantly varying pattern of prices shows that the
old classical picture of fixed supply and demand curves must give
way to a more realistic interpretation.

In his notable treatise on The Theory and Measurement of De-
mand,” the late Henry Schultz devoted a great deal of space to a dis-
cussion of fluctuating prices and the determination from them of
classical supply and demand curves, It has long been known that
realistic demand curves of agricultural commodities can be obtained
by graphing the variation in yield against variation in price, proper
corrections being made for the growth of population, the change in
the general price level, and the magnitude of crop carry-overs. But
when these same methods are applied to industrial products, such as
the production of pig iron, then the demand curve so obtained has a
positive slope and appears to have all the properties of a supply curve,
Such a demand(?) curve was first computed by H. L. Moore in his
celebrated work on Economic Cyecles: Their Law and Cause, and the
phenomenon of a positively sloping demand curve caused great con-
cern to economists. In Figure 33 we show Moore's curves for the de-
mand for corn compared with his similar computation for the demand

" Chicago, 1938, xxxi - 817 pp.
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F1GURE 33a.—TRE DEMAND CURVE FOR FIGURE 33b—THE SUPPLY CURVE FOR
CoaN: y — —0.8896x + 7.79. P1c IroN: y — 0.5211x — 4.58.

for pig iron. Obviously such anomalous results must be explained.

The first satisfactory explanation was advanced by E. J. Working
in 1927* and an elaboration and extension of his ideas was made by
Schultz® in his treatise referred to above. The kernel of the explana-
tion lies in the assumption that demand and supply curves, in the
sense of classical economics, do not remain fixed, but may vary from
time to time. Demand may remain stable, while supply varies, or
supply may remain fixed, while demand varies, or both may vary.
The consequences from each of these three possibilities are essentially
different. '

In order to explore the possibilities, let us first observe that
if for a given commodity there exists a fixed supply curve and a
fixed demand curve, the intersection of the two curves will not vary
with time and hence there will be observed one and oniy one price.
Since the most casual inspection of price data shows that this is not
the case, it is evident that there is a shifting of either supply or de-
mand with time.

In order to fix our ideas more precisely, let us assume that the
supply curve remains fixed, but that thé demand curve varies. For
simplicity of description, let us assume that the supply curve is the
straight line

pP=N,-
$“What do Statistical ‘Demand Curves’ Show?” Quarterly Jowrnal of Eco-
nomics, Vol. 41, 1927, pp. 212-235. See, also, in this connection the review by P.
G. Wright of Schuliz’s Statistical Laws of Demand and Supply, Journal of the

American Statistical Association, Vol. 24, 1929, pp. 207-215.
¢ See, in particular, pp. 72-81. ’
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and that prices are observed to be simply periodic w1th time; that is
to say, they may be described by the function

() =p, + A sin kt .
If, then, the demand curve is also linear, let us say, of the form
ptmu=a, m>0,

it is clear that the parameters must be functions of time. Moreover,
one observes that if they satisfy the time relation

a/(L+m)=p,+ Asinkt,

then the intersection of the demand curve with the supply curve will
yield the variable price originally postulated. This is illustrated in
Figure 34.

PRICE ! pted PRICE 1™V
L)
Py
LY
"
5
Py
Ps
Pe
1 I I ) | 1 A L
o 1 2 3 4 S5 & 7
SUPPLY : u TIME : ¢
FIGURE 34a.—THE SurPLY CURVE: FIGURE 34b.—THE TIME-PRICE CURVE:
p—u. p=p,+asinkt.

The same argument prevails if the demand curve remains fixed,
while the supply curve varies. If the observed price changes with
time, then the intersections of the demand curve with the variable
supply curve will exhibit the negative slope of the demand curve.

If, however, both supply and demand vary, then the situation
becomes indeterminate and there is no possibility of computing either
the demand curve or the supply curve from the data of time series.

The question remains as to whether or not both supply and de-
mand curves might not be derived from the same time series by a
method of lag correlations. It seems reasonable to suppose that when
agricultural prices are high, the farmers will plant more acres dur-
ing the next season in the hope that they may profit from some carry-
over of the prevailing price level. On the other hand, for the same
Teason, they may reasonably be expected to plant fewer acres during
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the season which follows a period of low prices. Hence, in the one
case, a surplus is created, and in the other, a deficiency. If this were,
indeed, the correct view, then prices of one year, correlated with the
production of the succeeding year, would produce a high positive cor-
relation, whereas the prices of one year, correlated with the produc-
tion of the preceding year, would produce a high negative correlation,
The regression equation in the first instance would approximate the
supply curve, while the regression equation in the second instance
would approximate the demand curve.

This attractive idea is scarcely consenant with Working's hypo-
thesis of fixed supply and demand curves. Schultz believed, however,
as in the case of the supply and demand functions for sugar, that such
a procedure is occasionally possible.

The argument may be stated as follows. We first observe that,
with respect to supply and demand curves, there exist four possibil-
ities: (a) the supply curve may be fixed, but the demand curve variesa;
(b) the demand curve may be fixed, but the supply curve varies; (c)
both curves vary; (d} both curves remain fixed. The first three cases
have already been discussed, but the fourth remains to be considered.

If both the supply and demand curve were fixed, then the price
would be rigidly fixed at their intersection. But since few prices ap-
pear to be fixed, their variation in the stream of time might be re-
garded as positions of disequilibrium. Thus, let us suppose that the
demand and supply curves are respectively

p=flg), a=g®,

and that they intersect in one point, which determines the equilibrium
price, p,, and the equilibrium quantity, ¢g,. Then let p, be an ob-
served price different from p,. We should have ¢, = g(p,), which is
also not equal to the equilibrium quantity, g,. Continuing the se-
quence, we obtain the following set of values:

P =9, a=g{p),
.= f(q.), .=g(p.),
Ps=f(q), . =g (ps) ,
P, =f{q,), =g},

- - -

If, finally, the functions are such that some p, corresponds to p, , then
obviously the sequence, p,, P», Pz, **- , Pr = D1, --- i8 cyclical in char-
acter. This situation is schematically represented in the accompany-
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ing diagram. The formulation given here is commonly referred to as
the cobweb theory of price. '

QUANTITY

FiGURE 35.—BEHAVIOR OF PRICE AND QUANTITY UNDER FIxep DEMAND (a)
AND SuPPLY (b) CURVEs,

Schultz remarks about this situation are as follows:

Thus far we have assumed that the two unlmewn curves [of demand and
supply] remain fixed and have shown that, when an interval elapses between
changes in price and corresponding changes in supply, it is possible to deduce
both curves statistically. This conclusion also holds ever when both curves are
subject to secular movements, the necessary conditions being: (1) that the curves
retain their shape, (2} that each curve shift in some regular manner, and (3)
that there exist a time interval between changes in price and changes in supply.

The importance of such a demand-supply relationship lies in that it admits
of a straightforward statistical “verification.” If by correlating prices and out-
put (consumption) for synchronous years {or other intervals} we obtain a high
negative correlation; and if by correlating the same data but with cutput lagged
by, say, one year, we get a high positive correlation; and if these correlations hava
meaning in terms of the industry or commodity under considerotion, the statistical
demand and supply curves thua obtained are probably very close approximations
to the theoretical curves. It is assumed, of course, that the data have been ad-
justed for secular changes and other disturbing factors.1? -

16 The Theory and Measurement of Demand, pp. 78-80. See also Mordecai
Ezekiel, “Statistical Analyses and the ‘Laws’ of Price,” Quarterly Journal of
Economies, Vol. 42, 1928, pp. 199-227.



CHAPTER 4

THE THEORY OF RANDOM SERIES
1. Definitions and Examples

In the discussion of the nature and the structure of economic
time series it is necessary to consider the definition and properties of
what we shall call random series.

By a random series we shall mean a sequence of items

(1) !h,yz,ys,yu'":yi,'“:ﬂn,

which has the property that the autocorrelation »(f) is sufficiently
small so that the data may reasonably be assumed to have been drawn
at random from an infinite universe.

It will be convenient to assume that the average of series (1) is
zero and that the standard deviation is unity, neither assumption im-
posing an essential restriction upon the series. The autocorrelations
for a lag of ¢ units will then be given by

@) P(8) =3 s Your/ (N—1) .

Tt will also be convenient to write equation (2) in the continu-
ous form

@) o =tfme ((v@ve+o s,

-q

where the function ¥ (8) is assumed to be normalized; that is,
.1 [
lim — ye(s) ds=1.
=n 20 4.

In case the limit in the mean assumed by (3) is not desired, that
is to say, if ¥ (s) is defined over a finite interval —a = s = a, then we
may employ the following definition of »(t):

(4) r{t) =R(I)/2a,

where we write

(5) R(t) = f'y(s) y(s + 1) ds.
— 142 —
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For the purposes of illustration, let us consider a random series
constructed in the following manner. The percentages of trend of the
Dow-Jones industrial averages for the prewar period (1897-1913)
were written on cards and these cards were then drawn at random to
form a series of 204 items, that is, N = 204. The standard deviation,
o, was found to egual 15.011, and the arithmetic average, A, was
99.618. The actual values of the random series thus constructed are
given in the following table and the series is graphically represented
in Figure 5 of Chapter 1 and in (b) of Figure 38 of this chapter. The
items are arranged by months to correspond to the items of the actual
time series itself, which is charted in Figure 70 of Chapter 7.

RanpoM SERIES CONSTRUCTED FROM THE DOW-JONES INDUSTRIAL AVERAGES Ad
PERCENTAGES OF TREND (1897-1913)

Month | 1897 1898 1899 1500 1901 1907 1303 1604 1905 1908 1907 1908 1909 1910 1911 1012 1918

Jan. 10 160 97 98 84 103 126 108 104 99 118 10?2 78 100 11T 93 91
Feb, 1M 98 113 101 87 114 121 101 187 B8 123 B8 B9 91 RY 104 125
Mar. 01 82 103 92 104 106 166 70 B8 12T €€ 121 78 111 93 72 7O
Apr. 110 104 30 104 128 BI 122 107 99 100 RE 107 76 97 119 121 94
Muy 126 €7 122 B9 112 110 117 93 B0 126 114 109 112 125 101 114 88
June g9 B8 86 T4 94 98 B3 68 114 BT Bl 106 0% T4 180 98 103
July 126 113 11 94 126 92 101 88 8T 81 Bl 111 107 102 104 87 106
Aug. 119 64 160 B0 84 112 88 93 956 104 101 108 94 O2 108 115 106
Sept. g2 69 T2 B0 120 o4 70 85 112 101 92 M5 96 102 6 109 08
Oct. 106 68 84 103 97 110 95 123 21 75 89 108 90 124 119 102 106
Nov. 107 124 94 119 70 101 124 88 104 94 122 T8 94 87 109 31 114
Dee. 101 94 B8 €3 106 111 46 106 783 99 104 TL TL M T 126 100

In order to test this series for randommness the autocorrelation -
was computed, the following values being obtained:

-

t 1 2 8 4 s & 1 % 8 10 1r 1z 13 14 15
*if) 0.088 0.072 0.155 0.050 -0.061 0.085 ~0.114 0.026 ~0.027 —0.022 -0.08% —0.088 —0.050 ~0.063 0.098

(23] . [H
+1.00 +1.00
i T
+0.50 +0.50
b -

L -

’— -

E _____ e - o —+ —, =j- N e = e -_—— - —j
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-0.20 ~J=0.20
-13 ~10 -5 1] +5 +0 +15

FIGURE 36.—AUTOCORRELATION OF A RANDOM SERIES.
The dotted lines define the standard-error band.
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Since the standard-error band varies from *+0.070 at the begin-
ning, where N = 204, to £0.076 at the end, where N = 204 —30 =174,
the distribution of the lagged values is seen to meet the test of ran-
domness in a satisfactory manner. These results are graphically ex-
hibited in Figure 36.

2. Goutereaw's Constant

If something is known about the distribution of the items of a
random series, that is to say, whether the items have been drawn
from a normal, a rectangular, or some other type of frequency dis-
tribution, then a ratio known as Goutereaw’s constant is useful in test-
ing the randomness of the series. This constant, which we shall des-
ignate by G, may be defined as follows:

If the mean of series (1) 18 m and if &4, = %, — ¥ and 2, =
¥ — m, then Goutereau’s constant is the ratio '

S|4 |
2|3s‘ ’

that is to say, it is the ratio of the mean variability to the mean
deviation of the series.

We shall first prove the following theorem:

G=

THEOREM 1. If the series {9} = %, ¥ -*+ , ¥x 18 @ set of nor-
mally distributed values arranged in ¢ random sequence, then

1) G=vZ=14142....

If the series {y;} is a set of rectangularly distributed values ar-
ranged in @ random sequence, then

(2) G=4/3=1.3333....

Proof:1 Let us assume that the values of {y;} are arranged in a frequency
tadle as follows: )

@) Values 8, 8 s, ’
Frequencies i . - fa

where f, + f, + -+ + f,=N.

The total number of ways in which the variation |4,| can be obtained is the
number of permutations (with repetitions) of N things taken two at a time, thst
is, N4, But N? tan be expanded in terms of the individual frequencies as follows:

! This proof follows one due to E. W. Woolard, “On the Mean Variability in
Random Series,” Monthly Weather Review, Vol. 53, 1925, pp. 107-111.
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N‘=(2f‘)’=f1’+f‘=+"'+fu’+2f1f‘+2f1f;+"'+2flf'
+2f3f.+2fgf4+"'+ 2fgfa+"'+2f'_1f5

F=1 i=1

" n-1 n-§
=Ef*+22 Zfifuy.
From this we see that the probability of a zero variation is given by
]
lfz‘f‘yNg ?

while the probability of the variation |4;;) == |s; — &;] is 2 f; f,/N2,

If we assume that ¢, = ¢ + ik, where ¢ is a constant and » iz the ¢lass in-
terval, then |A,,| == |i — j| h == mhk, where m is an integer. Hence all the n-—m
combinations which yield the same value mk are given by

tsim_sil y 1=1,2,---,n—m,
with probabilities
27 1, .
_-ll\hf-z—“ﬁs m#%0, i=1,2, -, n—m.
Hence the mathematical expectation of the variability, v, is given by
-1 M-t

2h
(4) E(ﬂ)_=!'\7 Z Z S Fivm -

2 m=t =1
If we have = rectangular distribution, then

fizf' N:'ﬂfl
from which we get

2k » h(n*—1)
(5) E(V) =;; "El m(u-—-m) :'—-—3;——- .
Since table (2) is now of the form
c+k ¢+ 2k e c+nh
f f o f

the mean, M, is given by
M=c+ hf‘ii/N=c+ TLERIT

Consequently the mathematical expectstion of the mean deviation, ?, be-
comes

Zf.z » f’ » if‘ .
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Since, in the rectangular distribution, f; — 7 and N = nf, we get

[ Th

if/N=1(n+1) .

-
Iy
b

Consequently the expected mean deviation becomes
i Ml!

2h h
) E@)=— 3 [ia+D) —jl=_—(@—1.

From (5) and (7) we then obtain the value of G for rectangular distribu-
tions as the ratio
E(v) h(nz —1) 4in
TE@® 3 hm—1)
From a normal distribution we have the frequencies f, = ,C,, N == 2»,

where ,C; ia the ith binomial coefficient.
Hence the mathematical expectation of the variability becomes

==4/8=18833---.

{8)

-1 -

E 2k -
(v) = = Tt e mIa

C' ucim

2h n—l

V" m~1 mtzn mm T a Cy) »
that is,

hn
{9 E(v) :—{,;- (2"0,' — On) |

Since the arithmetie mean of the distribution is 2z, the expected mean devia-
tion becomes

h »
E(s) :F m‘.-‘:r: nCmim — 2] .

For simplicity we shall assume that » is cven, an inconsequential assump-
tion, since n is large. We then obtain

2k in hn
10 y—— X —_
(10) E(9) N mzn " C (4n m)_gNn in”
Goutereau’s constant is then given by the ratio of (9) to (10), that is,
(11) GO =%
IN “Chl

In the formula ,,C, = (2p)¥/(p!) we now replace the faetorials by their
Stirling approximation, namely n! & nn ¢-#VZmn , and thus obtain for sufficiently
targe values of p the limiting form

VZaw
s,wcr i
VBrp




THE THEORY OF RANDOM SERIES 147

If the appropriate spproximations are now introduced into formula {(11),
we obtain

VB V3R
Gm_i_ﬁifl‘zvz—vm-z—-.

If n is large, as has been assumed above and as is assumed, of course, in the
derivation of the normal distribution from its binomisl approximation, we shall
obtain the desired ratic

(12) G = VZ=14142...,

To these values of G as given by (8) and (12) we must now
assign probable errors. This may be done as follows:*
If n is large, then the standard deviation for a rectangular dis-

tribution is approximately given by o=hn/\/3.* Hence, if n is large,
we can write

E(v) =e¢/\V3, and E(¢) =1}V3s.

Since the standard error of ¢ is known, the standard errors of
both E (v} and E (4) are known. But from the fact that G is a pure
number, since both v and 8 are functions of ¢, the ordinary method of
finding the standard error of the ratio fails. But we also note that
the mean deviation is independent of the order in which the 2’s occur
and, therefore, this coefficient does not give any indication of the ran-
domness of the series. The mean variability, however, does depend
upon the order or time occurrence. The Goutereau ratio, therefore,
as a test of randomness, depends entirely on the numerator of the
ratio. Consequently, if we assume that the mean deviation does not
change greatly from one type of rectangular distribution to another,
then we can derive the standard error of G. If there is a deviation
in v due to the randomness of the series, we say that this variation
will not affect 8. Hence we can write

v+4v v A
G+ AG = =3 + T
Then, by definition,

VEVZ(N-1) 8 VyN-1~
Hence we obtain as the standard error of G

2 This argument is due to Herbert E. Jones of the Cowles Commiasion, who
a8 mnde an exhaustive study of this problem.
5 See Davis and Nelson, Elements of S‘tatutwl, 2nd ed., 1937, p. 319.
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1
g-—o,/ﬂ—ﬂz ! = 0.9428

3 yN-1 = yN-1
A similar computation for the normal distribution shows that the
standard error of G is given by \/ (z—2)/(N~1) = 1.0684/v (N—1).
These results we can formulate in the following theorem:

THEOREM 2. If the series {y:) is a set of normally distribuied
values arranged in a random sequence, then the standard error of
Goutereaw’s constant 1s

(13) _ fa—2_ 10684
“TNN-1 yN=T'
where N is the number of items in the set.

If the series {y.} is rectangularly distributed, then the standard
error is

2vZ 1 __ 0.9428
3 VvN=1 VvN-1

As an example, we may consider the random series given in Section 1. A test
shows that the items are essentially distributed normally and hence & is to be
computed from formula (13. We readily find T14,] = 3670, Z]z;| — 2486, from
which it follows that

{14) og —

G =—1.4360.

Since the probable error as given by (13) equals 0.0702 and since the differ-
ence between the actusl and expected vzlue of G is 0.0219, we sec that the series
very satisfactorily meets the test of randomness.

Tt is instructive to compare this value with the value of G obtained from the
items of the original Dow-Jones series from which the random series.was con-

structed as explained in Section 1. A computation shows that for the original
series (G — 0.3345.

It is interesting also to note that if the series of values {y:} i8

derived from a known function ¥ = y (1}, then the Goutereau constant
assumes the following simple form:

o) L
j ) dt

where a = ¢ = § is the range of the data.
For example, if ¥ = sin(2at/T) and the range of the integration
is from 0 to T, then we have

dt
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T e T e
.

The standard error is readily shown to equal

n

N

=2.2214 T2,

3. Yule's Theory

As we have already explained in Chapter 1, G. U. Yule devoted
considerable attention to the correlation of random series in his clas-
gieal paper on “Why Do We Sometimes Get Nonsense-Correlations
Between Time-Series "™

In order to derive some of Yule's most interesting results, let us
consider the following series:

VsV UssUsrr s Yt 5 Un

We shall assume that the average of the series is zero, and that
N is sufficiently large so that neither the standard deviation nor the
arithmetic average is essentially affected by the omission of a number
of terms less than or equal to some number &, which is very much
smaller than N, If o represents the standard deviation of the series,
then the autocorrelation coefficient, ., |{| £ k, will be given by*

(1) e =22(% _y.m)/(N a?).
We now consider the difference, 4 ¥, = 9w — ¥., and note that
2(4 yl)':'_': E(?lm)’ + 2(%)' ~2 E(yl‘ﬂ ‘lh)
=No&?+NA-2Ns r,.

Since S(du.)t =N e’ ; where ¢, is the variance of the series
of first differences, we thus obtain the relationship

(2) n':=2¢r’(1"f1) .

Let us now compute the autocorrelation coefficient, p, » for a lag
of t units for the difference series A y,. We first evaluate the sum

¢ Journal of the Royal Statigtical Society, Vol. 89, 1926, gg 1-64.

* Many of the formulas given in this section will also he found in the work
of 0. Anderson, to whom reference has been made in Section 14 of Chapter 1,
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Ri=3[4 ¥ A Y] = ZWorr — V) Warsnn — Yss)
=W Yaren) + ZWast %) = ZWe Yoesn) — ZWeua Yot}
which, from (1), is seen to reduce to the foliowing:
Ri=Nor+N&r,— N7, —Na?ry,.

Since R. is itself equal to N p; ¢a?, we obtain from formula (2)

21‘;—7‘,“-'7‘,.‘__ 1
2{1 — 1) 2{(1 —n,)

It is clear that the autocorrelation for the second derived series
can be written down at once from this formula. If we designate by
p'® the autocorrelation function for a lag of ¢ units of the second dif-
ference series A%, , then by formula (3) itself, since p* bears the
same relationship to p, as p; does to 7; , we shall obtain

(3) o= (7).

2 Pt T Ptv1 T Ptma 1
{2) — —_— — AS _ .
Py 30— o) 2T —p) (pe-2)

This process being entirely general, we see that if p!™ is the auto-
correlation function for a lag of ¢ units of the nth difference series
4* y,, then p'™ can be expressed in terms of the autocorrelation fune-
tion for the {n—1)th difference series A"y, as foliows:

2 (1) — _im-1) _ (1)
(1) Pia; —_ Py 5 Ea ('-”)pf R ___1___
Py 2(1 - p'm)

Az (P(n—l))

. As an example of this theory let us compute the values of the autocorrela-
tions of the first five derived series of an initial random series. For the random
series we know, by definition, that r, =1, », = 0, t 5= 0. Hence, by successive

applications of formula (4), we obtain the followmg values of the autocorrela-
tions:

Type of Series Anutocorrelations
1
Ay, p=1, P‘::_E' p, =0, t>1;
2 1 .
Ay, PN =1, pxm=_§’ p’m—_—_a, P‘cn:o, t>2:;
3 3 1
asy, Pt =1, p'® =_Z , P 2;6 , B® -__:-,.._.5 .

V=0, t>3;
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2 4
A&y‘ po(l)=]_' P1(4)=-—-—’ p.(llz_s_' Ps(6)=..._..3..g.
1
PO a0 =0, >4
A‘ﬂ poﬂl—_—l' P1(5]=__..., p’“):_ P(b)——_._..s_.
* 2 : 28
1
p‘(ﬂ)=_-—, p‘(lzq—ﬁ' p‘(-'"=0 t>5

4. Generalization of Yule’s Theory of the Differences
of Random Sertes

The results obtained by Yule for the differences of random series
may be generalized in such a way as to lead to the representation of

the autocorrelation as a continuous function of the lag parameter.
Let us assume that the series

(1) - V1 y2; ySr"'s ytr"': Un»

is random, and that its arithmetic average is zero and its standard
deviation is unity. We shall then have

1, j=0,
(2) Su=0, Swuwna=' i’

The series formed from the nth differences of (1) may be repre-
sented by

A"l [ A's ’ A"a r T A‘x-nu
where we employ the abbreviation
4“x=!h= - lclyk-‘x +'C:l Vs — + (_1)‘ uCi Y + et (‘—1)"%--. .

Then, if N is sufficiently large with respect to » so that end values
may be neglected, we shall have from condition (2)

3) SA%=0, 3(4%)'=3 .0 =1Ca=Nos".

¥=1
‘Similarly we evaluate

Ri™m =3 A% 4%, = (—1)¢ E‘.Ci wCut == (—1)%Cht .

i=1
Hence, since pi™ == R, /(Noas?), we achieve the direct evalua-
tion

—1)¢ 2:-0»-—
(1) | pr = _(__%:__'_ :
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The question naturally arises as to whether or not a continuous
representation can be given to the autocorrelation function (4). Pro-
ceeding formally, we replace {(—1)* by cos at, and then write the bi-
nomial coefficients in terms of Gamma functions as follows:

_ '(Cn+1) _I'Cn+1)
T Pttt DI m—t+1) " Tt I+ 1)°
Replacing these values in (4), we then obtain the following as

the continuous autocorrelation function for the nth difference of a
random series:

(5) - — cosat I'*(n + 1)
P T T —tT DT (n+E+1)

It is interesting to note that this function, if substituted in the
difference equation [see formula (4) ‘of Section 3]

21— P:'H))f:“:m =2 p(n1 — pinen) — gy

141

furnishes a solution .of the equation.

Formula (5) was tested experimentally for the random series
described in Section 1. The first three difference series were con-
structed and the lag correlations computed and compared with those
obtained from (5). The results of this experiment are tabulated as
follows:

Lagged one unit Lagged two units l Lagged thtee tnity
Ohserved | Expected Ohee

Expected Observed Expected
0.0162 | 0.0000 +0.0727| 0.0716 |0.0000 £0.0727 | 01552 |  0.0000 +0.0727

Random
First Difference | —0.3575 | —0.5000 :o.osaoi_—o.ﬁﬁf 0.0000 £0.0707 | 0.0081 |  0.0000 20.0707
Second Difference | ~-0.8266 | —0.86667 i0~0394' 0.1010 |0.16687 =+0.0689 0.0844 0.0000 +0.0709
Third Difterence | —0.7500 -Li?s_ﬁ! 0.3012 | .3000 +0.0647 | —0.1892 | —0.0500 00711

Series I
]
]
|

Sl-’
o
3
"

It will be observed from a comparison of the difference of the
observed and expected values with the standard errors given with
the expected values, that the assumptions made in the derivation of
formula (5) are amply justified.

The graph of function (5) for the case where n == 3, that is, for

8 e I'(4)
=S T T AT D
. 36 sin Znt]
TO-@E - {a—-tH| 2t

is given in Figure 37.
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FIGURE 37.—AUTOCORRELATION OF THIRD DIFFERENCES OF A RANDOM SERIES.

In the application of formula (5) for unit lags, the following
sum is useful in checking calculations:

2 p(n) —_—

This is easily established from formula (4), which yields the
sum

S 6= (1/2Cn) B (=1 2Cat = miCa/unCo =1}

Thus we can verify the computations for p as given in Section
3 by finding the sum

5,10 5 5 1 126 1
(5)-—- — — —— — —_—— ==,
E Pt “8751i s Tise 3 a2z 2

A special case of formula (5), which will be of particular inter-
est to us later, is that for which n = 0. In this case we find
(6) p0 = cos at _ sin 2nt
¢ ra—-unra+n 2t
Th;}t i8 to sav, the autocorrelation function of a continuous random
Sertes is the unit impulse function frequently encountered in the the-
ory of electric ecircuils.®

Y See, for example, H. T. Dav:s, The Theory of Linear Operators, Bloomin
ton, Ind., 1936, pp. 263-268 &
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It is also interesting to observe that the function

8in Zns
223

(7) y(8) =
if introduced into the autocorrelation integral,
r)y= [Tv@ v+ ds,

gives (6). That is to say, the unit émpulse function 8 ils own aulo-
correlation.
In order to prove this, let us first consider the integral®

L ' 0, |8>1,
P(ﬂ)-_"f SINP cosnp(s+t) de=licosfat, |B=1,
o ne cosﬁ_ﬂt' ]ﬂl(l-

Let us now define

® gin ng 8in § n(s+t) —ds

(8) P = [ T =ds,

-\

and note that P’ (8) = p(A), from which we obtain

P(§) = P(0) +f"p<ﬂ)dﬁ= j”p(ﬁ)dﬂ-

An immediate consequence of the integration is the following set
of values:

sin g at
::;“ ’ fz1,
sin g at
(9) Py ={ T g=1,
i 14
_smﬂin , f=-1.

In formula (4) we have obtained the autocorrelation between
differences of the same order, but it would be interesting and useful
to have an extension of this result for the correlation between differ-
ences of orders m and n, that is, between the series Ay and 42.

If we designate this correlation by the symbol p™", then the re-
sult may he stated as follows:

¢ See, for example, 8. Bochner, Vorlesungen iiber Fouriersche Integrale,
Leipzig, 1932, vili <+ 229 pp. ! v sohe fnrem
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For discrete series the lag correlation between the differences of
orders m and n of a random series is given by the formula

II-H!CMl
(10) ' P(m,n} = (—1)mmmt .
¢ V'Jmcm ﬂ‘lcﬂ
The continuous equivalent of this formula, obtained by replacing

the factorials in the binomial coefficients by the Gamma-function
equivalents, is given by

(11)  pimm=08 a(m+n+t) I'(m+n+1) I'(m+1) I'(n+1)
O Pt D T m—t1 ) T2 @mF 1) T (2nF 1) °

The derivation of these formulas will be given in Section 6, where
more general results are available.

As an interesting special case, we observe that the lag correlation between
a random series and its nth difference is obtained by setting m — 0. Thus we
obtain

pylom = (_1)»;:1(_:& ,
2nn

or, in its continuous form,
cos T{n+t) I2(ni+1)
T(n+t41) T1—t) N(2n41)

If one notes the identity F(14¢) T'(1—t) — (%¢)/sin 7t, then (12) can be
put into the form

(12) Py lom) o=

gin 2t T2(n41)
2wt (14+2) (24+4) - (m4-) TH(2n41) °

(13) p oM = (—1)»

5. Accumulated Random Series.

One of the most interesting operators that has been applied to
random series is the operator of summation. By the proper use of
this operator cycles can be generated in random data, and this inter-
esting fact has focused attention upon summation as a possible cause
of the cyclical phenomena noticed in many economic series.

Let us. then, consider the operator

(1) S[z(t)]= J"z(s) ds — % f" (L — 8) z(3)ds,

where z{t) is any function of limited variation. In particular, it may
be defined by the elements of a random series. We see that S(z) is
the first accumulation of the function x(#) referred to its mean, its
length being L .



156 THE ANALYSIS OF ECONOMIC TIME SERIES

Now let us define a sequence of functions by means of the itera-
tion formulas

S@ (z) =S8{S(x)}}, S®(x)=8[§®(2)], -,
S (x) =§{""(x)].

If x(¢) defines a random series, it is a matter of statistical ob-
servation that S™ (z) tends toward a cosine function of period equal
to the length of the series; that is,

@ S™ () w(%)’Acm%(Hm .

where L is the length of the series, A is a constant amplitude, and @.
is a phase constant, which depends upon the order of the iteration.”

In order to see how the phase depends upon the order of iteration,
let us write

S (z) = (ﬁ)"A cos .2Li (¢ +a.).
We then have

Stmesh () = (é).A[ ftcos %"-(s +a,)ds
1 2n
—_EJ;(L 8) cos-r-(s-l-a,.)ds]

= (.{‘.)H;l cos -%—(t + e, — {L)

2n
Hence, in general, we get
Smn = __I_'_)mr _2_:"1-_ - H
(z) (2,, A cos T (t+a,—1rL);

that is to say, the phase angle is changed to a, — }rL.

. While the statistical observation that the iteration defined above
yields & cosine function of the form given in (2) was first made for
ranflom series, it is also true that the iteration converts any function
of limited variation in the interval 0 < ¢ < L into the same form. The
proof of this has been given by E. J. Moulton as follows:®

_ 8See, for example, R. W, Powell, “Successive Integration as a Method for
Illi‘gléigmg legla'lglagenod Cycles,” The Annals of Mathematical Statistics, Vol. 1,

, PP. = i
¢ For this formula see E. J. Moulton, “The Periodic Function Obtained by

Repeated Accumulation of a Statistical Series,” The American Mathems
Monthly, Vol. 45, 1938, pp. 583-686. See also the same volume, pp. 105-106.
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THEOREM: If we define the operator
S =25EM],  S.O=SI5.0]1,

then there exist constants A and o such that

S. () —Acos[-zg-t+a—-}2-(n—- 1)]

converges uniformly towards zero in the tnterval 0 = t=Las n—> ®,

Proof: The function S,(t) is an integral of z(t) and therefore S,(¢) is
continuous and of bounded variation in the interval 0 = ¢t < L. Hence S,(t)
can be developed in a Fourier series in the interval 0 = ¢ < L ; that is,

© 27
(8} 8,(%) =Z 4, cos(—~kt + o) +C.

The constant C must be zero since, from formula {1j, we have J‘of- S (tydt =0.

Since the left-hand member of (3) is continuous and of bounded variation
in the interval 0 = ¢ < L, the Fourier geries must converge uniformly toward
§,(t) ; hence we can infegrate it term by term., We then find

©4 27
5,(1 =,31k—:cos(-fkt+a,——w) '

and by similar argument
w A 2
S =2 k_:m[.sz +a,—d{n—1)7] .

Sinee the sequence of Fourler coefficients {A,} is bounded, we have
] A'

lim £ —=—¢

w0 k=2 Ln '

and hence the sum

; Ay en . "
M-I?"—m[_fk + @ — 3 (n—1)7]

converges uniformly towards zero in the interval 0 = t = L asn — 00,
From this fact the theorem is seen to follow as an immediate consequence.
Two examples will illustrate the application of the theorem. The first of
these is the successive application of the gperator S, (£) to the function x(s) == =
in the interval 0 <e =< 1. The following polynomials are thus obtained:

S,(t) =2w[ f* sds— {1 (1—a)sde] =27 (t2/2—1/6) ,

S, (t) = 4w2(12/6 — £/6 + 1/24) ,

S, (£} == 8w (84/24 — #2/12 + ¢/24 — 1/720) ,

8, (1) = 16w (£8/120 — 3/86 4 £2/48 — £/720 — 1/1440).
These four polynomials sre graphically represented in (a) of Figure 88,
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The second example is the application of the theory to the summation of the '
random series given in Section 1. The reduction of the series to sinusoidal form
is observed from (b} of Figure 88 to be very rapid.

, A(S)=5 RANDOM SERIES _ .
LT T R -
2
+ P [ i » o
- o) L 1 N .- 200
1 o .
; VRN |
+2 < 4 N o
N %R
o \\ <] — St g
LA T .
* AN
™ N N
D d \“\ 3 / P \--—-.a-/
sl 1 1 - foo:?mo
+1. T // \\
m
—1.51‘_"'/ ™ ol : - 1,006,000
o 5.5 o 0 196 00
(a) (b)

FIGURE 38.—EFFECT OF SUCCESSIVE INTEGRATIONS.

Thiz chart shows how succesgive integrations (summations) econvert fune-
tions defined over a limited range into harmonics. In {a) the function sueces-
gively iterated is ®(s); in (b) the function is a random series of 204 items. The
numbers represent the first, second, third, and fourth operations.

The analysis considered in this section has also been extended by
A, Wald, who proposed the problem of determining “in terms of prob-
ability, how fast the repeated integrations of a random series ap-
proach a cosine function.” ®

He proved the following theorem:'

If the distance between S.(t) and its cosine approximation is
defined to be
L]

(L (ip s
""‘{'L‘ J;[D,.(t)] dt}

where we write

D, (t) =8.() A,.cos[-f:t+a ‘Q‘(” l)],

» “Long Cycles as a Result of Repeated Integration,” American Mathemationl
Monthly, Vol. 46, 1939, pp. 136-141.
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then the probability that the ratio 8,/A, will not exceed ip. 18 grealer
than or equal to 1 — -2, where 1 is an arbitrary positive number and
Bn is defined by

1 HN-1)

(4) 13.’2—2- gz 17k, B.>0.

We shall not give the proof of this theorem here, but may merely
indicate that it depends essentially upon the fact that no hypothesis
about the distribution of the random series is imposed by the defini-
tions of Section 1. Hence, the well-known inequality of Tchebycheff
may be substituted for any postulate regarding the distribution of the
series.

Since the value of A, may be estimated from the formula,

w* = (N/2r)*"(4/N}o*,

where #* is the variance of the original series, the theorem may be
used readily in numerical estimates,

For example, in the illustrative series of Section 1, it is found that that the
distance between the third accumulation and the fundamental term of the ap-
proximation is equal to 3, — (N/27)3 X 0.3516. Since ¢ == 15.011, the value of
Ay is given by A, = (N/27)3 X 2.1020. Hence we obtain the ratio 3,74, =
0.1672. The value of 8, is readily obtained from (4), from which we find 2,
= 0.0931. Dividing 0.1673 by 0.0921, we obtain A — 1.7970, and from this the
value 1 — A-2 = 0.6903. We may then conclude that the probability that 5,/4,
will not exceed 0.1673 is greater than or equal to 0.6903, a reasonable conclusion.

6. Random Series Smoathed by ¢ Moving Average™

Another operator frequently employed in the study of random
series is the moving average

A
ZAW, Lyrp
(1) Y= ::'.\___'_ R
EW,
=X

where W, is a weight funetion. Usually W, is a constant or the bi-
nomial coefficient, W,=..Ci.. The parameter ! of the moving
average is generally chosen sufficiently large to remove the major
harmonic swings in the data, when a trend line is to be established by
means of the moving average, The quantity 21 is called the period of
the moving average.

%2 Most of the analysis described in this section was done by H. E. Jones to
whom the author is especially indebted for undertaking and carrying out the work.
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For continuous data, y(¢), the equlvalent of function (1)}, can be
written in the form

J' W(s) z(s ~+ t)ds f”i‘y(r—t)x(r) dr

t-x
=" ——= = ’
v f W) ds fAW(s) ds
A

In order to simplify the problem of applying formula (1} to ran-
dom data, without, however, any loss of generality, let us designate
the items of a random series by

Ty Xoy Tay Xyy =, Ln s

and let us assume that % is sufficlently large so that the following
conditions hold:

(2) e, =0, Jr2=constant=oe*, Trixi;=0, jF0,

There will be no loss in generality if we assume further that o> =1.

The difference of any series {y;} will be designated by 4%y,
where o is the order of the difference. By the symbol 7,%# we shall
mean the lag correlation between the differences of orders a and §;
that is,

aﬁ-—
:\ My ABH ot

Let us now consider the following moving average:
vy =W, +W,xin + Woxio+--  + W,xi,e,

where we assume for simplicity that the sum of the weights is unity,
that is 32 W, = 1. The period of the moving average is obviously
equaltos +1.

The difference A* of ¥; can be written

a2 Yi = Yiia — aCl Yiva + aCz Yiva.z — *- + (‘1)‘1 aCa Y
= Woa i +- Wla Tin + Wae xi*2+ e + WGIHI Tiss-a r

where the new weights, W,*, are explicitly determined from the fol-
lowing system:

Woﬂ-: (—1)°aCa WU y Wﬂl == (_l)n [aCa Wr - aCa—: Wo] LI
=({—1)* [aCu W, — aCa Wiy + oCoe Wio —
+ ('_l)t¢Cc-k Wo] v
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We next note the standard deviation
(3) Ay = (W, + (W,) + (W) + -0 + (W,9)?
and the covariance

E (4' 'yi) (Aﬂ yiH) = E(ﬁ;"o‘:I &y +W1ﬂ Xin +oeee W.a xiu)
X (I’Voﬂ Livt + Wlﬂ Lireer +ee Wlﬂ xi-l-h-l)
(4)
— W‘ﬂ Woﬂ + Wah.)_ W;ﬂ + Wut42 Wgﬁ

+-+ W WBI-? ’

where W’s with negative subscripts are understood to be zero.
From these values the lag correlation between the differences
4%; and APy;,, is immediately written in the form

l."zt Walﬂ' Wls
(5) r=hb= ‘,=o - y aZf,—(f+s)=t=54a.
JE S ey

j=0

This general formula can now be specialized in several useful
ways. If, for example, we assume that a = 8 = 0, then we get the
autocorrelation function of the original moving average in terms of
the weights employed.

Suppose, for example, that we selected the weights as positive
binomial coefficients, that is

W}; = ,Ck .
Noting the following identities

L1 Co+ .Ceiy ,C, + Cry €+ -+ ,C, Cot= oCos »
and

aco‘ + |C;’ e + .v:C‘.n2 = 2lCl 1
we can immediately write the autocorrelation
(6) 7‘:’0 =2,C,-¢/2.C, .

Replacing the binomial coefficients by their continuocus equiva-
lents as we did in Section 4, we obtain the following:

o0 — I?(s+1)
t T T(s—t+1) I'(3+t+1)
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This result may be compared with the autocorrelation obtained
by assuming a unit weight for the moving average, that is, by letting
W, = 1. In this case we immediately obtain

s+ 1|

¢ e

The effect of binomial weights as compared with constant
weights upon an autocorrelation is exhibited in the following table,
where the period of the moving average is assumed to be 12, that is
s = 11:

r T T Tt
] ‘ (hino:-niat l (eonstant t (binomial (constant
weights) | weights) | welghts) |__ weights)
I .
1 0.9167 I 0.9167 f 7 0.01037 v 04167
2 07051 | 08333 | 8 0.002183 0.3333
3 04533 | 07500 1 9 0.0003275 0.2500
4 0.2418 | 06667 10 0.00003119 0.1667
5 0.1058 05833 ' 11 0.000001418 0.08333
6 0.03783 °© 05000 | 12 0 0

A statistical example of the application of formula (7), which will be useful
for us later, is furnished by the 12-item moving average of the random geries
deseribed in the first section. The smoothed series, centered upon the middle item
of the average, is given in the following table:

Month 1897 1898 1809 1900 1901 1802 1902 1904 1905 1906 1907 1903 1903 1919 1911 1812 1913

Jan. | 9¢ 94 9L 102 98 108 93 10z 102 98 104 61 85 105 98 106
Feb. 84 97 90 101 101 108 93 102 102 98 105 9L 85 106 98 104
March 9> 98 80 185 97 106 95 104 101 97 106 90 86 104 101 103
April B3 99 92 104 100 105 97 103 o8 o8 107 86 9B 104 100 108
My 91 96 84 100 102 107 94 105 97 100 103 60 9B 106 192 102

June 168 90 96 95 101 103 103 97 102 98 101 100 99 100 104 106 100

July 108 0 96 94 103 105 10?2 97 102 100 99 58 92 102 102 106
Aug. - 107 81 95 92 305 105 100 100 98 103 97 %8 92 102 103 107
Sept. , 106 92 94 53 105 105 97 102 100 10 89 85 96 100 101 107

Qet, 106 90 96 65 101 109 95 102 100 99 101 92 67 102 101 106
Nov. 10t 95 93 7 101 108 93 10L 104 98 101 92 98 100 102 108

Dee. 160 85 91 9% 101 108 94 102 102 98 102 92 96 106 99 103

These data are graphically represented in Figure 5, in Section 6 of Chapter
1. The arithmetic average is 98.96 and the standard deviation is o = 4.94.
The autocorreiation of the series is given as follows:

e | rn F tb o t o

1 00201 6 i osm0s 1| —0.0748
> ) 08Tl 5 T | 0.2632 12| —0.1434
3 0 a2 | 8 0.1633 13 | —0.1233
4 0.6177 9 ootas | 14 | —o.0051
5 0.4948 10 |—oo0a7 | 15 | —o.0608

Referring to (7) we see that the autocorrelation function is theoretically
equal to
rit)y =1—1tj/12, t=12,
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The graph of this function, together with the actual autocorrelation and the
autocorrelation of the original random series, is shown in Figure 39.

rit} Y
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FIGURE 39.—AUTOCORRELATION OF FUNCTIONS.
This chart shows (a) actual 7(t} for 12-month moving average of a random
series; {b) theoretical »(#); (¢) r(t) for original randem series.

The derivation of formula (10) of Section 4, can be given quite
simply in terms of the present theory. Thus, we wish to determine
the lag correlation between the differences of orders m and n respec-
tively, that, is, between the functions

am Yi= MCO Tivm — mCI xi+m-1 + mCz Livm-g +.. 4+ ('_l)m mCm X,
A* Yi = 4Co Tisn — uC, Tivny + 40 Tiany + -+ + {(—~1)".Chz:.

By reversing the order of the terms, we may write these expres-
sions in the form

A™ m= (“1)m[»aco Ty =~ mcl xi+1 -+ ( l)m o xt-m] )
Ayi=(—D"LCoxi —aCi iy + - 4 (1.0, 20.]) .

These sums are now in the standard form and we may then readi-
ly compute

W? W; + W?«-l W: + W"‘ “nl I
—_ (_1)‘”“: [mCt nCo + mC!ﬂ ﬂC‘l + e + mCm nCm—!}
== (—1)”‘4‘“‘ mnCn+$ .

The lag correlation, o™ , between the two differences is then
immediately written down from this identity and is found to be

ﬂﬂCﬂf‘

e e s o
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7. The Theory of Sequences and Reversals®®

As we have stated in the first chapter, the theory of runs is close-
ly related to the theory of random series. Moreover, its nonmetrical
character, since it depends only upon the distribution of the signs of
the terms and not upon their magnitudes, makes it especially simple
in application,

The theory of runs is concerned with the signs of the first differ-
ences of the elements of a time series. These differences may be plus,
minus, or zero, but since zero differences are comparatively rare, it
is usually not necessary to differentiate the three classes. A zero dif-
ference may generally be regarded as having the sign of the preced-
ing difference. .

A run is defined as a sequence of like signs and its length is the
number of like signs. A reversal, as contrasted with a sequence, oc-
curs when a positive sign is followed by a negative one, or vice versa.

The ratio of sequences to reversals is defined by the fraction

E(S
) PZE—{%,

where E(S) is the expected number of sequences, and E{(R) is the
expected number of reversals.

For purposes of illustration we shall consider a random series
and an economic time series. The random series is the one given in
Section 1; the economic time series is the Dow-Jones industrial aver-
ages from which the random series was constructed as explained in
Section 1. Since there are 204 items in each series, we shall have
tables of signs with 203 entries, and a total of 202 sequences and re-
versals. These tables of signs, sequences (S), and reversals (R), are
given in the accompanying table,

A count of the sequences and reversals shows that for the ran-
dom series we have § == 57, R = 145, and for the Dow-Jones indus-
trial averages § = 113, R = 89. Hence, designating the ratios re-
spectively by o, and p,, we obtain p, = 57/145, = 0.3981, p, = 113/89
= 1.2696.

In order to examine these ratios more carefully we shall first
state a few of the results which have been obtained in the theory of
sequences and reversals and in the closely related theory of runs.

10 Much of the material in this section is taken from an article by H. E.
Jones, *The Theory of Runs as Applied to Time Series,” in Cowles Commission
for Research in Economies, Report of Third Amnual Regeurch Conference on
Economics and Statistics, 1937, pp. 33-36.
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TABLE OF SEQUENCES AND REVERSALS

165

" I If » I nj‘l n I i w I njp o= I u
1 +RBR —8/42 +R +8S:8 —R +R!124 + R —R'1685 + R + R
2 —R —8i43 —5 LR, 84 +R —5:135 —S +R’166 —R — S
3 4S —R/4 —R —R' 8 —S —E126 —R —S.16T +8 — 8§
4 +R 4+ 5145 + 8§ + 8 8 —R + 51127 +R —~ 54168 +R — 3§
5§ —R + Sj46 + R + 8 87T +R +R;128 —5 —Si169 —R — 8§
6 +R + 547 —§ +R; 88 —R —R {129 —R —S§:170 + S —R
7 —8 +R'48 —R — S| 89 +R +5(130 +R —R/171 +R + §
8 —R — 5149 +8 —R| 9 —R +S'131 —§ +S§/172 —R + §
8 +85 —S50 +8 +5;901 +8 +5132 —5 +R 118 +R +§
10 +8 —Ri51 +R + S/ 92 +85 +85:133 —R —8'174 —R +R
11— 4+ 5i52 —5 +8;: 93 +R +5i134 +R —R 175 +R ~ 8§
12 —S +Ri53 —R +Ri 94 —R + R 135 —BR + 85176 —R — 8
8 —8 —S:54 +R —R!9% +F —F 136 +R +Ri177T +R —R
4 —R —R!55 —R +R| 9% —B + 5137 —~R —R!178 — 58 + 8
15 +B + 8156 +B —S. 97 +B +8 138 4R + S 179 —R 4R
16 —R + 8157 —S§ —85:98 —R 4+ R139 —R +R!180 + S —R
17 +S5 +8i88 —R —~S, 99 + 8 —S 140 +R —R'181 +R + S
18 +RB +8{59 + R —R;100 —B —R 141 — S + S 182 —R + §
19 —R +Rj60 —R +R.101 +R 4+ 8:142 —-S +R 188 +R + K
20 +R —Ri6l +R —RBj102 —R + R‘143 —R ~—S18¢ — S —R
2l —R +862 —S5 +R108 +§ —R 144 +§ —$.18 —S +R
2 +R +863 —R —5.104 +8 +85146 +R —R'18 —R —R
22 —R 4+ Si64d +R —S 105 +R + 5146 — S +S'187 +R + §
24 +5 +8165 ~S5 —~R/106 —S + S{147 —R + 51188 —S +R
25 +E +566 —R +S'10T —E + S 148 + R + 5189 —B —R
26 —8 + 867 +R +R|108 +R +RI149 —R +S5S/190 +R +R
27 —~R 4+ R68 —R —5i109 —R —R {150 +R + S 191 —5 — 3§
28 +R —Ri69 +E —S:110 +R +R|151 —R 4 5,192 — R — 8
2% —R 4+ 879 —R —R)i11 ——R —Ri152 +B +R 193 4+ R —R
30 +R +8;1 +S +S112 +R +R!153 —B — 5,194 —F +R
3t —8 +Ry72 +B + 8118 —S —Ri154 +R —R 195 +R — 8
32 —R —R!78 —8 4+ R 114 —R + S/155 —R +R 119 —R — S
38 +8 +874 —R — 8116 +R + S 156 +RB —S197 + S —FK
34 +RBR +Ri75 +R —S:116 —-S + R!157 —R — 85198 4+ 8 + S
3% —R —8§176 —§ —§-117 —F —R 158 +B —5:199 +R +R
3 +8 —5!7"7 —R —S 118 +RBR + K159 —R —S§,200 —§ — 8§
37 + R —Ri78 + B —Ri119 —R — S5 160 + R —S/2001 —R — 8§
88 —R +R{f79 —S +RBI120 +8 —~S:161 —R —~§:202 +R —R
3% +R — 5,80 —R ~~5/121 +R —S§:162 +R —R 203 — +
49 —§5 — 581 +8 —8.122 —R —R!163 —R + R 204

44 —R —Ri82 +R —R'123 +S +Ri164 + 5 —R/

Column I gives the signs of the differences of the random series and enumer-

ates the sequences (S) and the reversals (X). Column Il refers to the Dow-Jones
industrial averages over the period 1897-1913.

(2)

and the standard error is equal to

For a random series of normally distributed elements, the ex-
pected number of reversals is given by the formula

118ee Jones, loe, eit,

E®=2tm-2),
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(3) 0y =3 VE@=T).

Since the sum of the sequences and reversals is equal ton — 2,
that is,

(4) E(R) +E(S)=n—-2,
it is clear that ¢, for a random series of normally distributed ele-
ments, is given by
_EW®
PTE®)
If v is the length of a run in a random series of normally distrib-

uted elements, then the expected number of such runs is given by the
formula *

(5) =3.

2[(v*+3v + 1) (n —v) +2(v+ 2)]
(v +8)! ’
We also note that if v is multiplied by its expected value and if

this product is summed over all the runs, this sum should be equal to
n — 1 ; that is,

(6) E@w) =

Q) f}vmv)zn—l.

If we apply these formulas fo the random series given in the
table, we find that

E(R) =% (202) =135, o, =} vI0d=670.

As we have already seen the actual number of reversals was 145,

the difference between this figure and the actual value being less than
20 .
R
The following table gives the distribution of runs, both positive

12 This formula'is due to, L. Besson, “On the Comparison of Meteorological
Data with Results of Chance,” (translated from the French and abridged by E.
W. Woolard), Monthly Weather Review, Vol. 48, 1920, pp. 89-04. The formula
a5 implicitly given by Besson in the table in the second column of page 93 of his
article was actually

E(v)=2(v=+3v+1)(n—v—2),
(v + 3)!

which is correct provided “end” runs are not considered. The formula as given
here was furnished the writer by P. 8. Olmstead. Formula (7) is only approxi-
mately correct if the Besson value of E(v) is used.
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and negative sequences being indicated, together with the expected
count and the error chserved.

TABLE OF RUNS OBSERVED IN A RANDOM SERIES

Actusl Count of Runs Expected Count of Runs ’
v Positive | Negative I Total E(vy Error
runa runs ! !
1 53 45 98 84 | 14
2 16 24 40 * a7 3
3 4 3 ) 11 -—4
4 0 1 1 2 —1
5 0 0 0 0 1}
Totals 73 73 146 134 }

If we consider next an accumulated random series, that is to say,
a series whose first differences are random, we find that the expected
number of reversals is given by

(8) E(R)=%(n—-2),
with a standard error of
(9) o, =% V(n—2) .

The ratio of sequences to reversals is consequently equal to 1;
that is,

__E(8) _

(10) PR

1.

We can obtain formula (8) by the following argument: In n ob-
servations there are (n—1) first differences. In this set of (n—1)
first differences there can be S sequences and (n—2) — 8 reversals, if
we assume that the probability of getting a sequence is equal to the
probability of getting a reversal. The number of different orders in
which (n—2) things can be arranged in two sets, S and (n—2) — §,
is (n—2)1/S'{(n—2—-8)! = ,.Cs. But a sequence can occur when
either a rise follows a rise, or a decline follows a decline. The total
number of samples containing S sequences, therefore, will be 2. ,_,Cs.
Since there are 2! possible samples, the probability of obtaining S
sequences will be given by the equation

n—2CS

(11) - PE®=T1

Now the expected number of sequences, E (S), will be that value
of § which makes P(S) a maximum ; that is to say, it will be the value
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of S which satisfies the inequalities

_(P(S—-1)
P(8) ={P(s+ 1).

It is easily seen that the value § = }(n—2) is the desired value,
and equation (8) follows immediately from (4).

The distribution of runs in an accumulated series in which, as
we have assumed before, the probability of getting a sequence is equal
to that of getting a reversal, is given by the formula

-1
(12) E@)="2r,
with a variance equal to
(13) ot = “_‘;;1. [1—- (2v-3)/2"].

)

In the above analysis we have assumed that the probability of
getting a plus sign is the same as that of getting a minus sign. This
would be the case, for example, if our signs are determined by the
toss of a coin, a plus sign for a head and 2 minus sign for a tail. But
the situation is somewhat more complicated if the probability is p
for obtaining a plus sign and g for obtaining a minus sign, p + ¢ =1.
L. v. Bortkiewicz has considered the problem of runs under these
more general conditions and has obtained the following formulas for
the expected number of runs of length v for an accumulated series:*®

(14) E(v)= (n—1) p*¢* 7z,

where we abbreviate
n=p + q*.

The variance of » is given by the somewhat complex formula

(15) 2= (n—1)[p* 0" 1oy — 2D° @° Typ-y — (20-1) 72

i
~ 4(20+1) 2 — (20+3) 7+ Bv 1, T,
~ 2(20+1) 7y Poz F B(UH]) Pury Teus]

Since the first term is generally dominating., we have as a first
approximation for the standard deviation the following:

{16) o, =pgvV (1) 7.

12 See Die Iterationen, Berlin, 1917, xii + 206 pp.; in particular, pp. 80-87.
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Formulas (12) and (13) are seen to be special cases of (14) and
(15) where weset p —g—1.

Since the Dow-Jones industrial averages, whose sequences and
reversals we have tabulated above, simulate an acecumulated series,
we may apply these formulas to the actual count obtained from this

economic time series.
Thus for n = 204, we obtain from (8) and (9) the values

E(R) =4 (202) =101, o,=1%v202=1T.1.

As we have already seen the actual number of reversals was 89, the
difference between this figure and the actual value being less than 2¢ e

The following table gives the distribution of runs, together with
the expected count, the standard deviation of v, and the error ob-
served.

TASLE oF RUNS OBSERVED IN AN EcoNomic TIME SERIES

% Actual Gaunt of Runs Expected Count of Runs
€ i Positive | Negative | Total B Gy | Error
N Tuns runs
1 21 18 39 | 51 714 —12
2 13 6 19 | 2k 5.26 — 8
3 8 12 18 | 13 3.54 5
4 3 2 5 | & 2.49 —1
5 | 2 3 5 | 3 1.75 2
6 1 0 12 1.23 —1
7 2 1 g I 1 0.87 2
8 0 0 0 : 0 0
Tatals | 48 42 | 90 | 101

In the foregoing analysis we have tentatively assumed that the
stock price series is an accumulated random series, a conclusion that
would be both interesting and important if it could be established.
We shall therefore subject the results which we have just obtained to
further analysis.

In the first place, we observe that a difference as large as that
observed between E (R) = 101 and the actual count of 89 would be
observed only about 9 in 100 times since the difference is 1.69 times
the standard error. Let us now compare E (v) with the actual count
of runs by means of the Chi-square test of Karl Pearson.’* Assum-
ing that there are 8 frequency classes, we compute 3? = 12.18, which
yields a Pearson probability of 0.10. This means that in approxi-
mately 10 cases out of 100 a fit as poor as this will be obtained by

14 See Davis and Nelson, Elements of Statistics, 2nd ed., 1937, pp. 202-206.
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random sampling.’* Our conclusion is, then, that the economic series
under examination probably has more structure than an accumulated
random series. This conclusion will be further strengthened by the
analysis of the next section.

8. An Application to Stock-Market Action

The theory of sequences and reversals has been used by Alfred
Cowles and Herbert E. Jones in a study of the structure of stock mar-
ket indexes.’® As will be explained later in this book, a number of
professional speculators have adopted systems which depend in one
way or another upon the principle that there is a tide in the move-
ments of the stock market and when this fide is running, it is highly
advantageous to swim with it. The existence of such a movement can

Probability

i 1 Number of
Unit | Index Pericd Observa- p) of Chance
f i tiona Occurrence
20 Minutes | Harris-Upham . 1935-1936 ] 2800 144 | <0.000001
1 Hour Dow-Jones Hourly Avgs. 1 1933-1934 800 1.29 0.00040
1 Day | Dow-Jones Hourly Avgs. 1931-1935 1200 1.18 0.00094
1 Week : Standard Statistics ] 1918-1935 938 1.24 0.06386
2 Weeks | Dow-Jones 18971935 976 1.02 0.80258
3 Weeks ! Dow-Jones 1897-1935 652 | 1.08 0.30772
1 Month Index of R. R. Stock Prices | 1835-1935| 1200 1.66 | <0.000001
2 Months | Index of R, R. Stock Prices I 1835-1935 600 1.50 | <0.000001
3 Months !Index of R. K. Stock Prices | 18356-1935 | 400 | 129 0.01242
4 Months | Index of R. R. Stock Prices { 1835~1935 300 118 0.16452
5 Months |Index of R. R. Stock Prices ; 1835-1935 249 1.52 0.00120
6 Months |Index of R, R. Stock Prices [ 1835~-1935 208 1,40 0.01778
7 Months | Index of R. R. Stock Prices | 1835-1935| 178 | 138 ;| 003486
8 Months |Index of R. R. Stock Prices ; 1835-1935 156 1.48 0.01640
9 Months |Index of R. R. Stock Prices | 1835-1935 138 1.57 0.01016
10 Months |Index of R. R. Stock Prices l 1835-1935 124 1.49 0.03000
11 Months ; Index of R. R. Stock Prices | 1835-1935 113 1.29 ! 0.21870
1 Year Index of R. R. Stock Prices | 1835-1935 100 r 1.17 i 0,42952
2 Years Index of R. R. Stock Prices | 1835-1935 50 1.63 0.08726
3 Years  Index of R. R. Stoek Prices ! 1835-1934 33 1.46 0.28014
4 Years . Index of R. R. Stock Prices | 1835-1935 25 0.85 0.6818¢
5 Years "Index of R. R. Btock Prices | 1835-1935 20 1.00 1.00000
6 Years | index of R, R. Stock Prices | 1825-1931 | 16 0.67 0.44130
7 Years ! Index of R. R. Stock Prices | 1835-1933 | 14 0.71 0.56192
8 Years ! Index of R. R. Stock Prices | 1835-1931, 12 0.22 0.03486
10 Years | Index of R. R. Stock prices | 1835-1935, 10 | 0.60 | o 74140

1> The reader will observe that the Chi-square test actually cannot be applied
to the distribution given here. The sum of E (v) does not equal the frequency of
the observed runs, and the eonditions of the test are violated. However, the test
probability gives a lower bound to the actual probubility, and the conelusions may
be accepted safely.

16 “Some o Posteriori Probabilities in Stock Market Action,” Economelrica,
Vol. b, 1937, pp. 280--294.
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be exhibited by means of the ratio of sequences and reversals defined
in the last section.

Let us designate by p(t) the ratio of sequences to reversals,
where ¢ designates the time unit to be employed. Thus if £ is one day,
we mean that p(t) gives the ratio of sequences to reversals for stock
market averages one day apart. The object of such an investigation
is to answer the question as to the degree of randomness inherent in
the movements of the stock market, and whether or not there is an
optimum length of time for which structural inertia may be discerned.

The accompanying table gives the ratio of sequences to reversals
over a range varying from 20 minutes to 10 years. In computing the
column entitled “Probability of Chance Occurrence,” it has been tenta-
tively assumed that the economic time series considered are of the
nature of an accumulated random series, an assumption that is not
entirely unreasonable as we have seen from the analysis of the pre-
ceding section,

The probabilities have been estimated in the following manner:
If we designate by S the actual number of sequences and by E the
number of reversals, then eliminating R from the equations § + R =
n—1 and S = p B, we shall have

p—1

S=o77

(n—2).

But from the last section the expected number of sequences,
E(S), is equal to $(n—2) and the standard deviation is 1(n—2)L
Hence if we consider the difference

RATIO RATIO
10 2.00
1.50 N AN A ] 1.50

aatill \\ \J 4
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FIGURE 40.—-RATIO OF SEQUENCES TO REVERSALS OF STOCK PRICE INDEXES
FOR VARIOUS TIME INTERVALS.
(Logarithmic time scale in units of 20 minutes.)
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we see that - gives a measure of the variation of the number of se-
quences from the expected number in terms of standard errors. Con-
sequently the probability of a chance occurrence of the observed ra-
tio, on the assumption that the series is an accumulated random ore,

_S-E®) _p-

T
8

is given approximately by the function

P(f)=1—\/§ rrwdt.
0

From the table of averages, it is clear that for some time units,
such, for example, as one month, there is a wide variation between
the actual and the expected sequences. Hence, as the authors say,
“this evidence of structure in stock prices suggests alluring possibil-

ities in the way of forecasting.”

i —
m=zy,
v s AL

ABSOLUTE PERCENTAGE CHANGES IN STOCK PRICE INDEXES

Average | Standard
Unit Period Number ' Absolute | Devistion
of Ob- | Changein of

servations | FPer Cent Avernge
20 Min. July 9, 1936—-July17, 1936 111 0.12 0.01
1 Hour :Sept. 12, 19835-0ct. 6, 1935 102 0.32 0.03
2 Hours 1Aug. 1, 1935-Oct. 6, 1935 103 0.47 0.04
1 Day Aug. 27,1934-Dec, 31,1934 102 0.78 0.07
1 Week |Jan.6,1913-Dec. 31,1934 1128 . 2.58 0.21
1 Month |Jan. 1, 1897-Dec. 31, 1984 451 3.70 0.46
2 Months [Apr. 1, 1918-Dec. 1, 1934 100 | 5.02 0.91
3 Months [Jan., 1835-Dec., 1934 400 8.92 0.79
4 Months Dee., 1900-Dec., 1934 100 1079 0.99
6 Months Jan., 1893-Sept., 15934 100 8.62 0.82
6 Months Dec., 1884—Dec., 1934 190 . 10.04 1.20
T Months 'June, 1876—0ct., 1934 100 . 1181 1.30
8 Months  April, 1868-Dec., 1934 100 ©  11.30 1.13
9 Months [June, 1869—-June, 1954 100 | 1273 1.29
10 Months 'Jan., 1861-Apr., 1934 100 ' 13.00 131
11 Months |Dec.,1842—July, 1834 100 | 18.99 1.26
1 Year |Jan.,1831-Jan., 1934 103 | 1470 143
2 Years |J an,, 1831-Jan., 1933 51 i 22.58 278
3 Years |Jan.,1831-Jan., 1933 34 28.03 4.81
4 Years Jan., 1831-Jan, 1931 25 j 30.59 477
b Years ;J an., 1831—Jan., 1931 20 ! 33.45 5n
6 Years |Jan.,1831-Jan., 1933 17 38.59 8.90
7 Years ;Jan., 1831-Jan., 1929 14 33.54 9.62
8 Years Jan., 1831-Jan., 1927 12 32.38 9.16
9 Years 'Jan. 1831-Jan., 1930 11 | 4598 | 13.64
10 Years Jan., 1831-Jan., 1931 10 | 5164 : 10.90
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In order to explore this matter, an extensive study was under-
taken to determine the average percentage change in stock prices for
various units of time. Thus the difference between the index at the
beginning of one unit and the beginning of the next was divided by
the initial value to indicate the percentage change over this unit of
time. The results of this study are contained in the accompanying
table.

"It will be observed from these data that the average absolute
change in per cent increased essentially in an exponential manner with
the period employed. It must not be assumed from this, however, that
the same general expansion will take place in the next century, since
our data here describe what has happened to stock prices over one of
the most remarkable periods of industrial expansion in the history
of the race.

But since it is clear from the analysis that there has been an in-
ertia present in the movement of stock prices, it will be instruetive
to compute what would have been the net gain to an investor had he
made use of this important property of the series. The calcuiations
are taken from the original article.

For this computation let us denote by 7(f) the expected annual
net profit in per cent, by (%) the ratio of sequences to reversals for
the time interval t, by C(t) the average change per time interval ¢ in
per cent, by Y (£) the number of time intervals, ¢, in one year, and by
B the brokerage cost for one complete trade, in per cent.

We shall assume that the investor changes his position only after
the occurrence of each reversal. Hence the average net time in the
right direction between changes of position will be [p(f) — 1] time
units, Since the average move per unit of time is C (%), the gross gain
per position will be [p{t) — 1] C(t), and the net gain will be this
amount diminished by B. To reduce this to a ratio we divide by 100
and the entire quantity we shall designate by 4(¢) ; that is

i(t) =001 {[p(t) —1] C(t) — B).

Since the investor will be in the market in the right direction
p{t) units of time and in the wrong direction 1 unit, the fotal time
per position will be p(¢) + 1, and the number of positions taken per
year will be Y (£} /[p(f) + 1]. Let us designate this quantity by
n(t) ; that is,

n(t) =Y () /[p(t) +1].

Hence the total net annual gain, in per cent, will be given by the
formula
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(1) I{t) =100 {[1 +i(D)]"® —1}.

Since the data necessary for the computation of I({)} have been
given in the preceding tables, it is possible for us to test the efficacy
of this method of stock investing. The resuits are given in the fol-
lowing table:

" Time Unit e cit) Expected Annual Net Profit for
Brokerage Costs of

' 1% 114% i 2%
1day 118 | 073% | —674% | —83.0% | —aL1%
1week | 124 | =. 6 | " ass | ise —276
1 month ;168 1 350 6,66 4.25 2.00
2 months 150 | 502 3.66 2.44 1.23
3 months 129 | 892 2.79 191 1.03

As one might expect, units as short as one day or one week are
associated with too small an average percentage change to show a
profit. The average net gain per trade is largest for two months, but
the number of changes of position per year reduces the annual net
gain below that of one month. The conclusion is thus reached that the
optimum period of time for this type of investing is one month. In
spite of this positive conclusion that a profit can be made by this
method of making use of the inertia of the series, a study of the con-
sistency of the data for short periods of time shows that the method
is operative only over very long intervals and could not be used for
obtaining annual profits.

However, the analysis clearly shows that the time series for the
stock market prices has a structure and that this structure is visible
in a predominance of sequences over reversals. Later in the book it
will be shown how the Dow theory of forecasting essentially makes
use of this property.



CHAPTER 5

THE DEGREES OF FREEDOM IN EcoNOMIC TIME SERIES
1. Preliminary Definitions

From the astronomer and the physicist we have derived the con-
cept of degrees of freedom possessed by the elements of a time series.
A particle moving in a line in a plane has one degree of freedom, but
if it may wander without restraint in the plane then it is said to pos-
sess two degrees of freedom. The theory of the kinematics of a rigid
body may properly begin with the propesition that such a body has
six degrees of freedom. The argument is illuminating and may be re-
produced as follows: The position of a rigid body in space is fully
determined by the position of three points within it which are not
collinear, since the position of any other point is determined by ref-
erence to the given points. But the nine co-ordinates necessary for
the specification of the three points are not independent, gince, in a
rigid body, the three distances between the points remain unchanged.
Hence the number of degrees of freedom will be the number of co-
ordinates diminished by the number of relationships between them,
that is to say, 9 ~ 3, or six degrees of freedom.

In recent years the concept of degrees of freedom has had an
increasing importance in statistics. Although the concept was fa-
miliar to Gauss, the modern use of it was introduced by “Student” in
1908 and given increasing importance in the writings of R. A. Fisher
and his followers. Strange to say, however, there have been few pre-
cise statements of the meaning of the term degrees of freedom in sta-
tistical literature. Recently, however, Helen M. Walker has done sta-
tistics a favor by devoting an article fo the subject.!

In mechanics the term degrees of freedom has long had a precise
meaning. Thus, if we have a system of n material points and these
points are entirely free to move, then 3n co-ordinates would be re-
quired to specify their combined configuration. But generally there
will exist a system of restraints between the points, as we have indi-
cated above in the case of a rigid body, and these restraints will be
specified by a system of % equations between the co-ordinate variables.

1 “Degrees of Freedom,” The Journal of Educational Paychology, Vol. 3f,
1940, pp. 263-269.

e 175 —
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These equations may be represented as follows:
(1) Filz, ¥, 2:3%,%,%;5 3 % s Yn, 2} =0, i=1,2,.,k.

If the particles are free to move in any direction and if 3n co-
ordinates are necessary to specify their configuration, then we say that
the system has 3n degrees of freedom; but if there exist k restraints,
then the number of degrees of freedom is 3n — k. Thus if a single
particle is constrained by elastic forces and initial boundary condi-
tions to move in a line in a plane, it has 3 — 2 =1 degree of freedom.
The actual specification of its motion as a function of time may in-
volve the fitting of a function with p parameters.

In the statistics of variance a similar concept is invoked by the
term degrees of freedom. Thus we find the following statement by J.
0. Irwin:

We notice that the number of degrees of freedom is equal to the number of
observations made, less the number of independent relations between them,

account being taken of the fact that the population mean is itself estimated from
the sample,!»

In the statistics of time series, however, the precise meaning of
the term degrees of freedom has not been clearly stated, or, at any
rate, it has not been incorporated into the theory to the same extent
ag it has been in the statistics of variance. We are thus free to for-
muiate the concept in what appears to us to be the most useful form
for our present purpose. It will be seen that we are adapting the
physical concept to the problem of economic time series.

Let us assume that we are concerned with the N elements of a
time series

(2) 'y(t): yl;uzjys:"')y!\"-

If the elements of y(t) are random numbers, then there will obvious-
ly exist no relationship between them of the type specified by (1). In
this case we shall say that the number of degrees of freedom is N.
But if, on the contrary, the values of y(t) are given by the curve

y(t) = A sin kt,

then only two parameters are necessary for their specification and
the number of degrees of freedom is 2. If it should happen, however,
that one of the two parameters was specified a priori, then the num-
ber of degrees of freedom reduces to 1. This is illustrated by the case

12 “Mathematical Theorems Involved in the Analysis of Variance,” Journal of
the Royal Statistical Society, Vol. 94, 1931, pp. 284~-300; in particular, p. 287.
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of the simple pendulum swinging in a plane. The motion of the bob
for small amplitudes is described by the sine function just written
down. But the pendulum has only one degree of freedom since the
parameter k is equal to the square-root of g/L, where g is the accel-
eration of gravity and L is the length of the pendulum; hence % is not
statistically determined. The parameter A, on the other hand, de-
pends upon the initial displacement of the bob and thus is a statistical
observable,

Another aspect of the problem of the pendulum that may be used
to guide our thought is found in the fact that the energy of the pendu-
lum system, that is to say the total kinetic energy possessed by the
bob at the bottom of the swing or its potential energy at the top, is
proportional to A*. But we also know that the variance of the funec-
tion ¥ (f) = A sin kt taken over any number of complete cycles is
equal to $4?. Hence, it would be attractive to relate the computation
of the number of degrees of freedom to the computation of the energy,
or what is the same thing, to the computation of the variance ac-
counted for by the functions used in the description of the time series.

We may then proceed as follows: Let us suppose first that ¢ (¢)
may be described completely by a set of n functions which contain p
statistical parameters. We shall say that y (¢) has np degrees of free-
dom, Thus, if y(#) consists of a set of N random numbers, these can
be completely represented by a Fourier series consisting of 4N har-
monics each containing two parameters. The number of degrees of
freedom is thus N .

One of the principal problems in the analysis of economic time
serieg is to determine how many parameters and how many functions
are necessary for the apecification of the elements of the series; that
is to say, to determine the number of degrees of freedom involved in
the observed variation of the series. But it is easily seen that an im-
proper choice of functions may lead to an excessive estimate of the
number of degrees of freedom. For example, if & in the function
¥ = A sin kt does not belong to the Fourier sequence described in Sec-
tion 4 of Chapter 2, then the description of ¥ by a Fourier series
would require all the #N components and we might reach the errone-
ous conclusion that the humber of degrees of freedom was N instead
of 2. The concept is thus related to the character of the functions se-
lected for the representation of the series. A choice of the compo-
nents of a Fourier series would lead to one estimate and a choice of
a series of Legendrian polynomials would lead in general to another,
Although a proper choice of functions is often indicated by the nature
of the series itself, we -shall assume that the real number of degrees
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of freedom is the smallest number possible if all types of functional
representation were tried. It is obviously impossible to make such a
determination, but the criterion would immediately differentiate one
set of funetions as better than another. Moreover, in most cases, by
the use of harmonic analysis and other statistical devices, it is pos-
gible to make a good approximation to the real number of degrees of
freedom.

Since the point of view adopted in this book has been strongly
colored by classical mechanies, principally because economic time se-
ries in many respects resemble series derived from systems of physi-
cal variables, it will be convenient to approach the problem in hand
through the concept of energy. If this appears strange to the statis-
tical reader, he may translate energy into variance. The mathématical
theory of energy is in most regards indistinguishable from the theory
of variance. But the latter concept has been associated mainly with
static populations, while the former is a concept intrinsic to all dy-
namic phenomena, Hence, we shall define as the total energy of sys-
tem (2), a quantity proportional to the variance o2, where «* is the
squared deviation of the elements of the time séries from their aver-
age value. Symbolically we shall write thiz in the form

E_—_kaz,

where k is a factor of proportionality which depends upon the nature
of the series itself,

It will be convenient, also, to concern curselves with linear rela-
tionships, and we shall assume that y(f) can be represented by a
linear function of the form

(3) ¥(t) =g, (8) + oty () + -+ + aant, (2),

where the u, (f) are functions defined either as continuous mathemat-
ical quantities such as sines and cosines, or by the statistical elements
of an economie time series.

As is well known, any linearly independent set of funections may
be replaced by an equivalent set of normalized orthogonal functions of
the type described in Chapter 2. The technique for obtaining such a
set has already been explained in Section 12 of that chapter. Let us
now assume that such a set has been obtained from the functions
u;(t), and let the elements of the set be v,(t), v,(), -+, v.(¢). In
terms of these, equation (3) then becomes

(4) y(&) =80 {l) + Bvs(l) + - + Bava(2).
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If this set of functions is closed (see Section 3 of Chapter 2), a
necessary condition for which is that n is infinite, then ¥ {{) can be
described completely by the »;(t). In general, however, a finite num-
ber of the functions will give a sufficiently close approximation to
¥{t) and we can write

(5) Brah ks + e+ Bl =07,

where 4,, 4,, --+, 4, are proportional to the variances of the functions
v, (£), v, (£), -+, v (f) as stated in Section 11 of Chapter 2.
The quantities

(6) Ei:kﬁieli

will be referred to as the elementary energies associated with the func-
tions »; ().
It is clear that we shall have from (5) the relationship

E,+E,+-+E,=E,

where E is the energy of y(t).

1f the set of functions »;(f) is not closed, then the sum of the
elementary energies will be less than the total energy as one sees from
Bessel's inequality discussed in Section 11 of Chapter 2. This condi-
tion is the one that usually appiies in the application of this theory to
economic time series.

As we have already indicated above, one of the most important
problems in the analysis of economic time series is to determine the
number of functions and the number of parameters necessary to spe-
cify a given series. But the actual determination of the system of
functions, u;(f), which accounts for the largest amount of energy
with the smallest number of degrees of freedom is the second prinei-
pal problem of economic dynamics. This choice of functions must also
be accompanied by some a priori judgment as to the essential charae-
ter of the functions thus selected for the approximation. For example,
an economic time series may be equally well acecounted for by means
of a system of Legendrian polynomials or by a system of harmonic
terms, since both sets are closed, and the number of degrees of free-
dom might actually be the same. But the harmonics may be a logical
choice for the representation, if cycles are known to be present in the
series, whereas the Legendrian functions may have no interpretation
at all.

The problem of determining the funections to be employed in the
approximation is clearly one of great difficulty, and it cannot be
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solved by mathematics alone. Experience and a knowledge of the un-
derlying phenomena are required. Thus the actual construction of a
new science is a long and difficuit task, since the interrelationships
between the observed phenomena must be discovered by the process
of experimentation on the one hand and intuition on the other. The
difficulties in constructing a social science are even greater than the
difficulties encountered in constructing a physical science, since in the
former the relationships are seldom functionally exaet and must be
explored through the medium of correlations instead of complete fune-
tional relationships.

Before proceeding to the mathematical details by means of which
we may attain a measure of the number of degrees of freedom that
exists in the assumed relationships between a set of variables, it will
be worth while to consider the nature of the probabilities which are
encountered in establishing these relationships. This problem is dis-
cussed in the next section.

2. Economic Time Series as a Problem in Inverse Probability

The problem of determining structure, such as a more or less reg-
ular periodicity in economic time series, is essentially a problem in
inverse probability. We are required to state the probability that a
certain structure exists, while we are in complete, or almost complete,
ignorance as to the generating causes.

As an illustration of this point of view, let us consider the essen-
tial difference between the two observed phenomena of a 12-month
eycle in egg prices and a 40-month cycle in the price of industrial
stocks. In the first instance we are aware of a satisfactory causal re-
lationship. The change in the seasons has a known and measurable
effect upon the production of eggs. Hens lay in the spring and cease
laying in the fall. There is thus a large seasonal variability in the sup-
ply function and this variability is, in turn, reflected in prices. But
what shall we say about the 40-month cyele in the price of industrial
stocks 7 Let us examine the statistical evidence. It ecan be shown that
the same cycle is observed in industrial production, constant in phase
but variable in amplitude. At times the influence of the cycle is
masked by larger trade trends such as those experienced during the
disruptive pericds before and after the inflationary stock market of
1929. But since one also observes that the cycle in stock prices pre-
cedes the cycle in production, we eannot, as in the case of eggs, at-
tribute the production cycle as the cause of the cycle in the former.
As a matter of fact, the reverse seems to be true.
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Here, then, we have an economic phenomenon without any clear
a priori cause. What, then, shall we mean by the question: Is the 40-
month cycle a real economic phenomenon? It will be observed that the
answer to this question containg the crux of the problem of the analy-
gis of economic time series.

In order to investigate the problem thus invoked, suppose that
we first assume that the periodogram of stock prices has been exhib-
ited over a period in which the phenomenon is evident. Let us then
inquire into the nature of the significance of the amplitude R ob-
served for the period T = 40,

In a time series for which it is known a priori that cycles should
appear, although the actual cycles may not be known explicitly, the
relative significance of one amplitude in comparison with others can
be stated as a direct probability. The technique for obtaining this
probability will be discussed in subsequent sections.

Without invoking questions of statistical procedure, let us assume
that we know the distribution of the values of R as a frequency func-
tion of the form y = F(R), where J* F(R)dR = 1. Then the prob-
ability that R will have a value between R, and B, + dR is given by
F(R,)dR , and the probability that R will exceed R, in value is

1) P=1- fan(R)dR.

This probability may be regarded as a measure of the significance of
E.

But in the analysis of the structure of economic time series the
problem is seen to be essentially different. Thus, suppose that by (1)
we have found that the significance of R for T = 40 is measured by a
probability P = 0.005. That is to say, the probability of observing a
a value of R as large as the one actually observed is five in a thousand.
This would naturally imply high confidence in the actual existence of
a 40-month cycle in stock prices if we knew that cycles were really
present in the series. But unfortunately we have no a priori theory
which will account for the existence of such a cycle, and yet we are
asked to have high confidence in the reality of the cycle as an eco-
nomic phenomenon.

But the important question is actually something else. We should
ask, as a result of the observation of R, whether or not the 40-month
cycle is to be regarded as a permanent characteristic of stock prices.
Obviously ore may assume that either it is a permanent character-
istic, or it is not. But what probability shall we then assign to these
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two mutually exclusive propositions? In other words, having observed
a very improbable value of R, we now ask how this observation af-
fects our belief in the hypothesis that the 40-month cycle is a perma-
nent characteristic of industrial stock prices.

Let us phrase the question in terms of the language of inverse
probability, a theory which is clearly indicated as involved in the an-
swer o the question proposed. We may thus say: An event (the ob-
servation of the improbable value of R) is known to have proceeded
from one of two mutually exclusive causes (either the 40-month cycle
is a permanent characteristic of stock prices, or it is not). What is
the probability, p, that the event proceeded from the first cause?

We may assume that, if the 40-month cycle {s a permanent char-
acteristic of stock prices, then the probability of observing so large
an amplitude ratio ag that actually observed may be as great as p, =
0.995. If, however, the second is true, then the probability of observ-
ing the phenomenon is p. = 0.005. But what probabilities shall we
assign to the two mutually exclusive causes? Invoking the prineiple
of insufficient reason we might write P, = 4, P, =1 — P, —= 4. Hence

the probability, p, that the event proceeded from the first cause would
be

0.995 X §

BT T A

Y/

But a personal inquiry into our belief in this figure shows that it
is far from realistic. No one believes that the chances are 995 in 1000
that the 40-month cycle will be revealed by the periodogram of the
next, and as yet unknown, ten-year period of industrial stock prices.
Who, for example, would wager any considerable amount on this prob-
ability by actually adopting a speculative program based on his belief
in the permanence of the 40-month pattern?

It is thus clear that the principle of insufficient reason is not sat-
isfactory, That the 40-month cycle, or any other cycle, is a perma-
nent characteristic of stock prices must be regarded as highly improb-
able in the absence of any a priori reason for its existence. Let us
denote this unknown, but small, probability by P, and the contrary
probability by 1—P, . Then the probability, p, that the observed val-
ue of K appears as a result of the first cause, will be

(2) p= 0.995P, — 0.995P,
0.995P, + 0.005(1-P,) 0.990P, + 0.005 "

This equation may be solved for P, and we thus obtain
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. 0.005p
T 0.995 — 0.990p "

Let us now assume that a survey of the evidence, and, in particu-
Jar, a reflection upon the magnitude of the observed value K, has con-
vinced us that the probability that R has been derived from a true
40-month pattern in stock prices is as great as 0.50. In other words,
let us assume that p = 0.50. We now ask what the probability is that
the 40-month cycle is a permanent characteristic of stock prices. Sub-
stituting p = 0.50 in (8), we find that P, = 0.005. That is to say, in
spite of the fact that we have a half measure of belief that B must be
derived from a permanent pattern of stock price action, nevertheless
our belief is only 5 in 1,000 that this permanent characteristic actual-
ly exists.

This analysis explaing, in part at least, the reluctance of econo-
mists to believe in the permanence of the 40-month cycle on the basis
of present statistical evidence. Few speculators, perhaps not more
than 5 in 1,000, who have observed the 40-month period in a time
interval A, will use this observation as the basis for speculation in
the subsequent time interval B .

The reader at this point should observe that the argument which
we have given here depends upon the subjective judgment demanded
by the principle of insufficient reason. About this principle there has
always existed the greatest doubt and many writers on probability
have rejected the theory of inverse probability because of the in-
evitable intrusion of some assumption about the distribution of prob-
abilities in an unknown universe of objects. This does not mean that
the formula of Bayes which we have used is wrong, but that the as-
sumption of a uniformly distributed ignorance of fundamental causes
is abhorrent as the basis of a rational theory. The author has merely
attempted in this section to point out that there is usually involved in
speculation in the stock market a subjective judgment about the move-
ment of price averages, and that this subjective judgment is made for
the most part on the basis of insufficient reason since the probabilities

depend upon a mechanism about which little is known at the present
time. '

(3) P,

3. Significance Tests and the Problem of Degrees of Freedom

The problem which we shall consider in the next few sections is
that of determining the significance of the parameters in a linear re-
lationship such as that of equation (3) of Section 1; namely,



184 THE ANALYSIS OF ECONOMIC TIME SERIES

(1} ¥ () = o (2) + axtta (£) + -+ + aathn ().
We shall assume, first, that the independent variables, u,(?),
u, (), «-+ , 1y (t), have been determined by some a pricri judgment.

For example, they might be harmonic terms suggested by a period-
ogram analysis of y () ; or they might be strictly economic variables
which ohservation shows are related to the dependent variable. Thus,
if y(t) is the price index of common stocks, then « (f) might be the
production of pig iron, #, (£) the index of building, etc.

We shall assume, second, that the variables u;(¢) have been ex-
pressed as deviations from their averages and that they have been
divided by their standard deviations, o;. If the number of items is
large, the standard error in the values of «; is small, and no essential
restrictions will have been imposed by this assumption. The case of
large samples is one frequently encountered in dealing with economic
variables.

Since it is difficult to define the elementary energies associated
with each of the variables in (1) because of their intercorrelations,
we shall next transform this equation into its equivalent in terms of
the normalized, orthogonal variables », (%), va(f), '+, va(f). We thus
obtain

(2) y(2) = B (8) + Bt (F) +--- + Bava(l),
where the §; are obtained from the «; by means of the equations

- (3) Bi =2 wiy 0y,
i=1
The matrix, U = ||ui;]], is the unit, orthogonal matrix defined in Sec-
tion 12, Chapter 2.
The problem, then, is to determine the significance of the elemen-
tary energies
(4) Ei=kf21:,

defined by equation (8) of Section 1. This measure of significance can
be made, of course, only by determining the distribution function for
the elementary energies E .

Fortunately this distribution function has been the object of con-
siderable study for the case where the v, (¢) are sines and cosines, and
a satisfactory theory has been achieved through the studies of Sir
Arthur Schuster, Sir Gilbert Walker, R. A. Fisher, and others. An
account of these researches in their relationship to the problem of
harmonic analysis has already been given in Section 8 of Chapter 1.
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It will be found upon examination that much of the theory will also.
carry over to the case where the variables are any set of normalized
orthogonal functions.

The following definition of the number of degrees of freedom ob-
served in a function y(¢), whose regression equation is (2), appears
to be a logical consequence of the point of view which we have adopted
above. If we define the quantity E, = ¢*/N as the energy of a random
element, then the number of degrees of freedom possessed by the
variable g (t) is given by the expression

(1-ZE)
— Ex

where 3| E, is the energy accounted for by the p elements of the origi-
nal n variables, which have been judged to be significant by some test
depending upon the distribution function for £. Equation (5) may
be written more simply

(6) n"=p+1+NQAQ-3IE,).

In this formula p + 1 is used instead of p since one degree of
freedom is required in the specification of the arithmetic average.

Some objection may be raised to this definition of the number of
degrees of freedom, since it will yield a rather large estimate for most
economic time series. It must be remembered, however, that the num-
ber of degrees of freedom contributed by the second term is the num-
ber of degrees attributable to the random element. Thus, to account
for this random element a Fourier series of N(1 — 3 E,) terms would
probably be required. It seems reasonable, therefore, to attribute that
number of degreea of freedom to this element. We shall refer to p as
the number of significant degrees of freedom and to N(1 — 3 E,) as
the number of random degrees of freedom in the residual element.

Thus, in the example of Section 2 of Chapter 7, a total energy
E == 0.8866 i3 accounted for by four harmonics each containing two
terms. Since the series is composed of 300 items the number of de-
grees of freedom is estimated to be

n'=9 1+ 300(1 — 0.8866) =43.

But we know from the character of the series itself that the addi-
tion of one more harmonic term, containing two degrees of freedom,
will exactly account for all the energy. Hence the number of degrees
of freedom is actually 11 instead of 43, but this could not be known
without a further study of the residuals. Hence the estimate of 48 is
not unrealistie,

(6) n=p-+1-+
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We now turn to a discussion of the significance tests for harmon-
ic analysis as they have been evolved by Schuster, Walker, and Fisher.

4. Schuster’s Significance Test in Harmonic Analysis

In order to understand the problem of determining significance
in harmonic analysis, let us consider the time series, y(f). Let the
valuus A, and £, be camputed by the formulas

v t 2 ¥ t
A,,—‘%‘\: y{t) cos—n)\fi B,,——i-w-Ey(t) sm-l?-—

and let the squarcs of the amplitudes of the Fourier sequence be de-
fined as betorve by

R*=A.,2+B,>2.

Schuster’s test of significance may then be formulated as follows:
Let Ryt —= 40°/N be the meen valuc of the squares of the amplitudes
of the periodogram sequence R,2. Then the Schuster probability, Py,
that any squured wmplitude, R?, chosen at random, will exceed « Ry*
15 given Oy

P,=e™

We may reconstruct the argument as follows: Suppose, first, that
the original observations, ¥ (t), are normally distributed. Then, since
the A, and B, are linear functions of the observations, they will also
be normally distributed. Hence the probability that 4, lies between
Aand A + dA is

dl, = —— el g4,
o, 2n
where we define
A-a 2ntn 2
T4 —ﬁazzco 'N——'-N:U'z.

That is to say, the probability df, may be written
m_d__wmw

Similarly, the probability that B, lies between B and B + dB is
given by
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dls = -E-—l— gY¥Ehegn,
n 2¢

Hence, the joint probability that A, lies between 4 and 4 +dA ,
while B, lies between B and B + dB is given by

._N 1 LFF. ;]
dP_-;Tq.z_e_Ng/ dAdB.

Replacing dA dB by R dR d¢, we may write this probability in the
form

= N 1 -NRitdo?
dP = — = e*¥ue dR: df,

Now integrating over the area between the circles centered at the
origin with radii R and R + dR, we get as the probability that R?
shall lie between R* and E® + dR?

arP = TE? e¥Ra0t d Rz,

Hence, integrating this expression between the limits of R«* and
%, we obtain as the probability that R? shall exceed the assigned val-
ue R,? the quantity

PB = Z"y_z fme_ﬁh‘.’.ual ng —_ e'NRB’/QG' .

R g2
But the mean value of E? is equal to 402/N 80 that we can write

Py = e-hwrant,

Hence, if we assume that Es*> = « Ex?, then the Schuster probability
becomes

Py=e*.

As an example, let us apply this test to the periodogram of the Dow-Jones
industrial stock averages (1897-1914), which we have previously discussed. For
the original data we have the variance, o2 — 225.3154, and since N — 204, we have
a8 the mean of the Fourier sequence the value R,? = 40¢2/N — 4.4179. Since
Schuster arbitrarily chose as his significant probability, P, — 0.005, we would
have for the corresponding multiplier, x = 5.30. Hence Schuster’s test would say
that there are 5 chances in 1000 that any squared amplitude, E?, chosen at ran-
dom would exceed

5.30 X 4.4179 = 23.4149.
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Upon inspection of the periodogram we find three values which exceed this
limit, namely R2{68) — 108.78, R?(51) = 34.30, and R*(41) = 216,74. A fourth
value, R2(23) — 22.28 nearly equals the limit. From this we would conclude that
the probability favers the belief that there exists more than a random structure
in the original series.

5. Walker's Significance Test in Harmonic Analysis .

Sir Gilbert Walker was the first to call attention to the inade-
quacy of Schuster’s test for significance. His argument ran as fol-
lows: Suppose that a large value of RB? has been found in the fotal
Fourier sequence of the 3N independent terms necessary to represent
‘N observations. Schuster’s test merely gives the probability that an
R* chosen at random shall exceed « Ry®. But what is really required is
the probability that some R? among the total number in the Fourier
sequence shall exceed « By,

We may state Walker's test as follows:

The Walker probability, Pw(x), that at least one R® among the
totel Fourier sequence of 3N independent values representing N ob-
servalions will exceed x By® iz given by

Pr(x) =1~ (1 —e*)*¥,

The argument is merely this: The probability that any squared
amplitude, R?, selected at random will yield a value in excess of x Ru®
is by the Schuster theorem equal to e~ Hence the probability that
any randomly chosen value of R® shall be less than « Ry?is 1 — e, and
the probability that all the values will be less than « By? is (1 — e*)¥.

Thus the probability, Pw(x), that at least one R* shall exceed the
specified limit is

Py(x) =1 — (1 — ex)¥,

One deficiency in the Walker theory is immediately observed. We
know that Py (1) must equal 1.00.since some R® must necessarily
equal the average Ry’ But unless N is infinite, this is not the case.
However, since for values of N exceeding 20 we have Py (1) > 0.9825,
this defect is not likely to cause difficulty in actual application of the
significance criterion.

Tables of the function Py (x) have been prepared for values of N
from N =10 to N = 600 by intervals of 10 and for « from 0.1 to 10.0
by intervals of 0.1, These are recorded in Table 1 at the end of the
book.

As an example of the application of Walker’s test, let us consider the period-

ogram of the Dow-Jones industrial stock averages (1897-1914), which we dis-
¢ussed in the example of the previous section. Employing the same criterion of
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significance, namely, Py, — 0.005, we find that this corresponds to the value
x == 9.9 when N == 204. Noting that R,* — 4.4179, we see that by Walker's test

there are 5 chances in 1000 that some R? among the total Fourier sequence will
exceed

9.9 X 4.4179 = 43.7372.

Since the values for R2(68) and R2(41) exceed this limit, we are justified by

this test in assuming that they indicate a significant variation from the expected
distribution,

6. R. A. Fisher’s Test of Significance

The tests of Schuster and Walker were derived on the assump-
tion that the R? to be tested is derived from a series whose cbservas
tions are random selections from a2 normal universe with Jmown vari-
ance equal to ¢*. But when the unknown variance must itself be esti-
mated from samples then these tests must be modified to take account
of this fact. The analysis necessary to establish the criterion in this
case was carried out by R. A. Fisher. The test may be formulated as
follows:

Let g' be defined by the rutio

N
g - 2_0'2"!
where R is the largest among the squares of the amplitudes of the
Fourier sequence. Then, if n = }(N — 1), where N is the number of
observations, the Fisher probability, Py, that ¢ will exceed some cri-
tical value g is given by the formula

Pp=n(l-g)* — f_(_';_l) (1-2g)™* + .-

n!

BN

(1 - my)'-l ’
where m is the greatest integer less than 1/g.

Before examining the argument by means of which this formula
is derived, let us first observe that the difference between Py and Py
is not great within the usual range of application. In order to see this,
let us note that if N is sufficiently large so that we may disregard the
difference between N and N—1, then the x of Walker’s test is related
to the g of Fisher’s test by the formula « = ng . Hence we may wr.ite

Prlx) =1~ (1—e")"=1— (1 —e™)",

— ey — n(n2—-!-1) oine n(n—l?zz(n—Z) s —
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This series, for sufficiently small values of g, will converge very
rapidly to P, («). Moreover, if g is small enough, then the term ™
may be replaced by (1 — rg)". Hence, the Walker probability fune-
tion is seen to approximate closely the Fisher function. As an exam-
ple of the closeness of the agreement, let us assume that g = 0.19784,
n == 30. We thus obtain P, = 0.0500, which is to be compared with
Py = 0.0813, computed for « = 30g, N = 61.

A number of values of P, have been eomputed and will be found
in Table 2 at the end of the book. The argument « = ng has been used
instead of g to correspond to the argument used in the table for Py .
This table has been computed in terms of # = (N — 1) instead of
for N as in the case of the table for P,. Hence comparable values for
P as given by both tables will correspond to the same argument «,
but for N and n == 3(N — 1) respectively. Thus if « = 7.5, N = 100,
we get Py — 0.027283 from Table 1 and P, = 0.01737 from Table 2.
The latter value corresponds to n = 50 (neglecting 3).

The general derivation of the formula for P, is difficult and re-
quires an analysis of the distribution of the values of R? in a hyper-
space of n dimensions. The following discussion of the problem has
been furnished the author by John H. Smith and is included because
of the light which it throws upon an essentially difficult argument:

Walker's and Schuster’s lests are exact tests of significance for an Rz de-
rived from a series whose observations are random selections from a normal uni-
verse whose variance is known to be ¢2, When the unknown variance must be es-
timated from samples, the test eriterion, x, is not distributed exactly as 3x? with
two degrees of freedom as implied by Schuste1r’s test, but as IN times the square
of a2 measure of correlation with 2 and N—2 degrees of freedom. Hence its exact
probability integral corresponding to Schuster’s approximate test is

9k \H(H-1)
P.—=f1——
=(-%)

This approaches the value e* given in Sectipn 4 as N increases without bound and
it may be identified with the incomplete Beta-function, L[3(N-2),1], 2 =1 -
2x/N, defined in Section 8 of this chapter.

In order to derive Fisher's formula, let us eonsider the case where n — 3.
The squared amplitudes, R? ;» are then represented in one octant of a three-dimen-
sional space in which R2 is the vertical co-ordinate, Since the RZ, are propor-
tional to x* with two degrees of freedom the frequency density is constant along
planes of the form

’
R2 + Ry, + R, =K
of which the region in the octant considered is an isosceles triangle.
The condition that g’ exceeds g is
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R, >g 3R,

=t
& condition which is fulfilled by all points above the plane
(1 — g)R*, =g (R2, + R?).

This plane divides any plane of constant frequency density into two sections,
the section in which R3, is greatest being an isoaceles triangle whose sides are
{1-g) times as large as those of the entire region in the octant. Since all planes of
constant frequency density are divided in the same proportion the probability
integral of g' can be identified with proportions of any such plane. If RZ were
choeen at random it would be necessary to consider only the region in which R2,
is greatest as a proportion of the region in the octant. Since similar areas are to
each other as the squares of their like dimensions, the probability integral for
this case is

P=(1-g)

This corresponds to Schuster’s test when estimates of variance are used and when
N — 7 so that n == 3.

When ¢’ is greater than 3 and R, is the largest E?, the probability integral
is simply three times its value for R?, selected at random, or the sum of three
regions, one in each corner of planes of constant frequency density. When the
value of g° is between 1/8 and 1/2 these three regions intersect and it is necessary
to subtract three smaller regions of the same shape. Sides of these smaller regions
are (1 — 2g) times as large as those of planes of constant frequency density and
hence, when 1/3 < g’ < 1/2, we have

Pp=3(1— g)2 — $(1 — 29)2,

Although g’ must equal or exceed 1/3 when R?, is chosen because it is largest, if
sueh impossible values of ¢’ are congidered geometrically it is found that the small-
er regions also intersect in the center of each plane of constant density and the
addition of the common area {1 ~ 3g)? reduces P, to unity as it should.

In the general case, the probability integral (1—g)™1 for the case in which
R?, is pelected at random is multiplied by » because there are n regions with
which this integral may be identified. These regions have n~1 variable dimen-
siong and hence all exponents are n—1. The first term is the complete probability
integral when g’ exceeds 3. When ¢ is less than %, regions common to each pair
of regions of the firat order must be subtracted to avoid duplication. There are
2C» Buch regions of the second order. Similarly, regions of the second order inter-
gect when g’ is less than 1/3, and regions of the third order must be added.

Thus the general integral is derived by adding the relative volumes of the
regions each of which is equal to the simple probability integral, subiracting vol-
umes of common regions, if any, adding corrections of second order, if neceasary,
and eomtinuing the process as long as the volumes of common regions as indicated
by Fisher’s formula are positive. In the mth term there iz one common region
for each set of m hyperplanes and hence the coefficient is the number of combi-
nations of n things taken m at a time.
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7. Factor Analysis

By factor analysis we shall understand the calculus by means of
which we can determine the number of significant components which
account for the energy observed in a statistical variable. Otherwise
stated, it is the calculus which determines the number of degrees of
freedom possessed by the statistical variable.

The term factor analysis appears to have originated in psychol-
ogy, where the difficulties of mental measurement are increased by the
difficulties of defining what is to be measured and by the large num-
ber of tests which are frequently employed to measure mental fac-
ulties. Economics also is faced by many of the problems inherent in
psychology. Therefore, it is important for us to consider some of the
problems of those who began the measurement of mental factors.

C. Spearman, in an attempt to explain the relationships generally
observed in the intercorrelation of mental tests, proposed the theory
that any intellectual ability may be regarded as due to a general fac-
tor common to ali such abilities plus an additional factor specific to
the trait in question and not observed in any other except closely re-
lated traits. This proposition is known as Spearman’s general factor
theory, or alternatively, as his theory of two factors.?

The general idea of what we may call the tetrad-difference cri-
terion may be explained briefly as follows: If we have a set of n men-
tal tests, and if there is a factor, g, common to all of them, then the
correlation between any two of the tests, with g held constant, will be
given by the classical formula

Fig — Tig Typ
V(- (1—75,)

If we assume that the correlation between different tests is zero
when the common factor is held constant, we obtain the equations

Fijp =

{1) Tij_figfjg,:O.

If n = 4, then r,; and r;, can be eliminated from the set (1) and a sys-
tem of zero tetrad differences obtained which are equivalent to (1).
That is to say, we have

t For & discussion of this theory sce C. Spearman, The Abilities of Man, New
York, 1927, 415 + xxxiii pp.; in particular, the mathematical appendix. Also J.
Holzinger, Staligtical Résumé of Spearman’s Two-Factor Theory, Chicago, 1937,
vi 4+ 102 pp.; William Brown and G. H. Thompson, The Essentials of Mental
Measurement, Cambridge University, 1921, x + 216 pp.; in particular Chapter 9.
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(2) P =Ty Ty —Tun; =0,
If there are = tests, then the number of tetrads, -, is equal to
r=3,LLe=n(n-1) (n—2) (n—3)/8.

For n =4, weget r =3; for n = 5, r = 15; ete. The three tetrads cor-
responding to the case n = 4 are the following:

Piszs = T1g¥2s = TsT1e
(3) Prase = T12¥ae — 2714,
Praes = T1z¥3¢ — 713724 .

It is also possible to compute the elementary correlations r;, pro-
vided (2) holds rigorously. Thus for 7%, we get

(4) 1210 == P12 T1s/T2s = T12 T14/T2a =T33 T14/Tsu +

Similar equations hold also for ,, and 7y, .

Because of the necessity of proving that the tetrad differences
are actually zero much attention has been given to the problem of ob-
taining the standard error of a tetrad. Several solutions of this prob-
lem have been given and the reader is referred to the literature for a
more extensive account of this still debatable question. For the case
where n=4, the following estimate of the variance of p,;.. Will be
found practical:

1
(5) o?p = '-A?['J":m + 1+ s 7 = 2(rre st a1l
+ TiPoaTae F TFraTasT2a) + 47037007 2070].

As an example of this theory, let us consider the relationship ex-
hibited by the example in Section 12 of Chapter 2, where the four re-
lated variables are: (1) the Dow-Jones industrial averages; (2) pig-
iron production lagged three months; (3) building-material prices
lagged six months; (4) stock sales on the New York Stock Exchange.

It iz not unreasonable to assume that the four series may be dom-
inated by a single element, the exact nature of which is unknown. To
test this we compute the three tetrads and obtain for them the values
—0.012719, —0.038768, —0.026049. The variance, as computed by (5),
is found to equal ¢* = 0.00183616, from which we have « = (0.04285.
Since all the tetrads are smaller than this standard deviation, we may
assume that they are statistically zero. Hence, we reach the conclu-
sion that the correlations observed between the four series is due to
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a single factor.  Such a coneclusion is not unrealistic, since, as we shall
see later, a large number of the time series which relate to economic
phenomena share a considerable variation in common. We may also
observe that this variation appears to be related to the variation in
the index of total real national income, Employing the first of the
formulas in (4), we find that the correlation between this unknown
factor, ¢, and the Dow-Jones industrial averages is as great as 0.988.

This very interesting conclusion might be interpreted to mean
that economic phenomena, like psychological phenomena, are bound
together by a common, universal thread, which contributes to them
their observed intercorrelations,

E. C. Rhodes in a paper of considerable interest has employed the
technique of factor analysis to construct an index of business activ-
ity.? Thus he assumes that the various series which are ordinarily
combined, with suitable weights to form the index of business activ-
ity may be written

Xi=rl +g06, + X,

where I is the common factor (business activity), G the group factor,
and X’ the specific factor. The parameters r and g are constants,
which depend primarily upon the special units empleyed in the defini-
tion of X, . Rhodes’ problem was to distill by means of factor analysis
the common factor from the various special economic time series,
which are assumed to contain the factor J. The methods which he
emploved in this problem are ingenious and suggestive and it is not
unlikely that the future development of the analysis of economic time
series may turn in this direction.

A number of objections, however, have been raised by the psy-
chologists and others to Spearman’s theory, and undoubtedly the econ-
omists will aceept it with similar reluctance info their science. Sew-
eral alternative methods have been proposed for determining the fac.
tors in a set of variables. Prominent among these are the matrix
technique of L. L. Thurstone,* the confluence analysis of Ragnar
Frisch,* and the method of principal components due to H. Hotelling.*

8 “The Constructicn of an Index of Buasineas Activity,” Journal of the Royal
Statistical Society, Vol. 100, 1937, pp. 18-39; Discunssion, pp. 40-66.

¢ The Vectors of Mind, Chlcago, 1935, xv -+ 266 pp. See also “Multiple Fae-
tor Analysis,” Psvcholoqtcal Review, Vol. 38 1931, pp. 406—-42

5 Statistical Confluence Analysis by Means of gomplete Reg'reaswn Systems,
Oslo, 1934, 192 pp.

4 “Analvsm of a Complex of Statistical Variables into Prineipal Components,”
Journal of Educational Psychology, Vol. 24, 1933, pp. 417441,



THE DEGREES OF FREEDOM IN ECONOMIC TIME SERIES 195

Mention should also be made to the weighted-regression method due
to M. J. van Uven’?

The method of Thurstone depends essentially upon the possibility
of being able to factor the matrix of the elementary correlation co-
efficients into the product of a matrix by its conjugate, Its principal
advantage appears to be that it affords a practical method for han-
dling the factor problem when the number of variables is large. The
reader is referred to the original sources for a more complete account
of the ingenious devices introduced by Thurstone to make this com-
plex problem tractable.

The theory of principal components introduced by Hotelling has
much in common with the method to be introduced in the next two
sections of the present work. Hotelling encounters trouble, however,
in establishing a satisfactory significance test for his components ow-
ing in large measure to the mathematical difficulties inherent in the
problem of establishing a manageable distribution for a set of simul-
taneous correlation coefficients. These difficulties are surmounted in
ancother manner by the theory of significance given in the next few
pages.

Since the confluence analysis of Frisch has been employed by
economisis in recent studies, we shall give a brief summary of its
salient features. This method approaches the problem by means of a
computation of all possible regressions between the variables. The
principal tool is what is called the bunch, that is to say, the totality
of all vectors having the slopes determined by the regression co-
efficients.

If the addition of a variable to a regression does not sensibly
affect the bunch, then this variable is called superfluous; if its addi-
tion widens the bunch, it is called detrimental; if, however, its inclu-
sion tends to tighten the bunch, then it is useful.

The method of Frisch has several advantages and several disad-
vantages. Of the latter we shall speak first. One of the principal dif-
ficulties with confluence analysis, especially if it is applied to five or
more variables, is the excessive labor of calculation involved. All ele-
mentary regressions must be formed between all the variables, Al-
though Frisch has invented a technique for this calculation, the labor
is still excessive, Thus for a five-variable system some 1386 multipli-
cations are involved in a complete tilling, while for 12 variables the
number is 565,236. A second objection is found in the fact that no

! See T. Koopmans, Linear Regression Analysis of Ecomomic T4 erias,
Haarlem, 1936, 132 pp. i yets of #me. Series,
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measure in terms of probability has been given to determine when a
bunch is affected usefully or detrimentaily. Hence a variable must be
included or excluded by a personal judgment as to the observed effect
upon the bunch.

The advantage of the method is found in the fact that it requires
an actual observation of all the possible effects produced by the intro-
duction of new variables into the regression. The visual aspect of
these effects from a study of bunch maps will give unquestionably a
deeper insight into the nature of the included variables than can be
obtained otherwise.

1f the tilling table has once been constructed, the application of
confluence analysis is very simple. Thus let X; and X; be two normal-
ized variables® in the set X, Xs, ---, X, . We now form the regression
between them by minimizing in the direction of the kth component,
This regression can then be written

X;=Bw™ Xj+...:uw

ijlabe...m) Tki (abc . n) Xf + T,

where k& assumes in turn the values a, b, ¢, ---, n. These numbers
are, of course, the elements of the tilling table. This same technique
applies equally well to any subset.

The bunch is constructed by drawing through the origin for every

value of k lines with slopes equal to B! , =~ and with the lengths
[r:jlnbtn-n) + T:imbr-‘-n) ]"

As an example illustrating his method, Frisch corsiders the following regres-
sion system:

X, =y, +01y,,
X, =y, +01y,,
X,=y, +y, +01y,,
X, =y, — 9, +01y,,

(6)

where the values of y; are determined by independent drawings from a set of
random numbers. The small terms introduce a system of random errors into the
data.

It is clear that the variable X, is approximately equal to —X, + X, and
also to X, + X,. In other words, the complete system of variables containg lin-
early dependent subgroups. Consequently any attempt to form a single regres-
sion equation between the four varinbles would lead to spuricus results.

*1t is essential that bunch analysis be carried through in normalized vari-
ables, that is to say, variables with means equal to zero and standard deviations
equal to unity. Such variables are

z
X, ==
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A computation of the bunches reveals this situation clearly. From the tilling
tables of Frisch the bunches for (12), (123), and (124) are easily comnstructed
in the following manner:

We first compute:

B — —0.1215561/1.000, Bz — —-1.000/0.121651,
12412) . 12412}
0.553533 0.568602 0.737534
{1) _——_—, B2 = —, B3y = e m——
12{123) 0.667433 12{124) 0.553533 124123) 0.736753
0.42992% 0.433741 0.6413956
B — —_— Bz — _—, B3) ot —
12(124) 0.462913 VZ(A24) 04299249 121124) 0.663422

The bunches corresponding to these three cases are now graphically con-
structed as shown in Figure 41. It is obvious that the introduction of either the
variable X, or the variable X, to the system (12) closes the bunch. Hence either,
by itself, is a useful variable, and the tightness of the bunches (123) and (124)
indicates that a satisfactory regression has been attained.

In order to explore the situation further we now examine the bunch for the
case (1234). The following regression coefficients are first obtained:

" _ 0.001832 ) _ 0.016355
1z(iz3e) 0016273 tetizan . 0.001832
o 0.012116 w  _ ., Dbo10782
1200230 | 0011739 ' 12024 0010733

From the bunch map it is immediately seen that the introduetion of the fourth
variable explodes the bunch, and hence the introduction of either X, to (124) or
X, to (123) is detrimental. We thus reach the inescapable conclusion that two
linear dependencies exist.

4
n
vif +05} + 050 2 o0}
\
+1 +0.5 +0.5 00.‘01
0 ——] t :
-1, - o8t 1 =05k -0.01F
2 3
2
a2y (123} 1z4) (1zsd)

FIGURE 41..—PARTIAL BUNCH MAP.
This chart illustrates how useful and detrimental variables in a regression
analysis may be detected. Vectors corresponding to the primary variables are
indicated by cireles.
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8. The Method of Elementary Energies

As an alternative method for investigating the sigmificance of
variables in a linear regression, we shall return to the formulas of
Section 1. There it was assumed that a variable y(¢) is to be ex-
pressed as a linear function of a set of normalized variables, u. (%),
13 (L), «++ , ua(£), that is to say, variables with zero means and unit
variances,

If the intercorrelations between the functions are represented by
ry,i,7=1,2,--,n, and the correlations with y(¢) are r,; , then we
can write

) y(t)=§aim(t),

where the o; are determined from the system,
Gt P+ Taay o T 0 =7g,

(2) Y2 O + U+ T ay et Ton @ ="0,

L] L]
Fap Oy 4 FpaUla T Py @z + ooo + 0y =74,

In terms of these values the fraction of the variance of y(Z)
which is aceounted for by the regression will be ¢,? defined by

o=t e+ -ttt 20 Tt 2aiayryy +--e

We next express y(f) in terms of the normalized, orthogonal
variables v, {t), v2(%), -+, v.(?) described in Section 1, and thus ob-
tain
3) y(t) =2 Bivi(t).

=1
The variance o,? in terms of the g, is now equal to
01':ﬁ1’ 11 + ﬁ:, 12 + .-+ ﬁn’ 1“ ’
where the values 1; are the roots of the characteristic equation
Dy=iry—9,;2i=0, du.=1, 4,=0, 1£7,

The problem now is to determine the significance of the elemen-
tary energies

(4) Ei=p21;.
Since equation {(8) resembles a Fourier series in the sense that
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it is a linear function of a set of normalized, orthogonal functions, it
is reasonable to suppose that a test can be found for the significance
of the coefficients, which is comparable with the Schuster and Walker
tests for harmonic analysis.

An examination of the argument given in Section 4 shows that
some modification is necessary, since there the joint distribution fune-
tion for the coefficients of the sine and cosine components is devel-
oped. This led to the distribution of the energy, K% associated with
these two components. But in the present instance we are dealing
with an orthogonal system, instead of a biorthogonal one, as in the
case of harmonic analysis.

In order to test the significance of the elementary component
E, = $*4; it iz necessary to place some restrictions on the sampling
process. Assuming that observations on the dependent variable y(t)
are affected by random normally distributed errors of sampling but
that values of the independent variables u,;(t) do not vary from sam-
ple to sample, the sampling distributions of the coefficients of the or-
thogonal functions v; (1) are easily derived. If observations on the in-
dependent variables u;(f) are constant from sample to sample, obser-
vations on the orthogonal variables v;(¢) will, of course, remain con-
stant. Under these conditions the linear function

. 2ut) vi(t)
B8 \/li---——-\-/lri—

will also be normally distributed.

It is now our purpose to discuss the distribution of the square of
the quantity we have just written down, that is to say, the distribu-
tion of the elementary component E; = 8;* 1; . For this we shall need
the following analysis:

Using the abbreviation A for a normally distributed variable, let
us now consider the probability

1
5 P=
(5) N

2
\/-‘2_.7!" T4

F i A
f e-Yai0ar d g — J. eHa/oar g4 ,
-d 0

where o,! is the variance of 4.,
If we now make the transformation { = §(A/¢.)* and in the
hNmit of the integral write x = A%/o.?, then P assumes the form

ik
pol [Ter
vaYe Vi
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The incomplete Gamma function is defined by the integral

I.(p)= f‘ ettt
L]

Hence, noting that I'(}) = v/a, we can write P in the form
P - Fﬁ_x (%)
r)

Since tables have been provided by Karl Pearson for the incom-
plete Gamma function in the form?

I(u'p)—-_*m’ u:__x:’
I'ip+1) vp+l
we now write P as follows:
r,(-t+1) e
P=m=1(x/\/2.—%).

This function gives the distribution of A2/ in terms of the
parameter «, and hence we obtain the following as the distribution
comparable with the Schuster distribution e* for R?:

(6) Ps=1—1{x/V2 —1).

If the exact value of o, is not known, then the probability inte-
gral given in (6) must be considered as an approximation. If an un-
biased estimate of ¢,? derived from the residuals from the regression
of y(t) on the v:(?) is used instead of the exact value of the preced-
ing formulas, the quantity « is distributed as the square of “Student’s”
t. Hence, an exact test of significance can be applied to the ratio
A/ey by entering a table of £ with this ratio. The argument may be
reviewed as follows:

Instead of the normal frequency function we begin with “Stu-
dent’s” distribution function

poTUN+DH 1 (1 +£)—4:.\'uu
rgNy r@) v

N
where N is the number of degrees of freedom.
The probability P defined by (5) is replaced by

% See Karl Pearson, Tables of the Incomplete I-Function, Cambridge Univer-
versity and the Biometrika Office, London, 1934, xxxi + 164 pp.
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_ 20 A i ~J(¥'+1) F(&N' + i)
P= 1 dt =_ 5 T
TN —J vz Where C= Ny T D)

Making the transformation s = ¢2/(N'0.42), x = A%/a.?, We get

KN’
P:C f (1 + s)—i(N’+1l gl ds;

or, introducing the second transformation x = s/(1 + 8), we obtain

K

R
— — “IN'-1 b1l —
%) P—-CJ; (A-2)woaidz,  R=of.

Employing the following notation for the incomplete Beta-func-
tion;3°

Bp,q)= [ o (1-m)+ds,

(]

* I'(p) I'(q)
B(p, ¢)= »(l-x)rdr = —n———,
p.q J: T(p+q)
B.(p,q)
Il v =11 » ’
(2.9) E(r.0) 1~1,.(q,p)
we can write
i _Ba{3,¥N) _ .
P“_"_"___B(%,gN’) =1:(1,4N)
=1-1_:(iN',%).

Hence the probability corresponding to (6) assumes the form

(8) Pa=I(N.§),  R=gp.

The practical application of these criteria is immediately seen to
depend upon the possibility of determining the value of the variance
of 4, that is to say, .2, either exactly, in which case formula (6)
applies, or as an unbiased estimate, for which we may then use for-
mula (8).

But in the case of the elementary energies, E; = 8, i, , we see
that the variance is immediately estimated from the variance of the
original data provided the original orthogonal system is closed. This

1 See Karl Pearson, Tables of the Incomplete Beta-Function, Cambridge Uni-
versity Press and the Proprietors of Biometrika, London, 1934, lix + 494 pp.
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is by virtue of Bessel's inequality given in Section 11 of Chapter 2,
from which we derive

N
Noel2=(f24 + 820+ - +ﬁu2 in) :E‘y*(t) =Nd*,
that is to say,

o 2=o%.

Hence, in order to test the significance of a particular value of
E; = B A; chosen at random from a closed set, we form the ratio

and introduce this value into either formula (6), if ¢* is known ex-
actly, or into formula (8), if o® is an estimated value.

This result may be stated in the following theorem: Let the quan-
tity E, = 5 1 be defined by equations (3) and (4), where the func-
tions v; (t) form a closed set of orthogonal functions. Then if obser-
vations on y(t) are not correlated with v;(t), the probability, Ps,
that any E; chosen al random will exceed x o® is given by equation
(8), or if o* 18 known exactly, by equation (6).

The results obtained from equation (6) approach those obtained
from equation {8) as N increases without boung and (8) may thus be
replaced by (6) when N is large. The probz&ility function corre-
sponding to Walker’s probability for R* as previously given in Sec-
tion 5 is simple when the exact value of ¢ is known. This may be
written

w=1— (1~ Py~

where N is the number of orthogonal functions. The corresponding
function for use when ¢ must be estimated from small samples is not
known, but it will be asymptotic to the function just written down as
N inereases without hound.

The content of the theorem just given may be more clearly under-
stood by the following examples:

Example 1. Let us assume that the closed system of variables, v; (1), is de-
fined as follows:

2wt 4art 6Tt
”I(t):m?, vs(t) 2003?, vs{t)=msw-,"'
. 2wt . 4wt . 8wt
v, (¢) ::sm—N-, v, (t) ::smF, v, (t) =sm-&-—,
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Referring to the formulas in Section 10 of Chapter 2, we see that

-

¥  2mwt ¥ 2mt
A, = 3 sin? = ¥ cog? ——=—3iN,
=0 =0

Moreover, noting the definitions employed in Section 7 of Chapter 2, we have

2 %1 2mwt

Bﬂm—l:_" 2 cos #(t) :A""
N =0
2 X1 2mmi
Bam = — X sin y(t)=B,,.
=0
Referring to formula (4), Section 3 of Chapter 2, we readily find
-z
a'f:é‘flé—.::k:'(zliz + B2} =,

Hence, to test the significance of either A > or B,? separately instead of the
sum B2 —= A2 4 B,? as discussed in Section 4, we write
By, B, NAZ _E,  NB;?

, OrK==-——==

2 2 2 :
o, T, 2a 0,2 202

The probability of obtaining a ~ as large as the observed one is then obtained
from either formula (6) or formula (8), according to whether o2 ig kmown ex-
actly or by estimate from the data.

Ezample 2. As a second example let us consider the simple regression equa-
tion

[
{(2) y=r L™

b

for which we seek the significande of the regression coefficient, 8 = r o,/0,.
From the point of view of the theory given above we assume that x is a mem-
ber of a set of orthogonal functions, v, (%), v,(t), - - , v,{t), a set which ac-
counts exactly for the variance ¢,2, But since these functions, except for the first
which we can identify with z, are unspecified, we must modify the theory just

given by estimating og? directly. Thig estimate ia well known to be
N
(10) ogt=02(1 — 7?) v

where N' = N — 2 ig the number of degrees of freedom.1?
Since x = Zx2 = No.2, we have E — B2A = Nr2 o.2. The value of « thus
becomes
E N r2

(11) ‘:o_s;zl—-r’

14

1t See, for example, R. A. Fisher, “Applications. of ‘Student’s Distribution,”
Metron, Vol. 5, No. 3, Dec. 1, 1925, pp. 90-104. Also P. R. Rider, “A Survey of
the Theory of Small Samples,” Annals of Mathematics, Series 2, Vol. 31, 1930,
Pp. 577-628; in particular, p. 587.
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If o2 is assumed to be exactly known, we enter formula (6) with this value
of x, but if the variance is an estimate then we use formula (8).

If we substitute x as defined by (11) in the formulaR — x/( N' + «x}, then
it is found that R — r?, a well-known result.:

Since « is a function of 72 alone, it is clear that the significance level for r
corresponding to any preassigned values of N and P can be immediately com-
puted. Thus if we assume N — 100, P — 0.05, we obtain from formula (6) the
value r = 0,1942, and from formula (8) the value + — 0.1946.

Example 2. As a third example, let us consider the regression

y==Bu, (t) + 8,v (£} +--- 4+ B, (i),

where v, (), v,(t}, -~ , v,(l) are orthogonal funections, but do not form a com-
piete set, It is clear that the example just given is a special case of this system.

As in the case of the closed system considered previously, we shall have
A; = Xv;E(t) and E; = #.2);, but 0,2 must be estimated from the equation

1
0’_‘2 :.{\T :Ey - (.611"1 + Bgvg + -+ -prp)]z-

Making use of the notation introduced in formula (5) of Section 3, we can
write this variance in the form

1-XE,
~

g 2=

where N, the number of degrees of freedom, is specifically defined by N' = N
—p—1.

Hence, in order to determine the significance of any observed value E;, we
enter farmulas (6) or (8) with the value

l\” E‘-

(12) «=x{p) ZI—TED .

It is both interesting and important to inquire how this formula agrees with
the one previously obtained for a closed system of orthogonal functions, where «
was defined by the equation

NE,

2
a!l

or merely, « == NE, , provided o2 =— 1, as is assumed in equation (12).

Referring to equation (6) of Section 3, and cbserving that a set of N orthogo-
nal variables belonging to a complete set will completely specify a function de-
fined over a range of N items, or if one degree of freedom is used for the speci-
fication of the arithmetic average, then N — 1 variables will suffice for the def-
inition of the function, we see that the following limit holds:

(14) lim (1 — 3 E,;) =0,

as p =& N — 1. That is to say, »', as defined by equation (§) of Section 3, ap-
proaches the limit N as p approaches N — 1.

12 See, for example, Pearson’s Tables of the Incomplete Beta-Function, p. liv.

(13) €=
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Hence, we can write (12) in the form
N-p-—1 .
«(p) =—NE,,
n —p-1
and thus we have, from the considerations just given, the limit x(p) — N E; as
p = N — 1. This limit is ebgerved to be the same as (13) when o2 — 1.

9. Exzamples Illustrating the Method of Elementary Energies

As our first example illustrating the method of elementary energies, we
shall consider the problem discussed in Section 12 of Chapter 2. This problem con-
siders the regression between: (1) the Dow-Jones industrial averages; (2) pig-
iron production lagged three months; (3) building-material prices lagged six
months; (4) stock sales on the New York Stock Exchange. The question to be
discussed here is the significance of the regression equation between the indus-
trial averages and the other three variables.

By means of the actual correlation coefficients, the three values of a; [equa-
tion (1) of Section 8] are computed from system (2) of Section 8, and found to
equal

a; — 0.319019, a, — 0.517386, a, — 0.231367 .

The fraction of the variance accounted for by the regression is found from
these values to be 0,744908,.

By means of the transformation (3) of Section 3, and the table of values u; 5
computed in Section 12 of Chapter 2, the parameters 8, are readily found to be

B, = —0.141428 , B, = —0.103959, B, — 0.626222 ,

Now intreducing the characteristic numbers, evaluated in Section 12 of Chap-
ter 2, we comnpute the three elementary energies

E = A2, =0.009117,
E,— 8,2, — 0.007423,
E,— 8,2, —0.728368.

The first two energies are very much smaller than the third, but we cannet,
for this reason alone, reject them. To test their significance we first multiply
them by N'/[1 — (E, + E, + E,)] == 200/0.2651, and thus obtain

«, =7.1478, «,=5.8197.

The Schuster probabilities computed from formula (6) of Section 8 are found
to be respectively P, = 0.0075, and P, == 0.0142, which indicates that the two
variables play more than the role of random variables in the regression. How-
ever, we see from the Walker probability that if N — 204 items of a random |
Beries are represented by a closed system of orthogonal variables, then the prob-
abilities that at least one coefficient will have a higher significance than those
attributed to E, and E, by the Schuster probability are respectively 0.7847 and
0.9459. It is possible to infer from this that there are two linear dependencies
between the variables. In other words, there exists a common factor which is the
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cause of the observed correlation between the variables, a conclusion which we
have already reached in the analysis of this same example in Section 7.

With this knowledge before us we may now return {o the relationships given
in Section 12 of Chapter 2 between the variables »; and the varisbles w,. Since
the energies associated with », and v, are essentially zero, the dependencies be-
tween the »'s may be studied by setting both », and v, equal to zero. The most
easily observed conclusion from this is that the production of pig iron.and the
price of building material, except for the factor peculiar to each individual se-
ries, are essentially the same variable.

For our second example, we shall analyze the regression system (6) of Sec-
tion 8, which Frisch employed in the illustration of confluence analysis,

We first compute the secular determinant of the correlation coefficients for
the entire system. This is found to be the following:

1—2x —0.121551 0.656809 0.752502

—{.121551 1—2 0.657698°  —0,732862

b= 0.656809 0.657698 1—x 0.014385
i 0.752502 —0.732862 0.014385 1—»x

= 0.000262838495 — 0.06818088401 A + 4.017T0773844 X2 — 4 A3 -+ 4.

The roots of the equation D(x) — 0 are found to be A, = 0.007736, A, =
0.0085963, », — 1.870086, A, — 2.113582.

The fact that the first twe roots are very amall indicatea that there are prob-
ably two linearly independent relationships between the variables. But since the
distribution for the roots is not known we cannot safely assume this without fur-
ther investigation.

The regression of X, on the other three variables is now computed and found
to be

(1) X, = -0.112626 X, 4+ 0.721395 X, - 0.659684 X .

The coefiicients of the components are the values of a; in equation (1) of Section
8.

The next step is the computation of the #;. In order to accomplish this the
values of the associated characteristic numbers are first found from the secular
equation A(A) = 0, where A(A) is the cofactor of the first element in the de-
terminant D (1). From the equation

A()) =0.016272507679 — 2.030139701627 A 4+ 3 A7 — 22 =0,
we compute the three roots
A, =0.00811245, », —1.01430115, Ay = 197767435,

By means of these values and the theory of Section 12 of Chapter 2, the fun-
damental unitary matrix {7 is now computed and found to be

704534  —0.474810 0.527435
U =10.001575 0.667893 0.744256]
709678 0469731  —0.525088

From this and the values of o; , we now compute the coefficients by means of
Tormula (3) of Section 3. These turn out to be
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A, — —0.0739867 , B,—0.972687, B,— —0.08T4057.
It is now possible finally to compute the three elementary energies.
E,—0.000045, [E,—0.959356, E,=0.015108.

In order to test the significance of E, and E; we apply formula (12) of See-
tion 8 and thus cbtain «, — 0.1695 and x, — 56.805. Clearly the significance of
E, is very small, but that of E, is high. From this we may conclude that cne
linear dependence exists between the variables and this is approximated by setting
v, equal to zero.

It is observed by Frisch that in the regression equation (1) the coefficient
of X, exceeds its standard error of 0.10, and hence on the basis of the usual the-
ory this coefficient would be regarded as significant. The present analysis indi-
cates the complete insignificance of this parameter, since X, is a linear function
of X, and X, by the dependence just established.

From the matrix U/ we have the relationship

v, = 0.704534 X, — 0.474810 X, 4 0.527436 X,;

but since v, is without significance, we set it equal to zero and thus obtain the
regression
X, =10.673935 X, — 0.748630 X, .

This equation is geen to be practically identical with the actual regression
X,=0.668378 X, — 0.742477 X, .

If one computes the number of degrees of freedom in the relationship he-
tween X, X,, X,, and X, in the first example using formula (6) of Section 3,
there is obtained

n' =24 204(1 — 0.7449) —2 + 52 =0564.

That is, out of the 204 degrees of freedom in a series of the length observed,
there are actually 54 degrees of freedom present. One of these is due to the sys-
tematic element, probably the 40-month harmonie component, a second to the dis-
placement of the series defined by its average value, and the remaining 52 to the
erratic element.



CHAPTER 6
THE ANALYSIS OF TRENDS

1. Introduction

In the opinion of some of the keenest students of the problem of
time series, the analysis and interpretation of trends is one of the
most difficult problems in economics. We have, for example, J. A.
Schumpeter, who says:

There would be little overstatement in saying that trend-analysis will be the
tentral -problem of our science in the immediate future and the center of our
difficulties as well . . . If trend analysis is to have any meaning, it can derive it
only from previous theoretical considerations, which must not only guide us in
interpreting results, but also in choosing the method. Failing this, a trend is no
more than a descriptive device summing up past history with which nothing can

be done. It lacka economic connotation . .. The trends we want are very different
from those we get by fitting a curve through unanalyzed material. But this opens
up a host of questions, for example, . . . Whether it is the trend which is the

“generating” phenomenon of cycles or the cycles which generate the trend; wheth-
er or not the trend is a distinct economiec phenomenon at zll, attributable to one
factor, or & well-defined set of factors; whether all the points on our raw graphs
have on principle equal right to exerting an influence on its slope, and, if not,
what credentials we are to ask of every one point before admitting it.t

The nature of trends was discussed at some length in Section 6
of Chapter 1 and the general features of the problem were examined
there. In the present chapter we shall consider, first, some of the
technical statistical aspects of trends, since the interpretation of
trends is intimately related to the statistical methods employed in
their computation. This discussion will be followed by a study of the
economic implications of trend analygis.

As has been pointed out in the first chapter the inertial theory of
economics, as it has been presented in the writings of Carl Snyder,
gives to trends a supreme importance, The destiny of governments,
the happiness or the despair of large groups of people, depend much
more upon the trend of economic series than upon cyclical variations,
which are essentially minor movements in the major inertial tendency
of events. Hence trends belong to what we might call the macroscopic
theory of economics and the interpretation of their origin is thus the

1 See Schumpeter’s review, “Mitchell’s Business Cycles,” Quarterly Journal
of Economics, Vol. 45, 1930-31, pp. 150-172.
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principal factor in forecasting the future state of nations. From this
point of view the theory of trends is a theory “in the large.”

But in the application of statistics to economic time series, the
word trend has been frequently used in a much more restricted sense
than that implied by the inertial concept. Thus the variations of some
economic time series are to be examined over a given period of time,
which may vary from a few weeks to many years. The trend, then, is
defined as that characteristic of the series which tends to extend con-
sistently throughott the entire period. Hence we see that the concept
of a trend depends both upon the nature of the data examined and
upon the range to which it is to be applied. Thus it is one thing to say
that the trend of stock prices is down and quite another to say that
the trend of building is up, since the movement of the former is domi-
nated by a short cycle of around 40 months, while the latter is domi-
nated by a cycle of from 15 to 20 years. The trend of industrial pro-
duction in the United States has been upward for approximately a
century, although there have been reversals of the main movement on
the average of once every ten years and some of these have established
trends several years in length. It is thus seen that the definition of a
trend is inherent in the economie problem itself and there is no such
thing as a theory of pure trend.

The final desideratum, of course, is for a theory of economics,
which, as is now the case in such disciplines as physics, engineering,
and the like, will determine the characteristics of the trend from fun-
damental principles and laws. Until this happy situation is attained,
however, it will be necessary to supply the lack of such derived trends
by trends which appear reasonable, or which are suggested by actual
forms inherent in the data. A great deal of progress has been made
in recent years in understanding the inertial charaecteristics of a num-
ber of economic series and an indication of the progress in some of
these will be discussed in later chapters,

2. Types of Trend

In the first chapter we discussed at some length the types of
trends which have been most frequently used in the analysis of time
series, These trends were the following:

{1) Linear trends; (2) the exponential trend, that is, the trend
¥ = Ae®, which is essentially a linear trend fitted to the logarithms of
the data, since log. ¥y = log. A + Bt; (3) the logistic trend; (4) the
moving average.

In addition to these there was discussed the theory of the Gom-



210 THE ANALYSIS OF ECONOMIC TIME SERIES

periz curve, intimately related to the logistic, and the general poly-
nomial trend, which included the straight line as a special case.

Since the application of trends to economic time series is inti-
mately related to the statistical properties of the trends themselves,
it will be important for us to examine some of the technical aspects
of the subject. We shall find it convenient to show how the paramet-
ers of some of these trends are determined from the data and how the
standard deviation of the residuals may be computed from the para-
meters without a complete reduction of the series.

By far the most useful trend is the straight line because of its
ready computation and the fact that many time series over extended
intervals appear to be characterized by linear movements. Hence the
statistics of this trend will be fully developed as a basis for the more
complicated analysis of the parabola, the cubic, and other polynomials.

In recent statistics, the logistic curve has come into high favor
because it appears to fit the needs of an expanding economic system.
Special attention will be given to this curve and applications made of
it to population and production data. This curve is particularly use-
ful in extrapolation and tends to define realistic lines of saturation.

No attempt will be made in this chapter to define the probable
error of the trends themselves, sinece this subject requires some spe-
cial considerations which ate more properly treated in connection
with the problem of forecasting economic time series.

8. Technical Discussion of the Linear Trend

Before proceeding to the more general discussion of polynomial
trends, it will be useful to consider the case of the simple linear trend
because of its frequent use in the analysis of time series. We shall
write the straight line in the form

(1) y=a, +a;t,

and assume that the data to which it is to be fitted are given as equal-
ly spaced items, N = 2p + 1 in number, No essential restriction is
implied by this assumption, since, in general, if the data are not given
in this form, it is usually possible by interpolation to approximate
them by a series of equally spaced items. Moreover, in practical analy-
8is, the inclusion or omission of a single item to obtain a series in
which N is odd is usually of negligible significance.

) We shall therefore assume that the data are arranged in the fol-
lowing form:
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'—P,"P+i|“'s—'2,"1: 0, 1, 21'“!?

2) .
y.,l v_,ﬂ.“',y.,.v_l,ﬂo.y,:%-"-.ﬂ,

By the zeroth and first moments we shall mean
 d P
Mo=2%. M1=Etlh-
t=-p t=~p

Numerous devices and tables have been developed for determin-
ing the coefficients of equation (1) so that the straight line will fit the
data, We shall adopt as most suitable for our purpose the method of
least squares, which yields the coefficients in the following simple
form:

(3) a,=AM,, a,=A'M,,

where we abbreviate A =1/(2p+1), A" = 3/p(p+1) (2p+1).

These coefficients have been extensively calculated and will be
found to 10 significant figures for values of p from 0.5 to 150.0 in the
author's Tables of the Higher Mathematical Functions, Vol. 2, 1935,
pp. 325-329.

We may now observe that the average of the deviations of the
data from the linear trend is zero.

In order to prove this, we represent the right-hand member of
equation (1) by ¥ (¢) and compute the sum

S, =3 [w: — y(t)]

t=—p

But from the definition of e, as given in (3), this is seen to be
zero, which establishes the proposition.
If the variance of the series of data be represented by «*, that is,

1r 2 M,
f— 2 e —
o N[E’y, NJ, N=2 +1,

= We have adopted here as a convenient name for the sum Z * y, in the vari-
able t the term moment of order n, or more simply, the nth moment. The word
Joment, originating in mechanics, was introduced later into statisticz in econ-
nection with frequency distributions. It is hoped that the present adaptation of
the name will appear useful. It should be noted that in statistics the term mo-
'Tlent is frequently used for 2 mean value based on a product sum instead of for
e product sum itself ag here, '
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then the variance of the deviations from trend, that is, the variance
of the residuals, may be shown lo equal
_A'Mp
-

Since the mean deviation is zero, we have for o, the following:

(4) ' 0,* = o®

1 °
0‘12:?2 [yt'—y(t)jzr N:2p+1 ]
te-p
1 I
:N-.E [y — 21}: y{t) + yz(t)]
t--p
124
=25 [0 — 20 (G + 0t + (0 + 2000t + 0 )]
t=~p
:%‘[éytz_zau»M-m_zalMl‘f‘ (2p+1) (1 3
z t=—p
+p(p + 1) (2p + 1)e,*/3]
1fe . M2y M2 M, M,
*F[E;y' Tv"“] M ity ety

+a? +plp+1)at/3.

Introducing the explicit values of a, and a, into this expression
and noting that the first term is ¢%, we find by a simple algebraic
manipulation that the terms combine to yield equation (4).

A third consideration appropriate to our discussion relates to
the correlation of the residuals of two series which have been re-
duced by linear trends. For the purpose of this discussion let us as-
sume that we have, in addition to series (2), the elements of a second
series, {Y,}, ¢ ranging from —~p to + p, and let us assume further -
that the first two moments of the second series (based upon N = 2p
+ 1 items) are

P [
=2 Y, m=2tY,.
t--p f=-p

Let o be the standard deviation of the first series and ¥ the stand-
ard deviation of the second, and let R denote the correlation coefficient
of the two series before they have been corrected for trend.

Under the assumptions stated above, it can be proved that the
correlation coefficient of the residuals from the linear trends of the
two series 18 given by the expression



THE ANALYSIS OF TRENDS 213

AM, -
— ‘—F{‘_}/ﬂz 01

where o, and &, are respectively the standard deviations of the resi-
duals of the first and second series as computed by formula (4).
In order to prove this we first observe that the averages of the residuals of

the two series from their trends are zerg, and hence that the desired correlation
coefficient will be

(5) r={Rogs

20— yOI¥ ~ Y1

(%) r= ’

No, o

where y(t) and Y (t) are respectively the two trends, that is, y(¢) is the right-
band member of equation (1) and Y (t) may be written Y {t) ==A, + A,t.
Expanding the numerator, which we shall designate by I, we get

y
I= 2y —v)]Y, - Y ()]
tagp
)
= tZ [v.Y, — Y y(t) — .Y (1) +y ()Y (V)]
=p

L4
= ZIIeY. — G, — %#I—AOMG—AIMI + doA‘,N

t=-p

+p(p+1)(2p+1)eA,/8,
But this may also be written

L M, M
I‘:,,,z_"ytyt - ‘—Z_:“'?’ +[—§2""'ao“n l"aﬂl —Ao{Mo_’aoN}

l

Noting from equations (3) that the expressions in braces vanish, and also
observing that

P M -
zy‘Y‘ _..—?ﬂ.:NRcc '
t=-p N

we reduce the expression for I to the following:

I==NRos —ay, .

Replacing this value in the formula for r and replacing o, by A'M; from
{2), we immediately obtain the desired formula (5).

It is important, also, to observe that formula (5) can be.employed
to compute the serial correlations of the residuals by the de\nce.: of cor-
recting one of the moments. The corrected moment is then inserted

“in (5).
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Let us assume that the series which is to be lagged with respect
to the other is ¥, and let us assume also that it is moved ahead of the
series y; by m units; that is to say, we shall compare the terms Y.
with the terms y, .

Hence we can obtain the desired serial correlation of the residuals
by first correcting u, and g, for the assumed lag, and then employing
these corrected moments in place of u, and g, in formula (5). This
correction we shall now compute for the first moment.

We shall designate by g, the unlagged moment,

2
,“1:2 tY,,
t=-p

and by « (s2) and ¢, (—m) the moments of the series after it has been
moved respectively m units ahead and m units behind the first series;
that is,

) ) =St Yer, pl—m) =3t Yim.
t=—p

t-—p
We note that g, (0) = u, .

The first of these moments can be written

wm) =3t¥m=3 (s+m)Y,,

S=~pr-Hi
n
=3 (+m) Y, + A4, (m},
sT-p
where we abbreviate
(1)

A,(m)=| 5 - 3 le+rmu.

& —p-m 8p—n+]

It is thus clear that the desired corrected moment becomes
(8) i (my =g +mp, + A, (m),

where, it will be observed, -4, (m) may actually be large with respect
to the other two moments.
Similarly we obtain for the negative lag the corrected moment

(9) P:(“m) :P*L'-m.uo"‘-’—":(“m),
where we abbreviate

" ~pema-1

Al(—m)={"2 .S ](s*mm.

=11 A==
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~ As an example of the application of the formulas of this section, we shall
compute some of the pertinent constants of the postwar Dow-Jones industrial
stock price averages and the index of pig-iron production. These series, in four-
month averages, are given below as follows:

! Induatrial Pig-Iron Industrial |, Pig-Iron
Year | ¢ Stack Price Pro- Year | ¢ Stock Price :  Pro-
\ Averages ductlong l ' Averages g duction _
1914 [ 25 81.66 69.9 1923! 2 ‘ 100.62 \ 1108
-24 74.16 64.8 3 | 9144 | 1198
—23 60,90 54.9 ' 4 91.07 99.1
1916 | 22 61.24 62.2 19241 5 95.38 105.8
-21 72.82 81.2 i 8 98.29 67.6
=20 35.62 100.1 7 109.78 g1.9
1916 | -19 91.16 106.1 1925 |- 8 120.87 111.8
-18 90.72 105.7 : 9 133.99 89.2
-17 102.12 108.2 10 151.93 98.5
1917 | -16 93.91 } 103.1 1926 |11 149.02 109.3
-15 92,10 107.9 12 154.86 106.8
-14 76.34 102.7 13 155.58 104.9
1918 | -13 78.60 93.5 1827 114 160.66 107.9
-12 81.21 1104 ’ 15 177.90 100.7
~11 83.38 1123 16 194.98 89.4
1919 | -10 86.79 98.56 1928 | 17 204.59 100.5
-9 106.16 76.3 18 221.69 102.2
-8 110.29 6.9 19 271.24 107.5
1920 |- 7 97.87 100.1 1929 (20 315.76 116.9
-6 88.96 99.56 . 21 339.81 123.2
-5 18.97 989 22 276.10 107.5
1921 |- 4 76.43 59.6 1930 123 275.90 101.1
-3 69.46 33.4 24 243.96 923 -
-2 75.67 43.4 25 184.06 65.4
1922 |- 1 87.14 61.6
0 96.60 72.3
i1 96.45 88,9

We first compute the following constants:

(I) Stock Price Averages (IT) Pig-Iron Production
M,— 6,626.05, K= 4,709.9,
M, = 41,920.02 po= 41619,
o2— 4,802.0908, 1= 412.06,
o— 69.2971, o= 20.2962 ,
R=— 0.40835, 2p +1=51,

Since, for p = 25, A — 0.01960784314, A" — 0.00009049773756, we compute
the trend lines from (3) and thus obtain

(1) y==129.9226 4 3.79367¢ ; (I}  y=192.3510 -+ 0.376643 ¢
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FiGURE 42.—~Dow-JONES INDUSTRIAL AVERAGES (a) AND INDEX oF
Piec-IRoN PropUCTION (b), 1514-1930.

Now, employing formula (4), we obtain as the residual variances the follow-
ing values:

(I)  o,2= 4802.0908 — 3118.2470 (I1} 2= 412.06 — 30.74
=1683.8438 ; = 381.32 ;
o, — 41.0347 ; o, == 19.5274.

The correlation between the residuals is then obtained from formula (5) and
is found to be r=—0.330. This correlation, although small, is interesting in show-
ing that the persistent relationship between the production of pig iron and the
price of industrial stocks prevailed even during the explosive inflation caused,
&8 we shal] show later, by an unusual increase in the velocity of money over the
Iatter part of this peried.

We should also note that the effect of reducing the two series by trends is to
decrease substantially the variance of (1), while the variance of (II) is essentially
unaffected.

In order to illustrate the application of the formulas to lag correlations, we
ghall augment the pig-iron production data by adding the items for the years
1913 and 1931. These values are

1918 90.9, 85.8, 76.0; 1981 62.3, 51.8, 36.8.
Hence we compute
4,{3) —=90.9 + 858 + 76.0 — 101.1 — 923 — 654 —=— 6.1,
4,(—3) =623 + 51.8 + 36.3 — 69.9—64.8— 549—=—39.2,
4 (3) =1098.1, a, (—8) =5411.9.

From these values we obtain the corrected moments

#,(3) = 4709.9 — 6.1 —=4703.8, B, (—3) == 4709.9 — 39.2 = 4670.7,
#, (3) — 4161.9 + 1098.1 — 5260.0, 8, (—2) = 4161.9 - 5411.9=—1250.0.
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The values of o and o, adjusted for lag, which we shall designate by o,(m),
are found to be

o{3) =—20.041%, 0,(2) =18.7771, &{--3) =21.6795, «o,(—8) =21.6154.

When these quantities are substfiuted in (5), we obtain as the desired serial
correlations the following values: .

498.262 — 391,268 —20.372 -+ 92,952
r(3) = —0.139, r(~3) = —0.082 .
& 770.518 (=3 886.981

4. Extension of the Foregoing Theory to Polynomial Trends,

The formal theory which we have developed in the preceding sec-
tion for linear trends may be extended without essential difficulty to
the general polynomial

(1) y=a, + a,t + a,t* + a;¢ + ... + a, i,
Referring to (2) of Section 3, we shall define in terms of these
data the first # moments as follows:

(2) 4Mr:£tryt, T=0’1,2,»-.,n_
t=-p

If the normal equations for the polynomial (1) are set up in
terms of the moments (2) then by reference to Section 11 of Chapter
2, it will be seen that they assume the following simple form:

(2p +1) a, + 28,4, + 28,8, +---=M,,
(3) 2s,a, + 28,a, + 25,4, +---=M,,
92g,a, + 28.a, + 2g.a, +--.=M,,

and for the odd moments
2s.a, + 28,0, + 28,00, + ---=M,,
(4) 28,8y + 28,05 + 2505 + - =M,
28,0, + 28,0, + 28,85 +---= M,,

where s,, 8, , 8. etc. are the sums of second, fourt_h, sixth, ete., pow-
ers of the integers from 1 to p inclusive; that is,

S, =142 +8 + 4+ 4.
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The solutions of these equations have been explicitly determined
for polynomials through the seventh degree (the septimic) and the
coefficients of the moments have been numerically determined for vari-
ous ranges of the parameter p . These results and tables will be found
in the author's Tables of the Higher Mathematical Functions, Vol. 2,
1935, pp. 307-359.

For the sake of reference and the understanding of symbols we shall record
the various cases below, The reader will understand that the values of 4, B, C,
..., A', B, C',...for these various cases are different functions of p, and that
their numeriesl values are to be found in the Tables referred to above.

(1) The straight line: y—a,+ a6 t,
a,—=AM,, a,—=A'M,.

(2) The parabola: y=—a, + al 4 a2,
e, —AM, + BM,, a, as in case (1),
a,—BM, 4 CM,.

(3} The cubic: y—=a, +a,t + a,t2 - a,i?,
a,—A'M +B'M,, a,anda,asin case (2),
a,=8B'M, + C’Ms.

(4)  The quartic: y=—a, + a,t + &2 4 a0, a4,
a,—AM, + BM, + CM,, e, and a, as in case (3},
a,=BM, + DM, + EM,,
a,—CM,+ EM, +FM,.

{5) The quintic: y=a, +at + a,i2 + a2 + a8t +ats,

a, =AM 4+ BM,+CM,, a,,a,,anda, asin case (4),
a,=8BM +DM,+EM,,
o, =CM +EM,+FM,.

(6) The gextic: y=a, + ot + a,t2 + a i3 4 att + aits { a8,
a,—AM, + BM, +CM, + DM,, «,,a,, and a, as in case (5),
a,==BM, 4+ EM, + FM, + GM,,

e, —=CM,+FM, + HM, +IM_,
a,== DM, + GM, +IM, +JM,.

(7) The septimic: y=a, + a,f + a,tt 4 at? § e t' + a,t5 + agte 4 a.t7,
e, —=A'M, + BM, + C'M, +DM,, a,, a,, and o, as in case (6) ,
e, —=BM +EM, +FM +GM,,
a,=CM +FM, +HM +IM,
a. =DM, +GM, +I'M, {+J'M_.

We first prove the following theorems:

THE_OREM 1. The average of the deviations of the data from a
polynomial trend is zero.

Proof: If we designate the polynomial (1) by y(t), then we must show that
’
S; ='_z"[yg _ V(t) ]

is zero. But we sce by explicit ealculation that
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S,= Sy,— Zut)

t=—p t=-p
=M,—a,(2p+ 1) —284a,—~28a —250,—....

Referring to the first equation in (3), we see that this last cquantity is zero,
which establishes the proposition.

THEOREM 2. The variance (os2) of the deviations of the data
from a polynomial trend is given by the formula

(5) ea®=o*+ M,2/N2 — (aM,+ o.M, + &, M, + a;M; +---} /N,

where N = 2p+1 is the number of items in the data and o* is the vari-
ance of the original series.

Proof: The variance of the deviations from trend may be explicitly written
in the form

b4
z [yg —y(t}1*,

t=—p

(6)

2|.... Z[H

b4
2=+,

=

?
=—{ Tyl — 0 M, 20 M, — 20, M, — .. + ZT(”}.
N t=-p t=—p

Referring to the data as tabulated in (2) of Section 8, we see that the last
sum in the above expression can be expanded as follows:

E" y2(t) = a,2N + 2aa,8, + 2a,0,9, + 2a,8,8, + -
= + 2a,%s, + 26,a,8, + 2a,a.8, + 20,08, + ---
+ 2a,0,8, + 2a,%3, + 2a,a,s, + 20,48, + -+
This expression may then be written in the form
2" y2(t) =a,{ a N + 2a,5, + 2a,8, + 2a8,+ -]
= + o, { 2a,8, + 2e,3, + 2a,8;, + 20,8, +--- }
+ a,{ 2a,8, + 20,8, + 20,8, + 20,8, + ---}
Referring to equations (3) and (4), we see that this sum may be written

in the following form:

.
‘Zyﬁ(t) =a M, +a M, +a M, ‘oM, -,
=p

Introducing this expression into (6) and noting that the variance of the
original data is given by
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12 M
"2—_——211{"-——,

N=p N2
we obtain for the desired variance of the deviations from trend the following ex-
pression:
a2=08 + M2/Nt —~ (G M, + o.M, + o.M, + e, M, +--)/N,

which is seen to establish the theorem.

In the practical application of this theorem to actual time series,
it is convenient to have an explicit expression for the variance in
terms of the tabulated coefficients. The following table gives the vari-

ance of the residuals for each of the tabulated cases, the residual vari-
ance being indicated by a subscript equal to the degree of the trend:

Straight line:

o2=—ot — (A'M2)/N.
Parabola:

e t=—ud + M 2/N2 — (A'M}?:+ AM 3 + 2BM M, 4 CM,2) /N .
Cubic:

er==ot + M2/N2 — (AM,? + 2BM M, + CM,* + A'M,?
+2B'M M, + CM2)/N.

Quartic:
ot—ot -+ M3/N? — (AM2 4+ 2BM M, + CM2 + AH 2
+ 2BM M, + 2CM M, + DM.* + 2EM M, + FM2)/N .

Quintic:
sd=—or + M2/N? — (AM,? + 2BM M, + 2CM M, + DM,? + 2EM.M,
+FMz2  A'M2 + 2BM M, + 2CM M, + D'M2? + 2E'M M,
+ F'M2) /N .

Sextic:
o =01 + M /N2 — (A'M* 4 2BM M, +2CM M, + D'M? 4 2E'M M,
+ F'M? 4+ AM 2 + 2BM M, 4 2CM M, + 2DM M, 4+ EM2
+ 2FM M, + 2GMM_ 4 HM 2 -+ 2IM M, 4+ JM 2) /N,
Septimic:
or—ot + M2/N2— (AM? + 2BM M, + 2CM M, +2DM M, + EM,?
4+ 2FM M, + 2GM M, 4 HM 2 + 2IM M, + JM 2 - A'M 2
+ 2B°M M, 4 2CM M, + 2D°'M M, + E'M* + 2F"M M 1-2G'M M,
+ H'M2 + 2I'M M, + M 2)/N,

It is intuitively evident that the value of oa® should detrease as the
number of moments used in ils compulation increases, that is to say,
with the degree of the polynomial used as the trend. The analytical
proof, however, can be given as follows :

We first express y (£) in terms of the Gram polynomials described
in Section 10 of Chapter 2; that is,
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(N Y () = oo (f) + 0,4, (F) + - + g (t).

This representation is identical with those given above, the only
difference being that the approximation of a polynomial of nth degree
is exhibited in terms of a linear combination of orthogonal polyno-
mials.

Since the Gram polynomials are orthogonal over the range —p
to +p, the evaluations of the coefficients a; are independent of one
another. We next take note of Bessel’s inequality (see Section 11 of
Chapter 2),

P
a2, + @+ L ET Y,
t=—p
where we abbreviate

| 4
=2 ¢t (1),
t=-p
We may easily show that the variance of the difference is given by
the formula

P
Noal?! =3 9> — (2,2 + @y + -+ - + a,31,) .
t==p
Thus it is clear that o»? cannot increase, but will, in general, de-
crease for each successive addition of a Gram polynomial to the sum
(7). The truth of the theorem is thus evident.

As an example of the application of the formulas given in this section, we
shal! successively reduce the standard deviations of the two series used illustra-
tively in Section 8. The following moments are first computed:

{I) Stock Price Averages {II} Pig-Iron Production.
M,= 6,626.05 gy — 4,709.9
M, = 41,920.02 #= 4,161.9
M,— 1,725,204.66 ¥, = 1,020,459.5
M,— 17,006,574.60 B, — 1,798,139.7
M,= 696,835,797.18 #, — 879,292 961.6
M, =1,759,714,3872.92 a, =504,311,762.9.

When these moments are subatituted in the formulas of this section, the fol-
lowing values of o, are readily computed:

(I} ¢ =—69.2971, (I1) o —20.2962,
o, — 41.0347, o, —19.5274,
o, — 28.7142, v, —19.5274 ,
o, — 28.2349, o, — 19.4544 ,
o, — 24.1490, e, — 15.8637,

o, = 19.4158, o, — 15,7882 .
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FIGURE 43,—STANDARD DEVIATION OF RESIDUALS AS A FUNCTION OF THE
DEGREE (n) OF THE POLYNOMIAL TREND,

We note that for pig-iron production little change is effected in the standard
deviation ty the use of polynomials of higher degree, but that for stock prices
the standard deviation was substantially decreaged. This decrease is graphically
represented in Figure 43,

5. Formulas for the Correlation of Residuals from Polynomial Trends

The problem of computing the correlation between the residuals
of two series reduced by linear trends has already been solved in Sec-
tion 8. We shall now give the corresponding resuits for the correla-
tion between the residuals of two series reduced by polynomial trends
of the same or different degrees.

We shall designate the elements of the two series by {¥:} and
{Y,} respectively, i ranging from —p to +p. Let us assume that the
moments of the first (based upon N = 2p-+1 items) are M,, M., M.,
etc., and of the second (also based upon N = 2p-+1 items) are u,,
By iz etc.

Let us assume further that ¢ is the standard deviation of the first
series and ¢ the standard deviation of the second. Moreover, let R
denote the coefficient of correlation between the two series before they
have been corrected for trend.

If ya(t) and Y, (¢) represent the two polynomial trends of de-
grees n and m (n = m) respectively, then the correlation between the
two residuals can be written

(1) T:I/(N‘Vnam) ]

where o.? and v,,? are the reduced variances already defined in Seetion
4, and where we have employed the abbreviation

@) I=3 [~ 4 (DY = ¥a(D)]

=
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]
I=3uY, — {Mn.“o) /N + (Mo}io)/N ~ {(Gopte + By,
t=-p
i+ a?;“? + ...+ anpﬂ)-
Noting the identity
S4:Y: — (Mupo)/N=NRov,

we ¢an reduce the above expression to the following form:

(3) I=NRoz + (M) /N = (Qop, + Qqpy + <+ Qupe,).

The correlation coefficient, r, is then obtained by substituting
thia value in (1) ; that is, :

(4) ?’ZR( 0? )—E-lM”‘o— 1 [tope + @rigrt - + Qupia) .

Ty T iv Oy Oy N‘J'n T

For eonvenience in application this coefficient will be specialized
in terms of the coefficients of the regression equations given in Sec-
tion 4. From the tables of their values it is then possible to compute

r readily as soon as the original parameters B, ¢, and ¢ are known.
These specialized formulas follows:

{a) Both series reduced by straight-lime trends (m=n=1}:

'r:(Ra;-—-A R\J]lpl )/61;1.

(b} Both series reduced by parabolas (m—n—=2):

v A 1 4 B c
=|Roo— T + (e 5 Plota— 5 ok + M) — = Mot / o3, .

{¢) Flirst series reduced by o parabola, second series by a straight hne,
(=2, m=1):

Preceding formula with s, replaced by o, .
{d) Both series reduced by cubics (m=—n==28):

- 1 A B c A
r= [R“C -+ (E“A—I)-Woﬁ‘o_"ﬁ (Mo, + M) Y szz__N-M:l“l

Bv C‘ -
~% (M iy + Mp,) -~ Mk, /“3"3 .

{e) Firat series reduced by cubic, second series by a parabola (n—=3, m—
2):

Preceding formula with o, replaced by a,.
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(f) First series reduced by a cubic, second seriea by a straight line (n=
3, m=2):
Formula (d) with #, replaced by o, .

(g) Both aeries reduced by quartics (m—n=—4):

- A B c 1 A
r— Rcc—l—v-Mlnlh-Iv- (M g, + Ms”x)—"‘ﬁMs“s + (-NT’—E\— )Mb"o

B C D
_E (Mo& + M"ﬂ) —F (Moﬂ‘ + M‘Fo) _F& 2"’

F
-T2 (MS‘A"}’MA'“:) '_"_'Mdh]/“’l'

(h) First series reduced by a gquortic; second series by (1) a cubic, (2) a
parabola, (3) o straight line:

In the formula of (g): (1) replace a, by a,, (2) replace o, by a,, (3) re-
place s, by o, .

(i) Both sericg reduced by quintice (m=n="50):

- /1 4 B c
f=[R" + (E—E)M"""*T& (Mopy + Mag) —~ = (Moky + M ost)

D E F A’ B
— i Maty g (Ma, + M) — = M, — 5 Mipy — o (Mg o+ Mk,

C D’ . B F -
"‘ﬁ (Myp5 + Myu)) ‘_"A?Ml"a_'ﬁ' (Mg + Myp;) —"‘N"Msi‘:.]/ 505 -
(j) First serieg reduced by a quintic; second series by (1) o guaertic, (2) @
eubic, (3) a parabola, (4) a straight line,

In the formula of (1), (1) replace o, by o,, (2) replace o, by v, (3) re-
place o, by a,, (4) replace o, by o,

(k) Both series reduced by sextics {(m—mn=—6):

- A B' C‘ D!
r= [R“—_EMIFI—KF (Ml-"a + Ms“n) -—I_V' (Mlpb + Msl“;) -—E' M,a,
E F 1 4 B
i Mok Mosy) — 5 Mok + ( N )Mo“o‘_‘fv' (Motty + M)
o D E F
o7 Moty + M) — = (Mg + Mypo)— o Mop, — = (Mo, + M)

G . H I J _
-~ (M, + Ms"z)‘_—z\';‘Ma"l""ﬁ' (M, + Mgn,) _'ﬁMa-“u ]/ ?:% -
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(1) Firgt series reduced by a gextic; second series by (1) e quintie; (2) a
quartic, (3) a cubie, (4) a porabola, (6) a straight line. ;

In the formula of (k): (1) replace ¢, by o, (2) replace o, by o,, (3) replace
v by o, , (4) replace o, by o,, (5) replace ¢, by o, .

{m) Both series reduced by septimics (m—n=—"17):

- 41 A B c
":[ Roo - (;Tz_-f_\: )Mo"o""‘v (Mopy + Myng) -~ (Mo, + M py)

o E F G
—ﬁ (Mo‘"o + MB"O) —-N—MQ#Q_HN“(MQ”" + ﬂ"'.";) _ﬁ [Mgﬂ'g + Ms“g)

H I J A’ B’
'_EM4”4_'1'~7 (IH‘.HG + Mel“‘) _A_,Msps _EMI#I ""ﬁ (M!ps + Ma‘ul)

r ’ 1 ’

D E F
""""'A'_. (M;ps + M;Jul) _TV_ (Milu-; + M'rp[) - E M;,-'u;j - A__ (Mz'un + Afﬁﬂ':i)

r 0 r

G H I J’ _
- (M, + M.p3) _EMBFS—F (Mo, + Mouy) "_-}FMT'“T ]/’7“7 .

(n) First series reduced by a septimic; second series reduced by (1) a
sextic, (2) a quintic, (8) e quartic, (4) a cubic, {5) a parabole, (6) a straight
line,

In the formula of (m): (1) replace ¢, by v,, (2) replace 7, by o, (3} re-
place o, by o,, (4) replace o, by ¢,, (5) replace o, by 7,, (6) replace o, by o, .

The serial correlations of the residuals of the two series can also
be computed from the above formulas by the device of correcting the
moments of one of the series and inserting these corrected moments
in the appropriate formula. The method is merely an extension of
that explained at the end of Section 3 for the linear trend.

Let us assume that the second series is shifted m units ahead or
m units behind the first series. We shall designate by u. the original
moments,

M= svY,,
=—p

and by g, (m) and g, (—m) the moments of the series after it has been

moved respectively m units ahead and m units behind the first series;
that is

[ .d
) pr(m) =Y, pe(=m) =2tV im .

=z

The first of these formulas can then be written
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P -
wim) =3tY,,= T (s +m)'Y,

t=-p a=-p-m
=% (s+m)’Y, +4,(m),
s=-p

where we abbreviate

A (mt) H—_}f"f” - ﬁ ] (s +m)'Y,.
s=—p-m

= p-m+l

Expanding (s + m)’ we then obtain

r(—r_-l_) mzur_,.

{(6) uefm) = g, + rmp, ., + 57 iz

4 r(r—1) (r—2)

5T Mg oo mTu + A, (m).

Similarly the second formula of {5) can be written

r{r—1
(7) w(—m) =p, —rmu,, + —(7‘;'—)-7012‘1::-2
- Zﬁzl—g)r—(r———zl WPty e My + A, (—m),
where we abbreviate
pm —pem-1
A (—m) ={ X2 - 2 } (s —m)'Y,.
| &=p f==p

As an example, let us consider the two series given in Section 8, namely, (1)
stock price averages, and (1) pig-iron production, and let us compute the corre-
lation of their residuals aftér the first has been reduced by a cubie and the second

by a straight line. The following pertinent values are taken from the computa-
tions given at the end of Section 4:

(I} Stock Price Averages (1T} Pig-Tron Produetion
M, 6,626.05 o= 1,709.9

M, 41,920.02 B, = 4161.9

M, 1,725,201.66

#, = 1.020,459.5

S
s

- 17,006,574.60 g,—= 1,798,139.7
o, 69,2071 g, = 20.2962
o 28.2349 o = 10.5274 .
R — 0.40835, N=2p L+ 1=51,

From the coefficients in Tables of the Higher Mathematical Functions, Vol.
2, we first compute the values:



THE ANALYSIS OF TRENDS 227

A/N = 0.0008856070641, A'/N= 0.00001112036381 ,
B/N = —0.000002220644084 , B'/N = —0.00000002397613742 ,
C/Nz== 0,00000001024912654 , C'/N = 0.00000000006150881842 .

When these values are substituted in formula (d), where o is replaced by v, ,
we obtain the desired correlation

r— (574.3306 — 15,015.4190 4 33,059.0773 — 1R,043.6026 — 1,940.1357
-+ 3,504.2975 — 1,880.9518) /651.8542
—0.4672.

6. Example of the Reduction of Series to their Random Elements

In order to show the efficacy of the methods which we have pre-
viously developcd for the analysis of economic series into their vari-
ous components, we shall apply the various techniques to the follow-

ing four series:

X, = The Dow-Jones Industrial Stock Price Averages.
X, = Pig-Iron Production.
X, = Stock Sales on the New York Stock Exchange.
X:: = The Cowles Commission—Standard Statistics Index of

Industrial Stock Prices.

The actual values of these four series over the period of explora-
tion {1897-1913) are given below and they are graphically represent-
ed in Figure 44,

(X)) THE Dow-JoNES INDUSTRIAL STOCK PRICE AVERAGES

Er o Jan, Feb., Mar. Apr. May June July Aug, Sept. Oct. Nov, Dee. Av,
1837 | 42.56 41.71 39.47 38.96 39.91 44.10 47.88 54.81 50.98 49.03 47.46 49.41 & 45.52
1898 ' 50.01 46.17 45.42 46.00 52.74 52.62 54.20 60.35 53.44 55.43 57.20 60.62 | 52.84
1899 64.35 66.78 74.33 76.71 67.561 70.38 73.73 75.66 72.87 74.97 75.55 66.08 | T1.58
1900 | 66.13 63.96 66.02 61.33 59.10 54.93 56.80 57.81 54.27 59.04 66.59 70.71 | 61.39
1901 66.81 67.00 69.92 75.80 75.77 77.94 71.63 73.47 66.66 64.45 65.01 64.56 | 69.92
1902 | 64.95 64.81 67.19 67.01 66.42 64.31 65.82 66.28 66.15 66.06 62.05 64.29 | 65.44
1903 65.18 66.19 63.64 63.78 60.27 59.08 50.76 53.19 45.80 45.13 44.83 49.11 | 55.54
igog | 48.91 47.563 49.12 48.80 48.18 49.25 52.13 54.57 57.59 63.03 72.02 69.61 | 55.08
03 ' 71.33 75.15 80.02 76.08 74.32 76.87 81.70 80.63 81.90 83.77 89.89 96.20 | 80.35
iggg 100.69 93.94 96.95 90.53 93.75 87.01 92.41 94.01 94.84 02,51 05.12 94.85 | 93.88
Took. | 91.70 90.54 80,15 84.30 78.10 30.36 78.87 72.28 67.72 57.70 55.41 58.75 | 74.91
1o | 62,70 60.54 67.561 69.55 72.76 72,59 80.34 84.66 79.93 82.53 B87.30 86.16 | 75.55
T ! 84.09 81, 85 86.12 88.29 92,18 92.28 96.7¢ 97.90 99.55 99.07 96.02 99.06 | 92.1T
} 91.31 91.34 89.71 86.20 86.32 81.18 76.48 79.68 79,72 84.77 82.52 81.96 | 84.2T
ig}% 84.93 85.02 83.27 83.65 85.55 85.98 86.02 79.25 76.31 75.79 B0.97 81.68 | 82.37
1913 | 80.19 81.40 88.27 90.30 83.01 90.92 89.71 91.57 94.15 60.71 91.40 87.87 | 88.71
8 83.72 80.32 80.92 78.64 78.38 74.89 78.48 81.81 80.37 78.20 75.94 78.78 | 79.20
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(X,} Pi1g-IRON PRODUCTION

Year ; Jan. Feb. Mar. Apr. May June July Acg., Sept. Oect. Nov. Dee Av,

1897 226 23.4 241 243 241 237 232 246 271 291 3G9 31.% 25.7
1898 314 82.0 323 322 31,5 203 29.8 295 302 314 328 339 31.4
1899 333 324 330 345 35.0 359 371 374 382 396 40.8 412 36.5
1900 414 414 408 409 414 405 865 328 313 802 30.7 33.2 36.8

1901 37.5 405 413 419 432 439 43¢ 43.1 433 446 454 409 42.5
1902 46.1 449 466 492 498 482 465 474 473 478 418 496 47.6
1903 475 497 51.3 536 553 558 492 50.7 518 46.0 347 273 47.8
1904 29.8 41.7 468 520 49.6 432 362 378 453 469 496 521 44.3
1905 7.5 571 625 641 634 598 562 595 632 662 671 66.0 61.9

1906 66.7 68.0 69.9 69.1 67.7 669 650 622 657 709 729 T21 68.0
1907 712 730 718 T4.0 741 745 T28 726 728 764 609 398 69.4
1908 33.7 872 2396 383 376 364 393 439 473 506 526 562 427
1909 68.0 61.0 59.2 58.0 60.8 644 678 726 79.56 B39 849 85O 69.6

1510 84.2 856 844 828 71 755 693 680 685 67.5 637 574 73.7
1911 56.8 641 700 688 611 596 578 622 659 678 66.7 659 63.9
1912 664 724 77.6 792 811 2814 777 811 821 868 877 898 80.3
1013 90.2 924 892 918 91.0 876 826 821 83.6 821 T4.5 640 84.3

(X,) SToCK SALEs oN THE NEW YORK STOCK EXCHANGE

Year Jen. Feb. Mar. Apr. May June Tuly Aug. Oept. Oect. Nov. Dec | Av.

1897 3.37 2,82 507 3.54 421 642 T.01 11.46 13.09 8.01 b5.76 7.44 6.52
1898 9.22 B98 995 6.00 917 9.10 4.78 12.01 937 7.42 10.94 15.22 9.35
1899 | 24,14 15.98 17.68 16.98 14.7¢ 10.88 8.02 12.81 12.35 10.80 13.58 17.05 | 14.59
1900 | 9.86 10.21 14.4F 14.65 9.49 7.290 6.27 401 b5.16 10.90 22.65 23.38 | 11.53

1901 | 30.21 21.88 27.00 41.69 35.20 19.82 1592 10.77 14.03 14.02 18,36 16.67 | 22.13
1902 | 14.76 12.95 11.95 26,58 13.49 7.81 16.32 14.32 20.95 16.35 17.12 15.72 | 15.69
1903 | 16.01 10.93 15.02 12.24 12.46 15.54 14.78 14.46 10.71 12.67 10.74 15.18 | 13.40
1904 | 12.24 8,57 1142 816 526 4.99 12,13 12.44 18.70 32.48 31.96 28.18 | 15.54
1905 | 20.77 25.36 29.06 29.37 20.54 12.54 13.02 20.25 16.09 17.74 26,88 31.41 | 21.92

1906 | 38.556 21.69 19.33 24.30 28.95 20.28 16.30 31.72 26.12 21.80 15.41 20.28 | 23.64
1907 | 22.89 16.48 32.25 19.22 15.76 9.73 12.80 14.50 12.14 17.31 9.65 12,64 | 16.27
1908 | 16.62 9.92 1520 11.61 20.92 9.54 13.87 18.85 17.50 14.27 24.88 22.96 | 16.40
1909 | 17.27 12,34 13,65 1897 16,51 20.36 12.81 24.51 20.05 21.71 18.74 1749 | 17.87
1910 ' 24.12 15.99 14.99 14.07 11.95 16.28 14.30 10.22 7.68 13.48 10,81 9.89 . 18.64

1911 | 10.38 10.17 6.92 5.04 10.69 1043 544 1504 17.37 11.05 14.9¢ 9.07 1054
1012 | 10.91 7.09 14.55 1593 1366 7.20 717 8.97 10.06 14156 8.71 12.60 | 10.92
1913 . 873 6464 718 846 546 959 512 6.08 7.68 741 877 7.5 | 6.94

The source and interpretation of the four series which form the
basis of our investigation are given as follows:

(X,) The items in this series are the closing quotations on the
last day of each month, representing the average price per share in
dollars for 12 representative industrial stocks. Source: The Wall
Street Journal,

(X,) This series gives the average daily production of pig iron
in units of 1,000 gross tons. Source: Standard Trade and Securities.
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{X,,) THE CowLES COMMISSION—STANDARD STATISTICB INDEX OF

INDUSTRIAL STOCK PRICES
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Year - Jan. Feb. Mar. Apr, May June July Aug. Sept. Oct. Nov. Dea. Av.

1899 224 220 219 214 214 225 237 254 263 251 238 247 234
1858 25.1 254 24.3 242 264 27.7 284 204 201 283 30.1 328 27.6
1899 36.1 356 37.7 388 366 353 363 383 384 386 392 348 37.1
1900 385 362 355 358 326 310 316 2324 316 329 365 379 34.1
1901 37.8 385 39.8 43.2 39.6 449 421 419 409 393 391 379 404
1802 39.3 399 400 411 405 394 406 406 40,7 3956 376 36.1 39.6
1908 38.56 39.6 38.6 368 356 33.2 30.4 29.0 277 258 252 26.6 32.2
1904 27.5 268 26.6 269 262 263 276 286 303 33.0 368 374 29.6
1905 38.1 40.0 413 417 390 3838 40.6 422 41.7 43.0 438 475 41.6
1906 50.3 499 478 47.7 459 46.0 443 485 50.5 50.7 49.7 50.2 48.6
1907 49.3 481 43.2 427 409 39.7 416 372 3852 25.7 278 291 88.7
1908 309 30.0 326 345 365 364 388 418 402 410 445 445 37.6
1909 44.4 421 422 452 483 502 513 53.6 546 550 b56.3 56.8 50.0
1910 56.6 51.6 53.6 624 505 476 44.7 463 465 494 502 477 40.7
1911 485 50.0 49.1 488 500 508 504 474 435 425 448 461 47.6
1912 46.6 45.5 479 510 51.1 522 523 53.8 b4.8 551 538 bHO.8 bL2
1913 50.2 47.6 46.4 465 452 42,0 428 45.2 461 440 425 429 45.1

(X,)} The items represent the monthly totals of shares traded on
the New York stock exchange in units of 1,000,000 shares,
The New York Times.

{X1) This series gives the index numbers of the prices of all
quoted industrial stocks with 1926 —
Cowles Commission.?

In the analysis which follows it is assumed that the total variance

100 as a base.

Source:

Source: The

o? of an economic time series can be regarded as the sum of three vari-
ances which are egsentially independent of one another. The first of
these, o2, is the variance due to secular trend; the second, ¢,?, is the
variance due to harmonie, or quasi-harmonice, elements; the third, g%,
is the variance of the erratic element. In times of great inflation, a
fourth variance may also be included, namely that of the disruptive
element, which we may represent by op2. In the period around 1929
this became the dominating part of the total variance and the har-
monic and trend elements were completely effaced by the inflation. In
the stable period, which is the subject of the present investigation,
however, this disruptive variance was zero.
Hence the total variance may be represented by the sum

(1) o = gp? + oy + okt
The independence of the three elements may be argued in the fol-

2 Thig analysis was made before the index numbers were finally revised.
Some slight variation will be found between these values and the publmhed ones.
he conclusions are not affected.
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lowing way: If the secular trend is essentially linear, then it may be
regarded as part of the arc of a harmonic term with period longer
than the series under analysis. Such harmonic terms are themselves
almost independent of harmonic terms with periods which lie within
the limits of the data, and hence the two variances will be essentially
additive.

It is obvious that the erratie element, if it is truly erratie, will
have a zero correlation both with the harmonic components and with
the trend. The erratic element may be strictly erratic, that is to say,
it may meet the test of randomness, or it may be relatively erratic, by
which we mean that it will have a zero correlation with the structural
components of the series.

The linear combination of the three variances as given in equa-
tion (1) can be justified analytically in the following way. Let us con-
gider the function

y=mt+ Asinat + Bcosat + e(t)

over the range from —p to +p, where p is sufficiently large with re-
spect to the period 2x/a of the harmonic element so that the average
of this term may be assumed to be zero. The erratic element, £(¢), i8
assumed also to have a zero average over the interval; that is,

L%ty dt=0
Eﬁf.,s“ =0.

Under these conditions the varlance of y(t) is explicitly found
to be

) =g [ vt =+ 304+ )
-p

1 J'n i}
+2—p' —’Ez(t)dt‘F”](p)n -

where we employ the abbreviation

(A* — B?)

) =-—

sin 2ap + i—zg-(A sinap + B cos ap)
2m . m fr

+—a,_ (—A cos ap + B sin ap) +-p— tel{t)dt
-P

+_1.f’e(t) (A sin af + B cos at)dt .
DY
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Since by assumption ap is large, all terms in 5 (p) will be small
except the third., But if (m/e) is of the order of unity, which is a
realistic assumption for most economic time series, then this remain-
der term may usually be disregarded also. It vanishes, of course, if
tan ap = A/B. Under these conditions the variance o, consists of the
first three terms, which are respectively the variances of the trend, the
harmonic component, and the erratic element.

To proceed now to the actual computation of the erratic elements
of the four series chosen for exploration, we first evaluate the zeroth
and first moments about the center of the time range, that is, assum-
ing N = 208 and p = 101, the four mean values, the standard devia-
tions, and the variances, These values are tabulated below as follows:

Series i, M: Mesn (4) ‘ a ‘ o1
X, 14672.78 129206.24 722795 | 15.3143 234.5278
X, 11051.4 185313.3 54.4404 1 18.5004 t 342.2648
Xg 295547 1053.93 14.5590 70961 ' 50.8546
X, 8042 90 T78217.91 39.6202 8 8608 ' 785138

We shall also need the correlation coefficients between the four
series before they have been corrected for trend. The coefficients, R, ,
are given below as follows:

[ i I, x, I Zu

X, | L0000 '

. 0.7697 0.3961 0.9516
X, 0.7697 1.0000 0.1167 0.81562
o 0.3961 0.1167 10000 : 0.3128
14 | 0.9516 | 0.8152 0.3128 . 1.0000

X
X

From the moments, employing formula (3) of Section 3, we
readily compute the four trends as follows:

¥, = T2.2795 + 0.18535¢,

= 54.4404 + 0.27157¢,
¥, = 14.5590 + 0.00151¢,
1 == 39.6202 + 0.11164¢ .

These trends are graphically represented by (E) in Figure 44.
The variances due to the trend are now computed from the for-
mula

(3) or* = A'M*/N ,
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as one observes from formula {4) of Section 3. The residual variance,
@ ?, is then obtained by subtracting the trend variance from the origi-
nal variance. The trend variances, the residual varianeces, and the
standard deviations for the four series are given below as follows:

O W-JONES INDUSTRIAL AVERAGES PICIRON PRODUCTION 100

o

(A}

+ X :3
+10 (B (B} 190
e | =t 10
=10
+ 20 ity 1 10
+10—(D) (D) 10
_,3;’"“""":""""“""" ——— e o0,
+90 T80
(E) (E)
:50! +30
o i AN A T A
1900 1905 910 1900 1505 7910 2
+ ———
Y STOCK SALES ON NYSE COWLES COMMISSION INDUSTRIAL ™
[ "STOCK PRICE INDEX
(A) Y,
e
20

1900 1505 1910 1900 1508 1910 L

FIGURE 44.—REDUCTION 0F TIME SERIES TO RANDOM ELEMENT.
This chart shows how harmonic components and trend are removed from
economic time series. (A) = original series; (B), (C), (D) = harmonic ele-
ments; (E) — trend; (F) — Residuals.
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Series Trend Variance (¢r*) Residual Varlance (04%) -
X, 117.9708 116.5570 10.7961
X, 253.2619 89.0029 9.4341
X, 0.007849 50.3468 7.0956
X,, 42.8034 35.7104 5.9758

The correlations of the trend residuals are now easily computed
by means of formula (5) of Section 3. Thus, making use of the values
previously recorded, we get for r.. , the correlation coefficient between
the Dow-Jones averages and pig-iron production, the following value:

- (0.7697 X 15.3143 X 18.5004 — 0.18534768 X 932.577832)
1 10.7961 X 9.4341
=0.4440 .

We note that the quantity 0.18534768 is the value of A’ computed
for p = 101 multiplied by the moment 129206.24, and the quantity
932.577832 is the value of the second moment 189313.3 divided by
N = 203,

In this manner all the trend residuals are correlated and the co-
efficientg are recorded in the following table:

P Iy Ty Xy

1.0000 0.4440 0.4363 6.9001
0.4440 1.0000 0.0182 0.56236
0.4363 0.0182 1.0000 0.4502
;| 0.9001 0.5236 0.4502 1.0000

™

o

34 34 ¢ ¢

-

The next problem is to remove the harmonic elements from the
four series. For this purpose we consult the periodograms for sig-
nificant periods, and for these sigmificant periods we compute from
the data of the periodograms the values of the parameters, 4, B, R,
and B2, where A and B are the coefficients respectively of the cosine
and sine components, and where B? = 4? + B2, The table on page 234
is thus constructed for the four series.

We now assume that the harmonic variance is given by the fol-
lowing formula: .

o' =4[(A*+ B + (A2 +B%) +-..+ (A + B.Y)],
where A; and B, refer to the values for significant periods.

The value of ¢,?, subtracted from the residual variance o,*, should
give, to a close approximation, the variance of the erratic element,
op?; that is,

(4) ﬂ'g’ o 01. - c"’c
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T . Lengths of Significant Perlods T

71786_129! ! Pargmet.ers ' 2_’ Months 3¢ Montha i 13 Months P62 M‘Z"E’“ L
A | —s.2166 | —87219 | —1.1963
i B 12210 —4.4564 —6.7914
X, R P37 .80 6.90
R: | 12.0409 96.0400 47.6100
T T A “issiz | 14380 0 —az233¢ .
B —2.2398 47671 | —6.1268
X, R 2.61 498 | 7.45
R 6.8121 24.8004 =  55.5025
| i .
P A —1.3438 | —3.1498
B 2.0935 ‘ 0.2594
X, B . 2,49 ! 3.16
! [ G.2001 : 9.9856
_—— ] - . N [ S —— —_
A —1.6335 y —47092 | —0.1514
i B 0.4500 | —3.2827 —4.2426
X, R 1.69 P 5.74 4.25
| Rz 2.8561 L 32.9478 18.0625
|

|
i : —

In the following table we give the values of the harmonic vari-
ance, the erratic variance as computed by (4), the standard deviation
of the erratic element, and the actual value of this standard deviation
computed dircctly from the final residuals:

E';;ie_s— T ﬂu’ o : Us’ 0'1. by (4) UE (Exact) 7J Ermr;:
X 778454 | 387116 | 62219 | 67354 | 0.5135
X, 435575 | 454454 | 6.7413 | 6.8394 | 0.0981
X, 8.0929 ; 422539 | 65003 | 6.7457 | 0.2454
X, | 269331 | 87772 | 20621 | 37126 | 01499

The errors in the standard deviation of the erratic element arise
out of the approximate character of formula (4) as has been ex-
plained previously. Except in the last instance, they are all less than
three times the probable errors of s, these probable errors being re-
spectively 0.2249, 0.2284, 0.2252, and 0.1240.

7. Economie Significance of the Example

In order to interpret the significance of the analysis given in the
preceding section, we compute the correlation coefficients between the
erratic elements of the four series and obtain the following table:
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X X Iy Xy

1.0000 | 0.0778 | 0.4057 | 0.7092
0.0778 | 1.0000 | 0.2575 | 0.0608
> | 0.4087 | 0.2575 | 1.0000 | 0.2654
W | 07002 | 0.0608 | 02654 | 1.0000

=

B 3¢ 3¢

One of the most significant facts to be noted from a comparison
of the three tables of correlation coefficients is that the high correla-
tion of 0.7697 between X, and X, has been reduced to the insignificant
correlation of 0.0778. In other words, we have been able fo account
for nearly all the interrelationship between these two series by similar
trends and two common harmonics. The remarkable permanence of
this periodic relationship between these two series was observed pre-
viously in the chapter on serial correlation. There it was established
that pig-iron production moves three months after the stock price
averages.

This cloge correlation between the two series can be exhibited
very simply in another way. Since in both series the 43-month cycle
dominates the other significant cycles, we can represent most of the
cyclical movement in the two series by this single harmonic. Thus
from the table of periods we have for the stock price averages the
dominating cyele

2nt 2nt
X,=-8T279¢ €os 4.4564 si HE

=9.7998 sin %‘ (t + 29.0190) ;
and for pig-iron production,
2nat

. 2nt

=T.4471 sin o 27 &+ 25.6368) .

Computing the lag-correlation funciion for these two harmonies
by means of formula (2) of Section 4 of Chapter 3, we obtain

r(t) =.cos§—; (3.382 -¥).

) Hence the lag between the two series, determined from this very
simple analysis, is equal to about 3.38 months.
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This same conclusion can be derived from the data of the period-
ograms of the two series expreased as percentages of trend. In this
case we obtain for the two harmonic elements the following values:

2n

. 2n
X, ——8.56310 cos i3 4.7624 sin e

=9.7711 8in % (t + 28.766) ;

2n . 2m
Xg —_— —4.5647 cos E - 6.2364 sin 4—3-

="7.7078 sin —4%-; {t + 25.838).
The lag-correlation function is then found to be
. 2n
r{t) —cos i3 {2,928 — 1),

which shows a fundamental lag of three months between the two se-
ries.

Another interesting conclusion to be derived from the final table
of correlation coefficients is that the relationship between X, and X,
does not depend upon either trend or harmonic elements. This is an
important conclusion to establish since it diseloses a connection be-
tween these two series which does not depend upon the existence of
common trends or common periodic movements. Since the relation-
ship between the stock price averages and the production of pig iron
is established through common periods, the existence of an essentially
different type of correlation is a matter worthy of special comment,
Obviously the simple explanation, is found in the faet that the volume
of sales on the stock exchange increases whenever the market shows
an unusual movement in either a positive or a negative direction.

A final observation from the table of correlation coefficients re-
lates to the series X, and X,,, which are designed to measure essen-
tially the same economic phenomenon. By the removal of trends and
common periods, the initial correlation of 0.9516 has been reduced to
0.7092. While this is not to be regarded as a large change, it is cer-
tainly sufficiently great to excite attention. The first series is derived
from a sample of the end-of-the-month quotations of 12 stocks, while
the second series measures the complete action of the market as it is
determined by an index based upon the monthly averages of all the
listed stocks.
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8. Seasonal Variation

In Section 7 of Chaptier 2 the use of harmonic analysis was illus-
trated by removing a twelve-month cycle from the data of freight-car
loadings. The twelve-month cycle is generally called the cycle of
seasonal variation and it is recognized as an important characteristic
of many economic time serijes,

While the use of harmonic analysis seems to recommend itself in
the study of seasonal variations because it yields at one computation
both the relative energy in the seasonal cycle and the technique for
removing it from the data, the method of link relatives is widely em-
ployed to compute the indexes of seasona] variation.

We shall illustrate this method by means of the data on freight-
car loadings previously used.

If y: represents the data and S; the indexes of seasonal variation,
then the new series

(1) = y:/S;

is called the data corrected for seasonal variation. The indexes of
seasonal variation are computed in three steps.

The monthly link relatives of the data are first found and
arranged in a table in order of magnitude. By 2z series of link relatives
we mean the ratios of each item in the series to the one just preceding
it. Thus referring to the data (Section 7 of Chapter 2), we compute
as the Jan./Dec. ratio for 1920 the fraction 820/758 = 1.08. In this
manner the table on page 238 is readily obtained.?

In the present instance the arithmetic averages are seen to agree
closely with the medians. In general the median is to be preferred in
this computation since it is free from extreme variations in the data
which might affect the average. The fact that unusual departures
from a normal trend are thus excluded by the method of link relatives
seems to the writer to be one advantage possessed by this méthod over
that of harmonic analysis. Another argument for the use of link rela-
tives is found in the fact that the methed automatically eliminates the
trend from the computation. '

... 31t will be observed that, if the available data begin with January and end
with December, then the number of link relatives for the Jan./Dee. ratio will be
one less than the number of link relatives for the other ratios.

& Severa]l methods have been devised for correcting data for seasonal variation
iffering from the one presented in this section. Some of these adapt the tech-
nique of moving averages to the problem. For a more extensive account than ean

given here of other methods the reader is referred to F. C. Mills, Statistical
Methods (Revised edition), New York, 1938, pp. 284-298, and to F. E. Croxton
and D. J. Cowden, Applied General Statistics, New York, 1939, Chapter 18,
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Jan. Feb. Mar. Apr. May June July Aug. Sept. OCet. Nov. Dee.

Ratio Dec. Jan. Feb. Mar, Apr. May June July Aug. Sept. Oet. Nov.

109 109 109 104 118 107 106 110 110 110 95 94
108 106 1039 103 109 107 105 10% 1068 116 93 90
106 105 108 103 108 104 102 109 107 106 91 89
105 105 106 103 107 102 100 108 106 105 90 88
1104 104 105 1902 107 102 100 108 106 1056 B9 87

Link 104 100 105 102 106 101 99 107 104 104 89 87
Rela- 103 101 104 102 106 101 9% 108 104 105 88 87
tives 103 101 102 99 105 101 99 108 103 105 87 85

102 99 102 99 104 100 98 106 102 108 86 B85
1161 99 101 98 103 160 98 106 100 103 86 385

| 101 98 101 97 102 99 98 105 100 103 B84 85
P06 97 161 96 100 98 98 105 99 162 84 84
. 98 9 101 88 98 98 98 104 9% 102 83 83
| 94 101 86 94 94 96 101 9% 101 82 82

Median 104 101 103 100 106 101 99 108 104 105 8R &6
Arithmetic
Mear

n | 103 101 104 99 105 101 100 107 103 105 88 86

The next step in the computation is to set the link relative for
Jan./Dec. equal to 100 and “chain’ each median to this standard. If
the medians of the columns are represented respectively by the sym-
bols m,, m., my, -+, m,,, then the chain relatives will be computed
from the formulas

01:100, C;=¢Ci,m;, i=2)3!"'l12'

Since it will turn out that ¢,»m, is not equal, in general, to ¢,, as
should be the case if the chain relatives are to be periodic, a ratio to
correct for this discrepancy is computed from the equation

a{l+d)yr=c,m,.
A new set of adjusted chain relatives is then determined by

Ci

= o

i=1,2,..., 12.

It is clear that our objective in the adjustment is attained since we
have C, = C,,m, = ¢,;m, (1 + d)"' = ¢, == 100 .
The final indexes of seasonal variation are obtained by dividing

the chain relatives by the average value, ¢, of the adjusted chain
relatives; that is to say,

Si'—'—'Ci/C.

From the data we readily obtain the following values:
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Medians Chain relatives Adjusted chain FlTndeE of neasonal

relatives | }'f\riatlon

My T Lo in-__-__ﬁ Riﬁ_ﬁ‘_
104 100 100 i 92
101 101 101 J 93
103 104 104 a5
100 104 103 94
106 110 ' 109 100
101 111 110 ‘ 101
09 110 109 100
108 119 118 108
104 124 122 112
105 130 128 117
88 114 112 103
86 98 96 | 88

Averages 109 i 100

Applying formula (1) we readily obtain the values of the series
corrected for seasonal variation. These values are given in the follow-
ing table:

MONTHLY AVERAGES OF MEAN WEEKLY FREIGHT-CAR LOADINGS
CORRECTED FOR SEASONAL VARIATION
{Unit, 1,000 cars)

Year | Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.

1919 | 791 739 734 761 759 801 858 826 857 826 784 861
1920 | 891 834 893 778 862 851 901 896 865 859 858 821

1921 766 734 729 761 787 T57 7h1 Tb0 751 794 739 776
1922 763 822 870 769 T87 834 825 812 835 848 917 952
1923 919 9056 966 1001 975 1001 986 964 926 921 950 938
1924 933 976 965 931 R95 8H7 B94 502 926 932 947 962
1925 1001 973 973 1001 S68 979 986 1000 959 946 994 1009

1926 1063 9838 1020 1019 1037 1018 1049 1022 1025 1030 1037 1027
1927 1028 1028 1055 1037 1024 989 979 983 980 953 928 947
1928 937 064 1001 995 1002 975 986 980 897 1004 1030 1003
1929 971 1013 1013 1060 1051 1042 1038 1034 1013 999 950 949
1930 910 942 930 970 914 921 895 BG68 831 812 T 772

1931 782 762 774 800 740 T41 738 692 658 649 636 630
1932 616 603 595 593 522 486 483 486 515 542 533 551

Av. 879 BT7T BO4 890 878 878 8BB4 873 867 B65 863 871

It is instructive to compare the resuits of this analysis with that
given in Section 7, of Chapter 2, where the seasonal influence was re-
moved by means of harmonic analysis. The two deflated series are
graphically compared in the accompanying figure. The principal dif-
ference appears to be that the method employed in this section tends
to give a greater smoothness than that of the previous method. Thia
is due {o the fact that in the first instance only two major harmonics
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were removed, whereas the present method removes all the harmonic
variation attributable to the interval T=1 to T=12.

This conclusion is further substantiated by computing the per-
centage of energy accounted for from the formula

100F =100 (1 — o, /0*) ,

where ¢ = 23,870 is the variance of the original series and ¢,*> =
17,292 is the variance of the corrected series. We thus obtain 100E =
27.56 per cent, which is to be compared with 16.43 per cent obtained
by the previous method.

THOUSARDS OF ' THOUSANDS OF
CARS PERWEEK CARS PERWEEK
1200, - 1200
1000 1000
800 1 : 800
500 v 600
-
d: i 1 1 1 i N L M n 50

1950 ' 7525 £
FIGURE 46.—FREIGHT-CAR LoApINGs, 1919-1932 (MONTHLY AVERAGES OF
WEEKLY DaTA.

: Residual after seasonzl has been removed by means of harmonic
analysis

----- : Residual after seamsonal has been removed by the method of link
relatives

9. The Variate Difference Method and Its Application*

The variate difference method is a statistical procedure designed
to remove the random element from the items of a time series. The
origin of the theory is apparently to be found in a paper written by
J. H. Poynting as early as 1884,° but its development as a tool in the

¢« The author is greatly indebted in this account to The Variate Di[e‘remx
Method, by G. Tintner, published as a monograph of the Cowles Commission and
Jowa State College, 1940. Tintner’s admirable work, Prices in the Trade Cyele
Vienna, 1935, xii + 204 pp. employs the technique of the variate difference method
and gives & résumé of its salient features.

$“A Comparison of the Fluctuations in the Price of Wheat and in the Cot-
ton and Silk Imports into Great Britain,” Journal of the Royal Statistical So-
ciety, Val. 47, 1884, pp. 34-64.
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analysis of time series belongs to the more recent period. Among those
who have contributed to the subject may be mentioned the names of
R. H. Hooker, Miss F. E. Cave, L, March, “Student” (W. S. Gosset),
Miss E. M. Elderton, Karl Pearson, G. U. Yule, A. Ritchie-Scott,
Warren M. Persons, R. A. Fisher, A. L. Bowley, Oscar Anderson, G.
Tintner, A. Wald, and R. Zaycoff. But it is probable that the present
state of the theory and the general interest in its application are due
to the extensive work of Anderson, whose treatise Die Korrelations-
rechnung in der Konjunktiurforschung, published in 1929, may be con-
sidered as definitive of the subject. More recently Tintner has pro-
duced a monograph setting forth in much detail the applications of
the method to economic data.

It is somewhat aside from our purpose to enter into a discussion
of the merits and the difficulties of the theory, but we believe that
the method has considerable utility in determining the nature of the
erratic element in many economic time series.

The basic postulate of the variate difference method is found in
the assumption that the elements y; of a time series may be resclved
linearly into two parts, the first a mathematical expectation z;, and -
the second a random element &; ; that is,

vi=zx; +e.

The second postulate of the variate difference method is that z;

is a systematic or functional variable and that its kth difference ap-
proaches zero as k increases, that is, 4*¢; = 0 for large values of k.
It is well known, of course, that the third difference of a parabola is
zero, that the fourth difference of a cubic is zero, etc. Hence if z;
can be represented by a polynomial of nth degree, then its difference
of order » + 1 will vanish. But since this is not the case with the
random element ¢; , the residual left in the series y; after the difference
of order » + 1 must be that attributable to the random element.
" The scheme, then, is to determine the value of k, let us say, k,,
for which A*x; =0. The value so determined then indicates the funec-
tional character of z;. If, for example, k, is 2, then z; is essentially
linear; if k, is 3, then «; is parabolic, etc.

Having once determined the nature of the functional variable, we
can then proceed to eliminate the random element by smoothing the
data by a moving average indicated by the analysis. The method em-
Ployed is the moving average of Sheppard’s graduation theory.

The first problem is to determine k,. For this purpose the second
moments of the kth differences are computed ; that is,

(1) p® =T Ay
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The variances of the k-differences are then obtained from the
formula

(2) o’

uzﬂc]

= NR)aCr

where xCi, 2= (2k) 1/ (k)2 is the kth binomial coefficient.

The reason for the divisor C; is found in formula (3), Section 4,
Chapter 4, where the variance of a random series is computed. Since
by hypothesis the kth difference is the difference of a random series, .
we must compute the variance on this assumption.

The next question is to determine the significance of the differ-
ences between successive variances as defined by (2) ; that is, to com-
pute the expectation, E (4,), of the difference

(3) &= | o —a?].
This is the most difficult part of the analysis both theoretically and
practically and the criterion is achieved through several steps which
will be stated without proof. The reader is referred to the original
articles for the justification of the procedure. ¢

The variance of 8., which we shall designate by «*(dx) , is given
by the formula

(4) (&) = a?/Ch,
where Q; is a complicated function defined by the following ratio:
H(k, N}

T VTE G

The functions H (k, N) and J (k, N) are due to R. Zaycoff and are
defined as follows:

(N—-kBN-k—-1
VNETITIIN—KBWN-E—-1)—N ’

(N—Rk)Y(N—k—1)b;y — Ney— &%

BN+ IYN-KN-k-1)—-N"’
where b, b'%, b"x, ¢, and ¢’y are given in the table on page 243.

The remaining parameter, G,, in @, is defined in terms of the
kurtosis of the kth difference; thus '

Gk — Dk/"k‘ ’
$ See R. Zaycoff, “Ueber die Ausschaltung der zufilligen Komponente nach

der ‘Variate Difference’ Methode,” Publications of the Stotistical Institute for Eco-
nomic Research, State University of Sofia, 1937, No. 1

H(k,N)=

J(k,N)=
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by by by [ s

0.500000 1.000000 1.000000 0.500000 0,000000
0.277778 0.222222 1.111111 0.555556 0.444444
0.254444 0.108889 1.093333 0.134444 0.286667
0.200592 0.067347 1.080817 0.101837 0.384490
0.187314 0.046838 1.072058 0.094092 0.41547¢
0.169365 0.034973 1.0656577 0.084752 0.462166
0.156063 0.027391 1.060548 0.078301 0.500876

SR WON-HO | w

where D;, the kurtosis, is given by

D= S(A)s /(N — k) — Bt
k= »
Py

The constants By and P, are given in the following table:

k>0.

13 B Py

1 12 2
2 108 18
3 1200 164
4 14700 1800
B 190512 21252
6 2661328 263844

For k=0, the kurtosis takes the form
N—-1

m. — 3( ) 204t

TT1-4/N T 6/N-—3/N°"

D,

where m, is the fourth moment about the mean. It may be computed
in terms of the average means, N,, about any other convenient value
from the formula

m4:N4 - 4N1N1 + GNgle - 3N1‘ .

Since we now have an estimate of the variance of the difference
of the k-variances, we may now establish the criterion for %, in the
usual manner. Thus we form the ratio

8 P — o
Rk= % — k] k+2 '-Tkl.
o* (&) o’

. Then I, is the first value of % for which R is less than 8 and,
within possible minor variations, remains so.
The final step in the analysis consists in determining the funda-

mental structure of the original series by computing a new series
from which all or most of the random variation of the original data
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has been removed. This is accomplished by means of Sheppard's
smoothing formula, which consists essentially of fitting a moving
polynomial to the data.”

¥

t
FIGURE 46.—APPLICATION OF SHEPPARD'S BMOOTHING FORUMLA.

In order to illustrate this method let us consider that a moving
parabola is to be fitted to the data. If the data consisted of five values
only, we might select the central value as the origin and then fit a
parabola to the five points by means of the formulas given in Section
4. We note that if y = @, + a,t + @.t* is the parabola, then the cen-
tral value is given by

» P P
y(0)=ay, =AM, +BM,= A3y, + B s*, =2 a.lh ,
-» -p -2

where we write
o, — 4 + 8B

Now if we move to the next point as origin, we could repeat the

]
process and thus obtain y,(0) =3 a.%, and hence in general

(0) = ﬁ et o

This expression is immediately seen to define a moving average with
the weights given by a, .

:  The reader may consult for this: W. F. Sheppard, (1) “Reduction of Errors
by Means of Negligible Differences,” Proceedings of the Fifth International Con-
gress of Mathematicians, Cambridge, 1912, Vol. 2, p. 348; (2) “ Fitting of Poly-
nomials by the Method of Least Squares,” Proecedinga of the London Math. Soc.,
(2nd series), Vol. 13, 1914, p. 97; (3) “Graduation by Reduction of Mean Square
of Error,” Journal of the Institute of Acluaries, Vol. 48, 1914, p. 171, 390; +bid,,
Vol. 49, 1915, p. 148. See also E. T. Whittaker and G. Robinson, The Calculus of
Observations, London, 1924, p. 291; O. Anderson, Die Korrelationsrechnung m
der Konjunkturforschung, Bonn, 1929, pp. 74 and 117 et seq.; M. Sasuly, Trend
Analysis of Statistics, Washington, D. C., 1934, Chapter 9.
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For the problem originally considered, namely where p = 2, we
obtain the following values for a,:®

as=a,=A +4B=-0.0857143, a,=a,—A + B=10.3428572,
a,= A =0.4857143 .

We note also that since a, is the same for the cubic as for the
parabola, the data by this process may be said to be smoothed by the
moving least-squares parabola or cubic. The extension to polynomials
of higher degree is obvious.

It is clear that the amount of the random variation removed by
the process described above depends both upon %, and p, the para-
meter of the moving average. That is, the per ecent of the random
variation removed is a function of the two variables n and p, where
n =}k, , if k, is even, and n = 4 (&, + 1), if k, is odd. We shall des-
ignate this per cent by 100 — 100 L(n,p), where L{n,p) is defined
by the following table:

Values of L{n,p)
pet P 8 4 ] 3 ] 8

03838 0.2000 0.142% 0.1111 0.0909 0.0769 0.0667 0.0588
0.4857 0.3333 0.255¢4 0.2076 0.1748 0.15611 0.1331
0.5671 0.4172 0.3333 0.2785 0.2395 0.2103

0.6193 0.4759 0.3911 0.3332 0.2911

O | 8

Thus in our previous example we should have had the values
n=2 and p = 2. We may note that this implies that the random ele-
ment is eliminated in the third or fourth difference since ©t = 3 or

= 4 leads to a value of 2 for ». Entering the table of L(n,p), we
find that 100 L(2,2) = 48.57% and hence we conclude that the order
of smoothing employed by this choice would remove 1009% — 48.57%
= 51.43% of the randomness of the series.

Extensive tables of the functions described in this section, to-
gether with an alternative method for determining the order of the
difference in which the mathematical expectation is eliminated, will
be found in the volume by Tintner already mentioned.

Ag an example of the application of the variate difference method, we shall
consider the data for the Cowles Commission All Stocks index (1880-1896), From
these data we have the values 4 — 41.4270 , o= 4.7460 , 02 —= 22,5149, N —= 204 .

The first step is the computation of the variances of the firgt six differences
and their squares together with the corresponding fourth moments. These values
are given in the following table:

* Note that the values of 4 and B are tabulated in H. T. Davis, Tables of

the Hig_lwr Mathematical Functions, Vol. 2, Bloomington, Ind., 1935, pp. 307-869;
in particular, pp. 331-335,
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Order of Dif-] o E® N (N-K) | ol

ference (k) * * * ! o
0 { 22.5149 “ 230,836.6080 1,131.5520 506.9252
1 0.73347 1,513.6183 7.45625 0.53798
2 0.34848 2.374.3676 11,75430 0.12144
3 0.26999 14,088.9195 70.09313 0.06759
4 0.22173 125,622.8648 628.11482 0.04916
5 (.20158 1,405,821.2822 7,064 42855 0.04063
6 | 0.18856 l 17,201 798 5201 86,877.77030 | 0.03555

We next compute the kurtosis (I',) of each difference, the valies of Gy,
H(k, N}, J(k, N), and hence finally @, . These computations are given below:

Order of Dif-

ference (k) Dy Gy s Deit Hk,N) Jk,N) ( Qr
0 —_381.7504 —0.75307 | 14.213189 | 0002427 | 14.22621
1 0.50023 092982 | 29.715297 | 0.005922 | 29.63382
2 —0.07562 | —0.62271 | 41.742692 | 0.010890 | 43.23440
3 —0.06719 | ——0.99405 | 52.001766 | 0014112 | 52.46103
4 —0.05257 | —1.06922 | 61.212589 | 0017588 | 61.79673
5 —0.03185 | —078388 | 69.340589 | 0.020612 | 69.90765
6 —0.01588 | —0.44668 | oo | e | T

The final step is then to compute the values of E;, which are given as fol-
lows:

== = = ==
Oetanet (¥) A @~ e Br =i, — o}Vo}

0 21,7814 0.96742 13.76272

1 0.38499 0.52489 15.55444

2 0.08849 0.25394 10.97899

3 | 0.03826 0.14714 7.71901

4 L 0.02015 0.09089 5.61689

5 | | 451535

0.01302 D 06459

1t is elear from the ]ast table that the random element has not been eliminated
from the first five differences since R, is still significantly greater than 8. How-
ever, the computation indicates that for k=17 or 8 the value of E, would not
greatly exceed 3. Hence we may assume that n=4 will give a sufficient re-
duction in the random element. Thus we may select n =4, p= 5 for the smooth-
ing formula and hence we shall obtain a reduction of 100 per cent — 47.59 per
cent — 52.41 per cent in the random element.

The coefficients of the moving average are found from the formula

u,:a,:A + 2B 4 8¢,

where 4, B, and C are the values corresponding to the quartic in Section 4. The
numerical values of the coefficients are as follows:

o, =a,==00419580, o, =o,=—01048951,  a_,=q,=-—0.0233100,

0, =u=01398601, o,—a,= 0.2797203, a = 0.3333333.

By the use of these weights the expected values of the index may now be
eomputed. For illustrative purposes the following 55 items (Cowles Commission
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All Stocks index, 1880-1884, preliminary values) have been obtained and they are
graphically compared with the origina! items in the accompanying table and in

Figure 47.

Ttem | Origi-) Com- | Item |Origl- | Com- | Item | Origi-| Com.] Item | Origl-| Com-
nal | puted | nal | puted nal | puted nal | puted
1 411 ... 16 | 501 | 1.2 | 31 | 48.3 48.1 46 | 438 | 436
2 419 | ... 17 (523 | 61.6 | 32 | 49.7 | 49.3% 47 | 439 | 432
3 426 | ... 18 [ 629 520 33 : 602 | 49.6] 48 | 4301 429
.4 417 ... 19 (511 | 514 | 34 | 489 | 49.0] 49 | 417 | 428
5 384 | ... 20 | 499 | 507 ) 35| 468 | 47.7| 650 | 428 ; 429
] 385 | 393 | 21 | 603 | 499 °Ff 36 | 470 | 466 51 | 426 | 419
1 403 | 39.6 § 22 | 495 | 497 | 37 | 468 | 46.2]| b2 | 40.9 | 400
8 418 | 409 | 23 | 498 | 494 § 38 | 457 | 468] 653 | 374 | 378
9 | 417 421 ) 24 48B4 | 4B5 | 39 | 463 | 464} 64 | 350 | 264
10 429 | 434 || 25 {476 | 476 | 40 | 473 | 468 55 | 359 | 36.2
11 | 45,2 | 451§ 26 | 466 | 47.0 | 41 | 464 | 469| 56 | 382 | 368
470 473 | 27 | 465 | 463 | 42 | 46.9 | 4866| 57 ' 369 | 370
13 408 | 489 | 28 | 465 | 459 | 43 | 46.1 | 45.7| 58 | 357 | 363
14 406 | 49.7 1 29 | 459 | 45.9 | 44 | 44.0 | 448) B9 | 35.0 | 35.1
15 602 | 504 | 30 | 457 | 46.7 | 45 | 44.5 | 443 60 | 349 | 345

INDEX INDEX

60 &0

50 ' - ‘\ \J\-‘ 0

v Wl

of 2

1880

1881

1882

1883

1884

FIGURE 47--CoWLES COMMISSION ALL STOCKS INDEX, 1880-1884.
) are smoothed by a moving average (----- )
which removes 50 per cent of the random element.

The original items {

funetion.

(1)

10. The Logistic Trend

We have previously explained in Chapter 1 the economie signif-
icance of the law of growth as it has-been applied to population and
production data. In this section we shall survey briefly some of the
analytic properties of the logistic curve and its generalization.

By the logistic curve we shall mean the curve represented by the

¥

k

T 1T b’
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where a, b, and % are parameters to be determined from the data. A
founth parameter, ¢, may be introduced into the equation by replacing
¥ by ¥ — ¢, provided the growth to be analyzed starts at some level
greater than zero. Since this is not often the case, it will be more con-
venient to consider the curve in the form given above.

We shall first discuss the properties of this curve from the some-
what more general function

k
@ VETTpen
where ¢(¢) is an arbitrary function. If we set ¢ () = — at, then we

obtain the logistic given in equation (1).
The first derivative of ¥, as defined by (2), is found to be

(3) P IOYR L
and the second derivative is given by
PV~ k) + [ OFy - 1) LB

From the first equation we see that horizontal asymptotes exist,
which are the lines ¥y = 0 and ¥ = k. These values are attained when
¢ {£) is respectively 4+ and —oo.

Maxima and minima of the curve between these limiting values
are given for the values of ¢ which satisfy the equation

¢’ {¢) =0.
Points of inflection are found for the values of ¢ which satisfy
the equation
k" (8) + [¢ (DY) (2y — k) =
or, if the value of y is substituted from (2), for values of ¢ which
satisfy
" (t) +[¢" ()2 + b {s"(8) — [¢' ()]} eV =0

For the special case, ¢ (1} = -~ af, we see that the two asymptotes
exist, but that no maximum or minimum value is attained by the func-

tion between them.
Only one point of inflection exists for this case and it is defer-

mined from the equation
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which yields as the co-ordinates of the point the values

1 1
(4) t=-log.b, y=3k.

This we shall call the eritical point of the logistic curve.

If a is a positive quantity, then the curve represents growth, pro-
ceeding from the asymptote y == 0, through the point of inflection de-
fined by (4), to the asymptote ¥ — k. This is the true logistic curve,
If @ is negative, then the curve represents a declining function, which
drops from the asymptote ¥y = % to the asymptote ¥y = 0.

For the special case, ¢ (£) = af?, a < 0, we see that the curve has
but one asymptote, namely ¥ = 0. It also possesses one maximum
value, namely, at the point ¢ = 0. Points of inflection are determined
from the equation

(1 + af?)
(1—at®)

Closely related to the theory of the logistic is that of the Gom-
pertz curve,

(5) y=ke*, b<1,

the theory of which we have discussed in the first chapter.

From the condition that b is less than 1, it is seen that y will ap-
proach the value k as ¢ tends towards plus infinity. If a is likewise
less than 1, then as ¢ approaches negative infinity the value of y will
approach zero., The curve thus lies between a lower asymptote, y = 0,
and an upper asymptote, ¥y = k. It thus resembles the logistic curve
in this respect.

The first derivative of (5) is given by

dy

be‘ldl' —_—

{6) = (loga) (log b)b'y=logh- logk v,
which shows that there exists no maximum or minimum value be-
tween the asymptotes.

The second derivative of the curve is given by

dy _

vy = log*d (loga)b'y [(loga)b* + 1],
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dry _ y y
TE log‘*‘bylogE [logE +1].
.Setting this derivative equal to zero, we see that a point of in-

flection exists when we have

()
Z4+1=0,
logk

Solving this equation for ¢ and y we obtain as the point of inflec-
tion

- log(—loga) k

t= T y ¥ =-.

log b e

It is interesting to observe that both the logistic and the Gom-

pertz curves belong to the family of curves defined by a differential
equation of the form

S =g OF /by,

where F(z) is a function such that F (1) = 0. The logistic and the
Gompertz curves are derived respectively from the assumptions
F(2) =2z—1,and F(z) = log 2.

The maxima and minima between the two asymptotes y — 0 and
¥ = k are determined from the zeros of g(?).

A number of statistical methods have been developed for fitting
the logistic to data. The first of these is due to Raymond Pear] and
L. J. Reed.® This method consists essentially of a preliminary esti-
mate of the parameters from three equally spaced points and the ad-
justment of the parameters by computing the errors of the estimated
values by means of least squares. This method is effective, but tedious
when the series is long. Henry Schultz has given an alternative pro-
cedure for correcting the preliminary estimates of the parameters.’®
His solution yields the true least-squares logistic in the sense that the
sum of the squares of the differences between the data and the curve
is minimized. Unfortunately, however, the method is difficult to apply
and because of the fact that differences of second order in the para-
meters are neglected, it is usually necessary to apply the method sev-
eral times before a better fit is obtained than that obtained by the

® See, for example, Raymond Peari, Studies in Human Riolegy, Baltimore,
11’22%421121?2‘(“ 24; also Davis and Nelson, Flements of Statistics, 2nd ed,, 1937,

10 #The Standard Ervor of a Forecast from a Curve,” Journol of the Ameri-
can Statisiical Asgsociation, Veol. 25, 1850, pp. 139-185.
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Pearl-Reed procedure. A third method, the “method of the rate of
increase,” has been suggested by H. Hotelling.'* This method, is gim-
ple to apply and yields results which are in close agreement with the
other two described above. An adaptation of Hotelling’s ideas will
be described below.

Although it is somewhat apart from our purpese in this chapter
to describe the purely statistical methods of adjusting the logistic to
data, this problem frequently arises in practical work and it is use-
ful to have at hand a reasonably simple technique for computing the
parameters. The author has found the present method very easy to
apply and the graduation quite satisfactory. It is an adaptation of
Hotelling’s method.

We note from formula (3) that we can write

(D ~—=a— (ae/k)y .

Hence, if we replace dy and dt by their increments Ay and At
and assume that the latter is equal to unity, then we can write (7) in
the form

{8) R=p+aqy,
where we abbreviate
(9) R=4y/y, p=a, q=-—a/k.

Since (8) is a linear function in y the parameters p and ¢ may
be obtained very simply by the method of least squares from the
known values of B. Consequently a and k are immediately computed
from the last two equations in (9). .

The graduation of the data is then immediately accomplished by
adding increments successively to any assumed arbitrary value y,.
These increments are computed from the parabola

(10) Ay =1py + qyt.

The value of b, if it is desired, may be estimated for a number of
points along the range by means of the formula

an | L Sk
Yy

and the average of these determinations used as the desired value.

11 “Differential Equations Subject to Error and Population Estimates,” Jour-
nal of the American Statistical Association, Vol. 22, 1927, pp. 283-314.
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As an example of the application of this method we shall graduate the Stand-
ard Statistics index of industrial production from 1894 to 1937. The data and
computations are given in the following table:

Year Glu:‘h)luk '] ay /iy B = &)y ye

1884 1 8.7 — 0.1 0.1149 —0.0115 75.69
1885 2 8.6 3.6 0,1163 0.4187 73.96
1886 3 12,2 14 0.08197 0.1148 148.84
1887 | 4 13.6 — 01 0.07353 —0.0074 184.96
1888 b 13,5 2.4 0.07407 0.1778 182.25
1889 | 6 15.9 3.3 0.06289 | 0.2075 252.81
1890 | 7 19.2 —21 0.05208 —0.1094 368.64
1891 8 17.1 1.9 0.05848 01111 292.41
1892 9 19.0 — 42 0.05263 —0.2210 361.00
1898 10 14.8 — 0.9 0.06757 —0.0518 219.04
1894 11 13.9 6.0 0.07154 0.4316 193.21
1895 12 19.9 — 21 0.05025 —0.1055 396.01
1896 18 17.8 2.3 0.05618 0.1292 316.84
1897 14 201 44 0.04975 | 0.2189 404.01
1898 15 ‘ 245 4.9 0.04082 0.2000 600.25
1899 16 29.4 — 09 0.03401 ~-0.0306 864.36
1900 17 | 285 5.9 0.03509 0.2070 812.25

|

1901 18 34.4 3.4 0.02907 0.0988 1183.36
1902 | 19 37.8 — 1.0 0.02646 —0.0265 1428.84
1908 | 20 | 368 | —27 | 002117 | —00734 | 135424
1904 | 21 34.1 13.7 0.02933 0.4018 1162.81
1905 | 22 478 — 439 0.02092 —-0.1025 2284.84
1906 28 527 — 01 0.01898 —0.001% 2777.29
1907 24 52.6 —17.2 0.01801 | —0.3270 2766.76
1508 25 35.4 18.2 0.02825 0.5142 1253.16
1909 26 53.6 2.2 0.01866 0.0411 2872.96
1910 27 55.8 — 5.1 0.01792 —0.0914 3113.64
1911 28 50.7 12.1 0.01972 0.2386 2570.49
1912 29 62.8 2.0 0.01592 0.0318 3943.84
1913 30 648 —12.7 0.01543 —0.1960 4199.04
1914 31 52.1 14.1 0.01919 0.2706 2714.41
1915 32 66. 18.8 0.01511 0.2841 4382.44
1916 33 85,0 1.8 0.01176 0.0212 7225.00
1917 34 86.8 — 4.6 0.01152 —0.0530 7534.24
1918 35 82.2 —10.5 0.01217 —0.1278 6756.84
1919 3¢ 1.7 8.4 0.01395 0.1172 5140.89
1920 37 80.1 —228 0.01248 —-0.2845 6416.01
1921 | 38 57.8 20.6 0.01745 0.3595 3283.29
1922 39 77.9 15.0 0.01284 0.1926 6068.41
1923 40 92.9 — 5.8 0.01076 —0.0624 8630.41
1924 41 87.1 8.6 0.01148 0.0987 7686.41
1925 42 95.7 43 0.01045 0.0449 9158.49
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Year Clu?glrk ¥ Ay 1y B c Ayiy [Tl

1926 43 100.0 — 28 0.61000 —0.0280 |  10000.00
1927 44 97.2 3.8 0.01029 0.0391 9447.84
1928 45 101.0 7.1 0.009901 0.0703 | 10201.00
1929 46 108.1 —21.9 0.009251 —02026 | 11685.61
1930 47 86.2 —16.0 0.01160 —0.1856 n430.44
1931 48 70.2 —15.4 0.01425 —0.2195 4925.04
1932 49 54.8 — 85 0.01825 —0.1186 2003.04
1933 50 1.3 29 0.01631 0.0473 3757.69
1984 51 64.2 9.7 0.01558 0.1511 4121.64
1935 52 73.9 14.7 0.013538 0.1989 5461.21
1936 53 88.6 7.4 0.01129 0.0835 7849.96
1937 54 96.0 —21.7 0.01042 —0.2261 9216.00
Totals | 2851.5 428 2.6579 | 198667.11

From the totals given in this table the following normal equations are im-
mediately written down:

54p + 2851.69—= 2.6579
2851.5p 1 198667.11¢ = 42.8,

From the solutions, p = 0.1663555, ¢==—0.00202886, we obtain the desired
parameters: @ —p —=0.1563556, k——p/g — T7.06564.

In order to compute successive increments, we now select y,—8.7 as orlgm
and employ formula (10), which now has the numerical form

Ay = 0.15686y — 0.0020288632 .

The table of values on page 254, with the exception of the second and third
colemns, which will be explained later, is then computed.

The final problem is the determination of b, or what is essentially the same
thing, the location of the class marks with respect to the graduated valuez. This
may be accomplished in several ways. Since the critical point has an ordinate
equal to %k — 38.53, the values of the data may be smoothed by a moving sverhge
and the year when this critical value was attained may be estimated. Such a
Procedure shows that the critical year for the production series was about 1903.

Or, otherwise, one may select several values of t and then estimate b for each
of these by means of formula (11). Using the class marks t, and selecting the
points ¢:=10, t =15, == 20, and t == 30, we obtain as an estimate of & the value
22,5978, Substituting this in the first formula of (4) as a check, we obtain ¢ ==
19.94 as the class mark of the critical year. From the original data we see that
this corresponds to the year 1908 in agreement with our previous estimate.

The date and the legistic are graphically represented in Figure 48,

The values attained by the method which we have just described
should not be accepted without some reservation. Apparently a value
for k is often attained which is somewhat lower than the value which
one gets by applying the Pearl-Reed method. Thus in the data for the
broduction of pig iron over the period from 1855 to 1925, the method
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Clasa | Graduated

k alue » o an Ay =

ol B | weat
1899 6 8.70 75.69 13603 | — 0.1536 | 1.2067
1890 7 9.90 $8.01 1.5480 : — 0.1988 1.3492
1891 8 | 1125 126.56 1.7591 { — 0.2568 | 1.5023
1892 9 | 129 182.56 1.9936 ;| — 0.3238 1.6638
1893 10 | 1441 207.65 2.2531 — 0.4213 1.8318
1894 11 | 16.24 263.74 2.5893 § — 0.5351 2.0042
1895 12 18.00 324.00 28145 | — 0.6574 2.157T1
1896 13 | 20.16 406.43 31522 | — 0.8246 : 2.3276
1897 14 ) 2249 505.80 85165 | — 1.0262 | 2.4903
1898 16 | 2498 624.00 3.9059 | — 12660 | 2.6390
1899 16 | 27.68 760.66 43124 | — 15433 2.7691
1900 17 | 30356 921.12 47456 | — 1.B688 | 2.8767
1801 18 | 33.23 1104.23 5.1958 | — 2.2403 | 2.95556
1902 19 | 3619 | 1309.72 5.6587 | — 2.6572 3.0015
1903 20 3%.19 1535.86 6.1277 — 3.1160 3.0117
1904 21 | 42.20 1780.84 6.5984 | — 3.6131 | 2.9853
1806 22 | 45.19 | 2042.14 7.0659 | — 4.1432 2.9227
1506 23 | 48.11 | 2314.57 7.5225 | — 4.6959 2.8266
1807 24 50.94 2594.88 7.9650 — 5.2646 2.7004
1908 26 | 53.64 | 2877.25 8.3872 | — 5.8375 2.5497
1909 26 56.19 3157.32 8.7859 — 6.4058 2,3801
1910 27 | 5857 | 3430.44 9.1580 | — 6.9599 2.1981
1911 28 | 60.77 | 3692.99 9.5020 — 7.4926 2.0094
1912 29 | 6278 | 394133 9.8163 — 7.9964 1.8199
1913 30 | 6460 | 417316 10.1009 — 8.4668 1.6341
1914 31 | 68.23 438641 10.3557 — 8.8994 1.4563
1915 32 | 67.69 | 4581.94 10.5840 — 9.2961 1.2879
1916 33 | 68.98 ; 4758.24 10.7857 | -— 9.6538 1.1319
1917 34 70.11 4915.41 10.9624 — 99727 0.9897
1918 35 | 7110 | 5055.21 11.1172 —10.2563 0.8609
1919 36 | 71.96 | 5178.24 11.2517 —140.5059 0.7458
1920 37 72.71 5286.74 11.3689 —10.7261 0.6428
1921 38 | 73.35 5380.22 11.4690 —10.9157 | 0.55383
1922 39 | 73.90 5461.21 11.5550 —11.0800 0.4750
1623 40 74.37 5530.90- 11.6285 —11.2214 0.4071
1924 41 74.78 5592.06 11.6926 —11.3455 0.3471
1925 42 75.13 5644.52 11.7473 —11.4519 0.2954
1926 43 | 7543 5689.68 11.7942 | —11.5436 0.2506
1927 44 | 75.68 | b727.46 11.8333 —11.6202 0.2131
1928 46 | 75.89 | 5759.29 11.8662 —11.6848 0.1514
1929 46 | 76.07 . 5786.64

gives as the upper saturation level for this series a value of 34,290,000
long tons, while the Pearl-Reed method, after one approximation,
yields an estimate of 43,021,000 long tons. The first value is undoubt-
edly a minimum estimate, while the second appears to be optimistic
in the light of actual production during the last decade.
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F1GURE 48.—GROWTH OF INDUSTRIAL PRODUCTION, 1884-1937,

11. The Growth of Population

Among all the series with which economics deals probably the
most uniform is that of population. Here we observe the operation of
a steady law of growth which is so uniform from one period to an-
other that forecasts of exceptional accuracy are possible not only by
years but by decades. This makes the data of population growih un-
usually attractive to statisticians,

It is obvious that the exponential Iaw of growth, y = ae**, should
apply with some exactness to a young population, since this law is
merely another way of stating the reasonable proposition that the
rate of growth is proportional to the population; that is, dy/dt =by .

But it is equally apparent that some mechanism must eventually
operate to decelerate growth, if for no other season than that terri-
torial limitations must eventually put a bound upon the number of
People who can be supported within them. This is another way of
stating the famous proposition first argued by the English economist,
Thomas R. Malthus (1766-1834), who thought to find this controlling
agency of population growth in the assumption “that population has
4 tendency to increase faster than food.” Data for modern populations



256 THE ANALYSIS OF ECONOMIC TIME SERIES

do not tend to confirm this explanation, The population of France
has reached a stable state without any apparent relationship to the
supply of food, and there are strong indications that the rate of
growth of the population of the United States is decelerating, while
the available food supply far exceeds the population’s needs. As a
matter of fact, the critical point (see Section 10) in the population
figures of the United States is in the year 1914, when the country was
entering one of the most spectacular periods of abundance in recorded
history.

MILLIONS MILLIONS
20 200

-
. -

100 / 100
CRITICAL -
POINT

/ 50

L / ]
[} "‘T_-' I 1 L L A i i L 1 Il i L L L L 1 £ L Q
1780 1800 1850 1900 1950 2000 2040

FIGURE 49 —GROWTH OF POPULATION OF THE UNITED STATES, 1790-1920.

Since the mechanism of the deceleration of the rate of growth is
thus obscure, we shall not attempt an explanation of the phenomenon.
What is important here is to note that the exponential law of growth
can apply only at the beginning of a population growth and must be
modified by another law such as that of the logistic which imposes an
ultimate limitation upen the population.

In the following table we have recorded estimates of the para-
meters of the logistic

k

Ve TS
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as they have been computed by Pearl-Reed, H. Schultz, and H. Hotel-
ling:12

CONSTANTS OF THE LOGISTIC OF POPULATION FOR THE UNITED STATES

Constants f _—P-:arl-Reed ﬁ.isih};ltz H. H?te_l!“inz
G 0.031396 0.031352 0.031482
b 67.6315 67.1750 67.5352
¢ 156.5968 | 196.2624 195.868

These values refer to an origin in 1780 with the time taken in
years. The following table gives the estimates of population obtained
from the three determinations, although it is obvious that only
inconsequential variations exist between the ordinates of the logistic
as given by the three computers, The graphical representation of
these values is given in Figure 49.

POPULATION ESTIMATES FOR THE UNITED STATES
(Unit = 1 million)

Year t Observed Pearl-Reed | Sehultz Hotelling
1780 0 2.879 2.879 | 2858
1790 10 3.929 3.900 3.918 3.885
1800 20 5.308 5.300 5321 5.271
1810 | 30 7.240 7.183 7.209 7.134
1820 40 9.638 9.702 9.732 9.621
1830 50 12.366 12.043 13.076 12.917
1840 60 17.069 17.427 17.463 | 17.236
1850 70 23.192 23,100 23.135 29 820
1860 B0 81.443 30.307 50.337 29.949
1870 90 38.558 39.252 39.273 28.710
1830 100 50.156 50.045 50.047 49.330
1890 110 62.948 62.624 62.598 61.719
1900 120 75.995 76.709 76.647 75.614
1910 130 91.972 91.792 91.685 |  90.526
1920 140 105.711 107.188 107.036 ' 105.792
1930 150 122.775 122.157 121.958 | 120.682
1940 160 131.410 136.037 135794 | 134.539
1950 170 148.350 148.072 | 146.878
1960 180 158.854 158.549 |  157.443
1970 190 167.520 167.196 166.191
1980 200 174.473 174.137 173.233
1940 210 179.929 179.585 178.776
2000 220 184.138 183.788 183.062
2020 240 189.744 189.398 188.797
2040 260 192.879 192.534 192.018
2060 280 194.595 194.253 193.788
2080 300 195.523 195.184 194.749
2100 320 196.022 | 195,685 195.267

2 R. Pearl, Studies in Human Biology, Chapter 25; H. Schultz, “The Stand-
ard Error of a Forecast from a Curve,” Journal of the American Statistiral As-
Soctation, Vol 25, 1930, pp. 139-185; H. Hotelling, “Differential Equations Sub-
Ject to Error, and Population Estimates,” Jowrnal of the American Statistical
Association, Vol 22, 1927, pp. 283-314.
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It is instructive next to inquire when the acceleration of growth
of the population became negative, since this critical value is a highly
important point on the curve. It seems to the writer a hazardous
procedure to forecast from the logistic curve until the actual growth
has passed this critical value. From the Pearl-Reed estimates we at
once compute

t = (log. 67.6315) /0.031396 — 134.2232 ;

since the origin was in 1780, this gives approximately March, 1914.

We also observe from the table of values given above that the
curve of population growth is an unusually stable one when compared
with other time series which describe the historical behavior of such
economic variables as price and production. This stability is a for-
tunate matter since it undoubtedly contributes a great deal to the
stability of other series. If per capita estimates of economic varia-
tion can be approximately predicted, then it is clear that the total
variation can be estimated without essential loss of accuracy.

Another significant thing that we should notice is the essential
difference between the growth of a population which is subject to no
central mechanism of control and the growth of a population subject
to such a mechanism. The first may be illustrated by a colony of
fruit flies (drosophila melanogaster), which is allowed to grow free-
ly within the limits of a pint bottle, or of a population of yeast cells.
The second is illustrated by the growth of the cells of a pumpkin, or
of the increase in weight of an animal from birth to maturity. An-
alytically the difference between the two types of growth is found in
the observation that in the first instance ¢ (¢) in equation (2) of Sec-
tion 10 is a linear function of ¢, namely —at, whereas, in the second
instance, ¢ (£) is the cubic function a,t + .2 + a.t3.

The question of the growth of population of biological organ-
isms has been extensively studied by Pear], who used as his experi-
mental material colonies of the fruit fly. In the experiment whose
data are recorded below, a colony of fruit flies, a mutant from guintu-
ple, was started with 2 males, each 15 days old, one male and 3 females
each 2 days old, 12 pupae and a small number of eggs and larvae.
Population counts were made 10 times until the problems of managing
the food supply became difficult. The data, together with their gradu-
ated values computed from the logistic

346.14

= 1 4+ eu.ac—o.nt

are recorded in the following table:
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GROWTH OF POPULATION OF QUINTUPLE STOCK OF DROSOPHILA IN A PINT BorrTiE.*

Date of Census | Oba. Fop. Cal. Pop. Date of Census | Oba, Pop. Cal. Pon._L
Qct. 6 6 6.0 Qet. 24 163 162.6
Oct. 9 10 11.3 Qct, 27 226 218.0
Oct. 13 21 269 Qct.. 30 265 265.9
Oct. 16 62 38.6 Nov. 3 282 306.8
Oct, 18 67 67.0 Nov, 7 319 324.5
Oct. 21 104 105.2

¢ Data from Peavrl, The Biology of Population Growth, p. 224,

The excellent agreement between the observed and calculated
population is exhibited in Figure 50.
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FIGURE 50.—GROWTH OF POPULATION OF FRUIT FLIES.

A similar phenomenon is observed in the growth of yeast cells, &
population which might be regarded as being somewhere between a
population of independent organisms such as the fruit flies and a
population of cells controlled by a central mechanism. The following
data are due to T. Carlson.’* In the experiment from which these data
were obtained a few cells of yeast were dropped into a proper medium
for their development and the entire colony kept at a moderately warm
temperature. The census was taken daily until the asymptotic value
of the growth was attained.

The data are given below. Their graphical representation, to-
gether with their logistic of growth computed from the equation

66.5

= 1 + et1%vs-o.5ass: *

is shown in Figure 51.

18 “Ueber Geschwindigkeit und Grosse der Hefevermehrung in Wiirse,” Bio-
them. Zeitaohrift, Vol. 57, 1913, pp. 318334



260

THE ANALYSIS OF ECONOMIC TIME SERIES

QUANTITY

QUANTITY

800 8OO
{ SATURATION LEVEL: e83

600 //"7~ 600 .
L / 4

400 400
3 4

200 ’/"r 200

0 h—w——f"fg’r// i i z i M L i i Ak 0

0 5 10 15 20

DAYS
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GROWTH OF A POPULATION OF YEAST CELLS

I Guentity of Yeast Quantity of Yeast

Age in Days Obs. Cal. Age in Dayw Oba. Cal.
0 9.6 9.9 10 513.8 506.9
1 18.3 16.8 11 569.7 562.3
2 250 28.2 12 594.8 800.8
3 472 46.7 13 629.4 625.8
ol | 4| e
. . 16 6b61.1 661.0
6 174.6 181.9 16 665.9 656.7
7 257.3 260.3 17 659.6 660.1
8 350.7 348.2 18 661.8 662.1

9 4410 433.9 o —8.69

We now compare the growth of individual organisms with the
. growth of & population subject to a central mechanism in order to
establish the essential difference between the two phenomena. For
this purpose we consider the growth of a white rat from infancy to
maturity after an experiment by Donaldson. In the following table
there is recorded the actual weight in grams of the male white rat
over the period of a year, together with the calculated weight as gradu-
ated by the curve

y=T7+

273

1+ @4-5204-1.21081+30.087841-0.B291 (8 -
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FIGURE 62.—GROWTH IN Bopy WEIGHT oF MALE WHITE RATS.
OBSERVED AND CALCULATED VALUES FOR THE GROWTH IN
WEIGHT OF THE MALE WHITE RaAT*

Agein | Obe Wt |Cal. Wt | Agein | Obs. Wt. | Cal Wt. | Ageln | Obe. Wt. | Cal W&
duye 1o grams |In grams | days ingrams | ingrama | dars in grams | in grams
10 13.6 14.1 46 50.5 528 107 1778 178.1
11 13.8 145 49 b6.7 58.3 112 183.8 185.6
12 14.8 15.0 52 62.5 64.2 117 1914 192.2
i3 15.3 15.6 55, 68.56 T0.4 124 197.3 200.6
14 15.2 16.1 58 739 T6.8 1381 202.6 208.1
15 16.5 16.7 61 81.7 83.4 138 209.7 214.5
17 178 17.9 64 29.1 90.1 143 218.3 2186
19 19.5 19.3 67 99.3 97.0 150 2254 228.7
21 21.2 20.8 70 106.3 103.8 157 227.0 2282
23 22.9 22.4 73 113.8 110.7 164 281.4 2321
25 2538 24.2 76 1218 1176 171 236.8 235.7
27 27.4 26.1 79 128.2 124.3 178 2804 238.9
29 29.6 28.2 82 135.0 130.9 186 289.3 241.9
31 318 30.5 86 143.8 187.4 2168 262.9 2527
34 349 | 332 88 | 1484 | 1487 | 256 | 2654 | 2644
37 37.8 38.3 92 152.3 1561.7 266 279.0 279.6

40 422 429 o7 160.0 161.2
__413__ 46.3 48.6 102 1688 170.0 o=4.98

* See H. H, Donaldson, The Hat, Philadelphls, Wistar Institate, 1815,

‘ It is clear from the data and from the graduation curve (see
Figure 52) that the growth of organisms subject to & central mechan-
18m does not conform strictly to the logistic. The exponent is a cubic
function of the time, which indicates that the initial growth is more
rapid than in those data for which the logistic holds.

This conclusion is also confirmed by the following data on the

growth of the p
(see Figure 53)

umpkin (cucurbdita pepo) and its graduation curve
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FIGURE 53.—GROWTH N WEIGHT OF THE PUMPKIN,.

OBSERVED AND CALCULATED VALUES FOR THE GROWTH IN WEIGHT oF THE PUMPKIN*

Ageinj Oba, Wt. | Ingrama | Agein | Ohs. Wt. Cal. Wt. Agein | Obs Wt. Cal. Wt.
days | ln gramas | Cal. Wt. ¥8 in grams | in grama days in grams in grams
5 267 267 12 3366 3378 19 5114 5089
6 443 399 13 3758 3829 20 5176 5172
7 658 645 14 4092 4186 21 5242 5236
8 961 1044 15 4488 4464 22 5293 6282
9 1498 1586 16 4720 4680 23 5362 5316
10 2200 2210 17 4864 4850 24 5360 5337
11 2920 | 2829 18 4980 4984 25 5366 5360

* Data from T. B. Robertson, The Chemical i!uh of Growth and Senescence, Philadelphla, 1928.

The biologieal reasons for this observed difference between the
growth of population of independent organisms and the growth of
colonies of individual cells subject to a central mechanism are still ob-
scure. But the difference itself is clearly established by these empirical
studies and must be taken into account in the application of the logistic
to population data. The question naturally arises as to whether the
growth of cities, themselves subjected to central planning, the direc-
tion of Chambers of Commerce, etc., may not be more closely related
to the growth of individual organisms than to the growth of colonies
of individuals. It is too early yet to answer this question since Ameri-
can cities have been growing rapidly until recent years. However, the
following data, which are graphically represented in Figure 54, indi-
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cate that the growth of New York City and Chicago i3 more rapid
than the growth of the population of the country itself and that prob-
ably the graduation of the data by the simple logistic would not be
satisfactory. The answer will be much clearer, however, when the
populations get closer to their asymptotic limits. The data are given
in the following table:

THE GROWTH OF POPULATION IN NEW YORK CITY AND CHICAGO

New York City Chicago

Yenr Fop. Year Pon. H Year Fop. Yesr Pop. Year Pop.

1790 | 33,131 {1840 | 348,943 [ 1890| 2,507,414 | 1840 4,853 | 1890 | 1,099,850
1800 | 63,787 {1850 | 612,385 | 1900| 3,437,202 | 1850 29,963 [ 1900 | 1,698,575
1810 | 100,775 | 1860 | 1,174,779 | 1910| 4,766,883 | 1860| 109,260 | 1910 | 2,185,283
1820 | 130,881 1870 | 1,478,103 | 1920 5,620,048 | 1870; 298,977 | 192¢ | 2,701,705
1830 | 217,985 ) 1880 | 1,911,698 [ 1530| 6,930,446 | 1880, 503,185 | 1930 | 3,376,438

1940| 7,380,259 1940 | 3,384,656
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FiGURE 54.—POPULATION GROWTH OF FIGURE 55.—URBAN CONCENTRATION.
CitiEs As COMPAEED WITH PoPULA- This chart shows the nearly linear
TION GROWTH OF THE UNITED STATgg: shift from rural to urban living
(a) United States, (b} New York, .

{¢) Chicago.

But it is evident that another factor has been at work in acceler-
ating the growth of cities. As scientific development has progressed
there has been an astonishing shift of the population from rural to
urban living. How great this movement has been is revealed in the
following table showing urban concentration in places of 2500 inhabi-
tants or more since 1820. The data are due to L. E. Truesdell.*

URBAN CONCENTRATION IN PER CENT

Yenr 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930

Pflrl())ent 7.0 84 116 168 208 262 296 354 40.0 458 514 5662
Dan

1 Growth of Urban Population in the United States of Americe,” U, 8. Dept.
of Commerce, 1937.
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Figure 55 shows that the percentage increase has been essentially
linear gince 1830, the average increase for the 110 years being 4.5 per
cent per decade. Since 1890 the average has increased slightly to 5.2
per cent. We thus see that cities have tended to grow faster than the
population and estimates of their future size must take into account
this general movement of the population.

It seems quite reasonable to suppose, however, that, as industrial
production levels off around its equilibrium position, this tendency
toward urban concentration will cease. In fact, this deceleration may
come rather abruptly, and in this case, we might expect to see cities
attain their maturity more rapidly than the country itself. These
phenomena, if interpreted analytically, would appear to show that
the growth of Ameriecan cities may be governed by a mechanism which
more nearly resembles the growth of individual organisms than the
growth of colonies of individuals

In order to account for the logistic character of population growth
Pearl has made a rather elaborate study of the influence of the density
of population on the birth rate and has found a small negative correla-
tion, r = —0.175 with a probable error of £0.057, after other influences
have been accounted for. This confirmed a study made by J. L. Brown-
ell in 1894.* Pearl reaches the conclusion: “The bearing of the results
set forth in this chapter on the general problem of the causes lying
back of the logistic curve is evident. As any population confined with-
in definite spatial limits goes up on the logistic curve its density auto-
matically becomes greater and greater. But if, as the evidence indi-
cates, increasing density has associated with it the biological effect of
a reduction in the rate of reproduction of the population exhibiting it,
then obviously there is in this relationship a factor which may appear
ag a vera cause in dampjng the time rate of growth in the upper half
of the logistic curve.” 1

Factors extraneous to normal growth by the logistic law are ob-
servable also in other population statistics. A notable example of this
is the growth of educational institutions, which has been considerably
greater than the normal growth of the population. This has been due
in part to urban concentration, to increased standards of living, and,

perhaps, also to an increase in general belief in the virtues of educa-
tion itself.

1® “The Significance of a Decreasing Birth-rate,” Annals of the Acad.
Politicnl and Social Seience, Vol. 5, 18948;95, P, 4849, nnals of the Academy of

¢ The Biology of Populatien Growth, p. 157.
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12. The Growth of Production

The great wealth of the United States and the remarkably high
standard of living attained by its population are due in the final
analysis to the growth of production and trade over the past century
and a half. We have already cited the remarks of Carl Snyder, who
has observed a per capita growth of about 2.8 per cent per annum for
production and trade.

But the last decennium has revealed a somewhat different picture.
Beginning with the collapse of the great bull market in 1929, indus-
trial production indexes declined to unprecedented lows, The secular
advance of 2.8 per cent was abruptly halted. The saturation level of
automobile production clearly had been reached, and the recurring
difficulties of the steel industry may be traced to the apparent fact
that its development has surpassed society’s capacity to absorb its
production. Like other organisms, the mechanism of industrial pro-
duction is subject to the laws of organic growth and Snyder’s annual
average of increase must finally give way to the leveling process of the
logistic law.

One of the best indexes to reveal the astonishing growth of the
production of the United States is that of pig iron. The data are given
in the table onpage 266 and they are graphically represented in Fig-
ure bée.,

It will be observed from a comparison of the production of pig
iron with the index of industrial production (Figure 48) that the as-
tonishing increase in the productive activities of the American
economy is agsociated with the use of iron.,

In a very suggestive work published in 1930 and using data for
the most part prior to the year 1925, S. S. Kuznets gave a number of
logisties pertaining to industrial, agricultural, and other indexes.!’?
Hence, in his work we have essentially a series of forecasts into the
very interesting period which followed 1925. It is probable that Kuz-
nets’ logistics were not corrected by the method of least squares and
are to be regarded as approximations to the trend rather than curves
fitted with sufficient care to form a basis for forecasting. In particular,
the parameter % in equation (1) of Section 10, which measures the
asymptotic level, is especially sensitive to the data and should always
be adjusted carefully if it is to be employed as the basis of a forecast.

The parameters of the logistic curves for the production of wheat,

3 Secular Movements in Production and Prices, Boston, 1930, xxiv -+ 536 pp.
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PRODUCTION OF PIG IRON

Production Per Production Per Production| Per
Year in 1000 Capita Year in 1000 Capita Year in 1000 Capita

long tons | Production long tons | Production long tons | Production

in long tona in long tons in long tons

1855 700 0.0256 | 1884 4098 0.0740 { 1913| 30968 0.3209
1856 789 0.0280 | 1885| 4045 0.0714 { 1914| 23332 0.2383
1867 | 713 0.0246 | 1886 | 5683 00981 | 1915| 29916 0.3011
1858 630 0.0211 | 1887| 6417 0.1084 | 1916 39435 0.3914
1859 761 0.0245 | 1888 | 6490 0.1073 | 1917| 38621 0.3780
1860 821 0.0261 1339 7604 g.ﬁg; 1918 gslaggg g.gggg
1861 653 0.0203 | 1830 9203 X 1919 .
1862 703 0.0214 | 1891 | 8280 0.1286 | 1920| 36926 0.3466
1863 B46 0.0252 11892 9157 0.1394 | 1921| 16688 0.1542
1864 | 1014 00295 1293 97126 0.1064 | 1922 27220 0.2477
1865 832 0.0237 [ 1894 6657 0.0975 | 1923] 40361 0.3619
1866 | 1206 0.0337 | 1895 9446 0.1358 | 1924 30406 0.2686
1867 | 1305 0.0358 | 1896 | 8623 0.1216 | 19256 36116 0.3144
1868 | 1431 0.0385 1897 9653 0.1337 | 1926, 38698 0.3321
1869 | 1711 0.0451 {1898 | 11774 0.1602 | 1927 35858 0.3216
1870 | 1665 0.0431 | 1899 | 13621 0.1821 | 1928| 37402 0.3120
1871 | 1707 0.0429 [ 1900 | 13789 0.1811 | 1929 41757 0.3436
1872 | 2549 0.0622 f 1901 | 15878 0.2042 | 1930 29906 0.2430
1873 | 2561 0.0608 | 1902 | 17821 0.2246 | 1931] 17813 0.1435
1874 | 2401 0.0555 | 1903 | 18009 0.2224 | 1932] 8550 0.0684
1875 | 2024 0.0455 | 1904 | 16497 0.1997 ] 1933| 13001 0.1034
1876 | 1869 0.0410 | 1906 | 22992 0.2730 ] 1934] 16139 0.1276
1877 | 2067 0.0442 | 1906 | 25307 0.2048 | 1985) 21373 0.1676
1878 | 2301 0.0480 | 1907 | 25781 0.2948 | 1936| 30712 0.2391
1879 | 2742 0.0559 | 1908 | 15936 0.1789 | 1937| 36600 0.2830
1880 | 3835 0.0763 | 1909 | 25795 0.2844 | 1938| 18763 0.1441
1881 | 4144 0.0804. i 1910 | 27304 0.2959 | 1939 31532 0.2404
1882 | 46238 0.0876 11911 | 23650 0.2525 | 1940] 41786 0.3162
1883 | 4596 0.0850 | 1912 | 29727 0.3127

corn, pig iron, and copper are given in the following table, the vari-
able ¢ being taken in units of five years:

Constanta Whont Corn Plg Iron Copper
e +028700 | 4021168 | +0.40187 | -+0.60928
b 3.1839 2.4667 64.548 9.7499
k 10128 3971.2 | 50,403 699.5

Origin 1870 1865 1860 1885

But an inspection of Figure 56 shows that these values are unduly
optimistic except in the case of copper. The production of corn and
pig iron, in particular, has fallen far short of the saturation estimates
of 3,971.2 and 50,403 respectively in the face of the observation that
saturation levels have apparently been attdained for this era of the
industrial evolution.
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FIGURE 56.—PRODUCTION CURVES AND LOGISTICS.
(a) Wheat, (b) Corn, (c) Pig Iron, (d) Copper.

For this reason, it was deemed advisable to recompute the para-
meters (except in the case of copper) by the method of Pearl and Reed,
which gives approximately an adjustment by least squares. In order
to obtain comparable results only data through 1925 were employed.
The following estimates of the parameters were then obtained, the
variable ¢ being taken as before in units of five years:

Constants Whenat Corn Pig Iron
a 0.35075 | 0.30230 | 0.44905
b 36702 | 29168 | 66.1102
k 845.4 31282 | 43,021

Origin | 1865 1865 1860

__ The logistics based upon these values are graphically represented
In Figure 56 and seem to describe with some accuracy the actual be-.
havior of the series in the years after 1925. Both the production of
Wheat and the production of corn have been affected adversely by the
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drought period in the middle of the present decade and by governmen-
tal restrictions upon acreage planted. That both series will tend to
oscillate about the established equilibrium lines in the future may be
expected.

An inspection of the logistic for the production of pig iron shows
an optimum which the events of the last few years have denied. Sat-
uration production is seen to be around 43,000,000 long tons annually.
It is interesting to speculate when, if ever, the production of pig iron
will attain this asymptotic value. An inspection of the graph reveals
three maxima in the production curve, one due to the use of pig iron
in the World War, a second around 1924 due probably to the rapid
expansion of the automobile industry during this period, and the third
in 1929 when the building cycle reached its maximum. We next in-
spect the table of per capita production of pig iron and cbserve that
there has been a steady increase since 1855 in the use of iron, This
per capita use reached the incredible value of 0.39 tons in 1916, due of
course to the war, another maximum of 0.36 in 1923, due to the ex-
pansion of the automobile industry, and a third maximum of 0.34 in
1929, due to building. The amazing magnitude of the depression is
clearly shown from the fact that in 1932 the per capita use of pig iron
dropped to 0.068 tons, a value lower than any since 1879. Since it is
improbable that another industry like that of automobiles will be
developed in the next few years, we cannot expect a large per capita
production from such a source, But war is not improbable, and build-
ing booms seem to follow a somewhat irregular cycle of from 17 to
20 years in length, Hence we may expect to see again a per capita
production around 0.35 tons from one or the other of these two
sources. But a per capita production of 0.85 tons for a population of
128,000,600 people will yield a total in excess of 43,000,000 long tons.
Hence we may expeet to see the asymptotie figure exceeded during the
next war or during the next building cycle. In fact, the present re-
armament program of the government has greatly increased the de-
mand for steel and the asymptotic limit will undoubtedly be exceeded
while this program is being carried out.

From the table of parameters given above it is interesting to
compute the dates of the respective critical points by means of formula
(4) of Section 10. These are found to be the following: wheat, 1885;
corn, 1882; pig iron, 1907; copper, 1904, It is interesting to observe
that the critical points for the grains agree and that the critical points
for the metals are also essentially the same. The latter, in particular,
are seen to be in agreement with the critical point for industrial pro-
duction which, in Section 10, we estimated to be around 1903.
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The actual data from which the logistics have been computed,
- with the exception of those for the production of pig iron which were
given earlier in this section, are contained in the following tables:

(Unit — 1,000,000 bushels)

PRODUCTION OF WHEAT

Year | Prod. |Year | Prod. [Year | Prod. | Year | Prod. Year | Prod. |Year Prod,
18656 | ........ 1877 364.2‘;1889 434.4 1901 | 788.6 1913 762.4 {19256 ; 676.4
1866 | 152.0 (1878 | 420.1 [1B90 | 378.1 (1902 | 724.8 [1914 | 891.0 {1926 | 821.0
1867 | 212.4 /1879 | 496.4 {1891 | 584.5 (1903 | 662.9 [1915 | 1025.8 [1927 | 878.4
1868 | 224.0 1880 | 498.6 1892 | 528.0 1904 | 596.9 [1916! 636.3 1928 | 914.9
1869 | 260.1 j1881 | 383.31893 | 427.6 {1905 | 726.8 (1917 ] 636.7[1929 | 812.6
1870 | 235.9 11882 | 504.2)18%4 | 516.5 1906 | 756.8 1918 | 921.4 {1950 | 857.4
1871 | 230.7 {1883 | 421.1{1895 | 569.5 [1907 | 638.0 {1919 | 968.0[1931 | 932.2
1872 | 250.0 11884 | 512.8 [1896 | 544.2 [1908 | 644.7 1920 | B33.0[1932 | 745.8
1873 | 281.3 |1885 | 357.1{1B97 | 610.3 1509 | 700.4 11921 | 814.9{1933 | 529.0
1874 | 308.1 (1886 | 457.2 |1898 | 772.2 {1910 . 635.1[1922| 867.6 1934 | 496.6
1875 | 292.1 11887 | 456.3 {1899 | 636.1 {1011 | $21.3 1923 797.4 (1935 | 626.3
1876 | 289.4 11888 | 415.9 |1900 | 602.7 {1912 730.3 {1924 | B864.4 (1936 | 636.5
| 1937 | 874.0
PropucCTioN oF CORN

{Unit = 1,000,000 bushels)
Year | Prod. |Year | Prod. |Year | Prod. |Yesr | Prod. |Year | Prod. |Yeer | Prod
1865 | ....... 1877 | 1342.6 11889 | 1998.7 {1901 | 1613.5 (1913 | 2447.0 [1925 | 2917.0
1866 | 867.9 11878 | 1388.2 11890 1460.4 11902 | 2619.5 [1914 | 2672.8 11926 | 2692.2
1867 | 768.3 11879 | 1823.2 [1891 | 2055.8 [1903 | 2346.9 (1915 | 2994.8 1927 | 2763.1
1868 | 906.5 1880 |1717.4 |1892 | 1713.7 11904 | 2528.7 [1916 | 2566.9 1928 | 2818.9
1869 | B74.3 11881 j1194.9 [1893 | 1707.6 [1905 | 2748.9 1917 | 3065.2 11929 | 2535.4
1870 ; 1094.23 (1882 | 1617.0 11894 | 1339.7 {1906 | 2897.7 {1918 | 2502.7 {1930 | 2059.6
1871 ] 991.9.1883 {1551.1 f1805 | 2311.0 {1907 { 2512.1 {1910 | 2811.3 11931 | 2588.5
1872 | 1092.7 ;1884 | 1795.5 1896 | 2503.5 1908 ; 2545.0 [1920 | 3208.6 11932 | 2906.9
1873 i 932.3 11885 | 1936.2 1897 | 2144.6 1509 | 2572.3 [1921 | 3068.6 [1933 | 2350.7
1874 | 850.1 {1886 | 1865.4 {1898 | 2261.1[1910 | 2886.3 (1922 | 2906.0 [1934 | 1377.1
1875 | 1821.1 [1887 | 1456.2 {1899 | 2454.6 {1911 | 2531.5 §1923 | 3053.6 {1935 | 2206.7
1876 | 1283.8 {1888 | 1987.8 {1900 | 2505.1 [1912 | 3124.7 11924 | 2309.4 {1936 | 1524.2
l i 1937 | 2645.0

PRODUCTION OF COPPER

{Unit = 1000 long tons)
Year Prod. | Yemr Prod. | Yesr Prod. | Year Prod. [ Yemr Prod. | Year Prod.
1880 27.011890 | 116.0 1900 | 270.6 11910 | 48221920 | 530.8 (1929 | 1006.2
1881 32011891 | 126.8[1901 | 268.8 11911 | 489.8 1921 | 225.711930| 690.5
1882 40511892 | 154.0(1902 | 294.4 j1912 | 555.041922 | 424.2{1931| 528.9
1883 51.6 1893 | 147.0 11903 | 311.6 {1913 | 546.711923 | 640.6[1932| 238.1
1884 64.711894 | 158.1(1904 | 362.7 [1914 | 513.4 1924 | 72961933 | 190.7
1885 74.1 |1895 | 1699101905 | 402.6 (1915 | 619.6 (1925 | 842.1/1934{ 239.3
1886 70.411896 . 205.4 |1906 | 409.8 11916 | 860.61926 | 872.4 (1935 369.5
1887 81.0 1897 | 220.6[1907 | 387.9[1917 | 842.0{1927 | 830.041936| 5922
1888 | 101.1 j1898 | 285.1 {1908 | 420.8 {1918 | 852.0[1928 | 909.1[1937! 8120

1839 | 101.2 1895 | 253.9 1909 | 48791919 | 5743
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A much more fundamental lesson is learned from these logistics.
The era of the great scientific revolution which began approximately
with the discoveries of Galileo (1564-1642), Tycho Brazhe (1546-
1601), Johann Kepler (1571-1630)}, and Sir Isaac Newton (1642-1727)
is reaching its maturity. The amazing energies of science, directed
by the patterns set by these great leaders, have given us in rapid
succession the steam engine, the dynamo, the telegraph and telephone,
the automobile, the airplane, the radio, and all the other wonders of
the modern world. This transition from the past to the present regime
may be estimated by the per capita increase in the use of iron. If we
are attaining the upper asymptote of the production of this basic
commodity, then also the maturity of technological science must be
close at hand. But there can be no real regrets if this should happen
to be true, since in the process of scientific growth the lot of the human
race has been immeasurably elevated. The standards of living in
America and in those of other nations which desired to profit by the
new knowledge have been greatly raised.

Another question that may be raised concerning the validity of
the logistic to describe production data relates to the growth of indus-
try in special centers as compared with the growth of industry for the
country as a whole.

In the last section we observed that cities have grown more
rapidly than total population, a phenomenon which is closely related
to the steady shift from rural fo urban living. For this reason, the
growth of cities has resembled more the growth of organisms con-
trolled by a central mechanism, than it has the growth of colonies of
organisms. The question naturally arises as to whether industrial
production does not exhibit a similar phenomenon.

Strong evidence for the truth of this thesis is furnished by the
investigations of the Bureau of Business Research of the University
of Pittsburgh under the direction of R. J. Watkins. This study shows
the trend of industrial production for the Pittsburgh district and is
based upon 12 statistical series covering manufacturing and coal
mining.

In Figure 57 the trend for the Pittsburgh district has been com-
pared with the trend of industrial production for the United States
for the period 1884-1937. The index used has been congtructed from
the Warren M. Persons indexes of manufacturing and mining for the
period 1884-1930 and from the Federal Reserve Board indexes for. the
subsequent period. Weights were assigned in the ratio of seven for
manufacturing to one for mining. .

The phenomenon to be observed is that production in the Pitts-
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FIGURE 57.—INDUSTRIAL PRODUCTION AND POPULATION: PITTSBURGH
DISTRICT AND UNITED STATES:
(a) Production, Pittsburgh District, (b) Produection, United States, {(e) Pop-
ulation, Pittsburgh District, (d) Population, United States. January, 1884 — 100.
(Data from Bureau of Business Research, University of Pittsburgh).

burgh district grew more rapidly and attained maturity earlier than
production for the country as a whole. There is observed here, per-
haps, the same difference noted between the growth of male white rats
and the growth of colonies of fruit flies. In the first instance a central
mechanism governed the growth, while in the second the growth and
the maturity of the population appeared to be a mechanism of the
population itself. It seems reasonable, arguing by analogy only, to
assume that the production growth of a district with its centralized -
government and its civic organizations might resemble more closely
the growth of a self-contained organism than the growth of separate
units controlled only by the population itself. At least the hypothesis
is worth stating and might be verified or disproved by the study of
a sufficient number of unified areas of production.

18. Frequency Distributions of Time Series

One important aspect of the problem of trends concerns the distri-
bution of the residuals of a time series. Can the distribution be
assumed to be a normal one provided the proper trend has been em-
ployed in the reduction? To this question no categorical answer can
be given, but since the trend plays much the same role in the theory
of time series as the mean does in the theory of ordinary frequency
statistics, it seems reasonable to expect that under most conditions the
residuals would form a normal distribution.
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D. H. Leavens, considering the problem of the frequency distribu-
tions which correspond to time series, has made the following perti-
nent comments:

Biometric and educational statisticians have made much use of frequency dis-
tributions but have not been greatly interested in time series. Economic and busi-
ness statisticians, on the other hand, have concerned themselves chiefly with time
series and have dene comparatively little with frequency distributions, Thus the
two theories have grown up more or less independently of each other. Sometimes,
however, frequency distributions are made of items from a time series. More-
over, in the analysis of business cycles, the cycle relatives gsometimes are expressed
in units of their standard deviation, & concept horrowed from frequency distribu-
tions.

It is the purpose of this paper to consider what types of frequency curves will
correspond to certain types of time series curves, and in particular to investigate
the meaning of the standard deviation of items in a time series. For simplicity,
we shall deal with curves that fluctuate around a horizontal axis, corresponding
to time series from which trend and seasonal have been removed. Moreover, we
shall assume that random fluctuations have been eliminated, leaving purely cyc-
lical curves which rise steadily from the bettom to the top of the cycle.1®

The mathematical technique for the computation of the frequency
distribution corresponding to the time series may be deseribed as fol-
lows:

Let us suppose that y = f () is a symmetric distribution function.
Then

1) Az) = f’f(x)dx

is the cumulative frequency curve, and the original function is derived
from the relationship

dA
dx

Now if 2 =g(¢) is a time series, then the cumulative frequency
curve will be given by the inverse of g (£), namely,

(3) t=g- (),

where g~ (x) designates the inverse of the function g(x). It may be
remarked incidentally that this inverse can be constructed graphically
by reflecting the function g(¢) in the 45° line through the origin of
co-ordinates.

(2) f(z) =

18 “Frequency Distributions Corresponding to Time Series,” Journal of the
American Statistical Asseciation, Vol. 26, 1931, pp. 407-415.
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F1aurRe 57a.—FREQUENCY DISTRIBUTIONS CORRESPONDING TO TIME SERIES.

The upper left-hand part shows how points equidistant in time on a sine
curve may be slid along to pile up in a U-shaped distribution.

The other three parts show the types of frequency distributions correspond-
ing to three types of smooth eyclical time series curves: U-shaped frequency dis-
tribution for curves always concave toward central axis; rectangular frequency
distribution for linear curves; unimodal frequency distribution for curves alwaya
convex toward central axis. For comparison, all frequency curves are drawn with
same standard deviation and same area.

From this we derive
4) ¥=f(x) =d—q“”(-’v)
dx

as the desired distribution function.

As an example, let us assume that the residugls of the time series
form a pure sinusoidal curve about the normal line; that is to say the
residuals, «, are given by

=asinkt.

Solving this equation for £, we then obtain

t=%arcsin (z/a) ,

which is the inverse given in equation (3).
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The desired distribution function is then obtained from (4) and
is found to be

2
L Y g

We thus obtain the important resuilt that the distribution of a set
of residuals which form a sinusoidal curve is U-shaped with vertical
asymptotes at x — ¢ and X = —a . Figure 57a illustrates this and also
the frequency distributions for other t{ypes of time series.

14. The Stability of Trends

Since the erratic element in economic time series is general-
ly large, this tendency to lack of structure must inevitably affect the
stability of trend lines. Thus a trend established for one period of
data may, and often does, lead to grossly erroneous conclusions when
it is extrapolated into the future. One of the best examples of this
is found in the series of rail stock prices over the century from 1830
to 1930. It is a curious fact that the trend of these prices over this
long period of time has been strictly linear as one may see from
Figure 150 (Chapter 11). But the characteristic feature of this series
is its long cycles, which average approximately 20 years in length.
Hence any trend of this or shorter length, fitted to the series of items,
would show extreme variation and would be a very dangerous instru-
ment to use in extrapolation,

The experiment of fitting linear trends to the data of rail stock
prices, using a base of 20 vears, was actually performed and the results
will be extensively discussed in Section 8, of Chapter 11. The century
was divided into 21 overlapping periods of twenty years, each period
containing 16 years of the preceding one, and a straight line y =a + bi
was fitted to each period. The graphical representation of the slope
constant, b, {(Figure 58) shows the unusual variation which appears
in this parameter,

It is thus clear that the stability of trends, where this stability is
to be relied upon for forecasting future movements of the series, can
be greatly affected by harmonic or quasi-harmonic structures in the
data. It is for this reason that a knowledge of the cyclical character
of the series is of much importance in connection with the problem of
determining and interpreting trends.

To this problem we shall return in Chapter 11 where more power-
ful analytical tools are at our disposal.
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FIGURE 58 —SLOPE CONSTANTS,
Values of slope constant for a series of overlapping’trends of 20 years in
length for rail stock prices.

15. General Critique of the Economic Significance of Trends

From the analysis set forth in the preceding sections of this chap-
ter it is evident that the problem of trends is as difficult as it is im-
portant.

From our point of view, a trend may be regarded as the residual
variation which remains after the harmonic structure has been re-
moved from the data. But unfortunately from this point of view the
frend may itself be merely the evidence of a longer harmonic term
which the limitations of the data prevent us from recognizing.

Hence, as we have stated in the beginning, there is always need
in the determination of a trend to formulate an a priori theory about
the nature of the series to which the trend is to be fitted. It is for this
reason that the logistic trend is superior to others in its deseription
of the data of population growth, industrial production, etc. Although
no real a priori foundation for the logistic exists as yet, the success
which this curve has had in describing biological phenomena argues
strongly for it as a general interpreter of any phenomenon which de-
pends upon the enlargement of the factors of environment for its in-
crease,

Price series have as yet no such general trend for their interpre-
tation. They are for the most part characterized by large and partially
erratic swings, which suggest that dynamic forces, imposed upon an
inertial system described in terms of a set of elastic constants, may be
the pattern most useful in interpreting them. In such a situation,
trends are of slight use and probably can best be established by a
combination of linear terms or by moving averages of sufficiently
1?“8 base. The analysis of prices given in Chapter 10 may throw some
light on the situation.



CHAPTER 7
PERIODOGRAM ANALYSIS

1. Introduction

Since we have developed extensively in the early chapters the
statistical methods which are useful in harmonic analysis, it will
be important for us to examine some of the actual periocdograms which
have been constructed and to interpret their significance. In this re-
view we shall examine all periodograms known to the author which
bear upon the problems of economies, The number is not large since,
unfortunately, the excessive statistical labor which must go into the
computation of a pericdogram has strictly limited the supply.

In this interpretation of the periodogram we shall be guided by
two quantities. The first of these we shall call the energy associated
with any given trial period T. This energy, designated by the sym-
bol E(T), is defined by the equations

_ 2 R¥(T) ,_ 4

where N is the number of items used to compute R*(T) and o* is the
variance of the original data. The significance of these equations has
been discussed in Chapter 5.

Associated with the energy is a probability function

(2) P=P(), «(T)=R(T)/Ry*,

where P(x) may be either the Walker or the Fisher probability dis-
cussed in Sections 5 and 6 of Chapter 5. Although the Fisher prob-
ability is asymptotic to the Walker probability for large values of «,
it deviates significantly for small values of x and should be employed
in making conservative estimates.

We also note the relationship

(3) E(T)y= —;-*(T) .

Let us observe that if N = 100, then P(10) = 0.0030 (Fisher) or
0.0023 (Walker), which means that only 30 (or 24) squared ampli-
tudes, B*(T), in 10,000 would be as large as the one observed. Hence,

— 276 —
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if N Z 100, we shall consider any period significant which corresponds
to a value « = 10. For smaller values of «, the significance can be ob-
tained directly from the tables.

We have called attention earlier in the book to the sum

(@) SRHT) =202,

which is rigorously true provided the periods, T, , belong to the Four-
ier sequence,
It thus follows that

(&) SE(T) =1,

where the sum is taken over the Fourier sequence,

For periods other than those in the Fourier sequence, the sum of
the energies is not equal to the actual energy associated with the peri-
ods. But since in most of the examples the energy is concentrated in
two or three fundamental frequencies, and since thege frequencies are
often small with respect to the range and hence belong to a region in
which the Fourier frequencies cluster, it is probable that the total
energy is not greatly different from the sums of the individual ener-
gies. This sum, at least, has some significance in determining the im-
portance of the periods considered even though the energies are not
strictly additive.

Some of the series which we shall examine have not been cor-
rected for trend. Individual energies are not sensibly affected by
linear trends, unless the slope is large, although the measure of their
significance is affected, since this measure depends upon the variance
of the data. Hence in these cases where the trend is a factor, it is
necessary to correct the variance for trend.

Referring to Section 3 of Chapter 6, we see that the variance of
the data corrected for trend is given by the formula

A" M
N

| In these cases the formulas (1) and (2) are replaced by the fol-
owing:

(6) o=t —

_ 40’]2

(7) B =S5, Re=23

H
o)
— 2
=Ry,
o

(8) P=P@), «="«.

o.®
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For fairly large trends the value of R?(T) may itself need cor-
rection. This is accomplished by means of the formulas in Section 6
of Chapter 2. Thus, if the slope of the trend is m , then the corrected

value of R*(T), namely, B2 (T), becomes

R*(T) = A*(T) + B*(T),
where B'(T) is defined by B'(T) = B(T) + (—1)*mT/xa, if the se-
ries is given over the interval —a = ¢ = a ; but where we write B'(7)
== B{T) + mT/n, if the series is given over the interval 0 = ¢ = 2a.
The latter is the case with the periodograms corrected for trend in
this chapter.

If a series of perieds, Ty, T.,---, T» belong to the Fourier se-
quence, it is possible to compute the reduced variance, 0%, of the origi-
nal geries in terms of the total energy ¥ E, associated with the
periods. Thus we can write

(9) = {(1-23E;) o,

where o® is the variance of the original series.
This is derived from the proposition that, for the Fourier se-
quence ,

or,

SRTY) ., "

=1 A -
I—Hzaz +02—-2E’,+02,

from which equaticn (9) is immediately derived.

2. The Constructed Sine-Cosine Series

In order to illustrate our analysis more fully we shall consider
first a series of 300 items which was constructed by forming a linear
combination of five harmonic terms. This series has been fully de-
seribed in Section 4 of Chapter 3, and its graphical representation
is given in Figure 59. The energies were concentrated in five periods,
namely, at T = 12, 25, 44, 60, and 144. These energies were exactly
the following:

E(12) = 0.209241, E(25) =0.113477,
£ (44) = 0.418484, E(60) =0.113477,
E (144) =0.145321.
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FI1GURE 59.--CONSTRUCTED SINE-COSINE SERIES.

From an inspection of the periodogram, Figure 60, we observe
that maxima occur at T = 12, 25, 44, and 60. The peaks broaden as
we proceed from the origin, and are regular except for the peak at T ==
60. Employing the value, By® = 3.6875, we compute the correspond-
ing values of E(T) and x(T).

T 12 25 43 44 60
E{T) 0.1591 0.0370 0.60656 0.6937 0.0840
&(T) | 23.8736 $.h512 90.9696 104.0520 12.6046

In order to interpret these results, we first observe that 12, 25,
and 60 belong to the Fourier sequence, but that the nearest member
of the Fourier sequence to 44 iz 42.9 — 300/7. Since a great deal of
the energy is concentrated in this period, and since there is a signifi-
cant difference between E (44) and E (43), one must employ caution
in interpreting the energy content of this component. Erring on the
conservative side, we then ascribe the lower figure, namely, 0.6065,
to the cycle whose peak is found at T — 44. The sum of the four sig-
nificant energies is then found to be

E(12) + FE(25) + E(43) + E(60) = 0.8866,

the difference between this value and 1.0000 being the amount of
energy still unaccounted for. Most of this will be found in the period
T = 144, which is outside the range of the periodogram.

It is clear from the example that there has been considerable in-
terference between the four periods and particularly between those
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FIGURE 60.—PERIODOGRAM OF THE CONSTRUCTED SINE-COSINE SERIES.

at T = 43 and T = 60. By formulas (8) in Section 4 of Chapter 2
we compute that the interference band for T = 43 extends from 35.54
to 54.48 and that for T = 60, it extends from 46.36 to 85.00. ,

Except for T — 25, there is obviously a high significance in the
peaks recognized in the periodogram. Hence we compute «(25) =
5.55 and the corresponding Walker probability, P(5.55) = 0.4590.

Our conciusions from the evidence afforded by the periodogram
are these: (1) That highly significant peaks are in evidence at T =
12, T=44, and T = 60. The probability ig better than 4 that T =25
is also a significant period. (2) That the total energy associated with
these peaks is approximately 0.89, which means that the total vari-
ance of the original series will be reduced by 89 per cent if these har-
monics are subtracted from the original data.

If we wish to examine more closely into the significance of the
peak at T = 25, we can do this by first removing the other compe-
nents from the data and then recomputing the value of R at T =25.
We know from the construction of the series itself, that the period
will emerge with high significance,

8. Random Series

In the analysis of the preceding section we have discussed the
periodogram of a series in which signifieant periods were known to
exist. This analysis exhibited the powers and limitations of the meth-
od. Before proceeding to the periodograms of actual economic time
series, it will be illuminating to compare our previous results with
those of random series in order to establish a norm for the lower
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FIcURE 61.—RANDOM SERIES.

limits of significant variation. We consider first the unsmoothed ran-
dom series which is graphically represented in Figure 61.

Let us first observe that 102 harmonics will completely represent
the series and that of these only 39 are within the range of the period-
ogram. The average value of R? is equal to 4.42, Representing by
e(m) the integral

e(m) =£me'"dx,

we see by Schuster’s theorg'r that the number of values of R? between
442( a + k) and 4.42a is given by 39[e(a + k) — e(a)]. Hence
there will be 25 values below 4.42, 9 between 4,42 and 8.84, 3 between
&84 and 13.26, and 2 exceeding this value, but not exceeding 22.10.

Since the periodogram is not computed over the Fourier sequence,
we are not able to check this distribution, but we note only four peaks
of significant size, namely at T = 21, T =33, T =58, and T = 70.
The corresponding values of R® are 18.07, 13.21, 23.99, and 19.82. One
of these is observed to exceed slightly the maximum value given
. above; two are between 13.26 and 22.10, and one slightly below 13.36.
From this we may properly infer that the distribution of the Fourier
coeflicients, if they were known, would conform to Schuster’s theory.

Let us now examine the significance of the value R* = 23.99, Di-
viding R? by 4.42, the average value, we obtain « = 5.4. Entering the
table of Walker probabilities with this value of x and N = 200, we see
that P(5.4) = 0.36. Hence the chance is 36 in 100 that in another ex-
ample we should obtain a value of R? as large as the observed one.
On the other hand, the Fisher probability is greater than 0.5. We may
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FIGURE 62.—PERIODOGRAM OF RanNpom SERIES,

therefore conclude that the significance attributable to this particu-
lar value is slight. The corresponding energy is only 0.053.

QOur conclusiong are that the techniques which we have employed
give correct bounds to the statistical interpretation of the periodo-
gram of a purely random geries.

4. Random Sertes Smoothed with a Moving Average

We examine next the periodogram of the series obtained by
smoothing the series of the preceding section by a moving average of
length 12. The object of this investigation was to determine whether
or not smoothing random data introduced fixed periods into the new
series,
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FIGURE 63.—SMOOTHED RANDOM SERIES.

The periodogram shows three distinct peaks, one at T = 21, a
second at T = 32, and a third at T = 58. QObviously the smoothing
has removed most of the variation in the original series, since the
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variance has dropped from 225.32 to 23.21. The average value of R*
s 0.4551, from which we compute

T 21 32 58
E(T) 0.1280  0.1710 0.3390
«(T) 13.0534 174450 345799

It will be observed that these periods coincide nearly with those
existing in the original data, which indicates their spurious charac-
ter. The smoothing has merely tended to amplify the energies of a
small, but insignificant, structure in the original random series.
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FIGURE 64.—PERIODOGRAM OF SMOOTHED RANDOM SERIES.
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But we note here a rather disturbing matter. Although the peri-
ods observed are spurious in origin by the nature of the data, we
nevertheless have detected periods of high significance. Approximate-
ly 64 per cent of the energy is contained in them and they can clearly
be seen in the graphical representation of the data as shown in Fig-
ure 63. This same observation is the basis of the paper by E. Slutzky
on “The Summation of Random Causes as the Source of Cyclic Pro-
cesses,’”! on which we have commented earlier in this volume.

But in Chapter 4 we have seen that the characteristic spectrum
of a random series smoothed by a moving average of length 1 is con-
tinuous. Hence if we multiply the ordinates of the lower graph of (a)
in Figure 27, Section 6 of Chapter 3, by ¢ = 4.8179, noting that
2y = 12, we obtain the following theoretical values of the periodogram:

! Qriginally published in Russian in Problems of Economic Conditions, edited

by The Conjuncture Institute, Mogskva (Moscow), Vol. 3, No. 1, 1927; reprinted
in English in Ecorometrica, Vol. 5, 1937, pp. 105-146. -
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T R R T ] Rr:

2.0 0.00 0.0600 4.9 0.31 | 0.0961
22 | 014 | 0.0196 60 | 0.00 [ 0.0000
24 | 0.00 | 0.0000 84 | 052 | 0.2704
27 | 017 | 0.0288 | 120 | 0.00 i 0.0000
30 | o000 ! ooo00 { 210 | 1.31 | 17161
34 | 022 i 0.0484 | 320 | 1.8% | 35721
40 | 000 | 00000 [ 580 | 2.24 | 5.0476

The most significant deviations from these values are found in
the periods T =21, T = 32, and T = 58. Since we know a priori that
a continuous spectrum of the amplitude indicated by the above table
exists for the smoothed random series, we must investigate the real
periodicity of the data from the difference between the observed and
theoretical amplitude. Thus, considering the last period where the
greatest difference occurs, we compute the true energy to be

E(58) = (3.97 — 2.24)%/(2 o*) = 0.0645.

This value is essentially equal to that observed in the random
data themselves, and hence we may conclude that a small period ac-
tually existed by chance in the original random series.

Since this conclusion is very important in our contemplated ap-
plication, let us see whether the proposition can be verified by a study
of the autocorrelation of the smoothed series. The following table
gives the values of the autocorrelation coefficients of this series over
the range from t = 0 to ¢t = 75;

AUTOCORRELATION OF THE 12-MoONTH MOVING AVERAGE OF THE
RanpoM Dow-JONES SERIES (1897-1913, 204 ITEMS)

r Lag r !ng r | Lag r

1.0000 16 —40.1238 32 —0.2955 48 —0.2196
0.9201 17 —0.0772 33 —0.2949 49 —0.2353
0.8371 18 —0.0498 34 —0.2935 50 —0.2369
0.7371 19 —{0.0129 35 —0.2909 51 —0.2536

0.6177 20 0.0100 36 —0.2632 52 —0.2348
0.4948 21 0.0116 37 —0.2419 33 —0.20561
0.3806.; 22 0.0142 38 —0.2265 b4 —{.2561
0.2632 23 0.0010 39 —0,1943 56 -—0.2303
0.1639 24 ~—0.0212 40 —0.2042 56 —0.1512
0.0740 25 | —0.0530 | 41 —0.1860 57 —0.0797
—0.0047 26 -—0.0968 | 42 —0.1620 58 0.0276
—0.0745 27 ~—0.1417 43 —0.1454 60 0.2158
—40.1434 28 —0.1496 44 —0.1562 66 0.3662
—0,1233 29 —0.1999 | 45 —0.1662 70 0.0346

e
SR 3O - S 0 00 <1 O OV i 03 B3 4 D E

—0.0951 30 —0.23903 & 46 —0.1591 75 —0.3362
—~0.0608 31 —0.2789 ' 47 —0.1888

The graphical representation of these data as shown in Figure
65 clearly indicates that a significant variation exists in the auto-
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FIGURE 65.—A UTOCORRELATION FUNCTION OoF SMOOTHED RANDOM SERIES.

correlation function, since 68 per cent of the values should lie within
the standard-error band once the correlation function has reached
the zero line; that is, after £ = 10. .

The lesson to be learned from this analysis is éhat, wherever pos-
sible, the significance of periods discovered in economic series by the
technique of periodogram analysis should be checked by an estimate
of the energy in the continuous spectrum of the series. This estimale
is ascertainable from the autocorrelation function of the series.

5. Cumulated Random Series (Smoothed)

We consider next the periodogram of a cumulated random series
which has been smoothed with a moving average of length 12 as shown
in Figure 66. From the discussion in Section 5 of Chapter 4, we see
that most of the ehergy tends to accumulate in the period equal to the
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FIGURE 66 —CUMULATED SMOOTHEDR RANDOM SERIES,
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FIGURE 67.—PERIODOGRAM OF CUMULATED SMOOTHED RANDOM SERIES.

length of the series. Hence, in the range considered, from T = 5 to
T = 72, no significant periods should be expected. This is verified by
the computation.

Thus we see that the greatest observed amplitude in the period-
ogram is at T = 72. But since Ru,* — 55.5854, we obtain «(52) =
6.4687, P(52) = 0.20, and E (52) = 0.0431. The graph of the data re-
veals clearly that the principal energy is concentrated in a single har-
monic of period equal to 300.

6. The Cowles Commission All Stocks Index (1880-1896)

The data showing the price of all stocks listed on the New York
Stock Exchange from 1880 to 1896 are taken from Common-Stock In-
dexes, by Alfred Cowles and Associates, Second Edition, 1939.

A preliminary computation gives R, = 0.4415, from which we
evalute x(7) and E(T) for the two maxima at T = 35 and T = 62,
together with their adjacent Fourier periods at T — 34 and T = 68:

T ] 34 35 62 68
E(T) | 01193 0.1448 0.3352 0.2740
«(T) | 121726 147715  34.1934  27.9447

Since we have E(34) + E(68) = 0.3933 and E(35) + E(62)
= 0.4800, it is clear that between 39 and 48 per cent of the total ener-
gy of the series is accounted for by the two peaks of the periodogram.
The significance is obviously high.
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But an inspection of the data shows that there is a secular trend
which must be taken into account. Computing the first moment about
the 102nd item, we obtain M, = —37564.8, from which we obtain by
formula (4) in Section 3 of Chapter 6, the variance corrected for
trend, namely ¢,? = 12.5921.

Since the values of the amplitudes of the periodogram are essen-
tially independent of trend, we now recompute x(7") and E(T) using
the corrected variance. From the value R, 2 = 0.2469 we now obtain
the following:

T | a4 35 62 68
E(T) | 02134  0.2500 05094  0.4899
<(T) i 217667 264139 611438  49.9700

From this table we infer that between 70 and 86 per cent of the
variation is accounted for by the two maxima of the periodogram.

But we also note that the periodogram resembles strikingly that
one obtained for a series with a continuous spectrum of type (b), Fig-
ure 28 in Section 6 of Chapter 3. We may tentatively assume that
4= 12, so that the maximum value of B for the continuous spectrum
is given by

PRSI

R=2e\/ B . 4=12/204, o«=4.7450 ,

=t

that is, R = 2.37. Since the value of R(35) = 2.55, we see that this
analysis denies all significance to this period. On the other hand,
R (62) = 3.89, so that, using the corrected variance, we obtain as the
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FigURE 69.—PERI0DOGRAM OF COWLES COMMISSION ALL STOCKS INDEX, 1880-1896.

energy attributable to this period the value (3.89 — 2.34)2/25.1842 =
0.0954.

We have in this analysis, however, assumed the tentative esti-
mate of 1 = 12, since the autocorrelation of many economic series ap-
pears to indicate this value. The significance of periods in the range
between 21 and 31 is very sensitive to changes in this parameter,
however, because of the discontinuity of the periodogram at T =2 1.
Hence in estimating the significance of a period in the sensitive range
it is probably better to use the value of R given by formula (1) in
Section 6 of Chapter 8. For T = 35, we get R == 1.84 and the energy
is given by (2.55 — 1.84)%/25.1842 = 0.0200,

Our conclusions must be, therefore, that, while most of the energy
of the series is concentrated around the periods T = 35 and T = 62,
this energy belongs to a continuous rather than to a discrete spec-
trum. However, there is residual energy of about 2 per cent to be
attributed to T — 385 and of about 10 per cent to be attributed to
T =462, Interpreted in the light of economic forecasting, we should
expect to find similar energies in the data contiguous to that exam-
ined here.

7. The Dow-Jones Industrial Averages (1897-1918)

In the last section we investigated the periodic structure of stock
prices prior to the interval now to be examined and found a small ener-
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gy in two real periods. It will be interesting to see whether this per-
manent structure is affirmed. We use as data the monthly closing
quotations of the Dow-Jones industrial stock price averages given as
percentages of trend. .

Computing Ry* = 4.4179, we obtain the following values for x(T)
and E(T):

T 22 41 43 68
E(T) 0.0560 0.4810 0.4310 0.2436
x(T) 5.7137 49.0599 44.16717 24.8483

Using T = 41, instead of the maximum, T = 43, since the former
pericd belongs to the Fourier sequence, we see that we have accounted
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FIGURE 71.—PERIODOGRAM OF Dow-JONES INDUSTRIAL AVERAGES, 1897-1918,
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for 73 per cent of the total energy in these three periods. The sig-
nificance of all except the first period is obviously high.

We first note that the component at T =35 in the series discussed
in Section 6 is now replaced by a component of higher energy and with
increased period. The relative energy of the longer component has
dropped and its period has increased slightly. This would certainly
agree with the conclusions in the preceding section where only tenu-
ous validity was proved for these periods.

These observations have led to the conclusion adopted by most
students of the business cycle that there is a genuine cyele of period
close to 40 months in industrial stock prices fogether with the pos-
sibility of periods of less permanence around 20 and 60 months.

But we have seen in Section 6 of Chapter 3, that it is possible to
ascribe the large observed energies {0 a continuous spectrum indicated
by the lag-correlation function. If this proposition be admitted, let
us see what conclusions follow,

Since most of the energy is concentrated at T = 41, we examine
this for significance after the amplitude, R, of the continuous spec-
trum has been subtracted. Since R = 9.91, the residual energy is then

E (41) = (14.72 — 9.91)*/450.6308 = 0.0513.

The corresponding values of «(7T) becomes 5.1326, which indi-
cates a significance measured by the probability P(41) = 0.46.

Hence, a cautious answer to the problem of the significance of
the period T = 41 would be that the probabilily favors the existence
of a small permanent energy in industrial stock prices associated with
the period in question, This conclusion is fully confirmed by the auto-
correlation function shown in Figure 23, Chapter 2.

8. The Dow-Jones Industrial Averages (1914-192})

The dominating feature of this periodogram is the high concen-
tration of energy in the region around T = 38. We find that Ry® =
5.2209, in terms of which we then obtain the following values:

r 33 38 44
E(T 0.2257 0.7410 0.2686
=(T) 14.8980 48.9043 = 24.32717

Since the period of maximum energy is flanked by the periods 33
and 44, which belong to the Fourier sequence of the series, we may
use their sum to provide a conservative estimate of the total energy
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FIGURE 72.—DoW-JONES INDUSTRIAL AVERAGES, 1914-1924,

atttributable to the region under investigation. We thus find E (88)
+ E(44) = 0.5943, which shows an obviously high concentration.
Since the series itself was not originally corrected for trend we
reduce the variance by removing the effect of the secular movement.
Thus, computing the moment about the 66th item, we obtain M, =
28466.9, and the variance reduces to 140.9738. This yields the new
average Ry® = 4.2719, in terms of which we find

T a8 44
E(T) 0.2758 0.9056 0.4505
«{T) 18.2074 59.7677 29,7318
R(T) R(T)
20 0
«
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FIGURE 73.—PERI0DOGRAM OF DOW-JONES INDUSTRIAL AVERAGES, 1914-1924
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The new estimate of the total energy, as given by the periods of
the Fourier sequence, is found to be E(83) + E (44) = 0.7263, an
extraordinarily high value for economic time series.

The conclusion is inescapable thal the 40-month component in the
years from 1914 to 1924 was a very dominating patitern of the stock
price series and large profits could have been made by forecasting

THE ANALYSIS OF ECONOMIC TIME SERIES

with this single eycle.

9. The Dow-Jones Industrial Averages (1925-198%)

The data given here cover the period of the great bull market,

which reached its top in 1929.
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Figure 75.—PERIODOGRAM OF DOW-JONES INDUSTRIAL AVERACES, 1925-1934.
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The reasons for the effacement of the 40-month cycle in this era
and its possible relationship to the spectacular phenomenon will be
commented upon in ancther chapter of the book. It is cbvious from
the analysis given in Section 6 of Chapter 3, that the continuous spec-
trum completely dominated the periodogram.

10. Rail Stock Prices (Monthly, 1881-1855)

The data for this series are taken from indexes prepared by the
Cleveland Trust Company. Since only a slight trend is apparent in the
series, no correction is made for this factor.
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The dominating values are found at T = 34 and T = 68. Com-
puting the mean, Ry* = 2.6333, we aobtain the following estimates:
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T 34 68
E(T) 0.0830 0.1003
«(T) 12.4465 15.0488

A very small portion of the energy is thus seen to be concentrated
in this part of the periodogram. An inspection of the graph of the
data themselves shows that the dominating cycle is of the order of
18 years,.

The period at T = 34 is of some interest, however, since it may
actually be an indication of the existence of the component which be-
came, in later times, the 40-month cycle. The relative prominence of
this peak in the periocdogram is more significant than the actual ener-
gy which it contains,

11. Ruail Stock Prices (Monthly, 1856—1880)

The data are again those of the Cleveland Trust Company. The
period itself was one of disruption since it included the Civil War,
80 that short periods such as that of the 40-month cycle might well be
expected to have been masked by cyelical and extraordinary factors.
How small a part of the energy is contained in the range investigated
is seen from the computation: Ry* = 7.6289, E (60) = 0.0575, (60
= 8.6184. '
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Fiaure 78.—RAilL Stock PriceEs, MONTHLY, 1856-1880.

Since so small a part of the energy is accounted for by the period-
ogram, it is instructive to inquire within what range it is concen-
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FieuRg 79.—PERIODOGRAM OF RAIL STOCK PRICES, MONTHLY, 18561880,

trated. An inspection of the data shows that the period is approxi-
mately 20 years.

A brief study of the distribution of the averages was undertaken
to ascertain whether the deviations from a harmonic of period T =
240 (months) would be normal. This test for the normality of devia-
tions has been urged by some statisticians. The period used was from
1859 to 1878. The original frequency of the data was as follows:

Class Interval Frequency Class Interval Frequency
33.0-29.9 23 75.0- 81.9 34
40.0-46.9 16 82.0- 88.9 27
47.0-53.% 12 B9.0— 95.9 23
54.0-60.9 6 96.0-102.9 52
61.0-67.9 20 103.0-109.9 16
68.0-74.9 11

N =240

A computation shows that the kurtosis for this distribution is
—0.958, which indicates a violent distortion from the normal.?
The function (referred to the linear trend),

v=vVZ2ascos [(22¢/T) +a],
is then introduced on the assumption that all the cyclical energy is in

? See Davis and Nelson, Elements of Statistics, 2nd ed., 1937. p. 318,
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this harmonic. The standard deviation, o, is the deviation of the data
from the linear trend. The following table gives the frequencies:

Clase Interval Frequency |  Class Interval Frequeney
—24 to—18 6 | 11to17 8
—17 to —11 31 ¢ 18to24 9
—10to— 4 42 | 25t031 6
— 3t 3 . 90 i 32to38 1
4to 10 1 |
- N =248

The kurtosis, namely, . — 8, for this distribution is now found
to be 0.930, which shows a more than normal concentration of the fre-
quencies around the average.

Qur conclusion is then that the disruptive inflationp of rail stock
prices in the period of the Civil War can be accounted for by a linear
secular trend plus a harmonic term of period equal to 20 years.
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FIoURE 80.—RAML STock PRICES, MONTHLY, 18591878, FITTED WITH
LINEAR TREND (a) AND WITH HarmoNic CURVE (b).

12, Rail Stock Prices (Annually, 1881-1930)

The data for this analysis were compiled by the Cleveland Trust
Company. Since a considerable linear trend is evident in the prices
of rail stockg over the century considered (see Figure 83), this is
first removed. Choosing the origin at the 50th item, we obtain as the
first moment the value 78,267 and from this the corrected variance:
o == 415.5230.

Using the mean value R,* = 16.6209, we compute the following
table:
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T ] 9 10 11 12 14 16 20

E(T) j 01102 0.0024 0.0508 0.0175 0.0237 0.0627 0.3085

=Ty | 5.51 0.12 2.55 0.88 119 3.18 1542
T 25 28 33 44 50 €0

E(T) | 01646 02679 00216 0.5606 0.4142 0.7051
«(T) 823 1339 107 2803 2071 23526

First, summing the energies of the exact and approximate Four-
ier periods, we obtain

E(10) + E(11) + E(12) + E(14) + E(16) + E(20)
+ E(25) + E(83) + E(50) =1.0660 .

Hence it is clear that, within the inevitable error of the statistical
approximations involved, we have accounted for all the energy.

From the form of the periodogram it is evident that a large con-
tinuous spectrum is the dominating characteristic. Although no auto-
eorrelation function is available, it is probable that the first zero value,
4, of this function is not smaller than 12. Hence we may look for
true pericds in the range below 2 1 = 24.

Only two significant peaks are observed below 24, namely one at
T =9 and the other at T = 20. The first accounts for 11 per cent of
the energy and the second for 31 per cent of the energy, the Walker
probability in the first case being 0.74 and in the second in excess of
0.97.

R(T RT)
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FIGURE 81.—PERIODOGRAM OF RAIL STOoCK PRICES, ANNUALLY, 1831-1930.
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The first value, namely T = 9, has been observed by many stu-
dents of business-cycle theory, and because the most probable value
of the period lies somewhere between 9 and 10, the corresponding
harmonie is frequently referred to as the 10-year component. Other .
evidence of its reality will be presented later.

The second value, namely T = 20, has been observed in the two
25-year periods which we have previously examined. Its reality is ar-
gued by this continuity, Although the inflationary era of the Civil
War was sufficient to account for the long cycle in the second 25 years
of the century under examination, its persistence perhaps argues for
a more basic cause. This may be found, perhaps, in the long compo-
nent of the building cyele, which, in recent data, appears to have had
an average period of around 18 years.

13. Rail Stock Prices (at Four-Month Intervals, 1881-1930)

Because of the coarseness of annual averages, it seemed desir-
able to confirm the results of the previous section and to examine
shorter periods by an analysis of the same data taken at intervals of
four months. Removing the trend, we first compute Ry? — 6.0273.
The following table is then obtained:

T 10 18 23 28 33 46
E(T) 0.0162 0.0286 0.0328 0.0601 0.0425 0.0620
(T 2.4305 4.2946 4.9208 9.0120 §.3781 9.3054
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FIQuRe 82.—PERIODOGRAM OF RAIL STOCK PRICES, 4-MONTH INTERVALS, 1831-1930.
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It is obvious that only a small part of the energy is accounted for
in this range of values, but this agrees with the previocus analysis
which showed that the concentration of energy began around 20 years,
whereas this periodogram ends at 50/3 = 16.67 years,

A concentration of energy at 7 — 28 argues again for the nine-
year cyele, where presumably for T = 27 we should have found about
11 per cent of the energy. There is apparently no significance to be
attached to the concentration observed at T — 46.

Our final conclusion from this and the preceding section is that
most of the energy in the prices of rail stocks is concentrated in the
continuous spectrum. However, significant periods are found at T =
9 years and T = 20 years and these probably belong to a permanent
structure.
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F1GURE 83.-——FAIL STOCK PRICES, 1831-1930, FITTED WITH LINEAR TREND

AND WITH HARMONIC CURVE.

In order to exhibit graphically how much of the variation of the
annual series is contained m a few components, Figure 83 was pre-
pared by the linear addition of the four harmonics of periods T == 9,
20, 28, and 44 years, .

14. American Industrial Activity (Annually, 1831-1980)

In the preceding sections we have examined the harmonie struec-
ture of stock price series. We turn now to an analysis of one of the
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FIGURE 84.—AMERICAN INDUSTRIAL ACTIVITY, ANUALLY, 1831-1930,
AS PER CENT OF NORMAL.

most important economie time series, namely that of American indus-
trial activity. The data were compiled by Leonard P. Ayres for the
Cleveland Trust Company and measure the fluctuations of industry
about a normal value. Since industry grew logistically during the cen-
tury under analysis, the trend itself was probably a more important
economic phenomenon than the variations themselves. Our problem,
however, is concerned only with the determination of such harmonic
structure as may be discernible in the deviations,

A very comprehensive study of the monthly geries from January,
1790 to December, 1929 inclusive, a total of 1680 months, was pub-
lished in 1933 by E. B. Wilson.® In this section we shall relate the de-
tails of Wilson’s investigation to our own more modest analysis of
the annual averages.

An inspection of our periodogram shows only two significant
peaks, one at T =9 and the other at T==17. From the mean value,
Ry* = 1.9027 we obtain the following estimates:

T 9 17
E(T) 01736 0.1254
(T) 86788  6.2721

The total energy in these two components does not exceed the
sum E(9) + E(17) = 0.2990.

It is evident, however, that the two periods have considerable a
priori validity, since they both appear in the analysis of rail stock
prices. The nine-year component is the long cycle of American busi-

21 4The Periodogram of American Business Activity,” Quarterly Joumal of
Economics, Vol. 48, 1933-34, pp. 376-417. See also, “Are there Periods in Ameri-
can Business Actnnty"” Scwnce, Vol. 80, 1934, pp. 193-199.



PERIODOGRAM ANALYSIS 301

R(M R{T)
5 5
4 4

-
(-]

/\

-

A
MV NN
T \[ \q“‘\/\\-‘r\,dl\-"‘\'

0 i i i i A L TQ
o 10 20 30 40 50 60 - 70

FIGURE 85.—PERIODOGRAM OF AMERICAN INDUSTRIAL ACTIVITY, 1831-1930.

ness and the 17-year component is probably accounted for by the
building cycle.

Since our analysis extends only to the period T = 5 years, it is
fortunate that we have Wilson’s pericdogram of the monthly data over
a range from 30 to 240 months.

Wilson divided the range of 1680 months into four equal sections
in order to test the continuity of such significant values of T as might
be revealed, The basic averages for the four sections and the total
range are given below as follows:

T 1TPO-1824 18251858 1860-18%4 1805-1929 1790-1929
Mean | 109 0.54 0.00 116 | 070
Y 7.26 7.66 8.71 8.41
o2 | 99.0025 | 527076 | 58.6756 | 76.9129 | 71.8247
20 198.0050 | 1054152 | 117.3512 | 153.8258 | 143.6494
Rz, 0.9429 0.5020 0.5588 0.7325 01710
N | 42 420 420 420 1680

These four sections were then combined into three overlapping
series of 840 months as follows: I (1790-1859); I1 (1825-1894);
HI (1860-1929).. The periodograms of each of these sections of the
data ag well as that for the entire range are shown in Figure 86. The
scale for T, it will be observed, is reciprocal.
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FIGURE 86 —WILSON'S PERIODOGRAM OF BUSINESS ACTIVITY:
Top curve, 1790-1929; Second curve, 1790-1859; Third ecurve, 1825-1894;
Fourth curve, 1860-1929.

The most characteristic pattern. observable from the periodo-
grams as a whole is the tendency for a concentration of energy in the
region around 108 months. One remarks also the 35-month cycle in I,
discovered also in the rail stock price series of approximately the same
time, the 18-year cycle of the second section, also characteristic of the
rail price series, and the 40-month cycle of the third section, which
has been so persistent a pattern in modern data.

To the values for B2(T) reported by Wilson the author has added
estimates of the corresponding energies; both are tabulated at the
top of page 303.

For all these values the significance, as measured by the Walker
probability, is very high. The small peaks revealed in the second peri-
od have an amplitude of approximately 6, with an energy content of
0.0396. These peaks are found at T = 34, 35.5, 48, 55.5, 61, 86, and
134.

In order to test the stability of the periods Wilson examined the
period T = 35 at intervals of 105 months over the range of the dats,
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Perlod I (1790-1859) IO (1825-1884) IIT (1890-1929) 1790-192%
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and the period T = 60 at intervals of 240 months. The results of these
computations are confained in the following table:

T—238
Mooths | 4 B FY Months 1 » n
1- 105 | —0.42 | —1.26 | 1.77] 841- 945| —1.29 2,94} 1030
106- 210 2481 —4,14 | 23.29 946-1060 | —0.75 3.06; 992
211- 815 2.80 | —7.68 | 64.34 | 1051-11b5 2.62 050 6.60
316- 420 5.47 [ —0.74 t 80.47 | 1156-1260 0.85 5.456| 80.42
421- 525 1.60 1.06 | 8.75} 1261-1365 | —0.33 0.27! 0.17
526 630 6.56 ] —4.92 | 67.24 | 1366-1470 4.70 1.83| 26.35
631- 785 | —0.54 } -—5.86 | 36.63 | 1471-1575 | —3.42 3.76 25.84
736- 840 8.17 | —3.85 | 24.87 | 1576-1680 | —3.37 | —8.80 | 88.80
T =60
Months A R Months A B

B

.37 | 93.2 961-1200 | —3.43 | —0.38 | 12.0
241- 480 1.23 .06 | 78.0 | 1201-1440 0.14 448 (195
481- 720 | —0.37 .40 | 11.7 | 1441-1680 | —1.25 | —3.12 | 113

1- 240 2.42 9
3
721- 960 0.81 | —065| 11

It is interesting to observe that Wilson’s conclusion from his long
study of the data is that no permanent structure iz observable in
American business activity. Thus he remarks:

When the test of Schuster’s was applied we found that it showed that the
oacillations of Ayres’ Index of American Business Activity were essentially for-
tuitous¢

In order to confirm his negative conclusions Wilson applied the
test of forecasting by both backward and forward extropolations. The
results were not encouraging and he says:

On the whole the forecasts were of average merit just asbout zero. Moreover,
we did not get from the work any expression which would at all satisfactorily

¢ Science, Vol. 80, 1984, pp. 193--199.
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forecast the period 1930 to date. This did but confirm our inference that there
were no effective periods in American business activity.

About this failure, and the failure in general of forecasting eco-
nomic series, Wilson makes the statement:

The reason we have so many failures in forecasting is that we presume to
forecast the a8 yet unforecastable or attempt to conirol the as yet uncont;'olluble.

With all these conclusions the author is not in complete agree-
ment. Significant and reasonably stable energy is actually found in
the components at 9 and 17 years. But the total energy in these two
components actually acgounts for less than 30 per cent of the total
observed variation. Hence any forecast from these two periods alone
would not explain a substantial part of the future variation of the
series. When to this is added the loss due to the probable error of
forecast, we see that a negligible result might very easily have been
attained. This, of course, is very far from admitting that the ob-
served periods and the observed energies are fortuitous.

15. American Wholesale Prices (Annually, 1881-1930)

An inspection of the periodogram reveals the fact that most of
the energy concentration is around the period T = 50, This obgerva-
tion has led to the proposition that there is a 50-year cycle in prices,
and since the great disturbances which have generated the cycle dur-
ing the past century and a half have been major wars, this periodic or
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FIGURE 87.—AMERICAN WHOLESALE PRICES, ANNUALLY, 1831-1930.
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0

quasi-periodic movement in prices has been called the war cycle. We
shall comment upon this point more fully in Chapter 12.

Since the secular change in prices is slight, we need not correet
the periodogram for trend. Hence computing Rx* = 19.5810, we ob-
tain the following table of values:

T 8 18 B0
E(T) 0.0819 0.0882 0.5928
«(T) 4.0946 44078  29.6422

There is undoubtedly a considerable continuous spectrum in
wholesale prices, but this will probably not seriously impair the sig-
nificance of the 50-year cycle, which seems to be one of the most per-
manent of economic patterns. Unfortunately only three such cycles
have been observed in modern data. We have commented in Chapter
1 upon the curious fact that the Punic Wars between Rome and Car- -
thage were spaced approximately 50 years apart and price data from
that distant period, if they are ever reliably available, will doubtless
reveal the same interesting pattern observed in modern data.

As to the periods at T—= 9 and T = 18, it is possible that the first
is real, since it coincides with one of the primary business cycles and
price changes are characteristics of large disturbances in the index
of business,

16. Sauerbeck’s Index of English Wholesale Prices (1818-10183)

The periodogram of Sauerbeck’s index numbers of English whole-
Bale prices over the period from 1818 to 1913 is due to H. L. Moore,
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FIGURE 89.—SAUERBECK’S INDEX OF ENGLISH WHOLESALE PRICES, 1818-1918.

who published the data in his classical work Gemerating Economic
Cycles.®

The periodogram was computed over the Fourier sequence 80
that no detail of the fluctuations in B (7) is given much after T = 24.
However, in the periods examined, the computer has accounted for
most of the energy since the sum of R*(T) is equal to 428.57, which is
to be compared with 2¢2 — 459.00.

An inspection of the data themselves would appear to indicate
that the values of R*(T) should be corrected for a trend. But this is
an illusion if we admit the thesis advanced in the preceding section
that there exists in wholesale prices a war cycle of approximately
fifty years. We know that prices prior to 1818 were greatly inflated
by the wars of Napoleon, and the unrolling scroll of history has re-
vealed that the secular advance noted from 1896 culminated in an-
other inflation due to the World War. The intermediate inflationary
period between 1855 and 1875 was much smaller in England than in
the United States, and somewhat smaller than in Germany where the
Franco-Prussian War of 1870-1871 caused a relatively sharp increase
in prices.

Noting the value R,* = 9.5622, we compute the following table
of values:

T 87 192 48
E(T) 0.0316 0.0615 0.4148
x(T) 1.5184 2.9522 19.911

8 New York, 1928, xi 4 141 pp. For the data, see p. 66.
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FIGURE 90.-—~PERIODOCRAM OF SAUERBECK'S INDEX OF ENGLISH
WHOLEBALE PRICES, 1818-1913

The most obvious pattern is that of the 50-year war cycle on
which we have just commented. Minor cycles around 9 and 19 years
are also observed, both of which are also found in Beveridge's analy-
sis of wheat prices in western Europe (see Section 20). The first
cycle is also found in the American wholesale index, but the second is
replaced by a cycle of 13 years.

17. Commercial-Paper Rates { Annually, 1831—1930)

Another series for which we are indebted to the Cleveland Trust
Company is that of commercial-paper rates, This series, a century in
length, has been analyzed for significant periods. Apparently the only
one that might be regarded as having a priori validity is found at
T = 17. Computing R,* = 0.3208, we obtain EF(17) = 0.1505 and
x{17) = 7.5248. If we neglect the contribution of the continuous spec-
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Figure 91.—COMMERCIAL-PAPER RATES, ANNUALLY, 1831-1930.




308 THE ANALYSIS OF ECONOMIC TIME SERIES

trum to the periodogram, the Walker probability of the observed peri-
od is 0.03. An observed trend in the data would undoubtedly, if re-
moved, increase the significance of the period. It is probable that this
17-year cycle in commercial-paper rates is closely related to the build-
ing cycle of similar length, upon which we have commented previously.

Since our analysis extends only to periods of five years or longer,
it would be interesting to know whether or not the 40-month cycle in
80 many business series also appears in commercial-paper rates. For-
tunately this question can be answered by 2 periodogram constructed
by W. L. Crum over monthly data for New York City from 1874 to
1913.¢

Crum constructed his periodogram over the range of trial periods
from T = 2 to T = 48. He examined the data from 1874 to 1913 and
the separate halves: 1. From 1874 to 1893; and II. From 1894 to 1913.
Consistent results were obtained for these three series, sigmificant
amplitudes appearing in each series in the neighborhood of T' = 40.
Crum noticed a slight tendency for the maximum to shift and esti-
mated that the maximum was at T = 39.1 for the range 1874 to 1913,
at T'=2388.56 for 1884 to 1907, and at T between 42 and 43 for 1900

to 1918.
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FI1oURE 92.—PERIODOGRAM OF COMMERCIAL-PAPER RATES, 1881-19830.

The constants of the periodogram are given numerically only for
T = 40, from which the author has constructed the following table:

¢ “Cycles of Rates on Commercial Paper,” The Review of Economio Statis-
tios, Vol. 5, 1923, pp. 17-29. This article gives the data for the monthly rates
from 1866 to 1923 citing the following sources: Data from 1866 to 1880, W. M.
Persons; from 1881 to 1889, American Telephone and Telegraph Co.; 1880
to 1915, W. C. Mitchell; from 1916 to 1918, W. M. Persons; g-om 1619 to 1928,
Review of Economic Statistics,
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Pariod of '
annlysis

¥ 4 2 n

200 ¥{40) ®{40)

2.4720 | 0.1272 | 19.2840
2.1244 | 0.1388 | 8.2980
{2.3768 | 0.1877 | 11.2620

1874-1913 240 | 0.4242 | —0.3667 | 0.28144 | 0.
1874-1893 120 | 0.6292 | —0.0558 | 0.2039 | 0.
__1894—1913 120 | 0.8483 | -—0.5700 | 0.4462 | 0.

2pgi

1t appears from this that the 40-month cycle is again in evidence
and with unusual consistence for an economic time series.
' We may, therefore, conclude that this analysis indicates that in-
terest rates on commercial paper reflect both the 40-month cycle found
in various related series of this same period and also the 17-year build-
ing cycle.

18. Rail Bond Prices (Annually, 1831-1930)

The data employed in this analysis are those computed by the
Cleveland Trust Company. A casual inspection of the graph of the se-
ries shows a strong trend, so this must first be removed before any
significance can be attributed to the periodogram. For this purpose
we compute the first moment about the fiftieth item, namely, M, =
63300, and thus find the reduced variance to equal ¢,* = 377.7272.
Hence the energy attributable to the trend is given by

E=1-o3/c*=0.4670.

" The only amplitude in the periodogram which appears of signifi-
cant size is that at T' = 35. From the mean value Ry = 15.1091 we
compute the corresponding energy and find that E(85) = 0.3428.
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Fi1auRE 93.—RAIL BoxNp PRICES, ANNUALLY, 1831-1980.
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FIGURE 94.—PERIODOGRAM OF RaiL BoND PRICES, ANNUALLY, 1831-1930.

Although this energy is large, there is no a priori reason why a
period of 35 years should be observed in rail bond prices. Moreover,
less than three cycles appear in the 100 years covered by the data.
Hence, while there is no doubt that a period of 35 years with signifi-
cant amplitude has existed in the past 100 vears, a lag correlation of
rail bond prices would probably show that most of this significance
can be absorbed by the eontinuous spectrum of the series.

Since other series exhibit 9- and 17 year cycles, it is worth not-
ing that evidences of both these cycles appear in the present data.
However, not more than 2 per cent of the energy may be attributed
to the first nor more than 12 per cent to the second.

Our conelusion must be, therefore, that the most significant move-
ment in the price of rail bonds over the century under examination
has been the trend.

19, Business Failures in the United States (1867-1982)

A very complete harmonic analysis of business failures in the
United States over a period of 64 years was made by Benjamin
Greenstein.” The data examined were the ratios of business failures
to the total number of business concerns, annual averages being used.
The analysis is complete since the entire energy is accounted for by
the Fourier coefficients computed.

Two peaks are observed, one near T = 9 and the other near
T = 16. The first is the more sharply defined and its significance is
higher. Thus from the value R,? = 0.0032586, we obtain E(9.14) =
0.2200 and x(9.14) = 7.0396. The Walker probability is found to
equal 0.028 in spite of the fact that N is as small as 64. For the long-

? “Periodogram Analysis with Special Application to Business Failures,”
Eeonometrica, l{}Pol. 3, 1985, pp. 170—198..”.
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FIGURE 95—BUSINESs FAILURES IN TEE UNITED STATES, 1867-1932, AS PER CENT
oF THE TOTAL NUMBER 0F BUSINESS CONCERNS.

er period we also obtain £ (16) = 0.1489 and «(16) = 4.7662 with a
Walker probability equal to 0.247. The two periods together account
for 36.89 per cent of the total energy in the spectrum.
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FI1cURE 96.—-PERIODOGRAM OF BUSINESS FAILURES IN THE
UNTITED STATES, 1867-1932.

Since business failures are obvicusly connected with the fluctua-
tions in business, we have here again an added confirmation of the
reality of the 9-year cycle and of the building cycle of nearly twice
this period.
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20. Wheat Prices in Western Europe (1500-1869)

One of the most heroic computations in the history of periodo-
gram analysis was made by Sir William H. Beveridge in an attempt
to determine whether or not there were permanent cycles in wheat
prices in western and central Europe.*
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.$“Wheat Prices and Rainfall in Western Europe,” Journal of the R Sto-
tistionl Society, Vol. 85, 1922, pp. 4#12-459. d ovel
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The data employed in the analysis were index numbers of wheat
prices from 1500 to 1869 so constructed that the trend, which was
considerable in the period of transition from medieval to modern
prices, has been removed.* These data were subjected to a harmonic
analysis over a range of approximately 300 years, from 1545, the
origin, to around 1844. A secondary analysis was described by Bev-
eridge as follows:

Whenever, for any trial period, examination of the whole sequence . . . yields
a high intensity, a further examination has been made of each half of the whole
sequence taken separately, in order to determine whether the apparent period
hae persisted in each half. The second half sequence in all cases follows immedi-
ately on the first half; thus, at 5.667 . . . the first half sequence embraces the
years 1646 to 1697, and the second half those from 1698 to 1860; at 5.714 . . . the
two halves are 1545-1704 and 1705-1864. The origin for the different half se-
quences thus varies considerably.
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FIGURE 98.—PERIODOGRAM OF WHEAT PRICES IN WESTERN EUROPE, 15600-1869.
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In Beveridge’s study the values of the periodogram were given
in the form [ = (N/300) R*, where N varies from 280 to 340. In order
1o keep the periodogram comparable with those previously given in
this work, Beveridge’s values have been reduced to R* in the period-
ogram recorded here. The table given below is an abbreviation of the
original, since Beveridge interpolated many additional values particu-
larly in the neighborhood of significant peaks.

From the mean value Ry* = 5.8980, the following table of values
of E(T) and «(T) have been derived:

a2 * “Weather and Harvest Cycles,” Eeonomic Journal, Vol. 81, 1921, pp. 429-
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T B(T) (T} r B(T) ®(T)

2.7135 0.0095 1.4257 12.000 0.0253 3.7986
3.417 0.0154 2.3138 12.800 0.0488 7.3133
4.417 0.0176 2.6360 15.250 0.0849 12,7028
5.100 0.0469 7.0379 17.333 0.0593 8.8932
5.400 0.0168 2.56213 20.000 0.0401 \ 6.0211

5.667 0.0363 5.4388 36.000 0.0274 4.1133
5.933 0.0225 3.3762 54.000 0.0273 4.0958
7.417 0.0207 3.1033 68.000 0.0135 2.0316

9.750 0.0368 5.5250
11006 | 0.0373 5.5885 Total 0.5862

We see both from this table and from an inspection of the period-
ogram that the energy is concentrated in the earlier periods. Although
the total of 0.5862 is not strictly correct since the sum is not taken
over the Fourier sequence, it is nevertheless true that probably more
than half the total energy is in the periods included in the table,

We also observe that there is no striking periodicity since the
largest single concentration of energy is at T = 15.250 and this is
only 8.5 per cent. For a series as long as 800 items, however, a value
of « greater than 10 indicates a Walker probability as small as 0.007,
while for « = 5.4 the probability is less than 0.50.

It would thus appear that some significance might be attributed
to the periods at T = 5.100, T = 5.667, T = 9.750, T = 11.000, T =
12.800, T = 15.250, T = 17.333, and T' = 20.000. About the nature of
these periods we shall refer to Beveridge’s analysis as follows:

5.100 years.—If there were no true period here, harmonic analysis would in-
deed be a sorry guide, Fortunately, there is no room for doubt. A period of just
this length and closely agreeing in phase has been found independently not in one
but in three or more other records by Mr. Baxendell in the direction of the wind
and in the rainfall at Southport and elsewhere, and by Captain Brunt in the tem-
perature at Greenwich. It is inconceivable that in each of four distinet analysea
the same period should appear by chance or unless there was the same reality
behind 2l four appearances,

A second, and perhaps more convincing, argument for the reality
of the period is found in the intensities 34.05 and 57.09 in each of the
half sequences of the data. This consistency is rather striking in view
of the long periods of time involved in the analysis.

A third argument, not mentioned by Beveridge, is found in the
rather curious fact that the length of the European business cycle
which is the counterpart of the American cycle of 40 months, is ap-
proximately 5.2 years.’® Jevons’ original theory about the European
cycle was that it correlates highly with the eycle in crops and the
present argument would tend to strengthen belief in this relationship.

1 See Section 2 of Chapter 12 of this book.
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5.671 years—At 5.667 the intensity is high . . . and the period is found equally
strongly and with continuity of phase in each of the two halves. . . . There is no
demonstrated parallel to this period in meteorological records. Many writers,
however, have found, or have thought they had found, cyeles of half the sunspot
period of eleven years; the most precise of those in recent years is perhaps G,
Hellmann, who, in the rainfall of Europe from 1851 to 1905, traced a periodieity
of between five and six years. . ..

9.750 years~—At 9.750 years is a well-defined peak, . .. and each half-sequence
yields a high intensity (38.44 and 29.72) with continuity of phase. . . . No certain
meteorological parallel to this period can be traced. One or two writers hawve
traced a period of just over ten years in the rainfall. More important and better
fitting my requirements is the period of about 9.5 years which Captain Brunt in
1919 found indicated in the Greenwich temperatures. The evidence of my peri-
odogram is clear and consistent, and stronger than in several other cases where
confirmation by meteorological records compels belief. Provisionally, therefore,
I have felt bound to treat this period as real, though differing from other periods
as apparently not influencing the rainfall.

Since Beveridge is inclined to believe in the significance of this
period, and since the evidence certainly does not indicate a meteoro~
logical explanation, one may more profitably attribute it to the influ-
ence of the nine-year period which we have so consistently observed
in American data. Some evidence for this is found in Moore’s period-
ogram of Sauerbeck’s index of English wholesale prices, where there
is indication of a tendency for an energy concentration around T'=9.
The nine-year period is probably due to inherent elasticities in the
economic system rather than to external causes.

11,000 and 5.4 years.—With these periods we come 1o one of the classic mym-
teries of cosmical meteorology, . . . There seems at first sight to be no question .
that the eleven-year cyele, which has dominated the sunspots and the minds of
meteorologists for so lang, must be accepted as one of the principal factors in the
harvests and the weather of Western Europe.

At the test of continunity, however, the eleven-year cycle in whest prices
breaks down. Its intensity in the first 154 years (1545-1698) ia 96.01; in the next
154 years (1699-1852) it is only 3.47. The importance of the period is seen to be
due entirely to ita vigour before 1700, From thence to the middle of the nine-
teenth century it is almost inoperative.

+ « + . there seems to be a curious arithmetical relation between the fluctuat-
ing length of the sunspot period and another cycle suggested by my periodogram,
to which a length of 5.423 years may be assigned, but which it iz prodent to
specify less exactly as 5.4 years. This cyele, in direct contrast to the 11.000-year
¢ycle, is almost invisible before 1700 and very strong after it. . . . Whether there
is physical reality behind this apparent relation of the 11.0-year and the 6.4-
year periods, and if so of what nature, I eannot pretend to say. For practical
lt)il;nrposea‘ it is clearly unsafe to treat either period as operative at the presemt

e,

12.840 years.—On the evidence of the periodogram the period between 12.800

and 18.000 years ranks second only to that near 15.250. Its intensity alike in the
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whole sequence , . . and in each half (44.82 + and 72.16 +) is greater than that
of the establizshed 5.1-year period, and it does not show the anomalies which mar
the period near 17.600 years described below.

Beveridge discovers no meteorological parallel or other external
reason for the existence of a period of this length in prices.

15.225 years—My investigation began two and a half years ago with the
appearance, in statistics of exports and of barometric pressure, of a cycle which
I named “as between 15.2 and 15.4 years” in length , . . In the fuller analysis now
presented . . . this period is still the leading feature. . . . .

It is impossible to doubt that this striking feature of the periodogram cor-
responds to some physical facts, and, in spite of the failure of meteorologists to
discover an independent cycle of about fifteen years in weather records, such a
cycle may exist. But I am inclined to attribute certainly the importance, and pos-
gibly the very existence, of the peak at 15.250 in my periodogram, not to any single
cycle of that length, but to a combination of smaller cycles of lengths which are all
close sub-multiples of 15.250 or its double. Of the seven cycles under eight years
of length found in my present analysis, two (5.100, 7.417) are close sub-multiples
of 15, and four more (2.736, 3.415, 4.415, 5.960) are close sub-multiples of 30 or
31. With the single exception of 5.671, all the seven shortest cycles found by me
have exact multiples between 29.7 and 30.9; the average of these six multiples is
80,87, which is almost exactly twice the main period of 15.225. ...

17,400 years.—At 17.5600 and 17.333 gre intensities surpassed only by those
near 15.260; and the natural course is to assume a real period between these points
—aay, at 17.400 . . . examination of the two half-sequences yields puzzling re-
sults. For 17.500 we get high intensities in both halves (69.34 from 1545 to 1684,
and 55.623 from 1685 to 1824). For 17.333 we get an extremely high intensity in
the first half (136.19 fram 1545 to 1700), followed by practical disappearance of
the period in the next half {11.94 from 1701 to 1856). .. The sequence for 17.338,
it will be seen, covers thirty-two years (1824-53) not used for 17.500; the explana-
tion of the discrepancy between the intensities must apparently be that in those
years the cycle disappeared or changed its phase completely.

It will be observed that this cycle, if its reality be admitted, is
probably associated with the 17-year building cycle and hence has no
meteorological origin.

12900 years.—The intensity at 20.000'years is high both in the whole se-
quence . . . and in each half (50.07, 23.9T) ... The period is seen by examina-
tion of neighboring intensities, and of progression of phases, to lie between 20.000
and 19.750. The actual length shown, 19.900, accords well with all the indica-
tions. . . No meteorological parallel has been found; but the evidence of the period-
ogram is strong. )

Among the other periods not explicitly discussed here, Beveridge

. attributes high significance to the period around 35.500, which ap-
pears to be derived from “the well-known thirty-five-year cycle dis-
covered by Dr. Eduard Bruckner in 1890, as causing a regular alter-
nation of dry and warm periods with wet and cold ones.”’'t

11 “Klimaschwankungen seit 1700,” published in Geographische Abhandlung-
en, Vol. 4, part 2, 1890, Vienna. :
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The period at T = 54.00 also merits consideration, although it is
unconfirmed by meteorological parallel, We would say that this indi-
cates the existence of the war cycle in wheat prices.

21. Sunspot Numbers (1750-1900)

Ome of the most intriguing mysteries of astronomy is that asso-
ciated with the cause and the cyclical variation of sunspots. The pos-
sibility of some ancillary effect upon terrestrial phenomena has made
the analysis of sunspot data of interest not only to the meteorologist,
but also to the economist and psychologist. It is for this reason that
the harmonic analysis of the data, the sunspot numbers of Wolf and
Wolfer, as made by Sir Arthur Schuster,’? is given in this volume,
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FIGURE 99.—SuNspoT NUMBERS, 1749-1937 (AVERAGE MONTHLY).

The complete periodogram shows only one well-defined pesak,
namely that at T = 11.25. In order to compute the corresponding
energy and to reduce the elements of Schuster’s periodogram to the
standard form adopted in this book, it was necessary to divide Schus-
ter’s R? hy 157 = (12.53)3, the area number for sunspots, and to make
certain estimates for the value of N. From these adjusted values, we
then compute R,*==30.8824 and hence obtain the values E (11.25) =
0.3462, «(11.25) = 25.9651.

The significance of the cyele is obviously so high that there can
be little doubt as to its actual and permanent existence, a conclusion
which is amply justified in the observations made on the phenomenon
since the time of the computation of Schuster’s periodogram,

12405 the Periodicities of Sunspots,” Philosophical Tronsactions of the
Royal Soc. of London, Vol. 206 (A), 1906, pp. 69-100. f
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In order to confirm the reality of the phenomenon, Schuster di-
vided the data roughly into two equal parts, one from 1750 to 1825,
and the other from 1826 to 1900. A comparison of the two period-
ograms is both surprising and important. In the first period the 11-
year cycle has disappeared, but has been replaced by two maior peri-
ods, one at T = 9.25 and another at T = 13.75. In the second period,
84.74 per cent of the energy is concentrated at ' — 11.25, while about
8.67 per cent is found in 3 period T =28.25. The pertinent computa-
tions are found in the following table:

First Halt Second Hal?
B L50.7005 Rad = 52.4470
T E(F) x{T} r E(ry ! £(T)
9.26 0.2700 10.1262 8.26 0.0867 3.2495
13,76 0.1903 7.1346 11.26 0.8474 31.7781
Total 0.4603 Total 0.9341

One’s conclusion from these computations is that there has un-
doubtedly been a high concentration of energy in sunspot data in the
interval between T'— 8 and T = 14, but that the distribution of this
energy tends to be bimodal. The periodogram, even without an expla-
nation of the cause of sunspots, affords almost conclusive evidence

‘that the sunspot cycle is a real phenomenon and that the recurrence
of sunapots can be forecast with high accuracy.
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Even the fact that the second half of the data does not agree
with the first half should not seriously impair the use of the period-
ogram in forecasting the movement of sunspots. The change of period
is not abrupt and if in the future the energy of the data should again
begin to distribute itself more evenly between a longer and a shorter
period, this change could doubtless be ascertained by means of a mov-
ing periodogram in time to make accurate forecasting possible.

There is much to be learned from this example by those who em-
ploy periodogram analysis in the study of economic series. Here, al-
though we have a higher energy concentration than in any of the eco-
nomic series yet analyzed, this concenfration is subject to disturbances
from one period to another. And, more significant yet, there is no
doubt among astronomers as to the reality of the phenomenon even
though no a priori cause has yet been fully demonstrated.

22, Galvenometer Series

In connection with the investigation of the “erratic-shock theory”
of economic cycles, an extensive experiment was made by the Cowles
Commission relative to the periodic behavior of a galvanometer which
was subjected to a series of random shocks, The conclusions to be de-
rived from this experiment will be stated later. It will suffice here to
give the results observed.

The erratic shocks were imposed upon the galvanometer which,
by a system of weights, was constrained to oscillate with three periods
in the ratio of 22 to 43 to 62. Moving pictures of the deviations of the
galvanometer were taken and the data were then subjected to har-
monic analysis. The following results were obtained:

22.item period 43-item pericd 62-item period
Rut=3.5128 Ry* =17.7960 Ryt = 12,3877
r ] En 1 k(1) r| B x(T) r E(T) K(T}
23 | 0.0830 | 12.4462 42 | 0.2839 | 42.5805 56 | 0.1860 | 27.8951
34 | 0.2022 [ 30.3325 62 | 0.4626 | 69,3973 62 | 0.1164 | 17.4589
66 | 0.2992 i 44 8812 72 | 0.5181 | 7T7.7134
Total | 0.5844 | Total |0.7465 | Total | 0.8205

It is clear from this table that the largest disturbance was given
to the shortest period, but that for the longest period the energy con-
Centrated around the free period of the galvanometer. This would
imply that the disturbance was dependent upon the inertia of the sys-
tem as this was related to the magnitude of the shocks imposed.



320 THE ANALYSIS OF ECONOMIC TIME SERIES

We might infer from this that quite probably the erratic shocks
which disturb an economic system would tend also to cause more vari-
ation in the shorter cycles than in the longer ones.

28. Stock Price Indexes (Daily, 1927)

An exploration was started to see whether very short cycles
might not exist in stock price averages. For this purpose two daily
geries and two weekly series were harmonically analyzed. The resuits
of this study are given in this and the next three sections. Since it
was possible that the structure of a bull market might be different
from that of a bear market, the series were chosen so that one daily
and one weekly series would contain a bull market and the other daily
and the other weekly series would contain a bear market.

)
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Fiouee 101.—ST1ocK PRICE INDEX, DAILY, 1927.
Figures for holidays are interpolated and Sundays are not counted on time scale.

The daily series analyzed in this section contained the bull mar-
ket of 1927, Since the characteristic feature of this series is the trend,
the variance must be corrected for this. Employing formula (6) of
Section 1, we thus obtain

o, = 114.8970 — 107.6209 = 7.2761,

from which we compute E,* = 0.0970.

From the periodogram we sece that the principal amplitudes are
at T =36 and T = 48. But since we are aiso interested in the possi-
bility of a cycle in the neighborhood of 5 or 6 days we shall also test
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FIQURE 102.—PERIODOGRAM OF STocK PRicE INDEX, DAmLY, 1927.

the period 7= 5. But since the trend is so great, the slope being equal
fo 0.12039, it is necessary also to correct the values of R?* by the meth-
od described in Section 1.

These corrected values of the squared amplitudes, together with
the energies both for the corrected series, E(T), and for the series
uncorrected for trend, E'(7T'), are given in the following table:

T RY(T) B(T) 2(T)

5 0.0628 6.0043 0.0002
36 0.0528 0.0036 0.0045
438 0.7799 0.0636 0.0124

From this we see that the evidence for cyclical components in
these daily series is very tenuous. Most of the energy during this
year was concentrated in the trend.

24. Stock Price Indexes (Daily, 1930)

We see from the graph of the data that the trend is again the
dominating characteristic, but this time it is essentially parabolic in-
stead of linear. Therefore, it will be necessary to correct the values
of the variance and the harmonic components for this trend. The for-
mulas for this are given in Section 4 of Chapter 6, and in (9) of
Section 6 of Chapter 2.

Selecting the first item of the data as origin, we first compute the
least-squares parabola and thus obtain

vy =178.26 + 0.22715 ¢ — 0.001467 ¢* .

The corrected variance is found to equal o,* = 88.3626, from

which we find By = 1.1782. For our analysis we shall select the am-
plitudes at T' = 7 and T = 40,
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In the following table we have listed the original values of the
harmoniec components, 4 and B, the corrections to these due to the
parabolic trend, the corrected values, A" and B, the new squared am-
plitudes R2{T), the corrected energy, E(T), and the original energy
uncorrected for the trend, E'(T):

[ l ! Correc- Correc- { ‘
4 B tion tion VY w By | ey | BY(D)
} |' for 4 for B
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FIGURE 104.—PERIODOGRAM OF STOCK PRICE INDEX, DALY, 1930.
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From these data we see that the main energy of the movement
is contained in the trend and that small significance is to be attached
to the two harmonics analyzed here. These results are consistent with
those obtained for the daily moves in the bull market investigated in
the preceding section. It is to be observed, however, that the signif-
icance of the periods was increased by the removal of the trend.

25. Stock Price Indexes (Weekly, 1922-1927)

The graph of these data shows that the series was dominated by
an approximately linear trend with a slope equal to (0.18643. The am-
plitudes chosen for examination were those at 7 =8, T =24, T'= 36,
T =42,

Corrections were first made for the trend. Thus by means of for-
mula (6) of Section 1, we obtain o,> = 41.9494, and from this we com-
pute the average Ry * = 0.5593.
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The harmonic components are now corrected for trend by means
of the formulas in Section 1, and from these the corrected values of
the squared amplitudes are obtained. These are then employed to find
the energies, £ (T), which are compared in the following table with
the energies obtained from the original periodogram. These energies
are designated by E' (7).

T | Corrected Values B{T) ()
of BY(T) l
8 0.0813 0.0004 0.0004
24 1.6909 0.0202 0.0124
38 2.0566 0.0245 0.0202
42 | 2.1458 0.0256 0.0257
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FIGURE 106.—PERIODOGRAM OF STOCK PRICE INDEX, WEERLY, 1922-1927.
It is at once apparent that the periodogram reveals no essential

structure in this series.

26. Stock Price Indezes (Weekly, 1929-19385)

Our final analysis concerns the weekly stock price averages in a
bear market. Here again we see from the graph of the data that a

strong trend prevails and that it is essentially paraboliec.
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Figure 107.—ST0cK Price INvEX, WEEKLY, 1929-1935.
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Hence we employ the technique described in Section 24 and cor-
rect all the parameters for the effects of the trend. To do this we firat
find the least-squares parabola whose initial point, ¢ = 0, coincides
with the first item of the series, This parabola is found to be

¥y =112.6720 — 1.39107 ¢ + 0.0036318 £*.,

The variance iz next corrected for trend and found to equal o* =
171.8648. From this value we obtain R* — 2.2015. The values of
R?(T) are next corrected for 7 = 36 and T = 45, and from them the
energy, E(T), is found. This is compared with the energy, E'(T),
obtained at the same periods from the uncorrected periodogram, in
the following table:

T Corrected Values | ) (T
of B3(T)
36 12,2260 0.0356 0.0126
456 17.3699 0.0505 0.0133

Although the correction for trend is observed to increase the
original energies obtained from the periodogram, it is clear that small
significance is to be attached to the observed periods. Most of the
énergy in the original series is in the trend and in higher periods or
In the continuous spectrum,

27. General Summary

) In the preceding sections of this chapter we have presented the
periodograms of numerous time series. The first four were introduced
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to illustrate exactly what information might be expected to emerge
from such an analysis, since the structures of the series analyzed
were known. The first was the periodogram of a series of regular har-
monic terms, and such a periodogram reveals clearly how much infor-
mation can be obtained under optimum conditions. The next three
were periodograms relating to random series, particularly when such
series are subjected to the operational processes of smoothing and
accumulation.

Of the remaining periodograms, nineteen apply to actual econom-
ic time series. The mest searching investigation was made for struc-
ture in the series of stock prices on the theory that the activity of this
time series lies at the heart of most economie variation. Stock prices
were analyzed from intervals of one day to intervals of 50 years, so
that a complete spectrum of this series is now available,

The remaining periodograms pertained to sunspot numbers and
to the deviations of an oscillating galvanometer subjected to a series
of random shocks. The first series is important because it concerns a
phenomenon of great regularity for which no a priori explanation is
yet available. It thus represents to a certain extent the same type of
series which we might expect to find in economics under optimum con-
ditions of variability; that is to say, when the random element is a
minimum. The galvanometer series are useful in testing the hypo-
theais that economic series are essentially movements of an elastic
system, which is subjected to a series of random shocks.

The conclusions to be derived from this long analysis will be
stated later in the book. This chapter, then, is to be regarded as a
working summary of all that we know at the present time about the
harmonic variation of economic time series, when the analygis is con-
fined to a rigid periodogram of the type first extensively used by Sir
Arthur Schuster. All variants of this method, which strive to give
greater freedom to the analysis of harmonic patterns, must derive
their first approximations of structure from such periodograms as
those presented in this chapter.



CHAPTER 8
THE EVIDENCE AND EXPLANATION OF CYCLES

1, The Enumeration of Theories

We have seen from the data presented in previous chapters that
the evidence points clearly to the existence of a certain amount of
variation in many of the time series examined. This variation, to be
sure, is frequently irregular and any attempt to interpret it in terms
of mathematical cycles must take full account of the erratic element,
which is everywhere observed in phenomena that depend upon the
vagaries of the human spirit and the uncertainties of nature.

Our first observation concerned the cycle which depends upon the
seasons. This cycle, called the seasonal variation, is found in many
economic time series, and, as is evident from the name, can always be
accounted for by a priori means. Thus the movement of crops in the
fall of the year is clearly the cause of seasonal variation observed in
freight-car loadings. The price of eggs depends upon the production
of eggs, and this ia well known to vary with the seasons, reaching a
high point in March and a minimum in October. Not 2ll economic
series show the seasonal factor, as one may observe by testing the
series of industrial stock prices over several years, or, for that matter,
most price series which are based upon nonseasonal production.

Since the adjustment for the seasonal variation is one of the first
statistical procedures employed in the analysis of economic time series,
it is interesting to inquire into the significance of this correction. We
have already cited in an earlier chapter the example of freight-car
loadings as a series with an exceptionally prominent seasonal varia-
tion. From the periodogram of freight-car loadings (Section 7 of
Chapter 2) we see that the per cent of energy attributable to this
cycle is given by

R (12)
2¢*

Thus we observe that even in a series in which the seasonal is as
pronounced as it is in the data for freight-car loadings, the energy
attributable to this factor is only 12 per cent of the total. Hence we

— 327 —

Per cent of energy = 100 X =11.87.
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conclude that the seasonal variation is, in general, relatively tnaig-
nificant when compared with secular changes, or the longer, although
essentially irregular, movements which are generically called the busi-
ness cycles. For example, in the stock price series analyzed in Section
6 of Chapter 6, the energy left in the erratic element after three major
cycles and the secular trend had been removed was as great as eight
per cent.

We must, therefore, seek to discover the significant secrets of
most economic time series, not in seasonal variations, but in the longer
cycles and the secular trends. To this analysis and interpretation we
now proceed.

In order to simplify the problem we shall investigate four
phenomena which have been observed and commented upon by others.
These phenomena are, first, the forty-month cycle observed in many
series; second, the nine-year cycle characteristic of the data of busi-
ness; third, the 15— to 18—year cycle of real estate; fourth, the 50—year
war cycle observed in prices. For all of these we lack an a priori
theory and doubts as to their essential reality have been expressed
frequently by critics of the business cycle. Where, in observable
phenomena which might conceivably affect the human spirit, do we
find cycles of these periods? How can human action and human
judgments, from which the time series of economics are generated,
conform to regular patterns? This is the puzzling aspect of the prob-
lem and one of the most cogent reasons advanced by those economists
who are reluctant to ascribe reality to the periodic or semi-periodic
movements, described by proponents of the business cycle.

Hence, if we are to assume that reasonably regular patterns can
be observed in the economic time series, it is necessary to ascribe
causes to the variations. Wesley Mitchell in his classical treatise on
Business Cycles, the Problem and its Setting, New York, 1927, enum-
erates three types of theory which have been formulated to explain
the existence of cycles: (I) Theories which trace business cycles to
physical processes; (II) Theories 'which trace business cycles to
emotional processes; (III) Theories which trace business cycles to
tnstitulional processes.

In the first category must be placed such sensational theories as
those of H. S. Jevons and H. L. Moore, the first attributing the varia-
tions in business to sunspot activity, which has a well-defined period
of about eleven years, and the second affirming a belief that the eight-
year period in the conjunction of Venus produces sufficient variation
in the weather and in crop yields to affect business.

1t is obvious that if business is influenced by conditions external
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to its own institutions, a correlation must first be observed between
the external and the internal cycles. But the establishment of such
correlations is not sufficient to prove such influences without the ad-
duction of a priori evidence to show the causal nature of the postulated
relationship. The argument which we introduced in Section 2 of
Chapter 5, to show that empirical relationships discovered in economic
time series are essentially probleme in inverse probability, is valid
here. Even though a high correlation may be observed between his-
torical crises and the maxima or minima of sunspots, this is totally
insufficient to prove scientifically that the observed relationship is
real and that it may be relied upon for the forecasting of business
depressions. Those who now favor the theory, realizing the weakness
of the correlation argument, have attempted to establish a direct re-
lationship between sunspots and paychic factors such as optimism and
pessimism. If it could be demonstrated, for example, that a highly
ionized atmosphere exerted a direct influence upon the human spirit,
then there might be a valid basis for accepting the thesis that sunspot
activity may lead to group optimisms or group pessimisms with their
ancillary reactions upon the business cycle. A review of the evidence
supporting the Jevons hypothesis will be given in a later chapter.

Most of the theories of the cause of business cycles, however,
center around institutional explanations. These theories may be
classified under two heads: (1) changes in institutions themselves;
(2) the functioning of the institutions. The assumption iz made in
the first case that changes in social processes, innovations, inventions,
and discoveries are not uniform, but come in irregular patterns which
disturb the existing equilibrium and cause crises and depressions. This
explanation is quite similar to that theory of evolution, initiated by
Hugo de Vries, which attributes change in species to sudden and dis-
continuous mutation. The evidence in either theory is mnot clearly
categorical. In the second case, namely that which is concerned with
the functioning of institutions, perturbations are attributed to various
processes in the economic system such as: (a) the technical phases of
money making: (b) the lack of equilibrium in the processes of dis-
tributing and spending incomes; (c) the lack of equilibrium in the
factors of production and in the consumption of goods; (d) the lack
of equilibrium in the processes of consuming, saving, and investing
capital in new enterprises; (e) the processes of banking.

Ragnar Frisch in an illuminating monograph, entitled “Propaga-
tion Problems and Impulse Problems in Dynamic Economics,” secks

1 From Economic Essays in Honour of Guatav Cassel, London, 1988.
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to answer the question as to how oscillations can be introduced into
economic processes. He finds at least four causes. The first of these,
attributed to J. M. Keynes, distinguishes between saving and invest-
ment. Since these are distinct and different processes, there is a ten-
dency toward disequilibrium which results either in a depression or
in an expansion.®*

The second cause is found in the profound influence exerted upon
the behavior of both consumers and producers by the existence of
debts. This explanation of booms and depressions is essentially due
to Irving Fisher.? Thus he estimates the existence of a total debt in
the United States in 1929 of 234 billions of dollars, an amount equal
to 65 per cent of the total estimated wealth of 362 billions for the
entire country. “Billions of debts and a gold base that was slippery,”
said Fisher, “these two conditions had now set the stage for the
collapse of 1929.”

The third mechanism which might lead to business fluctuations
is the distribution of income. “This idea,” says Frisch, “may—with
a slight change of emphasis—Dbe expressed by saying that under pri-
vate capitalism production will not take place unless there is a prospect
for profit, and the existence of profits tends to create a situation where
those who have consumption power do not have the purchasing power,
and vice versa. Thus, under private capitalism, production must more
or less periodically kill itself.”

The fourth cause, which is the main object of Frisch’'s investiga-
tion, is attributed to A, Aftalion. This affirms that a principal cause
of oscillation in the economie system is the ““distinction between the
quantity of capital goods whose production is started and the activity
needed in order to carry to completion the production of those capital
goods whose production was started at an earlier moment.” This
theory, in its precise mathematical formulation, has been called a
macrodynamic theory of business cycles. An account of the basic
postulates and its present statistical status will be discussed in Section
3 of this chapter.

Irving Fisher in his book on Beoms and Depressions, in which he
argues for the theory of overindebtedness as a cause of business
cycles, lists thirteen other theories which are related in one way or
another to the debt cycle. We quote #n extenso from Fisher:

1» This theory has been rejected by Keynes in his more recent work, The Gen-
eral Theory of Employment, Interest, and Money, New York, 1936, xii + 403 pp-
Unfortunately the arguments are not formulated in such 2 way that they can be
tested by statistical data.

2 From Booms and Depressions, New York, 1932, xxi <+ 258 pp.
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1. PRICE-DISLOCATION THEORY. There is, for instance, the “price
dislocation” theory. This holds that when among prices (of commodities, rent,
interest, and taxes) some are unduly low and others unduly high, the exchange
of goods is retarded; and that this involves the retardation of production and em-
ployment.

Evidently the deflation stressed in this hook disloeates prices, and when it
arrives, it finds some prices, such as rent, interest, taxes, salaries and wages, more
unyielding than others. If we add principal as well as interest, we may think of
the increased debt and interest burden as a sort of “dislocation” due to inflation.
Doubtless, any other sort of price-dislocation will cause disturbances. Moreover
these dislocations often tend to be cumulative. The more unyielding one group
of prices the more other prices must yield. In the depression of 1932 some writers
maintain that the area of “rigid” prices was the largest in history. If, as seems
likely, there is going on a gradua! progressive freezing of large parts of the
price structure, the instability of the rest will become greater and greater, and
will tend more and more to bring about a erash from time to time.

2. INEQUALITY-OF-FORESIGHT THEORY. Then there iz the theory
on the inequality of foresight as between lender and borrower. In The Theory of
Interest, I have worked out some of the oscillatory tendencies resulting from such
ineguality. During inflation, the borrower sees (or feels), better than the lender,
the fact that real interest is low; and this temptas him to borrow too freely, and
leads him into over-indebtedness,

8. CHANGES-IN-INCOME THEORY. Some theories stress the changes
in income. The fluctuations of real income and the re-distribution of income are,
of course, of gupreme importance; and some of these changes have been ineluded
in the analysis of this book, especially as to their bearing on profits and unem-
Ployment.

4. FLUCTUATIONS-IN-DISCOUNT THEORY. There is the theory of
fluctwationy in the rate of discount at which income is capitalized. Such fluctua-
tions are important in many ways. A changed rate of discount affects the value
of collateral against debts, and so affects solvency.

5. VARIATIONS-OF-CASH-BALANCE THEORY. Then there is the the-
ory of the variation of people’s cash balances in the banks. This is already in-
cluded, to gome extent, in the analysis of the present book, under the head of
velocity of circulation. The variations of cash balances are especially important
in relation to bank reserves. Hawtrey has pointed out that the lags between de-
positors’ balances and the reserves of the banks make for instability.

6. OVER-CONFIDENCE THEORY. There is also the theory of over-con-
fidence and over-optimism. These factors are clearly embodied to a large extent
in the analysiz of this bock. They are especially important in an industrial so-
ciety, with its long lags hetween production and consumption. Each producer
has te guess about the future—future consumption and future competition; and
he cannot always be right. His miscaleulations and mistakes cause disturbances,
one of which is over-indebtedness, Perhaps over-indebtedness is the chief dis-
turbance resulting from over-confidence. Certainly, without over-indebtedness,
over—confidence could gearcely produce bankruptcy!

7. OVER-INVESTMENT THEORY. The theory which, perhaps, comesa
nearest to covering the same ground as the one set forth in this book is the over-
Imvestment theory. But, if over-investment be accomplished without borrowing,
“there would seem to be no reason to imagime that it would be followed by any-
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thing so severe as a stock market crash, or an epidemic of bankruptcies, or vast
unemployment. Doubtless, however, over-investment, even without borrowed
money, would tend to set up some appreciable oscillations,

8. OVER-SAVING THEORY. The same applies to “over-saving.” In fact,
saving is usually preliminary to investing. Over-saving leads to over-investment
and te over-indebtedness.

9. OVER-SPENDING THEORY. Instead of over-investment amd over-
saving, there are theories of under-investment and under-saving, or (what
amounts to the same thing) over-spending. The oscillations set up by over-spend-
ing would naturally be opposite, in their initial direction, from those set up by
over-investment. Why, then, do we find both saving and spending accused of the
same thing? It is true that we do, in boom periods, encounter both over-invest-
ment and over-spending at one and the same time; but what recenciles the two
ig over-indebtedness. Nor is it easy to see any other way of reconciling them.
If & man borrow enough, he can both over-invest and over-spend, whereas, with-
out borrowing, he could scarcely make both mistakes at the same time.

10. DISCREPANCY-BETWEEN-SAVINGS-AND-INVESTMENT THE-
ORY. The discrepancy between savings and investments has by some students
been emphasized as causing trouble—and very likely it does, especially by in-
vesting out of horrowed money instead of out of savings. This discrepancy is
caused largely by debts.

11, OVER-CAPACITY THEORY., As to over-congtruction and over-capac-
ity, these are natural consequences of over-investment, whether the over-invest-
ment be caused by too much debt or otherwise. And sudden cessation of construe-
tion, as Professor J. M. Clark so well shows,* causes very violent oscillations.
These sre still further magnified if the over-construction is financed with bor-
rowed money,

12, UNDER-CONSUMPTION THEORY. As to the theory of *“under-con-
sumption,” and changes in the demand for "consumer goods,” these mal-adjust-
ments must heve at least gome oscillatory effects. But under-consumption ap-
pears to be much the same thing as over-production.

13. OVER-PRODUCTION THEORY. The over-production theory, deapite
the skepticism of most economists, seems to me to have, at least in the boom
period, some theoretical possibilities. I do not accept the hoary tradition that
“general over-production is impossible and inconceivable.” But the point need
not be debated here, .

. According to the important statistical researches of Carl Snyder, production
seems to have progressed with such steadiness that it seems difficult to imagine
how it could become a leading cause of major depressions; and the large inven-
tory accumulations which have characterized many depressions (like that of 1920-
21) seem to be rather symptoms of depression, or incidental conaequences, than
important causes. ’

Certainly many debts are contracted for production purposes; and if the
judgment of the debtor is wrong as to what is a safe margin for his debts, this
may be because his judgment was firat wrong as to how much of his commodity
would find & profitable market. Over-production can scarcely be itself the lasting
force which keeps a depression going year afier year. Were it merely a matter
of over-production, it would seem to me to be likely to correct itself more prompt-
ly and almost automatically.

'I\chWMWJ.WOﬁM.Im
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But it may still be true that over-production may precipitate liquidation of
debts. The borrower’s disappointment in the market for his goods may be one of
the first symptoms to alarm both him and his creditors, as to the state of his
debts. Perhaps that i8 why, in 1929, as we shall see, production and payroll and
transportation began to slacken two or three months before the debi-structure
crumbled. But thereafter the wisest producers were hit—not by over-production,
but by the liquidation-spiral into which they were sucked; so that they were com-
pelled, for the sake of liguidation, to turn all production into under-production.

This epitome of theories clearly shows the complex nature of the
problem of business cycles and the wide divergences of opinion which
prevail as to the essential causes of oscillation. Where then shall we
begin? The answer to this question is relatively simple. Qur principal
hope of discovering the dominating causes of cyeclical fluctuation must
lie in those mathematical formulations, where the assumptions are
so framed that they are within the range of statistical verification.
Only a few such formulations have been attempted and to them we
shall devote our attention in the ensuing pages. Undoubtedly there is
much truth in the theories so lucidly set forth by Professor Fisher;
but the relative importance of each must be measured since their
formulation is vague and unsatisfactory until each theory has been
reduced to precise mathematical form. Thus great problems still re-
main for the mathematician and the statistical expert.

Special mention should be made of an extensive study of the cause
of the trade cycle which was made by G. von Haberler for the League
of Nations. This work, Prosperity and Depression, which was issued
in Geneva in 1937, gives an excellent review of the theories of the
business cycle as well as an eppraisal of the international aspects of
the phenomenon.

2. The Maxtmizing of Profits ag an Example of How Cycles
May Be Expecled to Arise.

One very attractive method of approaching problems in the
dynamics of price is due originally to G. C. Evans and C. F, Roos.*
This method considers the problem of maximizing profits when de-
mand is a linear function of price and the rate of change of price.

Thus we assume that the profits, I7, over a period of time from
t=1, to t =1, are given by the integral

? See, for example, G. C. Evans, Mathematical Introduction to Economics,
New Yark, 1930, xi + 177 pp., in particular, Chapter 15. The first application of
this kind in economics was made by C. F. Roos in 1925, “A Mathematical Theory
of Competition,” American Journal of Mathematics, Vol 47, 1925, pp. 188-176.
See also, Roos, Dynemic Economice. Bloomineton. Ind.. 1934. xvi 4 275 nn.
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[
(0 n= ["wu- Q.

where p is the price, u the demand, and Q(u) the cost of manufactur-
ing and marketing 2 units,

It is obvious that the problem, as stated, is in its simplest form
and that I7 is the profit of a manufacturer who is concerned with the
marketing of a single commodity. It is possible, however, to regard
the values involved as averages. In the application which we contem-
plate it is perhaps possible to regard the quantities in (1) as pertain-
ing to a basic industry such as that of the production of steel. If this
extension is possible, then the deductions which we shall make may
form a rationelle for the theory of business cycles. At any rate the
simplicity of the formulation as exhibited in equation (1) is neces-
sary if the mathematics is to be tractable.

For simplicity of treatment we shall assume that demand may

be written
(2) w=ap +p+y;

and that the cost function is a quadratic function of the demand,
namely,

3) Qiuy=Aw+Bu+C.

That either of these assumptions is realistic is debatable, since
fittle supporting statistical evidence is available on this point, Evans
argues as follows for the first equation: “Whether the price is going
up or down is itself an important factor in the demand for the quan-
tity. In actual cases the demand is often not merely a function of the
price alone but is stimulated or depressed by the mere fact that the
price is rising or falling. We know that business is usually good when
prices are rising and usually not so good when prices are falling; the
number of shoes that will be bought at three dollars a pair will be
greater if it is known that the price is increasing at the rate of ten
cents a week than if the price is supposed to be decreasing at the rate
of fifty cents a week.” Mathematical convenience suggests the form
of (8), although a quadratic form for the production function may
be strongly argued. But since statistical data are at present lacking,
it is perhaps best not to claim too much for these assumptions, but
rather to regard the theory as schematic and a possible mode of ap-
proach to the perplexing difficulties of the subject of business cycles.**

sa Considerable information has recently become available about the actual

form of the cost function. Thus in the evidence before the Temporary National
Economic Committee, in particular, the United States Steel Corporation, T.N.E.C.
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We now set the first variation of (1) equal to zero, thatis 6 [T =
0, which is analytically equivalent to Euler’s equation
o F d 3F 0
2p disp
where we abbreviate F = pu — Q(u) .

A simple calculation shows that (2) reduces, because of the ex-
plicit equations (3) and (4), to the following linear equation

(4)

(6) p"(t) +mrp(t) =P,,
where we employ the abbreviations
. B-Ag _ 248y —y+Bp
me= atd Po== 2An° :

Now we know that in ordinary demand, where the dynamic ele-
ment is disregarded, that is to say, when a = 0, the value of 8 is nega-
tive and the value of y is positive. Also, ordinarily in the theory of
static production, it is assumed that A is positive. If this were the
actual case in a dynamic economy, then m? would be negative, that is
to say, m would be imaginary, and there could actually be no cyelical
fluctuations. But in dynamic economies, there is no essential reason,
supported by statistical evidence, to show that g and A must be of
opposite sign. Let us, on the contrary, assume that § — 44 > 0. Hence
we shall have m? > 0, and the solution of (5) is well known to be

P(t) zP,+Kcos-§,i‘(t +a),

where T = 2a/m.. The constants K and u are arbitrary.

This solution represents a function which oscillates about P,
as a fixed price. This fixed price is the one obtained on the assumption
that demand is a static rather than a dynamic variable,

The principal objection to this simple explanation of eyclical flue-
tuation is found in the lack of supporting statistical evidence. No
general form for Q (#) is empirically known. Moreover a study made
by R. H. Whitman* seems to show that the assumption © = ap’ + fp

P aperg, Vol. 1, 1940, we find the cost function for this large steel-producing cor-
poration. The statistical work was done by T. O, Yntema. In this report the cost
curve appears to be linear and hence is represented by equation (3) if we set
4 =— 0, Other studies for various industries made by Joel Dean seem to confirm
the linear character of costs over a wide range of production, although in some
cases a slight cuxvature would indicate that A is not always identically zero.

¢ “The Statistical Law of Demand for a Producer’s Goeds as Illustrated by
the Demand for Steel,” Econometrica, Vol. 4, 1936, pp. 138-162,
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+ y is doubtful as a description of demand unless a term is added to
measure the fluctuation of business itself. The data employed by
Whitman related to the demand for steel over the 29 years from 1902
to 1930, inclusive, this interval being divided into the three sections:
(1), 1902-1915; (II), 1916-1920; and (I1I), 1921-1930.

Among the five types of dynamic demand equations evaluated by
Whitman were the three following:

(a) w=pp(t) +y +ét,
(b) u=qap'(t) +pp(l) +y,
(e) u=ap (t) + fp(t) +y+ ot + ¢l

where I is an index of general business activity.

Our interest is not in the data, but in the final regressions and
the degree of correlation attained. These results are contained in the
following table, which gives the type of equation, the numerical values
of the coefficients, the correlation coefficient, B, and the probable er-
ror of estimate, S :

u=gp(t) +v+3¢

Period I B b3 3
1902-1916 | —0.11 = 0.41 1 1.36 0.0090 £+ 0.0015
1916-1920 | —0.35 = 0.16 | 4,93 | —0.0012 £ 0.0006
1921-1930 | 0.003 + 0.42 | 2.05 0.0180 = 0.0024

== ad (1) + 8P +7

Period , a B8 Y _R_ 8

1902-1915 | 3.19 * 0.28 |—1.00 * 0.32 {3.64|0.66( 0.47

1916-1920 | 0.63 = 0.11 |—0.38 * 0.12 14.61 | 0.65| 0.62

1921-1930 | 3.15 = 0.26 | 0.60 * 0.29 0.90 |0.74[ 0.57

u—ap(t) +8p() +Y+ 3L+l s
Perlod a 8 ¥ z 3 e B l 8

1902-1915 | 7.99 = 1.06| —1.56 = 0.31 | 4. zol 0.0041 = 0.0012 10.036 % 0.005|0.81|0
1916-1920 | 0.48 = 0.21| —0.55 * 0,08 | 3.84! 0015 = 0,0004(0.12 = 0.011|0.88{0 39
1921-1930 | 6,27 + 0.94| —1.27 = 0.23 | 1. 49)-4 0003 * 0.0017 |4.64 * 0.35 10.92]04

We see from an inspection of the accompanying figure that such
correlation as is obtained by means of formula (a) is derived mainly
from the trend. The cyclical fluctuations are in no way accounted for
by means of this formula and hence it must be rejected as a descrip-
tion of the demand for steel. The second formula is considerably bet-
ter and the correlations attained by its use attain significant size.
Omne notes, however, the inconsistency in the sign of §, which is neg-
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FIGURE 109.—DEMAND FOR STEEL.
Thia chart shows the relationship between the actual demand ( ) for
steel and the computed demand estimated by formula (a) ( ) and by

formula (e) (----- ).

ative in the first two periods and positive in the third. Therefore, one
may well hesitate to affirm a strong belief in the realistic character
of this formula in so far as the present problem is concerned.

It is only when the term I', measuring business fluctuations, is
added that essential significance and consistency are attained. The
sign of B is uniformly negative and the correlations are high for each
period. It should be observed that the apparent inconsistency of the
coefficient of £, which is much larger in the third period than in the
other two, is due to the fact that in the first two periods business fluc-
tuations were measured by the index of the American Telephone and
Telegraph Company, while in the third period the Standard Statistics
index of industrial production was used.

What is significant for our purpose here is the observation that
the simple assumption for dynamic demand, namely that u =« p'(£) +
B p(t) + y, while adequate to explain part of the fluctuations of de-
mand, is not entirely satisfactory. To it there must be added another
term, which, as will be seen later, acts as an impressed force in the
price system and at times profoundly modifies the problem of maxi-
mizing profits.
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In order to see how this term affects the problem, let us assume
that demand has the form

U(t) =u(t) +¢(t),
where (%) is defined as in (2) and where ¢ (¢) is a term which meas-

ures the external influences derived from business itself upon the de-

mand for steel.
Substituting the function F' = pUU — @Q(U) in equation (4), we
then obtain equation (5) with an additional term, namely,

(6) p"(t) +mip(t) =P, + (1),
where we employ the abbreviation
2Ap—-1

) f) = NCEETICR

240
If we assume as before that m? > 0, then the solution of (6)
takes the form

8) p)y=~r, +Kcoss—2,ﬁ:'E {(t+p +;13-~£'sinm(t—-s) f(s) ds.

The function f(t) acts as an impressed force on the system and
will obviously modify the character of the oscillations defined by the
harmonic term. In particular, if f(¢) has the form

fi@) =focosdt,

then the solution can be written

——,‘!—{E-F [COS At — coa mt] .

(9) p({) =P, + Kcoa-—Z;—,-(t +u) + pos
Jt is well known in dynamics® that resonance occurs whenever the
period of the impressed force coincides with the period of the system
itgelf, that is to say, when 1 = m . In this case the last term of (9)
reduces to
Fo 1 8in mt

2m '

and as ¢ increases the prices are observed to oscillate with greater and
greater amplitude.

It is quite pertinent to ask at this point whether profits are
actually maximized under this scheme. Now the second variation in

5 For a discussion of resonance, see Seetion 9 of thia chapter.
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the calculus of variations can be put into such a form as to yield a
very simple sufficiency test for the existence of a maximum or a mini-
mum. This test is merely that a maximum is attzined by the integral
provided the function

i O
op
is negative throughout the interval {, = ¢ = ¢, . Similarly a minimum

is attained provided R is positive throughout the interval.
In the present instance a simple calculation shows that

R=— Aa®,

which leads to the condition that the profit integral is maximized pro-
vided A4 > 0. But when we consider the quantity m?* = (8 — Ag*) /Ad®,
we see that this can be positive, and hence m real, only when g — Af*
> 0, that is, provided j is positive but less than 1/A4.

The computations of Whitman show that the best expectation is
that § is negative. In this case, the solution of the Euler equation
would be exponential and hence would lead either to explosive prices,
or to constant prices. Since neither of these situations is observed,
but rather that prices follow a more or less well-defined fluctuation,
we may assume that the profit integral is not always maximized. This
seems to be a realistic observation in the light of frequent crises and
large swings of the business cycle.® ‘

R=

8. The Macrodynamic Theory of Cycles

We have commented earlier on the intriguing theory which pro-
poses to explain business cycles by means of a scheme of lags between
different economic variables. Apparently the first suggestion of this
type of analysis was published by M. Kalecki in Polish in 1933 and
this was followed a few months later by Ragnar Frisch’s paper on
“Propagation Problems and Impulse Problems.”” J. Tinbergen pub-
lished a similar scheme in 1934¢ and the following year made an ex-
tensive réaumsé of the business-cycle theory in Econometrica in which
the varjous suggestions were compared with one another.® In the
sime number of Economelrica Kalecki gave a restatement of his

® See footnote 3a.
! Economic Essays in Homour of Gustay Cassel, 1933.
op ;ggm:schﬁfc fiir Nationalokonomie, Vol. 5, 1934, pp. 280-319; in particular
. et seq.
*“Annual Survey: Suggestions on Quantitative Business Cycle Theory,”
Econometrica, Vol. 3, 1935, pp. 241-308. -
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theory of business cycles,® a theory which he now designated by the
term macrodynamic following a suggestion of Frisch. This termin-
ology was adopted to apply to those “processes connected with the
functioning of the economic system as a whole, disregarding the de-
tails of disproportionate development of special parts of that system.”

Kalecki’s theory has the following elements. Let us suppose that
I(t) is the total volume of orders for capital goods per unit of time
at the time ¢ and that L.(¢) is the corresponding volume of deliveries
of orders for capital goods. It is clear that the relationship between
-these two quantities is expressed by the equation

(1) L(t)y=I(t—0),

where 4 is the lag between orders and delivery. This quantity, which
is assumed on the average to be constant, is extremely fundamental in
the oscillation theory and variations in the numerical estimate of it
make fundamental differences in the final results. In Kalecki's theory,
¢ is assumed to be as small as 0.6 of a year on the basis of German data
which appear to show that “the lag between the curves of the begin-
ning and termination of building schemes (dwelling houses, indus-
trial and public buildings) can be fixed at 8 months; the lag between
orders and deliveries in the machinery-making industry can be fixed
at 6 months.” Frisch, on the other hand, assumes a value as large as
3 years, or, if one considers the time from the actual inception of the
idea of building to the completed stage, as much as twice this estimate,
or six years. In defense of this Frisch says: “It seems that we would
strike a fair average if we say that the actual production activity
needed in order to complete a typical plant . . . will be distributed over
time in such a way that in general it takes place around three years
after the planning began. Some work will of course frequently be
done before and some after this time, but three years can, I believe,
tentatively be taken as an average. In making this guess I have taken
account of an important factor that tends to pull the average up,
namely, the fact that in a given individual case the activity will as a
rule not be distributed evenly over the period (as assumed in the
simplified theoretical set-up), but the peak activity will be concentrat-
ed near the end of the period.”

The next assumption of the ¥ .. ki theory is concerned with the
demand for the restoration of industrial equipment used in unit time.
This demand, designated by 1’. is assumed to be constant. Hence, if
we represent the total volume of industrial equipment at time ¢ by

104A Macrodynamic Theory of Business Cycles,” Econometrica, Vol. 3, 1935,
pp. 327-344.
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K (1), and if K'(¢) then represents ita inerease (or decrease) per unit
of time, we should have

(2) K(ty=L{#)—-U.

We further define W({¢) as the total number of orders completed
over a length of time equal to the lag, 9, that is to say, from an actual
time ¢t — @ to time ¢, Symbolically this may be written

(3) | W(t) = f‘us) ds .
-

Designating by A () the volume of orders completed per unit of
time, we shall have

(4) A(t)y =W (t)/0.

So far in the analysis no essential assumption has been made
except that relating to the existence of the lag 6. The fundamental
postulate is now introduced that I (¢) is a linear function of K(¢) and
A(t); that is to say, we assume that

(5) I)=mC+mA@) —nK(),

where C, m, and n are constants, The quantity C is assumed to be

“the constant part of the consumption of capitalists.” More explicitly,

Kalecki assumes that the gross income from capital (B) is equal to

that consumed (C) plus that added to capital (A4); that is, B=C +

A, But C varies with B and hence may be written C + lB where C
is the constant part of the consumption.

Hence, interpreting equation (5), we see that we have assumed
that the total volume of orders per unit time is a certain fraction of
the constant consumption, plus the incrementary part of capital per
unit time, diminished by another fraction of existing equipment. In
the statistical determination of the constants, it will turn out that m
is nearly unity, while » is approximately 12.

Differentiating equation (5), we have

I'¢) =mA'(t) —nK();
then, noting (1), (2), (3), and (4), we get

r(t) —-—-[f(t) = I(t—-6)1 —nlL(¢) - U]

=.’;[1(t) —I{t— 6] — n[I(t - 8) — U]
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If we employ the abbreviation, J(t) =I(t) — U, then this equa-
tion may be written

(6) 7 () =-"g-[.r(t) —J(t—8)] —nJ(t—8)

A solution of this equation iz readily seen to be
J(t)y =J(0)e",
where r is any root of the characteristic equation
t7) (m+nd)e"=m-—1r9.

Obviously no conclusion can be drawn regarding the economic
realism of this equation until a2 determination has been made of the
statistical parameters m , n, and #. Moreover, it must be shown that
r is a complex number if J (%) is to have cyclical components,

For this purpose we now assume that r may be written

m-—z .9

e

9 6’

from which we have from (7)

r= i=v —1;

(m+ng) emwregpt=m— (m—zx) +iy—c+uy.

Replacing e by cos y + isin ¥, and equating real and imaginary
parts, we obtain the two equations

(8) (m+nd) e™eosy=2, (m+nd) e™"giny=y.

One of the most characteristic features of economic time series is
the observed lack of damping in most of them. If the solution of equa-
tion (8) is to preserve this important aspect of time series, then it
will be necessary in (8) to set m — x. Equations (8) then assume
the simpler form '

(x+nd)cosy=z, (x+nd)siny—y,
from which, noting that » = m , we get
m=y/tany.

Another relationship between m and n is derived by taking a
single-cycle average of equation (5), where the assumption is made
that such an average of both I(¢) and A (t) is numerically equal to U .
Hence, designating the cycle average of K(¢) by K,, we obtain the
new yelationship

(9) U=m(C+U) —nk,.
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Hence, for the determination of the three unknown values, m , n,
and ¥, we shall havc_a the system

m=y/tany.
(10) m/(m +n8) =cos y,
n=(m —1}(U/K,} + m (C/K,)} .

For the determination of the parameters m, n, and y, we may
argue as follows: If we assume that the fixed capital in the United
States in 1922 was roughly 120 billions of dollars, that national in-
come was 70 billions of dollars, and that the ratio of ameortization to
national income was 0.08, then we may compute the ratio

U/K,=0.08 X 70/120~= 0.05 .

In order to determine C, we first assume, using the data of
1913, that 11 billions of the total 36 billions of national income re-

ported in that year would be that consumed by capitalists.* Hence C
is approximately equal to 11/36, or about 0.3 of the total income. As-
suming that this is constant over time, we may compute that the con-
sumption by capitalists for the year 1922 would equal 0.3 X 70 = 21
billions of dollars. The constant part of this, that is to say, C, may
be roughly estimated to equal about 0.75 of T, or 0.75 X 21 = 16
billions. Hence we may assume for the evaluation of m and n, that

C/K,=16/120=0.13 .

Employing, now, the former estimate of § = 0.6, we may com-
pute from eqguations (10) the following estimates for m, n, and ¥ :

m=0956, n=0.121, y=0.378.
The cycle is at once observed to have the period

2nh 2n
T—T 557 < 006 =10.0 years .

We thus sece that the present estimates and the present theory
yield an explanation of the 10-year cycle of business, The weakness
of the argument is found, of course, in the simplifications which were
employed to make the mathematics tractable and in the admittedly
crude estimates of the statistical parameters.

1% The estimates used in this analysis are very rough. Thua the national in-
come in 1922 was nearer 60 bhillions than 70 billions of dollars and. in 1913 was
nearer 30 than 36 hillions of dollars.
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It seems evident, however, that this method points the way to &
highly important attack upon the problem of cycle analysis, and that
the final theory must be formulated in a system of the general type
described by Kalecki. The question remains as to how complex the
ultimate system will prove to be and how many elements must be in-
troduced into it.

The theory of Frisch, while similar to that of Kalecki, has cer-
tain variations which make it possible for him to account for cycles
other than the long cycle explained by Kalecki.

Employing the notation given sbove, we may write the two fun-
damental postulates of Frisch in the following form:

(11) IQ)=mX({) +uX (1),
- (12) X(t)y=c—2[r X() +3A(1)],
where X (1) is the volume of consumption goods per unit of time.

The first of these equations is derived from the assumption that
the orders for capital goods, I({), depend, first, upon consumption and,
second, upon the rate of consumption, and that this dependence is
linear. The second equation states that the rate of change in the vol-
ume of consumers’ goods diminishes proportionately to what Frisch,
borrowing the term from Walras, calls the encaisse désirée (cash
needs). Neither proposition has been determined by statistical mesns,

To these two new equations Frisch adjoins Kalecki’s equation

(13) 9-4@8)= [ 1(s) ds.

Solutions are then assumed of the form
, X)) =ay + 3 aver,
I@)=b,+ T beemt,
A(t) =¢, + I cremt,

Substituting these series in equations (11), (12), and (13), we
obtain

bo+ e =m [@ + Ttz €] + pu T ax g e,
Epk@uemt:c—-ir [a,o-f-zmkepn] - 18 [co+zck€""] ,

u%+2mmq=fwm+zqua.
L )

Equating the coefficients of like terms, we get from these equa-
tions the following relationships between the coefficients:
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h/iv=m+upn, a/a=—{p+ir)/(i8),
/= (1—eP*)/(8pm),
bo=ma,, e=ira,+18ce, c,=Db,.

Elimination of the three ratios shows that pm must satisfy the
characteristic equation

] m +
(14) P =g T RE
1T—e# TAite

Before equation (14) can be solved, a numerical estimate i8 nec-
essary for the constants. These values are assumed by Frisch to be
the following:

0=6, u=10, m=05, 1=0.05, r=2, and s=1.

We have aiready discussed the assumption of a lag, #, as large
a8 6 years. The estimate of x = 10, means that 10 times the amount
produced in a year is needed as a capital stock. Similarly the assump-
tion that m = 0.5 implies that the depreciation of capital stock is
about one-half the amount consumed. The estimates for 2, r, and 8
are admittedly guesses unsupported by statistical evidence.

These values are now introduced into (14) and p is written,
p = —f + ia, where g is the damping coefficient, a the frequency co-
efficient, and ¢ is the imaginary unit. It will be found that the even
roots of the equation

tanfa=2¢%a,

which are tabulated in Section 6 of Chapter 3, vield good first ap-
proximations for a« . More accurate determinations show that the firat
three cycles possess the following characteristics:

Characteristie TFiret cyele Second Cyele Third Crele
Frequency: {ua) 0.73355 1.79775 2.8533
Period: T=27/a 8.56564 - 3.4950 2.2021
Damping exponent: (g) 0.37134 0.5157 0.59105

The significant result from these estimates is found in the ob-
servation that the analysis reveals the existence of a primary period
of 8.57 years, a secondary period of 3.50 years, and a tertiary period
of 2.20 years. The first two pericds have been observed in business
series, but the third is certainly not strongly in evidence. The period-
ogram of the Dow-Jones averages over the period from 1897 to 1914
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shows that the 40-month cycle (3.5-year cycle) has approximately
48 per cent of the entire energy of the series, while the 22-month
cycle (2.2-year cycle) contains but 6 per cent.

From this analysis we observe that there is an essential differ-
ence between the theory of Frisch and the theory of Kalecki. In the
latter the damping factor was explicitly removed, while in the former
it remains, How, then, are we to reconcile this formulation with the
observed faet that the principal characteristic of economic time se-
ries is a complete lack of damping? According to Frisch the key to
the problem is found in the assumption that the economic system is
subjected to a series of erratic shocks which continually renew the
energy lost by the damping coefficient. Frisch also admits the exis-
tence in the system of a& more or less continuous source of energy sup-
plied by the orderly introduction of new inventions, new technical
procedures, ete. Thus he says:

The ides of erratic shocks represents one very essential aspect of the impulse
problem in economic analysis, but probably it does not contain the whole expla-
nation, There is also present another source of energy operating in a more con-
tinuous fashion and being more intimately connected with the permanent evolu-
tion in human gocieties. The nature of this influence may perhaps be best ex-
hibited by interpreting it in the light of Schumpeter’s theory of the innovations
and their role in the cyelical movement of economic life. Schumpeter has empha-
sized the influence of new ideas, new initiatives, the discovery of new technical
procedures, new financial organizations, etc., on the courge of the cycle. He in-
siats in particular on the fact that these new ideas accumulate in a more or less
continuous fashion, but are put into practical application on a larger scale only
during certain phases of the cycle, It is like a force that is released during
these phases, and thia force is the source of energy that maintains the oscilla-
tions.1:

What all of this means dynamically is merely that the energy of
the economic system is renewed by an impressed force. This force
consists partly of erratic shocks, and partly of a continuous intro-
duction of new ideas into commercial activity. We have already in-
troduced a similar coneept into the problem of maximizing profits and
we shall return to it again in Section 8.

It is obvious that many other schemes of the sort just described are possible.
Thus Tinbergen has considered a system constructed from the following vari-
ables ;12

11“Propagation Problems . . . ,” p. 33. This idea is amplified in Schum-
peter’s recent work, Business Cycles. A Theoretical, Histoﬁca},) and Statistical
Analysis of the Capitalist Processes, two volumes, New York, 1939, xvi + 1095
PD. , in particular, Chapter 3. "

124Annual Survey: Suggestions on Quantitative Business Cycle Theory,
Economstrica, Vol. 3, 1935, pp. 241-308,
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(1) Price of finished consumers’ goods, P 4+ p(t}; (2) Number of products
started (consumers’ goods), Z + z(t); (3} Number of products sold {consumers’
goods), ¥ + #(t); (4) Income spent by consumers, X 4+ x(t); (5) Increase of
stocks of products, V + v({).

The following system is then set up:

x(t) = (2k/e) z(t— 1},

ep{t) —=z(1—2) —y(t), ==1lord,

efz{t —2v) —ap(t))=0, e=10or0,
:(y=rap(t) + (1—e)y(t), 0s¢=1,
[Y+y®)][P+p()I=X+2(D).

1t is clear that the theory which occasions this form of the system postn]atu
that cycles are set up by overproduction and overinvestment.

If it be assumed that ¢ =— 0 and if all the variables except z(f) be eliminated,
then the following difference equation iz obtained:

2(8) 2k z{t—~1) + ('8 +¢ —1) 2(t—2) =0,

Solutions of this equation are periodic provided k2 ¢2 + 1 < ¢(a 4+ 1) .
If it be assumed that 2 == 1, then the difference equation in z(t) hecomes

’

k
z(t)-—-z—z(t-l)-}—(i— ')z(t—Zn)zo.
a a

When 4y = 1, the condition that the solutions of this equation are oscillatory
is found to be

k2 ¢
——-—-+

a2 1~z

<e.

It is clear that many systems could be developed similar to the
models discussed above, the question being merely one of selecting
the time series which show the highest relationship with one anoth-
er. The difficulty with this mode of approach is, first, that the system
must be oversimplified in order to make the mathematical analysis
tractable; and, second, that sufficient data are not yet available to
- Mmake possible a careful statistical determination of the parameters
involved,

The main gain from this analysis is to exhibit ways in which true
cycles can be generated in economic time series. The question is thus
answered as to whether the observed cycles are merely accidental
variations in a sequence of random fluctuations, or whether the series
are rea] sinusoidal movements disturbed by a series of random shocks.
The evidence seems to point clearly to the latter as the correct inter-
Pretation of the fluctuations in economic time series.
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4. The Interest Theory of Cycles

The role of interest in the business cycle has long been a source
of argument, one achool contending that it exerts a profound influence
upon the cycle and the other that it has relatively little to do with
major upswings and downswings of business.

Part of the difficulty is found in the fact that several kinds of
interest are to be reckoned with in business transactions. All of these
perform different functions and correlate differently with the pri-
mary series. It will be necessary, therefore, to review these varied
types of interest.

PER CENT PER CENT
0 %
0 20
10 10
ol i, 1
1908 1910 1915 1920 1928 1930 1933 1940

FI1GURE 110.—RATES OF INTEREST.
Shaded areas show the range of rates on call money; the dotted curve is
the rate on 60-90-day commercial paper.

The first rate of interest is that on “call money,” where the loans
are for short periods of time. The fluctuations in this rate are large
and rapid. For example, in 1919 the rate on call money varied from
less than 2 per cent to approximately 80 per cent during the course
of 12 months, A similar period of instability is found in 1929 when

. the range of variation was from less than 4 per cent to approximate-
ly 20 per cent. It is quite obvious that this rate can exert no perma-
nent effect upon more stable series, but is itself a result of current
events rather than a cause of them.

By the phrase “the market rate of interest” is usually meant the
rate on 60- to 90-day commercial paper. This also has a large fluctua-
tion, although it is much more stable than the rate on call money.
For example, the coefficient of variation in the annual average of this
rate, that is, the ratio /A4, was 0.4423 for the period from 1831 to
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1930. The magnitude of this quantity may be appreciated by compar-
ing it with the cocfficient of variation of 0.3782 for the highly volatile
railroad stock prices, with 0.2497 for railroad bond prices, and with
0.0686 for industrial production over the same century. _

Much more stable than commercial-paper rates is the yield on
high-grade bonds, which over the period from 1897 to 1913 had a co-
efficient of variation of only 0.0373. During the same period, one of
comparative economic stability, the coefficient of variation in com-
mercial-paper rates was 0.1771, or nearly five times that of the yield
on high-grade bonds.

As to the harmonic character of commercial-paper rates, we have
already seen in Section 17 of Chapter 7 that between 13 and 19 per
cent of the energy of the movement was in the 40-month commercial
cycle and that another 17 per cent can be accounted for by the 17-
year cycle of building. Since these energies are significant, it is clear
that there must exist a real relationship between the variations in
the rate of interest and the variations in certain parts of the business
cycle. How great this is can be estimated by means of serial correla-
tions,

In Figure 111 we show the lag correlations between the interest
rate on 60- to 90-day commercial paper and industrial stock prices,
industrial production, and commodity prices. The maximum correla-
tion is in all cases significant and in all cases interest rates lag be-
hind the other series. This lag is about nine months for industrial
stock prices, six months for industrial production, and two months
for commodity prices. In the first two cases, the correlation is un-
questionably due to the fact that all three series exhibit the 40-month
eycle in their variation, but the reason for the system of lags can be
learned only by a deeper study of the real economic relationships.»

Irving Fisher, in his exhaustive treatise on The Theory of In-
lerest, New York, 1930, xxvii + 566 pp., has associated interest rates
with the level of prices. Using yearly data for Great Britain and the
United States he has shown that there is a distinet lag with high cor-
relation between both price P and the rate of change of price, P,
and the rate of interest. Since for the most part his computations
are based on annual averages, there is no clear resolution of the cor-

q 13 A very penetrating analysis has been made by R. N. Owens and C. 0. Har-
¥ of the relationship between interest rates and stock prices in a book entitled In-
terest Rates and Stock Speculation, Washington, D. C., 1925; second edition, 1930,
xlv + 219, These authors, observing the same lag-correlation function as that
gven in Figure 111, reach the conclusion that “the data for both periods [1874-
1897 and 1898-19227 show elearly that there is a pronounced tendency for inter-
est rateg to lag behind gtock prices in their upward and downward movements,
with an interval of about 12 months.”
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...... : 60-80-day commercial paper with commodity prices.

relation range and one cannot infer the actual value of the lag except
approximately.

Although one may reach Fisher’s general conclusion that “the
rate of interest tends definitely to be high with a high price level and
low with a low price level,” the phenomenon of recent months when
fairly high prices prevail with an exceedingly low interest rate showa
that there are other considerations in the problem, What these are
will be discussed more completely in connection with the variables of
the equation of exchange in Chapter 10.

The observed correlation between interest rates and industrial
production is a natural consequence of the well-established relation-
ship between this series and the series of industrial stock prices. The
observed lag is also of the right order of magnitude.

Our conclusion is, then, that there is no such thing as an interest
cycle. While high correlations may prevail between interest rates
ang the three primary series examined above, these correlations pre-
vail only during periods of comparatively stable monetary conditions,
or, at least, when the velocity of money is not violently fluctuating.
Moreover, interest rates lag behind the other series and thus are con-
sequences rather than causes of economic fuctuations.
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5. The Building Cyecle and Its Influence

One of the economic factors which appears to show the largest
variability is that of building activity. Great fluctuations occur in all
trades which depend upon this industry. Thus, according to C. F.
Roos: “The cyele of the residential building industry is the largest
and most extensive of any. The building peak may be 1500 per cent
above the trough.”t

It is an interesting question to ask whether or not building ac-
tivity follows a cyclical pattern, Roos says: “Typical major swings
last from 10 to™20 years with a mean of about fifteen years. It has
been maintained by some that these typical swings are brought about
by the financial custom of extending five and ten year mortgages.
This is hardly a correct statement . . . but it must be admitted that
most building is done at the highest prices and the mortgages placed
then usually run for five or ten years.”

A very extensive investigation of the building cyecle was pub-
lished in 1939 by J. Tinbergen for the League of Nations.** In this
study data were analyzed for the United States (1919-1935), the
United Kingdom (1923-1935), Germany (Hamburg) (1878-1913),
Sweden (Stockholm) (1884-1913), Sweden (1924-1936). In the Ger-
man data a very distinct period of around 15 years is visible, while
in the data for Stockholm the period seems to be of the order of 20
years.

The conclusion that there is a distinet building cycle, which has
an average length considerably greater than that of the business cycle,
i also substantiated by a study of J. R. Riggleman based upon an-
nual building permits per capita over the period. from 1875 to 1932.1
Three well-defined cycles are visible in his data, the firat from a mini-
mum in 1878 to a minimum in 1900 having a length of 22 years, the
gecond from a minimum in 1900 to a minimum in 1918 having a length
of 18 years, and the third from 1918 to 1934 (not included in Riggle-
man’s data) having a length of 16 years. A numerical estimate shows
that 58.08 per cent of the energy of the entire series is concentrated
in the harmonic of period T = 18.

Very extensive data relating to the building cycle and its influ-
ence upon other economie patterns have been published by G. F, War-

. M Dymamic Economics, Bloomington, Ind., 1934, Much of this section is de-
rived from Chapter 6 of this book, a chapter which is based upon a study made
for the NRA by C. F. Roos, Roy Wenzlick, and Victor von Szeliski.

15 A Method and its Application to Investment Activily, Geneva, 1939, 164 pp.
18 “Building Cycles in the United States, 1875-1932,” Journal of the Ameri-
can Statigtical Association, Vol. 28, 1933, pp. 174-188.
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ren and F. A. Pearson in World Prices and the Building Industry.’”
The evidence which they exhibit shows clearly both the great length
and the violence of the building cycle not only in the United States but
in other countries as well. Their conclusion is interesting: “The most
important single business indicator is the index of prices of basic
commodities. The second most important is the building eycle. Con-
struction is important because of the large amount of basic materials
that it uses, and the large amount of labor employed.”

INDEX wr - INDEX
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Ficure 112 —ComPousITE INDEX OF BUILDING ACTIVITY, 1830--1936.

Warren and Pearson have constructed a composite index of build-
ing activity over the period 1830-1936 by combining {a) an index of
building permits per capita by J. R. Riggleman over the period 1830
to 1936, 1926-1930 = 100, (b) an index of annual volume of new
building from 1875-1936, Normal = 100, prepared by Roy Wenazlick,
and {c) an index of the monthly volume of construction per capita
in 120 cities in the United States, 1899-1936, 1926-1930 = 100. This
composite index is graphically reprinted, in Figure 112. It will be ob-
served that the peaks of construction came 17, 18, 19, 19, and 16 years
apart and averaged 18 years. “On this basis,” say the authors, ‘‘the
next peak would be expected 16 to 19 years after the last peak, which
came in 1925, or 1941 to 1944.”

We turn next to an analysis of the components which have been
suggested as comprising the important factors in the building cycle.
In this we shall compare the study by Roos and his coliaborators,
previously referred to, with the study by Tinbergen.

The analysis made by Roos was based upon residential building

17 New York, 1937, v + 240 pp.
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in St. Louis over the period from 1890 to 1933. In his study the fae-
tors which influenced the building series were contained in the fol-
lowing formula:

B(t) =b[A*W— A4, F + A},

where B{t), the volume of construction, is the number of new dwell-
ings building in a community at time ¢. The quantities 4,, 4,, 4.,
@, and b are statistical parameters depending upon the community
studied. The other quantities are variables defined as follows:

I{ty = (Rp — T)/C, where R = gross rental, p = rate of oc-
cupancy, T = taxes, and C = cost:

W = (1 - g) + g 10-4, where { is the foreclosure rate, that is,
the number of foreclosures per unit time per 100,000 families, g and 4
being statistical constants;

F(y=1-129.6/f.

The quantity E (¢£) = I* W is called the incentive coeflicient, since
it contains those elements which either persvade one to build, or
which dissuade him from it.

Although B(t) does not appear to be strictly cyclical in charae-
ter, it contains the elements of variation. In times of boom, p, C,
and R increase, while f diminishes. Statistical computations show
that I increases as business increases, and decreases with depression.
Obviously W (¢) changes inversely with f, while F(¢) changes di-
rectly as f changes. Hence, in times of boom, when f is small, the first
term of B(¢) increases, and the absolute value of the second term
diminishes, so that less is subtracted. The converse is clearly true in
times of depression. Thus, it will be observed that the fluctuations
depend in considerable part upon the foreclosure rate, f, which ap-
pears to measure with much accuracy the important factor of avail-
able credit.

The study of Roos leads to the following evaluation of the para-
meters, the data applying to St. Louis:

B =2400 [16.63 I°* W — 1.022 F + 0.207] ,

from which the table of values on page 354 is computed.

These data are at the left of Figure 113. It will be observed that
the dominating variable in the computed new building is the foreclos-
ure rate, £, which is included in both the incentive factor and in the
foreclosure factor, This regression, of course, does not explain the
reason for the long cycle in building activity.
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Year B3 B Year B B Year B B
Actual | Calculated Actual | Calculated Actual | Calculated

1900 1287 19561 ¢ 1912 3636 3671 | 1924 5284 8689
1901 1850 1431 | 1913 3378 2863 | 1925 8712 7876
1902 2208 1041 | 1914 3490 2205 | 1926 7604 73217
1908 2179 1961 | 1916 3456 2280 § 1927 6609 7465
1904 3424 2770 | 1916 2435 1961 | 1928 7180 5528
1305 5128 4881 | 1917 1077 1384 | 1929 4139 3931

1906 6413 68567 | 1918 196 1089 | 1930 1580 2857
1907 5511 6605 | 1919 590 1053 | 1931 1474 1887
1908 6619 6381 | 1920 585 1314 § 1932 650 1052

1509 6256 5737 | 1921 1500 1724 | 1933 300 527
1910 4897 4676 | 1922 3607 3293
1911 4509 4179 | 1923 5384 5629

Tinbergen’s analysis of building in the United States contains
five components: (1) rent, designated by mg ; (2) building costs, q» ;
(3) bond yields, m. ; (4) the number of houses (deviations from
trend) lagged 34 years, h_, ; and (5) profits measured by the net in-
come of corporations, z°. The regression equation in terms of these
variables for the years 1920 to 1935 is the following:

B=123m; — 090 ¢, — 0.12 ms, — 25.1 h , +0.062°

and the correlation between the building activity as computed from
this equation and the actual observed building activity is 0.98. It
must be observed, however, that the series is very short and that the
regression equation has five parameters.

Although at first sight it might appear that the two formulations
of the problem which we have discussed above are different, Tinber-
gen calls attention to the fact that the foreclosure rate of Roos is
“highly correiated with the number of unoccupied houses a short time
before.” Since Roos accounts for most of the variance in the building
series through the foreclosure rate lagged two years, and since Tin-
bergen accounts for about the same amount by means of his “avail-
able houses” index lagged 3% years, it appears that both explanations
are essentially the same,

The final conclusion seemas to be that the building cycle is one of
the most regular and the most important in economics. Major depres-
sions begin to develop a short time after the maximum of the eycle
has been reached, and business recovery follows the upturn in the
building series. No real explanation is apparent, however, as to why
the cycle should be so long, although this is probably closely related
to the relative durability of building in comparison with other goods.
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FIGURE 113.—FACTORS AFFECTING NEW BUILDING.

The left-hand curves are for building in St. Louis, from the point of view of
Roos. (A) Actual ( ) and computed (- - - - ) building; (B} Incentive
factor, I°86W; (C) Foreclosure factor, F.

The right-hand curves are for new residential building in the United States,
in per cent of normal, from the point of view of Tinbergen. (D) Aectual ( Y
and computed ( - - - ); (E) Rent; (F) Building Costs; (G) Bond Yields; (H)
Housing need; (I) Profits; (J) Residuals.

6. Other Cycle Theories—Statistical Hysleresgis

In other sections of the book we have commented upon the exis-
tence of lags between fundamental time series and the great impor-
tance in economic theory of such lag relationships, In fact, the cal-
culus of serial correlations has been developed mainly to provide a
tool for the more critical examination of these phenomena in eco-
nomic time series. Thus we have seen in Section 3 that the most im-
portant postulate underlying the macrodynamic theory of cycles is
the assumption of a lag between the beginning of an enterprise and
its completion.

This phenomenon of lag is not unknown in other realms of sci-
ence and important theories have been founded upon it. Thus in the
theory of magnetism, we find the concept of hysteresis, due originally
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to J. A. Ewing, which may be defined as follows: when two variables
x and y exist, such that cyclical variations in x cause cyclical varia-
tions in ¥, and if the changes in ¥ lag behind those of x, then there is
hysteresis in the relationship between them.

The word hysteresis is derived from the Greek word for lag and
hence refers aptly to the phenomena treated by means of serial corre-
lation. The first use of the word in connection with economic prob-
lems was probably by C. F. Roos in 1925, who set up the relationship
between demand, y(¢), and price, p(t), in the form of an integral
equation

W, v =ep@ +b+ [ st-9rps) ds,

where p(—«) is finite and ¢(z) is small when z is large and nega-
tive.1®

Equations of type (1) had been studied by V. Volterra, who
showed that they belonged to the class of the closed cycle'® and were
admirably adapted to the investigation of what he called hereditary
phenomena. Such phenomensz include magnetic hysteresis and other
types of lag relationships.

The actual investigation of hysteresis phenomena in economic
_ time series from the point of view of the present section was carried
out by H. E. Jones in 1937, who exhibited hysteresis in the relalion-
ship between (a) industrial stock prices and total deposits of national
banks; (b) the price and production of eggs; (¢) new-mortgage
financing and the inhibiting influence of foreclosures.*® Jones dif-
ferentiated between “lag hysteresis” which depends primarily upon
the sinuscidal characteristics of the sines and *skew hysteresis” which
depends upon the lack of symmetry in the various cycles of the com-
ponent series. One of the principal conclusions of Jones was that “lag
hysteresis” could be corrected for by serial correction, but that “skew
hysteresis” could not be handled in this manner.

The object of the present section is to set up three mathematical
models for the investigation of hysteresis phenomena. The first is 3

1344 Mathematical Theory of Competition,” American Journal of Mathe-
matics, Vol. 47, 1925, pp. 163-175; in particular, p. 173,

19 1t is beyond the scope of this work to consider the general problem of the
closed cycle, but the concept may be explained as follows: let F be an operator
such, for example, as the integral in (1), and consider the relationship g(x)} =
F = u{z). Now let u(x + T) =— U(zx) and gl{x + T} — G}x). Then if
@(z) = F — U(z), the operator F is an operator of the closed cycle. The reader
may consult V. Volterra, Lecons sur les équations intégrales, Paris, 1913; or H.
T. Davis, The Theory of Linear Operators, Bloomington, Ind., 1936, .

20 #“The Nature of Regression Functions in the Correlation Anall:‘y;:xs of Time

Series,” Econometrica, Vol. 5, 1937, pp. 305-325. See also Ragnar Frisch, “Note
on the Phase Diagram of Two Variates,” ibid.,, pp. 326-328.
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classical method employed for many years by physicists; the second
is comparatively new and has been developed mainly by bioclogists in
an endeavor to reduce the Darwinian postulate of the “survival of the
fittest” to a mathematical form; the third is based upon the concept
of inverse serial correlation.

First we shall define more precisely what we mean by hysteresis
as the relationship between two variables. Thus, if we consider z and
¥ as depending upon a parameter ¢,

(2) z=z(t), y=y), LSt=t,

such that z(f,) = z (&), ¥ () = y(t.), then if the point P = P(z,¥)
traces a nonintersecting curve from P, = P(x,, %) to Py = P(x,,¥).
we shall say that hysteresis exists between the variables x and v . The
amount of hysteresis will be proportional to the area of the curve so
traced.

In mechanics, and more roughly 30 in economic phenomena, there
is frequently observed a relationship between x and y which may be
defined by the differential equations:

dz

a"'t""““x By,
{3)

dy__ _

a—?-‘” ay,

where 4 = 8y — a* > 0, and all the parameters are positive quan-
tities.

These equations state that the growth of both variables is stim-
ulated directly by the magnitude of one of them, but is adversely af-
fected by the magnitude of the second. For example, the rate of in-
crease of business tends to be proportional to the level of business.
But, unfortunately, prices also advance and these increasing prices
exert an adverse influence upon business.

In order to find the relationship between 2 and y we observe the
following relationship:

(4) 2yze —2alzy +yx) + 289y =0,

where 2’ and y’ indicate the derivatives of x and y respectively.
Integrating (4) we immediately obtain

(6) yr:—2azxy+gy=K

where K is a constant. From the condition that 8 y — a* > 0, we see
that (5) is the equation of an ellipse. A graphical example, due to
H. E. Jones, is shown in Figure 114.
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FIGURE 114.—EFFECT OF LaG HYSTERESIS IN THE CORRELATION OF
Two SiNE CURVES.

If we differentiate the first equation in (3) and eliminate z' and
¥ by substituting their values as defined by the system, we shall ob-
tain

da*y

-t-i-t—z-'l‘ (ﬁy-—a‘)x=0‘.

This defines the harmonic
{6) x=A cos (%—,Et%-a) ,

where (21/T)* = 8 vy — a*, and where A and a are arbitrary con-
stants. In a similar fashion we also obtain

(7) y =B cos (%ﬁﬁb).

Eliminating ¢ between (6) and (7) we obiain
(8) Bz =2 cos(a—b) ABzy + Ay — AR sin*(e—b) .

This equation is observed to be essentially the same as (5) defining
also an ellipse. If @ = b, then the ellipse degenerates into two coin-
cident lines and there is no hysteresis between the variables. Maxi-
mum hysteresis is obtained when a — b == 2/2, that is to say, when
the two components are completely out of phase.

If the two variables xz(£) and y(¢) are defined statistically, and
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if they are approximately sinusoidal, then (8) can be written in terms
of statistical parameters in the form

(9) @t~ 20, oy Yoy TY 1+ 2 =2 dzﬂ’y(l — 1) .

A system of intersecting variables such as the one which we have
described above is very commeon in physics and other applied fields
where harmonic, or almost harmonic, motions are observed. It is
quite reasonable to suppose that such a system would also apply in
economics. The postulates which underly (3) are simple and have a
priori validity. A further discussion of such systems will be given
in the last section of this chapter.

The biologists, on the other hand, have found another system of
equations which applies more directly to the phenomena of their sci-
ence and which might also apparently have some validity in explain-
ing some of the observed interactions between economic variables.

We have already seen in Chapter 6 the debt which economics owes
to biology in the introduction of the theory of the logistic curve. We
saw there that phenomena of growth for the most part conform to
the pattern of a curve defined by

dy o,

where a and # are positive numbers.

This equation says, in fact, that the growth of ¢ is stimulated
directly by the magnitude of y, but that there exists also a deterrent
to growth, which is proportional to »°.

One may now consider fwo variables N, and N, which are
assumed to work in opposition to one another. In biology N, might
measure the population of an organism {A) which preys upon a second
organism (B), whose population is measured by N,. If N, is large,
then (A), in the presence of so much prey, will flourish and N, will
increase. But as N, increases, the prey will diminish, that is to say,
N, will decrease, and there will set in a period of starvation. Then,
a8 N, diminishes, the prey will again begin to increase and so the
cyele continues.

1t is clear that the situation described above can be formulated in
terms of the following system of equations:

dN, dN
-—d'-t"——'—-uN;-ﬁNg,Ng ' ‘d—tg-—-_}'Nz"i‘aN;Ng.

If we change to the new variables x=N,3/y, ¥y=N,f/a, then
system (11) assumes the simpler form

(11)
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%—=ax(1 -¥)
a2y
%—=—ry(l — 2}

This formulation of the “struggle for life” is the work of a num-
ber of people, among whom must be mentioned principally A. J. Lotka
and Vito Volterra. The reader will find an excellent account of Lotka’s
point of view in his very stimulating work, Elements of Physical
Biology, Baltimore, 1925. A comprehensive discussion of the problem,
not only from the mathematical point of view, but also from that of
the origin and significance of the problem, will be found in Volterra's
treatise entitled Lecons sur la théorie mathématique de la lulte pour la
vie, Paris, 1931. This work extends Volterra’s original investigations
which were originally published in the memoirs of the Academia dei
Lincei in 1926. Actual applications of the mathematical! theory to
biological material are given by G. F. Gause in The Struggle for
Existence, Baltimore, 1934.

Before describing the methods for the solution of system (12},
it will be useful to see in what manner such a system might be applied
in economics. A specific example may be found, perhaps, in the rela-
tionship between the inventory of finished goods and industrial pro-
duction. It is obvious that the former “feeds” on the latter, since high
production, that is to say, production above normal consumption
needs, is always attended by growing inventories. But when inven-
tories become too great, there ensues a period of low demand, which
reacts upon industrial production., Hence, as this diminishes, inven-
tories decline until they are below the needs of consumer demand.
When this stage is reached, orders again increase, production grows,
and the cycle is once more in its ascendant phase.

Although the problem stated above has not been subjected to
statistical analysis, the reasonableness of the conjecture and the possi-
bility of applying system (12) to this and other economic problems
warrants an inclusion here of some account of the mathematical con-
tent of the system,

We first observe that we can write
(13) Y2 +ay —va/e—ay/y=>0.

This may be proved by substituting the values of = and y* from aystem {(12)

into the left-hand member of equation (13) and noting that this member is then
identically equal to zero,

Integrating (13) we then obtain
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(14) Yz4toay—vlogz—alogy—=K,

where K is an arbitrary constant.
This equation can then be written in the somewhat more useful form

(15} zYert=Cysew, (C=ceX,

This equation is the hysteresis diagram comparable with (5) for the harmonic
system (3}.
In order to represent (15), we first graph the two functions

(16) 1= (z1e5)7, £= (ye¥)e,
Values of = and y are then obtained from the linear relationship » = C¥.
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FIGURE 115.—VOLTERRA METHOD OF OBTAINING HYSTERESIS DIAGRAM.

As an example of the construction let us examine Figure 11521 In the see-
ond and fourth quadrants of the diagram we have represented the functions
" = 2% and §{ — (y ¢¥)?; that is to say, in equation (18) we have chosen
T=1,a=2.

Now let the tangents be drawn from A and B, the minimum and maximum
points of ¥ and £ respectively, and let these tangents intersect in P. The line
7 = C% is now drawn and if C exceeds the slope of OF, then (16) will represent
a real locus. The points @ and R determine the points ¢, , ¢,, and r,, 1, respec-
tively of the desired locus, by the eimple construction given in the figure. Other
points are similarly determined by means of an identical construction originating
from a variable point M in the interval RQ .

The next, and somewhat more difficult step, is to construct the curves

an r=az(t), y=u(t).
In order to do this we first note that by means of equations (12) we can
write

(18) [(a:—l) —— (y—-l) ] [v(z—1)% + aly—1)%].

#1-The example and dlagrams are taken from Volterra’s book, Legons sur la
théorie mathématigue de la lutte pour la vie.
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Let us now change to the polar co-ordinates, (pw), referred to the point
{1,1) ; that is, where we define

i—1==pcosw, y—1l=psinw,

Equation (18) then assumes the form
do .
(19) a—:qgln*uz+7cosﬂw.
The value of » is then defined by the integral
t
(20} w= f ofw) dt,
o

where we employ the abbreviation
$(w) —asinZer -4 ¥ cos? oy .

In order to obtain the values of ¢(») we note from Figure 115 that ED —
# sin @ and hence FD — z sin%. Similarly we have HG — y cos?w . Multiplying
these values respectively by a and ¥ and adding them together, we obtain the
value of #(w) for the assumed value of @, Hence, by continuing this graphical
process for a sufficient number of values of « in the interval from 0 to 27 we can
construct the graph of $(w). For the example given above this graph is repre-
sented in Figure 116(a).

The function

w=uw(t)

defined by the integral (20) is now constructed by some form of numerical or
graphicel integration, the graph for the example being exhibited in Figure
116 (b).

LIS ]

(b)
FIGURE 116.—CONSTRUCTION OF COMPONENTS OF HYSTERESIS DIAGRAM.

It is now possible from Figure 116(a} and Figure 116(b) to determine the
v_alues of # and ¥ which correspond to values of t and hence to construct the de-
sired curves defined by (17). These, for the example, are shown in Figure 117.
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We see from this analysis that the actual form of the curves ¥ = y(¢) and
z = z(t) will not, in general, differ greatly from harmenic motions in applica-
tions to economic time series which are, for the most part, quasi-harmonic in
character.

FIGURE 117. — COMPONENTS OF HYSTERESIS DIAGRAM.

Another method for investigating the hysteresis in economie
phenomena may be described as follows: Suppose that 7:(¢) is the
autocorrelation of the variable x and r,(f) is the autocorrelation of
the variable y. Suppose, further, that ., (f) ig the serial correlation
of the two variables £ and y. From the graph of » =7, (f) we deter-
mine the lag a between the two primary functions x and #.

We then compute the harmonically equivalent variables

¢ =o [“vapreospap, a(p)= [ r(t)cosprat,
(21) - -

1 e °
() =5 fvm cos fla~1) df, wipy= [ m(t) cosptit.

The curve obtained from the parametric system
(22) §=¢&(t), n=n(),

is then the hysteresis diagram of the original variables.

This system will not yield, in general, a closed curve and hence
the loop generated will not be a true hysteresis diagram in the sense
defined earlier in this section, Moreover, the loops may contract in
area as ¢ carries £ and 5 through succeeding cycles, since the function-
als defined by (21) will not belong, in general, to the group of the
closed eycle.

An example of this type of hysteresis diagram is furnished by
the observed relationship between the Dow-Jones industrial averages
and pig-iron production. Thus the autocorrelation functions of these

two variables are reasonably well described by the same function,
namely,
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sinit =

re(t) =21,

where ¢ is measured in months. '

Also it is observed statistically that the serial correlation between
the two variables shows a lag of three months between the two series,
the stock averages preceding the production of pig iron.

Our analysis would then proceed as follows:

_ e sinit _ [ =R, 82,
u(ﬂ)-—fﬂ T cos Bt dt = {0,ﬁ>1.

Hence we obtain
1 = _
s =g [ vaw o as,

Asinit
n At
For the lagged variable (pig-iron production) we obtain similarly

1o
7(e) =5 J' Va(BY cos fa — ¢) dB

1 sini(a —t)
a iAla—1¢t)

Setting 1 =a/20 and a = 8, we then compute the hysteresis dia-
gram from the function

E(t)ZS[g—(t)}, n{t) =8 {ﬂ(3;'0t) }’

where we abbreyjate

S( ) = sm:r'
x

We observe from the diagram, Figure 118, how successive loops
rapidly diminish in area, showing the relative impermanence of the
hysteresis relationship. In order to test this further we finally com-
pute the autocorrelation between £(¢) and 5(t). This is found to be

() ___J'”smls gin[i{a—t-—-3)]

A{la—1t— &) ds

__sini(a—t)
T a-1b
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FIGURE 118.—HYSTERESIS CURVE COMPUTED FROM INVERSE SERIAL
CORRELATION FUNCTIONS.

The actual serial correlation function between the two variables
exhibits the damping implied by this formula, as we have seen previ-
ously in Figure 22 of Chapter 3.

An analysis similar to the ene just described in the fact that it
leads to nonperiodic loops was described in 1923 by A. J. Lotka.?®
In this theory, applicable to the problem of the prey and the predator,
Lotka considered a differential system of the form

%'—'—'-— y+Bxyt+tCyr+Exty+Fzyr +Gyp* + ---,
(23)
-—%%-—:- ¢+ Az + Bay + Da* + E'zxy + Fay* + .-,

The problem of finding the integral, F(z,y) =0, for such a
System has been the subject of intensive study since many of the
problems concerning the stability of dynamical systems, especially in

2 “Contribution to Quantitative Parasitology,” Journal of the Washington
Acedemy of Sciences, Vol. 13, 1923, pp. 162-168.
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astronomy, are thus formulated. The discussion of this deep mathe-
matical problem would carry us far afield and must be omitted here,
but the curious reader may appreciate some of the difficulties by con-
sulting the following references: H. Poincaré, “Sur les courbes définies
par les équations différentielles,” Journal des Mathématiques, Vol. 1
(4th Series), 1885, pp. 167-244, and £ Picard, Traité d'analyse, Vol.
3, Paris, 1896, p. 217 et seq. The former, commenting on the problem

presented by system (23), says:

Considering » and ¥ as the coordinates of a variable point, and t as the time,
one seeks the motion of a point to which one gives the veleeity as a function of
the coordinates, Thus in the motion which we have studied, we have sought to
angwer such guestions as these: Does the moving point describe a closed curve?
Does it always remain in the interior of a certain portion of the plane? In other
words, and speaking in the language of astronomy, we have inquired whether
the orbit of this point is stable or unstable.

7. The Random-Shock Theory of Cycles — The Galvanometer
Experiment

In Section 10 of Chapter 1 the origin and the history of the so-
called ‘“‘random-shock theory” of cycles was given. This theory
assumes that the economic system is a fundamentally stable configura-
tion, which, if we were sufficiently wise, could be characterized by a
set of elastic constants. But the system cannet oscillate according to
its fundamental frequencies unless it is set in motion by some initial
forces. Moreover, as in mechanical systems, the motion will not be
maintained unless new energy is introduced into the system from
time to time. The theory of random shocks assumes that the system
is kept in motion by a series of impulses which are random in their
nature but sufliciently frequent to maintain a continual motion in the
system.

In the language of mechanics, the erratic shocks play the role of
an impressed force. But it is a well-known fact, which will be demon-
strated in Section &, that the motion of a system of the kind considered
here will assume the period of the impressed force if this force i8
periodic, but that otherwise it will tend to assume its natural period
subject to the disturbances of the impressed force.

In Section 7 of Chapter 8, we have already examined Yule's
theory of a harmonic motion disturbed by random shocks and it will
be unnecessary to repeat his arguments here.

In Section 2 of this chapter we found that the motion defined by
the equation
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(1) p () + mp=f(1)
appeared explicitly in the form

(2) p(t) =Kcosm(f + p) +-%J.‘sinm(t—-s) f(s)ds.

Hence, if f(s8) iz constani, or nearly constant, the motion will
retain the period defined by the homogeneous equation:

(3) p{(t) + mp=0.

Moreover, if f(s) is an impulsive force, that is to say, very great
for a very brief interval of time, the same motion is again attained.
But it must be remembered also that for large amplitudes equation
(3} is more exactly represented by

(L) + mFsinp=0.
In this case the period T is given by the formula
(4) T=4K/m,

where K is the complete elliptic integral of first kind.** This function
depends upon the initial amplitude p(0) = « and is greater than /2
when a > 0. Hence the observed period of a harmonic motion created
by a sufficiently great impulse should increase over the natural period
of the system.

In order to test the effect of random shocks upon a system an
experiment was tried by the laboratory of the Cowles Commission.
This experiment, some features of which were discussed in Section 10
of Chapter 1, may be described as follows: A galvanometer was con-
strained to oscillate in three separate periods which were in the ratios
22:43:62, to simulate the three periods observed in the Dow-Jones
industrial averages in the interval from 1897 to 1913. A series of
erratic impulses, irregularly spaced and of a magnitude about equal
to the momentum of the galvanometer, were then imposed upon the
system and motion pictures taken of the ensuing deflections.

The resulting motion, as analyzed by periodograms (see Section
22 of Chapter 7), showed the smallest disturbance for the longest
period and the greatest for the shortest. All periods were lengthened.
Thus for the first only 8 per cent of the energy remained in the period

2 A definition of this function and a description of its properties will be

found in any advanced caleulus. When « is not too large and if it is expressed in
tadians, then K can be written approximately in the form

K=37(1+ at/18).
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T =22, while 20 per cent of the energy had been shifted to the period
34 and 30 per cent to the period 66. For the second, only 28 per cent
of the energy remained in the original period, while 46 per cent was
shifted to the period 62. For the longest pericd, the shift was rela-
tively short and took place in two directions. Thus only 12 per cent
remained in the original period, while 18 per cent went into the period
T =156 and 52 per cent into the period T' =172,

For the purpose of observing the effects of the random shocks
upon an actual time series consisting of several harmonics, a synthet-
ic series was constructed from the galvanometer readings in the fol-
lowing manner: The phases of the three cycles were put into initial
agreement with the phases of the three components of the industrial
stock price averages as these were observed from the periodogram
analysis of Section 7 of Chapter 7. The elements of the three cycles
were then divided by their respective standard deviations and multi-
plied by the amplitudes observed for the corresponding components
of the industrial stock price series. The elements of the three cycles
were then combined by addition and a random element added to the
sum to form the final elements of the synthetic series.

In Figure 119 we may compare the variation of the synthetic
time series with the elements of the actual series of industrial stock
prices. It is obvious that the erratic shocks imposed upon the galva-
nometer were sufficiently great to cause a substantial increase in the
average length of the period of the synthetic series, while the average
period of series (B) is somewhere between 34 and 5 years, the average
period of (A) is between 5 and 10 yesrs.

If we assume that in series (A) the length of the observed period,
T, was in the neighborhood of twice the normal period, T,, then we
can obtain some estimate of the actual average displacement, « , caused
by the shocks, if we write equation (4) in the form

T 2K
(5) =

If the ratio 7/T, = 2, then K == n, and we find from a table of
elliptic integrals that o = 1.395. This means that the average erratic
impulse was sufficiently great to displace the galvanometer 1.395 ra-
dians or 79° 56 from its zero or equilibrium position. This implies
that the average erratic impulse was very large.

It is interesting to apply this analysis to the movement of indus-
trial stock prices before and after 1929. In the years preceding the
inflation the average period was about 38 months. Now, if we regard
the period of the next cycle as extending from the maximum in
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FIGURE 119.—THE EFFECT 0F RANDOM SHOCKS IN INCREASING THE PERIOD
OF A TIME SERIES
(A) is a synthetic series comstructed by combining the three periodic move-
ments in the industrial stock price series (B) after these have been disturbed hy
large random shocks,

1929 to the maximum in 1937, we see that the effect of the great bull -
market was to increase the period from 38 months to 96 months. Thus
we find T'/T, = 2.56 and the corresponding value of o is 1.500. That
is 10 say, an equivalent blow delivered to the galvanometer would
have deflected it through 85° 57 from its equilibrium position. This
would be regarded in mechanics as a very great impulse.

While we appear here to be dealing with analogies, the fact that
many economic time series exhibit cyclical patterns with considerable
energy concentration in certain periods, the evidence presented above
Seems to argue strongly for the reality of the general concept of the
theory of random shocks. Other evidence will be presented in the
next section,
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8. The Perturbation Theory of Cycles

We shall consider in this section another way of looking at the
problem of oscillations in economic time series. If the harmonic terms
which have been observed, however irregular they may be, are gen-
uine and permanent characteristics of time series, it is possible to ac-
count for at least a part of their energy by assuming a fixed elastic
structure in the economic system. Thus the indexes may be thought
of as varying, under erratic impulses, about a figure of equilibrium
and the problem of their individual and group motions may be stud-
ied by the methods of J. Lagrange (1736-1813), who first examined
the dynamics of small variations.™

As the basis of the theory we find a set of variables, X, X,
X,, -+, X,, which represent the elements of n standard economic
time series. For example, X, might be the average price of industrial
stocks; X, pig-iron production; X., stock sales on the New York
Stock Exchange: X, , high-grade bond yields, ete.

We shall postulate that these elements oscillafe about normal po-
sitions defermined by some reasonably stable trend. In fact, the vari-
ables written above will be assumed to be such deviations, and they
may be normalized by division by their respective standard deviations.

We shall make the further hypothesis that there exist two types
of force in an economic system, which cause the observed fluctuations
in the series,

(1) Normal, conservative elasticities which are inherent in the
institutional structure of an economy. These natural strains and
stresses create the permanent patterns observed in the regular oscil-
lations of the series.

(2} Nonconservative forces, which are impressed upon the sys-
tem by external events. The forces may be either regular or disruptive
influences.

The first set of forces is normal and creates the rhythmic oscilla-
tion characteristic of stable periods. This set acts, however, only after
displacements have been made in the variables either above or below
their normal positions of equilibrium. ‘

The second set of forces will be found in abnormal or unusual
occurrences, which may be considered to be essentially unpredictable.
For example, these forces are occasioned by major wars, by protract-
ed periods of drought, by new legal regulations, by changes in foreign
exchange, by large business or banking failures, by the psychological '

24 The reader may orient himself in this problem by consulting A. G, Web-

ster, The Dynamica of Puarticles, Pirst ed., New York, 1904, 2nd ed., 1912, xii +
588 pp. In particular, see Chapter 5.
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aberrations of groups of people, such as appear in major periods of
gpeculation. They are the forces found in random shocks which im-
pinge from time to time upon the system. <

One may find an analogy {o our dynamical picture in the motion
of the ocean. The tides are stable and predictable movements, but the
waves themselves are created by the random variations of the wind.
They are functions not only of these unpredictable motions, but also
of the constant viseosity of the water. Except in severe storms, and
even there, the waves preserve an even rhythm which a harmonic
analysis would show consisted of a partition of the energy of the
walter among a comparatively few harmonic terms.

If we now look more closely at the economic problem, we see that
the creation of goods is accomplished for the most part by an expen-
diture of real energy. Thus, a certain number of ergs of energy are
used in the creation of a ton of pig iron, or in the erection of a house,
or in the planting and harvesting of an acre of corn. Attempts have
been made to create a theory of economics on the basis of the energy
content of material things, such, for example, as the “labor exchange
system” of currency adopted in one of the socialistic experiments of
Robert Owen (1771-1858). ‘

But all such attempts are doomed to failure since prices are not
direct functions of the energy necessary to create goods. One may
observe the truth of this in the prices of rare paintings and jewelry,
in the price differentials between identical commodities sold by fash-
ionable and nonfashionable firms, and in many other forms of price
phenomena.

In modern economics the concept of utility, or ophelimity, to use
the term employed by V. Pareto, has become a fundamental part of
the theory of prices. In order to formulate our perturbation theory
of cycles it will be necessary to reecall a few of the pertinent charac-
teristics of utility.

By utility, or ophelimity, we shall mean a measure of the satis-
faction which an individual, or more generally, a group of individuals
has in the possession of given quantities of goods and services. We
may represent this by means of the symbol U(x,, z;, ---, z.) where
%, %, -, 7, are the given gquantities of the goods and services con-
sidered.

The actual measure of utility has never been satisfactorily de-
fined in terms of statistical parameters, and perhaps it can never be
80 defined, although several attempts have been made in this direc-
tion. Utility is thus seen to be a psychological concept, with a large
measure of intangibility about it.
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The origin of the idea is apparently found in a postulate made
by Daniel Bernoulli (1700-1782) in his Specimen Theoriae Novae de
Mensura Sortis, published in 1738, in which he stated that the satis-
faction, dU , of a man in adding an increment dx to his wealth, z,
was directly proportional to the increment, and inversely proportional
to his wealth; that is,

dzx
1) W=p—.

The parameter u may be regarded as a psychic factor, which measures
the openhandedness, or the generosity, of an individual.

Even this simple proposition is difficult to demonstrate statistically
and we find Charles Jordan® suggesting dU = u dx/x* and Ragnar
Frisch® dU = u dxz/log {(x/z,) as the more realistic expression for
the utility of money. The formula of Jordan assumes that we reach
money satiation more rapidly than is assumed by the formula of Ber-
noulli, while the formula of Frisch assumes that the approach to
money satiation is relatively low.

It is easily proved that in a static economy the relationship be-
tween the utility function and the prices of the various goods and serv-
ices included in it is given by the following system of equations:

@ g—g= i,
where 1 iz the marginal utility of money. The quantity aU/ez; i8
called the marginal utility of the ith good.

Since equations (2) refer to a static equilibrium, one may as-
sume that they hold for each point of time. Hence each variable may
be regarded as depending upon time and each may vary independently
except for the single restraint impesed by (2).

Our theory of economie dynamies will be founded upon the propo-
sition that the major fluctuations of the business eycle must be ac-
counted for by the behavior of all the elements in the economy rather
than by a part of them. Thus we must modify the postulate that the
major part of the movement of prices can be accounted for by the en-
deavor of the entrepreneur to maximize profits. This does not mean
that we deny the importance of the profit motive in business enter-
prise, nor that we reject the mathematical theory based upon the
premise that business secks to maximize profits. The evidence before

25“0On Daniel Bernoulli’s ‘Moral Expectation’ and on & New Conception of
Expectation,” American Mathematical Monthly, Vol. 81, 1924, pp. 183-190.
2¢ New Methods of Measuring Marginal Utility, Tiibingen, 1932, 142 pp.
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the T.N.E.C.* on the activities of the United States Steel Corpora-
tion shows clearly that the location of the break-even point, that is to
say, the point where total revenue equals total cost, is a more impor-
tant matter than the location of a point of mazimum profits. In fact,
under the realistic observation that the cost function of the United
States Steel Corporation is linear within the range of actual produc-
tion, such a point of maximum profits does not exist. One will readily
observe that to say that a corporation seeks to maximize its profits in
the sense of maximizing the profit function is quite a different thing
from saying that a corporation strives to get as far above the break-
even point as possible. It is in this sense that we shall modify the
principle of maximum profits.

We shall assume first, therefore, that in any economy the pri-
mary desire of buyers and seller alike is to maximize their utility
functions, subject, of course, to the budgetary restraint. This state-
ment, it will be observed, is really equivalent to assuming the princi-
ple of maximizing profits provided the marginal utility of money is
not negative. Hence we do not discard the mathematical theory which
underlies most of the formulation of modern economic arguments. As
will become apparent, we merely seek to show that the realistic de-
scription of the activities of business enterprise must be modified by
the introduction of other factors.

In the second place we shall assume that one major source of
movement in economic time series is found in erratic shocks. Wars,
large commercial failures, general strikes, extreme droughts, and
other such factors are all reflected by strong movements in the series,
and especially in those of price. The more orderly changes occasioned
by new laws, changes in political administration, and the like are also
Sources of movement in economic variables.

We propose to represent this erratic and dynamic element in the
economy by the bilinear form

A=Z 2P,

where the primes indicate differentiation with respect to time, Since
selling means a reduction in the variables z; in the utility function,
we shall assume that the sign of z’; is negative when selling is taking
Place. A contraction in orders by merchants, a reduction of normal
building, a decline in the index of retail trade, the cancellation of con-
tracta for steel, and similar occurrences imply a negative value of ;.

% See United States Steel Corporation, T.N.E.C. Pupers, 1940, Vol. 1, pp.
%2113;3;3 The analysis in these pages was done under the supervision of T. O,
a.
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There are numerous arguments both logical and statistieal to
show that A is a positive function of time. Thus, in the great bull
mearket, prices and consumption rose together and, in the subsequent
collapse, consumption declined with prices. Irving Fisher has shown
that the correlation between the change in prices and in the employ-
ment index is positive and of the order of 0.85.

The third element in the formulation of our theory is that of sur-
pluses, which may, of course, be negative as well as positive. In re-
cent years it has been the existence of positive surpluses which has
given most concern to business and to government. In other times it
has been scarcity which has most affected the national economy. The
sharpest declines in the index of business have followed the accumula-
tion of great inventories, and the strongest recoveries from depres-
sion have come after a protracted decline in production. We shall
assume, therefore, that this surplus situation can be measured by the
following positive function:

B-_—iz(xi"'“i)'.

where the x; represent the goods consumed or owned, namely, the
variables which appear in the utility function, and where the «; rep-
resent those goods available either through potential production, as in
manufacturing, or through inventories and carry-overs, as in mer-
chandising and in the production of crops.

Our formulation of the dynamic problem, then, reduces to the
simple proposition that we strive, in ocur accumulation and use of
goods, to maximize the following integral:

(3) J=f”(U~KA—yB)dt,

where x and » are positive constants so determined that the dimen-
sions of the three quantities are the same. The principal defense
of this formulation will be found in its agreement with the observed
facts,

Let us now designate the integrand of (3) by F and then compute
the Euler condition for the integral J, namely, the equation

Noting equation (2), we first obtain

aF _oU 8A 3B _
3%, 3z "3z "a—i_i_‘j-pt-"Z(zl—ui)s
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oF aU @9A @B

3z, o0& ez dar

When these quantities are substituted in the Euler condition, the

following equation results:
d*p;
di?

Without loss of generality we can set «k = 1. Since the right-hand
member is a function of time, let us represent it by the quantity U, (¢).
Hence we obtain as the general formulation of the dynamics of prices
in the economic system the following:

@ Zr s am=T)

_ K?i'.

TApi=r»3(x; —w) .

X

It is clear that the function U, (¢) will be a fluctuating variable,
perhaps periodic in character, about some mean value of the differ-
ence between the volume of consumption and the volume of current
inventory. It is certainly neither a monotonically increasing nor a
monotonically decreasing function of the time.

If we assume that consumption and production are essentially in
equilibrium, then U, (¢) would be a constant, which, without essential
loss of generality, could be set equal to zero. Equation (4) is then re-
placed by

dip;
5 —_— ;=
(5) o TAPi=0.

If 1i8 a constant, this equation will define 2 simple harmonic mo-

tiqn of period equal to 2n/v/i. Moreover, even though 2 varies, if
this variation differs but little from a constant over a given period
of time, then the motion will be nearly harmonic.

The nature of 1 is not yet clearly defined in economics, but if we
assume the Bernoulli formulation given above, then it is not difficult
bp believe that, within approximate limits, A may be inversely propor-
tional to the available per capita money and directly proportional to
the velocity of this money. This very rough assumption is based upon
the proposition that r in Bernoulli’s formula is proportional to the
average available supply of money and that the pu is proportional to
the velocity of money, since it represents the average openhandedness
of people, which varies with times and economic conditions. Hence,
under equilibrium conditions, the length of cycles would tend to in-
crease when the supply of money is great and the velocity low. Con-
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versely, the cycles would have a shorter period in times of money
tightness accompanied by a high velocity. No statistical evidence is
offered here to support the correctness of this conjecture.

In order to make a statistical test of egquation (5), let us con-
sider prices in the relatively stable period of American economy be-
tween 1897 and 1914. For simplicity of analysis we shall examine the
behavior of one dominating price, such, for example, as the price of
industrial stocks, and we shall assume that this price satisfies a dif-
ferential equation of the form

d*p dp

(6) Ad +Bdt+C'p$0.

The solution of (6) has the form

pr@)=Ke* sin(gnft—+ ®) ,

where we abbreviate
('? ) a= _E_ T= ___4_n._A__ .
24’ VEAC — B

The amplitude, K, and the phase angle, @, are constants of integra-
tion.

Let us now determine the parameters of (6) from the actual val-
ues of the industrial stock price averages over the stable period from
1897 to 1914. For the sake of simplicity we shall assume that most of
the energy of the system is concentrated in the major harmonic. This
* assumption is certainly not in violent disagreement with the facts as
we see from an inspection of the periodogram of Section 7 of Chapter
7. There we find that 48 per cent of the energy is concentrated in the
harmonic of period 7 = 41. Even more remarkable was the situation
for the interval 1914-1924, where 74 per cent of the energy was in
the 38-month cycle.

If the differential equation (8) is fitted by the method of multiple
correlations to the data for the Dow-Jones industrial stock prices
{1897-1913), there is obtained

&X, ax,
(8) -d—t,—+000004-a—t—-+0018653 =0.

We first note the significant fact that the coefficient of dX,/dt is
essentially zero. This means that no damping factor was present in
the motion of the series, a fact which has been commented upon by
other students of the theory of economic time series. This furnishes
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statistical justification for the omission of the first derivative term
from equation (5).

The period is readily found from the parameters of (8) by means
of the second formula in (7) to be T = 46.0, a value sufficiently close
to the 41-month period obtained from the pericdogram to justify the
theory which led to equation(5).

Unfortunately, however, the faet that the coefficient of dX,/dt ia
zero leads to the curious conclusion that the economic system operates
without frietional forces, a conclusion certainly far from realistic. It
is much more reasonable to suppose that the lack of damping is due
to the presence in the system of an impressed force, which supplies
the motive power for the observed variations. This impressed force,
of course, is found in the function U;(f) in equation (4). The eco-
nomic nature of this function we have already discussed.

Let us now assume that the impressed force U;(¢) is simply
periodic and can be represented by

(9) Ui(t) =E4 cos q,-t.

In order to investigate the dynamics of the situation, let us study
the motion defined by equation (6) with an impressed force added to
the right-hand member; that is to say, let us study the equation

d*p dp
1 ——— ——— —_
(10) Adt=+Bdt +Cp=Ecosqt.

It is readily proved that the solution has the form
t
(11) p(t)=Ke-"sin(-2-;——+m)+Lcos (gt —a),

where o and T are defined by (7), K and o are arbitrary constauts,
and a and L are given by the equations:

Bg L= E
C— Agq®’ v(C— Ag¢)) ¥ Bigt

It will be observed that when frictional forces are present in the
system, that is to say, when ¢ > 0, the first term in (11) damps to
zero. Hence in its steady state, the oscillation will have the same
period as that of the impressed force.

But since, in equation (4), the friction term is zero, the motion
will consist of a combination of harmonic terms, one having the nat-

;‘1‘81 period of the system and the other the period of the impressed
orce,

(12) tan a =
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In order to see what the actual statistical situation is with re-
spect to the industrial stock price averages considered above, we shall
fit to them and their first and second derivatives the linear regression

(13) AX",+BX, +CX,+Dcos qgt=0, g=2r/41,

By a simple application of the theory of multiple correlation we
obtain the following differential equation:

(14) X7, 4+ 0.00004 X', + 0.01744 X, = 0.07032 cos gt ,

which is to be compared with equation (8).
The solution of this equation is

47.6

The variance of X, from the actual data is 225.3154 and the vari-
ance of X, from (15) is approximately }(K? + 135.5455). But since
only 48 per cent of the energy of X, is in the 41-month component, we
may then estimate K from the equation K + 135.54556 = 0.96 X
225.3154. We thus obtain X = 8.9809. It would thus appear that the
harmonic energy observed in the original series is divided between the
impressed period of 41 months and the natural period of 48 months
in the ratio of 5 to 8.%

(15) X, =K sin (E”i + w) + 11.6424 cos gt .

9. The Resonance Theory of Crises

The reality of the theory given in the preceding section is argued
for by another unusual circumstance. If we examine the graph of the
price of industrial stocks after 1914, the end of the period to which
the regression equations of the preceding section apply, we observe a
regular sinusoidal fluctuation up to the year 1926 and then a tremen-
dous upsurge now known as the great bull market of 1929. No dy-
namie theory of prices would be adequate which could not account
for this phenomenon.

If we re-examine the theory of Section 8, we see that the formu-
lation which led to equation (5) would not be able to account for the
crisis of 1929 without drastic, and probably unwarranted, assump-
tions about the nature of the marginal utility of money represented
by i.

But if we refer to the second formulation represented by equa-
tion (4), then it is possible to give a fairly simple theory of crises by
introducing the concept of resonance. By resonance we mean the phe-

17 To colnpare energies we compare 136.6466 with K* — 80.6573.
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FI1GUBE 120.—RES0NANCE IN Economic TIME SERIES.

The inflationary peak of 1929 rose abruptly from a regular harmonic move-
ment easily observable in the series, namely tbe Dow-Jones Industrial stoeck
averages, Unit: Monthly low of daily averages in dollars per share, trend ex-
tended to 1940,

nomenon in which large vibrations are caused by small forces, Thus,
a large ship will sometimes roll heavily in a light sea when the period
of the waves is equal to the natural period of the ship. Similarly a
bridge may be badly damaged by a column of marching men.

If we refer to equations (11) and (12) of Section 8, we see that
p(t) will be large if L is large, and L is large when the quantity

(C — Ag®)* + B

is small,

For equation (4), this condition reduces to the simple proposi-
tion that resonance will occur when ¢ is nearly equal to the marginal
utility of money, 1. -

Was the inflation of 1929 a resonance phenomenon? If we exam-
ipe the parameters of equation (14), Section 8, we see that the quan-
tity |C — Aq?| has the value 0.00604. Hence it is obvious that very
little change in any one of the parameters would have led to the phe-
homenon of resonance. Or put in another way, the difference between
the period T = 41 of the impressed force and the natural period
Tt:: 48 of the system itself was relatively so smali that a change in
either one of them would have produced an inflation in p (£).

Another and perhaps more cogent argument is provided in the
subsequent history of the inftation. In October, 1929, prices began to
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fall rapidly and by 1931 the country was in the throes of a major de-
pression. This phenomenon of a great loss in amplitude after a great
gain is characteristic of resonance. As a matter of fact, it is difficult
to explain the inflation on any other basis,

The following statement by A. G. Webster in his classical treatise
The Dynamics of Particles, second edition, 1912, p. 153, bears perti-
nently upon the important question as to what happens to the energy
of the system during resonance:

Although in the phenmomenon of resonance the excursion [amplitude] and
consequently the kinetic energy becomes very large, it is of course not to be sup-~
posed that this energy comes from nothing as has been frequently contended by
inventive charlatans proposing to obtain vast stores of energy from sound vibra-
tions . . . Of these the United States has produced more than its share. The
ignorance of the above-mentioned principle enabled John Keely to abstract in the
neighborhood of a million dollara from intelligent (!) American shareholders.

The decrementary decline which follows & resonance phenome-
non is due to the failure of the primary source of energy to maintain
the great amplitudes with their consequent increase in the energy of
the motion. The phenomena which we have described are seen clear-
ly in Figure 120.

Had this explanation of the inflation of 1929 been recognized,
then there would have been fewer to prophesy that the American econ-
omy had reached a new and permanent level of prosperity.

10. Generalization of the Perturbation Theory
H)

In Section 8 there was derived a theory of dynamic prices which
was formulated as the system of equations

(1) %’%‘-+1p¢=U,(t).

By this formulation all prices, regarded as dynamic variables,
were bound together by a common parameter, 1, the well-known, but
somewhat intangible, quantity known as the marginal utility of
money. The natural movement of prices was also assumed to be dis-
turbed by an impressed force peculiar to the price itself.

Now these somewhat unusual deductions do not seem to be un-
realistic. Prices on the whole appear to share major movements of
the business cycle, although individual differences frequently occur
because of the production or distribution conditions peculiar to the
goods and services to which they are attached. Moreover, quite un-
like production series, prices generally do not exhibit trends unless
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unusual events produce monetary inflations or deflations, which af-
fect the general price level itself,

The question naturally arises whether or not a similar theory
might apply to other economic variables, expressed as deviations
from trend. The suggestion follows from the observation of an ap-
parently close connection between the cyclical behavior of many of
thern. But the answer to this question is not clear and must await a
much more careful examination of the data than is available at the
present time.

The dynamical equivalent, however, of equations (1) for any set
of related variables, X, X,, --., X,, can be written down. Thus we
assume the existence of three quadratic forms

(2)

(X, X, ) =3(Au X' + 24, X, X, + ... ), Kinetic energy;
f(Xl !XZ I ) ='}(B11 X]_’ + 23]2 X.l X.g + ... ) ,Dissipat—ion funcﬁon;
h(Xl.Jth"')='}(C11X19+2C13X1X1 +"') ,Potential enel‘g'y.

In these expressions we employ the customary notation, X, to mean
differentiation with respect to time, that is, X = dX/dt .

The quadratic form h is the potential energy of the economic
system, the quadratic form k is the kinetic energy, and the quadratic
form f is the dissipation function, which takes account of the noncon-
servative resistance to which the system is subjected.

We shall assume that these forces are connected by the follow-
ing system of dynamical equations, which finds its justification in the
arguments advanced in the preceding section about the relationship
of the variables with real energy transforms:

(3) LAY
dtaX, X, X,

=F(t) .

In this system of equations the functions F;(t) represent impressed,
or impulsive forces.

Substituting the quadratic forms in (3), we obtain the following
system of equations:

(4) _
d:X,, dX, .
2"*717?*'23*-—35—*20-"1‘ =Fi(t), i=128,-,n.
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In order to obtain the characteristic oscillations of the system,
‘we make the substitution

Xi=ua;er.

and suppress the impressed forces. After division by the common fac-
tor ', we obtain the following set of equations:

;2 a; Z;; (1) =0,
£l
where we abbreviate
Zii (}t) =Aij12 + Bij.z + C;,‘ .

In order that these equations may be consistent it is both neces-
sary and sufficient that the determinant of the coefficients vanish. We
thus obtain the characteristic equation

Zn (A) Zu(l) "'Zm(l) \!

Za1(A) Za(d) - Z3a(2)

D) = =0.

an (l) Zne(}t) e leﬂ (l)

The roots of this equation furnish us with the characteristic fre-
quencies, and hence the characteristic periods of the system. These
periods are called free periods in dynamics since they are the normal
periods of the variables when no impressed forces are present.

Unfortunately, at the present stage of economic theory, we have
no way to determine a priori the coefficients of the three quadratic
forms. We do not know, in fact, whether the apparent oscillations of
economic series about their trend lines are due mainly to fortuitous
cireumstances, or whether the assumptions which have been taken
from the dynamics of particles oscillating under elastic forces can ac-
tually form a basis for the interpretation of empirical facts.

In order to test the assumptions empirically, an actual computa-
tion of the quadratic forms (2) for the industrial stock price (X,)

and pig-iron production (X,) was made. These quadratic forms were
the following:

k=3(09833 X,*— 0.1819 X, X, + 0.9898 X,?) , '
(5) F=1$(—0.0334 X,* + 0.0226 X, X, — 0.0204X,?) ,
k= £(0.0127 X, — 0.0065 X, X, — 0.0321 X,?) ,
From these values we immediately derive the vaiue of D(4) to be
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D(2) = 0.96500753 i* — 0.05106430 1*
-+ 0.04408812 12 — 0.00125664 A + 0.00039678 .
The roots of the equation D (i) = 0 are found to be
A= 0.03602006 — 0.11183368 i s Ay = —0.00956208 — 0.17924845 %,
i; =0.03602006 + 0.11183363 7, i.= —0.00956208 + 0.17924845¢.

Considering only the imaginary parts of these roots, we can now
compute the two interaction periods as follows:

T:=2n/0.1792=235.05, T.,=2a/0.1118=56.18.

What interpretation can we now give to these resulis? An ex-
amination of the periodograms of the two series (see Section 6 of
Chapter 6) shows a concentration of e¢nergy of 41 per cent at 77 = 43
months and of 20 per cent at T = 62 for industrial stock prices and
a concentration of 14 per cent at 7' == 30 and of 31 per cent at 7= 43
for pig-iron production. The free periods of the system as computed
above appear to lie between the observed periods of 30 and 43, and
43 and 62.

Since we know by previous analysis that the correlation between
industrial stock prices and pig-iron production is essentially a result
of the existence of the common harmonic term, the 40-month compo-
nent, it is not surprising to find that the free periods of the dynamic
system should lie on each side of this common period. Moreover, this
result would indicate that any analysis of the actual interaction be-
tween the price of industrial stocks and pig-iron production must take
account also of the two significant periods which are not common to
the series.

One should also observe that the quadratic form fin (5) is essen-
tially zero, which indicates again that the dissipation function for eco-
nomic series may be neglected. Although the coefficients of A are of
the same order of magnitude as those of f, they cannot be neglected
Bince the variances of the series are more than 25 times the variance
of the derivative series.

_ Probably the picture of the interaction between industrial stock
Prices and pig-iron production would be complete, if impressed forces
with 40-month periods were introduced into the analysis. We should

en visualize a system whose motion was dominated by the impressed
forc‘:es with a period lying somewhere between the free periods of the
variables. This result is certainly not in disagreement with the results
which we obtained in Section 8, where we found that the motion of
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the Dow-Jones industrial averages was explained by a force with a
40-month period impressed upon a system whose free period was of
the order of 4 years.

11. Conclusions

In the preceding sections we have examined a number of theories
to account for the existence of cycles in economic time series. But,
since the harmonic energy observed in most of the series which may
be regarded as dominating economic activity is in the neighborhood
of 20 per cent of the total variation, there exists a real problem to
eatablish a priori reasons for the existence of this harmonic compo-
nent. It is probable that no simple reason will be found to contain
the answer.

For some of the theories mathematical models can be constructed.
Thus we have found that under certain assumptions regarding de-
mand and cost, cycles can be generated in price series if it is assumed
that the economic system is dominated by the principle that profits
are to be maximized. The analysis appears to show that while the ex-
tremals of the profit integral are harmonie functions, these extremals
do not necessarily maximize the integral.

From another point of view the macrodynamic theory attempts
to establish the existence of cycles by certain assumptions regarding
the lag between primary series. This approach is highly suggestive,
but still needs more statistical applications.

From the empirical side, the relationships between interest and
primary series on the one hand and building activity and primary se-
ries on the other tend to show a fundamental pattern, which deserves
further study. Interest rates are apparently related to the shorter
movements in time series, while building activity seems to be the
principal force behind the very long cycles in business.

The concept of hysteresis has been formulated in two somewhat
similar systems of equations, the first derived from ordinary me-
chanics and the second from the biologist’s “war of the species.” This
theory is closely related to the postulates behind the macrodynamic
theory since the fundamental principle is that of a lag between the
variables. There is as yet little statistical investigation of the hyster-
esis theory as it applies to economic phenomena.

The random-shock theory of the generation of cycles has many
intriguing possibilities, but the theory is difficult to appraise since
there exists as yet no satisfactory measure of the shocks which set up
and maintain the motion in economic systems. In our formulation of
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the dynamics of time series, we have made the assumption that their
effects are imposed upon the economic system through a function
which plays & role quite similar to that of kinetic energy in ordinary
mechanics.

The perturbation theory of cycles is a purely dynamical theory
based upon the fundamental quadratic forms of the Lagrangian prob-
lem of small oscillations, It has two principal strengths. The first of
these is found in the fact that it can be related directly to the concept
of marginal utility. The second is observed in the natural explanation
which it offers of economic crises such as the great inflation of 1929.
The theory is also amenable to statistical verification,

Many other explanations of cycles have been offered by numerous
authors, but those explained above have seemed to the present writer
to provide the best mathematical formulation. Without this formula-
tion and the ultimate test by the final arbiter of all theories, the data
themselves, no theory can hope to attain scientific validity.



CHAPTER 9
THE NATURE OF WEALTH AND INCOME

1. The Nature of the Problem

In preceding chapters we have examined time series from vari-
ous points of view. All of these, however, might be characterized
generically as structural. That is to say, we have attempted to show
the existence of fundamental cycles and to exhibit trends which have
sigmificance in understanding the development of the modern economic
status. But in the final analysis the problem of economics is the prob-
lem of the nature and distribution of wealth and income. No dis-
cussion about time series would be complete without some survey of
the characteristic features of this domain of the general theory of
economics. How has wealth increased? How is it related to income?
How is income distributed among the individuals in society? What
leads to this distribution and how does it affect the general behavior
of economic time series?

The answers to these questions, if they could be completely given.
would have immense significance in the construection of a general
theory of economic time series. Many answers have been given but
few will bear the serutiny of a careful statistical analysis. The tenets
of socialism, if a single word can cover the many interpretations
which have been given to this term, are grounded in the answers to
the questions which we have just proposed. There are some who be-
lieve that the difficulties of the capitalistic system, if this phrase, like
socialism, can actually be defined, are found in the problems of the
distribution of wealth and income,

A second closely related problem considers the flow of income and
its ancillary variable, the flow of capital. This problem is essentially
the problem of the equation of exchange, which will be treated in some
detail in the next chapter. From it we may learn more about the
general theory of trends, the causes of economie variation, the reason
for industrial advance, and the relationship of the problem of wealth
and income to the perplexing problem of money.

On the one hand we see that individuals in an economic state
develop natural resources, create machines, raise crops, and employ
available sources of energy. On the other hand we are confronted by
an essentially psychological problem, the creation and use of money

— 386 —
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which of and by itself is essentially valueless. This is certainly true in
those states which have abandoned metallic standards and it is ap-
proximately true in others when the intringic value of the metals is
compared with the intringic values of the remaining goods.

In this chapter, then, we shall consider the nature of wealth and
income, the distribution of material goods and of the services neces-
sary for their creation and consumption. One of the outstanding
problems in all of this is the determination of a curve which will
measire the actual distribution of income among the individuals of
the economic state over a range which begins with those who have
incomes only large enough to sustain life and which ends with those
who have control of vast capital resources. The famous law of Pareto,
which will be extensively discussed, gives a partial answer to this
question about the curve of income. But it is unable to throw light on
many questions, since it fails as 2 measure of the largest income
group, namely that which clusters about the mode. Hence we see that
a more complete law, which includes that of Pareto for the higher in-
come classes, is necessary if we are to understand more completely the
phenomena associated with the distribution of total income.

The problem is also of great political importance, since many
social phenomena are consequences of the distribution of income. In
the final section of this chapter we shall state some of the conclusions
:{hich appear to be indicated by the nature of the distribution func-

ion,

The problems considered in this chapter appear to the author to
have a very deep-seated connection with the problem of economic time
series in general. Thus the behavior of the financial pattern, the
growth of industrial production, and the movements observed in other
vital time series cannot be appreciated fully without some knowledge
of the nature of wealth and income.

As will be seen from the data analyzed in this chapter, both
wealth and income fluctuate from year to year. And this fluctuation is
of great importance in interpreting the behavior of other economic
variables. Thus, we shall observe in the next chapter, that there is an
average fixed ratio between total income and total expenditure of
money, and when this ratio, for any period, exceeds or falls short of
the average value, then serious economie dislocations ensue.

The curve of the distribution of income is a pattern of great
Consequence in the interpretation of the movements of economic time
Beyies. We shall see later in this chapter how certain parameters in
this curve are connected with changes in total real income, and hence,
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how this pattern must be taken into account in the development of a
theory of economic kinetics.

2. The Nature of Wealth

At the basis of every economic system lies the concept of wealth.
Although at first thought one would assume that the wealth of a man
consisted of his possessions of material goods, it is clear that this def-
inition is too narrow for many purposes. The possession of a factory
which is operating at a loss is a liability difficult to construe as
wealth. On the other hand, the possession of a special ability may
earn a good livelihood for the possessor, and a computation of the
present value of the income which may be derived from it shows that
it is convertible into material goods and hence into material wealth.
Much wealth is also psychic in its character as, for example, the value
that is given to paintings, jewelry, and other possessions which have
little material usefulness.

We shall define wealth to be all “consumable utilities, which
require labour for their production and can be appropriated and ex-
changed,”® It is clear that this definition is sufficiently broad to in-
clude the wealth which is psychic in its character, as well as the wealth
of material possession. It excludes the natural wealth which all of us
possess in the free benefits of nature, since this, not being the product
of labor, is scarcely to be considered part of the subject matter of
economics,

Since further classification is desirable in arguments about
wealth, it will be useful to consider wealth as consisting of goods, the
word being used in a general sense, which are of two categories. Thus
we have (1) goods which are material and external, and (2) goods
which are personal. Material goods may also be subdivided into two
clagses, namely, those which are transferable, and those which are
not transferable. Personal goods are of two classes also, one being
external and the other internal. External goods may be either trans-
ferable or not transferable, but internal personal goods may never be
transferred.

Marshall, adopting the ideas of earlier economists, has also de-
fined goods as belonging to different orders. Thus goods of the first
order are those which satisfy wants directly, such as food, clothing,
dwellings, ete. Such goods are conveniently designated as consumers’
goods. Goods of the second order are then those which contribute to
the manufacture of consumers’ goods. Thus farms, which produce

1 See the Encyclopaedia Britannica, 11th edition, Vol. 28, p. 488.
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food, factories, which make clothing, lumber mills, which contribute
to the construction of dwellings, are goods of second order. In the field
of psychic wealth we would classify the possession of a voice for sing-
ing as a good of first order., The conservatory, which trains the voice,
would be classified under the category of goods of second order, it is
clear that goods of third order would be those which contribute to the
manufacture of goods of second order; goods of fourth order, those
which contribute to the creation of goods of third order, etc. Gen-
erically it is convenient fo refer o goods of second and higher orders
as production or producers’ goods,

The word capital has been introduced into economics to designate
that part of wealth which has been reserved to increase wealth. Capi-
tal thus is almost synonymous with what we have called producers’

- goods, sinee it is .only through producers’ goods that wealth may be
created.

1t is rather difficult to estimate the actual value of wealth and
consequently much more attention has been paid to the statistics of
income. However, certain approximations have been made for the
wealth of the United States for the years from 1912 to 1935. In the
fable which gives these estimates there is also shown the ratio of
wealth to annual income and the ratio of annual income to wealth.
The second coefficient might be called the efficiency of wealth, since
it measures the power of wealth to produce income.?

Wealth in | Ratioof | Ratio of Wealthin | Raticof | Ratioof

Year Billlons | Wealth to | Income to Year Billions | Wesalth to | Income to
—_— of Dollars :_lncome . __A_thlth of Dollars | Income Wenlth
1912 186.3 5.86 0.171 1924 3379 | 485 0.206
13{3 185.3 5.71 0.175 1925 362.7 4.70 0.213

192, 8.00 0.167
192¢ 356.5 4.54 0.220
1915 2002 | 580 | 0172 | (4oq 3464 | 449 | 0228
1916 251.6 5.69 0.176 1928 360.1 4.47 0.224
1917 3517 .61 9.151 1929 861.8 4.57 0.219
ig}g :gt:.g 6.65 g.}gg 1930 323.1 4.48 0.223
. 6,40 )

192 ’ 1931 276.1 4.58 0.219
0 488.7 | 658 | 0150 | g0, 2464 | 530 | 0189
1921 317.2 6.03 0.168 1933 252.3 5.68 0.176
1922 [ 320.8 5.20 0.192 1924 289.2 5.74 0.174
92 ) 3399 | 487 | 0205 | 1935 308.9 | 583 0.178

_ In order that one may get a more precise idea as to exactly what
18 meant by wealth in thia table, let us consider the distribution for

Ind > The estimates of total wealth to the year 1930 are made by the National
g ustrial Conference Board; thereafter they are taken from Standard Statis-
% who modified the estimates to take account of the change in the price level.
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1922. This estimate was made by the United States Bureau of the
Census, which allocated wealth to 21 separate categories as shown in
the following table:

| Valuein | Per Centi Valuein | Per Cent
Type of Wealth Miilions of total Type of Wealth Milllons of total
of Dollars of Dollara
Real property taxed | 155909 | 48.60 ! Pipe lines 500 0.16
Real property exempt | 20,506 6.39 | Shipping canals 2,951 0.92
Livestock 5,807 1.81 | Privately owned
Farm implements, ete.] 2,605 0.81 water works 361 0.11
Gold and silver coins Privatelv owned .
and bullion 4,278 1.33 electric light and
Manufactured ma- power 4,229 | - 132
chinery, tools, ete. 15,783 4.92 1 Agricultural
Railroads and their products 5,466 1.71
equipment 19,951 6.22 | Manufactured
Motor vehicles 4,667 1.42 products 28,423 8.86
Street railways 4,878 1.52 | Imported
Telegraph systems 204 0.07 | merchandise 1,649 0.48
Telephone systems 1,746 0.54 | Clothing, personal
Pullman and other ornaments,
private property | furniture, ete. 39,816 | 1241
not owned by i Other produets 730 0.23
railroads . 546 017 Totals | 320,804 | 100.00

There is no reason to believe that the percentages as given above
have appreciably changed during the past few years.

3. The Nalure of Income

The definition of income is not easily attained as one may see
from the constant controversy that is waged over what is to be in-
cluded in income-tax returns.®* It will be sufficient for our purposes
to define the income of an individual as that quantity of goods and
- services measured in terms of a money unit, which he has received
during some period of time as a result of the expenditure of disutil-
ity or the employment of capital during that time. It is customary
to denote the first category of income as wages and sularies and the
second category as the return from investment. The total income of
all its citizens is known as the total income of the state.

Capital gains, that is to say, that part of the earnings of capital
which is returned to capital, are not to be regarded as income. Capital
gains increase the wealth of a country, but they do not increase the
income until such time as they have been used or distributed.

It will be seen readily that income may be estimated in two ways.

3 A very penetrating analysis of this problem has been given by Irving Fish-
er in his extensive monograph, “Income in Theory and Income Taxation in Prac-
tice,” Econometrica, Vol. 5, 1937, pp. 1-55.
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The first and most obvious way would be to determine income from
reports on income received by individuals. Such an estimate would
be constructed from income-tax returns, from studies on the wages
and salaries paid by corporations, schools, government bureaus, fac-
tories, eic., from the profits of agriculture, from fisheries, and from
other similar enterprises.

But income in the last analysis can never be greater than the ac-
tual wealth produced. Hence we can also estimate income from the
total value of goods and services produced in a given period of time.
This estimate would be made from reports on the amount of raw ma-
terials which have been manufactured and transported, from the esti-
mates of coal and metals which have been mined, from crop reports,
from the production of the lumber industry, from the statisties of
the building trades, and from similar data on other enterprises.

These estimates are naturally difficult to obtain with any degree
of completeness and considerable error may be anticipated in arriv-
ing at the total income of a country from either of these methods.
Comprehensive attempts, however, have been made to evaluate the
income of the United States by both of these means and unusually
consistent results have been attained.

The following figures on the income in the United States were
obtained from estimates made by the National Industrial Conference
Board,* the data for the years 1929-1935 being revisions by J. A.
Slaughter in his volume, Income Received in the Various States 1929~
1935, New York City, 1937.

Ineome in Population | Per Caplta Inepme in Population | Par Capita
Year Billions in Thousands | Income in | Yesr Billions in Thousands | Ineome in

of Dollars Dollars of Dollars Dolinre
1909 27.2 90,691 300 1924 69.6 112,079 615
1910 30.1 91,072 326 | 1925 711 114,867 871
1911 29.4 93,682 314 {1926 78.5 116,532 674
1912 318 95,097 334 ] 1927 77.2 118,197 €52
1913 83.7 96,512 350§ 1928 B0.5 119,861 671
1914 32.0 97,927 327 | 1929 79.1 121,526 851
1915 345 99,343 347 | 1930 72.2 122,775 588
1916 442 100,758 439 [ 1931 60.1 124,070 484
1917 53.2 102,173 521 1932 46.5 124,822 873
1318 60.2 103,588 581 | 1933 44.4 125,693 353
1919 67.4 105,003 642 | 1934 50.4 126,426 399
1920 74.3 105,711 697 | 1935 54.9 127,172 432
1921 52.6 107,833 486 | 1936 62.4 128,429 486
1922 617 109,248 562 | 1937 67.8 129,257 526
1923 | 698 . 110664 626 | 1938 642 | 130215 493

¢ Except for the years 1936, 1937, and 1938, which zre from the U. 8. De-
partment of Commerce.



392 THE ANALYSIS OF ECONOMIC TIME SERIES

MLLIONS OF BILLIONS OF
DOLLARS DOLLARS
100, 100
Ly - L]
80| 4 pg- _§- H H

ateh e J% gr a 40
20 HeHE e 20

ol 0
1910 1913 1920 1925 1930 1935

Figure 121.—INCOME IN THE UNITED STATES, 19091938,

But data on total income, however interesting they may be as in-
dicators of the prosperity of a nation and of its relative economic im-
portance, must be exhibited in terms of their partial origins in order
to show the nature of income and the part which it plays in the well-
being of groups in different social orders. The following table shows
the distribution of the total income for the years 1929-1935 accord-
ing to income types:

TNCOME DISTRIBUTED ACCORDING TO TYPE®
Unit: Millions of Dollars

Type of Income 1929 1930 | 1931 193z | 193 | 1934 1935
Salaries and wages 50,611 | 46,201 | 38,643 | 29,752 | 27,858 | 31,225 | 34,223
Entrepreneurial income (13,118 12,277 | 8955 6712| 7,018 | 8,127 ( 9,247
Dividends 5763 | 5.631| 4179| 2626 2102 | 2,338 [ 2,648
Interest 3,994 | 4,156| 4,024 3756 | 3361 3154 | 2,945

Net rents and royalties 1,188 884 618 448 473 589 693

Other accountable income| 4,561 4,163| 3,936 ) 3,232 3,608 5,063 | 5284

Net adjustment for inter-
national balance of

payments of dividends

and interest ~133| —127) — 87| — 20| — 31| — 69| — 96
Total accountable , ) T R

income | 79.{()‘1 L 72, 186 ; 60,117 46,506 44,389 | 50, 426 54 944

‘Thil tah]e is adapted from Slaughter, op. cit., p. 5. The item “Other accountable income”
tion for injurles, interest on mortgages on owned homes, net rent of
mted bomo-. relisf payments, and governmental rental and benefit payments to farmers,
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Turning to the production of incomes, we obtain the following
table which exhibits the classes of industry from which the income

has been derived:

INCOME DISTRIBUTED ACCORDING 70 PRODUCTION*
Unit: Millions of Dollars

Industrial Origin 1929 1030 1981 1982 1983 1984 1085
Agriculture 8,720 | 6,761 | 4,476 | 3,040 | 3,771 | 4,644 ] 5408
Mining and quarrying 2,051 { 1,703 | 1,190 807 797 | L025 | 1,074
Electric light, power,

and gas 1,209 | 1469 | 1,402 | 1,269 | 1,089 | 1,028 | 1,002
Manufactaring 18,059 (15,958 [ 12,376 | 8,528 | 8,428 {10,190 | 11,727
Construction 3,225 | 2910 | 1,945 932 762 1,028
Transportation 6,525 | 6,046 | 5,146 | 4,022 | 3,733 | 4,014 ] 4,258
Communications . 926 966 903 785 712 734 T48
Trade 11,446 110,779 | 93311 7,145 ; 6,214 : 6,885 7,814
Finance 3,140 | 2,904 | 2,636 2,041 | 1,483 | 1,349 1,821
Service 8378 | 7,889 | 6,889 | 5,409 | 5,016 | 5395 5918
Government 6,197 | 6,395 | 643B | 6,365 | 6,068 | 6,354 6,745
Miscellanecus 4,706 | 4,371 | 3,684 ) 2952 | 2,744 | 2,950 8,184
Other accountable

income 4,561 | 4,162 | 3,736 | 3,232 | 3,608 | 5,063 | 5284
Net adjustment for

international balance

of payments of divi-

dends and interest ~183 [ —127 | — 87 | — 20| — 31 [ — 689 | — 96
Total aceountahle

income 79,101 | 72,186 | 60,117 | 46,506 | 44,389 | 50,426 | 54,944

* This table is adapted from Slaughter, op, cit., p. 6.

Since these data pertain to a period which began with a year of
unprecedented prosperity and includes years of unusual financial de-
pression, it is illuminating to observe that the ratios of the incomes
by classes to the total annual income changed but little. This quite
remarkable stability is revealed in the following two tables of per-

centages:
INCOME DISTRIBUTED Acconqu T0 TYPE
Percentage of type to total income
Tyve of income 1920 1030 1931 1982 1983 | 193t 1936
Salaries and wages 63.98 | 64.00 | 6428 63.97| 82.76| 6192 62.29
ntrepreneurial income 1658 | 15.62| 1490 1443 | 1581 ] 1612 | 16.83
Dividends 7.29 7.80 6.95 5.65 4.74 4.64 4.82
Interest 505] 576 669{ B808| 757] 625 6536
Net rents and royalties 150 128% 1087 096] 107} 117] 126
Other income less net
__ adjustments 560 5.59| 615 691| 806| 990| 9.44
Totals 100.00 | 100.00 | 160.60 | 100.00 | 100.60 | 100.00 | 100.00
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INCOME DISTRIBUTED ACCORDING T0 PRODUCTION
Percentage of origin to total income

Industrial Origin 1929 | 1930 \ 1931 | 1982 | 1933 1934 1985
Agriculture | 11.02 937 T745; 654 850 921 10.01
Mining and quarrying ‘ 2590 236, L1938 174 180 2.03 1.96
Electric light, i

power, etc. | 164) 204 233 273 245/ 204 182
Manufacturing 22.83 2211 2059, 18.34 | 1899 20.21| 21.34
Construction ; 4.08 | 4.03 [ 3.24 2.00 1.72 172 1.87
Transportation | 825, 838 856 l 865 | B4L| 796 .74
Communications i 117 1 134! 1501 1691 160! 146! 136
Trade | 14471 131493 ! 1552 1536 , 14.00, 13.65| 13.81
Finance | 3.91 \ 4.02 ' 428 4.39 3.34 2.68 2.40
Service 10.569; 10.92 l 11.46 ’ 11.63 | 11.8¢| 10.70 10.76
Government 7.83 1 885, 1071, 13.68 { 13.66| 12.60, 12.28
Miscellaneous 596 6.06 6.13 6.34 6.17 5.84 571
Other income less net | |

adjustments 560 559 615 691 806( 990! 944

Totals 100.00! 100.00 . 100.00 ; 100.00 100.00} 100.00 | 100.00

4. The Distribution of Inconies—Parelo’s Law

The first extensive discussion from the statistical point of view
of the problem of how income is distributed among the citizens of a
state was made by Vilfredo Pareto (1848-1923), disciple of Léon
Walras (1834-1910), and his successor in the chair of Political Econ-
omy at the University of Lausanne. The first chapter of the second
book of Pareto’s Cours d'économie politique, published in 1897, is de-
voted to this problem.” By ingenious reasoning and on the basis of
data collected from numercous sources, Pareto arrived at a formula-
tion of his famous law of the distribution of incomes, This law we
have cast somewhat precisely in the following statement:

In ol places and at all times the distribution of income in o stable
economy, when the origin of measurement is af o sufficiently high in-
come level, will be given approximately by the empirical formula

(1) y=aaz,

where y is the number of people hoving the income x or greater, and
¥ is approximately 1.5.8

Pareto was well aware of the importance of this discovery as is
proved by the following comment about it:

5 Volume 2, pp. 299-345,

¢ The phrase “in & stable economy” has been interpolated by the present
writer and should not be ascribed to Pareto. By a stable economy is meant one
that is not verging upon revolution or civil war, as measured by political dis-
turbances, civil riots, and the like. The consequences of this interpolation will
be developed in Section 15 of this chapter,
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These results are very remarkable. It is absolutely impossible to admit that
they are due only to chance. There is most certainly a cause, which produces the
tendency of incomes to arrange themselves aceording to a certain curve. The
form of this curve seems to depend only tenucusly upon different economie con-
ditions of the couniries considered, since the effects are very ncarly the same for
the countries whose economie conditions are as different as those of England, of
Ireland, of Germany, of the Italian citics, and even of Peru.”

The law of Pareto, because of its rigid and uncompromising form
and because also of the great generality of its statement, has been
vigorously attacked. It obviously strikes at the most fundamental
tenets of socialism and must be reckoned with in all propositions which
underlie attempts to formulate a regimented social order. The law has
been subjected to careful scrutiny by a number of scientific investi-
gators, and considerable objection has been raised to it in its rigid
form. No one, however, has yet exhibited a stable social order, ancient,
or modern, which has not followed the Pareto pattern at least ap-
proximately.

The problem of the distribution of incomes may be formulated in
three questions as follows:

First. What is the frequency function for the total distribution
of incomes from the poorest member of society to the wealthiest?

Second. Does this distribution appear to be an inevitable one, or
may its form be governed by the type of society from which the
income is derived?

Third. Can any a priori reason be given for the form of the
frequency function?

In order to formulate our ideas with precision, let us assume that
a population of N individuals is to be distributed with respect to their
possession of a quantity of a variable #, and let the distribution fune-
tion be designated by ¢(x). Furthermore, we shall let the lowest
measure of the range of x be 4 and the highest B,

If we define &(x) to be the total number of individuals who
possess the measure between x and x + dz, then the number of those
who have the measure x or lower is given by the integral

P 4
v = ["42) do.
A
Obviously we have Y(B) = N; moreover, N — Y{(X) is the ac-
cumulated frequency of the population. That is to say, this function
gives the number of individuals who have the measure X or greater.
If we designate this accumulated frequency by ¥(X}, we shall have

? Cours, Vol. 2, p. 812.
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INCOME DISTRIBUTED ACCORDING T0 PRODUCTION
Percentage of origin to total income

Industrisl Origin [ 1929 1930 | 1931 1032 | 1933 1934 1535
Agriculture ¢ 1102 937, T45 6.54 8.50 9.21] 1001
Mining and quarrying 2.59 236 . 198 1.74 1.80 2.03 195
Electric light, | ;

power, ete. 1.64 2.04 ! 233 2.73 2.45 2.04 1.82
Manufacturing 22831 2211 |‘ 20.69 & 18.34 | 18.99 20215 2134
Construction 4.08 403 | 3.24 2.00 1.72 1.72 1.87
Transportation - 8.25 8.38 [ 8.56 8.65 8.41 7.96 T.74
Communications 117 134 1.50 1.69 1.60 1.46 1.36
Trade 14.47, 1493 , 1552 | 1536 | 1400| 13.65| 1331
Finance 3.97: 4.02 4.38 4.39 3.34 2.68 2.40
Service 10.59: 1092 1146 1163 | 11.30| 1070 10.76
Government 783 885! 10.71) 13768 | 13.66| 12.60) 1228
Miscellaneous .96 606 6.13 6.34 | 6.17 5.84 571
QOther ineome less net ‘ g |

adjustments 560! 550 615 691 806 990! 9.4

Totals 100.00 | 100.00 : 100.00 | 100.00 | 100.00 | 100.00 | 100.00

4. The Distribution of Incomes—Pareto’s Low

The first extensive discussion from the statistical point of view
of the problem of how income is distributed among the citizens of a
state was made by Vilfredo Pareto (1848-1923), disciple of Léon
Walras (1834-1910), and his successor in the chair of Political Econ-
omy at the University of Lausanne. The first chapter of the second
book of Pareto’s Cours d’économie politique, published in 1897, is de-
voted to this problem.” By ingenious reasoning and on the basis of
data collected from numerous sources, Pareto arrived at a formula-
tion of his famous law of the distribution of incomes, This law we
have cast somewhat precisely in the following statement:

In oll places and at all times the distribution of income in a stuble
economy, when the origin of measurement is at a sufficiently high in-
come level, will be given approximately by the empirical formula

(1) y'——ax“",

where y is the number of people having the income z or greater, ond
v i3 approximately 1.5.°

Pareto was well aware of the importance of this discovery as is
proved by the following comment about it:

5 Volume 2, pp. 299-345.

¢ The phrase “in a stable eccnomy” has been interpolated by the present
writer and should not be ascribed to Pareto. By a stable economy is meant one
that is not verging upon revolution or eivil war, as measured by political dis-
turbances, civil riots, and the like, The consequences of this interpolation will
be developed in Section 15 of this chapter.
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These results are very remarkable. It is absolutely impossible to admit that
they are due only to chance. There is most certainly a ceuse, which produces the
tendeney of incomes to arrange themselves according to a certain curve. The
form of this curve seems to depend only tenuocusly upon different economic con-
ditions of the eountries considered, since the effects are very nearly the same for
the countries whose economic conditions are as different as those of England, of
Ireland, of Germany, of the Italian cities, and even of Peru.?

The law of Pareto, because of its rigid and uncompromising form
and because also of the great generality of its statement, has been
vigorously attacked. It obviously strikes at the most fundamental
tenets of socialism and must be reckoned with in all propositions which
underlie attempts to formulate a regimented social order. The law has
been subjected to careful scrutiny by a number of scientific investi-
gators, and considerable objection has been raised to it in its rigid
form. No one, however, has yet exhibited a stable social order, ancient
or modern, which has not followed the Pareto pattern at least ap-
proximately. :

The problem of the distribution of incomes may be formulated in
three questions as follows:

First. What is the frequency function for the total distribution
of incomes from the poorest member of society to the wealthiest?

Second. Does this distribution appear to be an inevitable one, or
may its form be governed by the type of society from which the
income is derived?

Third. Can any a priori reason be given for the form of the
frequency function?

In order to formulate our ideas with precision, let us assume that
a population of N individuals is to be distributed with respect to their
possession of a quantity of a variable x, and let the distribution fune-
tion be designated by ¢(x). Furthermore, we shall let the lowest
measure of the range of 2 be A and the highest B.

If we define ¢(2) to be the total number of individuals who
possess the measure between x and = + dz, then the number of those
who have the measure x or lower is given by the integral

Y(X) = fx.;b(x) iz .

Obviously we have Y (B) = N; moreover, N — Y(X) is the ae-
c\}mulated frequency of the population. That is to say, this function
g1ves the number of individuals who have the measure X or greater.
If we designate this accumulated frequency by ¥(X), we shall have

T Cours, Vol, 2, p. 312.
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B
y(X)=N-Y(X)= f #(z) dz.

It is this function which Pareto assumed has the form y = aX,
»= 1.5, provided X is sufficiently large. Under this assumption we
should then obtain

${X) = —dy/dX = arX-1,

Taking logarithms of both ¥(X) and ¢ (X), we have
(2) logy=loga -»log X,

{(3) logp=1log (av) — (»+ 1) log X .

Hence, if the functions are graphically represented on double
logarithmic paper, or what is the same thing, if their logarithms are
graphed against the logarithms of X, then the graphs will be straight
lines and the ratios of the respective slopes will be »/(» + 1}.

Since the actual data for incomes is given in terms of classes of
unequal size, as for example, the number of people having incomes
between $1,000 and $1,100 and the number of people having incomes
between $1,000,000 and $1,500,000, it is statistically much easier to
determine the parameters in equation (2) than in equation (3).

Since ¢ (X} would be a small number if increments on the X range are dol-
lars, it is more convenient to express ¢ (X) in terms of a broader income class, a3
for example, the number of people having incomes between X and X + m, where
m = $100. If X is sufficiently large so that the Pareto law is effective as & de-
seription of the income distribution, then the following method may be used to
determine the frequency distribution from the accumulated distribution.

Let us assume that the number of pecple having incomes in the range from
X to X + dis A. Thus, we might have X = $100,000, d = $50,000, A = 3494,

Let us assume further that the accumulated frequency is given at the point
X by the Pareto formula

y(X)=aX-v,
We should then have
P(X) (X +d) —a [X*— (X 4+ d)") =4,
from which we obtain
6 =A4/[X¥— (X +d)].

Obviously the number of people in the income class, X to X + m, would
then be

A[X-r — (X + m)-"]
[X-*— (X + d)~"]

Thus, using the figures just given, and assuming that m == 100, » = 1.69,

Y(X) —y(X +m)y=0[X*— (X + m)¥] =
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we obtain as the number who have incomes between $100,000 and $100,160 the
following:
3494 [ (100,000)-1-82 — {100,100)-2.82]
L (100,000 -3.5% — (150,000)-1-5¢]
==1190.
In a table of income frequencies this number would correspond to the income

X' = $100,050. That is to say, approximately 12 people in the distribution con-~
sidered would have incomes between $100,000 and $100,100.

(X)) =

5, Income Data

For the purposes of statistical description we shall use the follow-
ing data, which show the distribution of income among personal-
income recipients in the United States in 1918. These estimates are
taken from an elaborate study made by the National Bureau of Eco-
nomic Research, which will long remain one of the most comprchen-
sive sources of information on this important subject.

The following table, which excludes the income of 2,500,000
soldiers, sailors, and marines, gives a carefully determined estimate
of the income of 37,569,060 persons, somewhat more than one-third of
the total population, from the class of negative incomes,® to the class
having incomes in excess of $4,000,000.

. *Income in the United States, Its Amount and Distribution, 1909-1919. Na-
tiongl Bureau of Economic Research, Vel. I, New York, 1921, 152 pp.; Vol. I,
1922, 440 pp. For the data, see Vol. I, pp. 132-133.

9 The distribution given in the table was estimated somewhat differently for
those who had incomes above and below $2000. The determination of the numbers
in the lower class wa# naturally a more difficult problem teo solve than that per-
taining te the upper elass where income-tax returns were available, Moreover,
the definition of income received is also difficult to state precigely for the class
below the median. Thus one may assume that the poorest person in an economy
is the vagabond, who exists by pilferage and begging. His income is the lowest
possible for existence and no one should be regarded as having a Jower economie
status measured in terms of ineome than such a man, This was Pareto’s point
of view, but the fact that negative incomes are included in the table shows that
the estimators assumed otherwise. Thus it is said (see p. 347, Vol. 2) : “Children
receive in general negligible money incomes. Many other persons in the com-
munity are in the same position. A business man may ‘lose money’ in a given
year, in other words he may have a negative monecy income. There seems no es-
sential absurdity in assuming that a large number of persons receive money in-
comes less than necessary to support existence. When in 1915 Australia took a
census of the incomes of all persons ‘possessed of property, or in receipt of in-
come,’ over 14 per cent of the returns showed incomes ‘deficit and nil.””

Obviously the matter depends primarily upon the definition employed for in-
come as it refers to the lowest income class. In this study it will be convenient to

old to Pareto’s view and we shall assume that the lowest admissible income is
that of subsistence, For a business man, who has a net loss, we can assume that:
hp still has a positive rezl income, which, even in had years, is far above the sub-
sistence level, This income is derived either from a transfer of savings into the

Income stream, or from the uge of horrowed funds. Thus no one in the economy
will be represented as having had an income less than that of the vagabond. Ob-
viously our graduation of the data, on this assumption, will diverge sharply from
that reperted in the frequency range below the mode.
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Income Clazs :. Number of Persons Total Income
Under Zero 200,000 $ —125,000,000
30-  $100 62,809 3,368,863
100~ 200 102,704 16,047,933
200- 300 209,087 53,701,566
300- 400 489,963 178,747,705
400~ 500 961,991 437,421,733
500— 600 1,549,974 857,666,411
600— 00 2,154,474 1,405,213,223
700~ 800 2,668,466 2,005,009,301
800— 900 3,013,034 2,563,100,947
00— 1,000 3,144,722 2,987,688,735
1,000- 1,100 3,074,351 3,226,729,363
1,100- 1,200 2 850,526 3,275,784,572
1,200- 1,300 2,535,285 3,166,235,800
1,300— 1,400 2,205,728 2,973,220,322
1,400~ 1,500 1,832,230 2,653,820,477
1,500-  1,60u 1,512,649 2,342,101,155
1,600- 1,700 1,234,397 2,034,621,765
1,700- 1,800 999,996 1,748,225,207
1,800- 1,900 811,236 1,499,396,953
1,900- 2,000 663,789 1,293,303,255
2,600- 2,100 549,787 1,126,240,869
2,100 2200 463,222 995,402,469
2,200- 2300 | 395,115 888,501,304
2,300- 2,400 | 340,141 798,920,154
2,400~ 2,500 295,430 723,614,676
2,500- 2,600 258,650 659,277,149
2,600- 2,700 | 2277531 603,250,834
2900- 2800 . 201,488 553,889,766
2,800- 2900 | 178,901 509,693,726
2,900~ 3,000 | 154,499 455,622,047
3,000 3,100 | 142,802 435,416,064
8,100- 3200 | 128,217 403,770,475
3,200- 3,200 115,583 375,647,256
3,300~ 3,400 | 104,504 350,001,254
3,400- 3500 | 94,803 326,995,740
3,500- 3,600 86,405 306,672,265
3,600- 3,700 79,023 288,376,342
3,700~ 3,800 72,562 272,057,360
3,800~ 900 66,900 257,520,712
3.900- 4,000 | 61,894 244,442,121
4,000- 5,000 | 430,474 1,913,291,198
5,000— 6,000 234,721 1,280,426,762
s 000 143,330 926,352,841
7,000~ 8,000 94,927 708,947,016
8,000 9,000 66,511 563,480,394
9,000~ 10,000 48,335 457,976,300
10,000- 11,000 86,432 381,732,274
11,060- 12,000 28,306 324,954,838
12,000~ 13,000 22,473 280,498,570
13,000- 14,000 18,174 245,042,041
14,000- 15,000 14,951 216,656,666
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Income Class Number of Persons Total Income

$15,000-" $20,000 46,369 $305,775,269
20,000~ 25,000 24,857 563,731,410
25,000~ 30,000 15,205 415,329,030
30,000~ 40,000 17,063 589,416,333
40,000- 50,060 8,851 394,040,324
50,000~ 60,000 5,220 285,043,638
60,000- 70,000 3,389 219,188,048
70,000- 80,000 2,361 176,418,311
80,000- 90,000 1,730 146,629,939
90,000~ 100,000 1311 124,249,646
100,000—- 150,000 3,494 421,980,448
160,000- 200,000 1,461 249,585,378
200,000- 250,000 iirh! 171,676,103
250,000 300,000 460 125,604,380
300,000~ 400,000 497 170,757,868
400,000- 500,000 248 101,980,849
500,000~ 750,000 265 139,293,673
750,000-1,000,000 104 ! £0,826,726
1,000,000-1,500,000 79 94,956,294
1,500,000-2,000,000 : 30 51,697,640
2,000,000-3,000,000 24 57,818,419
3,000,0004,000,0600 9 30,846,960
4,000,000 and over 10 81,000,000
Totals 37,669,060 $57,954,722,341

From these data one computes that the average income is $1548
and that the modal income is $957. The extraordinary spread of in-
comes is readily seen from the fact that if these data were graphed on
an arithmetic scale with one-eighth of an inch equal to $1000, a chart
42 feet in length would be required for their representation.

The almost fantastic spread of the income from the average is
revealed in a computation of the second, third, and fourth moments
about the mean, the unit being $1,000. These values are as follows:

B = 32.1367, = 40165.4694 , p=T1,281,288.7 .

From these moments we compute the standard error, the skew-
ness, and the kurtosis of the distribution to be respectively

0=5.6689, S=pm/(20*) =11.0235, E =p, — 3="T4,826,

where we use the customary notation f; = u./o* .

These values show how hopeless is the task of attempting to
graduate the data by any of the curves of Pearson type. This comment
is quite significant, since the problem invoked by the distribution of
incomes is thus shown to be essentially different from that of the usual
frequency distributions which arise in biology for which the Pearson
types were primarily designed. The extraordinary difference between
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biometric frequencies and income frequencies is found in the general
observation that in the former; even in cases of extreme skewness, it is
unusual to find any member of the distribution more than 4« from the
mean. In the case of income data, extreme individuals are found more
than 700¢ from the mean, '

This difference can be illustrated by considering the distribution
of height, which is governed by glandular secretions, whose varia-
tion in individuals follows the normal curve. Thus the data on the
. measurement of nearly a million men, as reported by the medical
division of the United States army during the World War, show that
the average height is 67.49 inches, and that the standard error is 4.03
inches. From this we see that the probability of 2 man attaining a
height of 67.49 + 4 o = 83.61 inches is very small, approximately 6 in
100,000. But if the hormones of growth were distributed according to
the law of incomes, essentially the same probability would lead one to
expect giants as tall as 67.49 + 2827.00 = 2894 inches = 241 feet.

6. The Pareto Distribution

We shall refer to that part of the distribution of income frequen-
cies which lies sufficiently far beyond the mode to be graduated by the
curve

(1) y=eX™,

as the Parelo distribution.
Taking logarithms of both sides of (1) we obtain

(2) logy=loge—»ylogX;

from which it is observed that if the logarithms of the frequencies are
plotted against the logarithms of the incomes, or what ig the same
thing, if the data are graphed on double-logarithmic paper, the Pareto
distribution will appear as a straight line with negative slope.

In order to exhibit the technique of fitting (1) to the income data
given in the preceding section, we first consider the abbreviated table
at the top of page 401,

From these data the second table on page 401, showing cumula-
tive frequencies, is formed, the two highest classes being omitted.

Employing the method of least squares, we form from the above
totals the following normal equations for the determination of log ¢
and »:
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Income Class Class Mark | “Number of Persons ‘Tota! Income
Under zero’ s e 206,000 4 $ —125,000,000
$0-— $500 260 1,827,554 685,287,806
560- 1,000 750 12,530,670 9,818,678,617
1,000~ 1,500 1,250 12,498,120 15,295,790,634
1,500 2,600 1,750 5,222,067 8,917,648,335
2,000- 3,000 2,600 3,065,024 7,314,412,994
3,000- 5,000 4,000 1,383,167 8,174,080,777
5,000~ 10,000 7,500 587,824 3,937,183,313
10,000~ 25,000 17,500 192,662 2,808,290,063
25,000- 50,000 37,500 41,119 1,398,785,687
50,000 100,000 75,000 14,011 951,529,576
100,000~ 200,000 150,000 4,945 671,565,821
200,000- 500,000 250,000 1,976 570,019,200
504,000-1,000,000 750,000 . 369 220,120,399
1,000,000 andover |  ..... 152 316,319,219
Totals 37,669,060 $67,954,722 341

Income Cumulative ' i
in Dollars | Frequency, ¥ log logy {log X} . (log X)?

(1) (unit 1,000) ) (loz v) L
500 35,541 « | 2.65897 4,65073 12,28228 7.28444
1,000. 23,010 3.00000 4.36192 13.085676 9.00000

1,500 10,512 3.17609 4.02169 12.77325 10.08756
2,000 5,290 3.30103 3.72346 12.20125 10.89680
3,000 2,225 3.47712 3.34733 11.63907 12.00036

5,000 842 3.69897 2.92531 10.82063 13.68233
10,000 264 4.00000 2.40483 9.61932 16.00000
25,000 62 4.39794 1.79229 7.88282 19.34188
50,600 | 21 4.69897 152222 6.21307 22.08032

100,000 K 5.00000 0.81510 4.22550 25.00000
200,000 2 5.30103 0.30103 1.59577 28.10092
Totals 42,75012 29.59601 102.42872 173.56465

1lloga — 42.75012 »= 29.59601,
42.75012 log a — 173.56464 » — 102.42873 ,
From these equations we compute
log a==9.28462, »=1.69672 ;
and the desired curve, in logarithmic form, is thus found to be
log y = 9.28462 — 1.69672 log X .

The following table of values has been computed to exhibit the
closeness with which the cumulative frequency is represented by the
curve. Both the computed and the observed values are graphically
Tepresented on double logarithmic paper in Figure 122,
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Ineome v ¥
X observed somputed

$500 356,541 50,722

1,000 23,010 16,648

1,600 10,512 7,864

2,000 5,290 4,827

2,000 2,225 2,426

5,000 842 1,020

10,000 254 316

25,000 62 66

50,000 21 21

106,060 T 6

200,000 2 2
MILLIONS OF MILLIONS OF
RECIPIENTS RECIPIENTS
100r - 100

[ \ -
19 \ &, 10

) ]

. <

0.1

) | \\ |
0.00/ " P " decd A L PR | X 2 oo

100 1000 10,000 100,000 1.000,000
INCOME IN DOLLARS
FIGURE 122.—CUMULATIVE FREQUENCY DISTRIBUTION OF INCOMES IN
UNITED STATES, 1918, 0N DOUBLE LOGARITHMIC GRID.
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7. The Statistical Verification of Pareto’s Distribution

In view of the great economic importance of the Pareto distribu-
tion and of its social significance, it will be worth while to consider
how far it may be regarded as having been verified by statistical use.

Since Pareto’s formulation assumes a statistical constancy for »,
it is interesting to examine the data from which he derived his law.
We now have much better statistics about the distribution of income
in modern societies than were available to Pareto, but his data with
respect to older states have mever been surpassed. The following
table summarizes his computations, which, it will be observed, extend
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in time from 1471 to 1894 and in geographical distribution from Peru
at the end of the eighteenth century to the highly developed common-
wealths of Europe.

Country L4 Country v L Country 17
England (1843) { 1.50 | Saxony (1380; 1.68 | Basel
1879-80) | 1.86 (1886) | 1.51 | Paris {(rents) 1.567
1893-94) | 1.60 | Florence 1.41 | Augsburg (1471) (148
Prussia {1852 1.89 | Perugia (city) 1.69 {1498) | 1.47
1876) | 1.72 Perugia (country) ; 1.87 {1612) {1.26
(1881) | 1.73 ] Ancona, Arezzo, {(1528) | 1.18
1888) | 1.68 Parma, Pisa 1.32
1890) | 1.60 Peru (at the end of
1894) | 1.60 | Italian cities 1.45 the 18th century) |1.79

The following table exhibits the stability of the coefficient » for
data on incomes in the United States over the period from 1914 to
191920

Year | 1914 1915 1916 1917 1918 1919 s =0.12
4 1566 142 142 1.64 1.69 1.73 Average =—1.66

These figures may be supplemented by a computation on the in-
come data for 1929, where the value of » was found to equal 1.48.
There is no reason to believe that a significant change has occurred
in this parameter during the depression or afterwards, although there
has been a tendency for it to increase as the tax burden has grown
since 1933, :

N. 0. Johnson, in an elaborate investigation of the Pareto law,
plotted income-tax data on double-logarithmic paper for the years
from 1914 to 1933. The valug of the slopes of the lines as shown in
Figure 123 are given in the following table::

Your i v Year » Your v Year v

1914 1.54 1919 1.7 1924 1.87 1929 1.42
1915 1.40 1920 1.82 1925 1.64 1930 1.62
1516 1.34 1921 1.90 1926 1.56 19381 1.71
1817 1.49 1922 171 1927 1.62 1982 1.78
1918 1.86 1923 1.78 1928 142 1933 1.70

It is evident from these data and also from the accompanying
graph that the variation of » from Pareto’s estimate of 1.5 was slight

ond * From F. R. Hmlﬁfl on Income in the United States—Tts Amount
v o pution, Val, 2, ew York, 1922, Publication No. 2 of the National Bu-

! Taken from N. 0. Johnson, “The Pareto Law,” The Review of Koonmomic
Btatiatios, Vol. 19, 1987, pp. 20-26. d
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THOUSANDS OF THOUSANDS OF
RECIPIENTS RECIPIENTS
10.000, 10,000

T ‘\k\.\\k\‘K NANANNN )
T\S\\\\\\\ N\

TR

, \\1\ N 1 ‘

AT VLY NN
e AR ANE A \ S

| |
o.0t 1 1) _:cluo 1000

INCOME SCALE FOR 1922
{THOUSANDS OF DOLLARS}
FIGURE 123.—COMPARISON OF INCOME DISTRIBUTIONS IN THE
Unitep STATEs, 1914-1933.

Cumulated frequencies, both scales logarithmic. The vertical lines are one
eycle apart, as are the horizontal ones, the scale shifting one-half cycle to the
right for each successive year. The point nearest the date in each case mensures
the number of incomes in excess of $1,000,000 in that year.
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and within statistical error. One also notes that there was a tendency
for the distribution of incomes to become more concentrated in times

. of prosperity and less concentrated in times of depression. The data
include only about 2,000,000 income recipients per year, perhaps one-
twentieth of the total, but their combined income was perhaps a quar-
ter of the total amount.

The evidence from these varied sources seems to make the con-
clusion inescapable that the distribution of incomes in stable societies
conforms closely to the Pareto pattern. The reader should be warned,
however, that this conclusion is not universally concurred in by econo-
mists. For arguments bearing upon the weakness of the law of Pareto
the reader is referred to the discussions by Pigou, Dalton, Macaulay,
and Shirras as cited in the Bibliography at the end of this chapter.

8. Formulas for the General Distribution Function

A number of attempts have been made to state formulas which
would represent not merely the tail of the distribution of incomes
but which would also graduate the distribution down to a threshold
value. This value, which we shall designate by ¢, is very smal! when



THE NATURE OF WEALTH AND INCOME 405

compared with the total range and may be introduced into the for,
muls for the Pareto distribution without essentially affecting the
graduation.

The problem, then, is to determine the function $(x) of Section
4, which has the following properties:

(A) ¢(c) = 0, where ¢ is a positive value, which may be as-
sumed to represent the income on which one could maintain and tol-
erate life. In the data of Section 5, we find negative incomes recorded,
but there is certainly considerable argument as to what such incomes
really mean. This point has been extensively discussed in footnote 9
to Section 5. In this study we shall disregard negative incomes and
all incomes below a threshold value which will be determined later.
This minimum value we shall call the wolf point, since it is the real
income necessary for existence. Below this point the wolf, which
lurks so close to the doors of those in the neighborhood of the modal
income, actually enters the house.

(B) There exists a modal income, 2, , small in comparison with
the range, such that ¢(z,) is a maximum.,

(C} For large values of x, the distribution function is approxi-
mately represented by Pareto’s formula; that is to say,

${z) ¥ A(z —~c)™*,

where 4 is approximately 2.5, since x = » + 1, and where the symbol
“~ means “is asymptotic to.”

(D) The integral ¢{z) over the total range of income (A4,B)
is equal to the total income population, N ; that is,

B
1) f #(x) dz=N.
4
Pareto, himself, made some study of this more general problem
and suggested for the frequency accumulation the function
2) y=Aed (z—c).
The derivative of this function, namely, ¢ (z), does not meet all
the requirements of the problem, however, and it must be rejected.
Pareto, moreover, found only one case where § had a significant value.

L. Amoroso, in an extensive paper published in the Annali di
Matematica in 1925, suggested the formula

(3) v =4 e-viz-eps (37 — h) (p-a)/t
48 a possible graduation function. He illustrated its application to
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Italian income data, but offered no reason why this function should
represent the distribution of incomes. Moreover, it apparently does
not furnish a close graduation of American income data.

D. G. Champernowne has suggested the function

A
Y= Bcosh (z—C) —-D °

where = is what he calls “income power,” namely, the logarithm of
money income. The parameter A is adjusted to give the correct num-
ber of incomes; B gives the slope of the Pareto tail, C is the average
income power, and D is adjusted to give the correct kurtosis of the
distribution. No reason is given for the choice of this function except
that it gives a good fit.**

One of the most extensive studies on this problem has been made
by R. Gibrat in a volume entitled Les inégalites économiques, pub-
lished in 1931. Gibrat’s formula for representing the accumulated fre-
quencies is

(4)

(5)
z=alog (x—k) +b.

The genesis of Gibrat’s formula, which he calls the law of pro-
portional effect, may be obtained from the following observation. We
first note that by means of a transformation of the scale variable z,
we can throw any distribution into normal form. Thus we need mere-
ly assume that

6) y= f o) da= [ outt) at,

where we write
N

no

Theoretically equation (6) can be inverted so that T appears ex-
plicitly as a function of X . Numerically the inversion can be accom-
plished by means of a table of the prebability integral.

It should be observed that ¢,(¢) can be replaced by its simpler
form

$o(t) =

oiti-tairzes |

N

:
—_— it .

V2a
11 See Econometrica, Vol. §, 1987, pp. 379-880.
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without loss of generality, since T is then merely replaced by its linear
transform: (T — &) /o.

We now employ the table of Section 6 to compute the first inte-
gral in equation (6). We may assume that A = —1,000, which will, of
course, correspond to 7' = — , Then from the equation

x ( ) dx N J'*!'
= x = — e di—=NO
v= | 9 7 (1),
and by means of a table of the function @ (T'), the relationship be-
tween the X-range and the T-range is readily computed. These values
are given in the following table:~

Valmof X Yahwot T &{T) Valueof X | Valueof T &(T)
—$1,000 ——00 0.000000 10,000 2.47 0.993223
0 —2.56 0.005324 25,000 2.94 0.998335
500 —~1.61 0.05396¢9 50,000 2.23 0.999429
1,000 —0.29 0.387506 100,000 3.64 0.999802
1,600 0.59 0.720177 200,000 3.82 0.999934
2,000 1.08 0.859176 500,000 4.18 0.999987
3,000 1.56 0.940760 1,000,000 . 0.999997
5,000 2.01 0.977577

The relationship of the two scales is graphically represented in
the accompanying figure. It is evident to the eye that this relation-
ship between X and T is approximately logarithmic, and hence con-
siderable empirical validity is given to Gibrat’s graduation formula.

T T
+4 +4

' :
- ]

-
~dl -4
= 10,000 0 +10.000 + 20.000 + 30,000 + 40,000 + 50,000
FI1GURE 124.—RELATION OF SCALES OF PARETO DISTRIBUTION AND EQUIVALENT
NorMAL DISTRIBUTION UNDER LOGARITHMIC TRANSFORMATION,

Unfortunately the asymptotic value of Gibrat’s formula does not
lead to the Pareto graduation of the tail of the distribution, which is
admittedly the most interesting part of the phenomenon of income.
Thus for the Pareto formula we have

193713»8?64{01. example, Davis and Nelson, Elements of Statistics, Second edition,

=)
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v/iy=—»/(x—¢),
while Gibrat's formula gives
ab + a? log (z—k)
(z— k) (x — k)
Computation shows that the second term is not negligible when
the formula is applied to the income data used in this chapter,
The order of the discrepancy between Gibrat's formula and the

data is revealed by the closeness with which 7 may be approximated
by means of an equation of the following form:

T=ua+ §log (X + 1000) .

Determining the two parameters « and g from the table given
above by means of least squares, we obtain the following approxima-
tion:

¥/y=

T=-7.795 + 2,161 log (X + 1000) .

The comparison between the actual and the computed values of T
is given in the following table:

X + 1000 T (actual) | T (computed) X4 1000 | T (actual)| T (computed)
0 e —0 $ 6,000 2.01 0.38
. $1,000 -—2.56 —1.31 11,000 2.47 0.94
1,500 —1.61 —0.92 26,000 2.94 1.76
2,000 —0.29 —0.66 51,000 3.23 2.38
2,500 0.59 —0.35 101,000 3.54 3.01
3,000 1.08 —0.28 201,000 3.82 3.66
4,000 | 1.56 —0,02 501,000 4,18 4.52

9. A New General Distribution Function

In this section we shall introduce another function for the gradu-
ation of the income distribution. This function meets the postulates
of Section 8 and has the merit of being derivable from probability
considerations.

Thus we shall assume that ¢ (z) has the form

(V] 1
1 —_—
() ¢ z“(ehfs__l)’ n>1’
where we employ the abbreviationz—==x — ¢.
From the well-known expansion

¢

e_t':‘_lzl—*t+B;t’/2!‘Bgt‘/4!+B;t‘/6!- e .
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where B, —=1/6, B, =1/30,B,=1/42, B,=1/30, ---, are the Ber-
noulli numbers, we see that (1) can be writien in the form

(2) ¢=%r#[1—§%+%(g)’#...],

in which we write p=n—1.
If z is sufficiently large, we obviously obtain

o
0o —
3 $UFEr
which shows that formula (1) will graduate the Pareto tail of the
income distribution.
Moreover, if z is a small positive value, then 1 in the denominator
of equation (1) can be neglected in comparison with €%, and we have
the following approximation when z is close to the threshold value ¢ :

a
— p-lz
(4) $o e, |
The limiting value is seen to equal zero as z —> (0, that is to say,
when z approaches ¢. '
The maximum value of ¢ is obtained by equating the derivative
of (1) to zero. Thus we get

{5) Ezd;f:zl‘(&/a) [e¥(b/z —n) +n]=0.
From this equation we then derive the condition that ¢ have a

maximum value. It is seen that z must satisfy the equation

(6) z= b s

_n-'p

where p ig the real nontrivial solution of the equation
pert=ner,

If we abbreviate the right-hand member of this equation by m,
that is, if n e» = m, then » may be approximated by the series
- . 8,8 . 125
= hd - —ms ..,
(7 | p=m+mi+ym tgmi+orm

Designating the value obtained from (6) by z, and the corre-
sponding value of ¢ by ¢,, we then obtain as the value of the maxi-

mum frequency the quantity
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ap
n-p
Returning to equation (1) let us multiply numerator and de-

nominator by b/z. Then if we use the abbreviation b/z = ¢, the
function can be written in the following convenient form

ap

=iy N BN
% bZo

(8) ¢o=0ab"p (n—p)r=

_ t
(9) p=N(2) 71
where we write
(10) N(z) =gz-l‘.

Equation (6) then takes the form
t=n—1p.

The total distribution is obtained from the integral of (1). The
value of this integral may be shown to equal

) f “$(2) de=abrT () L(w) =N,

where I'(5) is the Gamma function and { (), the Riemann Zeta func-
tion, is defined by the series
.11 .1
C(ﬂ) =1 +—%—+§+F+-ﬂ
Similarly the total income is given by the following integral:
(12) r¢(z)zdz=ab-'r(r) tr) =1I.
]

In the evaluation of the parameters for an actual graduation of
income data, it is necessary to know the values of I’(z) and {(x). The
brief table of the two funetions on page 411 is sufficient for this pur-
pose.
It will be observed from equations (9) and (10) that the sig-
nificant parameters for the actual evaluation of the frequency fune-
tion are b and a/b . But these are readily computed by means of equa-
tions (11) and (12), Thus eliminating a between these two equa-
tions, we obtain

il

I
1% =T N
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[ T'(z) A ] '{t)] a
11 095135 | —0.03318 | 1.1 | 10.68445 | —4.99287
12 0.81817 | —0.02070 | 1.2 5.59158 | —1.65963
1.3 0.80747 | —0.01021 | 1.3 293195 | —0.82640
14 0.88726 | —0.00103 14 3.10666 | —0.49317
15 0.88623 0.00729 | 1.5 2.61238 | —0.32661
1.6 0.39352 0.01512 | 1.6 2.28577 | —0.23148
L7 0.90864 0.02274 | 1.7 2.05429 | —0.17206
1.8 0.93138 0.03030 | 1.8 1.88223 | —0.13248
19 0.96177 0.03823 19 174976 1 —0.10482
2.0 100600 0.04649 | 2.0 1.64493 | —0.08471
21 1.04649 0.05531 | 2.1 1.56022 | —0.06978
2.2 1.10180 0.06491 | 2.2 149054 | —0.05812
2.3 1.16671 0.07546 | 2.3 143242 | —0.04908
24 124217 0.08717 | 2.4 1.38384 | —0.04186
2.6 1.32934 0.10028 | 2.5 1.34149 | —-0.03601
2.6 1.42962 011507 | 2.6 1.20548 | —0.03122
2.7 1.54469 0.13180 | 2.7 1.27426 | -—0.02723
2.8 1.67649 0.15087 i 2.8 1.24703 | --0.022%0
2.9 1.82736 0.17264 | 2.9 1.22313 | —0.02107
3.0 2.00000 0.19762 1} 3.0 120206 | —0.01868

Using this value we then obtain from equation (12)

a_ NV

b I'(u)l(w)’
It is also instructive to observe that both the modal income and
the modal frequency, given respectively by equations (6) and (B),

are evaluated directly by these formulas. Replacing (13) in (6) we
obtain

(14)

rwetw I
A TGN

Moreover, eliminating a and b from the first equation in (8), wi
obtain *

_ IO N
= e YT

If we assume that the distribution is strictly Paretian, namely,
that » = 1,5, then these formulas can be simplified. Substituting

humerical values for the Gamma and Zeta functions in (13), we
obtain

(15) 2o =

(16)

I
(17) b=10.77023 ik

Similarly, equation (14) reduces to the numerical form
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(18) -g- = 0:37915 IVI/N.

In order to evaluate the numerical coefficient in (15), we must
first cornpute p. This is readily found from equation (7) to be p—
0.11905. Substituting this value in (15), we then obtain

I
(19) Z, = 0.29578 b = 0.22782 W
Similarly equation (16) reduces to
N2
(20) $o==1.82135 — .

10. Theoretical Derivation of the Distribution Function

In order to derive the distribution function (1) of Section 9, let
us consider that there are N individuals in a population and that they
are to be distributed into income classes z,, 2., % ,---, the potential
number in each class being N,, N,, N., -.-. If the division is suffi-
ciently small between classes and if N is sufficiently large, then the
distribution may be regarded as being essentially a continuous one.

Now let us consider a typical class z, to which N, individuals
aspire to belong. If the total income for the class is I., then there
will be P.=1./z places in the class to be filled, It will be observed
later in the argument, that no actual spec1ﬁcat10n as to the amount or
relative size of I, is made.

But we know from the theory of probability that the number of

. ways in which P places can be assigned to N individuals is given by

(N+P-1)!
N@P-1!

For example, if N =5 and P =3, there are @ =71/(5!-21) =21
ways in which the individuals can be assigned to the three places.
Some of these assignments are 5 in the first place and none in the
other two; 4 in the first place, 1 in the second, 0 in the third, ete.

Introducing Stirling’s approximation

Q:

n! ™ n® ey 2an
for the evaluation of the factorials in Q, we readily compute
log @ (N+P-1) log(N+P-1) — (N+P~1) + } log(N+P~1)
—~NlogN + N —{log N —~ (P-1) log(P—1)
~ {log(21) — §log(P-1) .



THE NATURE OF WEALTH AND INCOME 413

Taking derivatives of both sides o; this expression with respect
to P, we obtain

14dQ L 3 1 1
g P log(N + P~ 1) — log(P 1)+2(N+P—1)+2(P—1)'

Since, by assumption, both N and P are large we may neglect the
last two terms of this expression and we may also replace P — 1 by
P without essentially altering the relationship. Thus, replacing the
approximation symbol with the sign of equality, we write

1 dQ
Q dP
We now introduce the assumption that the rate of change of Q

with respect to P varies directly with @, but inversely as the size of
the income class z, measured from the wolf point; that is

d
(@) 929

—=al, zZ=z—¢.

daP z

{1) =log(N+P) —logP.

There is no direct statistical evidence to support this assumption,
except the actual form of the distribution curve itself, However, it
seems reasonable to believe that the shifting of income recipients from
one income class to another takes place more rapidly in numerically
large income groups than in numerically small income groups, and
that there is a rather remarkable class stab1hty at high income ranges.
Eguation (2) expresses these assumptions in the simplest possible
mathematical form. If the formulation of the distribution problem
should prove unsatisfactory for data other than those used in this
ghapter, it is upon this question that more careful investigation should

e made,
Eliminating (1/Q) (dQ/dP) between (1) and (2), solving for P,

and introducing the subscript z, we finally obtain
N,
P' _-e_b";:—i-.

‘ But we know that as z increases P. approaches the Pareto dis-
tribution (a/b)z*, which means that Ny=az"n=n+1.

11. Statistical Verification

In order to verify the distribution function derived in the preced-
ing sectior, we may test its reality by applying it to the problem of
graduatmg the data given in Section 5.
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From the formulas givep in Section 9, in particular (13), (14),
(15), and (16), it is clear that the parameters of the general distribu-
tion function can be determined as soon a8 we know I, N, and ». It
may be readily suspected, however, that the practical adjusting of the
parameters to an actual distribution could be improved by some sta-
tistical considerations.

We begin with formula (10) in Section 9, which we now write in
the form

(1) N(z) =az*, a=a/b, z=z—c¢.

The parameter u is sufficiently determined from the graduation
of the Pareto distribution given in Section 6. Since p=yv -+ 1, we may
then assume with sufficient accuracy that

p=2.69672.

Since formula (1) gives the frequencies, rather than the aceumu-
lated frequencies, for large values of z, we must form next a frequency
table for incomes above $4,000. Since the unit in our basic data of
Section 5 is $100 for incomes lower than $4,000, we shall use this
same unit for higher incomes. The difference method of Section 4 is
then employed. It will be convenient also to let a unit in the z scale
equal $100, so that z=100.56 will be equivaient to $10,050 and the
frequency for this value of z will represent the number of people who
have incomes between $10,000 and $10,100. Although fractional “fre-
quencies” are thus introduced, we know that they express probabili-
ties, since there exist recipients of incomes in the neighborhood of the
assumed classes. The following table is thus obtained:

INcoME FREQUENCIES FOR CLASS INTERVALS OF $100
z {(unit = 100) taken at middle of class intervai

VYalugof 7 Frequency, N (2) Value of 2 Frequency, ¥ (#)
40.5 56,040 400.5 118
50.5 20,152 500.5 66
60.5 17,228 600.5 4]
70.6 11,139 700.5 28
80.5 7.652 800.5 20
0.6 5,481 $00.5 15

100.5 4,087 1000.5 11.76
110.5 3,143 1500.5 4.23
120.5 2,478 2000.5 2.15
130.5 1,984 2500.5 1.11
140.5 1.624 3000.5 0.72
150.5 1,368 4000.5 0.34
200.5 664 5000.5 Q.18
250.5 385 7600.5 0.06
300.5 249 10000.5 0.02
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Since ¢ will make a very small change in the value of z at high
income levels, we assume that z is approximately equal to z over the
range of the above table. Hence, employing formula (1), we may ap-
proximate the value of log o =log{a/b) from the formula

loga=log N(z) +ulogz.
For this computation the following table is obtained:

L4 | tog ¥ ] plogz | log N(2) log & z Ioz:l plogt log¥(s)| Jga
4005‘260260 T.018482.07188 1 9.09036 2000.5|3.30114| 8.90225 |0.83244 | 9.23469
500.51 2.69940| 7.27953 | 1.81954 | 9.09907 2500.5|3.39803{ 9.16354 |0.04532 19.20886
600.5] 2.77851 ] 7.49286 | 1.61278 } 9.10564 3000.5| 3.47719( 9.37701 |9.85735 |9.23434
T00.5) 2.84541( 7.67327 ! 1.44716 : 9.12043 4000.6| 3.60211| 9.71388 |9.63148 | 9.24536
800.5) 2.90336 | 7.82955 | 1.30203 { 9.13058 5000.5 | 3.69901( 9.97519|9.25527 | 9.23046
900.5] 2.95448 1 7.96741 11.17609 19,14350 T7500.5 1 3.87509} 10.45003 |8.77815 | 0.22818
1000.51300022 8.09075 | 1.07041 ] 9.16116 10000.5 [ 4.00002 10.78693 | 8.30103 | 9.08796
1500. St 3. 17624!8.56543 0.62634|9.1917'7 AVER. |9.16749

This average value, namely 9.16749, we shall use as our estimate
of log a. For the computation of a and b separately we employ formu-
las (6) and (B) of Section 9, which, it will be reealled, evaluate the
modal income, z,, and the modal frequency, ¢,. These formulas we
shall write in the form

(2) log b=log 2z, + log(n — p),
(3) ulog z,=log (a/b) — log ¢ + logp .

Fromn=u + 1 = 3.69672, we find m =n ¢* = 0.09170 and hence
from formula (7) of Section 9, we compute p =0.10148. From the
table in Section 5, we see that the modal frequency, which is at z =
9.57, is equal to 3,144,722. Hence, substituting log ¢, = 6.49758 and
the value of p given above in formulas (2) and (3), we compute

log z,=0.62160, logb = 117733,
Zo=418, b=15.043.

From log a and log b, we immediately obtain log o = 10.34482 .

Since the modal income is actually z=9.57, we find that e=
T — 2, i3 equal to 5.39, that is to say, $539. This value is the minimum
income, that is to say, the wolf point, which we have defined above.
One may argue its reality in the following manner. Since the esti-
mated population in 1918 was 103,588,000, and since our data report
the income of 37,569,060 persons, there is an average of 2.75 people
depending upon the subsistence income. Hence the per capita wolf
point is $196. It does not seem unrealistic to believe that the poorest
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surviving person in the econgmy of 1918 could not have maintained
existence on a smaller amount of real goods and services, In a recent
study of income levels carried out under the auspices of the Division
of Social Research in Washington, estimates were made for various
cities of an emergency level of income, which “allows more exclusively,
though not entirely, for material wants,” but which “might be ques-
tioned on grounds of health hazards if families had to live at this level
for a considerable period of time.”** It is interesting to observe that
the lowest per capita estimate of this emergency-level income was
$202.82, which compares with the value of the wolf point which we
have just obtained by other means. Since the study cited was made
for the year 1935 some correction is necessary, of course, for the level
of prices which was 157 in 1918 and 145 in 1935. It is also probable
that the emergency level is not exactly the wolf point, although a close
approximation to it.

It is interesting to compare the values which we have obtained
above with those given directly by formulas (13), (14), (15), and
(16) of Section 9. We observe that I == $57,954,722,341 and that N=
37,569,060. The value of v we have already found to equal 1.69672.
From the table of Section 9 we then determine the following values:
I'(») = 09081, {(») = 2.0582, I'(p) = 1.5408, {{(u) = 1.2753. The
value of b is then determined from formula (13) and found