MECHANIZATION IN THE BRICK INDUSTRY

WPA National researct project

Reports issued to date

General

6-1 Unemployment and Increasing Productivity (out of print)
0-2 The Research Program of the National Research PToject
0-3 oumary of findings to Dete, March 1838
-6-4 Eifects of Current and Prospective Technological Developmenta Udon Cadital Formation
A-3 Belected Rererences on Practices and Use of Labor on Farws (ost of print)
Studies in Types and Rates of Technologtcal Change
Manufacture
H-1 Industrial Instruments and Changing Technology
H-2 Hechanizstion in the Brick industry
B-2 Kechanical changes in the cotton-Textile Industry, 1910 to 1238 (Sumsary)
B-3 Hechanical changes in the Hoolen and Worsted Induatries; 1910 to 1036 (swamary)
Bu5 8ystema of shod Management in the Cotton-Garment Industry (out of print)
Mining
E-1 Technology and the Mineral Industries (out of print)
E-3 Mechanization Trends in Metal and Nonmetal Mining as Indicated by Bales of Underground Laading Equipment
E-5 Fuei etficiency in cement Manuiscture, 1909-1936 (out of print)
E-6 Mineral Technology and output per Man studies: arade of ore (out of print)
Agriculture
Changes in Fart Power and Equipment:
A-R Mechanical Cotton Picker
A-9 Trattors, Trucks, and Automobiles
4-11 Field Implements (in press)
8tudies in Production, Productivity, and Employment
Manufacture
6-1 Production, Emplogneat;-AnC Productivity in 50 Banuracturing Industries, 1010-86 Producivity and Employment in Selected Industries:
$\mathrm{N}-1$ Beat sugar
$\mathrm{N} \rightarrow \mathrm{O}$ grick and Tila
B-1 Lador productivity in the Lesther Induatry (Sumary)
B-4 Eifects of Hechanisation in Cigar Manufacture (Sumary)
B-6 Lebor Protuctivity in the Boot and ghoe induatry (smemary)

5
 WORKS PROGRESS.ADMINISTAATION

F. C. HARRINGTON Administrator

CORRIMGTON GILL Assistant Administrator

National hesearch project

on
Reemployment Opportunities and Recent Changes
in Industrial Techniques

DAVID WEINTRAUB
Director

mechanization in the brick Industry

by

Alfred J. Van Tassel
and
David W. Bluestone

WORES PROORESS ADMINISTRATION, NATIONAL RESEARCH PROJECT
Report No. M-a
Philadelphia, Pennsylyanie
June 1939

the wpa hational research project ON RREMPLOYYENT OPPORTUNITIES AND RECENT CHANGES . IN INDUSTRIAL TECHNIQUES

Under the authority granted by the. President in the gaecutive Order which created the Works Progress Administration, Administrator forry \&. Hopkins authorized the establishment Of a research program for the purpose of collecting and analyting data bearing on problems of employment, unemployment, and relief. Accordingly, the National Research Program was establ 1 shed in October 1936 under the supervision of Corrington Gill, Assistant Administrator of the WPA, who apdointed the directors of the individual studies or projects.

The Project on Reemployment Opportunities and Recent Changes in Industrial Tecmiques was organized in December 1835 to inquire, with the cooperation of industry, labor, and govarinmental and private agencies, into the extent of recent changes in industrisl techniques and to evaluace the effects of these changes on the volume of employment and unemployment. David Weintraub and Irving Xaplan, members of the research steff of the Division of Research, Statistics, and Finance, were apDointed, respectively, Director and Associate Director of the project. The task set for them was to assemble and organize the existing data which bear on tine problem and to augment these data by field surveys and analyses.

To this end, many governmental agencies which are the collectors and repositories of pertinent information were invited to cooperate. The cooperating agencies of the United 8tates Government include the Department of Agriculture, the Bureau of Mines of the Department of the Interior, the Bureau of Labor Statistics of the Department of Labor, the Railroad Retirement Board, the Social Security Board, the Bureau of Internal Revenue of the Department of the Treasury, the Departiont of Comerce, the Federal Trade Comission, and the Tariti Comission.

The following private agencies joined with the National Research project in conducting special atudies: the Industrial Ressarch Department of the University of Pennsylvania, the Sational Sureau of Economic Research. Inc.. the Byployment Stabilization Research Institute of the Jnjversity of Minnesota, and the Agricultural Economics Departmente in the Agricultural Experiment Stationg of Calitornia, Illinols, Iowa, and New York.

WORKS PROGRESŠ ADMINISTRATION

WALKERWOHNEON BUILDING 1784 NEW YORK AVENUE NW. WASHINETON, D. C.

F. C. HARRINGTON

ADMINIETRATOR
June 6, 1939

Colonel F. C. Harrington
Works Progress Administrator
Sir:
The report Kechanization in the Brick Industry, transmitted herewith, describes the changes in production techniques that the industry has experienced in the past 50 years. The changes of the last 20 years are analyzed in some detail.

Although the improvements in machines and in manufacturing techniques were limited largely to refinements in design and to the addition of relatively inexpensive auxiliary equipment, the cumulative effect of these minor changes on the amount of labor required per unit of product was considerable. In addition, the industry has benefited from the general technological progress since 1920 which resulted in the use of more wear-resistant metals and ball and roller bearings in brick-making machinery, in widespread electrification, and in the mechanization of clay-pit operations.

From the standpoint of the industry's capital outlays, it is notable that during the early and middle 1920's equipment purchases were made in the expectation of stable or increased demand and were concentrated on major production units. After the peak of production was passed in 1925, and particularly after 1929, the emphasis gradually shifted from increasing output to reducing production costs or to improving quality. In recent years the objective has been to accomplish these results without major capital investments, and the industry's equipment purchases have therefore centered mainly on devices that required emall capital outlays relative to the economies which they made possible.

Much of the economy in labor utilization could not, however, be realized during the past 10 years because of the extremely low level of capacity at
which the industry has been operating; in fact, the output per man-hour was actually lower in 1935 than in 1929. An upturn in the demand for brick is therefore bound to result in an appreciable increase of labor productivity and to reduce the amount of labor required to produce 1,000 common brick to much less than the 9 hours needed in 1925, the year of the last production peak.

During the last two decades brick manufacturing has also experienced a considerable concentration of production in a progressively deciining number of plants. The technological base for this concentration was provided by the availability of equipment which can be used most economically in the larger establishments and under conditions of fairly continuous operation. The present low level of operations relative to the capacity of the brick-manufacturing plants is furnishing an important stimulus to further consolidation. In the past such concentration of production has often been the result of mergers of a number of plants in a given region, the shutting down of the least efficient plants, and the operation of only the more efficient establishments. Should the same procedure be followed in the future, the general level of productivity of labor is bound to be raised with little or no expenditures on machinery and equipment to help offset the reductions in labor requirements in the manufacture of brick.

Respectfully yours,

Corrington Gill
Assistant Administrator

CONTENTS

Chapter Page
PREPACE. xi
I. INTRODUCTION 1
II. HISTORICAL BACXGROUND PRIOR TO 1920. 4
III. NECHANIZATION AND PRODUCTIVITY SINCE 1920 12
Production and productivity 12
Source of data on rates and types of mechanization 14
Clay pit 16
Excavation 16
Transportation 22
Clay preparation 25
Machine house 28
Drying 40
Artificial drying 40
Handilng in the drying process 41
Fuel economy 42
Auxiliary equipment 44
Burning. 44
Types of kiln 45
Auxilisry equipment 51
Type of fuel used. 54
Unloading of kilns and transportation. 56
Power, 59
IV SUMMARY. 63
Appendix
DESCRIPTION OF SURVEY DATA 69
NRP machinerymanafacturers survey 69
Clay-working equipment companies 80
Crushing and grinding equipment 71
Stiff-mud and soft-mud equipment 74
New machinery and repairs. 75
Excavating-equipment companies 75
NRP-NBER 1936 brick-plant survey 77
Brick and clay record 1927 brick-plant survey. 77
BLS 1922 brick-plant survey 77
SELTCTED BIBLIOGRAPHY 78
General and hiatorical. 78
Clay pit. 79
Clay preparation. 79
Machine house 80
Drying 80
Burning 80
SELECTED BIBLIOGRAPHY-COnt Page
Fens 80
Fuel 81
Instruments 81
kilns 82
Stokers 82
Unloading of kilns and transportation 82
Power 83
CHARTS AND ILLUSTRATIONS
Figure

1. Production and output per wage earner in the brick and tile industry, 1868-1985 6
2. Value of total production and of sales of clay- working equipment by eight companies, 1921-35. 14
3. Index of value of sales of power shovels and locomotive cranes to the claymworking industries, 1920-36. 18
4. Mechanical excavating and loading in the clay pit. 22
5. Clay preparation 26
6. Indexes of value of sales of crushing and grinding equipment to the clay-working industries, 1920-36 27
7. Machine house. 30
Q. Autonatic soft-mud molding machine 31
8. Indexes of value of sales of selected types of equipment to stiff-mud brick plants, 1920-36 34
9. Percentage distribution of value of sales of selected types of equipment to stiff-mud brick plants, 1920-36. 95
10. Pugmill, auger, and cutter 36
11. Indexes of value of sales of stiff-mud and soft-mud equipment, 1921-36 38
12. Drying in a soft-mud plant 42
13. Continuous system of rectangular kilns 46
14. Continuous minter system of beehive kilns 47
15. Setting brick in a rectsngular kiln. 52
16. Mechandcal transportation. 58
17. Effect of electrification 62
TEXT TABLES
Table
18. Production, wage earners, and output per vage earner in the brick and tile industry, 1889-1935. 5
19. Instances of the effects of mechanical loading on
labor requirenents in the clay pit 17
S. Proportion of brick and tile planta using mechanical loading equipment, 1022, 1927, and 1956 18

TEXT TABLES-Continted

Table Page
4. Distribution of power shovels used in clay pits, by kind of power, 1022, 1927, and 1996 19
5. Number of plants using power shovels, by capacity of dipper, 1927 and 1936 21
6. Proportion of brick and tile plants using animal power for hauling from the clay pit, 1822, 1927, snd 1936 23
7. Proportion of brick and tile plants using only cable haulage from the clay pit, 1922, 1927, and 1936. 23
B. Clay-pit costs per thousand brick, by capacity of plant, 1927 24
6. Distribution of brick and tile plants, by type of fuel used and product, 1826. 54
10. Total horsepower of the clay products (other than pottery) and nonclay refractorles industry; by source of power, 1919-28 60
11. Arerage rated horsepower of prime movers and electric motors in the clay products (other than pottery) and nonclay refractories industry, 1919-29 61
APPENDIX TABLES
A-1. Value of total production and of sales sample of clay-working equipment, 1919-sB. 70
A-2. Relative value of sales of clay-woring equipment to the brick and tile industry by varying numbers of companies, $1920-36$. 72
A-3. Value of crushing and grinding equipment sold to the brick and tile industry by seven companies, 1020-36 72
A-4. Vaiue of sales by five companies of selected types of equipment used principally in stiff-mud brick plantis, 1920-S8. 78
A-5. Indexes of value of sales of stiff-mud and softmud equipment by five companies, 1821-36 73
A-6. Value of sales of new machinery and repairs sold to the brick and tile industry by three companies, 1922-36. 74
A-7. Value of total production and of sales by three companies of power ghovels and locomotive cranes, 1919-38. 78

PREFACE

Not only do technological changes exert an effect on employment conditions and on the investment of capital, but they are themselves affected by the sphere of economic relationships within which they occur. An analysis of the industrial applications of the principles of science and engineering must therefore also embrace the economics of their application and the economic conditions that affect their introduction. With this as an approach, the National Research Project has conducted a series of studies on types and rates of technological change.

Some of these studies centered on individual types of technological advance that affect many industries. ${ }^{1}$ One deals with the growth of industrial research in the United States since the World War. ${ }^{2}$ In others, an individual industry was selected as the unit of investigation, and the subject for stady was the relationship of the economic requirements of the industry to the development and introduction of a variety of machines and production techniques. The present report is an example of this last type of study. Dealing with the brick-manufacturing industry, it is also a companion piece to the Project's broader stady of production, productivity, and employment in the brick and tile industry and presents a detailed picture of the mechanical improvements that were associated with the changes in productivity recorded in that volume.

The report was prepared by Alfred J. Van Tassel and David W. Bluestone. The field data used in this report were collected in cooperation with the National Bureau of Economic Research as part of the cooperative study on productivity and employment in the brick and tile industry. The series of "Studies in Equipment Changes and Industrial Techniques" are nader the supervision of George Perazich. J. Van Horn Whipple organized the field work and supervised the editing of the materials collected. The completed manuscript was edited and prepared for publication under the supervision of Bdmund J. Stone.

[^0]We appreciate the cooperation of the machinery manufacturers who provided our field workers with records on which most of the data presented in this report are based. James P. Martin, Vice President of the Lancaster Iron Works, Inc.; W. E. Cramer, President of the Harrop Ceramic Service Company; and M. E. Holmes, Dean of the New York State College of Ceramics at Alfred University reviewed the manuscript and made suggestions for its improvement. The National Research Project is of course alone responsible for the content of the report and the conclusions reached.

David Weintraub

Pbiladelpaia
June 5, 1939

APPENDIX
 DESCRIPTION OF SURVEY DATA ${ }^{1}$

HRF MCBIMERT-MAYOFICTUEERS SURTEY

Data were obtained in a field survey, covering 11 equipmentmanufacturing companies, conducted by the National Research Project in cooperation with the National Burean of Econowic Research. From these companies was obtained the value of sales, for 1920 to 1936 , of equipment used in the manufacture of brick and tile. Of these companies, eight produced clayworking (clay-preparing and machine-bousel equipment and three produced excavating equipment.

Clay-Toftiag Equipment Complion

For s of the 12 companies surveyed the data obtained refer to the value of sales of new clay-working machinery and repairs. ${ }^{2}$ These five companies are among the seven largest producers of clay-working equipment.

For some of the companies sales were not available for a few years of the period $2920-36$. For such years sales of the missing companies were estimated on the basis of the proportions that the sales of these companies comprised of the sales of the others in years for which the sales of all were available. One of these companies required such estimates for the period 1920-27. In one case estimates for the last 2 months of 1936 were made on the basis of the average for the first 10 months.

For 3 of the 11 companies surveyed the data obtained refer to the value of sales of selected types of new machinery only. These three companies together sold only about two hundred thousand dollars worth of such equipment over the entire period.

Data for one of the three companies were available only through the first 10 mont bs of 1936 ; sales for the remaining months were estimated fron the 10 -month average.

[^1]Fable A-1.- VALUE OF TOTAL PRODUCTION AND OF SALES gAMPLE OF CLAT-WOREIMO EQUIPMEMT, 1919-88

Year	Value of total production ${ }^{\text {a }}$		Value of sales by eight companies ${ }^{\text {b }}$		Percent that eightcompany sales are of total value
	Thousands of dollars	$\begin{gathered} \text { Index } \\ (1925=100) \end{gathered}$	Thousands of dollars	$\begin{gathered} \text { Index } \\ (1925=100) \end{gathered}$	
1919	3,187	80.2	n.a.	-	-
1920	n. 8 .	-	1,389 ${ }^{\text {c }}$	71.5	-
1921	3,772	71.2	1.107 ${ }^{\text {c }}$	61.6	31.7
1922	n.a.	-	$1.771{ }^{\text {c }}$	91.2	-
1923	5,508	104.0	$2.208^{\text {c }}$	113.7	40.1
1924	n. 8.	-	$1.776^{\text {c }}$	91.5	-
1925	5,298	100.0	1.942 ${ }^{\text {c }}$	100.0	38.6
1926	n. ${ }^{\text {a }}$	-	2,040 ${ }^{\text {c }}$	105.0	-
1927	4,308	81.3	1.462^{c}	75.3	33.8
1928	n.a.	-	1.569	80.8	-
1929	4,402	83.1	1,651	85.0	37.5
1930	n.a.	-	803	46.5	-
1931	1.671	31.5	561	28.9	33.6
1932	n. 4.	-	193	9.9	-
1933	591	11.2	228	11.8	38.7
1934	n. 8.	-	324	16.7	-
1935	1,071	20.2	420	21.8	39.2
1936	n. 8.	-	$827{ }^{\text {c }}$	92.3	-

${ }^{\text {a }}$ Regresents all clay-working machinery. Data are from Geneus of Nonufacturss: 1825 (U. 8. Dedt. Com. Bur. Census). D. 1081; 1828, II. D. 1098; 1833, D. E26; and 1835, p. 1090.
${ }^{\text {Deta }}$ are ITOM NRP machinery-manufacturers survey and cover sales of clay-morking (clay-preparing and machine-house) equipment and repeirs to the brick and tile industry oy elgit companios manufacturing equipment.
${ }^{c}$ partio estimated.
n. a. pata not avallable.

Table A-1 presents a comparison of the value of sales of clay-working machinery as obtained from the foregoing eight companies ${ }^{8}$ and the value of production of all clay-working machinery as" reported to the Census of Nanufactures. Examination of table A-1 reveals that the volume of sales obtained in the survey lluctuates closely with the value of total production. The percentage which the former series comprises of the latter varies between 32 and 40 . The average for the entire

[^2]period is 36.4 It should be noted that the census values include machinery used exclusively in the production of clay products other than brick and tile. Such machinery is not included in the sales series.

The Census of Manufactures specifies two industries that manufacture products made of clay - the "Clay products lother than potteryl and nonclay refractories" industry and the "Pottery, including porcelain ware" industry. The former, which includes the production of brick and tile, has roughly 90 percent of the total rated horsepower of the two industries. ${ }^{5}$ This proportion is not utilized exclusively in the production of clay brick and tile. Of the value of products of the "Clay products (other than pottery) and nonclay refractories" industry, between 5 and 20 percent represent the value of nonclay refractories. ${ }^{6}$ Such products, however, are manufactured by processes other than those used to produce brick and tile, ${ }^{7}$ and the equipment used in their manufacture is probably not included in the series for value of clay-working machinery. The sample sales series therefore accounts for a somewhat larger proportion of total production of brick and tile equipment than is indicated in table $A-1$.

The eight-company sales series was broken down by kinds of equipmeat sold by varying numbers of companies. The breakdowns are discussed below. Because data for several companies were not available for the entire period under consideration, partial estimates were required for these break-downs.

Crushing and Grinding Equipment.- Table A-3 presents the value of sales of crushing and grinding equipment. Such sales are presented in three categories - wet and dry pans; smooth-roll crushers; and granulators, disintegrators, and pulverizers - and are based on the records of seven companies.

[^3]
TO THE ERICE AMD TILE IHDUATET BY FABYIMG y

7ens	Indar of weles (1920]100) bry				Percent of eight-conpany antes comprised by sales of -		
	Ef fht companite	gaven oompanien	7\% osppanianc	Three companiond	Seven companies	Five conpande	2nree companian
1920*	71. 5	82. 1	72.3	78.9	68.1	9.8	52.0
1981*	81.8	54.6	01.9	68.3	67.7	09.5	52.1
1029*	01.2	c2. 4	01.4	81.5	77.0	09.8	43, 5
1923*	119.7	114.6	119.	101.9	78.7	98.7	43.4
1024*	01. 6	67.6	91.7	91.2	72.8	98.3	48.3
1925*	100.0	100.0	100.0	100.0	76.1	99.0	48.5
1920	105.0	100.0	105. 8	104.7	79.6	99.3	$4 \mathrm{s.3}$
1827*	75.3	78.8	75.7	E1.0	77.6	99.5	52.1
1928	80.8	62.8	60.0	81.5	78.4	90.1	48.9
1920	85.0	91.4	85.8	88.9	91.8	98.7	B4. 2
1980	46.8	43.5	40.8	48.9	74.4	90.2	61.0
1991	28.9	89.3	29.2	36.8	74.4	100.0	61.7
1932	9.0	6. ${ }^{\text {a }}$	9.8	10.9	\%. 2	00.0	53.0
1935	11.8	21.0	11.8	14.5	76.1	09.4	50.8
1934	10.7	17.9	18.5	24.0	91. 6	97.7	68.6
1935	21.6	23.3	21.8	31.1	82.0	90.5	e9.e
1930*	32.3	36.0	32.0	50.5	88.3	90.2	75.7

comected trin table AT.

*ertiy estinem.

TO THE BRICE AYD TILE IHDUSTEY BY GEVEY COMPAYIEB, 1920-8 8^{8}

(Thotamia of lollers)

Tesr	Totsis	Het and dry pans	Smootb-5021 ertiehers	Gramaliztoris. dislategratars. and pulferizers	Pencent thist pats (are of total (3-7enr
1020	88	$8{ }^{\circ}$	2^{4}	$13^{\text {e }}$	-
1981	101	$8{ }^{\circ}$	4	2°	87. 9
102\%	107	O_{2}	5	11°	68. 2
192s	293	$102{ }^{\circ}$	10	22 ${ }^{\text {² }}$	grem
1094	185	198	15	8%	01. 6
1923	188	101	7	14	77.3
1926	2es	27	7	48	76.8
1985	103	81	10	18	75.8
1028	198	83	\leqslant	5	76.8
1925	109	87	5	17	73.7
1959	41	量告	B	*	77.8
1992	38	31	3	8	74.0
198*	1	0	0	1	75.0
1093	6	\%	*	6	18.7
1984	5	*	0	8	48.9
1996	10	7	*	\$	\$9.9
1998	4.5	4	1	10	-

twigeres.
${ }^{6}$ matiy sentmited.
vane zon exas.

 $1930-5^{2}$
（Thosesade of dollaza）

Yener	Potal	Desirint ectulpmeat	Aufers and cambined pudidill and zuger minthines						
			Fotel	Audera	Contilned 	3－year gereent that con－ vined Nacintat 4rg of total	$\begin{aligned} & \text { Pus } \\ & \text { =ill } \end{aligned}$	Cutters	Foederab
	$\begin{aligned} & 309 \\ & 235 \\ & 0.59 \end{aligned}$	－	180 198 104	$\begin{aligned} & 87^{6} \\ & 30^{c} \\ & 32^{\circ} \end{aligned}$	$\begin{aligned} & 108^{6} \\ & 100^{6} \\ & 102^{6} \end{aligned}$	70． 8	$\begin{aligned} & 38^{c} \\ & 13^{\mathrm{c}} \\ & 98^{c} \end{aligned}$	102^{8} 78 888	$\begin{array}{r} 10^{\circ} \\ 9^{\circ} \\ 13^{\circ} \end{array}$
1023 1024 1008	535 388 338	－	184 188 181	04 06	180° 121 125	88.4	43°	90 08 08	11 14 18
1020 1927 1028	577 287 288	－	234 171 146	46 30 37	180 143 100	79.1	48 28 21	61 77 60	17 11 9
$\begin{aligned} & 1929 \\ & 1080 \\ & 1032 \end{aligned}$	168 172 108	－	148 95 88	20	128 80 48	88.7	38 28 36	78 47 28	$\begin{gathered} 16 \\ 4 \\ 70 \end{gathered}$
$\begin{aligned} & 1950 \\ & 1035 \\ & 1954 \end{aligned}$	58 38 48	18 40 41	1 1 0	3^{5}	0° 0° 0°	－	0^{6} 8° 3^{c}	0° 10	$\begin{aligned} & 1^{E} \\ & 1^{*} \end{aligned}$
$\begin{aligned} & 1098 \\ & 1038 \end{aligned}$	$\begin{aligned} & 152 \\ & 180 \end{aligned}$	$\begin{aligned} & 141 \\ & 154 \end{aligned}$	20	0^{c}	22^{0}	－	9^{c} 4		1^{6}

Eass anan 304

Table A－8．－IMDEEES OF TALOE OF EALES OF STIFF－MUD AND SOFT－MUD EQUIPMEKT ET FIVE COMPAMIES，1981－86 ${ }^{8}$
（1925：100）

Year	Totel	Stist－nua eanipmert		Yener	Fetes 1	equipmont	
1921	71.1	$7{ }^{7} .8$	－	1290	87.0	74．4	78.4
1管書	88，0	81.4	00.4	1980	40．${ }^{\text {2 }}$	40．8	87.5
2 cas	118．7	309.7	70.0	1981	28.0	29.3	03.1
3084	89．7	4．2	71.8	1982	20.7	13．8	98.8
19808	100.0	100.0	78.	1930	17．8	93． 1	¢0． 3
$1 \mathrm{Sta}^{8}$	200.4	104．	77.0	1084	14.8	$3 \mathrm{3}-4$	9日． 1
390	78.0	61．8	95．7	1838	44．7	80．9	8．8
198	720	87.0	17．0	1098	35.4	71.3	

 timplet．

These seven companies accounted for from 66 to 86 percent of the eight-company sales series (table A-2).

Stiff-Kud and Soft-Kud Equipment.- The sales of selected types of machinery used principally in stifi-mud plants are presented in table A-4. These sales are presented in the following categories: Deairing equipment, augers, pugmills, combined angers and pugmills, cutters, and feeders. The figures presented are based on the sales records of five companies, which accounted for over 98 percent of the eightcompany sales series (table A-2).

Of the five companies, one also produced soft-mud equipment. Since this company produces the AutoBrik machine, the fundamental piece of equipment used in further mechanizing soft-mud plants, the sales of this company are believed to represent adequately the purchase of soft-mud equipment. Table A-5 presents the trend in the relative importance of stiff-mud and soft-mud equipment. The value of equipment sales used in constructing table $\mathrm{A}-5$ is based upon a selected series of

Table A-6. - VALDR OF GALES OF NET MCEIMEET AND BEPAIES SOLD TO THE BEICX AYD TILE IMDDETET BY THEE COMPAKIBS, $1982-88^{8}$
(Tionotide of dollaza)

Year	rotal	New machinery	Repair parts	Percent that new machinery is of total
1922	787	253	514	33.0
1923	959	404	555	42.1
1924	859	426	493	49.6
1925	941	485	456	51.5
1926	085	543	442	55.1
1927	807	428	381	52.8
1928	786	394	972	51.4
1929	848	458	388	54.1
1930	480	213	247	46.3
1931	346	195	151	56.4
1932	102	49	53	48.0
1933	136	85	51	02.5
1934	227	146	81	64. 3
1035	292	182	110	62.3
1936	475	288	189	60.8

[^4]machines, equal to about one-fourth of the eight-company total shown in table A-1,

New Kachinery and Re加irs ${ }^{8}$.- A comparison of the sales of new machinery and repairs is given in table A-6. Data are based upon sales of three companies, which represent from 43 percent in 1922 to 76 percent in 1936 of the eight-company sales series (table A-a). ${ }^{8}$

Exenvester-Equipmate Copoalea

In addition to the eight companies producing clay-preparing and machine-house equipment, three companies were covered which produced excavating equipment. Each of the companies manufactured power shovels, and one manufactured both power shovels and locomotive cranes. The data obtained are for sales to the brick and tile industry; they refer only to complete new units and, probably, some rebuilt units.

The brick and tile industry consumed only a small fraction of the power shovels and locomotive cranes produced by the three companies. Total sales of these products by the three companies, however, comprise a large portion of the value of total output of the two types of equipment (table A-7).

Repairs and resales make up a considerable portion of the sales of two of these companies; for the third, available data cover only new units. ${ }^{10}$ The Census of Nanufactures normally includes in its detailed production tables only new units and parts, listing receipts for repair work separately. It is therefore likely that the percentages shown in table A-7 are inflated.

The total-sales series was partly estimated. For one company the 1936 data were obtained for only 9 months; figures for the last 3 months were estimated on the basis of the monthly average for the first 9 monthi. For another company the figures for 1920 and 1936 were estimated on the basis of the ratios in 1921 and 1935 respectively of the sales of this company to the sales of the other two.

In the instance of sales by these companies to the brick and tile industry, however, only one estimate was needed. Such

[^5]sales were available, for one company, for only the iirst 10 months of 1936 ; data for the last 2 months were estimated on the basis of the average for the first 10.

> Table A-7. - VALEE of TOTAL PRODUCTION AHD OF SALES BY. TBREE COMPAMIES OF POWBR SHOVELS AYD LOCOMOTIVE CRAEES, 1910 - f

Year	Value of total product $10 n^{8}$ (thousands of dollars)	Value of sales by three companies			
		Total ${ }^{0}$		To brick and tile industryc	
		$\begin{aligned} & \text { Thousands } \\ & \text { of } \\ & \text { dollars } \end{aligned}$	```Percent of value of total production```	$\begin{gathered} \text { Fhousends } \\ \text { of } \\ \text { dollars } \end{gathered}$	$\begin{gathered} \text { Index } \\ (1025=100) \end{gathered}$
1919	15,388 ${ }^{\text {d }}$	п. 2.	-	I.a.	-
1920	a.a.	14.478 ${ }^{\text {8 }}$	-	850	122.2
1921	$15.887^{\text {d }}$	5,422	34.2	148	27.4
1922	n.a.	9,074	-	409	78.8
1923	$29.226^{\text {d }}$	14,112	48.3	577	108.5
1924	n.a.	11,648	-	568	106.8
1925	32,895 ${ }^{\text {f }}$	12,547	38.2	532	100.0
1928	n.s.	13,005	-	413	77.6
1927	38,494 ${ }^{\text {f }}$	12,742	33.1	329	81.8
1928	n. s .	14,878	-	232	43.6
1929	48,301	18,952	34.4	308	57.9
1930	n. 2.	9,941	-	83	15.8
1931	20.442	B,183	40.0	82	15.4
1932	B.a.	3,507	-	0	0
1933	5,095	3,108	81.0	19	3.8
1834	a.a.	4,588	-	13	2.4
1935	13.295	8.282	47.3	32	8.0
1936	n.a.	8,218 ${ }^{8}$	-	47^{8}	8.8

 1820, II, 1000 and 1095 , D. 1078.
Data are from frp machinery-manufacturers survey and cover two companies manufacturing power shovels and one company manufacturing both power shovels and locomotive cranes. Data for the lattar company are for naw units only (no repairs or rebuilt equipment). Dats for the former companies include repaira and resales. In the case of ona, about 70 percent of the sales represented sales of new units, about 20 dercent represented ressles, and about 10 percent represeated parta. In the case of the other, sbout ane-third represented rapaire.
${ }^{c}$ Includes complete units only. some rebuilt unita may be included. The company manufacturing both power shovela and locomotive cranes sold only the latter to tha brick and tile inductry.
${ }^{\text {deta }}$ for locomotive cranes were not reported for 1919 , 19R1, and 1985. Values were estimated by multiplying the palue of power ahovels in these jears by the 1925 ratio of the value of locomotive cranes (sed fth. t) to the value of power ohovela.
${ }^{0}$ partiy astimated.
Crawler and locomotive cranes were reported in combination in 18e5 and 1087. The value of locomotive cranes only was estimated on the basis of the 1889 proportians. n. A. Data not aplilable.

MRP-NBER 1985 ERICE-PLAMT SURVEY

Data were obtained in a field survey conducted by the National Research Project in cooperation with the National Bureau of Economic Research. The results of this survey are summarized in a report by Miriam E. West, entitled Productivity and Employment in Selected Industries; Brick and Tile (WPA National Research Project in cooperation with National Bureau of Economic Research, Report No. N-2, Feb. 1939).

One hundred and eight plants were surveyed, their major product being either common brick, face brick, paving brick, hollow building tile, or drain tile. Average annual production per plant for plants for which the information is available was 35 million common-brick equivalents in 1925 , 24 million in 1927, 19 million in 1929, and 7 million in $1935 .{ }^{11}$

BRICE AYD CLAY RECORD 1987 BEICE-PLANT SURVEY

This study, published in the Brick and Clay Record (Vol. 70, No. 13 [June 21, 1927], 1002-25) as an article entitled "Clay Pit and Mine Methods", is based upon 120 plants reporting on loading methods, 102 using power shovels, 82 reporting on shovel size, and 73 reporting on type of power utilized by shovels. The plants covered in the study made comnon brick and building tile; their size, as represented by annual production per plant, was 22 million brick laverage for 36 plants which reported production). ${ }^{12}$

BLs 1922 BEICI-PLANT SURVET

This survey covered 71 plants manufacturing common building brick. Of these plants, 45 used the stiff-mud process and 26 the soft-mud process. The average annual production per plant was 38 million brick. ${ }^{12}$ The results of the survey are presented by Willian F. Kirk in Productivity Costs in Common-Brick Industry U. S. Dept. Labor, Bur. Labor Statistics Bull. No. 356,1924).

[^6]
SELECTED BIBLIOGRAPHY

This bibliography comprises largely material from technical periodicals which refer to the brick and tile industry. Most of the citations are presented in a topical division, according to the various phases of technique discussed in the report. In the general and historical section are also included some books and monographs dealing with less particularized aspects of the ifeld.

The bibliography was derived from a survey of the periodical literature for the period 1920-36; this covered selected articles listed in the Engineering Index and in the Industrial Arts Index and also a comprehensive review of the Brick and Clay Record, the leading trade journal of the industry.

OEREEAL AID EISTOEICAL

*"Better Clay Machinery is Making 01d Types Obsolete," Brick and Clay Record, Yol. 74, No. 8 (Apr. 9, 1929), 534-40.
*Census of Manufactures. U. S. Dept. Com., Bur. Census.
"Clay Pit and Mine Methods," Brick and Clay Record, Yol. 70, No. 13 (June 22, 1927), 1002-25.
*Clay Products Cyclopedia and Equipment Catalog. Third edition; Chicago: Industrial Publications, Inc., 1926. Pp. xvi+336.
*irk, William F. Productivity Costs in Comon-Brick Industry. U. S. Dept. Labor, Bur. Labor Statistics Bull. No. 356, 1924. Pp. iv+71.
*Kleymeyer, Henry C. "Soft MudBrick - Some Reminiscences, "Brick and Clay Record, Vol. 86, No. 4 (Apr. 1935), 134, 136.
*Miller, B. B. What You Can See in Chicago Plants," Brick and Clay Record, Vol. 70, No. 3 (Feb. 1, 1927), 186-91.

Petts, Blias. "Soft MudBrick Machinery," Brick and Clay Record, Vol. 78, No. 8 (Apr. 21, 2931), 442-4; Vol. 78, No. 11. (June 2, 1931), 598-9.
Ries, Heinrich. Building Stones and Clay Products. New York: Wiley and Sons, 1912. Pp. $x \mathrm{~V}+415$.

[^7]"A Romance in Industry," Brick and Clay Record, Vol. 62, No. 11 (May 29, 1923), 40 ff .
*Tile ClayProducts Industry: Plant Locationfactors. New York: Metropolitan Life Insurance Company, Policyholders Service Bureau, 1931.
*West, Miriam B. Productivity and Employment in Selected Industries: Brick and Tile. Philadelphia: Works Progress Administration, National Research Project in cooperation with National Bureau of Bconomic Research, Report No. N-2, Feb. 1939. Pp. xxv+212.
"What to Consider When Rehabilitating a Clay Products Plant," Brick and Clay Record, Vol. 88, No. 2 (Feb. 1936), 57-8; discussion of this article by R. B. Keplinger, Vol. 88, No. 3 (Mar. 1936), 102.

CLAT PIT

"Economical Method of Clay Winning," Brick and Clay Record, Vol. 89, No. 9 (Sept. 1936), 87, 119.
"Modernize or Pass Out of the Picture," Brick and Clay Record, Vol. 67, No. 13 (Dec. 22, 1925), 930-4.
"Poeumatic Diggers Get Out Clay for Brick-Making," Compressed Air Magasine, XXX, No. II (Feb. 1930), 3029-30.
Rainey, L. B. "Where Costs Can Be Cut," Brich and Clay Record, Vol. 66, No. 12 (June 9, 1925), 908-10.
"Saves Labor of Ten Miners," Brich and Clay Record, Vol. 67, No. 5 (Sept. 1, 1925), 330-2.

CLAT PEBPAEATIOX

Brown, Davis. "Grinding Clays," Brick and Clay Record, Vol. 64, No. 10 (May 13, 2924), 734-6.
*"Clay Preparation," Brick and Clay Record, Vol. 77, No. 14 (Dec. 30, 1930), 790, 793, 796-7.
*"Crusher, Elevator and Feeders Save Ten Men," Brick and Clay Record, Vol. 66, No. 13 (June 23, 1925), 986.
"A Model Remodeled Plant," Brick and Clay Record, Vol. 59, No. 13 (Dec. 27, 2921), 987 ff .
*Reed, P. B. "Developments in Dry Pan Construction," Brick and Clay Record, Vol. 65, No. 5 (Sept. 2; 1924), 322-3.
"Wet Shale No More Retards Production," Brick and Clay Record, Vol. 59, No. 8 (Oct. 18, 1921), 573-4.
*"Why Do Preliminary Crushing?" Brick and Clay Record, Vol. 66, No. 13 (June 23, 1925), 983-6.

MACEIME FOUSE

*"Better Clay Machinery is Making O1d Types Obsolete," Brick and Clay Record, Vol. 74, No. 8 (Apr. 9, 1929), 534-40.
"Burn as,500 Gals. Oil Daily in Kilns," Brick and Clay Record, Vol. 61, No. 11 (Nov. 28, 1922), 793-4.
*nDe-airing of Clayware," Brick and Clay Record, Vol. 86, No. 1 (Jan. 1935), 12-6.
*"A Revelation on the fludson River," Brich and Clay Record, Vol. 63, No. 4 (Aug. 21, 1923), 259-63.

DEYMA

"How \$48 a Week Was Saved on Dryer Operation," Brick and Clay Record, Vol. 61, No. 7 (Oct. 3, 1922), 466-7.
"Oil Engines Drive Georgia Brick Plant," Power, Yol. 63, No. 13 (Mar. 30, 1926), 481-2.

begime

Fase

*"Fans and Fan Practice in Clay Industry," Brich and Clay Record. Vol. 75, No. 5 (Aug. 27, 1929), 278-89.
"Fans Increase Kiln Capacity 20,000 Bricks Daily," Brick and Clay Record, Vol, 72, No. 3 (Jan. 31, 1928), 199-201.
*"A New Way to Use Fan Draft, "Brick and Clay Record, Yol. 78, No. 5 (Mar. 10, 2931), 278, 280.
Taylor, D. W. "\$10,000 Well Spent Saves Many Thousands Yearly," Brick and Clay Record, Vol. 65, No. 1 (July 8, 1924), 31-3.
*"When Forced Draft is Used," Brick and Clay Record, Vol. 67, No. 6 (Sept. 15, 1925), 408-9.
Willson, L. B. "Reports Data on Oil Burning Test," Brick and Clay Record, Vol. 69, No. 1 (July 6; 1926), 28-9.
*" $100,000,000$ Face Brick Annually, "Brickand Clay Record, Vo1.63, No. 4 (Aug. 21, 1923), 253-7.

Fis)

"Anthracite Coal for Burning Clay Ware," Brick and Clay Record, Vol. 80, No. 3 (Mar. 1932), 144.
"Better Brick \$100 Per Xiln Cheaper," Brick and Clay Record, Vol. 71, No. 5 (Aug. 30, 1927), 340-2.
"Burn 25,500 Gals. Oil Daily in Kilns," Brick and Clay Record, Vol. 62, No. 11 (Nov. 28; 1922), 793-4.
*"Burning Brick with City Gas;" Brick and Clay Record, Vol. 65, No. 3 (Aug. 5, 1924), 267-8.
Butz, C. F. "Factors to Consider When Using Natural Gas," Brick and Clay Record, Yol. 77, No. 10 (Nov. 4, 1930), 529-30.
"Chicago Brick Plants," Brich and Clay Record, Yol. 76, No. 7 (Apr. 8, 1930), 460, 462.
*"City Gas Successfully Burning Brick," Brici and Clay Record, Vol. 70, No. 4 (Feb. 15, 1927), 292-3.
Cutbush, Geo. "Burning Comuon Bricks in Producer-Gas Fired Continuous Xilas," Contract Record and Engineering Review, Vol. 34, No. 4 (Jan. 28, 1920), 81-2.
*"Fuel in the Clay Industry," Brick and Clay Record, Vol. 70, No. 7 (Mar. 29, 1927), 534-46, 552-3.
*Horwell, Henry T. "How We Burn Face Brick with Oil," Brick and Clay Record, Vol. 61, No. 10 (Nov. 14, 1922), $722-4$.
*"Oil Burning the Country Over," Brick and Clay Record, Vol. 69, No. 1 (July 6, 2926), 30-3, 46-52.

Taylor, Mark A. "Eleven Years of Oil Burning Experience," Brick and Clay Record, Vol. 61, No. 4 (Aug. 22, 1922), 246-7.
"Using Coal for Buraing Clay Ware Instead of Natural Gas," Brick and Clay Record, Vol. 80, No. 3 (Mar. 1932), 142-3.

Intrumente.

*"Controller with Anticipatory Features," Brick and Clay Record, Vol. 77, No. 14 (Dec. 30, 1930), 806, 809.

Longenecker, B. L. "Controlled Draft Condition Gives Good Firing," Brick and Clay Record, Vol. 88, No. 6 (June 1936), 222-3.
Straight, H. R. "Draft Control as a Means of Fuel Conservation in Kila Firing," Journal of the American Ceramic Society, Vol. 19, No. 12 (Nov. 19361, 318-21.

Kilas

Dickinson, W. W., Jr, "Burning Brick in Portable Kilns,".Brick and Clay Record, Vol. 59, No. 1 (July 12, 1921), 29-32.

Greayes-Walker, A. F. "Future of Down-Draft Kilns, With Comment From Tunnel Kiln Men," Brick and Clay Record, Vol. 76, No. 7 (Apr. 8, 1930), 445-7.
*"Imense Saving With Continuous System of Burning," Brick and Clay Record, Vol. 56, No. 4 (Feb. 10, 1920), 322-5.
*"Increasing Kiln Volume Without More Kilns, MinterSystem," Brick and Clay Record, Vol. 61, No. 2 (July 25, 1922), 102-5.
*Kruson, J. H. "Insulated Kiln Saves 17\% in Fuel," Brick and Clay Record, Vol. 63, No. 1 (July 10, 1923), 22-6.
Longenecker, H. L. "Native Ingenuity Links with Modern Mechanics in Unique Brick Plant," Brick and Clay Record, Vol. 76, No. 9 (May 6, 1930), 585-6.

Stokere

"Modernization," Brich and Clay Record, Vol. 73, No. 9 IOct. 23, 19281, 577-89, 592 ff.
Rice, W. E. and Faller, R. R. "Stoker Fired Kilns, a Report of Tests Made at Ohio State University," Brick and Clay Record, Vol. 79, No. 6 (Sept. 22, 1931), 250-3.
*"Stoker Fired Periodic Kilns," Brick and Clay Record, Vol. 77, No. 9 (Oct. 21, 19301, 473, 506.

DKLOADING OF EILHB AMD TRAHSPORTATIOM

"How New York's Brick Are Made," Brick and Clay Record, Vol. 69, No. 4 (Aug. 17, 1926), 266-9, 272.
Montgomery, Graham L. "Handling the Finished Products of Industry - V," Chemical and Ketallurgical Engineering, Vo1. 27, No. 25 (Oct. 31, 1922), 731-3.

Montgomery, Graham L. "Mechanical Handling Equipment in Face Brick Manufacture," Chemicat and Metallurgical Engineering, Vol. 31, No. 11 (Sept. 15, 1924), 413-6.

* Pallet and Electric Crane Saves $\$ 1.20$ PerM on Unloading Costs," Brich and Clay Record, Vol. 72, No. 22 (June 5, 1928), 851-2.
*Pagne, Barold J. "Would Electric Trucks Help Yon?" Brick and Clay Record, Vol. 67, No. 4 (Ang. 18, 1925), 256-9.
*"Truck Systen Bliminates Seven Men," Brick and Clay Record, Vol. 69, No. 4 (lagg. 17, 1926), 273-6.
"Troctractor Saves Labor at Fire Brick Plant," Brick and Clay Record, Vol. 75, No. 9 (Oct. 22, 1929), 549.

PONEE

 chinery," Brick and Clay Record, Vol. 76, No. 5 Mar. 11, 1930), 307-10.

MModernization," Brick and Clay Record, Vol. 73, No. 9 (Oct. 23, 1928), 577-89; 592 11.

Taylor, D. Y. "\$10,000 Well Spent Saves Many Thousands Yearly," Brick and Clay Record, Yol. 65, No. 1 (July 8, 1924), 31-3.

WPA NATIONAL RESEARCH PROJECT

Reports issued to date
(Continwd from inside front cover)
Studies in Production, Productivity, and Employment-continued

> Mining

E-2 small-8cela placer, Mines as a source of oold, Employnent, and Livelinood in 1036 (owt of print)
E-4 Employment and Related statiatics of Minea and Quarries, 1935: Cosi
5-7 Tecmolagy, Employment, and Dutgut per Man in phosphate-Rock Mining, 1880-1837
E-8 Chengea in Technology and Labor Requirements in the Crushed-Stone Industry
E-0 Mechnigation, fiplosient, and output per Yan in Bituminous-cosi Mining (in press)
:-10 Technology, Emplogment, and output der Man in petrolewn and Natural-Ges production (in press).

Agriculture
Changes in Fechnology and Lador Requirements in Crop Profuction:
A-1 Sugar Beets
h-4 Potstoes
A-5 corn
A-7 cotton
A-10 Whest and oste
A-8 Trands in size and Production of the Aggregete Farm Enterprise, 1809-86
A-8 Trends in Emplogment in Agriculture, 1900-3s

Studies of Effects of Industrial Change on Labor Markets
P-1 Recent treade in Emplogment and Jnemployment in philadelphia.
p-\& The Lavor force of the philedelphia Radio Industry in 1936
p-s Employment and Unemployment in philadelohla in 1936 and 1937 (in two ports)
P-4 Ten Tears of Work Experience of phliadelphia Hesvers and Loom Fixers
P-6 Ten Years of Work Experlence of Philadelphla Yachiniats
p-6 Reamplognent of Philsdelphia gosiery Workers After shut-downs in 1983-s4
P-7 The Sarch for Work in Phlladelphia, 1932-36
L-1 Cigar raxers - After the Lay-orf
L-E. Decasualisation or Longshore Work in San Franciaco
L-S Employment Experience of Paterson Broadugilk Workera, 1986-36
L-4 Gelective Factora in an Expanding Labor farket: Lanceater; Pa. (in prass)
L-5 Labor and the Decline of the hosizeag Textile wills (in press)
L-d Changes in Machinery and $j 00$ Requirenents in minnesota yanufacturing, 1881-36 (in press)


```
    Fublleztions section, Division of Inforestlon
```



```
                                    #emington; O.C.
```


[^0]: ${ }^{1}$ See, for example, the report by ceorge perazich and others, $I_{n d i s}$ trial Instruments and Chang ing fechology (WPA Mational Research Project, Report No. M-1, Oct. 1938). Report now in greparation by ceorge peresich.
 Sirias E. West, Productsuity and Pobloyment in selected findutrias: Brich and Tile fPi Motional Research project in cooperation with matitmal Bureau of Bconomic Research, Report No. N-2, Fab. 1239).

[^1]: ${ }^{1}$ prepared by Julius k. Ballciz in collaboration with the anthors.
 Repairs include sales of repair parts and charges for rebolldinge

[^2]: Sthe sales of clay-axceatating equipment by three companies producing power shovels $^{\text {che }}$ and locomotive cranes have not been included, since the census figures do not include axcarating equipeent.

[^3]: ${ }^{4}$ Except for 103s, the aurvey series represents an increasing prodortion of the census serlas in years for which the latter 18 higher than in the preceaing census year; the aurvey series represents a ceacreasing proportion or the census series in yas for which the lattor is lower than in the proceding census year. An adparent reason tor this relationshid is that the survey series rapresents seles, wherens the censue figuras art for production. In years of rising ailes, inventories may de depleted; in yeara of 10 m sales volume, inventorles may be bulit up.
 $5_{\text {The }}$ percentages are 88.5 in 1010, 91.6 in 1028, 01.2 in 1926, 00.6 in 1027, and 80.0 in 1929, the last year for which data are avalleble (based on Census of Namfoc twres).
 ${ }^{6}$ The percantages ovar the period $1028-55$ range fran 5.7 in 1984 to 19.1 in 1035. The movement of these percentages is sinost steadily upward (bssed on cenew of Mamfacteras).
 ${ }^{7}$ clay Products cye lopedia and Bquipment catalof (sa eq.; Chicago: Industrial Publications, Inc., 1928). passic.

[^4]: ${ }^{\text {a mopeirs }}$ tnclude sales of repair parts and charges for robuilding. dats are from NRP machinery-manufacturers survey and cover salea to the brick and tile industry of thres companies manufecturing orick oquipment.

[^5]: Bepalrs include seles of repair parts and charges for rebuilding,
 ${ }^{\circ}$ The percentages tluctuated betweon 4s and 02 , without ovincing any trend, during the period $1020-52$ in 1853 the percentage rose from $\$ 3$ to 80 , rose again to 70 in 1854, and then to 76 in 1036.
 ${ }^{10}$ See table A-7. tun. b.

[^6]: ${ }^{11}$ plants studied in this survey tend to be larger than the plant of average siag when the entire industry is considered. Avarage anmal production in the industry (based on Census of Hanufactures) was 10 allilion common-brick equivalents per estabilshment in 10R5-20 and 5 milion in 1035, according to Miss West's redort (p. 08), See chap. 1I, ftn. 1.

 12 por avertge protuction of all plants see ftn . 11.

[^7]: *cited in thas report.

