SELECTIONS FROM THE RECORDS OF THE BOMBAY GOVERNMENT.

No. CCCCLXXXVII.-New Series.

PAPERS

RELATING TO

THE REVISION SURVEY SETTLEMENT
 OF THE
 DADU, SEHWAN AND JOHI TALUKAS

OF THE

LARKANA DİSTRICT.

KARACHI:

REVENCE DEPARTMENT:
 Office of the Commissioner in Sind, Government. House, Karachi, 29th June 1912.

From

A. D. YOUNGHUSBAND, Esquire, C.S.I., I.C.S.,

Commissioner in Sind,
To
HIS EXCELLENCY BREVET COLONEL THE HON'BLE,
SIR GEORGE SYDENHAM CLARKE, G.C.S.I., G.C.M.G.,
G.C.I.E., F.R.S.,
Governor and President in Council,
Bombay.
Honourable Sir,
I have the honour to submit proposals for the revision of assessment rates of the three talukas of Dadu, Sehwan and Johi forming the Sehwan Division of the Larkana Collectorate. The proposals which are systematic, lucid and most reasonable, have been prepared by Mr. Covernton and are entirely concurred in by the Colleotor, Mr. Baker, in consultation with whom they were prepared. Mr. Baker, who possessed very great experience and knowledge of settlement maiters and inspected all the three talukas, has gone so thoroughly into all the questions involved that little or no room is left for oriticism. The material prosperity of this Division has remained almost unaltered since the reports were prepared by the Settlement Officer and does not call for any alteration of the rates proposed.

Grouping.

2. Mr. Covernton, has divided the talukas into two groups, so far as the irrigated dehs are concerned. The first group comprises the whole of the Dadu taluka and 41 dehs of the Sehwan taluka, while 26 dehs of Sehwan and all the irrigated dehs of Johi are included in group II. This arrangement is commendably simple and is based on sound reasons which have been well stated.

For barani dehs three groups have been proposed. The first of these contains 5 dehs of Johi taluka which have an exceptionally good water-supply from the Gaj Nai through the Rajwah, getting thereby what is practically a Rabi flow supply. The other group, which comprises all barani dehs proper, has been sub-diyided into sub-groups (a) and (b). The dehs of sub-group (a) are irrigated from canals which take off from the Gaj Nai at a point where the Nai issues from the hills, where the main bed is narrow and deep and the torrent has lost none of its force: consequently they receive a considerable volume of water entirely under control. While the debs of sub-group (b) are not sp favourably situated as regards water-supply. The grouping proposed is sound and I recommend it for the acceptance of Government.

Rates.

3. The proposed rates are very reasonable and thoroughly accounted for in the reports. I recommend the rates proposed for sanction en bloc with slight modifications in the rice rate of 2nd class dehs of taluka Sehwan and the rice rate of taluka Johi. The 2nd class dehs of taluka Sehwan
в 169-a
are generally those that depend for their water-supply on the Manohbar. Mr. Covernton has in paragraph 6 (ii) of his report shown how unsuccessful the Manohhar rice crop has been. Rice is cultivated there because no other crop cail be raised. The results of the recorded experiments on the rice of the Manchbar dehs show that the proposed rate of Rs. $3-8$ is rather high. Similarly the results of the experiments made by Mr. Covernton on rice in Johi taluka and the calculations based on them at page 15 of the Johi report indicate that the proposed rate of Rs. $3-8$ for rice in Johi is also high. Moreover the difference of 8 annas between the rice rate of the lat class dehs of taluka Sehwan, supposed to be equal to the good rice dehs of Dadu, and the rice rate of the Manchbar dehs which are all in the 2nd class, and whore according to Mr. Covernton rice is most unsuccessful, seems too small. I would therefore recommend that the proposed rate of Rs. 3-8 for rice should be lowered to Rs.'3-4 for the 2nd class dehs of taluka Sehwan, and also for the Johi taluka.
4. The proposed dubari rates are in accordance with the modern principle of differentiating between watered and unwatered dubari and may be accepted.
5. Kacha rates have been assimilated to those of the Moro and Naushahro talukas which are on the opposite bank of the river. Mr. Covernton proposes to abolish the distinction between ploughed wheat and barley and ploughed other crops. This distinction has always seemed most invidous. Firstly because it is an obvious crop rate which should be avoided as far as possible in an irrigational settlement and secondly because it was intended to discourage the cultivation of wheat as being an exhaustive crop. But as the kachas are flooded every year whereby fresh allupial soil is deposited, there should be no fear of exhaustion of soil.
6. Barani rates.-Mr. Covernton has proposed a reduction in the barani rates and an abolition of the system of remission in the case of barani lands. He has pitched his rates low so as to compensate the zamindars for the losses of bad years. I agree in these proposals and commend them for sanction.
7. The special rules for the administration of the revised irrigational settlement contained in Appendix A to Mr. Covernton's settlement reports, have been fully explained in the report, and I am in entire agreement with the proposals contained therein.
8. Mr. Covernton suggests that the period of guarantee should be 10 years: Mr. Baker recommends 20 years. I am of opinion that in view of the large irrigational projects, which are under consideration at present, the period of guarantee should be fixed at 15 years, as sanctioned by Government in the case of Larkana, Kambar and Ratodero, subject to the reservation that a further revision will be made if the Rohri Sukkur Barrage is constructed and an improved water-supply provided.
9. I append three statements, showing the existing and proposed rates in the different villages of the several groups and the modifications suggested by me. The financial results of the proposals made by the Settlement Officer and the modifications proposed by myself are shown aud compared below.

	Existing Assessment.	Proposed Assessment.	Increase.	Decrease.	Percentage of Increase.	Percentag of Decrease.
Dadu,	Re.	Rs.	Rs.	RE.		
Settlement Officer	1,32,323	1,47,933	15,810	\cdots	1179	\cdots
Commisaioner in Sind	1,32,322	1,47,933	16,610
Sehwan.						
Settlement Officer	1,43,857			4,894 5,539		3.40 3.86
Commissioner in Sind	1,43,857	1,38,318	**	6,539	...	$3 \cdot 86$
Johi.						
Setilement Officer	1,31,874	1,10,742	...	21,132	**	16.08
Commissioner in Sind	1,31,874	1,08,446	**	23,428	**	17.76

10. Petitions of objections together with 3 statements embodying an abstract of the petitions and the Colleotor's remarks thereon are forwardet herewith. The objections do not call for any modification in the proposals.

I have the honour to be,
Your Exoellency's,
Most obedient servant,
R. E. GIBSON,

For Commissioner in Sind.

Statement showing the existing rates in the Dadu taluka with those proposed by the Settlement Officer.

Kharif.

*Exolualze of one wholiy forest doh (Belo Chol).

Statement showing the existing rates in the Johi taluka with those proposed by the Seltement Offeer and the Commissioner in Sind.

Kharif.

Rabi.

Rivinub Dipartmeyt.

Settlement Offices:

Larkana, 23rd April 1909.
From

> S. H. COVERNTON, Rsquine, I. O.S., Settlement Officer, Sehwan,

To
TH: COMMISSIONER XN SIND.
Sir,
In acoordance with Government Resolution No. T/39, dated the 30th September 1908, I have the honour to submit proposals for the revision of the irrigational settlement in the Dadu taluka.

Brief description of the taluka.

2. Dadu is bounded on the north by the Marvi wsh and Kakar taluks, on the east by the Indus, on the west by the Nara, and on the south by Sehwan taluka. The taluka may be divided into two parts, on the west are the lowlying lands of the Nara Valley and on the east the lands watered by small canals taking directly off the river.

The taluka now contains 53 dehs, deh Ghalu having been completely eroded by the Indus. The average length of the taluka is about 28 miles; itst width varies from 7 to 14 miles; and its total area is 294.36 squate miles. Its population according to the last census was 55,454 , which gives an average of 188 to the square mile. The only town of any size is Dadu, the head-quarters of the taluka, which has a population of 2,235 . The climate is, as usual in Upper Sind, exceedingly hot in summer, and cold in winter with occasional frosts. The average rainfall for 5 years is 3 inches 95 cents.

Markets.

3. As a rule the grain is purchased by dealers from the zamindars in their villages and deras. Such as is not required for local consumption is sent by the banias to the railway stations at Dadu, Phulji road, Puranodero, Sita road (in Kakar taluka) and Bhan (in Sehwan taluka) for export to Karachi and Europe, or shipped at Puranodero inta boats which convey it to Gidu Bandar and the Fuleli.

There is no market of great importance in the taluka, but Dadu serves as a centre of the grain trade especially for the centre and south. At Sits road station there has sprung up a village of grain-dealers and their godowns which plays a similar part in the north. Messrs. Ralli Brothers have an agency at Sita road and several other Karachi grain-dealing firms have agencies both there and at Dedu and Puranodero. Some of the large and more enterprising zamindars and especially the Hindus despatch their own grain to Karachi and sell it there.

Communications.

4. No new roada have been constructed in Dadu taluka during the current settlement. Nevertheless the taluka is well provided with the means of communications. with all parts. The principal roads used for transport are-
5. The trunk road from Sehwan to Shikarpur through Dadu, which runs from south to north through the taluka.
6. Johi-Dadu.
7. Bhan-Dadu.
8. Dadu-Bahawalpus,
9. Phulji-Phulji
10. Kamal-Khan,
11. Pat to Sita road atation station. and Puranodero:
$2 \cdot 169-1$

These roads are of course all unmetalled, but except after heavy rain they are sufficient for the traffic which pasees over them, especially as bullock earta are rare and most of the grain is carried on camels, donkeys, or bullocke. Grain is also conveyed in boats during the inundation along the Nare and Pritchard wah to Sita road. The cost of transport is said to be as follows :-

But on comparison with the Johi rates these appear much too high and I have little doubt that grain can generally be carried much more oheaply.

The North-Western Railway line to Sukkur and Shikarpur runs through the length of the taluka. There are four stations within the taluka borders, at Khudabad, Dadu, Pbulji road and Piaro goth; a goods station on a branch line at Puranodero (called for some reason "Phulji Bandar") and two stations just outside the taluka at Sita road and Bhan. In addition to these a station was built two years ago between Phulji road and Dadu, but it has not yet been opened andit seems doubtful whether it will ever be used. The Khudabad station has been opened and that at Piaro goth enlarged during the settlement, but in spite of their convenient positions they have not bren much ased for goods traffic as until recently they possessed no telegraph office. In fact Piaro goth is still without one.

There are ferries over the Indus at Sita, Ghalu, Jhalo, Puranodcro and in deh Sbahani.

Manufactures and Industries.

8. There are no manufactures in the taluka. There are 53 oil-presses in
> - 1 kharar of jambho in Dede contains 21 mands. the taluka in which oil is extracted from cains 21 mannas. Js 8 to Rs. 14 per elharar. 1 here are no cotton gins or rice-husking engines.

Irrigation.

6. The report of the Executive Engineer, Western Nara, is attached at the end of this report. The purport of Mr. Krishnarao's remarks is as follows :-

The principal canal of the taluka is the Western Nara. This canal and its branches irrigate the western and south-western dehs of the talnka. The Pritchard wah, the mouth of which is in taluka Meliar, enters the Western Nara in the north-west corncr of Dadu taluka and acts as a feeder to the Nars for the whole Seliwan division. These two canals during the last 5 years bave been very little affected by the vagaries of the inundations or by changes in the course of the river, and their working has been uniformly satisfactory, at any rate since the improvement to the Akil mouth in 1905. Such emplaints as are heard are rather of ton much water than of too litile. This is especially the case with the lands below the tail of the Escape ohannel for Chandan wah). Ever since the new, mouth to the Nara was built, there has been lese need of water in the Pritchard wab, and it seems to have been the custom to run off the surplus down the Escape channel into the Sutiaro dhand. This overflows into the Jakhpari dhand and this again fills a series of depressions and dhoros in Jung, Marvi, Kandi, Baghban, Makhdum Bilawal and Pir Gunio. All the kharif crops that Tie in the path of this flood are destroyed and the lands are in many cases'rendered unfit even. for sailabi rabi crops.

I observe the Executive Engineer desoribes the working of the Eseape channel during the past 3 years as satisfactory. This is no doubt true in the sense that there was an abundance of water. But the condition of thing which existed was certainly not satisfactory to most of the zamindars nor wat fts effect on agriculture good. This year it was even worse than usual. For ass a rule there is sailabi cultivation in the bed of the flood, though the crope are for the most part rather bad. But this year the lands remained solong
submerged that in Marvi and Kandi, etc., bardly any sailabi crops oould be grown at all.

The principal brapohes of the Nara are the Kudan wah with its continuation the Juberji branch in deh Juberji, the Karo wah and Lower Nur wah in the central soothern parts of the taluka and the Garibi and Ali Ganj in the south-west. The Juberji branch also reoeives water from the Pritohard wah as well as the Nara. The working of all these branches has been satisfactory since 1905. Before that year both the branoles and the Nara itself seem to have been very wariable. Some yeara they would give an excellent supply while in others as, e.g., in 1902 a change at the mouth produced disastrous results. I understand that at the end of last summer another unfavourable change lias taken place in the Akil mouth of the Nara, but the Executive Engineer assures me that ir is not Iikely to make much appreciable difference in the Sehwan division; 6 inches or a foot is the full supply at the most.

The rest of the taluka is served by a number of small capals tnking direetly off the riwer and these, Mr. Krishnarac points out, suffer very much from the vagaries of the river and are at present somewhat unreliable. Nor does it appear to be quite correct that they worked fairly satisfactorily in the last few years even in a low inundation. In 1907 they all failed very early and most of the crops depending on them suffered considerably. This was especially the case with the Marvi wah in the north of the taluka and the Upper Nur wal in the centre. But on the whole the Marvi wah has worked more consistensly than the Upper. Nur wah upon which a large portion of the taluka depends. This latter canal suffered from changes at its mouth both in 1901 and 1907. A new mouth was constructed last yenr which should improve its working in the future. This mouth opens out of a dhand, one end of which has now silted up; but the Exceutive Engineer is of opinion that in the future a sufficient supply of water will reach the canal from the southern ead of the dhand. But the full supply may be from 6 inches to one foot lower than it was last year. (This point is not referred to in this report, but the opinion was given in a separate letter).

The Kolab Sial and its branches the Wadhuand Ghari wah irrigate a large area in the east and centre. Except in one or two years, such as 1907, 1898 and 1899, the Kolab Sial itself has worked fairly well during the settlement. The two branches seem to have been rather more uncertain, hut their lower portions are sometimes aided not only from the Upper Nur wah but also by a supply of water from the Nara through the Karo wath which fully compensates for any fall in the ziver.

The south-enst oentre is dependent either on the river or the Phitto. From the Executive Engineer's report it would appear that the Phitto has been on the whole a eatisfactory canal. This however is bardly true of its higher portiens alove the junction with the Lower Nur wah, the working of which was certainly unsatiafactory in 1907 and was not, I believe, very good in 1906. There are constant complaints about this caasl which, siive the beginning of the settlement, takes off not from the main stream of the river but from what is now a sort of dhand in the inundation seacon, although i think there is some exaggeration in these complainta and that in ordinary years the cultivation on the Phitto might be much larger af the karias were oleared.

The Lower Nur wah from the Nara now tails into the Phitto wah and below the point of junction the supply of water is fairly good both in kharif and rabi. In a bad year some of the Nur wah water is ulso made to flow eastwarde for a little way up the bed of the Phitto.

The Executive Engineer's map which aecompanies his report showe the tracts watered by earh canal. This map does not appear to be quite up to date in some respects. Not only has the course of the river altered somexhat but large parts of Chanrath and Buth Malho which are marked as watered from canils are now either waste or watered frous the river. And the tail of the Lower Nur walk from Khudabad to the Phitto wah is not shown at all.

The north of the taluka is protected from river floods by the Fatehpur thand; the average cost of maintaining thîs band is Rs. 364 per year.

Improvementa.

The Executive Engineer states that the construction of the Akil mouth in 1903 and its widening in 1904 did not materially affect the Sehwan division. But its further widening to 125 feet in 1905 has very considerably helped all those dehs whioh depend for their supply on the Nara and its branches. The opening of the Pritohard wah in 1890 referred to by him took place during the previous settlement and its effects seem to have been duly considered by Mr. Disney and Sir Evan James in framing the proposals for the ourrent settlement. A new feeder was dug into the dhand at the mouth of the Pritohard wah in 1903, which for a year or two belped to improve the supply in that oanal and the Nara. But since 1905 changes in the river have made it of little effect and on the other hand the improvement at Akil rendered the aid of the Pritchard wah less necessary to the Nara:

The condition of deh Juberji has been much improved by the construction of the Juberji branch, and that of the central dehs by the improvements of the Upper Nur wah in 1891 and 1892 which affected the Ghari and Wadhu wahs no less than the Nur wab. These improvements would appear to justify the raising of the old 2nd group dehs on this canal to the 1st group. The construction of the new mouths to the Upper Nur wah in 1905 and 1907 are not exactly "improvements," but were intended to restore the canal to its former condition. The new mouth of the Marvi wab constructed in 1903-04 seems for a time to have removed all ground for complaints in the northern dehs, but much of this advantage has again been lost recently owing to changes at the mouth.

Dehs Kinjhar, Rap, Samuhi, Nasrani and Pambi still depend either on the river or private canals, i.e., the Shah Ibrahim and the two Imam Ali wahs, and the Dilbahar wah from the Chikan dhand. Except the latter the working of these canals has been unsatisfactory of late years partly owing to changes at the mouth and partly to the failure of their owners to keep them in proper repair.

The average annual cost of repairs has been shown by the Executive Engineer jointly for all 3 talukas and as many of the canals serve more than one taluka I see no way of dividing up the cost between the three. The total average cost for the 3 talukas is Rs. 1,243. The statements showing the distribution of oultivation under each head of irrigation are also shown jointly for the 3 talukas. Appendix XII however fulfils this purpose for Dadu taluka eeparately. According to this there has actually been a small deorease in the riee area in this taluka during the past 15 years. Unfortunately the details of the cultivation in 1892.93 were so unreliable that they could not be given in that statement. But it would seem that the average rice area in the 5 years 1893-94 to 1897.98 was about 1,300 acres more than it was in the last 5 years of the previous settlement, i.e., $1885-86$ to $1889-90$, and this increase was undoubtedly due to the opening of the Pritchard wah in 1890 as Mr. Krishnarao points out. But then there is some reason for believing that the area of rice in those earlier five years was very much smaller than it had been not long before. The Bimoki area during the years 1893-94 to 1897-48 was smaller than it had been under the old settlement and has now decreased yet further. On the other hand kharif lift has increased considerably and rabi lift most remarkably under the current settlement and it is here that the effects of the various improvements are best seen. Sailabi has decreased cansiderably, probably on account of the shifting of the river. Generally speaking the sailabi lies near the river though there is also some in the path of the Chandan flood; kbarif charkhi is in the centre of the taluka, and bimoki and rice in the east, as is shown in the map of the Executive Engineer. Rabi charkhi and watered sailabi or bosi crops are found ohiefly near the Nara and Phitto and on the banks of the various dhands in the north of the taluka and wohurs in the east.

The division of the taluka into charkhi madad moki and moki madad charkhi dehs proposed by me in paragraph 15 does not always agree with the colouring of Mr. Krishnarao's map, but this is because his red oolour inoludes asilabi, bimpki and fice, whereas I have oonsidered only the bimoki area in each deh.

The number of wells used for irrigational purposes in Dadu taluka has
－See Appeodix X．The Execntive Enginear＇s figares of wolle do not －ppear to be correcta steadily iucreased during the settlement and is now 817^{*} an compared with 398 in 1892－93． The water which is in most cases swert and abundant is nsually found at a depth of from 20 to 30 feet，sometimes much lews，e．g．， 12 to $1 \bar{j}$ ．The orops usually grown on wells are wheat and garden vegetables（especially onions），and in most cases are exceedingly good．A orop on a kaoha well in Markhpur，on which a former Assistant Collector performed an experiment，produced 55 kasas of wheat to the acre．The area navally oultivated on a single well is about 6 acres．

Fistory of the current selllement．

7．The ourrent is the first irrigational settlement introduced into the original ladu taluka and the second in the fourteen northern dehs transferred from Kakar．It was introduced iuto both parts in 1592－1893．The average annual revenue whioh the settlement was expected to produce appears to have been Rs． 81,050 for the original Dadu debs and Rs． 20,420 for the Kakar dehs， altogether Rs． $1,01,470$ ．The average of annual collections during the settle－ ment（excluding remissions）is Rs． $1,31,429 . \dagger$
＋Or Re．1，32，975 after the incluaion of the belated collections referred to below． Thus the original estimate of the settlement has been oonsiderably exceeded．The rtason for this seems to be that the cultivation area was very much under－estimated，being based on the average of the annual area of cultivation during the five years previous to 1889－1850 in the old Dadu dels and on the average of the 10 years previous to 1890－1891 in the Kakar dehs．New in 1892－1893 these average arens had olr ady been very greatly exceeded and although the cultivation area has steadly declined since then，it has never fallen back，to the old level．This decline in the oultivation area since 1892－1893 is naturally accompanied by a decline in the gross demand and in collections as is shown in A ppendices XII and XIII，and the improvement in the last 5 years during which the Nara has been working satisfactorily is but slight．

Remissions are shown in Appendix XIII．On an average they come to Rs． 5,789 or 4 per oent．of the gross demand．Arrears average ks． 1,167 ．But these arrears consint very largely of remissions sanctioned and collections rea－ lised after the olose of the revenue year．If these belated remissions are added to the total of remissions in Appendix XIII the average will be Rs． 5,829 or 4.2 per cent of the grose demand．A rrears still outstanding are Rs． 181 only． The reasuns for the remissions shown in Appendix XIII are given in the table below ：

Statement showing reasons of remissions in Dudu taluka．

Yat．	Defricent water． uapsis．	Hiocata	Ehar，		Fallow： fortsited nsens－ ment．		roentay	Bila－ ：1020	Forenta，	Other	Tolal．	Eaxalis）
1	1	8	\bullet	5	＊	7	8	θ	10	11	13	15
	En，${ }^{\text {a }}$	很．	88，a，	Is．	En＊	Ms． 4 ，			Ra．m．	Rf．${ }_{\text {m }}$	R5． 3 ．	
1096）	\％ 13	\％	\cdots	落 18	$1{ }^{17} 0$	\ldots		\cdots	\cdots	${ }^{\text {m }} 8$	1，781 10	Detait
1694.98	7010	8，702 13	．$\quad \cdots$	ㄷ．	1，162	\cdots	\cdots	\cdots	\cdots	${ }_{38}^{28}$	10，093 ${ }^{1}$	able．
1805.00	18811	．．．	－．．．	\％ 6	等	\cdots	\cdots	\cdots	．．．	180	\％87 8	
1002－99	1，00．	䧺 11	\cdots	\％	3，2\％${ }^{\text {\％}}$ 1	\ldots	$\stackrel{*}{*}$	\cdots	シi 0		1，760 0	
1808480	4178 19	．．．	\cdots	＊＊	8，778 8	\ldots	．．	．．．	0	10%	0，214 18	
1000 1000	16， 4 ， 0	＇6	208 ${ }^{10} 10$	1314		\ldots	\ldots	＊＊	8086	$301{ }^{1 / 19}$		
100108	5， $3,7 \%$	\cdots	286	．．．	7，008 14	$30^{\circ \prime \%}$	\cdots	\ldots	\cdots	8018	10，400 ${ }^{2,48}$	
1poses	${ }^{13,429} 8$	\ldots	．			\cdots	\cdots	－	\cdots	－	18.488	
jonsor g．0s．0s	¢，838	\cdots	\cdots	38.7	088	\cdots	．	\cdots	5，0̈88 11	\cdots	14．504 11	
700－08．	sow 51		\ldots	\％ 8	2，988		\cdots	3693		프․		
	8， 101911	${ }_{858} 3819$	\cdots	021			${ }_{50}{ }^{2010}$	积 8	…	$\begin{array}{r} 99 \\ 211 \\ 290 \end{array}$	2189 4,888 40	
	40，008 18	1，\％ese 3	2ns 10	$1 \mathrm{t}^{6} 0$	23，304 11	119	8． 8	651	8，876 \＄	9871	90，878 10	
Areman．．．	6，1971	755	171	31	1，© 6	145	88	67	${ }^{3} 118$	47	0 0xa 8	

Now if the fallow remissions（column 5）and the figures in columns 8 and 4 be deducted，the balance of＂fasli remissions＂will average only 4,315 or 3 per cent．of the average gross demand，which cannot be considered as high．
－169－9

The revenue has been recovered without any difficulty, èspecially during the last 6 years. Notices had to be issued in a large number of cases, but as the accompanying statement of coercive processes shows, it has only once in that period been found necessary to inflict fines for late payments. No forfeitures of property or land have oceurred since 1902 except in the oase of fallow lande.
Coercive processes resorted to in Dadu taluka during the current settlement.

8. The area of occupied land in the taluka has increased since $1582-93 \mathrm{by}$ about 3,500 acres, but the unoccupied area has also increased by about 3,700 acres, and thus their relative proportion has remained almost unchanged. The increase in the talukn area seems to be due chiefly to the surveving of large unsurveyed numbers and the more accurate figures thus obtained and still more to the surveying of kacha lands which had hitherto been outside the deh maps. The principal area thus added to the taluka was Kacho Sita on the borders of Sita del.

At present the cooupied area is $53 \cdot 1$ per cent. of the total area of the talukr us compared with 53.3 per cent. in 1892-93. The oultivated area according to Appendix XII has declined by more than 16,000 acres and the fallow area in 1907-08 is 16,000 acres more than in 1892-93. But the inundation in 189293 seems to have been almost unusually high one and it is probable that a large

* Permission for one year. area was cultivated on kbas mokal* or without permission. Certainly the area of cultivation in that year was much bigher than bofire or since.

The increases or decreases in the area of cultivated land in individual dehs since Mr. Disney's report are for the most part comparatively small. The only cases in which a remarkable change has taken place are shown in the following statement (dubari is not inoluded):-

Deh.	Amount of increase or deerease.			Remarka.
Sidwah	...	845 acres inc		This increase seems to be due to the surveying of kaoha lands.
Pir Gunio	...	675	...	This seems to be due to surveying of unsurveyed land and the lapse of a jagir.
Sita	*..	1911 "	...	Due to the surveying of Kacho Sita.
Aminani	...	354 decrease	...	Due to the defective working of the Phitto wah and to kalar, and to the non-clearance of karias.
Nurja	...	373	..	The same reason and failure to clear karias
Nasrani	\cdots	528 \#	\cdots	Chiefly due to erosion.

The total cultivated area of the taluka according to the avprage of the last 3 years was 8,225 acres greater than the average for the years $188 \overline{0}-86$ tol $1889 . .0$. It is of course fur lower thata in the first year of the seltlement whish was a very exceptional year. But throughout the first 10 years of the settiement after 1892-93 the oultivntion area ountinurd to decrease, presumably on acoount of the unsatisfactory working of the Nara in several years. During the last .5 years a rise has again taken place.

Crnps.

9. The area of oultivation under each kind of erop during the past 5 yeara is shown in A ppendix XI.

No new staple has been introduced into the taluka.

Varieties and outturn.

(i) Bice.

In the centre and north of the talaka sathriun, tor, motiro, lari and ocoasionally sugdasi are grown on the Nara and e'sewhere. In Kurpur and the south-west corner the rice is almost all lari. The latter is a coarse and low priced variety which is grown very extensively in the Sehwan division, because it suffers less from floods thin auy other kind. It is therefore peculiarly well adupted to the Nara Valley where the rice fillds are usually uneven and lie in the beds of dhoros and depressions and the water-supply is therefore very imperfectly under control. Tor is anotiuer inferior variety, the price of which is lower than either sathriun or lari. Even sugdasi and sathriun are much inferior buth in quality and productiveness to the ugdasi and sathriun grown further north, doubtless because they require a level surface and oareful wateriny. In the Mail country, I helieve, an average field of sugdasi will produce 2 kharars per acre. What appeared to be a very good tield of sugdasi in Jung was found when experimented on to produce only 50 kasas per acre. A field of sathriun in Markhpur, which was certainly better than any of its neighbours, gave only $42 \frac{1}{3}$ kasas. A field of tor produce $51 \frac{1}{2}$ kases per acre. In all these enses the fields were the best I saw in the neighbourhood and the general run of crops would probably only produce about $3 \overline{3}$ kasis.

I lieard of one feld near Bagbban which was said to have given last year 80 kasas to the acre. But this was evidently regurded as very extraordisary if not absolutely incredible.

Two experiments on lari rice in Sehwan taluka save 60 kasas per aere but investigations in the deras of other dehs of Sohwan and on the Johi side gave much lower results, i.e, 30,20 and even 10 kasas per acre. No doubt Johi rice is inferior to that of Dadu, but the difference is very much less than that which exists between Didu and Larkana.

> (ii) Jaar.

The juar most cultivated in the taluka is one or other of the white varieties, but rid juar is not infrequently grown in a corner of the field along with the white. The varieties of both appear innumerable and their names differ in different parts.

This year so much damage was done to all the juar of the taluks by inseets that it was not ersy to arrive at any reliable estimate of the out-turn, especially as my experiments gave the most various results. But it seemed to be established pretty certainly, tirstly, that in this taluka charkhi juar is very much more productive than moki. and seoninly that a kharar to the acre is a goo 1 but not extranrdinary crop for charkhi juar especially in a favourable year. Out of 13 experiments in chirkhi juar in this taluka, 2 gave 60 kasas, one 50 , oae 40 , and 4 mure betwe n 40 and 30. The rest gave poor results but were poor orops. Probably an average oharkhi orop would give about 50 kasas. In oharkhi madad moki juar I found one good patch in an otherwise poor field, which give a result equal to 60 kasas per aore. But this was far ab we the aversge of tie whole field. Other results were $\mathbf{4 6}, 41$ and 35 kasas per aore. All o:ber fields experinented on gave exceedingly low resulta.

I found nne crop of moki juar which gave 35 kasas to the acre and another which gave 31. Hut the averagely good field this year gave about 20 kasae and about half of those I tested gave less than 12. But it is true that the moki crops in this division were poorer than ususl this year, for they suffered both from overflooding and from the attacks of the caterpillar.
(iii) Bagri.

The nutturn of this orop is muoh the same as that of juar when the latter is not injured by insects (for bajri is not exposed to their attacks). Out of 5 experiments in charkhi and charkhi madad moki bajri this year, the lowest gave 26 kasas and the highest 60 . Other results were 50,35 and 30.
(iv) Wheat.

No cxperiments in this were possible as the harvest was not ready when the report was written.

An experiment made by the Assistant Collector in 1906 gave 44 kasas to the acre for lift wheat. Another marle in Markhpur ni wheat grown on a kaclia well gave 55 kasas. Two old experiments in sailabi gave 40 and 35 kasas respectively.

The usual varieties grown in the taluka are thori, rari and gandio.

> (v) Jambho and othor oil-seeds.

One experiment in charkhi sariha in this taluka gave an avernge outturn of 23 kasas to the aere. A field of cbarkhi ahur gave only $11 \frac{1}{2}$. kasas to the aore. Both these were charkhi bosi orops, i. e., unwatered after the seed was sown. One field of bosi jamblo gave 30 kasas and one of bosi ahur only 8 kasas to the acre.

The methods of cultivation in this taluka are those which prevail all over the district. A description has been trequently given beiore (e. g, in the Mehar report) which it seems unnecessary to repeat. It nay however be noted that in addition to the transplantation method of cultivation, rice is also sown broadoast in this taluka. Sometimes the two methods are alternated in the same field-rice is transplanted for 2 years and broadeast in the 3rd.

Prices.

10. The retail prices of the staple agricultural products during the past 9 years of the settlement are shown in Appendix XV, from which it will be reen that with the exception of juar, bajri, barley, matar and chana, the prices of all the chief products lave risen. Even juar and bajri are dearer now than they have ever bren since 1899-1900, a year of unusually high prices, and in all grains there has been a steady rise duning the past 7 years. Whether the figures given in these appendices can be implicitly relied on I do not know. There are many inexplicable aifferences between the Sehwan and the Dadu price lists and I fancy Mukhtiarkars did not always take much trouble to fecord the prices accurately. But at any rate there is no durbt at all that the prioes of grain atuffs and other things also have risen of recent years. In 1849 bullorks are said to have cost only Rs. 25 each. Now even a moderate bullock can eeldom be hought for less than 50 rupees and a really good one may cost from ks. 80 to Rs. 100 ,

All this means for the bari an increased outlay on seed and plough bullocks and also on food, unless he happens to have some of last year's produce stored up. Thus if the prize has become more valuable, yet the staken are also higher.

No doubt increased expenses do not affect the zamindar direotly. But in most cases be is bound to advance the hari the money required for the purchase of seed and bullocks and thus year by year be requires more capital and incurs grester risk. On the cther hand although there is no means of ateertaining accurately the wholesale prices obtained by the zamindars for their produce there can be no doubt that they have risen along with the retail rates. Of course the price whiph the zamindar can obtain for his grain varies slightly from weok to week and no doubt this is the reason why the
remission rates in neighbouring dehs sometimes differ so greatly. For example, in 1907 the juar rate sanctioned in Markhpur was 54, in Makhdum Sahib 48, and in Nasrani, which is further away from a goods station or market, it was 53. But bowever unreliable the remissinn rates may be in oalculating the average rate in a given deh, yet they show very clearly how the wholesale prices have risen in the taluka during the past 6 years.

Snnctioned rates for remission purpases.

	$\begin{aligned} & \text { 1002-03 } \\ & \text { per kharar. } \end{aligned}$	$\begin{gathered} 1907-08 \\ \text { por kherar. } \end{gathered}$	$\begin{aligned} & 1908-08 \\ & \text { per kharar. } \end{aligned}$
	$\ddot{\mathrm{Ra}}$.	Rs. Re.	Rs. Rs.
Juar (white) Lari vice	86 to 40	48 to 54	60 to 75
	27 to 30		48 to 50
Sugdasi rice Rsjri	30 to 38	54 to 55	No remissions.
		50 to 62	60 to 70
Wheat	60		
	1903-04.		
	Re. Re.		
Sariba Jambho	60	100 to 1110	**
	48 to 50	90 to 110	'**

No doubt prices have already fallen somewhat below the hish level reached at the beginning of the current year. But I believe it is the çase that a similar rise has been taking place all over India for some years past and it seems highly probable that whatever the causes may be they are permanent and that the rates wiil in future be at least no lower than they were in the beginning of 1907-08.

Talue of land.

11. The result of the sales in pursuance of Civil Court decrees in the last 3 years is as follows. No earlier figures are available.

Deh.	Year.	Area.	Amount.	Rate per acre.
		A. g.	Rg. a.	Rs. ${ }^{\text {a }}$
Markhpur	1905-06	515	2450	459
Malkani	1906-07	430	8000	63 2
Dadu	1906.07	831	4080	467
Kliariro	1907-08	65	6128	1000

The following figures of prices paid for land in various dehs are taken from the Sub-Registrar's books and documents-

- 169-8

Tonures, eto.
12. The system of temures in this taluke is the same as that whioh prevails in most parts of Sind. The zamindar engages a hari for a single season to cultivate his land. The hari provides seed, cattle and labour and the

- Division of prodace. produce is sbared between them at batai." This zamindar is responsible for the olearance of the karias. The labourers for the transplantation of rioe and harvest are usually paid both by bari and zamindar in the proportion of the batai shares. In the northern part of the taluka the zamindar asually advances takavi to the hari to enable him to purchase seed and cattle and this advance is recovered at the time of batai without interest. But in the dehs near Dadu town no takavi is advanced. The different systems of sharing the produce at batai are as follows:-

Wheel (aided or unsided).		Flow of all kindı including sailab.
Central and southern parts of the taluka.	Zamindar $\frac{1}{3}$ and hari $\frac{1}{3}$...	Zamindar $\frac{1}{\frac{1}{3}}$ and hari $\frac{1}{3}$.
Northern dehs	Zamindar $\frac{1}{2}$ and hari $\frac{1}{2}$ or zamindar $\frac{2}{5}$ and hari $\frac{3}{5}$ in all oases.	Same as for wheel cultivation.
Wheel of all	ude anaided by flow.	Flow aided by wheel and fow of all kinds.
Deh Sita $\quad .$.	Zamindar $\frac{9}{5}$ and hari $\frac{8}{5}$...	Zamindar $\frac{1}{2}$ and hari $\frac{1}{2}$.

The explanation given for the larger share received by the zamindar in lift cultivation in the north is that the zamindare are obliged to advance large sume in takavi which they are not always able to recover. The explanation is bardly satisfactory for takavi is given in most talukas, but a distinction is almost always drawn between lift and flow.

In most parts of the taluka haria and zamindars appear to be on good terms and applications under section 86, Land Revenue Code, are very rare. The northern zamindare however complain that it is now becoming hard to find cultivatora for their lands; the haris naturally prefer, if they can, to take up rice lands on the Nara in the Mehar division and every year large numbers go thither. Even those who take up fields in Dadu occasionally abscond after takavi has been sdvanced. But the bataz shares alone would seem to be sufficient explanation of any scarcity of haris that may be felt in these dets.

There are no maurusi haris in the taluka.
The number and value of sub-leases is ahown in Appendix VII. The lessee pays a cesh-rent and receives the whole or a share of the produee paying as much of the assessment as is proportionate to his share.

Condition of the cultivating clasees.

13. The agricultural live-stock of the taluka is shown in Appendix IX. There are few large khatedars in this taluka and as Sir E. James noted on the last report, still fewer "large holders of ancient family with the to frequent accompaniment of extravagant proclivities. The majority of them live quietly and in very humble style." In fact in this taluka there is probably a greater number of holders who cultivate their own land themselves or with the help of their relations than in other parts of the district. The following statement shows the number of chatas in the names of Hindus and Mnsalmans and their size within each deh. Its value is not very great, firstly, hecane the khatedar is by no means neeessarily the owner, and secondy because many persons own lands in more than one deh. But it was not possible to obtain figures for the size of each man's holding within the taluka without throwing far too much work upon the tapadara and taluka office. In any case I think it is safe to conclude that the majority of estates are not higher than 50 ond probably as low as 30 for the khatas are in most cases divided up between several sharess.

Detaile of khatas in Dadu taluka.

According to this statement 77.3 per cent. of the holdings are of less than 25 acres. And the Hindu khatedars are now 24.9 per cent. of the whole as compared with 17.2 per cent. in 1892-93.

From a comparison of Appendices VI and VII with the statement given by Sir Evan James in section 10 of his letter No. 125 printed with the last settlement report, it would seem that the land has continued (until recently) to pass from the agriculturist classes to the banias almost as rapidly under the present settlement as under the last. In the last 6 years, however, the area annually sold and mortgaged to banias has declined, partly periaps owing to legislation, partly to the improvement in the Nara. But even in 1907-08 the area of such sales amounted to 411 acres. The disappearance of the Musalman zamindar in this taluka may in part be due to the unsatisfactory condition of the Nara in former years, but I think it is largely caused by the smalness of the zamindar's estates and the number of shares into which each is broken up. It is difficult for a man, withont capital, however thrifty he may be, to carry on the management even of a small estate without incurring debts, especially if he does not cultivate the land himself.

It is still more difficult for zamindars of this type to effect any improvements whether in irrigation or agriculture. All that is to be known about the existing staples and the customary methods of agriculture they know already and they cannot afford to try experiments with new fangled ideas which are as likely as nut to fail. They possess no power of combination and without combination any important improvement in irrigation is beyond their means. Usually indeed their mutual disputes and jealousies prevent them even from combining to clear and maintain in order those zamindari canals which already exist. 1 t is owing largely to this neglect that so much of Mondar and Nurjs debs is uncultivated and that the Imam Ali and Ibrahim wabs work so unsatisfactorily.

Grouping,

14. I propose that all the dels of the taluka should be placed in a single group.

Reasons.

The fact is that since the improvement in the Nara and Pritchard wah each half of the taluka is at its best when the other is at its worst. In a high inundation the Nara bimoki and rice lands are damaged by flooding in a low inundation, the crops watered from the river and from the small canals taking off the river fail from lack of water.

Mr. Disney in 1891 found no reason for making any distinction of grouping except for the dehs Chanrath, Nurja, Aminani and Buth Malho. sir Evan James disagreed with this. He adoptet a three-fold division of the taluka into (i) the low landa of the Nars depression, (ii) the lands of the niver
side which are low and ifrigated with comparative ease, and (iii) the central debe a strip of high land badly watered from the tails of the canals. This division he made the basis of his distinction between the first and seeond groups. The first group was supposed to oonsist of the dehs in the 1st and 3rd portions of the taluka and the 2nd contained the debs belonging to the central portion. But as a matter of fact in one at least of the 1st class dehs, i.e., Dawaohb, the rivesside lands are 9 or 10 feet above the Indus summer level, and on the otber hand Mondar and Khushk in the 2nd class contain a large area of low bosi and snilabi lands and border on the river. More tban $\frac{1}{3}$ of Khasa Chandia is also moki or bosi land, though it is certainly the worst half. Mondar and Khushk are no worse off than Dawachb and Shaiani. Their western portions and the adjacent parts of Khasa Chandia die on the Upper Nur wah, which in ordinary years has an adequate supply of water, and all these lands appear to be exceptionally prosperous and fertile. Nor dnes it seem necessary to retain Khasa Chandia in the 2nd class on account of its southern and western lands, alihough these are certainly rither salt and the cultivatel fields are infested with drabl; for the cultivation in this part of the deh is not very extensive and the eastern and northern parts are decidedly good. The seven southern dehs of the second group are no doubt high in so far as tirey consist mostly of charkhi lands. But at the present time their irrigation is not so deffective as to justify their position in a lower group. And to place charkhi dehs in a second group merely beoause they are obarkhi would be to base the grouping on an entirely indefensible principle.

Dadu deh is watered by the Wadhu wah and Ghati wah (ex Kolab Sial), both of which work well ennugh ex'ept in a very bad year like 1907-08. This year the deh produced the best charkhi crops that I have seen in the division, the outurn of the average crop being from 50 to 60 kasas Dubi is partly dependent on the unsatisfactory Phitto wah. But $\frac{2}{3}$ of the deh are watered by the Ghari and Wadhu wah and the crops in this part are usually fair. Duabo depends largely and Phaka, Khudabad and Kalhora entirely on the branches of the Nara, and since the improvement in the Nara there has been no necessity to keep them in class II. Naulakhi is perhaps the mosi unsatisfactory of alt for it lies at the tail of the Wadhu and its only supply is from the uneliable Phitto. But at any rate the lands near the Phitto itself are certain of a fair charkhi kharif supply and those further away would remain uncultivated in a bad year. This year the crops on the Plitto lands were distinctly good, in fact the best in the deh. There bas been no decline in cultivation in the deh during the settlement and more than $\frac{1}{3}$ of it on an average is cultivated each year. In rabi the lands on the Phitto bank receive a small supply from the Lower Nur wah drawn back wards along the Phitto bed.

There remain the 3rd class dehs:
(i) Bhand and Buth Malho. These dehe were probably put in olass III heczuse they depend on the Phitto. But there is a great difference between them and the other three 3rd olass dehs, for they both lie below the junction of the Lower Nur wal with the Phitio. The Nur wab is the best of all the Nara branches and both in kharif and rabi discharges a large body of water into the Phitto. Thus the dehs below the junction really receive Nara water. Bhand is also watered by the tail of the Ali Ganj wah ex Nara. Altogether it is decidedly superior to its neighbours, Badani in the lst clans and Kalhora in the 2 nd , and ite orops this year appeared excellent.

Buth Malho contains a great deal of waste land, but the kabuli numbers are almost all in a belt along the bank of the Phitto wah and within easy reach of its wheels; and the crops are almost as good as those of Bhand.

Both dehs have a large area of well cultivation which arguee a good supply of subsoil water at no great depth.
(ii) Nurja, Aminani and Chanrath. The enndition of these dehs is less satisfactory. They are entirely dependent on the unsatisfactory Phitto wah and a wahur which was once the bed of the river, and the camindars are small men, for the most part poor and without any power of eambination.

For these reasons I was at first inclined to follow Mr. Disney's example ard to place at any rate Nurja and Aminani in a 20d class; But the greater'
part of Aminani and Chanrath is in jagir and the central porison of Nurja in pancultivated. The rayati oultivation in these dehs is entirely confined to the fields on the bank of the Phitto wah and the wahur and for these numbers a sufficient water-supply is available both in kharif and rabi, The soil in most of the cultivated parts is good, and if the season is not a bad one the charkhi rabi crops especially in Nurja are excellent. Even ia the central part of Nurja, if the karias were properly cleared, I have no doubt that very faip charkhi crops could be raised. Aminani is also able to obtain water from the Lower Nur wah along the bed of the Phitto when the latter dries up.

Kind.	Proposed.	* Existing	Difference.
	Fis. a	Re, \%	Ravan
Biob	10 ($\begin{array}{llll}1 & \ldots & 3 & 4 \\ 8 & \ldots . & 3 & 0 \\ 3 & \ldots . & 818\end{array}$	$\begin{aligned} & +\quad 018 \\ & +\quad 10 \\ & +\quad 14 \end{aligned}$
Bimoki .,*	20	$\begin{array}{llll}1 & \ldots . & 8 & 18 \\ 2 & \ldots .88 \\ 3 & \ldots 8 & 8\end{array}$	$\begin{aligned} & +\quad 04 \\ & +\quad 08 \\ & +\quad 012 \end{aligned}$
Moki + charkhi .**	212	$\begin{array}{llll}1 & \ldots & 9 & 18 \\ 4 & \ldots & 8 \\ 3 & \ldots . & 8 & 8\end{array}$	$\begin{array}{r} \mathrm{NZ} \\ +\quad 04 \\ +\quad 08 \end{array}$
Charkhi + moki .at	810	$\begin{array}{lllr}1 & \ldots & 2 & 13 \\ \frac{8}{8} & \ldots . .8 & 8 \\ 3 & \ldots . & 8 & 4\end{array}$	+ + + +
Kherif lift . **	$98\{$	$\begin{array}{cccc}1 & \ldots . & 8 & 6 \\ 2 & \ldots . & 8 & 2 \\ 3 & \ldots & 1 & 14\end{array}$	$\begin{array}{r} +\quad 0 \% \\ +\quad 06 \\ +\quad 010 \end{array}$
Boni and sailabi ...	90	1 . 3 0 8 8	$\div \quad 0^{W i l}$
Boai and anlabi + lifit	4 -	$\begin{array}{lll}1 & \ldots & 4 \\ 2 & \ldots & 0 \\ 3 & \ldots & 10 \\ 3 & \ldots & 3\end{array}$	$\begin{aligned} & \quad V i z \\ & +\quad 0 \quad \\ & +\quad 010 \end{aligned}$
Rebi lit ...	$40\{$	$\begin{array}{cccc}1 & \ldots & 3 & 0 \\ 8 & \ldots & 8 & 10 \\ 8 & \ldots . & 8 & 4\end{array}$	+ + + + +
Gardens ...	According to method of irrigaticn.	$\left\{\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right\} \begin{gathered} \text { Same an } \\ \text { rice. } \end{gathered}$	Thking girdens as usually coltivated with well or kharif lift the difference will be- $\begin{aligned} & =\quad 012 \\ & =\quad 048 \\ & -\quad 04 \end{aligned}$
Beraui...e ...	08	1,283... 112	- 14
Eachat ... $\left\{\begin{array}{l}\text { Kharif } \\ \text { Plorighad rabi } \\ \\ \\ \text { Onploughed rabi }\end{array}\right.$	$\begin{array}{ll} 2 & 8 \\ 3 & 0 \\ 1 & 8 \end{array}$	Whent $\begin{array}{rr}2 & 8 \\ \ldots & 0\end{array}$ Other ploughed $\begin{array}{rrr}\text { rabi crops } & 2 & 0 \\ & 1 & 8\end{array}$	
Dabari $\begin{cases}\text { Watered } & \ldots \\ \text { Unwatored } & \ldots\end{cases}$	$\begin{aligned} & 10 \\ & 08 \end{aligned}$	$\}$ \& appas $\cdots\{$	$\begin{aligned} & +\quad 112 \\ & +\quad 0 \end{aligned}$
Babul groves (other than rent free huris) at $\&$ per cont. the bimoki rate. $\text { Wellin }=$	18 Kharif lift.	I Bimoki raten ...	Notow-in this taluka it has always been customary to charge only $\frac{1}{t}$ and not $\frac{1}{8}$ bir moki rates. The latter were restricted to the Upper Sipd districts, whereas this taluke. was part of the Karachi dietrict. Trees in this taluks are in most parts esecedingly scarce and pasturage oven more so. Considering especinlly the increasing difficulty of finding pasturge for camele, I think it would be unwise to discourage babul plaptipg in any way.

Rice.
This rate is certainly very low when compared with other faluka althoueh it is a considerablo incriase on the old rates. The reason for this is to be found in the description of the rice of Dadu taluka already given in paragraph 9 ; rice is cultivated chiefly on the Nara or on dhoros communicating with the Nara, for there alone can a sulficient and certain water-supply be phtained, It is grown almost entirely on lowlying fields where the ground is uneven and the water-supply cannot be controlled. In a fairly bigh inundation such fields become flooded by the effect of the "sim" water alone. Moreover in recent years it has been the custom to relieve the pressure of water in the Pritchard wab by lefting it run off down the Chandan Liseape channel into the Sutiaro and Jakhpari dhands. These quickly oyerflow and the flood water finds its way by a line of dhoros down the Nara Valley as far as Pir Gunio. And it is the rice which suffers most from these floods. The result is that as a rule only the chcaper and coarser varieties can be grown; and where better varieties are cultivated they are yery inferior in productiveness and quality to the rice of other talukas where the land is level and the water can be controlled to the utmost nicety:

There is no coossion to penalise rice cultivation in this taluka. Appendices $X I$ and XII show clearly that its area is not greatly on the inorease in the taluka as a whole and generally speaking it is grown only on lands where dry crops could not with advantage be gromn at all.

The best rice lands, espeeially in the north-west of the taluka, are usually oultivated with dubari crops and sometimes with watered dubari and the increase in the prcposed dubari xates will compensate for the comparative lowness of the rice assessment on these lands. For the average rice land of the taluka I do not thiuk the rate is toolow. If my estimate of 35 kasas as the average outturn is correct, the zamindar's share at $2 / 5$ is 14 kasas. (The lower batai rate is the one which would apply most often to the poorer lands.)

It should be explained that certain deductions known as rajkharch are made from the shares of both hari and zamindar by way of payment to the reapers, the potter, carpenter and other village work people.

In the case of the zamindar, the rajkharch on an average orop comes to about 1 or $1 \frac{1}{1}$ kasas per acre. If we deduct 1 kasa, his share will be 13 kasas. At Rs. 50 per kbarar, this is worth Rs. 10-13. And a third of this would be Rs. 3-9 for the Government assessment. If the batai shares be $\frac{1}{3}$ and $\frac{1}{3}$ his net profit would be Rs. 13-4, a third of which would be Rs. 4-6. This suggests an average assessment of Rs. 4. (Clearance expenses are not allowed for but they would not be high in Dada rice lands.) This argameat assumes that the assessment should not be higher than $\frac{1}{3}$ of the zamindar's net assets. But a better way of testing its fairness is to examine the balance of profit left with the zamindar.
(i) In the case of a peasant proprietor with a family owing no kand save What he cultivates himself, the holding would probably be about 10 acres.

The rate of pay for rombo lsbourere when pa d in each is rabout annas por deg.

Now an ordinary labourer gets at present betweer 6 and 8 anras a day, i.e, Re. 11-4 or Rs. 15 a month. And it may be taken that the cost of bare unbsistence for a man and his family in between he, 11 and Rs, 12 per month.

The interest earned by the land owner on the capital invested (as apart from the wages of his labour) is not therefore large, for this calculation ignores all expenses which do not reour annually, e.g., the cost of bullooks and agrioultural instruments.
(ii) A small land owner with 30 acres cultivated by haris.

At a batai of 早 we have seen that the value of his share would be Rs. 10-13 per aere and after paying the assessment Rs. 6-13 per aore or Rs. 204-6 altogether. This gives a monthy income of Rs. 17.
(iii) The same owner oultivating 10 acres himself and having 20 acres cultivated by haris. This is probably the most typical case. Even when a small holder does not cultivate bis own lands personaliy, be very probably cultivates for some one else and the effect is the same. At any rate it in always open to him to do sa.

I therefore think that though the rice rate could not well be put higher than Re. 4 yet this is not too high. Of course this calculation ignores dubari. But rice is not infariably followed by dubari even in Dadu and in any oase the rice rate should not be so high as to exclude the possibility of a lixelihood from rice cultivation alone.

Bimoki.

The difference between the bimoki rate and rice rate oan hardly be less than one rupee if the rates are to be at all proportionate to the consumption of water. It remains to test the rate by the average profit of the zamindar. Probably in an ordinary year the outturn of juar would average 25 kasas to 30 per acre. The price of juar I take at Rs. 50 to guard against any subsequent decline in prices. It is not likely to fall lower.

Then-

	alue=Rs. 11-12 assersment				
Case (0)	Produes	-0 30 kasas.
	Zamindar's share at $\frac{3}{7}$	-*	...		12
	After deductions, say	-..			11
	Then \%alue $=$ Res, 9.2 a	smen	...		Rs. 8

Again if we take the case of a man whe owns and eultivates 10 acres of moki juar:

Outturn	... 300 kasae	Deduotions-	
		Seed at 1 kass per acre	-10
Deduct	c. 25 kasas	Bajkharch men	18
	275 kasas		25

				In.	
Value at Rs. 60	**	***	**	229	2
Assessment	..0	...	**	30	0
Annual income	*	- 0	-0.	199	2
Monthly	\ldots	\cdots	16	9

It would thesefore seem that the bimoki rate is also about right. Kharif Lift.
At a moderate ealoulation the average lift juar crop will. I believer produce 45 or 50 kasas per acre. At the lower rate the eamindar's of share is I5 kasas and at the higher $16 \frac{2}{3}$ kasag. (In the northern dehs where the batat share is higher the outturn is less.)

If this be compared with case (b) in the bimoki caleulation it is clear that lift could bear a higher rate than Rs. 2-8.

But it is an accepted principle that the difference between maki and charkhi should be as great as possible. Moreover there are two intermediate rates for moki madad charkhi and charkhi madad moki to be inserted. Since then bimoki conld not be raised, the charkhi rate had to be kept low. Even now there is a difference of 6 annas only between the two. But this well represents the relative condition of charkhi and moki in the taluka. Moki like

- Depressions. the rice is mostly situated on lowlying lands near the Nara or in dhoros * near the river and is exceedingly liable to damage from excessive watering and floods. From this of course the lift lands are safe and the cffect of a low inundation is rather to restrict the area of lift cultivation than to cause a general failure of the crop, unless indeed the water is high at first but fails unusually early.

Bosi and Sailabi.

The rate is the same as that proposed for moki kharif and is also the same as the sailabi and bosi rate under the old 1st class rates.

Rabi Lift.

For this I propose the same rate as for sailabi and bosi madad charkhi. I see no reason why a crop receiving a cold weather supply should be assessed at the same rate as bosi crops which take less water, are less productive, and are to some extent dependent on rain. It is true that the batai rate for lift is lower than for bosi and sailabi, but then the lilt crops are much more productive and the batai for lift rabi is the same whether it was previously watered as sailabi or bosi or not. No doubt a single wheel can water a much larger area if it has been previously flooded before sowing. But on the other hand lands which are constantly flcoded by sailab are often muoh overgrown with weeds and there is greater expense involved in preparing them for cultivation. The true charkhi rabi lands on the Nara and elsewhere are among the best and most paying in the taluka. If 40 kasas be taken as the sverage outturn for lift wheat, we get the following calculation :-

$$
\begin{array}{lll}
\text { Zamindar's share at } \frac{1}{3} & \ldots & \ldots .18 \frac{1}{3} \text { kasas. } \\
\text { After deduction of rajkharach } & \ldots & \ldots . \\
\text { Value at Rs. 80 } & \ldots & \ldots . \text { Rs. } 16 \\
\text { Assessinent at } \frac{1}{3} \text { of the net assets } & \ldots & \ldots \\
\hline
\end{array}
$$

Thus a R. 4 rate is certainly not too high, especially if the definitions of charkhi rabi and busi given in my proposed rule 14 be approved. (See Appendix A.). For the effect of these definitions will be that all the worst crops which receive ro water after sowing will be considered as bosi and will not be affected by this 4 Ra. rate.

Gardens.

The gardens slould pay according to the methods of irrigation employed, is a principle which was accepted by Government in the Jacobabad Settlement and folluwed in the more recent settlements of this district. They will of course be liable to a dubari rate ulso. In this taluka gardens ure usually cultivated with lift on a canal or a well (most often on a well).

Now well cultivation will pay the kbarif lift rate, whether it be kharif or rabi (oide Commissioner's Special Ciroular 59, paragraph 6). If therefore a garden be cultivated on a well in rabi only as is usual in this taluka, there will
be a loss of 18 annas in the old 1st group dehs; 8 annas in the end and 4 anrac in the 3rd. But if it be oultivated in rabi on a canal, there will be an incrense of 12 annas in the old 1st group and one rupee in the second. If it is cultivated on a canal in both kharif and rabi, the new method of assessment will give an increase of Rs, 1-4 in the old let group and Rs, 1-8 in the 2nd. Lastly, if it be culcivated in kharif on a eanal and in rabi on a well, or if melons be cultivated as a sailabi adhawah orop, there will be a decrease of 4 annas only in the eld group 1 , and no change in the old group $2 .$.

Kachas.

The only change proptsed in the kaoha rates is the abolition of the special rate for "other crops ploughed." To retain the special rate would be, I think, to make is mere crop distinction which is contrary to the principles of an irrigation settlement. Of course it is true that in the kachas ploughed

$$
\text { * Gram } \quad \text { eshana ahur and jambloo are ocoasionally bad, }
$$ especially when grown on land which is being cleared of jungle. But this applies also to paka sailibi lands. And on the other hand the ploughed crops of chana, aliur, etc., are often quite as profitable as ploughed wheat. I do not see how allowance can be mide for the pour crops without under-rating the good, nos do I believe the good are less frequent than the bad.

Dubari.

The unwatered dubari has been raised to 8 annne, as is usual in recent settlements. Where is little watered dubari in Dadu taluka. What there is cat, 1 think, easily afford to pay the Re 2 rate.

Combined rates.

I propinse that all debs should ray the lift + flow rate except the follow. ing which will be assessed at flow + lift.

Pir Gunio.	Khariró.
Bagtbar.	Juberji.
Kandi.	Kinjhar.

In all these the bimoki considerably exceeds the lift area. There are 4 others (Tags, Khairo, Palha and Khasa Clandia) where the bimoki is slighty in exerss, but the difference is hardly great enough to warrant their inclusion.

Barani.

Occasionally in years of poor inundation and good rainfoll,kuch as 1907-08, one or tho fields are cultivated as rel barani. The orops are alvays of the worst possible description and I consider that the 8 annas rate proposed for Johi and Sebwn tulukas might well he exiended to Dadu also. I propose that no remission thould be given. The reasons which necessitated so low a rate in Joli are discussed in the Johi report. I don't think there is any danger of an attempt to evade the fallow rules by means of this. It would not be worth any man's while to take the trouble to plough and sow the field mercly to avoid the fallow assessment. In might be well however to provide that the fallow assessment shall in no case be calculated as a barani assessment even if the number was last cultivated as barani.

Financial Resulta.

16 and 17.-The financial results of the proposed settlement are shomn in Appendices XIV and XVI. On the surveyed lands (including duhari) there is an estimated increase of has 14,244 or 11.32 per cent. When the unsurveyed lands are added, the inctrease becomes R.s. $\mathbf{1 5 , 6 1 0}$ or 1179 per cent. This increase is, I think, justifable on the ground both of improvements in the Nara and the Opper Nur wah and of the rise of the prices. In Appendix XIV the gardens have been taken at the chahi or kharif lift rate. There are very few true gatdens in the taluka, and most of the garden cultivation consists of onions and other mshsuli orops grown on wells. The percentage bf increase in the individual dehs are for the most part comparatively small except in those of the old 3rd group, where they vary from 31 per cent. to 49 per cent. The reasons for placing these dehs on a level with those of the old list group have already been stated in paragraph 14. The old rates in this group were exoeedingly low, far below anything in sehwan or Kakar tsluka.
18. The average of rates under each kind of assessment in the proposed в 169-5
settlement as compared with the average under the old is shown in Ap. pendix XIV. The only decrease is under the head of gardens (10 annas) and charkhi madad moki (2 annas). And in fact the decrease under gardens may be less than appears from Appendix XIV, for there will oertainly be sfew garden numbers cultivated with Indus water in rabi. Under rice there is an increase of 12 annas which is in accordance with the policy followed in all modern : settlements, with the profitable character of the crop and with the excessive amount of water it requires for its cultivation. The reasons against any higher increase have been given already. Under bimoki and oharkhi there is an increase of 4 aynas. This is quite as much as is justifiable in the case of bimoki. For eharkhi the increase is somewhat small, but as I have explained in paragraph 15 the charkhi rate coull not hive been put any higher. Under rabi lift the increase is Rs $1-2$ according to Appendix XIV. It must however be remembered that if the proposed definitions are accepted, the area under rabi lift will be much smaller than it is now, and that therefore the apparent increase under this head is to some extent fictitious. For many crops of the kind now assessed as charkhi will in future be dealt with as bosi only.

The other rates seem to call for no comment.

General remarks.

19. The proposed rates and grouping have been forwarded to the Collector for publication as is required by Goverament Resolution No. 517 of 21st January 1897.

Guarantee.

I propose that the settlement be guaranteed for a period of 10 years as is usual in Sind.

Changes in the dehs.

(i) There are at present 2 dehs named Dubi in this taluka, one in tapo Dadu and ansther in tapo Pat, which occasions a good deal of confusion. I propose that the latter (i. e., in tapo Pat) be renamed Dhoro Damrio. This seens to have been its original name for it appears in old deh maps. It is the name of a dhoro which passes through the deh.
(ii) I propose thit Paki Sita and Kachi sita be made into two entirely different dehs. At present they have separate maps, their survey numbers are numbered separately and some of the village booke are maintained separately for each. Other books are however kept jointly for the two which occasions unneoessary confusion. They are essentially distinet, for the one coasists entirely of paka land, the other of paka-kacha land.
The same state of affairs now exists in Pambi for a s mall area of kacha in front of Pambi has recently been surveyed. But this is not large enough to form into an independent deh, and I propose that it should be entirely amalgamated with Pambi and the survey numbers be numbered oonsecutively after those of Pambi.

A list of karias with the rebate proposed for each is appended.
Certain rules proposed for the administration of the settlement in the 3 talukas of the division are given in an extra Appendix A, with remarks.

The following are the accompaniments to the report :-
Map showing proposed groupings.
Irrigational map.
Appendices from III to XVI.
Appendir A.

> I have the honour to be, Sir, Your most obedient servant,

S. H. COVERNTON, Settlement Officer, Sehwan.

APPENDIX III.

Statmant showing the present groupings in the Dadu taluka.

12.	Name of Deh.	No.	Name of Deh.	No:	Nama of Deh.
	1nt grasp.		$18 t$ group-continued.		2mengro
1	Pipri.				
\%	Ohoi.	81	Puranodero.	140	Dadu.
3	Malkani.	28	Khariro.	41	Dubi.
4	Badani.	83	Rap.	42	Nac Latho.
5	Kurpar.	94	Kujhas.	43	Duabo.
6	Pipir-Panjen.	25	Mowi.	44	Kbudabac.
7	Bakhreni.	26	Jung.	45	Phaks.
8	Wariaso.	97	Jakbpari.	46	Kalhora,
9	Buthi.	28	Khero.	47	Khasa Chandia,
10	Sunbiun.	29	Sutiaro.	48	Khushk.
11	Markhpur,	30	Juberji.	49	Mondar. - .
12	Pir Gunio.	31	Pat.		\because
13	Sial.	38	Taga.		Bral growes.
14	Sidh mah.	33	Palha		
18	Shahnni.	34	Dubi.	50	Nurja.
18	Dawach.	35	Numrani.	51	Chanrath.
17	Pir Taraho.	36	Samuhin,	52	Aminani.
18	Makhdum Sahib.	37	Sita.	53	Buth Malho.
19	Baghban.	3 A	Pgmbi.	54.	Bhand. .
20	Kandi.	38	Ghalu.		Belo Chai (Forest).

APPENDIX III-A.

Statbment showing proposed groupings in the Dadu taluka.

Na.	Name of Deh.	No.	Name of Deh.	No.	Name of Deh.
	1et group. .		1ef group-continued.		14 group-continued.
1	Pipri.				
8	Choi.	20	Kandi.	38	Pambi.
3	Malkani.	91	Puranodoro.	89	Dadu.
4	Badani.	22	Kharira	40	Dubi.
5	Karpur.	23	Rap.	41	Nao Lakha.
6	Pipir-Panjas.	24	Einjhar.	48	Duabo.
7	Bakhrani.	25	Marvi.	43	Kbudabad.
8	Wariaso.	26	Jung.	44	Phake.
9	Buthi.	27	Jakhpaxi.	45	Kalhora.
10	Sumbian.	28	Kheirc.	48	Khasa Chandis.
11	Markhpur.	29	Sntiara,	47	Khushk.
18	Pir Gabio.	30	Jaberji.	48	Mondsr.
13	Sial	31	Pat.	49	Nurja.
14	Sidh wah.	32	Taga.	50	Cbamrath.
15	Shabani.	33	Palha,	61	Aminani.
16	Dawach.	34	Dhoro Damrio (Dabi).	52	Buth Malho.
17	Pix Taraho.	35	Nasrsni.	53	Bhand.
18	Makhdam Bilawal.	36	Samuhin.	54.	Kachbo Sita.
19	Baghban.	37	Pako Sita.		Balo (Choil (Forest).

s. H. COVERNTON,

Settlement Officer, Sehwan.

APPENDIX IV.

F. Stammant showing the details of population in taluka Dadus

*These figures wette received in the taluka office duly approved from the cansas office, but the Provincial table, Pert III shows 65,318,

APPENDIX V .

Statembnt showing the ocoupation of people in taluka Dadu.

S. H. COVERNTON, Nettlement Officer, Sehwain.

APPENDIX VI．

Statiment showing sales in the Dadu taluka．

Teat．	Clast	No．of	Area．	Total shm tor which wold．	$\begin{gathered} \text { Sele } \\ \text { rate } \\ \text { per acre. } \end{gathered}$	Total ment．	Average rata per acro．
			A． 8.	Rs．${ }^{\text {a }}$	Re．a．	Rs．a．	Rs，as
	A．－8y	39	78638	24，253 7	3018	2，085 4	210
	B．－By noo－ggrinulturists to agriculturista	21	20032	7788	2218	648	210 810
	C．－Betweon agricali arista ．．．	21	115 2385 298	8,38114 870 80	$\begin{array}{cc}28 & 8 \\ 36 & 18\end{array}$	308 01115	210 210
		43		18,108 2483 10 248	2818 2515		210 210
	C．－Batween agricniturista as．	88	277394	7，685 14	279	72912	2.10
	D．－Between non－agriculturists	8	14.7	6170	8615	878	210
$\left.\begin{array}{l} \text { 岕宫 } \\ \text { 思 } \end{array}\right\}$	A．－ Br_{5}	49	83511	24，417		2，191 15	210
	B．－By non－agriculta jets to agriculturista	9	6421	5,190	81	1682	210
	C．－Betreen agrirulturista ${ }^{\text {a }}$ ．．．	20	19182	9，880 11	508	50310	810
	D．－Betwean nua－agriculturista	18	211293	6，985 18	38	55511	210
崇罥	A．－By sm	100	910	81，469	3410	2，889	10
	B．－By non agricu＇turista to agriculturists	7	68 61	2，887 ${ }^{5}$	427	178.18	10
	C．－Bet ween agricuituriata	28	30314	7.40811	25	7963	210
	D．－Between non－agricaitarists ．．．	10	$18810 \frac{1}{4}$	\＄，189 23	225	4042	210
	A．$-\mathrm{B}_{\mathrm{y}}$	148	2，nos $11 \frac{13}{3}$	85， 31612	10	8，258 10	10
	B．－By nou－agriculturists to ngrioult	10	7647	2，981 0	30 14	2014	210.
	C．－Betweea agriculteriste ：．．．	49	$30319 \frac{1}{4}$	8.643	488	79610	210
	D．- Hetween uyn－agriculturists ．．．．	18	214248	7，484 11	$9_{4} 9$	5636	210
	A．－By agriculturists to non－agricul	118	1，255 25	35，644	286	3，295 15	10
	B．－My now－igriculturists to agidiultarista	22	174294	6.77215	4812	4.58 84	210
	C．－Between ugri niturists	81	207198	7790	358	6.44	210
	D．－－Between yon－agriceltarists	14	12635	4，612	385	33215	210
	A．- By agriculturis	12	1，442 24	51,65614	3513	3，785 7	0
	B．，－Ry nou－agricultarists to agricult	3	19084	5，\％83 is	304	50014	210
	C．－Between agtioulurista	43	32038	11，054 19	349	8421	810
	D．－Between non－agidultarists	21	304214	8，026 14	281	793	210
	A．－By agriculturists to noz	146	1，509 24	54，847	364	3，961 11	210
	B．－Iy non－agricult rists to agriculturisie	9	52257	1,2118	2215	188	810
	C．－B tureall agricultari ts	34	219353	7，044 4	320	5775	210
	D．－Hetween non－agriculturists ．．．	11	20013	4，11610	209	52514	210
	A．－By agriculinrists to non－agricalt	161	2，677 38	65，254	24	7,0298	210
	B．－By non－etriculturi，te to agricultwreta	10	$69{ }^{2}$	2.358	34.2	181	210
	C．－Between agriculturists ．．．	48	35189	10.856	3018	92318	210
	D．－Between non－agriculturiats	28	487201	13，181	300	1，148 6	210
富界	A．－By agricniturigts to nun－agricuitarists	105	86522	88.15612		2，27？ 1	210
	B．－By non－agrivalturists to sgricult	12	1458	10.8750	748	883	210
	C．－Betweeu agrioulturista	31	30924	6.89614	2210	81210	210
	D．－Between non－agxictularisto	15	9036	3，577 2	39	2889	210
	A．－By agricultorists to non－agriculturista	85	819198	84，082 8		2，151 1	210
	B．－By nm－agricalturists to agricult	15	$1000{ }^{0}$	\＄，328 1	38.4	2628	210
	C．－－Betweer nesriculturista	20	$144{ }^{28}$	5，486 14	3718	3i9． 12	210
	D．－Between non－egrieulturists	18	348 83	12，094 6	498	84515	810
	A．－By agriculturiste to non－rgricoiturists	87	821144	8，72，307 5	458	2,1561	210
	B．－iy non－agricalturiste to sqricuitarists	15	114134	4，273 0	978	3001	210
	C．－－Petween agricuiturkts	21	128 24	4.2040	8214	3382	210
	D．－Between non－agricalturista	27	2904	：1，296 0	118	7618	210
商运	A．－By agrionlturiste to non－agrienltariata	31	536285	24，880 14		1，408 12	210
	B．－By non－agricultariste to agriculturiste	18	169 81	6，798 9	${ }^{38} 14$	$4+42$	210
	C．－Between mgrivulturists	18	11134	2，997 ${ }^{\text {B }}$	2618	${ }^{293} 8$	210
	D．－Between non－agricalturitt	20	431865	12，279 10	291	1，107 6	210
窓吿品	A．－－By agriculturista to non－agrianlorrista	80	$54182{ }^{21}$	26，754 5		1，422 4	210
	B．－By nou－agricaltariste to agriculturists	18	127874	4，555 14	3511	3851	210
	C．－Between agrica＇turiats ．．．．	26	1405	5，378 10	386	36718	210°
	D．－Between nomegricaltarista	10	24238 童	7,850 O	304	63714	210
言宮	A．－By agricuitarists to non－agricaltarista	42	243	14，085 8	578	642	210
	B．－－By nob－agrienltarites to agricalturist	．．．					
	$\begin{aligned} & \text { C.-Betwee agrioulturists } \\ & \text { D.-Between non-agriculturigts ... } \end{aligned}$	69	488	16，870 18	88.10	1，178 8	210
言会会	A．－By agricalturiate to non－eqrionltarista	82	41114	19，079 0		3，079 18	
	－By non－agricaitorints to agrienltarista	17	14830	7，169 10	48	${ }^{399}$	2 y
	C．－Butween agriculturints ．．．．	46	25416	12,91112	6019	86718	210
	D．－Betreen von－agriculuariste ．．．	10	18015	8，429 0	19	4787	210

S．H，COVERNTON，
Settlement Officer，Sehwan，

APPENDIX VII.

Statement of sub-letting in the Dadu taluka.

S. H. COVERNTON;

Settlement Officer,
Sehwan.

APPENDIX VIII.

Statement showing mortgages in the Dadu taluka.

Year.	Chate.	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { ooseg. } \end{gathered}$	Total number of	$\underset{\substack{\text { Sum } \\ \text { Fhioh } \\ \text { mortgaged. }}}{ }$	Mortr $\substack{\text { gate } \\ \text { sate } \\ \text { per } \\ \text { acre. } \\ \text { and } \\ \hline}$	Tobel	
1898-98	A - By agrionlturiata to non-agrieultariets.. B. - By non-agriculturisis to agricultacista .. C.-Between agrieulturisis D. - Between non-egrioultbrists	$\begin{array}{r} 136 \\ \dddot{M}_{6} \\ 6 \end{array}$	$\begin{array}{cc} \text { A. } & \text { g. } \\ 4,002 & 504 \\ 216 & 4 \\ .280 & 34 \frac{4}{2} \end{array}$	28. ${ }^{2}$ 30,850 14 $\begin{array}{ll}2,7 \% 0 & 0 \\ 1,852 & 12\end{array}$	$\begin{gathered} 918 \\ 1212 \\ 514 \end{gathered}$	$\begin{array}{rr} \text { Rs. } & \text { a. } \\ 10,507 & 2 \\ 5 \ldots \% & 5 \\ 5605 & 5 \\ 600 & 15 \end{array}$	$\begin{aligned} & 810 \\ & 810 \\ & 810 \\ & 810 \end{aligned}$
1893-94	A. -By agrienltarists to non-agricnitnriats B. - By noneggricultaritsts to agrieulturista C.- Between agriceltarists D,-Bytreen nou-agricultarists	$\begin{gathered} 96 \\ 9 \\ \mathbf{9 6} \end{gathered}$	$\begin{array}{r} 2,68 \pi 88 \\ 1785 \\ 18916 \end{array}$	$\begin{array}{rr} 87,588 & 10 \\ 440 \\ 8,890 & 0 \end{array}$	$\begin{array}{ll} 10 & 4 \\ 88 & 8 \\ 15 & 5 \end{array}$	$\begin{array}{r} 7.0879 \\ 4618 \\ 4972 \end{array}$	810 210 810
1894.95		$\begin{gathered} 92 \\ \text { in } \\ 11 \end{gathered}$	$\begin{gathered} 3,107 \quad 5 \\ 290922 \\ 283351 \end{gathered}$	$\begin{array}{r} 39,144 \\ 2.932 \\ 3,720 \end{array}$	$\begin{aligned} & 1210 \\ & 1210 \\ & 13 \quad 2 \end{aligned}$	$\left.\begin{array}{rr} 8,156 & 8 \\ 700 & 2 \\ 745 & 2 \\ 704 & 2 \end{array} \right\rvert\,$	$\begin{aligned} & 210 \\ & 810 \\ & 210 \end{aligned}$
1895-96	A.-Ay agricultarikts to non-ageienltarists . B. -By non gricultarista to agrioultarista.. C. - Between agrioulturists D.- Between nonragrioultar sta ...	$\begin{aligned} & 153 \\ & \cdots 11 \\ & \cdots \end{aligned}$		$\begin{array}{rl} 47,522 & 3 \\ 8,111 & 0 \\ 1,910 & 0 \end{array}$	$\left\lvert\, \begin{array}{cc} 11 & 8 \\ 12 & 14 \\ 8 & 12 \end{array}\right.$	$\begin{array}{rr}11,181 & 14 \\ \dddot{686} & 0 \\ 571 & \\ 57\end{array}$	210 210 210 810
1896-97		$\begin{array}{r} 121 \\ 13 \\ 13 \\ 11 \end{array}$			$\begin{array}{ll} 9 & 15 \\ 36 & 15 \\ 12 & 3 \\ 45 & 14 \end{array}$	$\begin{array}{rl} 11,782 & 8 \\ 8 & 8 \\ 649 & 8 \\ 441 & 7 \end{array}$	$\begin{array}{lll}2 & 10 \\ z & 10 \\ 2 & 10 \\ 2 & 10\end{array}$
1897-98		$\begin{gathered} 181 \\ \dddot{12} \\ 9 \end{gathered}$	$\begin{gathered} 3,953294 \\ 19519 \\ 207391 \end{gathered}$	$\begin{array}{cc} 48,695 & 12 \\ 3,1100 & 8 \\ 1,9000 & 0 . \end{array}$	$\begin{array}{cc} 11 & 1 \\ 16 & 2 \\ 9 & 2 \end{array}$	$\begin{array}{rl} 10,878 & 8 \\ 513 & 1 \\ 546 & 0 \end{array}$	$\begin{aligned} & 210 \\ & 210 \\ & 210 \end{aligned}$
1898-99	A. -By aqriculturists to non-agricaltariats B. - $\mathrm{By}_{\text {y }}$ nmagicnltnri-ts to agi ienlturisto C.-Betwoen agrimiturists $\mathrm{D}_{4}-$ Between con-agricnitaris's \cdots	$\begin{gathered} 82 \\ 1 \\ 14 \\ 3 \end{gathered}$	$\begin{array}{r} 1,656804 \\ 8204 \\ 82524 \\ 8127 \\ 8127 \end{array}$	$\begin{array}{rr} 23,305 & 0 \\ 3.75 & 0 \\ 3,944 & 0 \\ 1,749.0 \end{array}$	$\begin{array}{ll} 19 & 8 \\ 92 & 6 \\ 16 & 0 \\ 21 & 4 \end{array}$	$\begin{array}{r} 4,34815 \\ 2110 \\ 64411 \\ 2145 \end{array}$	810 810 810 2 2 2 10
1899-1900	A.-By agrionlturists to non-agricalturista ... B.-By nun-agrionltarists to agicalturists .. C.- Between bgrienlturists D.-Betreen non-agricultarista …	$\begin{array}{r}102 \\ \cdots \\ \hline 14 \\ \hline 7\end{array}$	$2,23524 t$ 139388 19615	$\begin{array}{r} 25,994 \\ 8.110 \\ 2,678 \end{array}$	$\begin{array}{cc} 11 & 6 \\ 20 & 6 \\ 13 & 10 \end{array}$	5,\&2 2 4057 515	210 210 210
190001		$\begin{gathered} 85 \\ \cdots 5 \\ 11 \end{gathered}$		$\begin{array}{r} 87,618 \\ 14,185 \end{array}$	$\begin{gathered} 84 \\ 3710 \\ 11108 \end{gathered}$		$\begin{aligned} & 210 \\ & 210 \\ & 210 \end{aligned}$
1901-02	A.-By agrionltarists to non-agrienlturists B. - By non agriculturists to agricultarista G-Bitweon agrictituriats D. - Hetween non-agrionltuxieta \qquad	11 $\times 8$ $\times 1$	1,17778 81785 815	11,423 763 670 170	$\begin{array}{r}8.11 \\ 8 \cdots 8 \\ 8 \\ \hline 0\end{array}$	3,080 2 214 214 215	210 2010 210
1902-03	A.-By agricalturints fo non-agrionltarists.. B.-My non agrioultarists to agriculturista C.-Rotween africultorists D.-Be.ween non-agricul. erists …	18 1 1 1 1	554 12925 129 1631	$\begin{array}{r} 5967 \\ 127 \\ 123 \\ 1642 \\ 708 \end{array}$	$\begin{aligned} & 910 \\ & 910 \\ & 910 \\ & 910 \end{aligned}$	$\begin{array}{r} 45511 \\ 328 \\ 4315 \\ 1811 \end{array}$	2110 210 2 2 2 2
1803.04	A.-By agricalturists to non-agrioniturists .. 8.- By non-sgrioulturists to agricaltarists... C.-Batween agrienitnvists D.-Etween non-agrionltarists "..	$\begin{array}{r} 95 \\ \cdots 6 \\ 78 \end{array}$	$60221 \frac{1}{6}$ 9R 324 8987	$\begin{array}{rrr} 10,380 & 0 \\ 1,437 & 14 \\ 595 & 10 \end{array}$	$\begin{aligned} & 1414 \\ & 1414 \\ & 1414 \end{aligned}$	1,81714 $2 \ldots 4$ 204 104 104	$\begin{aligned} & 210 \\ & 310 \\ & 310 \end{aligned}$
190405	*. A. - Hy agricaltarists to non-agricultarista B.-By num-sgricult iriste to agricaltarieta C.-Botiveen agrienlturikts D.-Eetreen hon-agricultarists …	$\begin{gathered} 2 s \\ \because \\ \because 2 \\ 7 \end{gathered}$	$\begin{array}{r} 64624 \frac{1}{2} \\ 151 \\ 11094 \end{array}$	$\begin{gathered} 10,101 \\ \cdots \\ 1,78 \\ 1,730 \end{gathered}$	$\begin{aligned} & 1510 \\ & 1510 \\ & 1510 \end{aligned}$	1,697 4 398 29014	$\begin{aligned} & 210 \\ & 210 \\ & 210 \end{aligned}$
1903.08	A.-By agricaltariste to non-agripultitrists B.- Ry non-agrienitmrista to agricaltarista C-Between agricultrrints D.-Between non-agricultariata	18 18 8 6	$\begin{gathered} 589 \\ 10 \\ 94 \\ 25 \\ 30 \\ 304 \\ \hline 034 \end{gathered}$	$\begin{array}{cc} 6,145 & 2 \\ 119 & 6 \\ 288 & 2 \\ 3,468 & 6 \end{array}$	$\begin{aligned} & 107 \\ & 11 \\ & 115 \\ & 11 \\ & 11 \\ & 18 \end{aligned}$	$\begin{array}{r} 346 \\ 26 \\ 26 \\ 68 \\ 68 \\ 794 \\ 794 \end{array}$	ale16 9 10210810
1908-07	A.-By agrienlturista to non-agriealturists B. - By non*agrigultarists to ogrioultariete D.-Getmeen agrioniturists D.-Botween non-ng iculturisis ...	$\begin{gathered} 20 \\ \cdots \\ \cdots \\ \cdots \end{gathered}$	482801 $150 \% 7$	$\begin{array}{rl} 8,887 & 4 \\ \ldots & \\ 8,648 & 0 \end{array}$	$\begin{gathered} 1015 \\ \cdots \\ 17 \\ 17 \end{gathered}$	$\begin{array}{rr} 1,267 & 2 \\ \ldots & \\ 996 & 1 \end{array}$	210 \cdots \cdots 810
1007-08		$\begin{gathered} 88 \\ \text { "15 } \\ \cdots \end{gathered}$	$\begin{gathered} 66410 \\ 842757 \end{gathered}$	$\begin{array}{ll} 9,787 & 5 \\ 9,479 & 0 \end{array}$	$\begin{gathered} 1412 \\ 14 \cdots \\ \cdots \\ \cdots \end{gathered}$	$\begin{array}{r} 1,74810 \\ 6 \ddot{7 \%} 9 \end{array}$	210 $\cdots 10$ \cdots

s. H. COVERNTON,

Settlement Officer,
Sohwan.

APPENDIX IX

Statrment of Agroulturay Stock in the Dada taluka of the Larkana district.

APPENDIX X.

Statement showing Wells in the Dadu taluka.

g. H. COVERETON,

Settlement Officer, Sehwan.

APPENDIX XI.

Statemgnt of Crops in the Dadu taluka (averagh of the last 5 years) frem 1903-1904 to 1907-1908.

Kiad of Cros	Yharit Culmivated Arba.					Total.	$\frac{1}{4}$	遃
	1908-1904.	1904.1005.	1908-1906.	1906-1907.	1807-1908.			
Eharif.	4. 8 80 888	A. g. 808986	$\begin{array}{rr}\text { A. } & \text { g. } \\ 34,03013\end{array}$	$\begin{array}{cc}\text { A. } & \text { g. } \\ \\ 22,956 & 18\end{array}$	A. 8. 18.81182	$\begin{array}{rrr}\text { A } & 8 \\ 100 & 186 & 18\end{array}$	A. g .	
Jukr	23,788 39	20.84936	34,030 13		18,811 6888 188 288	$1{ }^{100,186} 18$		
Bnjri ... \rightarrow	3,46315	3.69113	2,587	2, 4718188	4,888 39	$\|$15,943 12,42 12	3,188 $\mathbf{2 , 5 1 6}$ 1	7.38 $5: 98$
Rice ... $\quad . .0$... $\quad . .1$	91891	$\begin{array}{r}2,761 \\ 84 \\ 84 \\ \hline 11\end{array}$	3,064 7	$\begin{array}{r}3,3: 2213 \\ 115 \\ \hline 18\end{array}$	$\begin{array}{r}2,84 \\ \hline 103 \\ \hline 8\end{array}$	12,4031	2,5>6 6	6.88 .30
Other grains Polses	23712 13311	8430 14924	1158	11522	10382 18724	656 684 689	131 13634	$\cdot 30$
Polses ... ${ }_{\text {Garden }}$ vegotable producta	13311	$\begin{array}{r}149 \\ 304 \\ \hline\end{array}$	1118839 $19+12$	10431 1515	18724 4819	684 383	13634 7624	. 18
Condiments and spices...		80	18.12	...		\ldots	...	\ldots
Sugarvane *- ...								- 9
Sexame (Tir)	11019	1184	12119	16811	171	68914	13783	$\cdot 38$
Citton	3217	22 I	1027	4725	375	14935	2939	$\cdot 07$
Fibrea	1019	1522	2414	1320	2032	8.127	$16: 8$	04
Other kinds	40			4	032	...
Tocal mamip	27,743 30	27,632 29	30,2.98 0	29,214 37	25,873 23	140,712 29	28,142 22	6518
Rabio								
Wheat ...	11,375 26	8,399 22	14.18727	10,093 11	6,372 22	48.42828	9,285 80	21.30
Barley ...	84917	573.23	77419	1,9425	76838	4.2912	8588	1.99
Pulses	1,346 6	1,039 5	1,094 15	1,708	88685	6,034 13	1,206 34	279
Garden produce	1, 5933	21425	195 29	23119	1960	79726	15421	-37
Tobaceo	22.4	1119	3426	2818	197	9614	1011	. 05
Indian hemp, drugs and noreotics.	0	01	\ldots	...
Condimente and epioes	038	${ }^{1} 18$	380	50%	512	6139	1216	. 08
Starches	01	01		01		03	01	
Jamblo ...	2,746 32	1,164 37	1,798 86	2,533 15	2.61414	10,568 14	2,171 27	8.03
Sarih	70331	74.13	84617	1,2.9 36	1,00029	4,506	9121	$2 \cdot 11$
Other kinds of oilseed dyes s.o.	35333	*0. 21	41634	6938	51725	2, 0621	41216	05
Mincolianzous ...	117	${ }^{13} 31$	4216	5038	311	14913	2934	07
Total mabi	17,416 2	12,283 15	15,294 10	17,984 0	12,412 13	75,340 0	15,067 39	34.88
Grand Torlz	45,159 32	39,916 4	46,549 10	47,148 27	38,285 36	216,052 29	48,210 21	100

4. H. COVERATON,

Settlement Officer,
Sehwan.

Statsyent ehowing area of cultivated land (exoluding jagir and forest and including dul the first and three quinquennial periods of

XII.
shown in italio figures) in each surveved village of Dadu taluka, under each kind of irrigation during current settlement with the alsessment thereon.

masi.																Toras		
Bont				8atami				Wasm.		taons.								
Num	$4{ }^{2}$	arm	Amont	Amm.	$\operatorname{sen}_{\text {maxat }}$	amen	${ }_{\text {maxit }}$	Aram.	${ }_{\text {den ment. }}$	Anse.	${ }_{\text {A maxin }}$					Anom.	Aement:	
*	$\left(\begin{array}{c} \mathrm{Za} \cdot \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \end{array}\right.$	1. ${ }^{\text {a }}$	$\begin{array}{cc} \text { Br. } & \text { 2. } \\ \ldots . . \\ \delta 10 \end{array}$	1. 5.		a. 8.				4. 5	¢0.	\%	men.	4. 2	Ba, $\mathrm{Cl}^{\text {a }}$	$\text { 4. } 8 .$	En.	
				..	-	\cdots	\cdots	\ldots				nı	2088	
		118		6\% ${ }_{8}$	1278	50	24%	\cdots	...	\cdots	\cdots-	...	${ }^{198} 8$	${ }^{500} 8$	
	'.	\% 9	2812	288	39\%	\cdots	\cdots	\cdots--	\cdots	${ }^{2838} 888$	${ }^{71} 18$	
		...	\cdots	25%	$0 \cdot 11$		9818	**	\cdots	..'	\cdots	\cdots		- 412	
		1690	\cdots	${ }_{81}^{188}$			… 88.		$\cdots{ }^{-10}$	\cdots	\cdots		…	$\mid \cdots$	\ldots			
	\%																	
${ }^{4}$		48	${ }_{4} \mathrm{~B}$	815	70	n.	${ }^{26} 18$	1019 89 89	218	\cdots	...	…	..-		${ }^{1,550} 0$	
$)^{*} \%_{6}$	${ }_{185}^{185}$	3085	∞	$\begin{gathered} \boldsymbol{y}_{8}, 51 \\ 8 \end{gathered}$	$\begin{array}{ll} 21 & 28 \\ -1 & 18 \end{array}$	134%	50528	${ }_{0}^{16} 19$	4013'.	\cdots	\cdots	...		35	5,2e89\%	
		$\cdots 20$	2015						\ldots	…	\cdots	\cdots	\cdots		$\begin{array}{l\|} \cdots \\ \ldots \\ \ldots \end{array}$	${ }^{180} 88$		
,	$8{ }^{\circ}$															${ }_{\substack{6929 \\ 398}}$		
- 18	813	${ }_{8}^{818}$	\%	- 1780	- 498	\% 88	${ }^{380} 8$	${ }_{0}^{10} 85$	914	--		${ }^{50} 18$	${ }^{1,7888} 1818$	
	${ }_{8}^{119}$	7\%	${ }^{85}$	${ }_{88}^{189} 8$	${ }_{80} 18$	2415	$378{ }^{3}$	${ }_{6}^{9} 815$	3%	\cdots	-..	...			$\begin{aligned} & 1,880 \% \\ & 18 \end{aligned}$	
		$0 \sim$	\cdots	${ }_{78}^{489}$		${ }^{28} 11$								\cdots				
${ }_{\text {\% }}^{\text {m }}$	25i ${ }^{\circ}$							cis	$\stackrel{.}{80}$	\ldots	...	$\begin{aligned} & . . \\ & \cdots \\ & \hline \end{aligned}$	--.					
${ }_{0}^{0818}$	${ }^{288} 8$	585	\# 8	16.	41	\cdots	\cdots	${ }_{4}^{3} 14$	01	\cdots	\cdots	… ...			${ }_{\text {7\% }}^{88}$	10
	-	8^{854}	14.	${ }_{4}^{188}$	${ }_{4}{ }_{13}^{14} 5$	14	61	${ }^{38} 13$	${ }^{1215}$-	${ }_{764}^{960}$	${ }^{2,817} 890$	
...			\cdots	...	\cdots	\cdots	\cdots	\cdots:		8,3090 10	
:-		(1)		${ }^{30} 50$	88315	1438	411	2	18			
Asm	${ }^{17} 0$			${ }^{89} 185$	2888888	20884	3868	${ }_{31}^{3980}$	01	8	115-	\cdots	...		${ }^{2,1856}$	
\%		${ }^{218} 818$	7\%	${ }_{6}^{77}$	50	8) 81	20 4	19%	4	825	13	\cdots	\cdots	${ }^{607} 88$	2,056 \%	
'	\cdots	3%	-	...	\cdots	\cdots	\cdots				$\log _{011} 1$	
\%	\% 0_{0}	...	\because	9089	80	*		...	\cdots				
	\cdots	...	\cdots	${ }^{7}$	1	05	3815	${ }_{8}^{875}$	18-	\cdots	28888	78811	
${ }_{8}^{85}$	48			${ }_{17}^{17}$:	68	71	${ }^{3} 3$			$\underset{1}{1 i}$	
						\cdots	\cdots-				
7^{18}	\cdots	…	\ldots			3080	1,283 11	105	,	\ldots			
3	2.	${ }_{3}^{10814} 1$	208	${ }^{285} 8$	11	016	2	\cdots	--	--	-	${ }_{\text {das }}^{19} 9$	${ }^{2,580} 8$	
${ }_{88}^{2816}$	${ }^{418}$	${ }_{4}^{2182}$	${ }_{0}^{88} 10$	${ }_{6} 85$	280 18	${ }_{1}^{188}$	${ }_{0}^{208} 3$	00	013	...	\cdots	${ }_{\text {ceses }}^{18} 8$		
	\cdots	\cdots	\because	..	\cdots	.-	\cdots	\cdots	-	\cdots					...	208	1,1880	
	\cdots	...	${ }^{. .}$	${ }_{0}^{06318}$	1 mog	388	131	$3:$	7	017		…	\cdots	${ }_{3}{ }_{3} 18$	${ }^{34} 9$	
	...	\cdots	\cdots	\%	${ }_{6}^{68}$	\cdots		\% 888	11								${ }_{0}^{40} 14$	
	${ }_{88}{ }_{8}$	48	508	${ }_{3}^{10} 88$	$\frac{13}{2} 118$	\cdots	..-	3888	810			${ }_{38} 38$	1,100 814	
	\cdots	\cdots	\cdots				\cdots								...		4,380\% ${ }^{\text {g }}$	
	-		...	(1)	$2 \cos _{13}^{18} \frac{1}{8} \frac{8}{9}$		${ }^{248} 8$	09	34			1,0ass	3,191 ${ }^{16} 9$	
		${ }_{19}^{98}$	015		1,780		${ }^{280} 818$	07							...	${ }^{800} 18$	2,519 ${ }_{8}^{14}$	
${ }^{\text {s\% }}$	40	${ }^{18}$	$6:$	13847	58	${ }^{4} 18$	${ }^{289} 13$	230	713	97	,	…		1,007 18	

169-8

Rabit																Torse.		
${ }^{\text {®ои4 }}$		$\begin{gathered} \text { Boor } \\ \substack{\text { Bex } \\ \text { Livor }} \end{gathered}$		saturs,				Wııน.		¢иопл.		Area	先		U			
4 mm ,	$\xrightarrow{\text { aseanem }}$	4 mm	${ }_{\text {manem }}^{\text {mant }}$	Arem		Amm		Atom.		aven	Ameort					Atra.		
4. s.	$\begin{array}{cc} \text { Ben } & 0 \\ & 9 \end{array}$			4.	s. . .	$\text { A. . } 1$	Bg. .	4.	$\text { Bn } 2$	$4 \mathrm{~g}$	\|en, x.					A. 8.	7.	
		-.		..-	-	\cdots	.'.		...	\cdots	.-	...	-	-	...	M6 $\times 10$		
		...		41		*s	1614			\cdots	--	...	10688		
	\cdots	...					110	1	1510	\cdots	817	${ }^{\circ}$	
		\cdots		030	11			519	737	...	-	-		18	4	
	$\begin{gathered} 7 \\ 5 \\ 0 \\ 708 \end{gathered}$																	
iis		\cdots	\cdots	..	\cdots	."	.."	-..'*	...	${ }_{786}^{72385}$	${ }^{2,681} 10.18$	
	$\begin{gathered} 7018 \\ 70 \\ \hline 0 \end{gathered}$	\cdots	\cdots	${ }_{25} 88$	${ }^{6517}$	${ }_{6}^{78}$	78.8	${ }_{10}^{88}$	987			
$\stackrel{\square}{7}$	$\begin{array}{cc} \because 0 \\ \cdots \end{array}$	\cdots	...	${ }_{4}^{4} 8$	1818	418	158		11-	cris	$\stackrel{09}{81}$	
- .	${ }^{5} 15$		-	${ }^{6} 18$	$\begin{array}{ll} 0 & 1 \\ 15 & 0 \end{array}$	${ }_{18}^{98} 88$	248	-..	\cdots	...		$\underset{138133}{{ }_{13}}$	${ }^{1,785} 404$	
		...																
.-	\cdots		\cdots	\cdots	\cdots		\ldots		${ }^{2,10178}$	
	\ldots	.19898	${ }^{518} 8$	12.	so 0		* 18	..-	${ }_{14}^{14}$	1,9458	
${ }_{8}^{118}$		- 0	${ }^{35} 9$..'	.-	83	103	${ }_{68}^{68}$	${ }^{157} 13$	"'.	."	\cdots	-	\cdots	\cdots		1,5¢8980	
, \cdots	\cdots	${ }^{*}$	\cdots	..	"'	".	...	${ }_{8}^{6014}$	${ }^{131} 1$	${ }_{5}^{703} 8$		
- ..	--	\cdots	\cdots	..	\cdots			\cdots	\cdots	…	\cdots...			${ }_{866}{ }_{68} 14$	1,1678	
"'	".	\ldots		HO_{0}^{88}	30 12		189	16.14 880 880	42	\cdots					
		10	80	."	-		741		-	${ }_{8}^{488}$	${ }_{818} 8$	
12	6'	19	414		${ }^{81} 14$i	...	-		${ }_{5}^{457} 3$	${ }_{3}^{298} 18$	
		$\begin{gathered} \cdots \\ 1619 \end{gathered}$	618	..			s		\cdots	\cdots	...	${ }^{1,008985}$	3,5898 ${ }_{6}$	
	51			4	18	${ }^{8}$	28010		3s 5	-.	\cdots	(78 15	${ }_{7} 1$	
$\begin{array}{ll} 4 & 18 \\ \hline 2 & 18 \end{array}$	${ }^{28}$	${ }^{81}$		$\bigcirc 11$	n	..-	."	33	${ }_{35} 1$-	\cdots	${ }^{1,015}$	2,847 ${ }^{2} 9$	
${ }_{818}$	${ }^{38} 8$	103	${ }^{718}$	\cdots	\cdots	${ }_{18}^{1488}$	38.	${ }_{2018}^{808}$	${ }_{\text {8, }}^{8,285}$	
												...	-		...			
										08								
		-	.-	${ }_{31} 9$	${ }^{1,248} 5$...	-	$\underset{\substack{15 \\ 18 \\ 18}}{ }$	408	$0 \cdot$		1,2999909 ${ }^{39}$	18819	
${ }_{80}^{80} 5$		178	3 za	40	${ }_{0}^{001} 1$	0 \%	$1 *$	${ }^{281} 9$..'		."	...		${ }_{681} 98$	88	
${ }_{4}^{4}$	${ }^{128}{ }^{818}$	${ }^{56}$	2416	${ }_{81}^{8188}$	${ }^{109}$...	**	¢ $\begin{gathered}711 \\ 98\end{gathered}$	$\stackrel{10}{10} 80$...	-	\cdots	...	--		${ }_{17}^{810} 4$	2,887183	
-	\%	36	-	\cdots		${ }^{3,418} 8$	
		10	4	$\underset{4}{719}$	1,008 818	${ }_{9}^{388}$	18	5%	${ }^{5}$..	\cdots	-	..-	.-.	...	1,4888	${ }^{8,580}{ }_{8}^{7}$	
0	${ }^{3}$	11				."	\cdots			\cdots	"	\cdots	\cdots	1,017 16.85	${ }^{3888}$	
${ }^{60}$	${ }^{21} 8$		\because	${ }_{0}^{60} 0$	${ }_{0}^{88}$	08	* 1	${ }_{\substack{118 \\ 1681}}$	${ }^{204} 8$...	\cdots	\cdots	${ }_{97}^{9788}$	${ }^{8,2077}{ }_{7}^{81}$	
\% 118		...	-	20̈̈n 18									...			2,919 86	(1,485 310	
$m n_{i} n_{1}$		420	\cdots	3,887 ${ }^{2}$	1,07\% ${ }^{2}$	${ }^{105} 28$	817		985 19	09	02	...	\cdots	--		8,46887	20,588:	
$\operatorname{sex}_{80} 88$	1,488:	\#3 ${ }^{18}$	${ }_{4}^{40} 4$		418	118	410	${ }_{4080}^{488} 8$	1,70 13	838	-	-.		7.70088	13,400\%	
	${ }^{33} 8$	188		${ }^{184} 8$	${ }_{18}^{11}$	8	814	${ }_{50}^{80}$	1,689 ${ }^{18} 8$	84	8.	$\underset{\substack{\text { I.900 } \\ 189 \\ \hline 18}}{ }$	${ }^{10,06085}$	

- 169-10

S. H. COVERNTON,

Settlement Officer, Sehwan.

APPENDIX XIII.

Statbmeits showing demands and realisations in Dadu taluka from 1892-1893 to 1907-1908.

Year.	Gross demand.	Remission.	Collection.	Arrears.
	Rs. ${ }^{\text {an. }}$	Rs. 8.	Re. \quad.	Rs. a. p.
1892-93	1,86,322 10	1,751 10	1,84,275 00	29600
1843-94	1,88,532 11	2,248 0	1,86,263 $\quad 70$	21 4, 0
1894-95	2,04,714 0	10,022 6	1,93,656 880	$\begin{array}{lll}1,035 & 2 & 0\end{array}$
1895-96	98,838 12	871.3	97,387 5 0	580 4 0
1896-97	1,26,472 11	1,027 13	1,25,194 8 0	2506
1897-98	1,52,490 12	1,740 0	1,47,088 200	3,662 10
1848-99	1,18,305 9	6,214 14	1,09,346 200	2,744 9
1899-1900	1,12,342 11	15,506 5	96,620 311	2162
1900-01	1,52,463 4	2,453 12	1,48,251 106	1,757 136
1901-02	1,41,363 14	10,300 3	1,30,774 8 \% 0	2893
1902-03	85,464 3	13,428 8	70,372 90	1,663 20
1903-04	1,37,529 5	1,601 0	1,33,654 14.0	2,273 7
1804-05	1,19,798 11	14,794 11	1,01,773 006	3,230 15 6
1905-06	1,37,827 3	3,676 1	1,33,831 , 60	319120
1906-07	1,40,918 7	2,122 0	1,38,706 30	9040
1907-08	1,10,792 11	4,866 14	1,05,676 10	249120
Total	22,14,177 6	92,625 4-	21,02,871 711	18,680 10
Average	1,38,386 1	5,789 1	1,31,429 80	1,167 8 0

8. H. COVERNTON,

Settlement Officer,

Sehwan.

APPENDIX XIV.

APPENDIX

Staximay showing the reaults of the proposed rates as compared with cultivation of the last 5 years beginning

IT．

$\text { Lusp fiowid } 3 x$						Wıuna，			Baxami		
S	$\frac{1}{4}$	筁	\＄	${ }^{4}$	嵮	$\frac{8}{4}$		遃	5	部	喜 崖 4
1.	Bu， 2	R．	A．	$\mathrm{Ba}, 4$.	Ba	4.	Ea， 2.	8．	1.	Re．	Ba
8	118	91	\cdots		\cdots	\cdots	\cdots	\cdots	\cdots		\cdots
．．	810	87	．．．	13	\cdots		\cdots	．．．	．．．		\cdots
\ldots		\＃．	\ldots		．．．	${ }^{1}$	\％	8	\cdots	\cdots	\cdots
1	${ }_{2}^{18}$	${ }_{5}^{5}$	\ldots	\cdots					4	${ }_{0}^{1} \frac{18}{8}$	$\frac{7}{2}$
18		93									\ldots
．．．	210	${ }_{31}$	\cdots	\cdots	\ldots	\cdots	．．．	\cdots	\cdots	\ldots	．．．
3	${ }^{210} 18$	${ }_{69}^{68}$	\cdots	\cdots	\cdots		\cdots	\ldots	\cdots	\cdots	\cdots
3	${ }^{3} 12$	91	．．．	．．．		．．．	．．．	．．．	\ldots	\ldots	
．．．		\％	\ldots				＂＇＊	．			
98		${ }_{286}^{288}$	…	\cdots	\ldots	${ }^{37}$	\％	${ }_{62}^{64}$	\ldots	\cdots	\cdots
．．． 100	－ 818	440									
\ldots		420	．．．	\cdots				．．．	\ldots		．．．
388	818	${ }_{871} 18$	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
208	118				\cdots						
．．．	810	705	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	．．．	．．．	．．．
178	813	43	．．．	\ldots	\cdots	．．	．．	\cdots	\cdots	\cdots	\cdots
			\cdots	\cdots					\cdots		
\ldots	2	${ }_{.010}^{810}$	${ }^{116}$	8 \％ 3	${ }^{*}$ st6		…	\cdots	\cdots	\cdots	\cdots
．．．${ }^{4}$	${ }_{3}^{210}$	${ }_{197}^{197}$	\cdots	\cdots	\ldots	2	88	${ }_{5}^{6}$	8	${ }^{1} 18$	1
18	${ }^{319}$	sa	．．．	－．	\cdots	1	${ }^{3}$	3	\cdots	\cdots	\cdots
\cdots	110	$\stackrel{1}{*}$	\cdots	．．．	．．．		8． 8	8	\ldots	．．．	
2	818 810	${ }_{8}^{8}$	\cdots	\cdots	\cdots	．．．	${ }_{8}^{8} 8$	$\frac{2}{2}$	\ldots	\cdots	\cdots
	．．．．＇					1					\cdots
．．．		\cdots	\ldots	\cdots	\cdots		88	8	\cdots	\ldots	．．．
12	819 910	408	－			11	${ }_{5}^{8} 8$	${ }_{38}^{88}$	\ldots		\cdots
\cdots			．．．	＇＊	\ldots	\cdots			\cdots		
4	${ }_{5}^{8} 19$	119	\cdots	＇．＇．	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
206	18	${ }^{564}$					\cdots				\ldots
．．．		\cdots	205	123	${ }^{86}$	．．．	．．．	\cdots	\cdots	＊	\ldots
158	318	6931	\％ 163			${ }^{1}$	88	8	\ldots		\ldots
		\cdots	163	213		\cdots		8	\ldots		\cdots
184	${ }_{4}^{4} 18$	$\begin{aligned} & 888 \\ & 8058 \end{aligned}$	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	\ldots
100	213	350					\cdots	\cdots	．．．		＊
．．．		．．．	109	\＄18	30	．．．	\ldots	．．	．．	\ldots	．．．
89	8812	${ }_{5815}^{88}$	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\because	．．．
106	12										
10		$\begin{gathered} 8 \varepsilon \\ \ldots \end{gathered}$	2ib	9 i\％	－250	\ldots			\cdots	\cdots	\cdots
20	${ }^{2} 18$		\cdots		\cdots			\ldots	\cdots	\cdots	\ldots
${ }^{1}$			\cdots		\ldots				\cdots		
\ldots	${ }_{8}^{819}$	${ }_{291}^{294}$	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	．．．
\cdots					\cdots	：．．．			\ldots		\cdots
\cdots					\cdots		\ldots		\cdots	\cdots	\cdots
148	818	${ }_{378}^{391}$	\cdots	\cdots	\cdots		${ }_{4}^{8} 8$	8	\cdots		\cdots
2	818 818 818	74	\cdots		．．．	．．．．		．．．	\cdots		\ldots
${ }^{\times 172}$			．．．	\cdots	\cdots	\cdots	\cdots			\cdots	
172		\％	177	2 13	－s	．	${ }_{3}^{8} 8$	10	\ldots	\cdots	
$\because \quad 11$	$\frac{818}{18}$	${ }_{80}$	s	［．．．	\cdots	1	28	8	\ldots	＊＊	．．
									\cdots	．．．	．．

XIV．
the existing rates in each village of Dadu taiuka，on the basis of the average from 1903－1904 to 1907－1903．

$\underline{4}$									Toren			$\underset{\sim}{\text { Hamux }}$						
Counnmex			vemem				\％606m											
17	1：															容		\％
－		m			m			＝	4	2a						sha		
，	－	－	4	．					2，088	2，6m								
－		\cdots			${ }^{208}$	\ldots	－	．．－	．．．	2，70				\％os				
\ldots	1%	${ }_{3}{ }^{3}$		：${ }^{1} 8$	$\stackrel{\square}{0}$	\cdots	ㄹ．	\cdots	$\underline{1.804}$	\％\％\％ed	析	3	．．．	cos	．．－			
$\stackrel{\square}{2}$	：\％	${ }^{80}$		：：	3	\cdots	…	\cdots	．．．78		\pm	${ }^{4}$	．－	\％ 48		\｛1\％		
＝	…	＝		$1:$	${ }^{160}$	\cdots	\cdots	…	${ }^{\text {max }}$	2，065	${ }_{50}^{51}$	${ }^{10}$		104		\｛1，		
$\stackrel{0}{0}$	1：	\％	${ }^{1.4}$	$2:$	${ }_{\text {\％}}^{\text {\％}}$	${ }^{6}$ \％	\％ 018	：	1．980	308		an	－	π		61\％		
\cdots	\％ 9	－	\pm	98	v	\cdots	‥	…	${ }^{\infty}$		${ }^{\text {8 }}$	\pm	＂＇	arss	．．．	\｛㗁		
\pm	\cdots	－－	$\stackrel{1}{2}$	：\％	\％	：．：	．．．	…	1.280	$\xrightarrow{8,681}$		＊＊	．－	T63	．．－	（924		
－	\cdots	\cdots		： 8.	．	\cdots	…	．．．	．－700			108	－	\％ 7	．．．	\｛312		
.$^{-1}$	： 0	，		\％${ }^{9} \mathrm{~B}$	${ }^{16}$	\cdots	．．．	．．	2．000	\％		802	－	cos				
${ }^{2}$	$8{ }^{\circ}$	，		1：	\％	\cdots	\cdots	…	1．508	${ }_{3}^{28,4}$		\％ 2	．．．	r70		（12）		
\ldots	： 5			1：${ }^{1}$	\％	\cdots	－	\cdots	1.1 .88		3	20	．．	\cdots		824		
\％	\cdots	＂：	\cdots	\cdots	－：－	\cdots	\cdots	…	1.96			4	．－	Hs		：${ }^{\text {\％}}$		
	$: 8$	${ }^{16}$	․ㅡㄴ	：$:$	\％${ }_{\text {m }}$	$\ldots{ }^{.1}$ ：	1013	$\stackrel{1}{2}$	1.104	8，		${ }^{108}$	\cdots	580		88		
2.		：	．．＂	\％ 8	\％	$=$	\cdots	\cdots	${ }^{1.1000}$			${ }^{*}$	－	0	．．．	（111）		
${ }^{2}$	$:$	：	\pm	18	${ }_{6}^{6}$	\cdots	…	－	\ldots	，	）	1	＂－	\％ex		918		
\cdots	\cdots	\cdots	\ldots	$1{ }^{1} 8$	${ }_{188}^{1808}$	．．．${ }^{1}$	011	1	${ }^{\circ \times 4}$			25	－－	513		${ }^{3}$		
\pm	\cdots	：		${ }^{18}$	${ }_{206}^{106}$	\cdots	＂	．．．	－	1，i，em		${ }^{188}$	－－	－0\％		\％		
－	10	${ }_{2}$		1： 8	：	＝	：－	…	－	，	\％	\cdots	－	${ }^{84}$	．．．	（930		
\ldots	$8{ }^{\circ} 8$	4	\pm	$9{ }^{1} 8$	\％	$=$	$=$	\cdots	4，1720	8：280	］	38	．	＊＊		${ }_{3} 18$		
\cdots	10	298	\pm	18	${ }^{185}$	\cdots	－	\cdots	1．san	（\％ice		us	．－－	$0 \cdot 6$		$\left\{\begin{array}{l}181 \\ \hline 18\end{array}\right.$		
\cdots	$4{ }^{\circ}$	${ }^{178}$	${ }^{1}$		：	$=$	\because	…	\cdots		：$\}$	${ }^{19}$	\cdots	cse		8		
\pm	： 0	${ }^{\text {mix }}$		$8:$	8	$=$	－	．．．	1208	\％		20	＂＇	\cdots		3^{24}		
${ }^{8}$	：0	m			\cdots	\cdots	\cdots		．${ }^{30}$	5，		${ }^{\infty}$	－	－s		${ }_{2}^{218}$		
$=$		－		：	＝：	\cdots	\cdots	．．	2.180	${ }^{3, m 00}$		${ }^{6}$				${ }^{184}$		
\ldots	$: 8$	\％	\ldots	1：	20	\cdots	플	\cdots	．．．	$\xrightarrow{\substack{1,788}}$		${ }^{8}$	\cdots	10		$\left\{{ }^{3}\right.$		
＊	：$:$	${ }_{2}^{10}$		： 0	7	\cdots	\cdots	－	\cdots		）	${ }^{18}$	－－	：10		处		
4	1：	${ }^{7816}$			\cdots	$=$	－	…	\cdots	4		\cdots	\cdots	＊20		\｛ ${ }^{\text {ni }}$		
$\underline{10}$	：\％	${ }_{\text {cosem }}^{\substack{80}}$		$1:$	8	$=$	…	\cdots	\cdots		，	${ }^{11}$	．．．	${ }_{8} 85$		¢		
$\stackrel{\text { a }}{ }$	$: 8$	\％${ }^{29}$		i：		$=$	\cdots	…	${ }^{80} 1$		13	14	－	ra		\｛i		
${ }^{2} \times$	：\％			$1:$	${ }_{80}^{0}$	$=$	…	．．．	．．00			${ }^{180}$	－－	${ }^{2} 1$	－			
\cdots	：\％	法	$\underline{.10}$	：$:$	$\stackrel{4}{4}$	．．．＇	${ }_{0} \mathrm{OH}$		\cdots	${ }_{\text {2，}}^{2,48}$		40	－－	1216	．．．	fin		

s. H. COVERNTON,

Settlement Offioer, Sehwan.

APPENDIX XV．

List of prices current in the Dadu taluka．

\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Tens．} \& \multicolumn{2}{|l|}{E0abz} \& \& \multicolumn{3}{|l|}{Rycz（Cbatitay）．} \& \multicolumn{2}{|l|}{Webat．} \& \multirow[b]{2}{*}{害} \& \multirow[b]{2}{*}{富} \& \multirow[b]{2}{*}{㤟} \& \multirow[b]{2}{*}{晋} \& \multirow[b]{2}{*}{$$
\frac{\dot{4}}{\mathbf{y}}
$$} \& \multirow[b]{2}{*}{$$
\begin{aligned}
& \text { 喜 } \\
& \text { 真 }
\end{aligned}
$$} \& \multirow[b]{2}{*}{真} \& \multirow[b]{2}{*}{兵} \& \multicolumn{2}{|l|}{Ltrieo．} \& \multicolumn{2}{|l|}{conror．} \& \multicolumn{2}{|l|}{Ta84000，}

\hline \& 孚 \& 呂 \& 空 \& \& \& \& $$
\begin{aligned}
& \text { 晏 } \\
& \stackrel{y}{*}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 总 } \\
& \text { 号 }
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& \text { 莀 } \\
& \underline{y}
\end{aligned}
$$ \& \& $$
\begin{aligned}
& \text { 空 } \\
& \frac{8}{6}
\end{aligned}
$$ \& \& 妾 \& 章

\hline \& 品
首
E
E． \& 宫 \& \& \& \& r
畐
畨
品 \& 品
品
品 \& 豈 \& 管 \& 号 \& 管 \& 曾 \& 号
首
E \& 貝 \& 宕 \& 克 \& 塞 \& 曾 \& 宫 \& \& 晋 \& 突

\hline \& Rat． n ． \& Re，a \& Re， 8. \& Ra，m． \& REt． \& 20．a \& \& 8．${ }^{\text {a }}$ \& \& \& Rr． \& ${ }^{2} 5$ \& ． s \& He，a \& E＊ 2 \& B．${ }^{\text {an }}$ \& B4， \& a \& B，${ }^{\text {ch }}$ \& 8．${ }^{\text {a }}$ \& 4．as \& 84．

\hline ${ }^{18990.1000}$ \& 8 \& 88. \& 814 \& 8.8 \& 814 \& A ${ }^{4}$ \& 814 \& ${ }_{8}^{8} 818$ \& 814 \& 48 \& \％ 38 \& ${ }^{4} 8$ \& 8
4
4
4
1

1 \& 4 48 \& 88 \& \％${ }^{8} 8$ \& \cdots \& \cdots \& ${ }_{10}^{16} 1{ }^{18}$ \& 48 \& 10
9
9 \& 19

\hline ${ }_{1703}^{2931903}$ ．．． \& 20 \& ${ }_{1}^{12} 18$ \& ${ }_{2}{ }^{8}$ \& ${ }^{18}$ \& ${ }_{4}{ }^{8} 8$ \& ${ }^{8} 8$ \& ${ }^{3} 18$ \& ${ }_{2}^{2} 11$ \& ${ }_{8}^{8} \frac{1}{8}$ \& ${ }^{8} 12$ \& $1{ }_{1}^{2} 10$ \& ${ }_{3}{ }^{11}$ \& ${ }_{8}^{8}$ \& ${ }^{8} 18$ \& ${ }_{8}^{88}$ \& \％ 818 \& \cdots \& … \& 1710 \& 4 \& ${ }_{8}^{8} 8$ \& 12

\hline 3093－1804 \& 111 \& 118 \& 8 \& 48 \& ${ }^{8} 1$ \& 88 \& ${ }^{8} 14$ \& ${ }_{8}^{88} 8$ \& 118 \& ${ }^{3} 14$ \& $1{ }^{18}$ \& 80 \& 80 \& 211 \& ${ }^{8} 8$ \& 811 \& \cdots \& \cdots \& 158 \& 4. \& ${ }^{8} 11$ \& 11.

\hline \& 1 \& ［1818 \& $\frac{8}{2}$ \& ${ }_{8} 111$ \& ${ }_{8}^{88} 8$ \& ${ }_{8}^{818}$ \& ${ }_{8}^{8} 0$ \& 2 218 \& ${ }_{8}^{1} 15$ \& ${ }_{8}^{98}$ \& $1{ }^{18}$ \& ${ }_{2}^{11} 10$ \& \& 813
810 \& ${ }_{812} 11$ \& \％ 80 \& \cdots \& \cdots \& \& 1615 \& ${ }_{6} 818$ \& 10.

\hline 1908－1007 \& ${ }_{1} 12$ \& 120 \& 2 \& ${ }_{5}{ }^{8}$ \& 885 \& ${ }_{8}{ }_{8}$ \& 80 \& ${ }_{2} 13$ \& ${ }^{8} 8$ \& \& ${ }_{8}{ }^{8}$ \& ${ }^{2} 12$ \& ${ }_{5} 1$ \& ${ }_{4}{ }^{3} 0$ \& ${ }_{8}^{8} 8$ \& \& \cdots \& \ldots \& （10 18 \& ${ }_{11}^{11} 1{ }^{\frac{1}{4}}$ \& 78 \& $1{ }_{15}^{10}$

\hline 1007－2008 ．．． \& 215 \& 212 \& 3 \& 78 \& ${ }^{8} 8$ \& 56 \& ＋ \& 11 \& 214 \& \& 83 \& 811 \& 818 \& \& 06 \& \& ．．． \& \cdots \& ${ }^{9} 9$ \& 14. \& ${ }_{1} 1$ \& \cdots

\hline
\end{tabular}

APPENDIX XVI．

Sfatement showing the general financial results of the proposed settle－ ment of the Dadu taluka based on the average of the past 5 years from 1903－1904 to 1907－1908．

s．H．COVERNTON，
Settlement Officer，Sehwan．

APPENDIX A.

Special rule for the revised irrigational settlement of Sehwan, . Johi and Dadu talukas.
Rule 1.-These rules shall apply to Sehwan, Dadu and Johi talukas only. The ordinary rules for remissions and for the administration of irriga-

Appliotation:
Former rulea how far maintained. tional settlements shall remain in foree except in so far as they may be modified by any of the rules here following.
Rule 2.-Rulo No. 4 of the fallow rules (Special Circular No. 20 , page 152) shall not apply to barani lands which obtain no black water or hill-stream irrigation and have no registered water-supply from a canal or the river nor to the lands on the Manchbur referred to in Rule 4 following.

Rule 3.-If lands to whioh a registered source of water-supply from a canal or the river has been assigned are culfivated as barani and afterwards remain unoultivated for 5 years, then the fallow assessment to which they become liable in the 5th year shall not be the barani assessment but that chargesble on the description of irrigated cultivation last carried on in the field.

Rule 4.-The special Manchhur remission rules printed on page 165 of $\begin{array}{ll}\text { Reriseions } & \text { the Commissioner's Special Circulars (No. 2) } \\ \text { will continue in force for all lands whose }\end{array}$ registered source of water-supply is from the Manchhur. Remissions under these rules will also be given in the same way for portions of survey numbers remaining uncultivated owing to fooding by the Manohhur even though their registered source of irrigation is not the Manchbur.

Rule 5.-In barani lands which have received no black water or hillstream irrigation the existing practice will be continued of remitting the assessment on uncultivated portions of survey numbers provided that the uncultivated area is at least $\frac{3}{3}$ of the area of the survey number.

Rule 6.-Remissions on barani cultivation in all lands assessed at one rupee per acre and under shall (on account of the low rates of assessment) not ordinarily be granted. But in exceptional cases where the general nature of the calamity seems to demand a large measure of remission or postponement, the Mukhtyarkar shall prepare a statement showing in annas the general conditions of each deb, and this statement shall be tested by the Assistant or Deputy Collector and its results, with the Collector's recommendation, reported to the Commissioner.

All landa assessed at over 1 rupee per acre shall be entitled to the benefit of the remission rules.

Rule 7.-(In modification of rules 4 and 6 on pages 572-574 of Special Circulars, No. 59).

Except in the purely barani lands referred to in Rule 8 and in the kachas referred to in Rule 10, if a number which has been cultivated in kharif is cultivated again in the sucoeeding rabi then it will be charged according to the rates fixed in the settlement for dubari cultivation. Gardens will form no exception to this rule.

If the second crop is watered with well water only (but the first drop received Indus water), then the dubari crop will be charged as unwatered (i.e., at 8 annas). But if both frst and second crops received well water onily no charge will be made for dubari crop.

Rule 8.-In barani lands which have received no black water or hillstream irrigation, no dubari assessment will be taken if jambho, sariha or other crops usually grown in rabi be sown in a feld which is cultivated in kharif also, but the whole will be treated as a single crop. But if a number sown as barani is accidentally flooded in kharif with Indus water and is subsequently oultivated as sailabi in rabi then the barani rate will be charged in kharif and the full sailabi rate in rabi. If a field is cultivated in kharif with barani and in rabi with hill-stream then in all dehs the dubari crop will be charged the differenoe between the kharif assessment and the' rabi+dubari aneessment.

Rule 9.-In the kachho and the barani lands of Sehwan taluks, arhari*

- A season intermediate between thatif and rapi. crops will be free from assessment provided they merely spring up from the stubble of kharif crops previously reaped, or are grown in a number already cultivated in the preceding kharif or adbawa.t Adbawa
+ Late sping crop. crops (i.e., those succeeding rabl and preceding kharif) will be liable to assessment, but if a number be cultivated both in adhawa and also in the succeeding kharif it will pay only a single assessment for both.

Rule 10.-In irrigated lands if a crop ordinarily grown in rabl is sown at the same time with and mixed with a kharif crop, no dubari will be taken but the whole will be treated as a single kharif crop.

Rule 11,-The speoigl unploughed rate for the Manchhur will apply to Ausesoment. all lands which have actually been watered from the Manchhur and not merely to those whose registered sourge of irrigation is the Manchhur.

Rule 12.-A clearance allowance of $\mathbf{3}$ annas per acre wily continue to be given on lands watered by the Raj wah and other hill flood canals in group if of Johi taluka. But no allowance will be given in group III on account of the lowness of the assessment.

Rule 13.-In the amended rule 6 printed'on page 574, Special Circulars, the words "Gardens will however, etc.," down to "" natural source" shall be omitted, and the following substituted in their place, "gardens will be assessed according to the method of irrigation adupted."

Rule 14.-The following definitions shall be in forese in these talukas and the assessment charged in accordance with them ; -
(i) Rabi bosi refers to land which receives an artificial supply of waten t Flow. for rabi cultivation whether by wheel or mok \ddagger at any time befure the sowing of the seed and which receives no water after the sowing.
(ii) Rabi sailabi refers to land which has receiped natural moisture oniy whether by flooding or by percolation.
(iii) Rabi lift refers to land whioh receives water for rabi cultivation by lift after then seed has been sown, and which had not previously been flooded by natural means 8 Flow channal. or by an artificial mok.§
(iv) Rabi flow refers to lands which receives an artificial supply of water by a mok for rabicultivation after the seed has been suwn.
(v) Sailabi madad charkhi refers to land which before sowing received a supply of water by natural flooding and alter sowing received an artificial lift supply.
(vi) Booi madad charkhi is the same but with the words "artificial flouding from a mok" substituted for "natural flooding."
Lands watered before sowing by wheel or fow, from a canal, etc., which after sowing receive well water only will be assessed as bosi.
Adhawa sailabi , will be assessed as rabi sailabi in surveged lands and as "rabi ploughed" in unsurveyed kachas.
Rule 15 --No rebate allowance will be given on unwatered sailabi poltivation.

Remarks.

Rules 2, 4, 5 and 10 merely qontinue the existing practice of the division, but rule 5 extends to the whole division a concession that for some obscure reason has hitherto been confined to Johi taluka. Rules 4 aud 11 make prom vision for the variations of the Manchhur and the fact that lands may bo flooded by it although according to the Settlement Register they have different spurca of water-supply. When this happens their position is exactly the same as "that of other Manehhur laids and it would be unfair to treat them differently. The necessity for rule 6 is explained in the Johi report. The rule is a modifioation of the rule in force in the Desert talukd of Thar and Parkar. Rules 7 and 13 modify the rules in the special Circulars to suit the propused rates for dubari. Clearly if gardens are to be as essed according to the method of irrigation, there is po reason to continue their exemption from dubari. I see no reason why a number watered in kharif with riyer water should not pay the unwatered dubari rate even if the dubari crop is on a well. I think the dubari orop must gain sofee advantage from having had a watering in kharif from a canal. Sưch duhayif crops are usually garden propa and as suoh evequnder the pld
settlement they had to pay the difference betwean the kharif rate and the garden rate As this special rate has now been abolished, these cropa can weil afford to pay the 8 annas dubari rate. But when both crops are grown en wall water only there seems no ground fur making any alteration in the present oustom of taking no assessment for the dubari; especially as this custom is in accordance with the orders of Government.

Rule 8.-The necessity of this rule is shown in paragraph 9 (i) of the Johi report. At present if the jambho, etc., is sown at the same time with the late juar, it is usually entered as kharif, though not iovariably. It it is sown smong the standing crop before barvest it is ususlly entered as dubari. Obviously it is almost impossible for the tapadar to know if the seed was sown along with the juar or somewhat later and he has to depend on the statements of haris. In any case this jambho crop is usually poor and often consists only of a few ecattered plants.

The effect of rules 7 and 8 in the 2nd group of Johi has been explained in the report. It will be the same in all other hill-stream dehs; i. e., if barani is followed by hill-stream dubari the total assessment will always equal the hill-stream rabi +8 annas. And as the kharif barani crop must always be of much less importance than the hill-stream dubari this seems to be fair enough. It would obviously be absurd to charge only the kharif rate + a dubari rate, for the total would then be less than the rabi hill-stream alone.

Rule 9.-That arhari crops should be free of assessment is in acoordance with the Commissioner's standing orders. The proviso appears necessary to avoid the necessity of a definition of arhari as distinguished from the late kharif crops which would be diffioult. .The rule will prevent a khatedar from being cbarged merely because last year's stubble has sprouted and it also maintains the principle that dubari should in no ease be charged in barani lands.

So too to charge dubari on the kharif because of a previous adhawa would be unfair. Except in very rare cases the adhawa crop is grown and cut for fodder only, but it is always allowed to spring up again in the following tharif as a grain crop if it receives enough water. If it does not get water and does not develope grais in kharif that is no reason for not charging the assessment once. The effect is precisely the same as if the kharif crop bad been sown and failed and remissions in such cases have been abolished in Rule 5 except in the 2nd group of Johi. In that group the khatedar can petition for remission as usual on the adhawa.

The state of affairs referred to in rule 10 is confined to riverside lands, generally to kachas or kacha-paka lands.

The necessity for rule 3 is explained in the Dadu report.
Aule 14.-These definitions will relieve from the high rabi charkhi rates all those orops which get no water after sowing. These are as a rule oilseeds. Their condition and sppearance is precisely similar to that of fiow bosi crops and I see no reason why they should be rated higher than flow bosi or why the rates for real charkhi should be lowered on their account. The question whether a orop has received water after sowing or not seems to me more important than the question whether it received its water in Beptember or November. The definitions given are almost the same as those given by Mr. Wali Muhammad in the Kandhkot report, whioh were apparently accepted as correat. I have only omitted the words "once only" from definition No. 1. Mr: Wali Mahammad had made no provision for a crop receiving two waterings before sowing and nove afterwards. It may be added that while it can be seen at a glance whether a crop has been watered after sowing or not, it is impossible to discover whether the water was given in September or November.

Melons are cultivated as aailabi in kacha and, kacha-paka lands near the river in 3 dhawa, is they are sorn in May and the produce gathered about the beginning of July. The rabi sailabi rate seems the most appropriate for the cultivation.

Rule 15.-In this division, if a number has as its registered нource of water-supply a canal on which rebate is given, it appears to have been customary in some oases at least to give it the rebate even when cultivated as sailabi. But the sailabi watering is purely natural and even accidental and requires no clearance of karias to make it possible. In fact as a rule it does not even come through karias and I see no reason why the rebate should be given.

> S. H. COVERNTON,

Settlement Officer, Sehwan,

No. 1698 of 1909.

> Execulive Engineer's office, Camp Puranodero, 6th April 1909.

From
B. ERishnario, Eaquibe,

Executive Engineer, Western Nara,
To
The SETTLEMENT OPFICER, SEHWAN DIVISION.
Sir,
With reference to your No. 20, dated the 3rd November 1908, calling for a report on the irrigation of the Sohwan division, I have the honour to state as follows:-
2. From the attached summary account of the working of main and branch canals during the period of current settlement it will be observed that the river changed its course very often, although during the last 5 years it has been fairly steady and favourable as far as Western Nara, Pritchard Canal and their branches are concerned. The smaller canals, viz., Marviwah, Upper Nurwah, Kolab Sial, Phitto and Chario Wahur which take off direct from the river, suffer very much due to the vagaries of the river and their satisfactory working eannot invariably be relied upon. All these canals appear to have worked fairly satisfactorily, specially during the latter part of the period under report even in years of low inundation; the probable reason seems to be that owing to a more favourable set of the river higher F. S. levels are obtainable with respect to Bukkur readings than was formerly the case, as shown by the statement of comparative Bukkur and Baksto Jamali (a gauge on Western Nara, mile 102 in deh Shahmorio) readings, attached hereto.
3. A. separate list of the improvements carried out during the period under consideration is attached and the effects of these improvements are described below :-

Western Nara.-Construction of New Akil mouth and its widening to 80 feet in 1903 and 1904 respectively could not materially improve the supply in the canal portions comprised in Sehwan division, but its further widening to 125 feet in 1905 has considerably helped to improve the supply in the portion referred to above by giving about 200 cusecs increased disoharge.

Before however the construction of Pritchard Canal, the Western Nara in the portion under consideration was practically a failure and after water was admitted into Pritcbard Canal in 1890 the supply in Western Nara became favourable and large areas of waste land began to be cultivated and flow cultivation considerably increased and the height of lift irrigation was materially reduced.

These improvements have materially improved the supply of all dehs within the irrigation boundary of Western Nara and its branches shown on the tracings attached; so much so that the W. L. ohtainable is 4 feet higher than in former years with comparatively increased discharges.

Dingritoah.-New cut to Dingriwah was dug in 1902 and had the effect of giving adequate supply to the lands dependent on the canal.

Lohrivoah.-This canal was originally a zamindari karia which was taken over in 1892 and improved at a cost of Rs. 9,088. The effect of this was to give 2 better assured supply to the lands within its irrigation boundary as per tracing attached. Large areas on Lohri Dhoro have morenver been coming under cultivation.

Pritchard Canal.-Was newly constructed in 1890 mainly as a feeder to Western Nara. New feeder to the dhand feeding the Pritchard Canal excavated in 1903 helped to give a better supply, but has during the past 3 Jears failed to fulfil its purpose owing to changes in the course of the river.

In the year 1903 the widening of tail portion of Pritchard Canal was undertaken with a view to reduce the velocity in Pritchard Canal and thereby prevent the deposit of silt in the Western Nara just above where Pritchard Canal tailed into it. This improvement had no direot effect however as regards irrigation advantages in the Sehwan-Dadu sub-division.

Juberji branch ex Pritchard Canal.-Was newly excavated in 1901. It is a branch of Pritchard Canal and was intended to serve as a feeder and to improve the supply in the tail portion of Kudanwah in deh Juberji of Dadu taluka and has considerably benefited the cultivation in the deh.

Marvivah-Old month of this canal having proved a failure a new mouth Was given to it in 1903-04 which had the effeot of removing causes of complaint as regards deficient supply. Of late years the new mouth has however been adversely affected due to the obanges in the course of the river.

Regulator at its head was constructed in 1894. This helped materially to regulate the supply in the canal according to requirements and to prevent its lands from being damaged by river floods flowing unchecked into the Marviwah.

Upper Nurwah.-Upper Nurwah was widened in 1891 to improve the supply and the canal was.extended in 1892 and made to tail into Ghariwah. These improvements had the effect of augmenting the supply in this canal as well as in Ghari and Wadhu canals and helped to slightly raise the water level in them. There has been an inorease in the irrigated area of Upper Nurwah only.

Conversion of the old road bridge near Dadu on Upper Nurwah into a regulator in 1892 had the effect of raising the water level in dehs •Kasaohandia and Markhpur, whereby considerable aress are saved even at times of deficiency in the canal and are usually brought under "flow."

Extension of the mouth in 1904-05 and cutting a new mouth in 1907-1908 were intended only to restore the canal to its working order as it had been adversely affected by changes in the course of the river.
4. Water is as a rule fairly evenly distributed over the lands within the irrigation boundaries of each of the three talukas under report. In years of low inundation the distribution is regulated as far as this is practicable. The lands on right bank of Western Nara and more partioularly Lohriwah in Johi taluka are liable to be swept over by hilh torrents. The area within the boundary of Manchbur Lake is as a rule submerged during the abkalani and is therefore mainly brought under rabi cultivation. The area under this head has nearly doubled and the kharif area has nearly quadrupled during the period under consideration, while about 2,000 acres of land have come under rice cultivation.

Owing to the higher water level now obtainable as indicated in paragraph 2 above the Western Naria, the Pritehard Canal, and their branches have been greatly benefited. The area under flow has considerably increased and the height of lift correspondingly reduced. Moreover large areas formerly under lift have been brought under rice cultivation.

Similarly the lands dependent on upper Nurwah are benefited though to a amaller extent. With a higher water level and regulation at the tail regalator there has been a general increase of cultivation.

Marvizah.-Shows a general increase of flow and rice irrigation while the area under lift has remained fairly eteady. On this canal the advantage of higher water level more than compensates for the disadvantage arising from an unfavourable mouth.

Kolab Sial and its branohes Gharivoh and Wadhuvah.-Appeared to have worked fairly satisfactorily. The area nuder kharif on Kolab sial has increased somewhat during recent years, whereas there is practicslly little flow irrigation.

Phitta Canat.-On this onnal the kharif area has remained steady while there is a slight increase in rice area.

During the year 1907.08 however the low inundation and wnfarourable set of the river sffeoted these minor eanals taking off direat from the riven, and the areas under cultivation show a considerable falling off.
5. A statement showing the variation in the areas under different kinds of cultivation is attached. The statement is based on figures obtained from the records of the taluka offices. The figures oannot be taken to be absolutely correct as they had to be extracted by darogas of this department. They gfford however a general indication of the growth of caltivation on the different canals.
6. Statements of the average annual cost of cenal clearance and maintenance of bunds and extensions and improvements are attached. A statement of wells. in each taluka required by the Special Circular also accompanies.

Accampaniments.

1. Statement of gauge readings.
2. List showing improvements.
3. Statement showing length of canals and expenditure incurred.
4. Statement of wells.
5. Statement of each kind of irrigation.
6. Summary of working of canals.
7. 3 plans.

I have the honour to be,
Sir,
Your most obedient servant.
B. krishnalao;

Executive Engineer, Western Nara.

Sumbury of the ioviking of edatald in Sehwoin dioision, oompiled fromt the recorde of the Executive Engineef, Westetn Nara.

Weitirn Nara.

1990.-The canal did not on the whole work satisfactorily although water level was higher by about $1 \frac{1}{2}$ dua to Pritchard Canal having been newly exonvated for the purpose owing to the late rise and early fall of the river and unfavourableness of the set of tue river at its month.
1891.-Although the inundation was unusually. Iow and short the canal worked fairly well.: This was due to the favourable change of the river at the mouth of the Akil dhand feeding it. The high flow lands however suffered or account of lower level of water in the canal;
1892.-The canal worked satisfactorily, due to flood water through Pritehand Canal entering it, and higb lands on its banks were oultivated for the first time for some years past but heavy hill floods damaged the crops.
1893.-The cansl was not bunded at the mouth and continued to flow till the middle of November. In spite of the river having fallen in July and August which had a detrimental effect on the rice crop in the upper reaohes of the canal the water-supply in the canal below Kakar was better than in any year throughout the season due to flood water brought down by Pritchard Canal.
1894.-There was an abundant supply in the canal throughout the season. The Lashari flood entering into the canal broke out on either side cutting large gaps in the banks and thus swamped the cultivation excepting some high lands and those protected by bunds.
1895.-The supply was deficient due to low and fluatuating inundation although the river was favourable.
1896.-The canal worked pretty well although the inuadation was compsratively low and only of an average duration. The river having gone down much earler than usual want of water was felt at the close of the seasort. Some high flow lands suffered from draught and some near the tail of the canal were submerged by the overflow of water from Manohbur Lake
1897.-There was an abundant supply of water throughout the inundation. The hill torrents overflowed the Manchhur and submerged all the land on both banks of the canal as far as the mouth of Muhammad Ali wah.
1498. -The inundation being low and the river unfavourable the canal did not work satisfactorily although its supply was partially augmented by that of Pritchard Canal.
1899.- In spite of the low inundation the canal worked fairly well owing to favourable conditions at mouth. The fall of the river towards the eud of the season however had a disestrous efeot on the crops which were partially saved by alluwing the canal to be bunded up at about 3 miles above DaimMiani and also at Aroni.
1900.-The inundation was good but riyer nnfarourable, the canal how. ever worked satisfactorily throughout the season. This was mainly due to Lashari floods entering through Pritchard Canal.
1901.-The supply level in the Nara was lower than that of the previous year. In spite of the fluctuating nature of the inundation the canal worked fairly well. This wis mainly due to Nangeshah floods finding their way ints it through Pritchard Canal.

1902:- The working of the canal was extremely unsatisfactory owing to the duble misfortune of a low inundation and the unfavourable set of the river which caused heavy silt deposits at its mouth. Crops were however saved to a certain extent by bunding up the canal at Aroni.
1903. -The inundation was good and the working of the canal this year can on the whole be said to have been very satisfaotory. The supplementary new mouth- 40 feet wide from the Akil dhand-came into operation during the season and materially augmented the supply.

- 169-15
1904.-The supplementary mouth was widened to 80 feet and towards the end of July the old mouth was abandoned. The canal worked fairly well in spite of low inundation as it was materially helped by Pritctard canal. The tail portion however suffered a little.

1905 - The new Akil mouth was further widened to 125 feet and was opened on the 4th June. The canal owing to the improvements effected and the excellent inundation worked exceedingly well.
1906. -Tne canal worked remarkably well throughout the season, the rive: being favourable.
1907.-In spite of low level of water in river the canal worked satisfactorily throughout the season as the river was favourable.
1903.-The canal worked remarkably well throughout the season, the river being favourable.

Lohbiwah.

1893. - Water sufficient.
1894.-The head regulator remained partially olosed. The supply let down into the canal was quire sufficient to meet the requirements.

1895 - The lands on the caual suffered to a little extent owing to the low level of the river.

1896 - Breaches were caused in the first 3 miles of the canal by the hill torrents from Nai Gaj during the months of June, July and August, but the breaches on both the banks were promptly olosed to prevent water from going to waste and only 5 openings on the right bank left for the passage of hill flood water into the canal. Inis increased the cultivacion but the fall of the water in September atfected the crops to a certain extent.
1897. - Water supply abundant with the exception of the latter part of the season when the cultivators saved the crops by erticting a second set of wheels. Hill torrents entered into the canal from Nai Gaj on the 19th August but the volume of water was not great.
1898.-The oanal on the whole worked satisfaotorily. Hill floods entered into the canal through the karias at mile 3 right bank on 23th May.
1899.-Water supply good with the exception of the latter part of the season when speoial measures sucin as. "chabbing" Were resorted to for saving crops from withering.
1900.-Water supply, sufficient throughout the season. The hill floods came down this year as well and the head rogulator remsined olosed until they subsided.
1901. - Water supply sufficient with the exception of the latter part of the season. Hill floods came this year also.
1902.-The hill floods from Gaj Nai sapplemented the water supply in the canal which thus worked satisfactorily.
1903.-Supply quite sufficient throughout the season.
1904.-Water supply good up to the end of August, after which special measures had to be resurted to which saved the oultivation to a great extent.
1905. -The canal worked very well.
1906.- Do. do.
1907.-Worked satisfaotorily. Hill torrents did much damage and cut the embankments on either side.
1908.-Worked satisfac orily. Hill torrents breached the canal in several places but no damage was done to crops.

Kumanwar.

1890.-Water supply poor throughout the season.
1891.-Owing to low inundation the oanal did not work well. The supply in the tail was supplemented from the Hritchard Canal which not only increased the cultivation but helped the crops greatis.
1892. -The supply was quite sufficient throughout the season.
1893. Water supply was ample. River floods submerged , almost all the land except high-lying lands on its banks.

189 b.Water supply was ample. Its lower part was everywhere out up by the crossing of floods.
1895.-As the zamindars expressed net to oultivate land in its first 6 miles the naw mouth wascloted and the old clearel and opered to reduce the discharge entoring the canal to lessen the danger to embinkments. Subsequentiy new mou:h was opened but the river fell too low to be of any great use. The tail supply was supp!emented by a cut from the Pritohard Canal.
1896. Water supply defieient. Tue tail supply was supplemented from the Pritchard Canal.
1397.-Keceived ample supply of water.
1831.- The canal suffered oving to low inundation. The tail supply was supplemented from the Pritohard Canal and Khudawah also rendered material help to its oultivation from mile 11 to 15.
1899.- Do. do. do.
190). -The water supply in the oanal was not up to the requirements and this rendered it necessary to supplement the supply in its lower reaches from Pritchard Canal and Khudawah.
1901. - Owing to unsatisfactory working of the tail of this canal in Dada taluka a new cut was made from Pritchard Canal to feed it, and the whole incluling its luwer portion was called Juberji branch which worked satisfactorily.

Juberdi brance.

1902. -It did not work satisfactorily owing to low inundation.
1903.-Received an abundant supply of water thr ugh rut tha season.

1904-[p to 20th July water was su ficient for lift. Owing to chabbing the tail of the canal thore was abindant supply from end of July to end of August and consequently all lands got flow supply. In September'owing to fall in river the supply was deficient anl crops wnald have suifered but for the olosing of the stop gate regulator on Pritchard Caual.
1905.-Worked satisfactorily.
1906.-It worked very satisfactorily.
1907.-It worked well.
1908. - Worked satisfactorily and no deficiency was felt.

Kanowar.
1890 -Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892. -Water supply good throughout the season.
1893. - Water supply abundant.
1894.-Worked fairly well.
1845.-Worked fairly well.
1896. -Worked well.
1897.-Water-supply ample throughout the season.
1898. -The canal worked fairly well and there was sufficient water for the eultivation.
1899.-The canal suffered owing to low level of water in Nara in the end of August.
1900. - There was sufficient supply of water in the canal throughout the season. Crops suffered in plooes owing to giving water beyond requirements.
1901.-Water supply sufficient for lift irrigation.
1902. - After ceasing to flow two or three times it ceased altrigether in 25th September. Crops were greatly helped both by backwater from Ghari and regulation of the Sonroiani sluice.
1903.-The canal flowed uninterruptedly thrnughout the season and water supply was sufficient for all land dependent on it which is lift.
1904. -There was a good supply in the canal un to 3rd week of Angast, when some deficienoy was felt owing to silting at the head. This was cleared and a better supply thus admitted into the canal.
1905. -Water supply ample.
1906. $=$ Do. da
1907.-The supply was fair throughout the season.
1408. \rightarrow The supply in the canal was good up to the end of September.

Lower Nurwae.
1890.-Water supply poor throughout the season.
1891. Water supply suffioient throughout the season.
1892.-Water supply fairly good throughout the season.
1893.-Water supply abundant.
1894.-Worked satisfactorily.
1895. - Worlsed well. It materially assisted the Phito when river fell.
1896.-Worked well.
1897.-Water-supply sufficient except at the latter part of the season and the closing of Sonmiani sluice assisted by rains saved the crops frow withering.
1898.-Received a fair supply. Artificial measures had had to be resorted to for saving flow oultivation.
1899. -There was a fair supply of water in the canal. Crops at tail only suffered a little.
1900.-There was sufficient supply of water throughout the reason. Crops suffered in places owing to giving water beyond requirements.
1901.-Water supply sufficient for lift irrigation.

1902-It did not work well. Crops helped by floons entered the Nara through Lohriwak and regulation of the Sonmiani siuice over Nara.
1903. -The supply in the oanal was good throughout the season.
1904. -The supply in the arnal was good up to 3rd week of August but poor afterwards up to the middle of September. Speaial measures had to be resorted to for saving the crops.
1905.-Water supply sufficient.
1906.- Do. do.
1907.-The supply was fair throughout the season.
1908.-W Worked satisfactorily.

Ney Garbbi, Old Garibi and Aheund.

1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do.
1893.-Water supply abundant.
1894.-Cultivation submerged by Lashari floods.
1895.-Worket very well.
1896. -Worked well.
1897.-Recaived an ample supply of water.
1898.-There was sufficient supply of water throughout the reason.

1889, Theyr peefired a good supplyi except towards the end of August when the supply failed and the flow crops suffened.

1900-There was a gosd supply of water throughout the season. Dry orop suffered to a oertain extent from excess of water,
1901.- Received gond supply up to the fired fortnight of September. Cropu being sown late suffered to an extent.
1902.-Water supply deficient owing to low inundation.
1903.-The water supply was good throughout the season and no deficiency wawfet.
1904. -The supply in the oanal was good up to first week of August but deficient afterwards.
1905.-Water supply sufficient.
1906.- Do. do.
1907.-Worked satisfactorily.
1908.-The supply was good throughout the season.

Dingriwah.

1890.-Water supply poor throughout the seasen.
1891.-Watgr supply sufficient throughout the season.
1892.-Water supply somewhat deficient in the beginning of the season only. Rain floods damaged the crops.
1893.-Water supply abundant.
1894. - Hervy hill torrents j ined with the river floods submerged almost all the cultivation except high-lying patches.
1895. Water distributed to the best advantage by tightiy closing the regulating sluice at about half its length by turns.
1896.-Worked well.
1897. -Water supply ample. Lift oultivation in the last 4 miles of the oanal was damaged by hill torrents.
1599.- Owing to rapid fall of river and Nara sufficient level of water could mot be maintained for all the time and crops suffered in consequence.
1899.-The supply was not good and the crops suffered in consequence.
1900.-The supply in the canal was aufficient throughout the season. Some crops suffered from et ess of water:
1901.-Owing to unsteady nature of the supply in the Nara the supply in the canal was not on the whole satisfactory.

1902 -Water supply inadequate.
1903.-The canal worked fairly well.
1904.-The supply in the oanal was gond up to the 1st week of August and chabbing the canal at mile $6-0$ greatly helped the crops.
1905.-The canal worked most satisfactorily.

1906 - Che supply was sufficient throughout the season.
1907. -The supply in the canal was gool throughout the season.
1908. - Worked satisfactorily throughout the season.

Makakiwar.
1890.-Water supply poor throughont the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. da do. Rsin water damaged the crops.
1898. -Water supply sbundant.
1894.-Water supply sufficient. Heary hill torrents joined with river noods submerged almost all the cultivation except highrlyigg patches.
l:895.-Worked very well.
1896.-Worked well.
1897.-There was a good supply throughout the season. Crops on its right bank were damaged by Manehhur flood.
1898. -There was fair supply throughont, the season. Crops below mile 8 suffered for lack of water.
1899.-Owing to low inundation the supply was not good. Crops suffered.
1900.-Received groad supply throughout the segson. Some crops suffered from excess of water.

- $100-16$
1901.-Worked satisfactorily.
1902.-The supply in the canal was very poor.
1903.-There was a sufficient supply of water throughout the season.
1904.-The aupply was good throughout the season.
1905.-The canal worked very aatisfactorily.
1906.-It worked satisfactorily.
1907.- Do. do.

1908. - Supply was very good throughout the season.

MuHaminad Ali waf.
1890.-Water supply poor throughout the season.
1891. Water supply sufficient throughout the season.
1892.- Do. do. do. do. , but cultivation in low lands was damaged by rain water.
1893. - Water supply abundant.
1894.-Water supply sufficient. Floods damaged the crops in its first, two miles.
1895.-Worked very welL.
1896.-Worked well.
1897.-There was a good supply throughout the season.
1898. -There was a fair supply throughout the season. Late crops suffered a little owiug to fall of water in september.
1839.-Supply not good. Cultivation suffered to some extent owing to lack of water.
1900.-The water supply was.quite enough throughout the season. Dry: crop suffered to an extent from excess of water.
1901.-Received a satisfactory supply throughout the season.

1902;-Tbere was abundant supply in the canal.
1903.-The canal worked well throughout the season:
1904.-The supply in the canal was good up to the end of July and fair in the month of August and first few days of September. Chahi at mile 1/3; was allowed to save the rico crops;
1900.-The canal worked very satisfactorily.
1906.-It worked satisfactorily.
1907.- Do. do.
1908. - Supply in the canal was goad throughout the season.

Saknowar.

18:03-Water supply poor thronghout the season.
1891. - Water supply sufficient throughout the season.
1892.- Do. Bain floods damaged the erops.
1893. -Water supply abundant.
1894.-Water supply sufficient. Rain water joined with floods submerged almost all cultivation except high-lying patches.
1895.-Cultivation suffered to an extent during the latter part of the season awing to the supply being cut off by the Nara Baid sluice.
1896.-W orked well.
1897.-Water supply sufficient. Cultivation damaged by Manchhur floods.
1898. -Water supply deficient.
1899. - Water supply fair due to low inundation. High lands suffered.
1900.-Water supply sufficient. Cultivation on its. left bank submerged. by Manchhur flood.
1901.-Received a fair supply throughout the season.
1902.-Water supply deficient.
1903.-The canal ieasived a goud supply throughout the season.
1904.- The canal on the whole worked well. Crops being chiefly rice the supply was not equal to the heavy demand.
1905.-The supply in the canal was satisfactory.
1906.-Supply sufficient.
1907.--Supply very satisfactory.
1908. - upply was very good, but cultivation was submerged by hill torrents during July and August.

Kur Aktar.

1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do. do. Rain floods damaged the orops.
1893. -Water supply abundant.

189ı.-All cultivation submerged owing to overflow of Manchhur.
1895.-Worked well:
1896.-Worked well. Hill torrents damaged the cultivation on the right bank.
1897.-The supply was good throughout the season. Cultivation was submerged by Manchhur flood.
1898.-Received a fair supply throughout the season.

18y9.-Water supply fair. High lands suffered.
1900.-Water supply suficient. Cultivation on its right bank was submerged by Manehhur flood.
1901.-Received a fair supply throughout the season.
1902.- Do. do.
1903.-The canal fiowed excellently throughout the season.
1903.-The canal on the whole worked well throughout the season.
1903.-The supply in the canal was very satisfactory.
1906.-Supply sufficient.
1907.-Supply very satisfactory.
1908.-Supply very good.

Chario Wafur, Arai akd Dungtar.
1890.-Water supply poor throughout the season owing to low inundation.
1891.-Water supply fair throughout the season.
1892.- Do. do.
1893.-Water supply good throughout the season.
1895.-Water supply abundant. Karampur flood passed into the canal.
1895.-Water comparatively low owing to low inundation.
1896. -Water supply ample. River floods burst into the canal.
1897.-Water supply was ample and the floods passed down the canal.
1898.-The canal worked fairly well but there was no cultivation owing to fear of lands being flooded.
1899.-There was a very good supply in the canal.
1900.-In consequence of.the general complaint of low level of water in Manchhur, bunds were put up near Sehwan across Chario Wahur and Aral with a view to foree more water up the Aral and Dunster into the Manchhur Lake. The canals worked very well throughout the season.
1901.-The canals had sufficient supply of water throughout the season.
1902.-The supply in the canals was good throughout the season.
1903.-There was a very good supply throughont the season.
1904.-The supply in the canals was good throughout the season and the canals worked satisfactorily.
1905.-The canals worked very satisfactorily.

1906,-The canals worked very well.
1907.-The supply in the canal was good throughout the season.
1908. - Water supply sufficient. Rains and river spill wator submerged the crops.

Manchite Lake.

1890.-Received little help from Nara and other feeders due to low inundation and absence of rains. Hill torrents in the beginaing of December came down with great force and submerged rabi crops.
1891.-Received supply from Nara, Chario Wahur, Aral and Dunster. No hill floods.
1892.-Unpreogdentel local rainfall together with hill floods raised the level to the highest mark on record.
1893. - No hill floods except early in July. Area submerged for rabi was much less than last year.
1894. - Hill torrents joined with river floods raised the water level oonsi. derably.
1895.-Water in the lake rose but little owing to low inundation and absence of rain.
1896. - Owing to river having maintainel its high level for about 2 months and the hill floods which came 3 times in the season large quantity of water entered the lake.
1897. - River flools aided by hill torrents raised the level of water considerably.
1898. - Received a little supply of water owing to low inundation and absence of rains.
1899.-It did not recaive sufficient water owing to low inundation and sbsence of rains,
1200.-Received a very good supply. The rise was chiefly due to the construction of bunds across Chario Wahur and Aral. The drainage in the beginning was not satisfactory, but after the fall of river on the 1st Ootober water was drained off rapidly and a very large area was made available for rabi.
1901.-Large area was brought under rabi as the drainage through Aral was satisfactory.
1902.-Rains and canal water flooded large areas in the dhand and the area under rabi was comparatively large but less than in the last yoar in spite of low inundation.
1903. - This dhand was well filled this year and rabi area w as fairly great, and about 3,000 aeres more than in the previous year.
1904.-Water through the Aral and Nara filled the lake. Owing to the earlier baokflow of water into the river the cultivation increased by about 4,000 acres more.
1905.-The Manchhur flood was one of the highast on reeord and the area under rabi was comparatively large though sameshat less than in the previous year.
1906. - The Manehbar got filled from the river and hill torrents and high. water mark was higher than previous yoar whioh was reoord, but there was a slight fall in the area under rabi.
1907.-Owiag to low inundation the canals did not bring in muoh water but hill torrents greatly beiped in flling up the lake and there was a large falling off in the area under rabi.
1908.-The civer water and hill torrents submerged large areas of the lake, The lake was drained off fairly well,

UPPER NURWME.

1891. There was a fair supply of water in the canal. The river being unfavourable the candil'eased fiowing early in the seasum.
1892.-Worked fairly well.
1893.-The supply was fairly good in the beginuing, but river went low in August when rotation was resorted to which materially saved the crops.
'189s, - The canal maintained's very good supply throighout the seanon.
1895.-River eroted above and below the mouth. The canal dried 4 times during the season. Water itupply was deficient.
1896.-It worked well.
1897.-Water supply plentiful exoept towards the end of the season when rains assisted the crop.
1893.-There was a good supply of water throughout the season.
1899.-Water supply deficient owing to low inundation.
1900.-There was sufficient water in the canal throughout the season.
1901. The canal suffered owing to late rise and unfavourable set of the rivet. Eftorts were hoivever made to utilize the reduced supply to the greatest advantage by regulation.
1902.-The supply was sufficient throughout the season in spite of low inundation due to favourable set of the river.
1903. The supply in the canal was excellent throughout the season.
1904.-The supply in the canal was deficient throughout the seabon owing to the dhand feeding it having peavily silted.
1905. -In spite of the mouth of the oanal being improved the supply in the canal was not sa gool as to meet the demands of flow cultivation towards the end of July, but the rise in the river in September saved the situation.
1903. - The Wabur feeding the canal was cut into by the erosion of the river. Worked very satisfactorily.
1937.-Supply in the canal was deficient owing to its mouth having been cut into and eroled away by river.
1908. - A new mouth which was completed duxing the jear gave a very satisfactory supply throughout the season.

Kolab Stat.

1890.-There was sufficient supply in the canal throughout the season.
1891.-Water supply deficient and crops would have perished had not supply been augmented from Western Nara.
1892. -Deficiency was fist in the early part of the season but there was ample supply available later on to the end of the season.
1833.- Phe canal worked fairly well till the fall of river in August when Nara water was admitted to augment the supply.

189 hi-The eanal maintained a very good supply throughout the season.
1895.-Water supply deicient. It'deéd sevoral times wher the river fell very low: Crops suffered:
1896. -Worked well.

- 1897!-Meceived a god supply throughout the season.

1898. - Owing to low inundation the supply was limited throughout the season.
1899.-It'did not work well and defioiency was felt towards the end of thé seàsoñ". Tó remedy this a bund across its feeder Wahur, was allowed, whioh not only sà̀ed thee standing orops on the capal itself but greatly benefited the cróps along ite bradches Gharí aid Wadhu.
1900.-Thésüpity in the canall was suffient throughout the season.
1901.-Worked fairly well throughout the season:

- $169=17$
1902.-The supply was fair. Chahi across the Wahur feeding it inoreased the supply in the canal which benefited the crops on the canal iteelf and ite branches.
1903.-The supply wan very good throughout the season.
1904.-The supply was fair throughout the season.

1905. -The canal worked satisfactorily.
1906.-Supply sufficient.
1907.- Supply in the canal was deficient owing to the low inuadation throughout the season.
1908.-Supply was very good throughout the season.

Wadhuwar and Ghariwar branches of Kolab Slaz.

1890. -There was a fair supply in the canals throughout the season. Late: crops partly suffered duy to sudien fall of the river.
1891. Water suppy deficient. Crops would have perished but for a supply having been given for 3 days from Western Nars:
1802.-A deficiency was felt in the early part of the season but there was ample supply of water for the rest of the seasion.
1893.-Fall of river in August was compensated for letting in surpluas water fiow Nara into it.
1892. -The cinals maintained a very grod supply throughout the season. The surplus water was disoharged into the Duabo dland.
1895.-Water supply deficient. They ceased flowing several times during the season whenever the river fell very low.
1896.-Worked well.
1897.-Water supply good throughout the season.
1898.- Water supply suffioient for lift crop. Late erops suffered owing to fall of river in September.
1893. - Supply scanty owing to low inundation.
1900.-Received a suflicient supply of water throughout the seasom
1901.-Worked fairly well throughout the season.
1902.-The supply in the canals was fair.
1903.-The supply was sufficient throughout the season.
1904.-The supply in the canals was fair in the first four miles and poorfurther down due to unsatisfactory inundation.
1905.-The canals worked satisfactorily.
1906.-Supply sufficient.
1907.-Supply deficient owing to low inundation throughout the seasans
1908.-Supply good throughout the season.

Pitta Canal.

1890.-There was a good supply in the eanal in the early part of the season but the river went on changing its course from its right to left bank and back again causing very heavy silt deposits at its moutb. Great portion of cultivation was saved by bringing water into the eanal from the dhand at its mouth.
1891.-Supplied partly from river direct and partly from Nara. The Karampur flood coming in towards the tail gave a high level and plenty of water.
1892.-The canal worked very well. The supply was augmented from Nara in the exrly purt of the season and from end of July more than sufficient was obtained from its mouth owing to favourable ohange in the river.
1893. The supply was good and high up to 2nd August when the rivel began to fall but its supply was augmented from Western Nara and the flood standing in the large dhand near its mouth.
1894.-The canal maintained a very good supply throughout the season.
1895.-The canal did not suffer, notwithstanding low inundation, the river being favourable: The supply from Nara graatly assisted the crops.
1896. -Worked well.
1897.-Water supply good throughout the season. Rains also assisted the crops. Linds in its last 10 miles were submerged by Karampur floods. River was only quarter of a mile from its tail.
1898. -Received sufficient supply of water throughout the season. Late orops below mile 11 suffered.
1899. -The supply was deficiant due to low inundation and the unfavoursble set of the river.
1933. -The supply in the canal tras sufivient throughout the season.

1971 -The supply in the canal had to ho supplemented from Nara to meet the deficiency due to unfarourable set of the river.
1903.- Do. do. . do.
1933.-The supply in the canal was poor ap to the middle of July, but subsequent rise of the river changen the state of things for the better.
1904. -The supply in the first 8 miles was fair and below 8th mile to the tail the supply was deficient.
1933.-River unfavo:uble and sapply defieient but was augmented from Western Nara with good results.
1903. -The supply in the canal was fairly sufficient. It was moreover augmented from Western Nara.
1907.-The supply in the ennal was fuir and supplemented by the Nara branohes Lower Nurwah and Muhammad Ali wah.
1903.-The supply in the cinal was good throughout the season.

Paitchard Canal.

1890.-Opened for the first timion 14th July. At the time of opening the river was outing away its right bauk at the village of Nao Goth one-quarter mile below the canal mnuth, the erosion then worked up-stream and cut away rapidly. Of the original of line of c.mat half a mile was eaten away by river. It augrnented the supply in the Nara by $1 \frac{1}{8} \mathrm{ft}$.
1891.-Owing to erosion 3,70 feet at mouth were removed by river and silt to a depth of 7 feet aceumulated. The canal assisted the Nara as long as it flowed., It had ceased to flow from 29th June to ist July and finally ceased flowing on 7th October. The river was unfavourable and the supply fluctuating and somewhat deficient.
1892.-Water supply deficient up to 14th July. Since Angust the head regulator remained closed till the end of season owing to floods from Rajana bunds entering iuto the canal. This considerably augmented the sapply in Western Nara.
1893.-Remained entirely or prrtially closed nearly all the season. Served as an escape durin; Lashari floods, saving a large part of Mehar and Kakar from being submerged.

1894 - Until the end of June water was not required. ' Early in July the flouds cut into the canal at 19 ch mile rendering necessary the closing of the head regulator.
1895.-Water supply fair although the inundation was low and fuctualing.
1896.-Water supply sufficient till 20th August, after which the river began to fall and the canal ceased to flow on 1st September. Crops however did not suffer much.
1897.-The canal was regulated according to requirements of the Nara and it worked fainly well.
1898.-In spite of low inundation the oanal worked well owing to favoursble position of its mouth.
1899.-The canal worked satisfactorily for the first two months and thon the river began to fall which told heavily on the orops in its upper reaches.
 wards ith was ikept, closed, owing to breach thaving ocourred in the ennal and subsequently to the water not being required in the Nare fomecultivation Whas damaged by Lashari floods.

1901 - The head vegulator zemained oppn until the 1st Angust when it wet closed as the level exceeded that of the designed supply 10 feet. Dangeshah floods augmented the supply in Western Nara which eaved the crops in its tail portion.
1902.-The canal worked extremely unsatisfactorily throughout the season in oonsequence of the unfavourable position of the Wahur feediug it and low inundation.
1903.-Thè river was unfavourable at first, but after 20th June its set wat favourable aud the inundation on the whole good. The canal worked well and helped Western Nara considerably.
1904.--The canal worked satisfactorily throughout the season although the inundationn was not gaod. This was due to farouvable set of the river,
1905.-Worked very well but was not so much atilized as in the past for supplementing the supply in the Western Nara as it brought down ample supply of its own due to further widening of its Nev Akil mouth to 125 feet hed width.
1906.-It worked very satisfaotorily. Full supply; vie, 10 feet could not he admitted jnto the panal as there was abundant supply in the Nara and 8.50 was the lovel of the whole season.
1907. The canal wocked satisfactorily. Was regulated acoording to the requírements of the Nara as the latter canal bad ample supply of its own.
1908.-The canal worked satisfactorily. Owing ta water not being required in the Nara the supply had to be out off at the head regulator. The river was favourable.

Escapi Channel.

1895.-Reqeived a podenate supply of water owing to low inundation.
1896.-Water supply good, Cenal ceased to flow on Ist September and cultivation saved by erecting whesls on dhands,
1897.-Good supply of water passed down the canal which assisted the crops.

1898; -There was ample supply of water throughout the season.
1899.- Do. do. do.
1909.-There was ample supply of water throughout, the season. It served ąs an escape at times of high level of water in Nara.
1901.-Received a good supply of water. Relieved its, feeder when there was surplus water in it during August.
1902. - It, did not work satisfactorily throughout the season owing to low iдundation.
1903.-Received abundant supply of water throughout the season:

1904- Beceived an abundant supply throughout the season.
1905.- Worked satisfactorily.

$1906-$	Do $_{4}$
1907.	Do.
$1908-$	Do.

Marvimaim,

$1890-$ Wqrked vary, well notwithstanding poor inundation.
1891.-Erosion at its mouth caused the oanal to dry earlier in the-seasens,
 This was due to the oharacter of inundation. Floods submerged all cultirations. in low ground
1893.-River oroded about $2 \frac{1}{2}$ miles of the canal. Owing to the approach of river it maintained a-very high level of water which overflowing its banks: yrassed towards Phulji station.

1894- About a mile of the canal at its mouth was oroded away. Flood after crossing the Pritohard Canal flowed back from the tail which necessitated elosing of the head regulator except for short intervals to save crops in the upper reaches of the canal.
1895.-Water was admitted according to requirements and there was no complaint of defioiency. No erosion at its mouth. It worked astisfactorily.
1896.-Worked very well.
1897.-Worked satisfactorily.
1898.-Water supply scanty owing to low inundation.
1899.-It worked fairly well.
1900.-It worked very satisfactorily.
1901.- Owing to the active erosion of the dhand above the month of the canal a large deposit of silt was formed near the mouth resulting in the supply. being out off earlier than nsual.
1902.-Owing to the extremely low inundation and unsatisfactory mouth of the canal the canal worked badly. The canal after ceasing to flow twice finally stopped flowing on 24th August.
1903. The canal worked exceptionally well but owing to erosion at its mouth its first mile was silted and the canal ceased flowing on 6th September. It again flowed on 13th and finally stopped flowing 10 days afterwards.
1904.-It worked satisfactorily throughout the season.
1905.-Supply sufficient.
1906. -Worked very satisfactorily.
1907.-The canal suffered greatly as it ceased flowing thrice during the season owing to the fluctuations in the river.
1908. -The canal worked much better than last year.

B. KRISHinarao,
Executive Engineer, Western Nara.

- 10 mis

Starisuent of compasative maximum gauge readinge of Bukkur and Baksho Jamali.

Lrst showing improvements made in Dadu, Johi and Sehwan talukas since the introduction of the corrent settlement, 1890-91 to 1907-08.

$\begin{aligned} & \text { Serisl } \\ & \text { No. } \end{aligned}$	Names of morks.	Coest of ontlay.	When completed.
		Rs.	
1	Improving supply of Upper Unerwah	.14,136	March 1891.
2	Excavating an extension of the Upper Nurwah to the Gharí wath, Dadu taliuka.	10,636	February 1892.
3	Additions and alterations to the old bridge over Upper Nurwah for regulation of water	457	September 1892.
4	Excavation of Lohriwah ...	9,088	March 1893.
5	Excavation of Pritchard cazal	3,32,128	March 1894.
6-A	Construeting head regulator over Marvi wah	3,832	March 1894.
6	Improvements at the mouth of the Aral wah	8,993 5,931	March 1901. February 1903
8	Making a new cut to Dingri wah Widening Pritchard canal from stop gate regulator at mile $\frac{21}{1}$, and its junction with Western Nara	5,931 $\mathbf{6 , 3 8 5}$	February 1903. July 1903.
9	Excavating Juberji branch 4, Pritchard canal	3,497	March 1904.
10	Construction of a new mouth to Marvi wah	2,460	March 1904.
11	Constructing a new Akil mouth to Western Nara	1,45,127	July 1905.
12	Extending the mouth of Upper Nurwah ...	1,805	October 1905.
13	Widening New Akil mouth to Western Nara to 80 ft . bed width	71,168	November 1905.
14	Construction of a new mouth to the Wahur feeding Pritchard canal, Wahur and Marni wah	18,231	March 1906
15	Cutting a new mouth to Upper Nurwah...	2,000	November 1908.
16	*Widening New Akil mouth to 12 ft . bed width	1,61,691	

* In progrees, praetically completed.
B. KRISHNARAO,

Executive Engineer, Western Nara.

Statemert showing length of eanale and expenditure incurred if maintenanca (works) of canal and bunds in Dadu, Johi and Selwan talukas from 1907-1908.

																		憵	¢	
				$\begin{array}{\|l\|l\|} \hline 1 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 8 & \left.\begin{array}{c} 9 \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$	$\begin{array}{r} 8 \\ \hline \end{array}$	\|	1	8	$\begin{aligned} & \text { 憣 } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \frac{8}{8} \\ \frac{8}{8} & 8 \\ \hline 8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{6}{2} \\ \frac{1}{2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{1}{9} \\ \text { B } \\ \hline \end{array}$		$\frac{8}{8}$	\%			

Executive Engineer, Western Nara.

Statement showing information regarding welle in Sehwan, Dadu and Johi talukas.

Wames of dohx	$\begin{gathered} \text { Ko } \\ \text { wellus. } \\ \text { well. } \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { mater below } \\ \text { ground } \end{gathered}$ $\begin{aligned} & \text { ground } \\ & \text { lexel. } \end{aligned}$	Sweot or aght		Rumazs. .	
Taluka Sehwan.		Ft.			Rabi.	
Kalo Bhuri	4	$\left\|\begin{array}{lll} 20 & \text { to } 25 \\ 25 & \text { to } 35 \end{array}\right\|$	Swret	\cdots		
Bhan ..						
" ...	1	28 37	Sweet	\cdots	Kharif and rabi. Rabi.	
		12 to 15		\ldots		
Tando 8hahbazi	2	12		...		
Bakhtawarpur	4	11 to 24	"	...		
Saidabad ...	1		"	\cdots	3	
Baid̉ \quad....	1	12	"	...	Kharif and rabi.Rabi.	
, ...			Saltish			
Sultanpur ...	281	25 to 30	Sweet	\cdots	",	
Wahur ...		23 to 35		R	Rabi and kbarit. Rabi.	
Gober ...		3123	"			
Gaher ...	3					
Akhtar ...		14 to 28	\cdot			
Arbi ...	1	\|l 14			Rabi and kharif.	
Bambha			\cdots	.. B		
Bra ...	$\begin{aligned} & 1 \\ & 7 \end{aligned}$	19 to 24	", ...			
Talit $\quad \cdots$	2	${ }_{21}^{21}$ to 24	Saltish			
\cdots						
	3 4 4	25	Sweet \quad "		Rabi.	
Ohana ...		$\left\lvert\, \begin{gathered} 21 \text { to } 25 \\ 22 \\ 22 \end{gathered}\right.$			2 rabi and 2 kharif. Rabi.	
Karani						
Totar	89		'*'	
Taluka Johi.						
Johi		$\left\lvert\, \begin{aligned} & 20 \text { to } 30 \\ & 38 \\ & 10 \text { to } 18 \end{aligned}\right.$	Smeet	\cdots	Rabi. Rabi and kbarif, Rabi.	
Vägeji	222		\cdots			
Gaha ...		$\underset{99}{24}$			Kharif and rabi, Rabi.	
	2		" $\quad \cdots$			
Dara Maghi		25				
Jharri Jadoshahid	1	12 to 15	Bräkish		"	
Phulji ...			Sweet.		"	
Bhah Morio	\cdots	$"$	do. do.	\ldots	"	
Bahawalpur						
Torai	28,	
Taluka Dadu.						
Khudabad	$\begin{array}{r} 8 \\ 25 \\ 2 \\ 10 \\ 4 \end{array}$	$\left\|\begin{array}{c} 20 \text { to } 25 \\ 20 \text { to } 25 \\ 25 \\ 25 \\ 20 \\ 20 \end{array}\right\|$	$\left\|\begin{array}{ll} \text { Sweet } & \ldots \\ \text { Sallish } & \ldots \\ \text { Sweet } & \ldots \\ 0 & \ldots \\ \hline \end{array}\right\|$		$\begin{array}{c\|c} . . & \text { Rabi, } \\ \cdots \cdots & " \\ \cdots & " \\ \cdots & " \end{array}$	
Bhand						
Buth Malho						
Xurpur .-.						

73

Nors.-There is mincrease of 292 Folls in tha Division, more especially in Dadu kaluka ond the quan thyy of water available in them generally is auficient foy irrigational purposes though some of the Falle stre eilted up and require olearanae.

B. ERISHNARAO,

Executive Engineer, Western Narar

Statement of each kind of irrigation in Sehwan, Dadu and Johi talukas duri the years 1891-92 to 1907-08.

No. 6825 or 1909.
Public Woris Departubnt.
Superintending Engineer's office, I. R. B.D.
Camp Sukkur, 7th December 1909.

From

D. W. HERBERT, Esquine, Superintending Engineer, 'Fudus Right Bank Division, To

THE COLLECTOR OP LARKANA.

SIR,
I have the honour to return herewith the accompaniments to your No. 5373, dated the 16th September last, and to express my regret at the delay, specially as I find that I can add very little useful information to the full account already given by (Mr. Covernton and the) Erecutive Engineer regarding the irrigation in these talukas.
2. It would appear that the flooding of the lands by the Escrpe channel described in paragraph 6 of Mr. Covernton's report on the Dadu taluka can be remedied to a great extent, but proposed works cannot be takea into account. .
3. With reference to paragraph 8 of your report on the Johi taluka 1 understand that the one-tenth of the consolidated assessment is supposed to represent what the land would yield without irrigation, i.e., it would be the average assessment on the whole area not merely on the cultivated area,
4. With regard to the clearance rebate, I understand that this is supposed to be given only when the cost of clearance is excessive, but in the lists of karias attached to the report I find a considerable number only one-quarter mile long.
5. The widening of the Western Nara Canal in 1905 to 125 feet bed width is said to have benefited these talukas. This canal has been working very satisfactory for the last six years, but this year (1909) the gauge reading at the head regulator of the Akil mouth suddenly fell from 10.9 feet on the 19th September to $2 \cdot 1$ feet on the 23rd of that month, the Bukkur gange readings on those dates being $11 \cdot 10$ and $7 \cdot 4$ feet. Whereas with $7 \cdot 4$ feet on the Bukkur gauge on the 23 rd September of the previous year the head regulator gauge read 8.8 feet. This falling off in the supply is .due to the Indus having receded for several miles and thrown up large areas of kachas opposite the mouth of the canal. I have recently inspected the position and found the conditions for the Nara supply to be very bad indeed. In fact the canal is completely eut off from the river at present when the Bukkur gauge reads below 8 to 10 feet. Al., the dhands bringing down water from the north are completely silted up at their heads.

The tail of the 4 kil dhand has also been silted up in a length of nearly a mile. Taking the present difficulties about funds and labour into account, it is probable that all that will be done this year, is to make a cut through the silted portion of the tail of the dhand, and so supply the canal from a backwater two miles long, which of course means a considerable reduction in the water level at the mouth of the canal. This cutalso may silt up towards the close of the inundation and it is improbable that the supply in the river during September will be as favourable as it was last year. The Pritchard Canal however ensures a fair supply for the talukas under consideration.
6. Owing to the present very unfavourable position of the river at the head of the canal, the time does not appear opportune for any considerable

78

enhanoement of the assessments and I would point out that in the 3rd group of the Dadu taluka it is proposel to increase the rate for rabi litt frome Res. 2-4-0 to Res. 4 or by 77 per cent. which appears excessive.

I have the honour to ber.
Sir, Your most obedient servant,
D. W. HERBERT,

Superintending Engineer. Indus Right Bank Division.

Accompaniments above referred to sent by registered parcel.

No. 7168 of 1909.

> Revente Department:
> Collector's office, Camp Larkana, 11 Dh December 1909;

- Passed on.

The rebates on short karias are in Johi, where the land is up-hill and clearance greatly needs encouragement.

The bad prospects of the Nara would have to be considered if the proposed assessment were a full one; but it is avowedly pitched much lower than the actual value of the crops would justify in order to allow for precarious watersupply. The previous settlement was made at a time when the Nara wasi much worse than it is likely to be again.
C. M. BAKER,

Collector of Lerkana

Revesur Department.
 Collector's Office,
 Camp Lurkana, $\begin{gathered}\text { IBth Septonbor } \\ \text { ith } \\ \text { Durmber }\end{gathered} 1909$.

From

C. M. BaKER, Require, B.A., I.C.S., Collector of Larkana;

To
The COMMISSIONEH an SIND.
Sir,
I have the honour to formard Mr. Coternton's Settlement proposals for Dadu taluka.
2. I am glad to sar that on this orcesion I need not trouble you with any adrerse criticism or alternative proposals. Mr. Covernton consulted me frequently while he was considering his proponals for there threp talukas; and being already in agreement as to the general principles we had little difficulty in agreeing about the details.
3. The most. noticcable feature of Mr. Covernton's proposals for Dadu is their extreme simplicity, There are some talukas in Sind where five groups are not too many : but Dadu is, I ibink, obviously a one group taluka. The lower group dehs certainly have a small water-supply and a good deal of unnceupird lond. But the whtor-supply is fuirly conatnnt; lift dels of this kind are really better off than flow dehs on long canals, where a fall in the river may destroy the whole crop. The soil is naturally good and only the good parts are cultivated. Ihe result is that these dehs grow some of the tinest juari in Sind. In an iryigation zettlement we need not concern ourselvee much with the uncultivated and therefore unassessed lands, as. long as our rates are not su high as to check extension of cultivation. In lands of this sort extension is merely a question of water-supply. If there is not enough wster extension is undesirable; if there is enough, then four times the propused assessment would not check it.
4. Instead of evolving bis settlement rates from his inner ennsciousness in the old-fashioned way, Mr. Covernion has followed a more practical method. He bas taken the irouble to find out what the crops are really worth to the zamindar, and then fixed, or at least tested his rates by reference to the figures thus arrived at; his assumption being that the assessment should be about one third of the net produce (in other words of the zamindar's share). The question is whether this assumption is justified. There are no Government orders as to what the standard should be and I believe no other Sind Settlement Odicer except myself has ever considered the question. The standard on whioh I used to base calculations was $\frac{2}{b}$ of the zamindari share; but I regarded that rather as a maximum and tried to keep well within it.

In the 'zamindari' provinces of India the standard is commonly $\frac{1}{2}$ or $\frac{3}{5}$ of the zamindar's 'assets." But then these assets are mostly in the form of cash-rent and the figures represent what the zamindar actually gets. In sind our figures can only be estimates and averages and we must have one rate for bad fields and good fields in the same deh. It follows that our standard must be lower.

Mr. Covernton's standard of $\frac{2}{8}$, which has the advantage of differring little from prevailing rates in Sind, seems to me a fair one. It is true that the Mirs trok $\frac{5}{3}$ of the grosn produce and do so still; but that was $\frac{1}{3}$ of the actual gross produce as it really was each year; they did not attempt to take in a bad year $\frac{1}{8}$ of what the gross produce would be in a normal year. Besides, the high rate was a good deal toned down by concessions on one side and peculation on the other.

- 180-80.

5. As regards the question of rates I agree entirely with Mr. Covernton's proposals, which are baved on yery eareful inspection. Those dels which hy proposes to raise, as well as many others, I visited in company with him at haryest time.

I have rarely seen finer juari crops than I have seen near Dalu during the last three years. I have already expressed the opinion that it is unnecessary under an irrisational settlement to put a deh in a low group merely beoause it is irrigated by lift and partiy unoocupied. The water-supply in some casen is. not very extensive; but it can harilly he callerd preoarious. The ceanals being lift canals all along cannot he drained dry by rice cultivation or breashes above as the lift parts of many Upper Sind canals are. Besides, the soil is so guod that the light rate proposed for lift oultivation will be no hardship aven in a poor year. The greatest rise is 10 annas an acre, and the highest lift rate is Rs. 2-8: whereas in a normal year the zamindar's share could seidom be less than Rs. 15 an acre.
6. The rise in the rice rate is considerable, but the rate is still very low from an irrigation point of view, being much less than double the dry crop rate.
7. The tise in the rabl lift rate seems to require no justification, when the rates of all other talukas in Sind are considered. It is probnble that in the former settlement of this taluka this rate was kept low because certain lands were inoluded which are watered by lift only hefore sowing and get no water aiterwards.' But these are of course really 'bosi' lands, and will be assessed as such in future. The real rabi lift lands, which are mostly on the Nara bank, are about as profitable as any lands in Sind, and can easily pay Rs. 4, as they do in other talukas.
8. I do not agree with the proposal that the settlement should be , guaranteed for 10 years only. I have ventured to suhmit on former ocoasions that the revision of rates at such short intervals, revision being usually the same thing as enhanoement, causes a feeling of insecurity among landowners which is most regrettable both from the agricultural and the political point of view. In the present case the usasl reasons for a short guarantee simply do not exist. There is not the least chance of any irrigational improvement until the Right Bãk. Canal is made; and that oanal will not affeet Dadu taluka within the neext 20 years. I therefore recommend a guarantee of 20 years.

> I have the honour to be,
> Sir,
> Your most bbedient Servant,

C. M. BAKER,

Collector of Larkans.

REybion Drpartugnt.

Settlement office,
 Larkana, 23rd April 1909.

From

S. H. COVERNTON, Empire, I. G. A.

Settlement Officer, Sehwan,
To
The COMMISSIONER is SIND.
str,

In accordance with the orders contained in Government Resolution, No. T/39 of 30th September 1908, I have the honour to submit proposals for a settlement of Sehwan taluka.

Physical Features, otc.

2. The area of Sehwan taluk including the hill debs is 1272.91 square miles. Its greatest length is about 50 miles andres greatest width about $\mathbf{2 5}$. The northeastern portion of the taluk consists for the most past of high
Lit. charkbi lands depending for their water-supply on the Phitto and Dunster wake and the river. In the east there is a narrow belt of lowlands bordering on the Indus. In the west and centre on the bank of the Nara and the shores of the Manchhur, and on both sides of the Aral the land is low and mont of it is flooded during the summer by the Manchhur and by the spill of the Mars and Aral.

The greater part of the taluk to the south of the Sehwan-Jhangar-Shah Hassan road is dependent on rainfall or on springs which are fed by rain. Much of it is occupied by hills in which there is very little cultivation. The Khirthar and Bit range on the west and the Maliriri range on the east form the borders of the taluk, and between them lies the Badro hill. The cultivation lies chiefly in the valleys of the Naing (between the Bit and Badro) and the Bandhri nat (between the Badro and the Lakhi hills).

The population of the talus is 53,513 or 42 to the square mile. The chief town are Sehwan (5,241), Bubak (3,300), Jhangar (1,626), Arazi (1,493), Tali (1,321) and Chan (1,426).

The rainfall in the past 15 years has been as follows :-
1893-94 to 1897-98. 1898-99 to 1902-03. 1903-04 to 1907-08.

In sta.	In. otc.		In. cts.	
6	10	289		36

The taluka includes 67 dehs including Duridero Jagir and Bolo Khairodero, which is entirely forest. "Den Kacho Sehwan was transferred to Hyderabad district in 1894-95. The apparent increase in the total area of the taluk since Mr. Bernie wrote lis report is due to the fact that the whole area of the unsurveyed debs has now been brought into the total, whereas Mr. Berrie included only their cultivated portions. Doh Bed was also transferred from Dadu to Sehwan at the beginning of the settlement in accordance with Mr, Berries's recommendations.

Markets.

3. The only markets of any importance are Bubal and Sehpen. The majority of the zamindars here as in other alulas dispose of their grain to local grain-dealers and a large proportion of it is consumed locally. But tome - 188-4
of the Karachi Arme have of heve had agenta in the taluka who bay partly from zamindara and partly from banias, and there are a few zamindars (ohiefly of bania origin) who transport their own grain to Karachi. The grais of the Sehwan and Jhangar circlea is as a rale brought to Sehwan and that of Bhan and Bubsk circles to Bubak or Bubak road station and Bhan.

Communieations.

4. The North-Western Railway line to Shikarpur and Sukkur paseem through the most populous and beit caltivated part of the taluka. There are stations at Bhan, Bubak road and Sohwan, and from the latter atation there is a short branch line to a goode station within the town. All parts of the taluza are now connected with each other and the railway by roads of the nsual unmetalled type-but some of them have no bridges acrosa the large oanale, and a re therefore lese useful than they otherwise might be. The taluka has ample means of communioation with Dadu taluka, but with Johi it is connected only by a single road from Bhan to Johi town (for the Daimji Miani bridge is of very limited use). Of course boats are constantly plying between Bubak or Miani Arhi Sarai and Shah Hasan, but the traffe with Johi taluka is of importance for the purposes of the Johi settlement rather than that of Sehwan. Two roads only lead into Karachi district; the trunk road to Lakhi besides the railway is a good one and there is a considerable amount of traffic along it, but the hill road to Karachi and Karchat is a rough track which is seldom used for transport.

Grain is usually conveyed on camels or donkeys, but bullock oarts are found in the large towns. Five new roads have been constructed during the rettlement. One of these merely supplied a gap in the trunk road to Dadu several miles of which had been eroded. The others are-
(i) Talti to Bilawalpur.
(iii) Karampur to Talti.
(ii) Bhan to Manahiun.
(iv) Bubak to Miani Arhi Sarai.

Manufactures and Industries.

5. There is no industry in the taluka which has any conneotion with sgriculture and no important industry of any description.

Irrigation.

6. The Executive Engineer has submitted a single report for all three talukas, and this, together with the various statements drawn up by him, will be found at the end of the Dadu report. He has given a separate map for Sehwan taluka which is attaohed to this report.
(i) Manchhur-Colonel Haig's settlement report for 1876 (paragraphs 7 to 14) contains a fall deseription of the physical features of the Manchhur and Aral dopression, and the effecte produced on the lake by the hill floods and the variations of the Indus. The river is now further than ever from Sohwan town and the aral still fails to fulfil its two-fold function of a supply and drainage channel. But although the "problem of the Manchhur" is still unsolved, it no longer takes the shape in which it appeared to Mr. Berrie in 1889. At that time it seems there was a danger that the lake would disappear altogether, for the Aral was silting up and the Nara working bady. For a time this seems to have been averted by heary rain flocds and by the improvement in the Nara after the Yritohard canal began to work properly. But it was found that owing to the silting of the Aral and Dunster the water that entered through the Chario wals and the New Cut ran biok to the river through the Lakhi channel of the Atal. To prevent this ever since the year 1900 at the beginning of each innurdation a band has been placed aeross the Lakti channel of the Aral and theChariowah (ola channel); thue leaving open during the inundation only the New Cut fron the Chario wah into the Aral (which is not marked distinctly in the Expeative Bngineer's map). The band across the Aral is removed each year at the close of the inundation. The effect of this arrangement is that the Manchhur now receives' a very large supply of 'water from the river At the same time since 1905 the Nara has improved still further and now continues flowing late into the rabi season ;'and in'the last three yearis the lake has been srollen by rain floods. from the frontier hills and the hill country to the south. Unfortunately no means has yet bean found of draining off the water again as quickly as is noeded at
the end of the inundation. Titil the band is removed nd water canl begfin to flow out from the lake." And even if it is removed at the 'right time yot if the' river remains high it may happen that the New Out brings in trore water than the gehwan-Lokhi Aral can drain away and the rest flows westwards into' the Manchliur. The result of this is that the lowest lands in the Manchiur dehs: never dry up at all or else appear too late for successfur cultivation. Theselands espeoially on the northernside of the lake are thickiy covered every year with. grass werds and rushes. The process of clearing them is not only difficult andi expensive but also takes a condiderable amount of time and there is very little? time to spare after the lands have appeared. The Executive Engineer hardly: refers to this difficulty in draining the lake. In fact he says that in the corrent year (1903-09) it "drained "off fairly well." This is hardly correat. When I was at Sbah Uasan and Daim-ji-Miani in February 1909 I still found water standing in lands which two years before were certainly under cultivation. And not only in most of the lower dehs of Johi talaka but also in Maheji, Fasulani Yakubani, Bubak, Trehni and other dehs of Sehwan there were large aress whioh dried up too late for cultivation. In fact a good deal of Trehni, Dabhri, Shah Hassan and Kot Barocho has not dried up yet and probably will not do so at all this year. The Dunster, the Chario wah and so much of the Aral as is not swamped in the Manchhur work well enough as irrigation canals in kharif and afford an almost perennial supply in rabi. In his report the Exeoutive Engineer includes the Chario wah among those small canals. which "oannot be relied upon," but this is hardly borne out by the notes made on the working of these three canals for each year of the settlement.
(ii) The most important of the Sehwan canals after the Aral and Manchhur is the Nara, with its branolies the Kur Aktar and Makiki (which latter again. branches into two, the Muhammad Ali wah and the Napat wah with its continuation the Wahur wah). The Executive Engineer points out that beforethe construction of the Pritchard wah in 1890 as a feeder to the Nara, the latter canal was practically a failure. After the Pritchard wah was opened the supply in the Nara greatly improved for several years, but it still was liable to be affected by unfavourable cinanges in the set of the river as, e. g., in the ' year 1898, and to this cause, it would seem, is due the decine in the cultivation area from the year 1896-97: The construction of the Akil mouth in 1903 had no practical effect on this taluka, but its widening to 125 feet in 1905 improved atill further the Nara and its branches and rendered the assistance of the Pritchard almost superfioous. A new feeder at the mouth of the latter canal constructed in 1903 had no permanent effect on the Sehwan taluka. In the: past few years the Nars and its branches have been practically independent of the vagaries of the river so far as a Sind canal can be and the only ground of domplaint in the dehs through which it passes is that they sometimes get too much water especially in the bimoki and rice lands. The Makiki (under which: the Executive Engineer inoludes the Napat and Wabur canals) has varied with the vioissitudes of the Nara, but both it and the Muhammsd All now give as perfectly satisfactory supply. Complaints have sometimes been raised about th \rightarrow needles set up on the Makiki, but I do not think they have had any justifiestion. The Kur Aktar has also worked well in recent years but the rice lands upon it are usually flooded from the Manchhur and Nara. The Phitto in the north of this taluke lies at the bottom of deep dhoro* so far below the general level of the land. that the oultivation nowhere extends very far from its banks and there ard fow karias lesding out of it which are maintained in repair. But it is fed not only by the Lower Nur wah in Dadu taluka but the Muhammad Ali wah front the Nara, and in this taitaka bass a very fair supply which lasts late into the rabi season. Its tail lands aré apt to be flooded from the rivor in kharif but these floods produce very good rabi crops.

No other improvements have affeoted 'Sehwan taluka besides' those here mentioned.

The average annaal cost of canal clearanoc, eter, for the whode division is shown in the papers attached to the Dadu report. The figures have been given by the Executive Engineer juintiyf for the three talukas, and as both the Phito and Nara serve more thas one taluks it is impossible to give separate figures.

The cultivation under each lind of irrigation is shown in Appendix XII. In the year 1907-08 the inundation was exceptionally low and the figures for that year are not typical of the taluke. But in the previous 5 years 26.3 par cent. of the total cultivation of the taluka was kharif lift and $85 \cdot 7$ per cent. was sailabi. Sailabi orope are found chiefly in the dehs besides the Nara, the Mauchhur, the Aral and the river. Kharif lift occurs everywhere bus' especially in the high lands in the centre to the north of the Dunster. There is but little rice; its area is only 10.5 per cent. of the total cultivation and it is practioally confined to the Nara Valley and Manchhur. Bimoki is even less frequent and exists only near the Nara and upper part of the Mubammad all wah. Rabi lift is 8.4 per cent, and watered sailabi 8.5 per cent. of the whole cultivated ares. Kharif lift has remained almost stationary and sailabi has declined during the settlement. The latter fact is partly due to the erosion of riverside lands. The area of rice has inoreased by about 1,200 acres during the settlement, chiefly in the Manchhur dehs where it bas been encouraged by the high level of the Manchhur in late years. Manchhur rice is generally most unsuccessful but any other cultivation in the lowest lands is often quite impossible. The inorease does not seem to be due to the improvements in the Nara for in the best Nara dehs rice has been stationary or has deolined.

The Executive Engineer's map attached to this report shows the area under each canal. But the area now flooded every year from the Manchhur is considerably larger than that shown by him, though of course it is not easy to draw a line between the Manohhur flood and the Aral spill.

The number of wells intended for irrigation has increased from 85 in 1890 to 155 in 1907-08, but of this number only 50 were aotually in use in the latter year although the inundation was a poor one. The figures given by the Executive Engineer in his list of wells appear to be incomplete. The crops conmonly grown on wells in this taluka are wheat and garden crops and are usually excellent. Water is generally found as a rule from 15 to 25 feet, but occasionally it is as low as 30 or 35 feet. The incrense in the number of wells in the taluka during the settlement has been continuous (except the very dubious figures for $1891-92$ and 1892-98) and is remarkable. According to Appendix X however there has been a decrease in the number actually used for irrigation during the past fow years. One reason for this may perbaps be found in the complaints I have heard from some zamindars that a well is apt to get out of working order before it has earned any large profit on the capital invested in sinking it. But whatever may be the truth of this it is certain that the area which can be cultivated on a well is much smaller than that irrigable from a wheel on a oanal, and for this reason both samindars and haris prefer to use a wheel dn a canal if they can only be certain of a fairly constant supply in rabi. Thus the deorease in the number of wells used in the last few years is very probably due to in great part to the improvement in the Nara and consequently in the Phitto, espeoially as it has been accompanied by an increase in the area of rabi lift.

History of the current settlement.

7. The current settlement which ia the 1st irrigational settlement of the taluka was introduced in 1890 as a temporary experiment. In 1899 it was finally sanctioned and guaranteed for a period ending with the year 1899-1900. At the same time some modifications were made in the barani rates and the lease system was introduced into the hill dehs.

Mr. Berrie estimated the annual net collections under his proposed settlement at Rs. 94,786. According to Appendix XIIL the average gross demand during the settlement has been Rs. $1,46,928$ and the average of collections it Rs. $1,33,039$. But the figures for outstanding balances shown in the appendix include a considerable amount of remissions asnctioned and cullections made after the close of each year. If the figures for these be added to thuse in columns 3 and 4, the average of actual remissions from the gross dernand is Rs. 11,076 and that of actual oollections is Rs. $1,35,701$, a very remarkble increase on Mr. Berrie's estimate. This is due to the fact that Mr. Berrie greatly under-estimated the ares of cultivation which even in 1890-91 was 12,000 acres in exoess of his figures and continued to increase during the first $\$$ yeare of the settlement. He also seems to have made no allowanoe for dubari.

Reasons for remission are shown in the table below:
Statement showing reasons of remission in Sehwan taluka :-

This statement refers only to the figures shown in column 3 of Appendix XIII. If the average amount of zerab and diluvion and naubati remissions be deducted, the annual average of remissions is only Rs. 8,442 or $5 \cdot 74$ per cent. of the gross demand.

The ooercive processes employed are shown below.
Statement showing coercive procusses resorted to in the Sehwan taluks during the eurreat settlement beginning from 1890-1891 to 1907-1908.

There are nearly Rs. 2,700 still outstanding on account of the past six years.

Arable Area.

8. The occapied area of the taluks is now almost exaotly the same as in 1890-91. It is at present 443 per cent: of the total area of the nurveyed dehe as, opposed to 483 per cent. in 1890-91. That there has been so little change in this respect is largely due to the fact that Fallow Rule No. 4 does

- Dependent an rainfall. not apply to the Manohhur or barani* lands which together form a large part of the taluka A deorease in the ocoupied area has principally oocurred in the riverside dehs where it is due to erosion. The increases are small and call for no oomment except in Shahgarh dhandan (460 acres) and Maheji (nearly 700). In the former, a 168 -
deh land originally classed as uncultivable has been broken up for caltivation. In the latter, new lands have been taken up chiefly beoause there is no other new land available. In 1830-91 the area of cultivation was greatly in excess of the figures shown in Mr. Berrie's report for 1888-89. During the first 5 years of the settloment cultivation continued to increase probably on account of the improvement in the Nara after opening of the Pritchurd, wah in 1890. But suce 1846-97 the area has again steadily decreased owing to the vagaries of the Nara and the river. Last year it was lower even than in 1888-89 but of course 1907-08 was a year of exceptionally low inundation and connot be regarded as typical of the state of the taluka. The detaile for each deh are given in Appendix XII. In the 2nd group the deorease began in 1891-92 and has oontinued steadily ever since. This seems to be due to cbanges in the course of the river and to erosion.

Crops.

9. Methods of cultivation.-The area of the various kinds of crope grown in the taluka is shown in Appendix XI. The methods of cultivation are those employed in other parts of the district and call for no special remarks. It may however be noted that rice is to a very large extent sown bromedcast (as in Johi and Dadu). No new staples have been introduced. The Sehwan Municipality once experimented in their garden with Egyptian cotton but it proved a filure. The principal crops of the taIuke are juar, whent, jambho, rice and abur. Baeley is grown especially in the kachas and on the Manchhur, and

EMatar is a kind of emall pes or
vetoh, chana=gram. matar and ohana* are grown as sailabi crops ohiefly near the river. All the other ordinary crops are grown. Sugarcane exists only in a few gardens on the Dunster. Bhang is grown under license in the Bubak gardens. There is also a small ares of cotton grown principally in barani or hill-stream lands.

Outturn and varieties.

(i) Rice.
10. Lari is almost the only variety grown in this taluka, doubtless on account of its powers of withstanding floods. Rice cultivation in Sehwan presents much the same features as in Dadu and Johi. Even in the best rice dehs the fields are liable to overwatering and there is little control over the supply of water. In the dehs on the Manchhur and the Nara tail the rice is always flooded. In Bilhan I waw a rice crop being reaped from boats this year. In auch fields the rice is almost totally destroyed and even in the higher lands it is much overgrown with weeds and rushes and the produce is comparatively small. In Bed and Saidabad and parts of Supar, the crops are about as good as in Dadu, and their average outturn is, I should think, about the same, i.e., 35 kassas or perhaps 40 . In the lower dehs the rice is no better than in Johi taluka. Unfortunately I reached the taluka after the crops had been reaped and before they were ready for batai, \dagger and when
> †Division of produce between ramindar and hari, etc. I returned in Pebruary the grain had in most which oases been removed. One number in deh Bed on which an experiment was performed by the Mukhtyarkar gave 60 kasas to the. acre. Another in deh Gaher in 1906 gave 61 kasas. On the other hand the average of 9 numbers in deh Arbi this year was ouly 18 kasas to the acre, although in one field the outturn was as high as 30 kasas and in another 28 to the acre.

$$
\text { (ii) } J_{u a} \text {. }
$$

This year the juar crop was not so good in Sehwan (except near Bhan) as in the south of Dadu. But this was chiefly due to the ravages of the caterpillar. In an ordinary year the outturn is probably much the same in botho

IIrrigated by fow.

 A field of mokit juar in Bed gave 35 kasas to the acre-this was decidedly a good crop. 1 doubt itthe average moki crop even in an ordinary year produces more than 25 kasas to the acre or at most 30. The charkbi crops, in which I was able to test the outturn, all gave very poor results: Gaher gave 14 and 20 kasas, Talti gave 17, Jhandani 15, and a field in Arazi only 10. In all these cases however thecrops bad beerr much injured by caterpillars and in Arazi by drabh* grass also.
*ad carrse groem whioh ha not eagy to A batai statement received from the Mariagor, Incumbered Estates, gave the outturn of 5 num-. bers in Tando Shatbazi last year as 27, 25,52, 20 and $42 \frac{2}{3} \mathrm{kasas}$ per acre respectively or an average of 33 kasas per acre. Tando Shahbazi is nota particularly good deh and I have no doubt in many the 8 gerage would be as high as 45 kasas.

The Gumrach hill-stresm this year produced only 4 kasas of juar and 15 of tir per acre. In Kai the contents of one dera of hill-stream juar worked out to 19 kasas per aore; but there were other fields which produced next to nothing.

In Nar Pir Arr which is alsöo a hill-stream deh, one dera gave 30 kasas and another 17, and in Naing the average of six fields oame to 18 kasas per acre.
(iii) Wheat.

The wheat was hardly ripe at the time this report was being written and therefore only two experiments have been possible. But an examination of batai books, the Manager's batai sheets and experimente by former Assietant Colleotors show the following resulta in Sehwan and Dadu talukas:-

The Bagh Yusif results for previous years do not at all agree with the appearanoe of most of the crops this year. But in one of the years referred to, the wheat was damaged by rust and in another by the low inundation. The clarkhi numbers were also, I believe; affected by kalar. The $\mathbf{2 0}$-kasa number experimented on this year wat only a mediocre orop. The charkhi orops thi yeur must have been over 40 kasas. They were certainly better than the Sehwan sailabi number given above.

Deh,	Irrigation.	Rste per aorea	Remarba,
(iv) Jambho.			
Sohwan ... Bubak ...	Sailabi "	$\begin{array}{c\|cc\|} \hline . . & 10 \mathrm{kasas} & \ldots \\ \cdots & 12 \frac{1}{2} & \text { on } \\ \cdots & \cdots \end{array}$	Crop only moderate. Fairly good crop for nailabi.
Buthi (Dadu) Kharizo. (Dadu)	Bosi	... 8 3 00 \cdots \cdots	Very good crop.
(v) Sariha. Pipri (Dadu)	Charkhi	... 23 \% ...	(The part reaped was
(vi) Ahur.			very good.):
Buthi (Dadu) m.	Chahi	$=-{ }_{8}^{11 \frac{1}{8}} \quad \mathrm{~m}, \cdots$	

8
 Prices.

11. Retail prices are shown in Appendix XV. If this Appendix has been correctly maintained (as to which I have doubts), it would seem that prices fell steadily from 1899 to 1904-05 and that it is only in the last 8 years that a rise has again set in. The price of juar is represented as being lower in 1907-08 than in 1899-1900 which does not seem very probsble. Wholesale prices in the rabi of 1907-08 and the beginning of kharif 1908-00 were on an average as follows:-

Kharif, leos-09,		
Rus.		
Rice (Lari),	50	per kharar.
Bajhri,	80	"
Juar,	73	$"$

There is not the least doubt that wholesale prices have risen enormously in the past few years, e.g., in 1902-03 the price of juar vapied between Ks .30 end Rs. 40 per kharar.

Dalue of land,

12. The following statement shows the sales of land by auction for Civil Court decrees in the years 1905, 1906 and 1907. No earlier figures are available.

Deh.	Year.	Area.	Amount. *	Bate per acre
		A. g.	Rs. as. p.	Rs, a.
Nar Pir Are	1905	600	$\begin{array}{llll}1,158 & 9 & 4\end{array}$	196
Khabrot	"	825	69000	800
Fazlani	\#	221	1,050 00	41513
Rohiri	"	45	12800	301
Dhal	1906	100	15700	1512 (is the leased deh).
Bajar	"	216	$123 \quad 40$	514
Bilawalpur	"	925	264110	278
Bhutra	1907	323	126140	350
Rohiri		$47 \frac{1}{4}$	12500	300

Appendices VI, VII and VIII show returns of sales, mortgages and leases in the Sehwan taluka and the average price. I also give some individual instances of sales selected from the sub-registrar's records or obtained from other sources such as the Record of Rights.

		Deh.	Irrigation.			Rate pax acre.	
C. Phitto wah-		$\begin{array}{ll}\text { Bambha } & \text { Talti } \\ \text { Kalubhori }\end{array}$	CharkhiCharkhiCharkhi			Rs.	
		*-		. \cdot	32		
		45		
		24		
	Dunster wah-		Tando Shahbazi...	Charkhi	48
	Riverside lande		Duridaro ...	Jagir	71
			Jhandani	Sailabir	37

\footnotetext{
Judging partly by these figurem and partly by the estimates of others, I slould be inclined to put the average price of lands in the taluka as follows :-

Near Nara			80 to 80
			30 to 100
Riverside land			30 to 80
Hill-streams and kacha well			15 to 30
Well lands			50 to 100
Centre of taluka...			30 to 50.
Bubak gardens	..*		400 to 600
Barani	\cdots		10 to 15
			Tenures.

The relations between haris and zamindars are on the whole satisfactory and applioations under section 86 of the Land Revenue Code: are very rare. But ocoasionally there is a difficulty in obtaining haris, especially in the barani dehs which have been very largely deserted by their inhabitants who have departed in search of new lands on the Nasrat and Jamrao. Maurusi haris are not found in any deh except Bandhri where their existence is recorded by - the Kecord of Rights.

Batai rates.-These are shown in the table below. They vary greatly in different localities: -

Band Barani.

In some dehs	... $\frac{1}{2}$ zamindar $\frac{1}{2}$ hari Or
	$\frac{7}{3} 3 \quad \frac{2}{3}$ \%

In Naghawal \quad... If hari builds bands, zamindar $\frac{1}{4}$, haxi $\frac{9}{4}$. If zamindar builds bands, zamindar $\frac{3}{4}$, hari $\frac{3}{4}$.
Kacha wells.
Hari $\frac{8}{4}$, zamindar $\frac{1}{6}$.
Hillustreams.

Bandhri Haxi 鱼, zamindar $\frac{1}{4}$.	
Gamrach	... Hari $\frac{2}{3}$, zamindar $\frac{1}{\frac{1}{3}}$.	
Kai and Naing	... Hari $\frac{9}{5}$ zamindar $\frac{3}{5}$.	(Yamindar pays all ex
		penses and provides cattle and seed.)
Barki	... Zamindar $\frac{1}{8}$, hari $\frac{1}{2}$.	(Hari provides every. thing.)

Talti and neighbourhood. Zemindar $\frac{3}{4}$, hari $\frac{8}{4}$.
Centre of taluka ... Zamindar $\frac{1}{3}$, hari $\frac{2}{3}$.
Manchhur ...
... Zamindar $\frac{1}{3}$, hari $\frac{1}{5}$, as a rule
Sometimes for
madad charki
sailabi
Bubak gardens
-108-8.
... Zamindar 昂, hani $\frac{8}{5}$.

	10
Without wheel（rice，bimoki，sailabi，etc．）	

In dehs Bhan and Sheikh a system of cash－rents，together with a eaxed ameunt of corn also exists as well as the batai system．The most usual rents are Rs． $2 \frac{1}{2}+2 \frac{1}{2}$ kasas or Rs． $1 \frac{1}{2}+1 \frac{1}{2}$ kasas per jireb according to the distance of the land from the Muhammad Ali wah．A further 4 lasas per jireb is some－ times paid to the zamindar for the expense of clearing the jungle．The large zamindars bave each year a fow＂Sir＂numbers in which the zamindar pays all expenses and supplies the bullooks．For the actual labout of cultivation he engages a hari who receives $\frac{2}{5}$ or $\frac{1}{8}$ of produce as wages．A system of batai leases also exists in the taluka，chiefly among small zamindars without oapital and big zamindars without energy or capacity．But even the best adopt it if they can for risky lands．As described to me the arrangement is that the zamindar takes $\frac{1}{2}$ of the zamindari share and pays $\frac{7}{2}$ of the assessment．The bania pays the rest and takes the other half of the batai，and also pays all the expenses of clearanoe and advances takavi without interest to the haris．Thus the zamindar reduces his income by half and gains in return nothing except a complete freedom from all risk and from responsibilities of his position．If there were any great risk attending the cultivation of the lands it is extremely unlikely that any bania would take up the lease at any rate on those terms． The ordinary cash leases also exist－their conditions are the same as in other talukas：

Condition of cullivating elassee，

13．The haris in this taluka are comparatively poor－much poorer than in the Mail oountry for example．Many of tliese are in debt to banias and suits against them in the Civil Court are frequent．

A very large proportion of the lands in Sehwan taluka has passed from the hands of Musalmans to Hifidu banias，but the process of transfez is slower now than in former years．Between 1897－98 and 1901－02 an average of 1,182 acres a year were sold to banias．In the last 5 years the average was 671 acres．Many of the rarger Musalmaì zamindars are however still deeply in deht and others bave only oleared themselves by parting with their lands． The Hindu zamindars are as a rule prosperous but then they usually combine agriculture with retail trade and sometimes with money－lending．

The following statement shows the size of tarious khatas（within the limits of a deh）and the proportion of Musalmans to Hindus．

	$\begin{aligned} & \text { USDRR } \\ & \text { YCRED. } \end{aligned}$		Fròm 5 AcREa TO 25 40R88．		Frot 25 AORBE FO $100^{\circ} \mathrm{ACR}$ ．		Frol 100 atres 70 $\$ 00$ ACRPS，		$\begin{gathered} \text { A Boy } \\ 500 \text { ncrign. } \end{gathered}$		Tosat．	
－									䓣	婁	豆	
1890－1891	838	\cdots	1，472	\％	630	1	146	4	12	5	8，100．	16.
Hinda ．c＊	3131	\cdots	518	1	228	，	66	，	2	1	1，108	$\$$
Musalmaie	537		960	5	402	1	88	4	10	3	1，982	14
1907－1908	760	4	1，605	3	034	＊＊＊	191	3	9	7	9，089	17
Hindat	330		780	1	284	＊＊＊	120		4	1	1，618	8
Musalmar	120	4	325	8	350	\ldots	71	3	5	6	1，671．	16

A.cording to this the number of Hinda khatedars is now 4914 per cont. of the total number, whereas in 1890.91 it was 35.64 per cent. And khatag. of less than 25 acres are now 73 per cent. of the total as oompared with 74.51 per cent. in 1890-91. The figures are not very instructive because many persons own land in more than one deh and of course the " registered khatedar" has very often no interest whatever in the land. Unfortunately bowever the Record has no index and it would have been impossible for the tapadars to have worked out the figures from the various eattered entries in addition to all their ordinary work. Nevertheless I think that the proportion of small zanindars in Sehwan is still large, especially in the tapas of Bhnn and Falti, though it appears to be diminishing. The decrease in their numbers would seem to show that the peasant proprietor, is no more successful than the great landowner in keeping out of the money lender's olatches. This mast be due partly to their own laok of energy and inability to combine with each other, and partIy to lack of capital. No doubt the Manchhar zamindar suffers considerably in bad seasons especially of late years, and the other parts of the taluka do not allow a large profit to be made from agriculture. But I doubt whether the banias wóuld be so ready to invest their money in land in almost every part of the taluka, unless some profit could be made out of it.

No improvements have been effected by zamindars in Sehwan taluka, and in many parts they have failed to keep in repair karias atready existing. In this respect the banias are as much to blame as the Musalmans. Most of the lands round Talti are now in the bands of the banias and yet a large part of that deh remains uncultivated simply because they will not take the trouble to clear their karias. And this is not due to lack of capital for some of them are comparatively wealthy men.

Proposed grouping.

14. It should first be explained that I propose that the two large dehs of Bubak and Yakubani shuuld be split into 3 , a new deh being formed out of the north-eastern portion of Yakubani and north-western portion of Bubak. This will include all the garden lands and the best of the other lands in the existing dehs of Bubak and Yakubani. The garden and rabi charki lands are about the best in the division. The sailabil lands being at some distance from the Manohhar are not flooded every year and therefore when they do receive a sailab they are free from weeds and produce very excellent crops. This new deh (of which a map is attached) I propose to call Bubak. The remainder of the old usually produce inferior crops; and partly of the lower sailabi lands which are flooded every year and in consequence are covered with weeds and grass and pproduce little or nothing. The remainder of Yakubani (whioh will still retain that name) will also consist of the lower sailabi lands. A large part of both these dehs never comes out of water at all. The new Bubak will be in group I, Jaheja and Yakubani in group II.

Group I.				Group 1-continued.			
	Name.		Old		Name.		$\begin{aligned} & \text { old } \\ & \text { group. } \end{aligned}$
1.	Sehwan	**	I	13.	Sheikh		I
2.	Chhash	-	I	14.	Bed	\cdots	I
	Dhand Karampur	*	1	15.	Akatar	...	I
4.	Chana	\cdots	I	16.	Supar	.	I
5.	Lashari vor	\cdots	I	17.	Wahur	\cdots	I
	Karampur ...	\cdots	I	18.	Gaher ...	\ldots	I
7.	Shahgarh Dhaudan	...	I	19.	Jafarabad ...	\cdots	I
8.	Talti	\cdots	1	20.	Bubak (new) ...	-.	I
9.	Kalubhox	\cdots	I	21.	Arazi	\cdots	I
10.	Bambla \quad.	-	1.	22.	Dal - ..		I
11.	Bhan - ...		I	23.	Karani ...		I
12.	Saidabad ...	\cdots	'I'	24.	Bakhtaparpur...		1

Promotions from 2 nd to lst group.

Bilawalpur and Jatoi are both situated on the edge of a voahur. Their kharif crops are certainly not very good, but they are also not very extensive. And the greater part of these two delis is flooded in the inuodation and produces very excellent sailabi crops in rabi provided the season is a favourable one. A rabi cold weather supply from the wahur and its branohes is available in many parts.

Shahgarh Dhandan also receives an ample sailabi from the river and the Talti dhand. When the sailab supply fails, it has still a never failing charkhi rabi supply from the Talti dhand. Kai has an excellent supply of water from a hill-stream and as a rule its crops are at least as good as in the neighbouring deh of Naing. The position of Khairodero and Jhandani appeared somewhat doubtful. Both have a very respectable water-supply (obiefly sailabi) from a

-old bod of the river.

 wohur," and in this respeot they are at least as well as Aminani and Nuria in Dadu taluka. Jhandani is very muoh overgrown with weeds and jungle and probably for this reason there is not much wheat grown in it. But the soil is good enough and the matar and chana crops appear to be as good as in most dehs. The lift juar orops round the villages of Babruin and Budhar are also very fair as a rule. In Khairodero the soil is somewhat sandy, but the cultivation is very largely sailabi, and if the deh be placed in the 1st group there will be an increase of 2 annas only on the sailabi and watered sailabi crops and on these reasons I have raised them to the lst group. Had they remained in the 2nd there would have been a considerable decrease on the sailabi crops and for this I do not think there is sufficient reason. The increase in kharif charkhi will be considerable but I think not more than they can bear. Bilhani contains only kacha wella end barani crops and the rates for these are the same in both groups.
2nd group.

This consists principally of Manchihur dehs, the condition of which is much the same as that of the Manchhur debs in Johi. As has been pointed out in paragraph 6 the lands on the yerge of the Manchhur are submerged every
inundation and not only are the rice crops destroyed but the rabi lands are so: thickly covered with grass weeds and rushes that it is dificult to grow a successful sailabi crop. Even on the southern ehore, which is for some reason less weedy than the others, the unploughed sailabi crops are often of little value except fodder, the ploughed crops are very thin and poor and the sailabi madad charkhi crops are not much better than sailabi crope elsewhere. The work of clearing the fields of weeds, if possible at all, involves considerable trouble and expense. In Trenhi and Kot Baroeho, Pir Hasan, Jabeja, Yakubani, Fazulani, Maheji and Bilhan, a large area remains submerged for years together. In some of these dehs remissions are usually high and the rice where it exists is always very bad. For these reasons it appeared desirable to put all the Manobhur dehs in a lower group and on a level with the Johi dehs. Kachli and Akri are both largely"barani dehs but their northeromost parts are flooded by the Manohhur. In Akri there are only 28 irrigated rayati numbers and of these 18 were this year cultivated as uxploughed aailabi for which there is a special rate. But in the ploughed lands the crops were docidedly poor and in future years the ploughed ares might be more extensive. It therefore seems advisable to reduce it to the 2nd group. In Kachhi the irrigated area is slso small but it is more remote from the Aral and Manchhur flood than Akri. There is however a good deal of kalar in the higher irrigated parts. In a bigh inundation its kharif crops are destroyed by flooding and its sailabi is poor. In a low inundation its sailabi lands do not receive sufficient water. In Bajar and Wanecha the northern lands were this year mostly unploughed, and an is usual with such lands almost unproductive. The ploughed crops in Waneeha were in most fields as poor as those of Akri and Kachhi; in Bajar they were slightly better. Both dehs contain a large area of charkhi kharif which in most years is fairly good, and for this reason I was at one time inclined to leave them in group I. But the kharif is liable to be flooded in a high inundation, and as the conditions of sailabi cultivation are essentially the same in these and all other Manchbur dehs, I think it would be wiser to accord the same treatment to all. In Khabrot and Bhutra the lower lands have suffered very greatly from constant flooding and from growth of weeds and jungle and a great deal of the sailabi is usually poor. The northern parts of these dehs consist largely of kalar land.

In Abad there is a great deal of very bad rice and some sailabi which is slso poor enough. The rice in this and the other Manchhur rice dehs is always overflooded and foul with rushes and weeds. Its condition is precisely similar to that of the rice in Johi taluka which has been described in the Johi report. Dubari orops are rapely grown either because Lari rice ripens so late that there is no time after harvest to grow dubari ; or more probably because owing to the weeds and the hardness of the soil when it has once "set," the land has to be ploughed in February to prepare it for the coming kharif.

Arbi is not strietly a Manchhur deh. But it has a very large area of rice which is flood-d from the Nara in much the same way as the Manchhar dehs and its rice fields are also full of weeds. The average outturn of 9 field, whose produce I found in a dero in this deh, was only is kasas per acre. In the centre of the deb there is a great deal of kalar which seriously injures the crops in that neighbourhood. In the east the soil and water-supply are both good, but considering the condition of the rioe lands I think the deh should go into group II,

Thangar very rarely has any irrigated crops. Considering its distance from the Manchhur the water-supply must always be inadequate and the crops poor. The irrigated parts of Theri are flooded by the Aral and Dadeji dhoro and of late years it has become thickly covered with weeds and rushes in some parts and with drab in others. Its kharif area is insignificant, its sailabi and aided sailabi crops are poor, and the fields near the Sehwan road have a poor and thin soil. Much of the deh is a jagir, the lease of which was taken up by a syndicate from the Collector under whose protection the jagir is. The syndicate lost so heavily both over the barani and the irrigated parts that they had to apply to the Commissioner for a reduction of the lease money, which they obtained. The rayati parts of the deh are no better than the jagir though they may be better managed. The only cultivation in. Muhmukhri is in one small
-168-6
field on a hill-stream in a distant corner of the deh close'under the Budro hill. The wator does not seem to be deficient, but the soil is rather thin and stony sud the place remote. Gamrach has a rather precarious hill-stream supply

*Stream.

from one emall vouhi* and the outturn of its kharif
hill-stream crops this year was much thwer than in other dehs (see paragraph 9). Barki is often uncultivated. When there iw any cultivation it is in rabi on the surplas water of a stream which comes out of deh Naing. The cultivated fielda are thickly covered with kalar deposited by this stream and the crops are very poor. There are one or two delis whose position appeared somewhat doubtful at first. Bagh Yusif should be an excelleat deh for it lies between 2 perennial canals and is near the town of Soliwan. But it is much overgrown with drabl grass and there is also a gond deal of kalar in some parts and for this reason many of the crops, especially the sailabi in the centre and south of the deh, are in most years decidedly bad. But on the other hand the charkbi and sailabi madad charkhi crops on the Dunster and near Bagh Yusif village are this year decidedly good and even the ailabi in places is fair. This proves that kalar and drabh do not make it impossible to grow good crops in the deh, and as the water-supply is always good I think the deh should remain in the 1st group. There is a marked contract betwern its condition and that of its neighbour Bhutra. The poor sailabi crops will in any ease receive relief by the reduction of the 1st group sailahi rate from Rs. 3-4 to Rs. 3 (see 15) and the rabi charkhi area is too extensive to be ignored.

Sehwan in some respects resembles Theri. It also is much overgrown with drnbb and the soil of the lands near Sehwan-Bajar rond if hoth shallow and poor. On the other hand it is even nearer the town than Bagh Yusif and it has good rabi cultivation along the bank of the Aral, especially on the Lakhi ruad. The proportion of good lands to the bad is higher than in Theri and for thiese reasons I have left it in the first group.

Arazi and Tando Shahbazi have been much overgrown with drabh of later years and a large area in both dehs has gone out of cultivation. But Arazi and most of Tando Shahbazi seem to be free from kalar and in an ordinary year they can produce fairly good crops as is shown by the outturn of fields in Tando Shah bazi given above. The water-aupply of the kabuli lands is as good as that in most 1 att group dehs and they are not sabjert to such disastrous floods as the Manchhur dehs. Tando Shahbazi usually has some very fair rabi crops on the Dunster.

Gaber has had high remissions in the past. Its rice lands amonnt to 129 acres and these are of course liable to be flooded if the inundation is high. But on the other band a high inundation produces very fair sailabi cropa and it is too far from the Manchhar to be in dangér of constant overflonding. Even the rice is at times very good; in 1906 a rice experiment in this deh showed an outturn of 61 kasas per acre: In the east of the deh the rabi and lift crops on the Gaher dhand or dhoro are good, and as the rice is only a small part of the total cultivation of the deh, I think there is no need to reduce it to the 2nd group.
15.-

The Ist class irrigated rates are the same as those proposed for Dadu and the 2nd class rates are those proposed for Johi taluks. They have already been discussed in the Johi and Dadu reports and it seems unnecessary to repeat here at length the arguments in their favour.

The 1st class rice dehs are all on the Nara in the north-west comer of the taluka and their condition is practically the same as that of the Dadu rice dehs. Only the coarser varieties are grown, and there is the same difficulty in controlling and regulating the supply of water that is felt in Dadn; but they are free as a rule from the disastrous floods which destroy the rice in the dehs of the new 2nd group. The position of the latter both as regards rice and sailahi cultivation is very much the same as that of the Johi dehs and the rates have accordingly been assimilated to those of Johi.

In the 1st group the inerease on the old Ist group dry crop kharif rates is very slight and as the kharif lift rate in Dadu is eertainly low, I see no reason to wuppose the rate will be too high in Sehwan. It did not seem possible to put the bimoki rate any higher, for the bimoki crops in Sehwan are never very. good and are certainly no better than those in Dadu And with a low bimoki rate a high kharif charkhi rate is impossible. In order to assimilate the rates to those of Dadu taluka, the sailahi and sailabi madad charki rates of the 1st class dels have been reduced by 4 annas. The bosi and sailabi lands of this taluka are in no way superior to those of Dadu. Oilseed crops espeoially, even in the lst group dehs, are often very poor, and even if the crop is fairly good in quality there are many bare patches producing nothing. It would not be fair to base the sailabi and bosi assessment on the good wheat crops without considering the poorer oilseeds.

Apart from this there appears no sound reason why bosi cultivation should be charged any higher rate than bimoki kharif of which it is the counterpart. If there is any difference the advantage seams to be with bimoki which is at any rate more certain. And sailabi cultivation though profitable enongh in favourable circumstances is always risky. This change involves a 12 annas reduetion in the dehs reduced from group I to II. But this seems to be justified by the precarious character of gailabi cultivation on the Manchhur and by the reason which have been given for putting them in group II. The

2nd group kharif lift rate remains unaltered, bat this means a reduetion of 6 annas for the dehs reduced from group I. This reduction is certainly less gecessary than that on sailabi and rige but cannot well be avoided. The deha could hardly be placed in the 2nd group for the purposes of rice and sailabi and in the lst for the dry crop rates, Nor does it seem possible to raise the 2nd class dry crop rates. This would bring them muoh too near to the riee rates, and it would also be hardly fair in essentially poor dehs like Theri snd Kachhi. Even in Bajar, Wanecha and Pir Hasay although the kharif lift can be very good, yet in years of high inundation it is liable to be flooded for it is impossible to know before hand exactly kow high the lake will rise.

Rabi lift is being raised all round and is put on a level with sailabit lift, The reasons for this are given in the Dadu report.
*I.a, boai which has been given by a wheel, Rabi charkhi in this taluke is as a rule quite as good as in Dadu, especially if the bad "charki bosi" "crops are treated as bosi according to the definitions proposed in Rule 14 of Appendix A. The rabi charkhi gardens at Bubak and the oharkhi whent numbers whioh are grown beside them are among the most fertile lands in the district. The batai rate for charkhi and for bosi or sailabi aided by charkhi is usually the same.

As in other talukas I propose that gardens should be assessed acoording to the method of irrigation employed. Almost all of the true gardens in this taluka receive chạrkhí canal supply in winter, but onions are often grown on a

- Lata spring crop.

 well in late rabi and melons are grown as sailabi in adhanwa.t The result of the proposed change will be as follows in the lst group dehs-(i) If a garden is cultivated in kharif with lift canal water and in rabl with a well, or if melons are grown as a sailabi adhanwa crop there will be a decrease of one rupee on the old rates (lift $2-8+8$ annas as dubari=Rs. 3-0 rabi sailabi rate $=$ Ks. 3 old garden rata Rs. 4-0). If it be oultivated in rabi alone on a well the deoreasa will be Ris. 1-8.
(ii) If it be gultivated with rabi lift on a canal there will be no change in the ordinary dehs. In the old deh of Yakubani there was a special garden rate of Rs. 4-8, and in the old Bubak deh and Jafarabad Rs. $5-0$. On these there will be a decrease of 8 annas and one rupee respectively.
(iii) If it is caltivated with both kharif and rabi on a canal it will now pay Rs. $4-8$, i. e., there will be an increase of 8 annas in ordinary dehs. There will alsa be an 8 annas increase in the old Yakubani numbers and no change in the old Bubak numbers and Jafarabad if the special watered dubari rate is approved for those dehs.

Abstract

About $\frac{3}{3}$ of the gardens round Bubak are oultivated with rabi lift only and about $\frac{1}{3}$ with both kharif and rabi lift on a canal. The decrease in thess is unfortunate, but I do not see how it can be svoided without abandoning the principle of assessing all numbers according to the method of inigation employed. There is no doubt the old special garden rates were opposed to the epirit of an irrigational assessment and were to some extenta a tax on industry and on superior methods of cultivation, for the fertility of these garden numbers is due largely to the greater care and labour and expense with which they are cultivated, It is not possible to propose a special rabi charkhi rate for Jafarabad and Bubak, because there is also a large amount of charkhi wheat in the deh and this can hardly be rated higher than Rs. 4-0. I think however it would not be unfair to propose a special watered dubari rate of Rs. 2-8 for the pew deh Bubak and Jafarabad. This will make the combined kharif lift and dubari Rs. 5-0 as opposed to Rs. $4-0$ for rabi lift. The kharif garden crops are certainly worth the extra rupee. Watered dubari crops are in almost every case in gardens in these two dehs. 1 can discover no difierence at all between gardens which are now in Yakubani and those in the existing deh of Bubak, in Fazulani they have long since ceased to exist,

Barani.

This rate is the same as is propnsed for the Johi group III (B) dehs. The reasons for adopting this very low rate are given in the Johi report.' Barani cultivation in Sehwan is no more successful than in Johi as a rule, although it is much less extensive. Remissions are seldom applied for or given but, whatever the renson for this may be, it is certainly not due to the suparigrity of the crops. Ia Kai (whioh is a hill-strsam deh) I disoovered that miny of the khatedars were under the impression that no re nission could be given on unirrigated lands and possibly the owners of burani lends have been under a similar misspprahension. Ln any cesse I can see no good reasun fur making a distinct on between Sehwan and Johi.

" Hill-stream.

There seems no reasn why the ribi rate should be higher than the kharif. The rabi crops enjoy no special advantige over the kliarit and the water-supply is the same for both. A supply of water from the Indus in the cold weather is certainly a privilege whioh should be paid for but these sreams are exactly the same all the year round. I bave therefore fixed a single rate for both intermediate between the old lst chiss kharif and rabi rates. Hill-streams are less productive than the water of the Indus, partly no doubt because they are not laden with silt and partly because they usually wash down kalar into the fields. Each field has to wait its turn and sometimes several days elapse between each watering. Tha dehs are remose from any market or railway and for all these reasons it seems inadrisable to raise the rate.

Kacha toells.

I propose to fix a lower rate for kacha wells in barani lands. Of oourse this rate will not apply to kacha wells in irrigated lands which should pay the ordinary well rates. There seens to hive been some confusion on this point during the current settlement. The crops grown on kacha wells in barani lands are usually quite as good as those on the hill-streams, but the cultivation is more expensive and troablesome. They are often-very deep. I saw olle which was said to be 30 feet and looked more and a grod de:l of it was through. hard rubble or rock. They may last as long as an ordinary pika w. ll, but they may also at any time be filled up by a torrent from the hills. They are both constructed and maintained by the haris and their cost does not therefore direotIy affect the assessment, but it is reflected in the lowness of the zamindar's batai share, i.e., $\frac{1}{4}$. The only lift crop on a hill-stream I have seen was in deh Dhal which is under a lease. But if it ever exists in a settled deh it can most conveniently be assessed at the same rate as the kacha wells.

The kacha rates are the sume as those proposed for Dadu and the Manchhur special rates will be the same as in Johi. The reasons for the changes which have been made are given in the Johi and Dadu reports.

I propose that all the dehs of the taluka should pay the obarkhi madad moki rate for combined irrigation. There are only two, Supar and Bed, in which the bimoki area usually exceeds the lift and in both these the differeace is slight.

Leased dehs.

I would recommend that the system of leases introduced into these dehs by Sir Evan James be maintained. They are all remote from the head-quarters of any tapa. If the ordinary acreage assessment system were introduced it would not only give a great deal of unnecessary trouble to the inhabitants, who would have to journey down to Jhangar, Trenhi, Bajar or Theri or even Sebwan, whenever they wished to see the tapadar; but it would also greatly increase the work of the tapadars themselves. In fact it would probably require un increase in their numbers and thus prove more expensive than it was worth. I propose to reduce the rate from 12 annas $t, 8$ annas per acrefor dehs Badro and Kandi, Radhak and Maliriri. There is obviously no reason to charge a higher rate on band barani in these dehs than in the settled dehs. In Maliriri the kharif cultivation (when there is any) is all band barani and the orops are most miserable. There is one rabi field at the foot of the eastern hills which I
-1 108-5
have not seen, but I believe this is also band barani and not on a spring. In Badro the cultivation is also band barani, but in Kandi there is a small hillstream on which rabi crops are sometimes grown in one or two fields. In Radhak there is also a small hill-stream which gives an extremely exiguous supply to 3 or 4 fields. The rest of the cultivation is band barani. In Dhal most of the cultivation is on hill-stream but there is also some barani. Judging by the last 2 years the former is decidedly good, the latter very poor. This year out of $82 \frac{1}{2}$ acres 75 sares were watered by. hill-stream. As the whole amount of lease money has to be paid whether there is any cultivation or not, I think the rate of one rupee fixed by Sir Evan Janes is a fair one. In Chorlo this year 30 per cent. of the total culivated area received black water. In this deh the spring is in the bed of a nai and seems to be somewhat less certain than that of Dhal. The barani crops this year and last were good and there were even excellent crops of barani wheat. On the other hand there were two years in which there was no cultivation at all, and no doubt the barani crops in many years are far from gond. I think the present 12 annas rate all mound should be maintained in this deb; it would hardly be fair to assess it at the eame rate as Dhal, for a much larger proportion of its cultivation is purely barani and yet the of annas rate would be rather too low.

There are certain fields on top of the Badro mountain which were originally jagirs, but having lapsed to Government they are now outside the leave and pay ordinary rates aceording to the cultivation. This is obviously inconvenient tor they are less accessible than most of the leased lands. I would therefore propose their inclusion in the lease. The owners do not show any strong objection to this proposal.

None of these should be rated higher than 8 annas for the crops are of the poorest kind.

The grazing fees I propose to leave as at present except in Maliriri. In this deh there is litle grazing and Sind cattle suldom, if ever, enter the deh, whereas in the other dehs oattle from Sehwan, Jhangar, eto., are taken up into the hills to graze and the lessees colleot fees from their owners at the rates sanctioned in the sanads. I have not been able to disonver on what principle the grazing fees were fized, but they appear to be judiciously moderate and I think might be left unchanged except in the odd anuas. These have been altered in order to make the toial lease money an even number of rupees. The: result of these proposals is shown below :-

1 bave no ehanges to propose in the wording of the sanads. The person* to whom the leases should be offered are as follows :-

Raduak	... Zunu Khan Shahani	... The present holder and won of Ali wd. Singhar the former lessee.
Matiriri	... Sao Khan Gabol	. The origimal lessee.
Dhal	... Maula Baksh Khan G	. The present holder and son of Faia Muhammad
Cuerfo Badroand	... Dherak Khan GaboI Fateh Khan GaboI	the former lessee. ... The original lesses. ... The original lessee.

There are various co-sharers in the leases by private agréement but it neemis unneoessary to record their names in the lease.

Financial Resulte.

16 and 17.-The result of the proposed settlement in the surveyed dehs of the taluka induding the dubari figures is an annual revenue of his. $1,35,395$, i.e.s there will be a net decrease of Rs. 4,539 or $3 \cdot 45$ per cent. This estimate does not t ike into consideration the efftot of the changes in the special rates of the Manchhur and of the special watered dubari rate in the gardens of Bubak and Jafirabud since for both of these thore are no figures available. In fact all gardens have boen taken at the rabi oharkhi rate as a mean between kharif lift+watered dubari on the one, hand and rabi sailabi or rabi chahi* or -Well. kharif lift watered dubari on the other. The numbor of gardens watered from canals is much larger in this taluka than in Dadu.

When the figures for unsurveyed oultivation and the leased dehs (as shown fa Appendix XVi) are included, the result will be Rs. $1,38,963$, showing a deerease of Rs. 4,$8 ; 3$ or $3: 40$ per cent. I do not see how the decrease could well bs avoided. Although the condition of Sehwan taiuka is on the whole inferior to tuat of Dadu, its lands have hitherto been assessed in many cases at considerably higher rates. This was especially the case in the sailabi and sailabi matad charkhi rates, the reduction of which in Sehwan is purtly responsible for the deore se in that taluka. Any attempt to equalise these rates in the two talukas must necessarily involve either a decrease in Sehwan or an increase in Datu which did not appear justifable. In the second place the precarious claraoter of the cultivation on the Manehhur and in barani lands seemed to call for a spacially lenient treatment and provision for this has been made by lowerte ing the Manchhur dehs to the 2 nd group and by the reduction of the barani rates.

In Dadu taluka which has practically no barani and is not liable to disastrous floods except the small area below the Escape channel no such reasons for a reduction existed.

The increase and decrease in most of the individual dehs is small. In Lashari the increase amounts to $13 \frac{1}{2}$ per cent.,' in Jafaralad to 13 per cent., in Saidabad 12 per cent. and in Supir 12 per cent. This increase is due to the fuct that the cultivation in these dehs coasists largely either of rice or rabi charkhi, both of which in my humble opinion are well able to bear the proposed enhancement. The raising of Jhandani and Kai to the 1st group produces an increase of 14 per cent, in both dehs. The position of Jhandani has been digcussed in prrayraph 14. The condition of Kai is in no way inforior to that of its neighbour Naing, and I know bf no reason why it should hitherto have been assessed at a low rate. The reduction of the Manchhur dehs has produced at deorease varying from 4 per cent. to 18 per cent. according to the proportion of sailabi and sailabi mudad charkhi which they contain-for it is on thess crops that the decresse is largest. In Akri (where the cultivation is almost sailabi or barani) the decresse amounts to 20 ox per cent., and in Kaolhii which was:already in the 2 nd group it is as much as 32 per cent., but the bulk of the cuitivation in this deh is barani. The reduotion in the rate on kacha wells in barani lands will cause a decrease of 36 per cent. for Rohri, $3 \overline{3} \frac{3}{2}$ per cant. in Bandri, $21 \frac{1}{\frac{1}{2}}$ por cont. in Bilhan and 31 per cont. in Jhangar. The lowering of Gamrawh to the and group, together with the reduction in the barani rate, will produce a decrease of 50 pur cent., but the area of cultivation is so small that the decrease is in fact of little importance.
18. The average rate on each head of irrigation bnth under tha present and the proposed settlement are shown in Appendix XIV. On rice there will be an increase of 6 annas. That the increase is so small is due to the fact that more than half of the rice in this taluka is liable to be flooded by the Manchbur and its oultivation is carried on under very unfavourable circumstances. There will be an increase of one anna in bimoki, 5 anuay in kharif hill-stream, 13 annas in rabi lift and $\$$ annas in vells. Kharif lift remains unchanged. There will be a decrease of 2 anuas in lift aided by flow, 4 annas in kharif kachs wells, 10 annas in kharif baraui, 8 annas in sailabi and sailabi madad oharikhi,

4 annas in bosi and rabi hill-stream, 12 annas in bosi mudad oharkhi ant rabi kacha wells, an lone rupee in rabi barani. Acorrding ts the Appendix, bosi madad ch.rkili is confined to the 2nd group and this is the reason for the heary decrease in che averag-, rate, but I suspact that there may have been some confusion hetween watered sailabi and watered bosi. In any oase its area is insignificant.

Miscellaneous.

19. Gurrantee.-I reoommend that the settlement be guarantoed for a period of 10 years as is usual in Sind.

Publication.
A. vernacular notification showing the existing and propnsed rates and groupings and the average rate per acre in each deh and inviting objections has been forwarded for publication to the Collector.

Changes in dèss.

I propose no alterations in the dehs except at Bubak (s9e paragraph 14). But I think the name Abad Jabal might be altered with advantage. The deh was called by Colonel Haig "Abad" which he suy was its original makani name. The word "Jabal" was adled afterwards to distinguish it from Abad in tapo Gaher, As the deh is never cultivated and is uninhabited and as it lies in the plain at the foot of the hills, the present name is rather a misnomer. I sugsest that it be called "Tal" which is the name of a makan in the deh in which there was once some cultivation.

I append a list of karias with the present and proposed elearance allowance on each. No change is proposed in the rates of rebate.

A number of rules proposed for the administration of the settlement are given in an extra Appendix A.

The following are the accompaniments to the report-
Map showing proposed groupings.
Irrigational map.
Appendices from III to XVI.
Appendix A (Proposed rules for the administration of the settlement, with remarks.)

> I have the honour to be,
> Sir,
> Your most obedient servant
S. H. COVERNTON,

Settlement Officer, Sehwan,
Through
The Collector of Larkana,

APPENDIX III.

Statement ahowing the present groupings in the Sehwan Taluks.

Wa. 1) Name of doh	Ea.	Name of doh.	Sa.	Faune of deh
	Let group.				2nd grown
1	Selivan	24	Yakabani.	47	Shahgarh Dhandhan.
2	Chbach.	25	Aravi,	44	Jhandani.
3	Dhand Karampar.	26	Dale*	49	Bilswalpas.
4	Chana.	27	Karani.	50	Jaboi.
5	Lashari.	28	Bakhtawarpur.	51	Khairodera.
6	Karsmpur.	29	Sultanpura	52	Kachi.
7	Talti.	30	Tando Shabhasi.	53	Bilhrni.
8	Kalu Bhori.	81	Khalurot.	54	Munhmuthori.
9	Bambha	32	Bagh Yusif.	55	Kai.
10	Bhan,	33	Bhutra.		
11	Saidsbad.	34	Bilhan.		Uneurveyed.
12	Sheikh.	55	Theri.		
13	Bed.	86	Akri.	56	Nar Pir Arp.
14	Akatar.	37	Bajar.	67	Naghawal.
. 15	Supar.	88	Wanecha.	58	Dhal.
16	Arbi.	39	Rohiri.	59	Maliriri.
17	Wahur.	40	Bandri.	60	Radhak.
18	Grahar.	41	Jhangar.	61	Chorlo.
19	Msheji.	42	Kot Barocho.	62	Barki.
20	Abad.	43	Pir Hassan.	63	Badro.
. 21	Fazlani.	44	Tribni.	64	Abad Jahal.
22	Jafarabad.	45	Gamrach.	65	Kandhi.
28	Bubak.	46	Naing.		

APPENDIX III-A.

Statement showing the proposed groupings in the Selwan taluka.

Seydel	Name of dok.	Sersal Na.	Wame of dob.	Serat	Kame of daki
	lat group.		1st group-continued.		2nd group-centinued.
1	Sehwan.	25	Sultanpar.	41	Yakubani.
2	Chhach.	96	Tando Shahbazi.	42	Jaheja.
3	Dhand Karampur.	27	Bagh Yusif.	43	Bilhan.
4	Chana.	28	Jhandani	44	Khabrot
5	Lashari.	29	Khairodera.	45	Bhutra,
6	Karampur.	30	Robiri.	46	Thexi.
7	Shahgarah Dhandhan.	81	Belbani.	47	Akri.
8	Talti.	U. S.	Nar Pir Arr.	48	Kachhi,
9	Kaln Bhori.	82	Bandri.	49	Wanecha
10	Bambhs.	83	Naing.	50	Bajar.
11	Bhan.	- 84	Kai.	51	Pir Hassank
12	Saidabad.	U. 8.	Naghamal.	52	Jhangar.
13	8teikh.	Jagir	Duridapo Jagis.	58	Kot Baracho.
14	Bed.	85	Bilawalpur.	54	Trihni.
15	Akstas,	86	Jatoi.	55	Gamarach.
16	Snper.	Leraed	$\{$ Dhal	56	MunhmuEhyi,
17	Wahnr.	Leaser	Chorlo.	U.S.	Bark
18	Grher.			U.S.	Tal (Abad Jahal).
19	Jafarabed.		2nd gronp,		(Mnliriri.
20	Bubak.			\%	\{ Radbak:
21	Araci.		Arbi.		\{ Badro.
29	Hal.	38	Abad.	$\stackrel{\square}{4}$	(Kgpdhi,
83	Karani.	39	Mabeji.		
24	Balkhtawarpar.	- 40	Fazlani.		

S H. COVERNTON,
Settlement Officer, Sehwan,

APPENDIX TV.

APPENDIX \mathbf{V}.

Statemint showing the occupation of people in Sehwan taluka.

S. H. COVERNTON,

Settlement Officers Sehwan

APPENDIX VIf.

Starement showing Sates in the Sehwan tafuka.

APPENDIX VII.

Giatemext of sub-letting in the Sehwan taluka.

S. H. COVERNTON,

Settlement Qficer, Sehwan,

- PPENDIX VIII.

Syarnigery showing mortgages in Sehwain taluka.

S. H. COVRRNTON,

 Settlement Officer, Sehwan,
APPENDIX IX.

Statimene of agricultural stock in the Sehwan taluka of the Larkana distriot.

Statember showing wells in the Sehwas taluka.

8. H. COVERNTON,

Settlement Officer, Sehwan.

$27: 9$

APPENDIX XI.

Statement of crops in Sehwan taluka (on average of the last 5 years) from 1902-1903 to 19061907.

Etad of crop.						Total.	Avorage.	Reseme
	1008-1008	1208.1604.	1904-1006.	1005-1990.	1808-19\%\%			
Ehery:	A. 8.	4. 8 -	A. g .	4. g.	A. g .		A. E.	
		${ }^{13,898} 618$	$\begin{aligned} & 18,4010 \\ & \hline 808 \end{aligned}$		${ }^{32,584} 1{ }^{1}$	$\left.\begin{array}{\|cc\|} \hline 15,996 & 6 \\ 3,448 & 8 \end{array} \right\rvert\,$	$33,179$	8000.
	${ }^{8,4 * 0098} 8$		4.2069	3,756 18.14	5,993 ${ }^{8} 8$	29,809 31	${ }_{29} 989$	${ }_{0}^{10.005}$
Puleem	1615	${ }_{9} 19$		${ }_{7} 16$	431	10080	${ }^{21} 10$	0×0
Gardens rapetebil prodert	1585	1936	30	${ }^{0638}$	$3{ }^{3} 1$	63839	100383	
Cusdirsotatand apicot ...	${ }_{16}{ }^{855}$	${ }^{2} 2.8$	1835	$3{ }^{10}$	\%9\%	810	${ }_{18}^{18}$	0.004
Gusaraanim $\quad . .$.	218	19890	${ }_{80} 29$	40	38970	61421	103 ${ }^{10}$	${ }_{0}^{035}$
$\underset{\text { Cottou }}{\substack{\text { citren }}}$	${ }_{14} 18$	${ }^{127} 19$	1893 129	11788 ${ }_{8}$	${ }_{9}^{48}$	3471 6317	109 10 18	${ }_{0}^{038}$
pimer linale ...	1.6	${ }_{1} 17$	18.	816	${ }^{29} 87$		${ }_{3}^{10}$	-0006
Totul	17,005 30	2,194] 19	17,893 28	18.018	30,393 14	04,721,	18,09318	4
Mbat in		12,088 81510	18,40819	17, 31881818	16,651 17	${ }_{\substack{88,104 \\ 8,58 \\ 5}}$	16,609 58	${ }^{3798}$
	200 20	- $\mathbf{3 , 6 7 5} 9$	2,21\% 2	(8087 38	(238		3, 63858	2.28
Gratios prodroo	398 100 108	3013	- 418	- 6858	- 213838	1,688 ${ }^{238}$	${ }^{3} 953818$	0 OH
Tobseco	${ }^{100} 8$	${ }_{67} 118$	${ }^{118} 810$	118 18	138 ${ }^{138}$	61598 488 488	. 1097	${ }_{0}^{\text {003 }}$
Condimonte and dilos ...	1,000 0	16511	1316	26929	2366	18712	ssa 18	07
garibs ${ }_{\text {coil }}$	83 5	1,888 18	918	-107 15	${ }^{3} 80989$	${ }_{1} 1838988$		0.12
Othar rinde of oll smam ...		1,41188	918	3,183 ${ }_{0}^{18}$	3,3812	8, 8198	b,701	$0{ }^{08}$
Yinoulienoove	8	3118	168		\cdots	Sol	181	Cos
Total	17,008	85,736 28	28,578	28,785	37,726	144,530	24,670	56
Omod Totel	26,907 25	45,419 30	4,414 20	13 99	48,056-14	9809 16	3,891	00

8. H. CONVENTON,

Settlement Officer, Selwans

APPENDI
Taldi
Bramburny bhowing area of cultivated land exoluding jagir and forest and including dubat during the periods shown herein of th

III.

Skiman.
shown in italic figures), in each surveved village of the Sehwan taluka onder each kind of irrigation ourrent settlement with the assessment thereon.

sani.															Torsin.	
Lum.				sumum,		,		พมв		Bazam.						
$\stackrel{3}{2}$			\% ${ }_{4}^{4}$	1												+1
											Re. ${ }^{\text {a }}$					
		8	${ }^{1,316}{ }^{8}$	${ }^{\text {s } 8}$				\cdots	-					
${ }^{6}$	${ }^{3 x} 40.0$	-			${ }^{3.048}$	${ }^{20,18.8}$	1,018 ${ }_{8}^{8}$				\cdots		.-.	…	2197	
${ }_{\text {cose }}$	${ }^{3} 5$	- - .-		64, 28	1.800	S	?'*	\cdots				${ }^{2}, 19858$	
R	边		34, ${ }^{\text {s, }}$	1,100 1	4018	129.			--	--		
งm 8		- ...		4ise		${ }_{88}$	92.4	...		--			...		8	
				20s 8 \%	8 8,	∞							...			
	${ }^{\text {mex }}$	$\therefore \quad$.	… ...	$\operatorname{mos}_{6} 18$	3,209 ${ }_{18}$	${ }_{6}^{48}$	${ }^{149} 8$..-	...	\therefore-	...		
	${ }_{8} 18$	-.-	... --	${ }^{7 \times 10} 80$	2.488 ${ }^{18}$	${ }_{24}^{438}$	\% 18	...		-	.".	..- ..-	\cdots	-.	\%as ${ }^{\text {cosem }}$	${ }^{2 \times 80}$
${ }_{98158}^{415}$	sat 11		..-	$\mathrm{mp}_{67} 86$	$2.85{ }^{20} 9$	82	1185	--		\cdots	"'		--		${ }^{\text {20 }} 8888$	${ }^{2} 8$
		-. - .-	..-	${ }_{80}^{80} 15$	1,	8.		.		.-	.-'	..-	.	-		${ }^{2388}$
		"* ${ }^{\text {" }}$	\cdots	182				-							8080	
	${ }^{24} 12$	- - -		${ }_{818}^{888}$	1,5698 8	${ }^{1258}$	${ }^{585} 14$						-		${ }^{10} 1$	2000
${ }^{4} 16$		-- - -	.'.	${ }_{818}^{81819}$	2/9\% 818	${ }^{347} 78$	80	..-	-				-		, 28.81	${ }^{3}$
${ }_{120}^{204} 18$	${ }^{310}$	-- ${ }^{-}$.			49 ${ }^{\text {as }}$							-			${ }^{4088}$
.	-	--	-	${ }_{6}{ }^{0}$	(1,588.6			-.'		\cdots-	-		${ }^{89} 98$	${ }^{2} 20$
	mg_{8}^{10}	… ${ }^{-}$	-.- .-.	${ }^{48}$	15013	${ }^{16}$.-'	-'	\cdots		..	-	"		
${ }^{35}$	${ }^{146} 8$	--	- ...	${ }_{38} 818$	${ }^{89} 8$	${ }^{1988} 8$	${ }^{388} 88$.	...		237		..-	-		4	${ }^{\text {ato }}$
		...		$\stackrel{12}{128}$	${ }^{33} 8$	${ }_{80}^{80} 8$	${ }_{86}^{88}$..'		\cdots			-		${ }_{18}{ }^{20} 10$	
		-' ${ }^{-}$	\cdots	${ }_{8}^{51} 8$	${ }^{19808089}$	${ }^{17} 28$	\cdot-	-			...		${ }_{3}^{88}$	${ }^{388}$
		-				...		$\cdots+$	$\begin{aligned} & . . \\ & \ldots \\ & \hline . . \end{aligned}$	\cdots				-.	-6 21	
:	02	..-	\cdots	${ }_{88}^{88}$	${ }^{314}$	${ }^{1 \times 2}$				Pr		--	\cdots			ses
518		... -.	-	$4{ }^{4}{ }^{2}$	${ }_{10}^{10100} 1$	${ }^{1018} 18$	${ }_{88}^{88}$-	\% 8		--	.-	988	
		-- -		${ }^{618}$		1880	\% 28	\cdots	.-	${ }^{231}$	${ }_{3}^{8}$		-		8	
		\cdots					${ }^{31} 8$	- -	.-		…		${ }^{25}$	
.		\cdots	…				cosis	\cdots	-	-		5888	
		-- .-.					\square_{6}	ir								
		,		${ }_{6688} 8$.		4.20										
${ }_{40}^{4188}$	${ }_{9}^{20} 4$	7- 313		${ }_{\substack{48 \\ 18 \\ 18}}$		1678	on 11	--	.-	${ }^{30} 8$	${ }_{8}^{10} 8$		-.		${ }^{14748} 818$	
\cdots				cex 313				...			\cdots		--		,5980	\%
		\cdots	\cdots	4085				.-		.	180		.-		${ }^{181}$	
	${ }^{418}$	- ${ }^{-}$		${ }^{108585}$	${ }^{2 \times 8 \%}{ }_{1}$		${ }_{5}$			${ }_{0}^{19} 8$	${ }^{1} 14$				Lex 88	4in
208 ${ }^{20}$	${ }^{45} 8$	\cdots			${ }^{2.188}$	${ }^{189} 8$	${ }^{18}$..."		516					${ }^{1,2989} 9$	
$1{ }_{6}$	${ }_{3}^{40} 4$			${ }^{\text {and }} 8$, 1,1515	13789				${ }^{48} 8$					${ }_{6}{ }^{8}$	${ }^{4008}$
	-					78:80	2,184 4						--		${ }^{17}$	4
-	\cdots	\ldots		\cdots	'.		\% ${ }^{\text {\% }}$	${ }^{18}$
-			... -..												${ }^{8188}$	
-	-	-							-				.			Mit
-	--	-1-					...			-.-		\% ${ }^{2}$			${ }^{298} 8$	\% ${ }_{5}$

5188-10

3 mal．																Totse	
Lnm					日assm．				Wanes．	Bunex				Hixe uranum．			
4	$\frac{1}{4}$	2			4	免	\％	要			亳		毞	4	品	1	安
							A． 8.		2f．a．	4．8．							
A．															Bx． 0.	a． s	Re．
－	＂		\cdots		\cdots	－	．．	\cdots	．．．				${ }_{6} 8$		${ }^{36}$	Mnis	288
\cdots	－		．．．	．－．	\ldots		．	．．．	．．．\quad.	${ }_{\substack{061 \\ 309}}$		${ }^{1} 8$	${ }^{6} 8$		41	矿 ${ }^{6}$	vis
．－	\cdots	－	\cdots	－－	\cdots		\cdots	．－	．．．	17	8	${ }^{30} 18$	${ }_{7} 78$		280	129 3	26
				．．．．．．	．．．		．．．		．．				$1{ }^{145}$				
	\cdots		\cdots	\cdots	．．．		．．．		\cdots	115		${ }^{26}$	$8{ }^{8} 14$			${ }_{5}^{120}$	\％
．	\cdots	\cdots		．．．	．．	．．	＂	．．．	\cdots	\cdots	\cdots	${ }_{16} 89$			．．．		${ }^{2985}$
－	\cdots	．＂－	．．－	－．	．．．	\cdots	\cdots	\cdots	$825 * 0$	418	as：	${ }^{20} 23$	$1{ }^{143}$	．．．	\cdots	1380	${ }^{23 t}$ \％
\％${ }_{6 s}$	\％	．．	\cdots	\cdots	${ }_{84}^{818} 8$	${ }_{37}{ }_{17}^{10}$	188	398	－ 1780	${ }_{9}^{88}$	${ }_{68} 88$	${ }^{50}$	${ }^{3114} 7$	．．．	．．．	（in	${ }^{738}$
\square	\square	．．．	\cdots	．＂	30 36	975	${ }_{818}^{185}$	${ }_{8}^{811}$	024	${ }_{1}^{28}$	${ }^{55} 8$	${ }_{8}^{21}$	${ }^{1168}$	．．．	\cdots	2001： 18	：
．．－	．．．	－－	\ldots	… ．．．	\cdots	\cdots	－．	－－		018	08	${ }^{\text {37 }}$	，	．．．	\cdots	${ }_{5} 23$	O
	－		\cdots	\cdots	－－				0.16							${ }^{5} 86$	
									－								
${ }_{4}^{4} 14$	${ }^{1264} 8$	\cdots	\ldots	\cdots		1，202 ${ }_{8}^{1}$	${ }_{\substack{300 \\ 180 \\ 189}}^{18}$	${ }^{800} 111$	…	$\stackrel{-8}{7}$	\％			－＊		OOR 14	${ }_{\text {2，}}^{1,080}$
48	24．	．．．	\cdots	…	${ }^{38 \pi}$	2，285 13	${ }^{\text {en }}$	1，2238 8	．．－	．－	．．．	－	－．	\ldots	－	${ }^{32} 828$	2， 190
				．．．			sat 30	1，818		0 re							
						1										26	
．．	－		2897	－－	1848	4198		1，016 5	－	\cdots	－	－	－－	．．．	\cdots	${ }^{3} 835$	＊
${ }^{3} 780$	2，911	7	38	$\cdots{ }^{-\cdots}$		${ }^{189} 8$	${ }^{530}$	0	－－1	2108	8850	－	．．．	－	－	${ }_{0}^{27}$	：
－ 368.6		．．．		．．．	${ }^{617} 5$	${ }_{1,0,3} 18$	${ }_{78}^{868} 8$	－3，	－－－	\cdots	．．．	\cdots	－－	．．－	\cdots		－
［12838	${ }_{38}^{3065}$	－	\cdots	－		${ }^{2}, 888784$	${ }_{88}^{88888} 8$		－－	$4 *$	41	－			\cdots	2085 28	16
	${ }_{5}^{\text {cose }} 18$	－	\cdots	… ．．．		2.2	80	2，308	．＂	\％	3210	．．．	－	－	－	16	7，988
\cdots	－．		\cdots	．．．．．．					\cdots			－－					
				．．．－－													
	107	…	．．．			2，115			\cdots							cise	边
								${ }^{811}$			\％					${ }^{31} 10$	8
10	${ }^{138} 8$	－－	．．－	．－		1，48880	$\underset{1}{318} 18$	${ }^{208} 18$	\cdots	${ }_{8}^{89}$	${ }^{14} 8$	－	－．	\cdots	－	38888	2，880 118
	${ }_{\substack{185 \\ 586}}$	．．	－	－－．－	${ }^{3} 8812$	1，081 18	18	5715	－r．	${ }_{\substack{18 \\ 180 \\ 180}}$	${ }_{1}^{17} 8$			－	－	\＄0817	2， $\mathrm{gag}_{11} 14$
－	30.2	．．	\cdots	\cdots	${ }_{15}^{235}$	d	120818	2610	．．．－	．．．	．．	－－				1954	3，778 15
－	\cdots	－．	．．					－									
\cdots	－	．．	\cdots	．．．	\cdots	．．	．．	\cdots	．．．	${ }^{318}$	${ }^{16} 8$	…	－	${ }_{19}^{89} 80$	${ }_{3}$	［87	${ }^{3818}$
－	\cdots	…	\cdots	．．	－．	．．		－									
											08					${ }^{63}$	\％
\cdots	．＂	－－	\cdots	\cdots－-	\cdots	－	－		\cdots	${ }^{9} 888$	${ }_{18}^{18}$	－	\cdots		${ }_{60}^{60}$	\square_{8}^{98}	${ }_{1}^{148}$
\％	\cdots	\cdots	\cdots	\cdots	－	－	－	\cdots	\cdots	．．．	\ldots	\cdots	．．		18	33	So
－	\cdots	．－	\cdots	\cdots	\cdots	＂．	\cdots	．．．	．．．－－			…			318	${ }^{207} 88$	${ }^{202}$
\cdots	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots	．＇	－	\cdots	．．．	．．＂				${ }_{6}^{49} 120$	${ }_{1}^{898}$
\cdots	\cdots	\cdots	－	\cdots	－	\cdots	\cdots	－	－－－		\cdots					588	0
．．＇	．．	．．．	\cdots	．．．．－		．．．			．．．					，		5\％ 16	O
		．．．	－	．．－		．．－			．．．								${ }^{112} 14$
7,4		．	\cdots	\cdots	1，501 28	4，0808 36	21933		2786 616								20， $2 \times$
3，453 89			$\begin{array}{ll} x_{3}^{2} & 8 \\ \hline \end{array}$	．．．	1，4．595		5，397	240811 ${ }^{\text {a }}$	1580	7_{17}^{7}						\％2949 80	26
2，400 80	9，878 ${ }^{711}$			$\begin{array}{l\|l} . . . & \ldots \end{array}$		\％s， 4880	$4{ }^{418}$		S2 81.90					58．18	8		
$x^{2, y e x} 10$					x，yss 28	（8，64045							${ }_{8}$	－			5
8，500 10					${ }^{1561038}$	\％，\％mis	3，518	14.858		${ }_{150}{ }_{50} 88$			${ }^{20} 1$	5 ${ }_{5}^{581}$		48，488．213	2605
${ }^{208688}$		200 0^{3}	${ }_{4}^{4080} 8$	d200 12		28， 8798	2，050 23^{3}	8，738 ${ }^{\frac{1}{3}}$			${ }_{17}{ }^{10}$	Hut	込			104848	${ }_{\text {saym }}^{608}$
${ }^{276}$	${ }^{18} 1$		$0 \cdot 1$						58				$0^{\text {a }}$ \％		8 8		

Luwit		EABL．																ToFth，	
						Situbit		 		Wan	ass．	Binurar．		KaOHA WryLB．					
，	管	家	㜢				＋	4	＋	先	㤟	安	瞋	妾	害	\％	蕽	崾	离
$\stackrel{4}{4}$	8． 2	4． 8.	En ${ }^{\text {a }}$	B	6． $\mathrm{a}_{\text {．}}$	A． 8.	Ra．a－	4． 8.	Re，		Ra．s．	A． k ．	Re． 4.	A． 8.		． 8.	Res，m．	4．8．	83．${ }^{\text {a }}$
		\cdots		\cdots	\cdots	240858	$\begin{array}{cc}695 & 0 \\ 1,48 & 0\end{array}$	ii	苞 18	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	200 ${ }_{4}^{25}$	1，293 ${ }^{10}$
10	29	\cdots		\cdots	\cdots	12	12	1634	858	\cdots	\ldots	\％988	1，890 12						
W	18 8 1	．．．	\cdots	\cdots	\cdots	206 088 088	5015 0 15		W9 5	\cdots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	${ }_{589} 898$	1，289 ${ }_{1}^{10}$
	$\cos _{818}^{10}$	\cdots	\cdots	．．．	\cdots	18	0	\cdots		．．＇	．．．	\cdots	\cdots	\cdots	．．．	\cdots	\cdots		${ }_{0}^{615} 8$
			\ldots		\ldots								158			\cdots	．＊	1，460 30	
		．．．	\cdots	\cdots	\cdots	1， 81518	$\begin{array}{lll} 3,38 & 0 \\ 8,065 & 0 \\ 8,059 \end{array}$	7691		0×0		10	27	016	10	．．．	\cdots		3，14 14
－ $\begin{array}{r}18 \\ 18 \\ 18\end{array}$	${ }_{78} 88$	．－	\cdots		\cdots	${ }_{18} 18$		${ }^{7698}$	${ }_{18}^{2810}$	28							．．．	1，2938	${ }^{3,184}$
		\cdots	＂＊	\cdots	\cdots	${ }^{3} 8$	$1,86{ }_{2}^{11}$	${ }^{82} 19$	241 18 18	7 78	1819	．．．	\cdots	\ddot{m}	\cdots	\cdots	＂＇	$\begin{aligned} & 1,12538 \\ & 1619 \end{aligned}$	${ }_{2,967}^{10}$
	$\left.\begin{array}{ll} 185 & 18 \\ \hline 8 & 8 \\ \hline \end{array} \right\rvert\,$	727	\＄0 0	．．．	\cdots	$\mathrm{SH}_{89} 81$	$1,48718$	27 \％	1045	$\begin{gathered} 35 \\ 2 \times 4 \\ 2 \end{gathered}$	748	．．．	．．	．．．	\cdots	\cdots	\cdots	$\begin{aligned} & 1,00727 \\ & 16 \\ & 10 \end{aligned}$	$\begin{array}{r} 2,595 \\ 9 \times 12 \end{array}$
12810		\cdots	＂＇	\cdots	．．＂	．．．	．＊	．．．	．．．	${ }^{3} 45$	818	\cdots	\cdots	．．．	\cdots	\cdots	．＇＊	${ }^{359} 88$	${ }^{804}$
			．．．	\ldots	．．．	4510		6816			．．．	\cdots	．．＂	\cdots	．．．	\cdots	\cdots		
		\cdots	\ldots	\cdots	\ldots	${ }^{8} 883$	1，3988	878		．．．	\cdots	．．．	．．．	．．．	．．．	\cdots	\ldots	48\％	1，265 ${ }^{3}$
${ }^{13} 12$	${ }^{31} 80$	\cdots	\cdots		\ldots	${ }^{6} 27$	118				．．．				．．．	．		${ }^{8} 88$	\％
$\begin{array}{cc} \text { ig } & 38 \\ 13 \end{array}$	4， 0 9	\cdots	\cdots	\cdots	\cdots	$\text { 395 } 39$	${ }^{87} 88$	485	1724	．．．	．．．	．．．	＂＊	\cdots	\cdots	\cdots	\cdots	${ }_{5656}^{8511} 11$	${ }_{3}{ }_{3}$
	\％1811	．．．	．．．	\cdots	\cdots	$\begin{gathered} 158 \\ 18 \\ 54 \end{gathered}$	${ }_{4}^{455} 5$	158	488	\cdots	．．＇	．．	＂＊	\cdots	．．．	\cdots	．．＂		1，2048
$\therefore \mathbf{0 0 0}$	80 38	115	3s 0	48	160	$\begin{gathered} 110 \\ 37 \\ 35 \end{gathered}$	${ }^{400} 818$	2430	$\infty 1$	．．．	．．．	．．	．．	．．．	\cdots	…	\cdots	807 78 86	${ }_{760}^{68}$
	\ldots	\cdots	\cdots	\cdots	．．．	1，148 18	${ }_{3,230} 8$	\cdots	1，748 18，	8，290									
．．．	\cdots	－．．	\cdots	\cdots	．．．	88.114	2， 230	\ldots	．．．	\cdots	．．．	．．．	－	．．．	．．．	\cdots	．．．	Ben 30	2，451
$4{ }_{4}^{48}$	118 1 80 10	\cdots	\cdots	\cdots	\cdots	${ }^{46} 96$	${ }^{1,285} 8$	203	1108	\cdots	．．．	\cdots	．．	\cdots	\cdots	\cdots	\cdots	703 29 18	1,90610 98
$\begin{array}{ll} \cos _{1} & 7 \end{array}$		\％	115	．．．	\cdots	${ }_{506}^{508} 29$	$\begin{aligned} & 1,868 \\ & 898 \end{aligned}$	3918	11014	．．．	．．．	．	．．	．．．	．＂	\cdots	．．．	${ }^{267} 89$	${ }^{2,569} 89$
65	281	．．．	\cdots	\cdots	\ldots	19498	38015	．．．	$\cdots *$	\cdots	\cdots	．．	．．	\cdots	＂＇	\cdots	\cdots		1，037 46
\cdots	＊＊	\cdots	\cdots	\cdots	\cdots	1，662 30	${ }^{3,858}{ }_{7}{ }_{7} 8$	\cdots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	\ldots	．．．	．＂		4，030 16
811	II 28	\ldots	＂．	．．．	．．．	${ }_{872}^{93} 15$	2，316 ${ }^{7} 3^{7}$	5088	11910	．．．	．．．	＂	．＇	．．．	．．．	\cdots	\cdots		4，503 ${ }^{7}$
16	14.	\cdots	\cdots	\cdots	\cdots	y_{38}^{26}	$1,02 g_{0}^{8}$	243	88	．．．	…	．．	＂＇	＊＊	\cdots	\cdots	\cdots		${ }_{6}^{1.628} 115$
17 085 80 18	$\begin{array}{lll}4 & 8 \\ 0 & 8\end{array}$	538	－8	\cdots	．．．	13887	${ }_{0}^{287} \frac{14}{6}$	63	248%	\cdots	\cdots	．．	．．	．．．	．．．	\cdots	\cdots	$\begin{gathered} 29 \mathrm{gag} \\ 0 \\ 08 \end{gathered}$	\％06 15
${ }_{5 c} \times$	$4 \cdot$	\cdots	\cdots	．．．	m	．．．	\cdots	＊＊	．．＇	\cdots	\cdots	\cdots	＊＊	\cdots	\cdots	\cdots	．．	${ }^{3} 1$	164 \％
\cdots	\cdots	\cdots	．．．	\cdots	\cdots	\cdots	＂＊	＂＇	\cdots	．．．	\cdots	$\begin{array}{lll}188 & 0 \\ 14 & 3\end{array}$		\cdots	\cdots	\cdots	\cdots	${ }_{3}^{202} 94$	${ }^{507} 14$
8	${ }_{3}^{15} 0$	＊＊	\cdots	＂＇	\ldots	${ }^{98} 30$	2818	${ }_{4}^{4} 81$	16018 18	\cdots	\cdots		80119 88 818	\ldots	．．．	\cdots	．．．	－ 8808	1,548
＊	＂．	．．．	\cdots	\cdots	\cdots		$\begin{array}{r} 167 \\ 18 \\ 818 \end{array}$	$\begin{array}{l\|l\|} 2 & 98 \\ 6 & 39 \end{array}$	$\begin{array}{r} 208 \\ 18 \end{array}$	\cdots	．．．	$\begin{array}{ll} 1 & 18 \\ 0 & 37 \end{array}$	$\begin{array}{ll} 1 & 7 \\ 0 & 29 \end{array}$	．．．	\cdots	\cdots	．．	2888 3888 88	${ }_{12}{ }_{12}$
－＊	＂	\cdots.	\cdots	\cdots	．＂	$\begin{array}{cc} s_{8}^{6} & 1 \end{array}$	${ }_{8}^{17} 8$	038	30	．．．	＂．	$\begin{gathered} 50 \\ 30 \\ 80 \\ 80 \end{gathered}$	${ }_{60}^{40} 3$	\cdots	\cdots	\cdots	r	${ }^{337} 80$	${ }_{50}{ }^{\text {c }}$
\cdots	\cdots	＊＊	＂	\cdots	${ }^{*}$	．．	\cdots	\cdots	．＂	\cdots	．．．	$\begin{array}{lll} 8 & \frac{95}{8} \\ 0 & 0 & 0 \end{array}$	1815 88 8	\cdots	\cdots	\cdots	．．．	${ }^{8185} 88$	${ }^{808}$
\cdots	$\stackrel{*}{*}$	\cdots		\cdots	\cdots			2 218	${ }^{8} 8$	\cdots	\cdots	\％${ }_{4}^{48}$							
\ldots	\cdots	\cdots	\ldots	＊＊	．．．	－＊	4	＂	\cdots		．．．	2388 9814	18	037		．．＇	．．＇		${ }^{6}$
\cdots	\cdots	‥	．．．	\cdots	＊＊	\cdots	＊＊	\cdots	．．＂	\cdots	．．．	$\left.\begin{array}{ccc} 10 & 12 \\ 0 & 26 \end{array} \right\rvert\,$	1885	5 8 189 18	${ }_{8}^{81}$	\cdots	．．＂	348	${ }_{01} 14$
＊＊	\ldots	\cdots	\cdots	\cdots	\cdots	＊	\cdots	\cdots	\cdots	．＇．	－．	．．．	－．．．	$\begin{array}{ll} 4 & 8 \\ 0 & 191 \end{array}$	${ }_{8}^{81}$	．．．	\cdots		${ }^{13} 5$
：＊	＂＊	\cdots	＂	＊＊	\cdots	\cdots	＂＇	\cdots	\cdots	\cdots	．．．	\cdots	＊＊	210	15	\ldots	＂	13	47
．．．	\cdots	\cdots	＂＊＊	…	\cdots	F．．．	\cdots	\cdots	\cdots	\cdots	\cdots	7 To	915	\cdots	\cdots	${ }_{6} 8_{88}^{20}$	${ }^{11} 18$	880 885	1180
							．	－	\cdots					．．．	\cdots				
＊＊	＂	4	＇＊	．．．	＊＊	＂	\cdots	\cdots	＊＊	＊＊	\cdots	．．．	．．＊	\cdots	＂＊	424	178	1013	16 \％
＊＊	．．．	＂．＂	\cdots	\cdots	\cdots	＂．	＂	\cdots	30	\cdots	．＂	\cdots	＊＊	．．．	．．．		18 0 8	021	${ }_{0}^{18}$
＂	＂．＊	\cdots		＊＊	\cdots	\cdots	＊＊	\because	＊＊	．．．	．．．	－+	\cdots	\cdots	\because	（97）	1314	$7{ }^{7}$	1514

－ $168-11$

Bsalt													remer	
more						Sntin		wnue				Hixs manem		
$\underline{4}$	$\frac{1}{1}$			4	娄	1	＋		等	年			軎	1
	- - - - -	a m - - - - - - - - - - - -		．．．－	－	－	＂＇． . .7 .		- - - - \cdots \cdots	7 \cdots \cdots \cdots \cdots				
		\cdots												（1）
5 ${ }_{8}^{98}$ ${ }_{8}^{80}$									（100038	57814				

s．H．COVERNTON，
Eettlement Officer，Behwam．

44

APPENDIX XIII.
Statement showing demands and realizations in the Sehwan taluks from 1890-1891 to 1807-1908.

Year,	Gross demand.	Remission.	Collection.	Arreare.	
	Rs.	Rs. ${ }^{\text {a }}$	Rs. a. p.	Rs. a. p	
1890-1591...	1,32,718		1,30,881 10 0	1,886 1.4	0
1891-1892...	1,57,735	8,755 $\quad 2$	1,52,147 660	1,8.2 13	0
1892-1893...	2,00,056 1	4,226 14	1,95,422 8 8 0	407 4	0
1893-1894...	1,52,140	12,503 10	1,36,889 10.0	2,747 0	0
1894.18ง5...	1,88,220	22,631 15	1,63,732 130	1,955 12	0
1895.1896...	1,16,765	6,896 14	1,08,799 150	1,008 3	0
1896-1897...	1,62,333	12,136 7	1,49,968 110	2285	0
1897-1898 ...	2,03,519	22,542 1	1,70,478 110	10,028 8	0
1898-1899 ...	1,08,065	8,680 0	93,480 1414	5,905 1	0
1899-1900...	1,29,470	14,400 5	1,12,006 $10 \quad 0$	3,063 12	1
1900-1901 ...	1,52,846	10,688 5	1,38,521 150	3,636 0	0
1901-1902...	1,37,618	11,257.15	1,23,615 130	2,744 12	0
1902-1903...	1,03,782	13,766 8	85,664 3 3 0	4,352 2	0
1903-1904..	1,46,385	7,430 3	1,32,092 150	6,862 5	0
1904-1905...	1,48,943	23,208 8	1,21,329 $10 \quad 6$	4,405 5	6
1905-1906...	1,49,494	6,295 15	1,41,7ะ7 410	3,471 2	0
1906-1907...	1,55,395	6,989 12	1,43,371 140	5,033 11	0
1907-1908...	99,182	1,747 3	94,071 90	3,364 1	0
Total..	2,644,704 1	1,89,057 9	2,394,703 56	60,943 14	6
Average...	1,46,928	10,503 3	1,33,039 10	3,385 13	0

B. H. COVERNTON,

Settlement officer, Sehwan.

APPENDIX XIV.

. ANPENILI
Sbinw
Statement showing the results of the proposed rates as compared with the existing rai of 5 years per

48

XIV.

EALTEA.
in each village of the Sehwan taluka on the basis of the average cultivation from 1902-03 to 1906-07.

（exuani			Bort moutsine								
$\frac{4}{4}$	安	宫	．${ }_{4}^{4}$	咅	官	年	3		号	$\frac{8}{4}$	I
4	Be．a．	${ }_{8}$	4	．	${ }_{\text {se }}$ ．	4.		m．	4	Ren 2	8.
${ }_{205} 2$	$2{ }_{2}^{214}$	${ }_{\text {ckich }}^{698}$				18		280			
	214	${ }^{1,5}$		．．．	…	124	40	${ }^{* 8}$	．．．	\cdots	\cdots
185	${ }_{2}^{24} 4$	480	\cdots	\cdots	\cdots	l180	${ }_{4}^{814}$	${ }_{688}^{688}$	．．．	．．．	\cdots
${ }_{688}^{888}$	${ }_{2}^{2} 146$	${ }_{\substack{1,789 \\ 1,781}}$	：	$2{ }_{2}^{2} 4$	！	${ }_{98}^{88}$	${ }_{4}^{816}$	${ }_{181}^{186}$	\cdots	\cdots	\ldots
\cdots	\cdots	：．＇．			\cdots	－		．．	．．．	\ldots	＊＊
\cdots	\cdots	\cdots	．．．	．．．	\cdots	\cdots	\cdots	．．＂	．	．．	＂．
518							\cdots	\cdots	．．．	\ldots	
818	${ }_{3}{ }^{2} 8$	${ }^{1,588}$		${ }_{3}^{214}$	${ }_{24}^{28}$	$\stackrel{24}{28}$	${ }_{4}^{14}$	${ }_{106}^{108}$	\cdots	．．．．	．．．＇
－${ }_{\text {cis }}^{138}$		${ }^{388}$	${ }_{8}$	${ }_{8}^{2145}$	${ }_{18}^{181}$	${ }_{68}^{84}$	${ }_{4}^{814}$	28	\ldots	\ldots	
Q， 2 ven	$2{ }^{214}$	20．54t	108	214	548	2，508	214	0，283	．．．	．．．	
8，508	30	12.518	189	50	507	1，019	40	8，008	．．．		
${ }_{102}^{109}$	${ }_{8}^{8} 8_{8}^{4}$	$\xrightarrow{885}$	10	${ }_{2}^{8} 8$	${ }_{35}^{39}$	${ }_{38}^{38}$	${ }_{4}^{4}$	${ }_{188}^{181}$	1	$4 *$	
${ }_{120}^{180}$	${ }_{3}^{8}$	${ }_{4}^{400}$	14	－	${ }_{85}^{48}$	${ }_{8}^{5}$	${ }_{8}^{4} 8$	${ }_{178}^{917}$	\cdots	．．．	\cdots
1.887	${ }^{3} 4$	8． 158	．．．							\cdots	
1，2857	${ }^{3} 8$	s，607	\cdots	\cdots	．．．	${ }_{8}$	${ }_{3}{ }^{8}$	${ }_{221}^{220}$	．．．	．．．	＂．
${ }_{426}^{265}$	${ }_{2}^{3}$		．．．	\cdots	．．．	${ }_{148}$	${ }_{8}^{4} 8$	${ }_{628}^{828}$	${ }_{86}^{36}$	8_{8}^{8}	18
1，5585	$88^{8} 8$	${ }_{\text {8，}}^{\text {8，80 }}$	\cdots	．．．	．．	${ }^{310}$	${ }_{4}$ 4	1，937	\cdots	－	\therefore
1，7171	${ }_{2}^{8}$	3．808	．．．	．．．	．．．	${ }^{12}$					
		2，083	…	\cdots	\cdots	${ }_{91}$	8 8	${ }_{319} 8$	＂．＂．	\cdots	$\stackrel{-}{-}$
${ }_{888}^{1838}$	${ }^{3}$ ：${ }^{\text {b }}$	3，304	\cdots	．．．．	．．．	1118	${ }^{4} 8$	${ }_{40}^{500}$	\cdots	\cdots	\ldots
${ }_{698}^{989}$	${ }_{2}^{8} 8$	，	\cdots	．．．	\cdots		44	ons	．．．	．．．	\cdots
${ }_{80}^{\text {men }}$	8	2， 2.874	．．．	．．．	．．．	77	t． 4	15	\cdots	\ldots	
			．．．	．．．	．＂				．．．	．．．	
${ }_{80}$	${ }^{3} 8$	${ }_{150}$	\cdots	\cdots	\because	${ }_{17}^{17}$	${ }_{3}^{4} 8$	\％	．．．	…	\cdots
${ }_{9}^{8}$	${ }^{3} 8$	${ }_{105}^{2015}$	．．．	．．．	\cdots	18	4_{8}^{4}	${ }^{8}$	\cdots	\cdots	\cdots
6	2_{218}^{218}	${ }_{12}^{17}$	\cdots	．．．	\cdots	1	834	4	\ldots		\ldots
					．．				．．．	．	\cdots
591	${ }_{8}^{8}{ }_{8}^{8}$	${ }_{\substack{1,788 \\ 1,78}}^{1}$		${ }^{\frac{8}{3}}{ }^{8}$	$\frac{8}{2}$	${ }_{1}^{138}$	${ }_{8}^{4}{ }_{8}^{4}$	${ }_{493}^{506}$	\cdots	．．．	\cdots
${ }_{605} 6$	${ }_{2}^{8} 8$	2，		${ }^{3} 8$	${ }_{18}^{28}$	cicc	${ }_{8}^{8} 8$	${ }_{688}^{681}$	\cdots	．．．	\cdots
${ }_{688} 8$	${ }^{3} 8$	$2,2,208$	\cdots	．．．	\cdots	${ }_{\text {cos }}^{\text {cos }}$	${ }_{3}^{4}{ }_{3}^{4}$	${ }_{8,588}^{2588}$	\cdots	\cdots	\cdots
\cdots	\ldots	\cdots	．．．	．．．	＂	\ldots	．．．	$\stackrel{\text { and }}{ }$	．．．	．．．	
	94			．．．	\cdots	…	\cdots		．－	．．．	
156	${ }^{2} 8$	${ }_{*}$	\cdots	\cdots	\cdots	${ }_{883}$	${ }_{8}^{*}$	1， 1,378	\cdots	\cdots	
${ }_{828}$	${ }^{3} \frac{4}{8}$	1，000	．．．	…	…	188	＊：	${ }_{80}^{788}$	…	\cdots	
．．．	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	．．．	‥	．．．	
：．＇	\cdots	．．．	\cdots	．－	．．．	．．．	．．＇	．＂			
$\xrightarrow{20,188}$	\cdots	$\underset{\substack{38,44 \\ 38,404}}{ }$	88		105					．．．	
28，705	33	23，601	201	\cdots			\ldots		\％	\cdots	
20，05	2 n	4.015	301	3^{3}	${ }^{8}$	3，087	${ }_{4}^{48}$	19，780	${ }^{37}$	4	10
\cdots	…	\ldots	\cdots	…	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\square
．．．	＂＇	＂	\cdots		．．．	\cdots	．．．	－			
\cdots	\cdots		\cdots	．．．		．．．	．．	．．	\cdots	－	－

E. H, COVERNTON,

Settlement Officer, Sehwan

APPENDIX XV．

Labr of prices current in the Sehwan taluka．

	Jonis．		Winat		空	室		容	音				Yox		corror		Tosmenen			
			$\begin{array}{\|l} \frac{\pi}{5} \\ \hline \end{array}$	管				妾				$\begin{aligned} & \text { 学 } \\ & \text { 薦 } \end{aligned}$			$\frac{5}{8}$	者				
										Re，		（ 416	\％		$\begin{aligned} & \cdots \\ & \cdots \\ & \hline: \end{aligned}$	．．．		$8{ }^{81}$		

APPENDIX XVI．

Statement showing the general financial results of the proposed settiem ment of the Sehwan taluka based on the arerage of the past E years from 1902－1903 to 1906－1907．

	Present settlement．	Proposed sattlementa			Fickitas OR． DHOREASN PEB－CRNT：	
			Inereasa．	Dacreasa．	Increase per canb．	Decreasen par ceat．．
Surveyed lands Unsurveyed lands \qquad Leased landy \qquad	Rs，	Rs．	Rs，	Rs．		
	1，40，234	1，35，395	－	4，839		$3 \cdot 45$
	3，309	3，377	68		2.05	
	314	191	\cdots	123	．．．	$39 \cdot 17^{*}$
	1，43，857	1，38，963	$\left\lvert\, \begin{gathered} 68 \\ \text { net } \\ \text { decrease } \end{gathered}\right.$	$\begin{aligned} & 4,962 \\ & 4,894 \end{aligned}$	$\begin{gathered} \text { net } \\ \text { decrease. } \end{gathered}$	$3 \% 40$

[^0]
S．H．COVERNTON，

Wettlement Officer，Sehwan．

APPENDIX:A.

Specinl rules for the revised irrigational settlement of Sehtoan, Johi and Dadu tahukas.

Rube 1.-These rulea shall apply to the. Seliwan, Dadu and Johi talukas enly.

The ordinary rules for remissions and for the administration of irrigatiotal

Applioation:
Fermer rules how far maintained. settlements shall remain in forve except in so far as they may be modified by any of the rules here following.
Rule 2.-Rule No. IV of the fallow rules (Spacial Circular No. 20, Fallows page 1022) shall not apply to barani lands which odtain no black water or hill-stream irrigation and have no registered water-supply from a eanal or the river nur to the lands on the Manchhur referred to in Rule 4 following.

Eucle 3.-If lands to which a registered searee of water-supply from a canal or the river has been assigned are cultivated as barani and afterwards remain uncultivated for 5 years, then the fallow assessment to which they beonme liable in the 5th year shall not be the barani assessment but that chargeable on the description of irrigated oultivation last caried on in the field.

Rule 4.-The special Manchhur remission rules printed on page 165 of the Commissioner's Special Circulars (No. 2) will continue in furce for all lands whose registered source of water-supply is from the Manchhur, Remissions under these rules will also be given in the same way for portions of survey numbers remaining uncultivated owing to flooding by the Manohhur even though their registered source of irrigation is not the Manchhur.

Rule 5-In baranil lands which have received no black water or hill-stream irrigation, the existing practioe will be continued of remitting the assessment on uncultivated portions of survey numbers provided that the uncultivated ares is at least $\frac{1}{4}$ of the area of the survey number.

Rule 6--Bemissions on barani cultization in all lands assessed at one rupee per aore and under shall (on account of the low rates of assessment) not ordinarily be granted. But in exceptional onses where the general nature of the calamity seems to demand a large measure of remission or postponement, the Mukhtyarkar sball prepare a statement showing in annas the eeneral conditions of each deh and this statement shall be tested by the Assistant or Deputy Colleotor and its results with the Colleotor's recommendation reported to the Commissioner:

All lands assessed at over 1 rupee per acre shall be ontitled to the Benefit of the remission rules.

Rule 7.- (In modification of rules 4 and 6; on pages 67.2.574 of Speciali Circulars, No. 59.):

Except in the purely barani lands referred to in Rule 8 and in the cases: referred to in Rule 10, if a number which has: been cultivated in kharit is cultivated again in the succeeding rabi, then it will be charged according to the rates fixed in the settlement for dubari cultivation." Gardens will form no exception to this rule.

If the second crop is watered with well water only, but the first crop recoived Indus water, then the dubari orop will be charged as unwatered (i.e., at 8 annasj. But if both first and seoond orops received well water only, no eharge will be made for the dubari orop.

Rude 8.-In barani lands which have received mo black water or hillstream irrigation, no dubari assessment will be taken if iamblio, sariha or other erope ueually grown in rabi be sownin a field whiot is culcivated in kharif: slso but the whole will be treated as a single orop, But if a number sown as barani is acoidentally flooded in kharif with fadas water sod is subsequently cultivated as sailabi in rabi then thobarami rate will be charged in linanif and the full sailabi rate in rabi, If a field is cultivated in khavif with barani and in rabi with hill-stream, then in all dehs the dubari crop. will be charged the difference between the kharif assessment and the wahi + dubari assessment.

Rule 9.-In the kacho and the barani lands of Sehwan taluka, arhari* * A cosson intermediate. betweon crops will be free from assessment provided they thhatif aud mini. crops previously reaped, or are grown in a number already cultivated in the

4 Lata apring orop.

 preceding kharif or adhawr.t Adhawa cropa (i.e, those succeeding rabi and preceding kharif)will be liable to assearment, but if a number be cultivated both in adhawa and - also in the suocreding khurif it will pay only a single assessment for both.

Rule 10.-In irrisated landa if a crop ordinarily grown in rabi is sown at the same tine with and mixed with a kharif crop, no dubari will be taken but the whole will be treared as a single kharif crop.

Rule 11.-The special unplonghed rate for the Manchhur will apply to all

Asvasament

 lands which have aotually been watered from the Manchhur and not merely to those whose registered source of irrigation is the Manchhur.Rule 12.-A clearance all wance of 3 annas per racre will continge to be given on lands watered by the Rajwah and other hill flood canale in group II of Johi taluka. But no allowance will be given in group LII on account of the lowness of the assessment.

Rule 13.-In the nmended rule 6 printed on page 574, Special Oirculars, the words "gardens will however, etc.," down to "natural source" shall be omitted, and the following subsit ited in their place "gardens will be assessed according to the method of irrigition adopted."

Rule 14.-The followin:s definitions shall be in fores in these talukas and the assessment oharged in accorlance with them.
(i) Rabi bosi refers to land which receives an artificial supply of water $\$$ Flow. f r rahi cultivation whether by wheel or mok \ddagger at any time before the sowing of the ceed and receives no water alter the sowing.
(ii) Rabi sailabi riffrs to land whioh has received natural moisture only whether by flocding or by percolation.
(iii) Rabi lift refers t, linl which receives water for rabi cultivation (I. b., flow channel. by lift alter the seed has been sown, and which had not previously been flooded by natural means or by an artificial mek. §
(iv) Rabi flow refers to lands which recpives an artificial supply of water by mok for rabi cultivation after the seed has been sown.
(v) Sailabi madad charkhi refers to land which before sowing received a supply of water br natural flooding and after sowing received an artificial lift supply.
(vi) Bow mudad charlhi is the same but with the words "artificial flooding from a mok" substituted for "naturil flooding."
Lands watered before sowing by wheel or flow from a canal, eto., which after sowing receive well water only will be assessed as bosi.
Adhawa sailabi will he assessed as rabi sailabi in surveyed lands and as rabi ploughed in unsurveyed kachas.
Rule 15.-No rebate allowance will be given on unwatered sailabi oultivation.

Remarke.

Rules 2, 4, 5 and 10 merely continue the existing practice of the division, but rale 5 extends to the whole division a concession that for some obscure reason has hitherto been confined to Johi taluka. Hules 4 and 11 make provision for the variations of the Manchhur and the faot that lands may be flooded by it although acoording to the Settlement Register they hase different source of water-supply Wheu this happens their pssition is exactly the same as that of other Manchhur lands and it would be unfair to treat them difierently. The necessity for rule 6 is explained in the Johi repart. The rale is a modification of the rule in force in the Desert triuka of Thar and Purkar. Rules 7 and 13 modify the zules in the Special Circulars to suit the proposed fates for dubari. Clearly if gardens are to be assessed aceording to the method of irrigation, these is no reason to continue their exemption from dubari. I soe no reason why a number watered in kharif with river water should not pay the unwatered dubari rate even if the dubari crop is on a well. I think the dubari crop must gain some advantage from having had a watering in kbarif from a canal. Such dubari orops are usually garden orops and as such even
bnder the old setilement they had to pay the difference between the kharif rate and the garden rate. As this special rate has now been abolished, these orops can well afford to pay the 8 annas dubari rate. But when both crops are grown on well water only there seems no ground for making ang alteration in the present oustom of taking no assessment for the dubari; especially as this custom is in acoordance with the orders of Government.

Rule 8.-The necessity of this rule is shown in paragraph 9 (i) of the Johi report. At present if the jamblo, etc., is sown at the same time with the late juar, it is usually entered as kharif, though not invariably. If it is sown among the standing crop before harvest it is usually entered as dubari. Obviously is is almost impossible for the tapadar to know if the seed was sown along with the juar or somewhat later and he has to depend on the statements of haris. In any case this jambho erop is usually poor and often consists only of a few ecattered plants.

The effect of rules 7 and 8 in the 2vd group of Johi has been explained in the report. It will be the same in all other hill-stream dehs, i.e., if barani is followed by hill-stream dubari the total assessment will atways equal the hillstream rabi +8 annas. And as the kharif barani crop must always be of much less importance than the hill-stream dubari, this seems to be fair enough. It would obviously be assured to charge only the kharif rate + a dubari rate, for the total would then be less than the rabi hill-stream alone.

Rule 9.-That arhari crops should be free of assessment is in accordance with the Commissioner's standing orders. The proviso appears necessary to avoid the necessity of a definition of arhari as distinguished from the late kharif crops which would be difficult. The rule will prevent.a khatedar from being charged merely because last year's stubble has sprouted aod it also maintains the principle that dubari should in no oase be charged in barani lands.

So too to charge dubari on the kharif because of a previous adbawa would be unfair. Except in very rare cases the adhawa orop is grown and cut for fodder only, but it is always allowed to spring up again in the following kharif as a grain crop if it receives enough water. If it do es not get water and does not develope grain in kbarif that is no reason for not charging the
assessment ouce. The effect is precisely the same as if the kharif orop had been sown and failed and remissions in such oases have been abolished by Rule 5 , except in the 2 nd group of Johi. In that group the khatedar can petition for remission as usual on the adhawa.

The state of affairs referred to in rule 10 is confined to riverside lands generally to kachas or kacha-paka lands.

The necessity for rule 3 is explained in the Dadu report.
Rule 14.-These definitions will relieve from the high rabi charkhi rates all those crops which get no water after sowing. These are as a rule oilseeds. Their condition and appearance is precisely similar to that of fiow bosi crops, and I see no reason why they should be rated higher than flow bosi or why the rates for real charkhi should be lowered on their account. The question whether a crop has received water after sowing or not seems to me more important than the question whether it reasived its water in September or, November. The definitions given are almost the same as those given by Mr. Wali Muhammad in the Kandhkot report, which were apparently accepted as correct. I have only omitted the words "once only" from definition No. I. Mr. Wali Muhammad had made no provision for a crop receiving two waterings before sowing and none afterwards. It may be added that while it can be seen at a glance whether a orop has been watered after sowing or not, it is impossible to discover whether the water was given in September or November.

Melons are cultivated as sailabi in kaoha and kacha-paks lands near the river in adhawa, i.e., they are sown in May and the produce gathered about the beginning of July. The rabi sailabi rate seem the most appropriate for the cultivation.

Rule 15.-In this division, if a number has as its registered source of water-supply a oanal on which rebate is given, it appears to have been oustomary in some cases at least to give it the rebate even when oultivated as sailabi. But the sailabi watering is purely natural and even. aooidental and requires no clearance of karias to make it possible. In fact as a rule it does not even come through kariss and I see no reason why the rebate should be given.

s. H. COVBENTON;

Settlement Officer, Sehwan.

No. 1698 or 1909.

> Execulios Engineer's office,
> Camp Puranodero, 6th April 190s.

From

> B. KRISHNARAO, Esqumr,
> Executive Engineer, Westerr Nara,

To
The SETTLEMENT OPFICEB, SEHWAN DIVISION.
Sir,
With reference to your No. 20, dated the 3rd November 1908, calling for a report on the irrigation of the Sehwan division, I have the bonour to state as follow: -
2. From the attached summary account of the working of main and branch canals during the period of current settlement it will be observed that the river changed its course very often, although during the last 5 years it has been fairly steady and favourable as far as Western Nara, Pritchard Canal and their branches are concerned. The smaller canals, viz., Marviwah, Upper Nurwah, Kolab Sial, Phitto and Chario Wahur which take off direct from the river, suffer very much due to the vagaries of the river and their satisfactory working cannot invariably be relied upon. All these canals appear to have worked fairly satisfactorily, specially during the latter part of the period under report even in years of low inundation; the probable reason seems to be that owing to a more favourable set of the river higher F. S. levels are obtamable with respect to Bukkur readings than was formerly the case, as shown by the statement of comparative Bukkur and Baksho Jamali (a gauge on Western Nara, mile 102 in deh Shahmorio) readings, attaehed hereto.
3. A separate list of the improvements carried out during the period under consideration is attached and the effects of these improvements are; described below :-

Western Nard.-Construction of New Akil mouth and its widening to 80 feet in 1903 and 1904 respectively could not materially improve the supply in the canal portions comprised in Sehwan division, but its further widening to 125 feet in 1905 has considerably helped to improve the supply in the portion referred to above by giving about 200 cusecs increased disoharge.

Before however the construction of Pritchard Canal, the Western Nars in the portion under consideration was practically a failure and after water was admitted into Pritchard Canal in 1890 the supply in Western Nara became favourable and large areas of waste land began to be cultivated and flow cultivation considerably increased and the height of lift irrigation was materially reduced.

These improvements have materially improved the supply of all dehs: within the irrigation boundary of Western Nara and its branohes shown on the tracings attached; so muel so that the W. I. obtainable is 4 feet higher than in former years with eomparatively increased discharges.

Dingrinoah.-New eut to Dingriwah was dug in 1902 and had the effect of giving adequate supply to the lands dependent on the canal.

Lohriwah.-This canal was originally a zamindari karia which wae taken over in 1892 and improved at a cost of Rs. 9,088. The effect of this was to give a better assured supply to the lands within its irrigation boundary as per tracing attached. Large areas on Lohri Dhoro have morenver been coming under cultivation.

Pritchard Casal_-Was newly constructed in 1890 mainly as a feeder to Western Nara. New feeder to the dhand feeding the Pritchard Canal excavated in 1903 helped to give a better supply, but has during the past 3 years failed to fulfil its purpose owing to changes in the course of the sivers

In the year 1903 the widening of tail portion of Pritchard Canal wass undertaken with a view to reduce the velocity in Pritchard Canal and thereby prevent the deposit of silt in the Western Nara just above where Pritchard Canal tailed into it. This improvement had no direct effect however as regards irrigation advantages in the Sehwan.Dadu sub-division.

Juberji branch ex Pritchard Canal.-Was newly excavated in 1901. It is a branch of Pritchard Canal and was intended to serve as a feeder and to improve the supply in the tail portion of Kudanwah in deh Juberji of Dadu taluka and has considerably benefited the cultivation in the deh.

Maroivah-Old mouth of this canal having proved a failure a new mouth was given to it in 1903-04, which had the effect of removing causes of complaint as regards deficient supply. Of late years the new mouth has however been adversely affected due to the ohanges in the course of the river.

Regulator at its head was constructed in 1894. This helped materially to regulate the supply in the canal according to requirements and to prevent its lands from being damaged by river floods flowing unchecked into the Marviwah.

Upper Numoah.-Upper Nurwah was widened in 1891 to improve the supply and the canal was extended in 1892 and made to tail into Ghariwah. These improvements had the effect of augraenting the supply in this canal as well as in Ghari and Wadhu canals and helped to slightly raise the water level in them. There has been an increase in the irrigated area of Upper Nurwah only.

Conversion of the old road bridge near Dadu on Upper Nurwah into a regulator in 1892 had the effect of raising the water level in dehs Kasachandia and Markhpur, Whereby considerable areas are saved even at times of deficiency in the oanal and are usually brought under "flow."

Extension of the mputh in 1904-05 and cutting a new mouth in 1907-1908 were intended only to restore the canal to its working order as it had been adversely affected by changes in the course of the river.
4. Water is as a rule fairly evenly distributed over the lands within the irrigation boundaries of each of the three talukas under report. In years of low inundation the distribution is regulated as far as this is practicable. The lands on right bank of Western Nara and more particularly Lohriwah in Johi taluka are liable to be swept over by hill torrents. The area within the boundary of Manchhor Lake is as a rule submerged during the abkalani and is therefore mainly brought under rabi cultivation. The area under this head has nearly doubled and the kharif area has nearly quadrupled during the period under consideration, while about 2,000 acres of land have come under rice cultivation.

Owing to the higher water level now obtainable as indicated in paragraph 2 above the Western Nara, the Pritchard Canal, and their branches have bsen greatly benefited. The area under flow has considerably increased and. the height of litt correspondingly reduced. Morenver large areas formerly under lift have been brought under rice cultivation.

Similarly the lands dependent on upper Nurwah are benefited though to a amaller extent. With a higher water level and regulation at the tail regulator there has been a general increase of cultivation.

Maroivah. Shows a general increase of flow and rice irrigation while the area under lift has remained fairly steady. On this canal the advantage of higher water level more than compensates for the disadvantage arising from an unfavourable mouth.

Kolab Sial and its branches Gharivah und Wadhwoah.-Appeared to have worked fairly satisfactorily. The area under kharif on Kolab sial has increased somewhat during recent jears, whereas there is practically little flow irrigation.

- Phitta Canal.-nn this oanal the kharif ares has remained flesdy while there is a slight incre ef rice area.

Daring the year 1907-08 however the low inundation and uniavourable set of the river affected these minor canals taking off direat from the river, and the areas under cultivation show a considerable falling off.
5. A statement showing the variation in the areas under different kinde of cultivation is attached. The statement is based on figures obtained from the records of the taluka offices. The figures cannot be taken to be absolutely correct as they had to be extracted by darogas of this department. They afford however a general indication of the growth of cultivation on the different canals.
6. Statemente of the average annual cost of canal clearance and maintenance of bunds and extensions and improvements are attached. A statement of wells in each taluka required by the Special Circular also socompanies.

Accompaniments.

1. Statement of gange readings.
2. List showing improvements.
3. Statement showing length of canals and expenditure incurred.
4. Statement of wells.
5. Statement of each kind of irrigation.
6. Summary of working of canals.
7. 3 plana.

I have the honour to be,
 Sir,

Your most obedient servant.
b. kbibinarao, Executive Engineer, Western Nara:

- : Anmanary of the working of carnole in Sehean derision, compited frome the records of the Exacutive Engineer, Weotern Nara

Wamtarm Naza.

1599. - The osnal did not on the who'e work satisfactorily although water level was highir by about lè dua to Pritchard Canat having ben newly oxoavated for the purpose owing to the laterse and eurly fall of the river and unfavorrableness of the set of the rivet at its murth.
1391.-Although the inundation was unusually low and short the óaral workel fairly well. This was due to the favourabie efinges of the river at the mouth of the Akil dhand. feediny it. The highe fium lands howaver -unfered on account of hower level of water it tha canila
1892.-The canal worked satisfactority, due to flood water through Pyitonard Conal entering it, and higte lands or its banks were cultivated for the first tine for so:ne years past but heavy hill foods danaged the erops.
1893.-The canal was not bundel at the mouth and continu'd to flow till the middle of November. In spite of the river having fallen in July and August which bad a detrimentat effect on the rion crop in the upper reaohes of the oanal the water-supply in the canal below Kakar was better than in any year throughout the season due to flood water brought down by Pritchard Canal.
1894.-There was an abundant supply in the canal throughout the seasori. The Lashari flood entering into the oanal brike out on either side cutting large gaps in the banks and thus swamped the cuitivation excepting some higt lands and thmse proteoted by bands.

1 195 - The supply was deficient due to low and fluctuating inundation although the river was favourable.
1396. -The canal worked pretty weil although the inundation was comperatively low and only of an average duration. The river having gone down much eqrier than usual want of water was felt at the close of the season. Some high flow lands suffered from draught and so ne near the tail of the eanal were suivmerged by the overllow of water from Manchitur Lake:
1897.-There was an shandant supply of water throughont the inumdation. The hill tortents overflowed the Manchiur and stinmerged all the land on both banks of the canal as far as the mouth of Muhammad Ali wah.
1898. -The inundation being low and the river unfavourable the canal did not work satisfactorily although its supply was partially sugmonted by that of Pritchard Canal.
1899.-In spite of the low inundation the canal worked fairly well owing to favourable conditions at mouth. The fall of the river towards the end of the reason however bad a. disastrous effect on the crops which wers partially saved by allowing the canal to be bundod up at ahout 3 miles above DaizaMiani and also at Δ roni.

1900-The inuadation whs good but river unfavourable, the canal howevet worked eatisfactorily thruuphout the season. This was mainly due to Lashari fluods entering through Pritohard CanaL
1901. -The supply level in the Nara was lower than that of the previous year. In spite of the fluctuating nature of the inuindation the canal worked fairly well. This was msinly dee to Nangeskah floods finding their way into it through Pritchard Canal.
1902. - The working of the exnal was extromefy unsatisfacfory owing to the double misfortune of a low inundation and the unfavorable set of the river which cansed heary silt depositse at its moath. Crops were however saved to a certain extent by bunding up the canal at Aroni.
1903.-The inundation was good and the working of the canal this year ann on the whole be said to have been very satisfactory. The supplementary new meuth- 40 feet wide from the Akil dhand-cane iuto operation during the season and materially augmented the sapplyr.

- 169-16
: "1904. The supplementary mouth was widened to 80 feet and towards the end of July the old moath was abandoned. The canal worked fairly well in pite of low inundation as it was materially helped by Pritchard Canal. The tail portion however suffered a little.
1905.-The new Akil mouth was further widened to 125 feet and was opened on the 4th June. The cansl owing to the improvements effected and the excellent inundation worked exceedingly well.

1906. -The canal worked remarkably well throughout the season, the river being favourable.
1907.-In spite of low level of water in river the canal worked satisfactorily throughout the season as the river was favourable.
1907. -The canal worked remarkably well throughout the season, the river being favourable.

Lohbifar.

1893. Water súfficient.

1894 -The head regulator, remained partially closed. The supply let down into the canal was quite sufficient to meet the requirements.
1805. -The lands on the canal suffered to a little extent owing to the lof level of the river.

1896-Breaches were caused in the first 3 miles of the canal by the hill torrents from Nai Gaj during the months of June, July and August, but the breaches on both the banks were promptly closed to prevent water from going to waste and only 5 openings on the right bank left for the passage of hill flood water into the canal. This increased the cultivation but the fall of the water. in September affected the crops to a certain extent.
1897.-Water supply abundant with the exception of the latter part of the season when the cultivatars saved the crops by erecting a seoond set of wheels, Hill torrents entered into the canal from Nai Gaj on the 19th August but the 'volume of water was not great.
1898. -The canal on the whole worked satisfactorily. Hill floods entered into the canal through the karias at mile 3 right bank on 28 th May.

1899:-Water supply good with the exception of the latter part of the season when speoial measures such as "chabbing" were resorted to for saving crops from withering.
1900.-Water supply sufficient throughout the season. The hill floods came down this,year as well and the head regulator remained olosed until they subsided.
1901.-Water supply sufficient with the exception of the latter part of the season. Hill floods came this year also.

1902-The hill floods from Gaj Nai supplemented the water supply in the canal which thus worked satisfactorily.
1903. -Supply quite sufficient throughout the season.
1904.-Water supply good up to the end of August, after whioh special measures had to be resorted to which saved the oultivation to a great extent.
1905. -The canal worked very well.
1906.- Do, do.
1907. Worked satisfactorily. Hill torrents did much damage and cut the embankments on either side.
1908.-Worked satisfaciorily. Hill torrents breached the canal in sexeral plaves but no damage was done ta crops.

KשDanwaf.

1890.-Wator supply poor throughont the season,
1891.-Owing to low inundation the canal did not work well. The supply in'the tail was supplemented from the Pritchard Canal which not only increased the oultivation but helped the crops greatly.
1892.-The supply was quite sufficient throughont the season.
1893.-Water supply was ampie. River floods sabmerged almost all the , land except high-lying lands on its banks.
1894.-Water supply was ample. Ita lower part was every where out ap by the crossing of floods.
1895.-As the zamindars expressed not to oultivate land in its first 6 miles the new mouth was closed and the old cleared and opened to reduce the discharge entering the canal to lessen the danger to embankments, Subsequently new mouth was opened but the river fell too low to be of any great use. The tail upply was supplemented by a cut from the Pritohard Canal.
1896.-Water supply deficient. The tail supply was supplemeuted from the Pritchard Canal.
1897.-Recoivela amplo supply of water.
1891.-The canal suffered owing to low inundation. The tail supply was supplemented from the Pritohard Canal and Khudawah also rendered material help to its cultivation from mile. 11 to 15.
1889.- Do. do. do.
1900. - The water supply in the canal was not up to the requirements and this rendered it necessary to supplement the supply in its lower reaches from Pritchard Canal and Khudawah.
1901.-Owing to unsatisfactory working of the tail of this canal in Dadn taluks a new out was made from Pritchard Canal to feed it, and the whole including its lower portion was called Juberji branch which worked satisfactorily.

JUberjt branct.

1902.-It did not work satisfactorily owing to low inundation.
1903.-Received an abundant supply of water throughout the season.
1904.-Up to 30th July water was sufficient for lift. Owing to chabbing

- the tail of the caaal there was abundant supply from end of July to end of August and consequently all lands got flow supply.. In September owing to fall in river the supply was defioient and crops would have suifered but for the closing of the stop gate regulator on Pritchard Canal.
1905.-Worked satisfactorily.
1906.-It worked very satisfactorily.
1907.-It worked well.

1908. Worked satisfactorily and no defioiency was felt.

Karowar.
1890.-Water supply poor throughont the season.
1891. -Water supply sufficient throughout the season.
1892. -Water supply good throughout the season.
1893. - Water supply abundant.

1894-Worked fairly well.
1895.-Worked fairly well.

1896-Worked well.
1897.-Water-supply ample throughrout the seasore.

1898-The canal worked fairly well and there was sufficient water for the cultivation.
1899.-The canal guffered owing to low level of water in Nare in the end of August.
1900.-There was sufficient supply of water in the canal throughout the ceason. Crops suffered in places owing to giving water beyoad requirements.

1901-Water supply sufficient for hift irrigation
1902-After ceasing to flow two or three times it ceased altogether on 2sth September. Orops were greatly helped both by backwater from Ghari and regulation of the Sonmiani sluice.
1903.-The eamil flowed uninterruptedly thronghout the season and wator supply was sufficient for all land dependent on it which is lift,
1904.-Thare was a good mapply in the oanal na to 3rd weok of Angust, when some deficiency was felt owing to siting at the head. Thia was eloarad and a better aupply thus admitted into the caual.
1905. - Wat repply ample.
1906.- Do. do.
1907. -The supply was fair throughout the season.
p908-The aupply in the cand was g od up to the end of Sepfermber.
Lowbr Norwar.
1890.-Water supply poor throughout the season.

1891- Water eupply suffigient throughoui the season.
1892.-W Whex oupply fairly good throughout the ceeson
1893.-Water supply abundant.
1834.-Worked satisfactorily.
1895.-Worked well. It materially assisted the Phito when river fell.
1896. Worked well.
1897.-Water-supply sufficient except at the latter part of the seasor and the closing of Sonmiani sluice assisted by tains saved the crops from withering.

1898-Received a fair supply. Artificial measures had had to be resorted to for saving flow cultivation.
1899.-There was a fair aupply of water in the canal. Crops af tail only ouffered a little.
1900.-There was safficient rupply of water throughout the resson. Crope suffured in planes owing to giving water beyond requirementa,
1901.-Water supply auffioient for lift irrigation.
1902. - It dil not work well. Crops helped by floods entered the Nire througl: Lohriwah and regulution of the Sonmiani sluive over Nara.
1903. -The supply in the conal was good throughout the season.
1904. -The supply in the oinal was good up to 3rd week of Angust Dut poor afterwards up th the milile of September. Speoial measures bad to be resorted to for saving the crops.
1905.-Water supply sufficient.
1906.- Do. do.
1907.-The supply was fair throughont the seamon.
1908.-Worked satisfactorily.

Miw Gartib, Old Garibi and Aliadis.

1890. Water supply port throughout the seasont
1891.-Water supply sufficient througheat the season.
1892.- Do. do.
1893.-Water supply ahundant.

189 4.-Cultivation submerged by Lashari floode.
1895. -Worked very well.
1898.-Worked well.
1897.-Bpceived an ample supply of water.
1898.-There was euficient supply of water throughort tie seamon.
1892. - They received a good supply except towards the end of Auguat Then the supply failed and the flow crops suffered.

1909-There was a gond supply of water throughout the season. Diry orop suffered to a oertain extent from excess of water.
1901.-Received good supply up to the first fortnight of Septomber. Crope being sown late suffered to an extent.
1902.-Water supply daficient owing to low inundation.
1903.-The water supply was good throughout the season and no denciency was felt.
1901. - The supply in the canal was gool up to first week of August but deficient afterwards.
1905.-Water supply sufficient.
1906.- Do. do.
1907.-Worked satisfactorily.
1908.-The supply was good throughout the season.

Dingriwar.
1890.-Water supply poor thrroughout the season.
1891. -Water supply sufficient turoughout the season.
1892.-Water supply somewhat deficient in the beginning of the season only. Rain floods damaged the cfops.
1893.-Water supply abuadant.
1894.-He:vy hill torrents juined with the river floods submerged almost all the cultivation except high-lying patehes.
1895.-Water distributed to the best advantage by tightly closing the regulating sluice at about half its length by turns.
1896.-Worked well.
1897.-Water supply ample. Lift cultivation in the last 4 miles of the oanal was damaged by hill torrents.
1893.-Owing to rapid fall of river and Nara sufficient level of water could. not be maintained for all the time sad crops suffered in consequence.
1899.-The supply was not good and the orops suffered in consequence.
1900.-The supply in the canal was sufficient throughout the season. Some crops suffered from excess of water.
1901.-Owing to uasteady nature of the supply in the Nara the supply in the canal was not on the whole satisfactory.
1902.-Water supply inadequate.
1903.-The canal worked fairly well.
1904.-The supply in the oanal was good up to the 1st week of August and ohabbing the canal at mile $6-0$ greatly helped the crops.
1905. The canal worked most satisfactorily.
1906.-The supply was sufficient throughout the season.
1907.-The supply in the canal was good throughout the season.
1908. - Worked satisfactorily throughout the season.

Magakiwar.

1890.-Water supply poor throughout the'season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do. do. Rain water dapaged the erops.
1893.-Water supply abundant.
1894.-Water supply sufficient. Heavy hill torrents joined with river floods submerged alinost all the cultiration except high-lying patches.
1895.-Worked very well.
1896.-Worked well.
1897.-There was a good sapply throughout the season. Crops on its right bank were damaged by Manchhur flood.
1898. -There was a fair supply throughout the season. Crops below mile 8 suffered for lack of water.

- 1899.-Owing to low inundation the supply was not good. Crops suffered. 1900.-Roceived a good supply, throughout the season. Some crop suffered from excess of water:
- 169-17

1901:-Worked saitisfactoriny.
1902,-The supply in the canal was very poor.
1903.-There was a sufficient supply of water throughout the season:
1904.-The supply was good throughout the season.
1005. -The canal worked very satisfactorily.
1906.-It worked satisfactorily.
1907.- Do. do.
1908.-Supply was very good throughout the season.

Mdiammad Ali war.
1890. Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.

1892- Do. do. do. do but eultivation in low
lands was damaged by rain water.
1893.-Water supply abundant.
1894.-Water supply sufficient Floode damaged the crops in its first two miles.
1895.-Worked very well.
1896.-Worked well.
1897. -There was a good supply throughout the season.
1898.-There was a fair supply throughout the season. Late crops saffered

- 4 little owiog to fall of water ia September.
1899.-Supply not good. Cultivation suffered to some extent owing to lack of water.
1900.-The water supply was quite enough throughout the season. Dry crop suffered to an extent from exoess of water.
1901.-Received a satisfactory supply throughout the seasod.

1902. -There was abundant supply in the canal.
1903.-The canal worked well throughout the eeason.
1904.-The supply in the canal whs good up to the end of July and fair jo. the monuth of August and first few days of September. Chahi at mile $1 / 3$ was allowed to save the rige orops
1905.-The canal worked very satisfactoxily.;
1906.-It worked satisfactorily.
1907.-. Da. do.
1903.-Supply in the canal was good throughout the season,

8aKROWAE:

1890. - Water supply poor throughout the seasori.
1891.-Water supply suffieient throughout the seasom.

1892:- Do. Rain floods damaged the crops.
1893. Water supply abundant.
1894. - Water supply sufficient. Rain water joined with floods submerged almost all cultivation exoept high-lying patches.

1895-Cultivation suffered to an extent during the latter part of the season owing to the supply being cut off by the Nara Baid aluiee.

1896-Worked well.
1897. - Water stupply suffieient. Cultivation damaged by Manchhur floodgy
1898.-Water supply deficient.
1899.-Water supply fair due to low fnumation, High lande nuffered.

1900- Wator supply sufficient . Cultivation on its loft bank subwerged
by Manchhur flood.

- 190L- -Receired a tair stepply throughouf the sessoin.

1902. Water atpply deficient.

190 ;-The canal reoeived a goud supply throughout the season.
1904.-The canal on the whole worked wedl. Crops being eliefly rich the supply was not equal to the heavy demand.

1905 The supply in the canal was matisfactory.
190a-Supply sufficient.
1907.-Supply veity satisfactory.
1908. - upply was very goud, but oultivation was submerged by hill torrents during July and August.

* Kur AkTap.

1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do. do. Rain floode damaged the arops.
1893.-Water supply abundant.

189 s.-All cultivation mabmerged owing to overflow of Manchbur.
1895.-Worked well.
1896.-Worked well. Hill torrents damaged the cultivation on the right bank.
1897.-The supply was good throughout the seasoni' Cultivation was submerged by Manchhur flood.
1898.-Received a fair supply throughout the sèason:
1809.-Water supply fair. Migh lands suffered.
\therefore 1900.-Water supply sufficient. Cultivation or its right bank was submerged by Manohhur flood.

1901-Received a fair supply throughout the season. 1902.- Do. do.
1903.-The canal flowed excellently throughout the season.
1901.-The canal on the whole worked well throughout the season.
1905.-The supply in the cinal was very satisfactory.
1906.—Supply sufficient.
1907.-Supply very satisfactory.

1908-Supply yery good.
Chario Warut, Aral and Dunater.
1890.-Water supply poor throughout the geason owieg to low inumation,
1891. -Water supply far throughout the season.

1892:- Do . . . da.
1893.-Water supply good throughout the season.
1894.-Water supply abundant. Karampur flood passed into the eanal.
1895.-Water comparatively low owing to low inumdation.
1896.-Water supply ample. River floods burst into the aunal.
1897. - Water supply was ample and the floods passed dowa the canal.
1898.-The canal worked fairly well but there was no caltivation owing to
fear of lands being flooded.

- 1899.-There was a very good supply in the canal.
1900.-In eonsequence of the general complaint of low, Ievel of water inh Manehhur, bunds were put up near Sehwan aeross Chario Wahur and Aral with a view to foroe more water up the Aral and Dunster into the Manchbur taker The canals worked very well throughwut the season.
1901.-The canaly had sufficient supply of water throughout the season: il
1902.-The supply in the canols was good throughout the season.
1903.-There was a very good supply throughout the season-

190t. -The supply in the eanals was good throughout the season and the canals worked satisfactorily.
1905.-The canals worked very satisfactorily.
1906. -The canals worked very well,
1907.-The supply in the canal was good throughout the season.
1908. Water supply sufficient. hains and river spill water submerged the crops.

Maychitr Lake.

1890. - Received little help from Nara and other feeders due to low fnundation and absence of rains. Hill torrents in the beginaing of Deoember came down with great force and submerged rabi crops.
1891.-Received supply from Nara, Chario Wahur, Aral and Dunster. No hill floods.
1892.- Unprecedentel local rainfall together with hill floods raised the level to the highest mark on record.
1891. - No, hill floods except early in July. Area submerged for rabi was much less than last year.
1892. - Hill torrents joined with river floods raised the water level oonsiderably.
1893. -Water in the lake rose but little owing to low inundation and absence of rain.
1894. - Owing to river having mintained its high level for about 2 monthe and the hill floods which came 3 times in the season large quantity of water entered the lake.
1897.- River floots aided by hill torrents raised the level of water considerably.
1898.-Received a little supply of water owing to low inundation and absence of rains.
1899.-It did not receive sufficient water owing to low inundation and absence of rains.
1900.-Received $\frac{2}{}$ very good supply. The rise was chiefly due to the construction of bunds across Chario Wahur and Aral. The drainage in the beginning was not satisfactory, but after the fall of river on the 1st Ootober water was drained off rapidiy and a very large area was made available for rabi.
1901.-Large area was brought under rabi as the drainage through Aral was satisfactory.
1902.-Rains and canal water flooded large, areas in the dhand and the area under rabi was comparatively lurge but less than in the last year in spite of low inundation.
1903.-This dhand was well filled this year and rabi area was fairly greats and about 3,000 aores more than in the previous year,
1895. Water through the Áral and Nara filled the lake. Owing to the earlier backfow of water into the river the cultivation increased by about 4,000 acres more.
1905.-The Manchhur flood was one of the highasat on record and the area under rabi was comparatively large though samewhat less than in the previous year.
1906.-The Manchhur got filled from the river and hill torrents and high water mark was higher thar previous year which was record, but there was a slight fall in the area under rabi.
1907.-Owing to low inundation the canals did not bring in much water bat hill torrents greatly helped in flling up the lake and there was a large falling off in the area under rabi.
1896. -The river water and hill torrents submerged large areas of the jake. The lake was drained off fairly well.

Upper Ntrwat.

1890.-There was ample water in spite of the low inundation;
1891.-There was a fair supply of water in the canal. The river being unfavorirable the canal ceased flowing eariy in the seasun.
1892.-Worked fairly well.
1893. -The supply was fairly good in the beginning, but river went low in August when rotation was resorted to which materially saved the crops.
1894.-The canal maintained a very good supply throughout the season.
1895.-River eroded above and below the mouth. The canal dried 4 times during the season. Water supply. was defieient.
1896.-It worked well.
2897.-Water supply plentiful except towards the ond of the season when rains assisted the crop.
1898.-There was a good supply of water throughout the season.
1899. - Water supply deficient owing to low inumdation.
1900.-There was suffioient water in the canal throughout the season.
1901. -The canal suffered owing to late rise and unfaveurable set of the river. Efforts were however made to utilize the reduced supply to the greatest advantage by regulation.
1902.-The supply was sufficient throughout the season in spite of low inundation due to favourable set of the riyer.
1903. -The supply in the caual was excellent throughout the season.
1904.-The supply in the canal was deficient throughout the season owing to the dhand foeding it having heavily silted.
1905. -In spite of the mouth of the canal being improved the supply in the canal was not so good as to meat the demands of flow cultivation towards the end of July, but the rise in the river in September saved the situation,
1906.-The Wahur feeding the canal was out into by the erosion of the river. Worked very satisfactorily.
1907.-Supply in the canal was deficient owing to its mouth having been cut into and eroded away by river.
1908.-A new mouth which was completed during the year gave a' very satisfactory supply throughout the season.

Kolab Sxab.

1890. -There was sufficient supply in the canal throughout the season.
1891. Water supply deficient and crops would have perished had not supply been augmented from Western Nara.
1892.-Deficiency was felt in the early part of the season but there was ample supply available later on to the end of the season.
1893.- The canal wrorked fairly well till the fall of river in August when Nara water was admitted to augment the supply.
1892. -The canal maintained a very good supply throughout the season.
1895.-Water supply defioient. It dried several times when the river fell wery low. Crops suffered.
1893. - Worked well.
1897.-Received a good supply throughout the season.
1898.-Owing to low inundation the supply was limited throughout the season.
1899.-It did not work well and deficiency was felt towards the end of the season. To remedy this a bund scross its feeder Wahur was allowed, which not only saved the standing orops on the oanal itsolf but greatly benefited the crops along its branches Ghari and Wadhu.
1900.-The supply in the canal was suffieient throughout the season.
1901.-Worked fairly well throughout the season.

- 168-18
1902.-The supply was fair: Chahi actoes the Wahur feeding it increased the supply in the canal which benefited the erops on the canal itself and its branches.

1903. -The supply was very good throughourt the season.

1904-The suppiy was fair throughout the season.
1905.-The canal worked satisfaetorily.
1906.-Supply sufficient.

190\%.-Supply in the canal was deficient owing to the Jow inundation throughout the season.
1908.-Supply was very good throughout the season

Wadivwar and Ghariwai beancegs of Kotab Siaz.
1890.-There was a fair supply in the canals threaghout the seasom Late crops partly suffered due to sudden fall of the river.

1891--Water supply defieient. Crops would have perished but for a supply having been given for 8 days from Western Nara

1392-A deficiency was felt is the early part of the season but there wasample supply of water for the rest of the season.
1893.-Fall of river in August was compensated for letting in surplus water from Nara finte it.
1894.-The canals maintained a very good supply throughont the season.

The surplus water was discharged into the Duabo dhand.
1895.-Water supply deficient. They ceased flowing several times during 'the season whenever the rixer fell very low.
1896.-Worked well.
1897. -Watez supply good throughout the seasom
1898. - Water supply sufficient for lift crop. Late erops suffered owing to fall of river in September.
1899.-Supply scanty owing to low inundation.
1900.-Received \% sufficient supply of water throughout the season.
1901. Worked fairly welle throughout the seasen

1902-The supply in the canals was fait:
1903,-The supply was sufficient throughout the seasont
1904.-The supply in the canals was fair in the firat four-miles and poor turther down dae to unsatisfactory inumdation.

1905i-The canala worked satisfactorily.
1906. Supply sufficient.
1907.-Supply deficient owing to low inundation throughout the meason.
1908.-Supply good throughout the season.

Phimta Canas.

1890. There was a good supply in the canal in the eandy part of the season but the river went ou changing its ceurse from ite right to left Dank and baok again causing, very heary silt deposits at its mouth. Great portion: of cultivation wassaved by bringing water into the eanal from tho dhand asi its mouth.
1891.-Suppired partly from river direct and partly from Nam. The Karampur flood coming in towards. the tail gave a high level and plenty of water.

1802-The canal worked very well. The sapply was augurented from Nara in the early part of the season and from end of July more than suffioient was obtained trom its: moath owing to favourable change in the river,
1893. - The supply was good and high up to 2hd Augnst when the river began to fall but its supply was augmented from. Westorn- Nara and the flood standing in the large dhand near its mouth.
1894.-The canali maintained a. very good oupply throughont the meason.

7

1895. -The ceans did not suffer, notwithstanding low fruwdation, the ${ }^{\circ}$ river being favourable. The supply from Nara greatly astisted the eroper
1896.-Worked well.
1897.-Watar sapply good throughout the season. Rains also assisted the crops. Lands in its hat 10 miles were submerged by Karampur floodso River was only quarter of a mile from its tail.
1898.-Received sufficient supply of water throughout the season. Iate crops below mile 11 suffered.
1896. -The supply was deticient due to low inundation and the unfavourable set of the river.
1897. -The supply in the canal was sufficient throughout the season.
1898. -The supply in the carru had to be supplemented from Nama to meet the defioiency due to unfavourable set of the river:
1902.- Do. do. do.
1903.-The supply in the canal was poot up to the middle of July, but sabsequent rise of the river ehanged the state of things for the better;
1904.-The supply in the first 8 miles was fair and below 8th milb to the tail the supply was deficient.
1899. - River wnfavourable and supply deficient but was augmented froma Western Nara with grood results.
1900. The supply in the canal was fairly sufficient. It was moreover augmented from Western Nara.
1901. - The supply in the canal was frir and supplemented by the Nara branches Lower Nurwah and Muhamemad Ali wah.
1908.-The supply in the canal was good throughout the seasom

Pritchard Canal
1890:- Opened for the first time on 24th July. At the time of opening the river was cuting away ite right bank at the village of Nao Goth one-quarter' mile below the canal mouth, the erosion thea worked up-stream and cut away rapidly. Of the original of line of conal half a mile was eaten away by river. It augmented the supply in the Nara by $1 \frac{1}{6}$ ft.
1891. - Owing to erosion 3,707 feet at mpath were remped by riverand silt: to a depth of 7 feet accumulated. The canal assisted the Nara as long as it flowed. It had ceased to flow from 29th June to list July and finally ceased flowing on: Th October. The river was unfavourable and the supply fluctuating and. sqmewhat deficient.
1892. - Water supply deficient up to 14th July. Since Angust the headi regulator remained closed till the end of season owing to floods frome Rajana. bunds entering into the canal. This considerably augmented. the supply in Western Nara.
1893.-Remained entirely or partially closed nearly all the season. Served as an escape during Lashari floods; saving a large part of Mehat and Kakar from being submerged.

1894- Until the end of June water: was not required: Eariy in July the floods cut into the canal at 19th mile rendering necessary the closing of the head regulator.
1895.-Water supply fair although the inundation was: low and tluctuating.
1896.-Water supply sufficient till 20th August; after which the river' began to fall and the canal ceased to flow on lat. September:. Crops however' did not suffer much.
1807. -The canal was regulated according to requirement of the Nara and it worked fairly well:
1898.-In spite of low inundation thie canal worked welliowing to faviourable position of its mouth.
1899. The canal worked satisfantorily for the first two months and then the river began to fall which told heavily on the crops in its upper reachea,

- '1900.-The eanal remained fully open up to 19th July 1900, and afterwards it was kept closed owing to breach having occurred in the canal and subsequently to the water not being required in the Nara. Some cultivation was damaged by Lashari floods.

1901. -The head regulator remained open until the 1st August when it was closed as the level exceeded that of the designed supply 10 feet. Nangeshah floods augmented the supply in Western Nara which saved the crops in its tail portion.
1902.-The canal worked extremely unsatisfactorily throughout the season in consequence of the unfavourable position of the Wahur feediug it and low inundation.
1903.-The river was unfavourable at first, but after 20th June its set was favourable and the inundation on the whole good. The caval worked well and helped Western Nara considerably.

- 1904.-The canal worked satisfactorily throughout the season although the inundation was not good. This was due to favourable set of the river.
1905.-Worked very well but was not so much utilized as in the past for supplementing the supply in the Western Nara as it brought down ample supply of its own due to further widening of its New Akil mouth to 125 fert bed width.
1906.-It worked very satisfactorily. Full supply, vin., 10 feet could not be admitted into the canal as there was abundaut supply in the Nara and 9.50 was the level of the whole season.

1907. The canal worked satisfactorily. Was regulated according to the requirements of the Nara as the latter canal bed ample supply of its own.
1908. -The canal worked satisfactorily. Owing to water not being required in the Nara the supply had to be cut off at the head regulator. The ziver was favourable.

Esoapr Chanvel.

1895.-Received a moderate supply of water owing to low inundation.
1896.-Water supply good. Canal ceased to flow on 1st September and cultivation saved by erecting wheels on dhands.
1897.-Good supply of water passed down the canal which assisted the crops.
1898. -There was ample supply of water throughout the season.
1899.- Do. do. do.
1900. -There was ample supply of water throughout the season. It served as an escape at times of high level of water in Nara.
1901.-Received a good supply of water. Relieved its feeder when there was surplus water in it during August.
1902. - It did not work satisfactorily throughout the season owing to low inundation.
1903.-Received abundant supply of water throughout the season.
1904.-Received an abundant supply throughout the season.
1905.-Worked satisfactorily.
$\begin{array}{ll}\text { 1906. }- & \text { Do. } \\ \text { 1907.- } & \text { Do. } \\ \text { 1908. } & \\ & \\ & \text { Do. }\end{array}$

Martiwar.

1890. - Worked very wall notwithstanding poor inundation.
1891.-Erosion at its mouth caused the canal to dry earlier in the season.
1892.-In the beginning supply was deficient but gradoally improved. This was due to the oharacter of inundation, Floods submerged all cultivation in low ground,
1893.-River eroded about $2 \frac{1}{1}$ miles of the canal. Owing to the 'approach. of river it maintained a very high level of water which overflowing its banks passed towards Phulji station.
1894.-About a mile of the canal at its mouth was eroded away. Flood after crossing the Pritchard Canal flowed back from the tail which necessitated closing of the head regulator except for short intervals to save crops in the upper reaches of the cansl.
1895.-Water was admitted according to requirements and there wan no complaint of defioiency. No erosion at its mouth. It worked satisfaotorily.
1896.—Worked very well.
1897.-Worked satisfactorily.
1893.-Water supply scanty owing to low inundation.
1899.-It worked fairly well.
1900.-It worked very satisfactorily.
1901.-Owing to the aotive erosion of the dhand above the mouth of the canal a large deposit of silt was formed near the mouth resulting in the supply being out off earlier than usual.
1902.-Owing to the extremely low inundation and unsatisfactory mouth of the canal the canal worked badly. The canal after ceasing to flow twice finally stopped flowing on 24th August.
1903.-The canal worked exceptionally well but owing to erosion at its mouth its first mile was silted and the canal ceased flowing on 6th September. It again flowed on 13th and finally stopped flowing 10 days afterwards.
1904.-It worked satisfactorily throughout the season.
1905.-Supply suffeient.
1906.-Worked very satisfaetorily.
1907.-The oanal suffered greatly as fit ceased flowing thrice during the season owing to the fluctuations in the river.
1891. The oanal worked much better than last year.
B. Krishrarao,

Exeeutive Engineer, Western Nara.

- 148-19
\sim Stapement of comparative maximum gange readings of Bakkay and Balsho Jamali.

Year:		Butiker.	Baksbo Jamali.	Yest.		Euktur.	Babuho Sumatic
1887		16.6	980	1898...		134	1176
1888	\ldots	14.4	$8 \cdot 80$	1899...	\ldots	$13 \cdot 4$	11.80
1889	...	16.6	1240	1900...	2.	145	1260
1890		16.0	11.80	1901...	\cdots	16.4	12.70
1891	...	148	1200	1902...	\ldots	$13 \cdot 4$	940
1892	\ldots	167	13.80	1903...	.	16.8	11.90
1893	\ldots	$15 \cdot 8$	13.90	1904...	...	$15 \cdot 8$	$11 \cdot 60$
1894	...	16.4	1390	1905...	\ldots	16.7	13.10
1895	\cdots	15.3	1330	1906...	.	16.6	13490
1896	\cdots	158	1340	1907...	\ldots	13.7	1420
1897	\cdots	17.9	13.20	1908...	\ldots	16.1	1440

Lrst showing improvements made in Dadu, Johi and Sehwan talukas since the introduction of the curfent settlement, 1890-91 to 1907-08.

$\begin{aligned} & \text { Sonial } \\ & \text { No. } \end{aligned}$	Tames of works.	Cost of ontlay.	When comploted.
		Rs.	
1	Improving supply of Upper Unerwah ic.	14,136	March 1891.
2	Excavating an extension of the Upper Nurwah to the Gharl wah, Dadu taluka.	10̇,636	February 1892.
3	Additions and alterations to the old bridge over Upper Nuswah for regulation of water	- 457	September 1892.
4	Excavation of Lohriwah ...	9,088	March 1893.
5	Excavation of Pritchard canal	3,32, 28	March 1894,
5-A	Copstructing bead regulator over Marvi wah	3,832	Mareh 1894.
6	Improvements at the mouth of the Aral wah	8,993	March 1901.
7	Making a new cut to Dingri wah ...	5,931	February 1903:
8	Widening Pritchard canal from stop gate regulator at mile $\frac{21}{1}$, and its, junction with Western Nara	6,385	July 1903.
9	Excavating Juberji branch 4, Pritchard canal	3,497	March 1904.
10	Construction of a new mouth to Marvi wah	2,460	March 1904.
11	Constructing a new Akil mouth to Western Nara	1,45,127	July 1905.
12:	Extending the mouth of Upper Nurwah ...	1,805	October 1905.
13	Widening New Akil mouth to Western Nara to 80 ft . bed width ...	71,168	November 1905.
14.	Construction of a new mouth to the Wabur feeding Pxitchard canal, Wahur and Marní wah	18,231	March 1906.
75	Cutting a new mouth to Upper Nurwahs...	2,000	November 1908.
16	* Widening Mew Akil mouth to 125. ft. bed width	1,61,691	

- In progress, practically completedi
B. KBISHNARAO,

Executive Engineer, Westert Narar.
 of canal and bunds in Dadu, Johi and Seliwan talukas from 1907-i908. :

B. KRISHNARAO,

Executive Engineer, Western Nara.

Stapemest showing information regarding wells in Sehwan, Dadu and Johi talukas.

Names of dehm	$\begin{gathered} \text { No. } \\ \text { weils. } \\ \text { mell. } \end{gathered}$	$\underset{\substack{\text { Depth } \\ \text { matho below } \\ \text { ground } \\ \text { level. }}}{\substack{\text {. } \\ \hline}}$	Sweet or salt.	Ramarie.
Taluka Sehroan.		Ft.		
Kalo Bhuri	4	20 to 25	Sweet	Rabi.
Bhan ...	27	25 to 35	silth $\quad .$.	"
	1	28	Saltish ...	Kharit and rabi
Arazi $\quad . .$.	1	${ }_{12}{ }^{37} 15$	Sweet ...	Kharit and rabi. Rabi.
Tando Shahbazi	2	12	..	Rabi.
Bakhtawarpur	4	11 to 24	"	"
Saidabad ...	1	94	...	
Baid ${ }^{\text {a }}$...	1	18	" \quad.	Kharif and rabi.
Baid $\quad \cdots$	1	12	Saltish	Rabi.
Sultanpur ...	2	25 to 30	Sweet	"
Wahur ...	8	23 to 35	, ...	
Gaber ...	1	31	\# ...	Rabi and kharit.
Gaher ...	1	28	\cdots	Rabi.
Akhtar Arbi	3	14 to 28	\cdots	\%
Arbi ...	1	14	" \cdot.	P"i ${ }^{\text {a }}$
Bambha	1	22	" $\quad .$.	Rabi and kharif.
	7	19 to 24	.-	Rabi.
Calti ...	2	21 to 23	"	Kharif and rabi.
" ...	1	24	Saltish	
Ohana $\quad \cdots$	3	25	Sweet	Rabi. 2 l
Ohana Karani	2	$\left\|\begin{array}{c} 21 \text { te } 25 \\ 22 \end{array}\right\|$	" \quad...	2 rabi and 2 kharif. Rabi.
Totas	89	\ldots
Taluka Johi.				
Johi	11	20 to 30	Sweet	Rabi.
Vägeij …		${ }^{38}$	"..	Rabi and kharif.
Gaha ...	2	10 to 18	"	Rabi.
	1	24	...	Kharif and rabi.
Dara Maohi	2	25	" ...	Rabi.
Channa ...	1	17		
Jharri Jadoshahid	1	12 to 15	Brackish	\%
Phulji	1	"	Sweet.	*
Shah Morio	1	"	do. ...	\%
Bahawalpur	5	"	do. ...	\because
Totat	28
Khudabad	8	20 to 25	Sweet ...	Rabi.
Bhand -	25	20 to 25		
Buth Malho	2	25	Saltish ...	\%
	10	${ }^{25}$	Sweet ...	"
Kurpar **	4	20 to 25		"

Nameo of dohe	$\underset{\substack{\text { No, } \\ \text { ofer } \\ \text { melte. }}}{ }$	Dopth of mator biow ground bround lemel.	Eweet or odit.	Rmakica,
Talwta Dadu-costd.		Ft.		
Sial	39	20 to 30	Sweet	Rabi.
sidhwah \cdots	3 9	20 to 27	* \quad.	Kharif and rabi
Charrath ... $\quad . .$.	18	15 to 30	\cdots	Rabi.
Malkani .-.	4	28	-	"
Dubi	21	20 to 30	\cdots	"
N".	2	15 to 20	" $\quad \cdots$	"
$\underset{\text { Nurja }}{\text { Aminani }}$... \ldots	2	25	$\cdots \quad \cdots$	*
Aminani ...	6 33	30 to 35 25 to 35	\cdots	*
Duabo	19	25 to 30	\cdots	"
Markhpur	10	25 ta 28	\cdots	"
Dadu ...	31	20 to 30	\cdots	
Khasachandia	2	30	\ldots	Kharif and rabi.
Khasachandia	11	25 20 to 30 25	\cdots	
Dawach ...	23	15 to 24	" ...	*
Pir Tarho ...	37	25 to 30	» ...	n
Piper Panjan	5	18 to 20	Sweot	"
Badani ...	25 3	24 to 27	Sweet	"
" $\quad .$.	1	"		"
Phaks $\quad \cdots \quad .$.	23	20 to 32	Sweet $\quad .$.	$\stackrel{3}{0}$
Kalharo ...	9	24 to 28	" ${ }^{\text {a }}$.	"
Pirgunio ${ }^{\text {a }}$	$\stackrel{2}{2}$	${ }^{25}$	Brackish	"
$\begin{array}{lll}\text { Pirgunio } & \text {... } \\ \text { Pipri }\end{array}$	5 27	20 to 25 20 to 30	Sweot	$\stackrel{ }{*}$
Shahmir		13 to 16	$\stackrel{\square}{\#} \times$	"
Butbi ...	7	17 to 20	\cdots	"
Bakhrani ...	41	20 to 26	"	\%
Waryaso ...	3	10 to 13	"	\%
Juberji	21	15 to 20	" \quad.	"
Sutiaro	10	"	"	\because
Marvi \quad Khiaro \quad...	7	"	\cdots	\because
$\begin{array}{lll}\text { Khiaro } \\ \text { Jung } & \text {... } \\ \end{array}$	5	12 to 15	$\#$	"
Kandi ...	5		,	
Baghban ${ }^{\text {a }}$ -	4	15 to 20	$\%$	
Baghban ...	14	12 to 15		*
Makhdum Bilawal	6	12 to 15	$\left\lvert\, \begin{gathered} 5 \\ 1 \\ 1 \end{gathered}\right. \text { Breet } \text { Brackish. }$	*
Taga ...	4	15 to 20	Sweet ...	"
Palha	31	*	.	"
Pat Bita	31	"	\cdots	*
	25	"	\cdots...	*
Karro Pir Tarho... ...	6	"	\cdots...	"
Puranadero	1	"	" $\quad .$.	"
Totat ...	644	

Nowt-Thers is an Incrense of 202 wella in the Division, mose espeoinlly in Dadu taluka and that quant Aty of water available in them generally in auffigient for irrigational purposes though come of the welle ar rittod up and require olearanoof

B. KBISHMARAO,

Executive Engineer, Westerin Narm
©rivempre of each kind of irrigation in Sohwan, Dodu and. Johi talukas during the years 1891-9\% to 1907-08.

No. 8825 oy 1909.

Pyinto Worxs Dapatymant.
 Superintending Engineer's ofice, I, R. B. D., Camp Sukkur, 7th Desember 1909.

From

D. W. HERBBERT, Esegtin, Buperintending Engineer, ,Indus Right Bank Division, To

the collector of larkana.

Sir,
I have the honour to return herewith the accompaniments to your Ns: 5373, dated the 16 th September last, and to express my regret at the delay, specially as I find that I can add very little useful information to the full account already given by (Mr. Oovernton and the) Executive Engineer regarding the irrigation in these talukas.
2. It would appear that the flooding of the lands by the Escape channel described in parıgraph 6 of Mr. Covernton's report on the Dadu taluka can be renaedied to a great extent, but proposed works eannot be taken into account.
3. With reference to paragraph 8 of your report on the Johi taluka 1 undorstand that the one-tenth of the consolidated assessment is supposed to represert what the land would yield without inrigation, i.e., it woudd be the average assesstent on the whole area not merely on the cultivated area.
4. With regard to the clearance rebate, I understand that this is supposed to be given only when the cost of clearance is excessive, but in the lists of ka rias attached to the report I find a oonsiderable number only one-quarter mile long.
5. The widening of the Western Nara Canal in 1905 to 125 feet bed width is said to have benefited these talukas. This canal has been working very satisfactory for the last six years, but this year (1909) the gauge reading at the bead regulator of the akil mouth suddenly fell from 10.9 feet on the 19 th Septem"ber to $2 \cdot 1$ feet on the 23 rd of that month, the Bukkur gauge readings on those dates being $11 \cdot 10$ and $7 \cdot 4$ feet. Whereas with 74 feet on the Bukkur gauge on the 23 rd September of the previous year the head regulator gauge read 8.8 feet. This falling off in the supply is due to the Indus having receded for several miles add thrown up large areas of kaehas opposite the mouth of the canal. I have recently inspected the position and found the conditions for the Nara supply to be very bad indeed. In fact the canal is completely cut off from the river at present when the Bukkur gauge reads below 8 to 10 feet. All the dhands bringing down water from the north are completely silted up at their heads.

The tail of the 4 kil dhand has also been silted up in a length of nearly a mile. Taking the present diffculties about funds and labour into account, it is probable that all that will be done this year, is to make a cut through the silted portion of the tail of the dhand, and so supply the canal from a backwater two miles long, which of course means a considerable reduction in the water level at the mouth of the canal. This cut also may silt up towards the close of the inundation and it is improbable that the supply in the river during September will be as favourable as it was last year. The Pritchard Canal however ensures a fuir supply for the talukas under consideration.
6. Owing to the present very unfavourable position of the river at the head of the canal, the time does not appear opportune for any considerable

80

onhancement of the assessments and I would point out that in the 3rd group of the Dadu taluka it is proposed to inorease the rate for rabi lift from Rs. 2-4-0 to Ris. 4 . or by 77 per cent. which appears excessive.

I have the honour to be,
 Sirs
 Your most obedient servant,

D. W. HBRBERT,

Superintending Engineer, Indus Right Bank Division.
Accompaniments above referred to sent by registered parcel.

No. 7168 or 1909.
Refreyus Departaent.
Collector's office,
Camp Larkana, 12th December 1909.

Passed on.
The rebates on short karias are in Johi, where the land is up-hill and clearance greatly needs encouragement.

The bad prospects of the Nara would have to be considered if the proposed assessment were a full one; but it is avowedly pitched much lower than the actual value of the crops would justify in order to allow for precarious watersupply. The previous settlement was made at a time when the Nara was much worse than it is likely to be again.

C. M. BAKER,
Colleotor of Larkana.

No. 7167 of 1909.
Revente Defartugnt.
Collector's offica,
Camp Larkana, $\frac{16 i \hbar \text { September }}{116 h \text { December }} 1909$.
${ }^{r}$ From

C. M. Baker, Eqquite, B. A., I. C. S., Collector of Larkana,

To
TEE COMMISSIONER in SIND.
Sir,
I have the honour to forward Mr. Covernton's settlement proposals for the Sehwan taluka.
2. Sehwan taluks consists of four parts irrigated respectively by-
(i) river floods,
(ii) canals,
(iii) the Manch hr Lake,
(iv) rain.

The first two parts have maintained or increased their prosperity since the last settlement : the other two have not. A long series of dry years has practically rained the hill dehs and most of the inhabitants have migrated to Hyderabad district. The Manchhur dehs, on the other hand, have been spoilt by excess of rain water. The land is either sabmerged or so overgrown with rushes as to be oultivable oniy with diffoulty. It seems strange that the same taluks should suffer from both excess and defect of rain. But the year before last, at any rate, there was hardly any rain in the Sehwan hills, while the Manchhur was filled to an abnormal height by heavy rain in the hills of Johi and Baluchistan.
3. Mr. Covernton's proposal is to increase the assessment in the canal irrigated area and reduce it in the Manchhur and Kohistan country, and this is quite in accordance with the facts. 'The net revult is a very slight reduction in the revenue of the taluka; but I think the circumstances quite justify this.
4. The deterioration of the Manchhur lands is, I fear, permanent. It is not only due to the abnormal growth of reeds, sedges and rushes in the last three years but also to the fact that the Aral does not empty the Manchhur nearly so fast as it used to, the result being that mueb less of the submerged land dries up in time for cultivation.
5. Any greater increase of assessment in the canal irrigated lands would, I think, be impossible. The juari lands no doubt have a more certain supply than some in Dadu, but on the other hand the soil is not so good, and in some places drabh grass has made kharif cultivation almost impossible. The only under-assessed orops are the irrigated wheat and the rice of the list class dehs, such as Bed and Saidabad. For these a substantial enhancement has been proposed. Rs. 4 is, I think, a very moderate rate for either rice or wheat with a water-supply which is both sufficient and under control, yet it is considerably higher than the present rate.
6. The grouping of some of the barani dehs under the former settlement was quite unintelligible to me , and no reasons were given for it; Mr. Covernton does give reasons for his grouping and one has only to see the country to appreciate the soundness of them.

- 168-21

7. The principle of assessing gardens according to the mode of irrigation instead of having a special,' garden rate' has long been accepted by Governiment. The matter is of enme importance in Sehwan, as the gardens near Bubak had a high special rate before. The new system will work quite well and make little difference in the assessment. Bubak and Yakubani are large dehs of which part is high class garden land and part is a snipe bog. This anomaly will be removed by their partition and the making of the new deh of Jaheja.
8. I recommend the guarantee of the settlement for 20 years for reasopa already explained in my remarks on the Dadu report.
9. In conclusion I may be permitted to say that Sehwan and Johi are. probably the two hardest talukas in Sind to make a settlement for. Mr. Covernton's great energy and keen interest in agricultural matters have, in my humble opinion, enabled him to solve the problem most successfully. His proposals are simple and consistent and are based on solid facts.

I have the honour to be,
Sir,
Your most obedient servant,
C. M. BAKER.

Collector of Zarkana.

No. 134 or 1909.

Refente Departubyt.

Settlement office,
Larkana, 23rd Avril 1909.

From

S. H. COVERNTON, Esquize, L. C. S.,

Settlement Officer, Sehwan,
To
The OOMMTSSIONER ix SIND.
Sir,
In accordance with Government Resolation No. T/39, dated 30th Septem, ber 1908, I have the honour to submit proposals for a settlement of Johi taluka.

Brief description of the taluka.

2. The taluka falls naturally into 3 main divisions:-

(i). On the east along the Nara and the shores of the Manchhur there is a narrow strip of land which is irrigated with Indus water. This belt is nowhere more than 8 miles wide and in some parts the cultivation only extends two or three miles westward of the Nara. The southern delos of this ares are flooded more or less completely during the inundation season by the Manchhur and are cultivated almost entirely with rice in kharif :nd sailabi crops in rabi. In the rest of the irrigated belt the conditions are much the same as in other parts of "Sind," except that during the hot weather the Nara lands are liable to be surplus water of the Nara diverted into the Lohri dhoro and the various dhanda and dhoros connected with it.
(ii) In the west there is a broad tract of hilly country, the Kohistan, which is almost entirely barren except for a few patches of juar grown here and there on the sides of the Khirthar and in the Angai valley, and some wheat fields in the valley of the Gaj and Nali. Most of the cultivated pieces in the Kohistan have been given to their occupanta free of assessment as seris.
(iii) Between the Kohistan and Sind lies a broad area known as the Kaohho rising slightly from the east towards the west, which is almost ontively dependent for its cultivation on rainfall and the floods water from the hill torrentis. After a hesvy torm these floods pour down from the hills and spread out across the whole face of the Kachho plain. In the north-western part of the taluka where the beds of the Nai Gajare deep and well defined, the water is diverted into canals and kariast by which it is led on to the fields, but elsewhere the floods are controlled only by the carthen bunds built round the fields, and these are liable to be swept away by a heavy flood.

The chief of these hill torrents or miz are the Gaj, the Taki, the Nali, the Angai and the Naing. The Gaj takes its rise in Kalat and finds its way through a gap in the Khirtbar into the north-western parts of the taluka, where it brancles out into 4 main ohanneln, which flow in different dirertions across the Kachbo. The others all rise on the eastern slope of the Khirthar ster"" "blok and are therefore dependent on local rain. The Gaj has a stream of clear pring " i. .e water \ddagger which fiows out of the bills into the Rajodero taps for at least 8 or 9 an woter. months in the year, and if there is any considerable winter rain, it is almost so water. perennial.
= 170-1
k

The Nall also in years of good rainfall gives a rabi supply of olear water suffloient for the irrigation of some wheat fields in Wahi Pandhi. In the other Nais the black water where it exists at all does not enter the limits of the Kachho Besides the hill torrents there are several perennial springs at the fuot of the Btait hill in the soath-west of the taluka, by means of which cultivation is carried on both in rabi and kharif.

Thus the prosperity of the Kachho is dependent on rain and principally on rain in the hills. This of course cannot be measured, but it is probably not much, if at all, in excess of the amount registered in Johi town. Now taking the agricultural year as beginning in June (since May rains are usually too insignificant for cultivation purposes), the average rainfall registered in the last 5 yoars 1903-04 to 1907-08 has been 4 inches 12 cents. and during the 5 years $1898-99$ to $1902-03$ it was 2 inches 36 cents. There were some years in which the total annual rainfall was below one inoh.

The taluka contains 101 dehs and its area (including the Kohistan) is $761 \cdot 6$ square miles. Its greatest length is sbout 42 miles and the greatest width from the Nara to the foot of the hills is about 25 miles.

The population according to the last census was 51,218 , which gives a density of 67 to the square mile. The population of the head-quarter town and the chief villages according to the last census is as follows :-

(1) Johi	\ldots	1,456	(3)	Pat Gul Muhammad (2) Haji Khan	1,020
(4)	$\mathbf{1 , 2 5 6}$				
Hairo Khan	\ldots.	1,243			

Markets.

3. The chief local market in the taluka is at Johi and even this is of no great importance. The zamindare usually dispose of their produce in their deras or their villages to bania dealers. Such grain as is not consumed locally finds its way to Sita road, Dadu, Bhan, Phulji road, Bubak road and Sehwan stations and is thence despatched by rail to Karachi. Grain is also sold in the villages under tie hills, e.g., Wabi Pandhi, Tando Rahim Kban, Drigh Mathin, Hhevo Jamali and Rajodero to Brahuis from Wadh and elsewhere in Kalat State, who bring down pish, wool and ghi and buy grain.

Communications.

4. The grain thus exported is earried on bullocks, donkeys or hill camels across the mountain paths leading up the Angai, Nali and Gaj valleys The principal trade routes in the plains are along the following roads :-
(i) From Hairo Khan and Haji Khan and Johi to Dadu..
(ii) Johi to Bhan.
(iii) Tando Rahim Khan and Ohhini to Shah Hassn and Jhangar.
(iv) Hairo Khan and Phalji to Phulji road station.
(v) Pat Gul Muhammad to Kakar.

Thus the talaka is well off for roads both within its houndaries and commuaicating with other talukas and the railway. There are however only 4 bridges over the Nara at Bahawalpur, Suranjri (on the Dadu road), Kamal Khan, and Daim-ji-Miani, and the first and last are not easily accessible during the greater part of the year as they are surrounded by floods and not approached by any regular road. But there is a horse ferry over the Nara at Phulji during the inundation season and the northern dehs are served by the Kakar bridge. In the south-east goods and grain are sent by bost across the Manchhur to Bubak while the water is high, as well as by the road via Jhangar to Sehwan. There is no railway within the taluka, but the North-Western railway runs parallel to its boriler at a distance of 6 or 7 miles and there is. easy access from Johi to Bhan and Dadu stations, the distance being about i2 miles to either.

Ae a rule camels and donkeys are used for the transpart of grain，bpt bullock carts are occasionally used especially in the north sad between Johi． and Dadu．The usual rates for transport of grain appear to be as follows ：－

No new roads have been constructed during the settlement．

Industries．

5．There are a large number of oil－presses in the taluka，at Johi，Shah Hasan，Hairo Khan and other large villages，and also some 50 hand machines for cleaning cotton．Tue fee for the use of the former is $7 \frac{1}{9}$ to Rs． 10 per kharar，and for the latter 3 annas per maund．There are no rice－husking engines and there is no other industry of importance from s settlement point of view．

Irrigation．

6．The Executive Engineer bas sent a joint report for all three talukas which has been attached to the Dadu report，together with the various state－ ments and notes on the working of each individual canal．He has however sent a separato irrigational map for Johi taluka which is attached to this report．

At the beginning of the settlement in 1898 the Dingri was far from satisfactory and this state of things seems to have continued to 1902 when it was given a new mouth．Since then the canal has worked well engugh，But

The chief canal of this taluka is Western Nara which forms its eastern boundary．A new mouth was constructed for the Nara at Akil in Tarkana taluka in 1903．Up to then the working of the canal had not been particularly satisfactory．The Executive Engineer states that the construction of the new mouth did not much affect this taluka，but the further widening of the mouth in 1905 greatly improved the supply in this division and rendered it independ－ ent of the Pritchand wah and of the vagaries of the river．The workiug of the Nara and the improvements to it and the Pritchard ．Wah have been discussed in the Dadu report and it seems unnecessary to repeat what has there been said．Generally speaking the complaint on the Johi side of the Nara is not of too little water but too much aud the lands are liable to be swamped not only by the surplus water of the Nara and Lohri but also by the rain floods from the t＇at．

The Lohri in Kot Bajo and Thariri Jado Shabid is a Government canal from the Nara（originally it was a eamindari karia）．Hrom the borders of Pkulji duwnwards it is a dhoro．It is not quite clear whether the annual notes given by the Executive Engineer refer only to the canal or to the dhoro also，The canal has worked satisfactorily but the dhoro is filed not oulv by the canal but also by the rain floods and the surplus water of the Nara and sobhnari dhand and as a result it floods most of the lands through which it passes and those into which it tails The canal is liable to breaches caused by the suddon rush of the rain floods and especially by the Nai Gaj torrent． which has worked well in reeent years）suffer greatly from the difficulty of controlling the water in the low lands at the Nara tail，and from the rain floods which swamp them whenever a big storm occurs．

The improvements undertaken during the current settlement affecting the taluka are:-(i) the construction of the Akil mouth and its subsequent widening referred to above. (ii) The construction of a New Feeder to the Pritchard wah mouth, the benefit of which was however of very short duration owing to changes in the river. (iii) The now mouth of the Dingri wah out of the Nara. The improvements to the Lohri wah referred to by the Engineer were made long before the settlement began,

The average annual cost of canal olearance, etc., for the whole division is given in the Executive Engineer's appendioes at the end of the Dadu report.

The southern dehs of the taluks are flooded by the Manchhur each yearThe engineering problem of the Manchhur and the conditions of ite cultivation have been fully stated in the reports of Colonel Haig, Mr. Seymour and others, and no material change has taken place since their time. No means has ret been discovered by which the waters of the lake can be speedily drained off the sailabi lands after the close of the inundation and the Manobhor dehs must almost inevitably suffer either from an excess of water or its deficiency. In either case the rice and ssilabi crops are destroyed. But after too low a flooding the unsurveyed lands are at any rate ready for another year and are the better for a fallow, whereas if the flood is high and the water is not drained off, as usually happens, the land becomes covered with rushes and weeds and greatly deteriorates.

The areq under each head of irrigation is shown in Appendix XII. The ares of rice has decreased by 3,800 acres since Mr Seymour's report was written and is now only $9,185 \frac{1}{2}$ acres or 15 per cent. of the total cultivated area. Bimoki on the other hand has more than doubled itself since then and is now 4.4 per cent. of the total. Lift which is 4.9 per cent. has remained almost stationary. Sailabi which has decreased by 1,800 acres is 113 per cent. The decrease under this head and under sailabi madad charkhi is no doubt due to the vagaries of the Manohhur but both have shown a tendency to improve of late years. The same remark applies to rabi charkhi which also shows a decrease on Mr. Seymour's figures. But the most remarkable change is in bosi, from 180 acres to 1,310 acres, and I suspeet this great increase must be partly due to misclassification by the tapadars. The total of cultivation independent of the Indus, i.e., barani and hill stream, amounts to 15.7 per cent. of the whole, though of course this leaves the unsurveyed lands out of account.

Trrigational wells in this taluka are few, only 6 in the irrigated dehs and in some years one or two in barani dehs. In "Sind" the depth at which. water is obtained is generally from 15 to 25 feet ar occasionally 30 ; in the Kachbo it is about 80 feet, the wells in "Sind " are sweet and the water abundant except at Thariri Jado Shahid, but in the Kachho it is generally brachish, and the supply is soanty except after recent rains. For this reason paka wells in this region are rare and the area irrigated on them (22 acres 32 guntas) is altogether insignifioant.

History of the current settilement,

7. There are two settlements at present in force in the taluka,
(i) The 16 debs noted on the margin were transferred from the Kokar

Tor.	Malhar Bamant:
Ledhoders,	Kathis Barsai.
Rajodera, ${ }^{3}$	Tori Barani.
Kasbo.	Ber Bughio.
Malko Jagin.	Gul Mahammad Burani
Lalhar.	Keti Nevi,
Kur Fauio	Din Pansh.
Fot Bajo.	Tharri Jado Shahid.

1003, the old rates still remain in force.
(ii) The rest of the talukn, consisting of 85 dehs, is under a settlement sanctioned in 1898-99. The rates sanctioned under each of these settiements are shown in Appendix XIV and also in paragraphs 14 and 15. Mr. Seymour estimated tbat his settlement of thẹ 8 º dehs
would produce an annual income of Rs, $1,37,388$. The actual amonnt of collections in these 85 dehs during the settlement has averaged only, Rs. 1,02,550, a deficiency of Ks. 34,834. This is due partiy to the ${ }^{\text {' }}$

- heavy remissions which have been necessary, but still more to the deorease in the area of cultivation since Mr. Seymour wrote-a decrease of 20,898 acres for the whole taluka including the Kakar debs.
Appendix XIII shows the total of demand, colleotions, remissions and arrears in the taluka for each year of the settlement. According to this the collections average Rs. 97,781 , remissions Rs. 18,357 and arrears Rs. 9,890 . But a considerable part of the arrears consists of remissions sanctioned and collections made after the close of the jear. If the amounts subsequently remitted and collected be added to the amount of the remissions and collections shown in columns 2 and 3 of the Appendix, the result will show the total amounts actually collected and remitted from the gross demand of each year. And the average of 10 jears settlement then works out as follows :-

Gross demand Rs. $1,26,029$, remissions Rs. 22,688 , collections Rs. $1,02,544$.
Thus remissions amount to 18 per cent. of the gross demand. And the total of arrears which have never been collected amounts to Rs. 7,863 or an. average of Rs. 786 per year.

The reasons for remissions are shown in the statement below :-
Statement showing reasons of remissions granted during the current settlement of Johi taluka, as shown in Appendix XIII.

Tears.	Defioient Fater: sopply.	Floodiay.		zer ab Bhang.			Lactipa and g7a74hoppers	Fronts.	Falar.	Insoct and Thas	Othar itemar.	Tonax.
1	2	*	4	5	0	7	8		10	11	18	18
$\begin{aligned} & 189000 \\ & 1890000 \end{aligned}$		\ldots	*5		${ }_{1.177}^{808} 12$	\cdots	\cdots	\cdots	\cdots		\cdots	
1000-01	9,687 14		00\% 1	18812	4.186		1,487 is	388	28		\cdots	37.1818
1802-018	${ }^{17} 1898$	\cdots	9,807 1	1881	68	10.	21114	\cdots	\cdots	c...	89818	18.808
1800904	18,878989 16.8989	$3{ }^{\circ} \mathrm{O}$	8881	\%si 10	8, 1015	\cdots	90\%	,	\cdots	\cdots	1310	18,930 14
590108	18.760			ㅈ.10	-	40	…	6,695 15	\ldots	\ldots	\cdots	23,289 4
1905	${ }^{1,984} 8$	12710	$\operatorname{cal}_{608} 11$	94610	(13 13	\cdots	${ }_{121}^{213}$	\cdots	...	\cdots	\cdots	9,569 14
Iev79	11,865 8	$4{ }_{4}^{4} 7$				61	${ }^{\text {12n }}$..-	\cdots	\cdots	\cdots	$38 \cdots$	

Even if the total of "zer ab" and naubati remissions and remission on aceount of portions of survey numbers left uncultivated (columns 3, 4 and 5) be dedneted from the grand total of remiseions, there still remains an average of Rs. 20,976-7-10 or 16.6 pur cent. of the gross demand. But heavy as the remissions are, they do not at all adequately reflect the condition of the taluka. Every year a very large number of petitions are rejected not on the merits of the erops but on various technical grounds, the most frequent being that the orop has been reaped before inspection. Judging by the past two years it is not too much to say that if every surrey number that deserved remission were to obtain it, the annual total would be doubled. This point will however be referred to again in connection with the proposed barani rates.

Coercive processes.

These are shown in the accompanying statement. The number of notices Issued is very large but the other figures are much smaller than the arrears would lead one to expeot. The forfeitures of land shown in column 11 were not only for fallow assessment but also for non-payment of ordinary revenue; the exact figures undrr each head are however not obtainable. But it may be noted that the fallow rules do not apply to the greater part of the taluka.

Cocrive processes resorted to in Johi talnka during the current settlement beginning f 1898-1899 to 1907-1908.

- Datadia nat available.

Sale of immoveable property during the current settlement was nil.

- Arable area.

8. At present 36.8 per cent. of the total area of the surveyed dehs is occupied as opposed to 31.8 per cent. in 1898-99, in which year however many of the Kachho dehs were still wholly unzurveyed. According to Appendix XII the average of cultivation in the past 5 years was 60,881 or $38 \cdot 2$ per cent. of the present occupied area. There is very little difference in this respect between the two quinquennial period of the settlement. The dehs in which the principal 'deorease in the cultivated area has taken place since Mr. Seymour wrote are as follows:-

In addition to this 9 dehs in the Kachho show a decrease of more than 500 acres. This is chiefly due to the two rainless years 1904-05 and 1905-06 which brought down the average for the 5 -year period.

$$
\begin{gathered}
\text { Deh, Increase. } \\
\text { Gahi Charo... }
\end{gathered} \begin{aligned}
& \text {... 884 Apparently due to the high level of the } \\
& \text { Manchhur, though of late years this has } \\
& \text { done more harm than good. }
\end{aligned}
$$

Crops.

9. The area of the various crops is shown in Appendix XI. In this taluka the kharif crops form 64 per cent. of the whole. The commonest crops are as follows (in the order of their importance) :-

Juar, rice, wheat, jambo, ahur, sariha, tir and bajhri.
Bice is of course confined to the lower irrigated lands, tir is found ohiefly in barani lands, wheat is geown both in the irrigated dehs and on hill-streams. but the other crops are grown in all parts of the taluka. A little cotton is
grown in barani lands especially on the Nai Gaj cannls, and tubacoo is cultivated on the black water from the Rijwah in the drhs of my proposed 2nd group. Most of the barley found in the taluka is grown on the Manchuar but the area is small.

No new staples have been introduced during the settlement.

Methods of cullivation.

The methods of cultivation are of the usual kind and there seems in occasion ω give a detailed description of them except in the oase of baiani orops, in the assessmeut of which very ounsiderable changes are being propised tor reasons which are clusely connected with the conditions of barani cultivation.

Most of the barani linds are cultivated by means of bunds which check the flood water and retain it on the fields. The bunds are usually about 4 or 5 feet high but sometimes much more, e.g., near Chhini, where they are as much as 12 or 15 feet high and 20 feet wide at the base. In such cases bowever a single bund serves a large number of fields. Naturally their erection and repair involves a good deal of expense which varies aconrding to their size. The land is watered ind the seed sown as soon as the flood water comes in June, July or August according to the time of rainfall. The land is watered again in August or September if any more rain comes. But if the crop gets uo second watering it has but small chance of success. It is equally disastrous if the first rain is so violent that the floods breach the bunds, for then the water sweeps on over the plain without soaking the soil except in the depressions, and the erops on the higher ground dry up. Now. it only occasionally happens that there is a really good rainfall in the beginning of summer; but that this should be followed by a satisfactory rain in autuma is the rarest good fortune. And yet on this improbaile pieste of good lack depends the prosperity of the Kachho. Even when both early and later rains are plentiful success is not assured. For instance this year almost every field of juar was attacked by grubs and in some places the crop was nearly destroyed. But in ordinary years the crops have no chance from the first, and if there is any outturn, it is as a rule exceedingly low. A later crop of juar (kani juar) is sown in October or September if the rainfall allows. Jaiabbo ạhur and variha are sown about the same time. Sometimes the seed is sown along with the kani juar seed, sometimes it is grown separately. Obviously in these conditions the task of distinguishing between "rabi,"" kharif " aud "dubari" must be exceedingly difisult.

Variety and outturn.

Rice.-Almost the only variety grown in the taluka is the Lari, the coarse red rice of lower Sind, inferior to sugdasi both in price and productiveness. In the report on Dadu I bave endeavoured to show that the inferiority of the rice of that taluka is due to its liability to flooding, the unevenness of the soil and the dififoulty of controlling the water. All that was said of Dadu applies with three-fold force to the rice cultivation in Johi. From Phulji down to the Manchhur the lands near the Nara are traversed hy a large chain of dhows and dhands. The rice lands in Johi as in Dadu lie in the depressions and are thus everywhere liable to be flooded with the surplus water from this clain of dhands. In the north the surplus water of the Nara is let out into the Lohri dhoro through the Cbandan wah and into the Sobhnari dhand through thes Rajwah and this swells the flood from the tail of the Lohri wah. In the south a great part of the rice lands in Sakro, Gahi Charo and Aruni is frequently: submerged beneath the waters of the Manchhar. And in the centre the rice lande of Pir Dhuari, Kharich, Abad Chana, Johi and Vageji are yearly flooded by the rain water which runs off the "pat" into the low lands near the Nara and Dingri.

As might be expected from thene conditions the outturn is, very poor in Fin Pind to to to most fields. I arrived in the taluka too late to make any crop experiments but Tiliting to orfis I examined the heaps of grain in the deras whenever possible. The highest poppar, o, s, the marpater. ${ }^{2}$ outhucted). Other resul:s were 30 kasas (in two instances), $27 \frac{1}{5}, 26,13,12$, and
gven 10 kasis pe* acre. For Tor rice the highest rate was 22 kasas and the liwest 12 kaszs. [should think that the avarage crop would give 25 kasas to the'acr: 8 id perhaps as muth as 30 kasas in the better lands.

Juar.-The bimoki this year was exceptionally bad in Johi for all the crops were damaged both hy floods aud caterpillars. For this reason the 16 different cases in which [was able to discover, the rate of outturn can hardiy be regarded as typioul of an ordinary year. Nevertheless they at least serve to show that the outturn in Johi is much less than in Dadu.

Bimoki	..'	Rate of outturn per acres.			Number of instancor	
		...	20	kasas	\cdots	1
			17	do.	***	1
			15	do.	\ldots	1
			13	do.	...	1
			12	do,	*-	3
	Below	\cdots	12		...	10
Clarkhi madad moki		...	19	do.		2
		15	do,	,	1	
		12	do, or		16	

Charkhi juar gave a much larger outturn than moki, though it was markeily inferior to the oharkhi juir of Dadu. The hest field gave 37 kasas, a dora in Phalji gave over 30 kasas ta the acre, twa fields gave over 20 , three ohhers between 15 and 20 kasas per acre. The other results all fell below 10 kasas.

Barani.-Here it is impossible to obtain an average which will give any idea of the normal outturn. In a comoaratively good year like 1908-09 there are many very good crops and a still larger number which produce next to nothing. The highest rate ohtained was 20 kasay to the acre but the crop was by nn mesns the best to be found. Yet the average of 33 cases tested by me almost entirely in the deras works out at a fraction under 6 kasas per acre.

Hill-stream.-The average of 8 fields tested by me in the dera in Pir Gaji came ta $7 \frac{1}{2}$ kasas. The Phadik wahi lands produced 11 kasas to the acre and those at Gorandi $8 \frac{1}{2}$.

Tobacco.-A good field of tobacco at Rajodero is said to produce 20 maunds of undried tobacco per acre (10 maunds dried). I had however no means of testing this. Black Moro tobacco is ogeasionally grown but the common kind is the "Sqidu variety."

Oil-seeds.-An experiment in barani land on sariha gave an average outturn of 10 kasas per acre and one in jambho gave $6 \frac{1}{2}$ kasas. Judging by experiments in ocher talukas I should estimate the sverage bosi and sailabi outturn as from 10 ta 15 kasas and that of oharkhi about 20 kasas,

Prices.

10. The average retail prices prevailing at Johi town during the settlement are shown in Appendix XV. These are of course considerably higher than the prices obtained by the zamindars in their deras, but the rise and fall in retail prices is reflected by corresponding fluotuations in the wholesale rates. Unfortunately Appendix XV appears to hsve been kept very negligently in the Johi office and it is nat till 1905-06 that anything like a complete list of prices is recorded. It is howeyer clear that prices have been rising steadily.

As Johi is 12 miles and many parts of the taluka as much as 20 miles from 3 railway station, one would expect to find the prices of grain Jower in Johi than in Dadu or Sehwan. But on examining the remission rates for the last two seasons, I find that some of the Johi rates are as high as any in Dadu ar higher. This however probably means only that in those particular dehs the rates were ascertained at a time when prices in general happened to be higher than when the Dadu rates were fixed. If a genoral average of the rates eanctioned in the different dehs in the last $\stackrel{q}{q}$ geasons for each kind of orop he taken,
the average of ratea in Johi will be found lower than those of either Sehwan or Dadu exoept in the case of jambho and sarihs and tir．

	R 1 Bi，1907－1908．				Kramin，1908－1909．				Rimamam
	草	妾	产	㟧	突		产	嵒	
Average of rates sanctioned in Johi．	87	104	95	115	62	110	49	68	Figures $=$
Average of rates sanctioned in Dadv．	90	110	95	105	68	103	50	69	kharar．
Average of rates eanctioned in Soh－ wan．	100	188	110	110	78	114	50	80	

Talue of land．
11．The sales in pursuance of Civil Court decrees are shown in the table below ：－

The following list shows the prioes recently obtained in private sales of land in different parts of the taluka．The figutes are derived from copien of documents in the Sub－Registrar＇s offioe．

	Deh．	Rate per acre． R．
Nara lande－		
	Phulji ．．．	．．． 34
	Ohana（moki）．．．	．．． 32
	Abad（moki and charkhi）	．．． 137
On Lohri dhoro－		
Shah Morio ．．．．．． 70		
（This really only represented a foreclosare on a mortgage．）		
Nat Gaj black water lando－		
	Ton \quad ．＂．The only Rs． price some	recorded was for re．But this low have been due to cirenmstances．
	Dah，	Rate per sare．
		R．
Manchhur－		
	Shah Hasan	．．． 27
	Shah Hasan ：．0．	aic， 73

	Doll	Satio pre mape: R.
Barans-		
	Duabo ...	8
	Sol Jagir...	5
	Angai and Basham Fakir	-. 22
	Jalab ...'	... 20
	Chakar Kot 80
	Pat, Gul Muhammad...	- 10
	Tenures.	

12. The relations between zamindars and their haris are much the snme in this taluka as in other parts of sind, except that the precarious nature of barani cultivation renders it particularly hard for land owners in the Kaohho to find oultivators for their land. The sarne difficulty is also felt to some extent on the Manchhar debs where villages are few and haris have to be brought in from elsewhere. Those who are enterprising enough to seek employment away from their villages prefer to go to the new lands on the Nasrat wah across the river. There are no maurusi haris in the taluka. Batai rates are shown in the following table:-

Sub-leting.-The amount of sub-letting is shown in Appendix VII. The usual terms are that in return for a cash-rent the lessee takes the produce, pays the assessment and is responsible for all expenses in the way of cleatance, eto.

Condition of cultivating olasses.

13. As might be expected from the history of the settlement and especially from breakdown of the remision system, the condition of the zamindare. in Johi taluka is still most unsatisfactory. No doubt the raizfall 解 the past few years has in most cases improved. the position of the kachho zamindars; although eves amengst them there must be many who were merely plunged deeper into difficulties by the failure of crops which they would not have attempted to cultivate had it not been for the heavy rain at the beginning of the season. And in fact it appears from the sub-registzar's books that a great number of barani lands have been sold to banias in the last few months. To ine zamindars of the sind dehs the raia floods brought nothing bat disaster. On the whole the condition of Johi taluka is mach the same now as when Mr. Cadell wrote in 1898, Both in the Kachho and Sind most of the zamindars are poor and those few who attempt to keep up any position are constantly in difficulties. There are now 19 Inourabered Estater in dohi taluka with a total area of 12,848 acres 1 gunts as

See Apppadix XXVIIİ to Mr. Seymour's report, page 39. striking.) And there are'other estates whioh have been unly recently released from management and naany eyen of the smallor wem are in debt. There are
st present Re．14，500 of arrears in this taluka under the Agrioulturista Loans Act and Rs．6，000 under the Land Iuprovement Loans Act，a good illustration of the taluka＇s condition．

I do not think that this state of things is due principally to the zamindar＇s own extravagance or incompetence for as a rule they live in a very simple fashion．I know at least one yery capaple Hindu zamindar who appears to have become considerably embarrassed since be gave up business and took to agriculture．And if other Hindus are ini a more forcunate position，that is chiefly because they also practice other and more lucrative occupations．

The haris of the taluka are more fortunate that the zamindars，for in bad zears they are free to seek lands elsewhere．In fact from 1904 to 1906 the Kachho wras in great part deserted．＇Like the zamindars they are mostly very poor and many of them are in debt．A great number depend for their liveli－ hood on their cows and goats as muoh as on their crops；while othars appear to supplament their own resourees in bad years by stealing cattle frmm Sehwan and Johi．These latter however mostly belong to one particular tribe which at any rate till rery recently had an evil＇reputation amongat its neighbours． Details of the livestock of the taluka as obtained this year at a special census are given in Appendix IX．The following statement shows the ohanges in the size of estates within the deh limits．

Statement of khatas in Jobi taluka．

	Mumaumadans．${ }^{\text {a }}$				$\left\lvert\, \frac{\text { Hisdos. }}{11898-1899 . \mid 1007-1908 .}\right.$				Toral．			
	1898－1899．		1907－1908．						1898－1	99.	1907－1	908.
fixtont．				Alienated．		总		$\left\lvert\, \begin{array}{r} \frac{0}{2} \\ \frac{2}{4} \\ \frac{0}{4} \end{array}\right.$	㝒		－	寠
Nithin 5 acres	594	1	937	\cdots	123	\cdots	149		－ 717	1	1，086	
7rom 5 to 25 acres ．．．	1，980	6	2，353	4	317	．．．	390	．．．	2，297	6	2，743	4
＂ 25 to 100 scres．．．	1，104	11	1，217	－	47	\cdots	65	．．．	1，151	11	1，282	5
＂ 100 to t00 acres．．	200	11	236	8	26		69	\because	226	11	275	7
lbove 500 ．．．	12	17	12	15	1		1	－	13	17	13	15
Totaf ．．．	3，490	46.	4，755	31	514				4，404	46	5，399	31

The proportion of Hindu and Musalman khatedars seemsto have remained almost unaltered since 1898．Unfortuately no figures could be obtained for the size of holdings within the taluki，although of course many persona hold lands in two or more dehs．And apaft from：this the figures are not very instructive because until recently the survey had not been introduced inte most of the barani lands nnd their owners were considered not as khatedars but，ss holding the land on a perpetual khas mokal．Moreover the khatedar is in． many cases not the assual owner at all and has no interest in the land．alat at is clear that till recently banias have not been anxious to invest their moreys to any large extent in purehase of lands inin Johi．

Groupings and rates．

14\＆15．－These etan be more conveniently explainad if tagen togetier in a single paragraph．

Group I－All the irrigated dehs Yincluding Beral ani Kur Fivio and Dhori Kinri（hilly tract）which ocoasiounilly coutain irrigated erqpas，

12 *
Rates.

Apto. IA moprosenta the Kakar doha -Wharrir Judo, Shabid, Kot Baja and Kur Paxia,
1 sepresente the Johi Int class
O the Johi mind diane rates under the curreatit settiopment.

Eohrt, Khanwah, Makan Belo, Ahad, Bahawalpur, Bhah Yerio, Obant, Gabin
I propose that all othese abould pay the Glasikhi maded moki nite

19

(i) Grouping.-If these zatesbe compared with those for Dadu and Sehran talukas, it will be seen that the whole of Dadu has been put in a

π

Ist group and the whole of itrigated Johi into a second groupjan eight tonas differencee being fixed betwéen the two sbales of rates. This appears to be justified (i) by the greater remotenesi of Johi taluka from the railway, (ii) by the character of the country and the smallet outturn of its crops, and (iii) by the poterty and indebtedhess of the Jolii zamindars.
(ii) It is true that there is practioally no difference in distance between the most easterly lands of Johi and the most westerly of Dadu. But the Nara lies between and as Ihave pointed out in para*: graph 4 , there are only two bridges in the taluka which are of mach practical use during the gieater part of the year. It has also been explained in paragraph ly that the zaminidars obtain a lower price for their grain in Jobi than in Dadu, and if they send the grain to the tailway themselves the cost of cerriage is fairly tonsidetabie. The second reason has also been explained atready in paracrraph 9. The irrigated lands of J his are exposed to floods from the Nara, the Manchhur and the chain of dhands and dhoros into which the Lohri wah tails and on theother hand to the rain floods from the Pat. The later not only damage or destroy the kharif crops but wash down kalar into the irrigated lands, which injur the rabi and dubari crops and causes the land to deteribrate. These floods are so violent that the embankment of the Johi-Dadu rond "is usually breached by them in two or three places and in 1906 was entirely swept away. In the south bimoki suffers the cane fate as the rice and the failure of the kharif crops is ant adequately compensated by the increase of the sailabi cultivation. The lower lands often do not come out of the water in time to be cultivated, or if seed is sown the crops are of the thinnest and ponrest description. The higher lands on the other hand are in danger of not receíving a sufficient sailab. After the high Manchihar floods hnd rain fluods of the last few years, hoth high lands and low have become so overgrown with weeds and jungle that their cultivation is attended with great expense and dificulty and very large arens have this year remained altogether uncultivated. That the outturn of crops in this taluka is on the whole lower than in Dadu I have slready endeavoured to explain.
(iii) The poverty and indebtedness of the zaminłars has also been discussed previously. Its 'effects have appeared perhaps most conspicuousir in Dera Machi, Johi, Kur Jamik and Jampur where farge areas of cultivable land have till now been left waste simply because the original owners were too pour to clear the disused karias.
I do not think there is any sumicient ground for attempting to split the irrigated dets into two groups. Obrionsly if this were done one of the groups would have to be placed level with the Dadu groups, for the difference in rates could scarcely be less than 8 annas. But the three arguments I have adduced above seem to me to apply with equal force to all the irrigited dehs. Tharirl Jado Shahid and Kot Bajo and Kur Fanjo are free from floods it is true but none of them are really good dehs; indeed Kur Faujo is really a barani deth.' In the other two there were complaints last year of a defioiency of water and Mr. Seymour had contemplated their reduction to class II when the guarantee expired. The cultivation in both has declined (in spite of the improvements made to the Lohri wah)." Besides these two there are 5 others in which the kharif cultivation consists largely of charkhi which is not muoh exposed to 'floods. "Batin' 3 \%uit of the 5 the rabi consists chiefly of bosi and sailabi tud it is: these which suffer 'rBoossesese most from the kalar." And in all 3 remissions have been heavy. The 4 th, the sait rater Dabhri, is a Manchhur deli and most of its "lande" are tsually wauder water. , fruind into In Phulji the best parts of the deh are jagir land. The centre is flooded by the then. Lohri dhorio. The rest of the deh has improved, I think, since Mr. Seymonr Lohri dhoro. The rest of the deh has improved, I think, since Mr. Seymour
wrote, but its condition is not so suporior that it should be put in higher class by itself.

Rates.-The reasons for fixing the rates in Dadu taluka are discussed int the report. If it is admitted that Johi should be in a lawer class with an 8 annas* diffurenoe, is detailed discussion of each rate is hardly necessary. The rice nate is'to doubt low. But it is useless to fex a heary rice rate in a taluka where a lirge proportion of the rios fields ate swamps or lakes with more reeds than rice in them. Another teason for keeping the rate fow is that in most parts of the taluks dubari is rare; perhaps beosuse the lari rice ripens late and dioes not give much opportunity for dubari cultivation.

If the average outtura of rice in the poorer lands of Johi be not more thas 25 kasis per acre, the samiadar's shane at $\frac{1}{2}$ will be $12 \frac{1}{2}$ kasas, and after the dedaction of *rajkhanch 11 l kasas, the vadue of which at Res. 50 ptec kiarar is Rs, 9-9. And in thit ease the gsiessment should not strictly be higher than Rs. 3-s. O. the other haud if it be as much as 30 kisss, then where the zamindu's share is $\frac{1}{2}$, he will receive 15 kasas, or after the deduction of rajkhamoh, suy 14 kasas. The wolue of this will be Re. 11-10 and the assessment conld then be Rs 3-14. But in many eases be receives only $\frac{2}{5}$, i, e., ly kasas. After deduction of rajthared he will have 11 kasas, the value of which is about Rs. 9-8.: And ascorting to this the assessment should be Rs. 3-1. Thus the assessment proposed is cerrainly not too dow for the tuluka, and as a general rate it is probably about right.

The himoki rate has been lowered except in the second' olass dehs, but as bimoki suffe from flooling as mach as rice, this is justifiable. There is less reason for lowering the klacif oharkhi rate, but it is impossible to keep charkhi nates high when the moki are being lowered. The new rates provide for an inorease of at least 4 annas in all the rates of the 2 ad class delss. But as these dels were under-assessed under the old rates the increase is perfectly justinable. It is somewhat unusual to make rabi charkti equal to sailabi madad charkhi. The reas?ns for doing so have been given in the Dadu report. "l'keyapply with even preater foroe to Johi where the rabi lift crops are the best in: the taluka, superior to the sailabi madad charkhi of the Manchhur. In this taluka all ssilabi lands of any kind are liable to be overgrown with weeds and even watered silabi is comparatively precarions. The area of bosi madad charkhi is too insignificant to be considered. Of course under the definition of rabi charkhig given in No. 14 of my pruposed rules for the administration of the settlement only the best rabi charkhi crops will be included. The inferior "charkhi bosi" crops which reoeive no water after sowing will now be classed as 'bosi.

Rabi moki is yery rare in this taluka and has therefore been assessed at the same rate as bosi and sailabi with which it is very lihble to beconfused.

Many of the irrigatel dehs also contain barani lands on their western side. In fact Berah and Kur Haujo and Dhori Kiari (Hilly Tract) are ohiefly barani dishs, thongla as they oco sionally have a fem fields cultivated with Indus water it was necessary to inelude them in group I. In the e barani lands tiee crups. are very poor, -and they are in no respect superior to the dehs incluted in group III, sub-groap B. The barani rate of the lattar has therefore been. extended to these lst group dehs also. I propose to abolish the distinction bee: tween ahur and other crops on the Manchhur. The reason always given fori the sperial ahur nates is that ahur is the crop sown in the last lands left bave; by the lake in itime for:cultivationand that its outturn for this reason is exceedingty poor. No doubt this is very largely thue, but. not puideessally so.: I have frequently found other unploughed cropy such, as wheat, barley: and jambho sown on the verge of cultivation and their condition is in mostocsusap at, least as poor as that of ahur. Last year for instange there wera , acres of an an ploughed wheat and barley which bore no grain whatever. A uniform rate bas therefore heen proposed for all unploughef Manchhur dehs. There is even less reasdn to retain the special rate for ploughed abur. No doubt afyen in ploughed lands ahar is often very bad because, it-is the corop mast of ten , somn; oulands that:are thiokly covered with weeds and rushes. But this is mather a : reason for reducing the pate nnspailabi all round than for maintaining m speci:l, rate on a partizular: crop. The factris that all ailabi crops, on the Manchhur, are usually pour ; jambho in partioular is sometimes just as bad as abur with which it is frequently mixed. And this bas been taken into account in fixing the sailabi rate. With sailabi at 量 there seems no justification for a Rs. 2 rate on ploughed ahur.

[^1]
Growp II.

Remarks. -The $\mathbf{5}$ dehs in this group are those which are entitled to uno the black water brought from the Nai Gaj through the Raj wah, which begins to flow in the autumn after the summer rains and continues at any rate until the middle of February. These dehs are thus provided with a cold weather supply which is equivalent to rabi moki and is at least as assured as in most irrigated dehs in the division. It is true that in 1905-06 there were no kharif rains and no cultivation on this black water is recorded, but it is also true that even in "Sind" no supply of water in rabi may be available if the inundation has been a bad one. The only expenses inourred are those of manuring the lad and clearing the canal bed, and for the Jatter a clearance ullowance of 3 annas has always been given, and this I propose to continue. The net assessment will therefore be only Rs. 2-13. The lands thus irrigated are able to grow very fair crops of wheat, sariha and tobacco, the last cultivated as usual by Hindu or Sikh haris. These facts might seem to justify a yet higher rate. Colonel Haig assessed these lands at Re. 4. But the black water has one great defect which counterbalances many of its advantages. The water contains a good deal of salt and this is deposited over the figlds irrigated by it and not only has a serious effect on the crups but causes the land to deteriorate. In khaif the fields are cultivated as band barani on the torrent water of the Nai Gaj, though the bunds are very small, and the fields are the same as those in which the black water rabi crops are cultivated. If the Nai Gaj flood comes dnwn at the right time and in sufficient strength, the crops receive no other water. But if there is no lare rain and the crops are in need of water, they are oocasionally given one or two waterings in the autumn with black water, Clearly therefore it is impossible for a tapadar doing partal in November or October to say if a field has had two waterings with storm water or one with storm water and a later one with black water. It is imposible therefore to adply a kharif black wnter rate to these dehs-all kharif crops must be taken as band barani. On the other hand there is no reason to introduoe the non-remissionable system propased for class III, for in these dehs remissions are naturally source. There are sometimes a few numbers cultivated in rabi which receive no black water at all. These will be subject to the same rate as barani kharif. In purely barani lands there is no distinotion in irrigational facilitieg between kharif and rabi, or at least if there is, it is slightly to the disadvantage of the rabi which depends chiefly on the kharif rainfall. I can therefore see no justification whatever for the higher rabi rate charged under the old Kakar setclement. As Mr. Seymour pointed out a distinction between barani rab? and kharif rates "is very much akin to a crop assessment." It is particularly absurd in Johi taluks, where it is almost impossible to distinguish between kharif and rabi crops (vide parsgraph 9 (i)). Under the present systen one may find in one number " kani" juar and jambho sown together and rated at Rs. 1-8 as kharif. In the next there is jambho only, sown perhaps at precisely the same time and this is assessed at Rs. $2-8$ per acre as rabi.

In this group when there is any hill-stream dubari it has always heen preoeded by band barani in kharif. Now under my proposed rule 8 in appendix A if a field is oultivated in kharif with band barani and in rabi with hill-stream, the dubari crop will be oharged the difference hetween the kharif assessment and the rabi+dubari assessment. The effect will be as follows:In khurif the number will be charged with Rs. 1-8. In rabi it will be charged Rss. $\mathbf{3 . 0 + 8}$ annas-Rs. $1-8$, i. a., Rs $2-0$. Thus altogether the number will pay in both seasons Rs. $3-8$ or 8 snnas more than the rabi hill-stream alone of course if the dubari crop receives no black water at all, it counts as barani dubari and as auch pays no dubari assessment according to rule 8.

Group III.

A single hill-stream and black water rate has been proposed for all dehs in this group. The rate will cover hill-atreams in the south-west and the black water oultivation on the Nali and Nai Gnj valleys of the Kohistan As regards the hill-streams the rate is a very slight advance on their present assessm ment in this taluka and is intevmadiate batween kharif and rahi rates in

Sohirax taluka: If the aremge outturn could be judged by this' year's kharif, it would be too high. But in fact the kharif crops in the Johi hill-stream? dehs were destroyed by caterpillare and I have no doubt that in an ordinary' year they oould afford to pay Rs. 1-12. The outturn in Sehwan was much higher. © But it would not be advisables. I think, to increase the rate 'suy. further. The streams are not very large and each field has to wait its turn for' the water, e. g:, at Phadik each sharer only gets his water once in 12 days.' Moreover a good deak of salt is brought on the land by the bill-stream. The cultivation up the Nai Gaj has the same source of irrigation as the rabi of group II, i. e., the black water of the Gaj. But the fields are very remote from: auy market. And as some of them are on much higher ground than the river bed, water oan only be brought to them from a point higher up the strean by means of aqueduots which are troublesoine and perhaps expensive to ereot, asd are awept away whenever the Gaj comes down.

The cultivation in the Nali valley is also to remote to be included in: group II. In Wabi Pandhi there is a little rabi oultivation on a stream of black water from the Nali. Its area is not usually large-only three numbers are cultivated this year. The supply is less certain than that of the Gaj. This year for instance the wahi was flowing less strongly than last and it was aaid to have ceased altagether for some time at thé beginning of winter. I doubt whether the crops are superior in any way to that of the ordinary hill-streame. and it does not therefore seem. warth while to complioate the settlement with. angther special rate.

- Lalbar, which is included in this group, is not one of the dehs which have p right to receive blaok water and all its rabi is sown on flood water only, But this year at any rate it happened that some of the Tor zamindars bad. water to spare and allowed a few of the rabi band barani fields in Lalhar near the border of Tor to be given a second watering with black water, This is certainly a very unusual event. It would not be fair to charge the 2nd group rate of Rs. 3 for fields which only get one or two chance waterings in this minnor, and the 3rd group rate of Rs. 1-12 seems eminently suitable.

For all barani lands in this group, i. e., those which receive no hill-stream water (including in thit term the black water of the neis), I propose to abolish: the fasli remission system entirely. Tue precarious nature of barani cultivation has already been described. Now as a really good season is almost an impossibility and a general failure of crops is the normal oondition of things, it: is not surprising that the Mukhtiyarkar receives every year an enormous: number of remission petitions from the Kachho. And as there are usually. heary kbarif remission on the Naza and Manchbur lands also, it is impossible for him to dispose of them all before the end of harvest. This year, for ipstance, although he began inspection in October and was to some extent assisted by the Head Munshi and the Mukhtiyarkar of Jadu, he had not finished the remission work before the end of January. This state of things obviously needs to be altered both in the interest of the zamindar and in that of the administration. For three or four months the Mukhtiyarkar is entirely occupied with this work and is unable to pay attention to any other, however important or urgent it may be. On the other hand the hari has to wait 3 or 4 months before he can touch his orop.' Meantime any grain there may be is spoiled and the karbi also deteriorates: The hari is not interested in remissions and naturally he deelines to wait, for even if there be no grain, yet he needs the karbi for his cattle; and so when the Mukhtiyarkar arrives he finds the crops reaped and refuses remission. It must be remembered also that even if the remission is allowed and the danabandi is accurate, yet the relief to the zamindar is small,: For the Government share is calculated as being $\frac{1}{\frac{3}{3}}$ of the actual produce and this is all that the gamindar himself gets in many cases. Thus the best that he can hope for is to escape with nothing, neither loss nor' gain; and suaph good, fortune is rare.

For this reason I propose that in thene debs the remission system should be abolished altogether and the rate fixed so low that a single good crop : will. he able to pay for several bad onea,

[^2]n. In snb-group (a) the rate has boen fixed at one rupoo, in subagroup (a) ant 8 . manas pyr aqre, The deha included in the lat sub-group are all irrigated by: coands whick tuke off from the Nai Gaj at a point near to the place where the Nai isaues from the hills. At this point the maie bed of the Nai is come paratively nartow gnd deep and the torrent has lost none of its original forceThe ganals thus receive a considezahlo volume of water which is ontively under control and is brought direetly and easily on to the fields. In the cose of Wahi Pandai the oanals take off the Nai Nadi in a preciegly similar mannes. In eonsequence of this the creps in thene dehs are decidedly better thas in the qthez barani lands of the taluka; especially in wai when the jambluo and sariba cultivation is as a rule both nore extensive and successful than elvor where. Even in these dehs however cultivation depends on seasonable rainfall in the hills, and if no rain falls at the right timet the crops must fail. It is true that remissions in these dehs have been much smaller than in those of the 2nd sub-group. But it does not always follow that if no petitions for remission are made, the crops must have been good. This year i saw several fields in this part of the taluka in which the erops had failed almost completely but the owners had made no petition. They explained that they had petitioned in past years and had never gained any advantage by doing so and they had therefore given up all ides of obtaining remission. Moreover these canals eost a zood deal to clear and maintain in good order. I have left deb Pai in the (b) subgroup in spite of its canals, because the erops are unusually inferior to thoss of the dehs in sub-group (a), possibly on account of the stoninens of the ground. It has also very little rabi cultivation. Deh Keti Navi has also been left in sub-group (b) begause much of ita cultivation is in unsurveped ground in the* bed of the Gaj and this is usually very poor. I do not think one rupee will he too heavy even without remissions for the sub-group (a). These dehs have sontained practically no rel barani* or band barsoi bina ravt in the past 5 yesmac so that the decrease in rato is considerable. I performed a crop experiment on a fairly typical field of jambho in Haji Khan, of which about 3 acres produced little or nothing and 2 acres 1,5 guntas produced a vary fair orop, i. e_{4}, at the rate of 14_{16}^{1} kasas per acre, The 3 acres might altogether have produced 1 kasa In that case the zamindar's share of the whole produce at 8 worked out to Hs. 21-8, taking the rate of jambho as Ris. 9 y per kharar which is lewer than its present price. The aseessment on the oultivated area at 1 rupee would have been Rs. 5-7. Ewen if his share had only betn $\frac{7}{3}$ his net assets would stilt have been Rs, 16-1 anna. No difference has been fixed between rel and band barani. In the first place rel barami, if ${ }^{t}$ less productive than band batani, is alno muek less expensive. And when band barari is assessed at 8 anzas, it it impossible to fix a separate rate for sel barani. In the one rupee dehs rel barani is very rare. Agsia the bands are often swept sway by hill floods and. ouly small portions left and yot under the present bystem the field still has to pay the band barani rate. It is however very dificult to decide whether the surviving part of the band has any effeot in holding the water on the field or not. Such a. matter cannot be left to the discretion of the tapadar, and if the Mukhtiarkar has to examine every broken band in the taluka allthe advantago gained by the abolition of remissions would be lost:

Financial resulto.

16 \& 17 .-According to Appendix XIV the proposed setalement. in the surveyed lands (including dubari cultivation), will produce, an annual rexenne of Rs. 1,10,143 as compared with Rs. 1,3i, 0 og under the current settlement. There. is thus a degrease of $15 \cdot 42$ per cent. This degrease is on the two bamani groups alone. On the first (i. e, the irrigational group) there, is an increase of 8.92 per cent, exclusive of dubari. But. in Appendix XIV I have haen obliged. to take ail the sailabi as ascessed at the full rate, because thare, is. no, record to: show the area of unploughed sailabion, the Mapchhur except in the case of abur ${ }_{6}$; But by making a rough guess ak the proportion of puploughed ta ploughnd, sailabi in each of the Manchbur dehs, I have calculated that if the Res, 1.8 ratay proposed for unploughed sailabi in those dehs is sanctioned, the result given in Appendix. XIV is too muoh by Rs. $\mathbf{2 , 9 0 9}$ \& o., the settlement will produce un.annual revenue of Res 1,07,334 only (inelusive of dubari). Simitarly fic allowance is made for the existing special rates on unplougbed, thur and

[^3]phoughed ahmr, the result of the current gettlement is only Ks. I, 28,503. The dearease will therefore be 16.55 per cent. on the whode taluko. While in. Wie Ist group there will be an increase of 3.56 per cent. In the $2 n d$ group there is a deorease of $3-1$ per cent. only. In sub-group (a) of the 3rd group the deorease is 38.64 per conto, and in the (b) sub-group it is as mueh as 66 per cett. In most of the dehs of this latter sub-group the deorease is between 60 and 70 per cent. It is highest in the old Kakar dehs on account of the high rate formerly charget ton rabi barani. Of course this decrease is very large, but for the reasons $\{$ have given, before I do, not think it is excessive. It must be remembered that under the old settlement in most years an considerable amount of Iand revenua, was never recovered. Moreover I helieve that $\frac{8}{10}$ of the assessment on irrigated lands in Sind is credited to the Pbblic Works Department as an irrigation charge and only $\frac{1}{1 d}$ is credited ta land revenue as a charge on land. According to this proportion the assessment on barani lands, which owe nothing to the services of the irrigation department, should nat be much higher than $\frac{1}{\text { to }}$ of the highest rate for irrigated lands.

Appendix XVI shows the result of the proposed settlement as compared with the curent ase after the assessment on unsurveyed lands has beer included The estimated annual revenne-will be Ks. $1,10,742$ as compared with Rs. 1,31,874 under the old; when the derluctions for the unploughed sailabi are made, the net mosult of the proposed settlement will be Rs. 1,07,83is. as cemp pared with Rs.. $1,29,377$ and the net derrease $16 \cdot 65$ per cent. These calculations are ald basedion the exerage euttivation of the past five years but, owing to the uncertainty ef cultirationon. the. Manohhur and barani dehs, there is wery little guarantee that the cultivation:area in the next 10 years will be ever approximitely the rame as it has been in the past.
18. The average rate ender each kind of irrigation both in the existing and propassd settlemento is shown in Appendix XIV. There is an increase of 9 annas on rioe and of Ras 13 on rabi lift, 2 annas on kharif hill-streams, and 1 anna on rabi hill-streams. There is a decrease of 3 annas in bimoki, wells, sailabi and sailabi + lift; 2 annas on kharif lift, flow eided by ; lift; bosi and bosi' aided by lift; 13 annas on kharif barani and one rupee anicabi baranin, General Remargs.
19. A vernacu tar notification showing the proposed rat s, and, grouping has been forwarded to the Collector for pubitication as is required by Government Resolutioni No 517 , dated the 21st January 1897.

1. Guarantee- 11 reeommend tifat the settlement be guaranteed for a peridd of 10 years as is usual in sinad.
© Change of namoin dehe. The following changes appear to be required in the names of the dehs.

No.	Old name.	Néw name.	1. Reasons,
I	Tori Barani (Tapo 'Rariri Jado Shahid). Tori (Tapa Pir Gaji).	Tori Mathin... Tori Hethin...	The present similarity ind the names of these two dehs is confusing, and the only distinction marle between them, ie., the addition of Barani in the oase of the nortbers deh, is a false one. Both dehs are entirely barani. , On the other hand Tori Barani contains no village from which a new name could bo obtained and in the southern Tori the only village of any size is Tori itself. Neither deh is ever known by any other name and it seems inexpedient to invent a new and artificial name for either The suggested additionsmwill serve to distinguish them as weil ${ }^{\prime \prime}$ as the 2. Drighe

No.	Old name.	Newn name.	Reseon.
	Hilly Tract	Dhori Kinri...	Why this deh was ever given an English name I cannot imagine. At present it is a perpetual stumbling block to tapa dars, etc, and when known at all fit usually pronounced in some quite un recognisable fashion. There seems to be no existing name which covers the whole area and I could find no makan name for the biggest piece of cultiva tion in it. But this piece is watered by a small nai called the Dhori Kinri and I have therefore taken this name for the deh. The only other cultivation is a very small piece on the border of Shah Hasan.
III	Patox	Baghiari ...	There is a neighbouring deh called Patoro the oblique case of whioh in Sindhi i Patore. This in Arabic characters is written exactly the same as Patori. At present Yatori is not cultivated, bat i ever it were this might cause monfu of an old makan in this deh in which there was once a little cultivation.

Certain rules for the administration of this settlement are given in an extra appendix A.

A list of karias and the rebate recommended on each is. also appended, No change in the rates of rebate is proposed.

I would suggest that unsurveyed field which lies at the mouth of the Haleli Nai just beyond the borders of Tok Kasim should be formally brought within the deh limits. It is only a few yards beyond the border, and I know no. reason why it should have been left qutside it. At present it is not in any deh at all.

The following are the accompaniments to the report :-
Map showing the proposed groupings,
Irrigational map
Appendices III to XVI, Appendix A_{1}

> I have the honour to be Sir?

- Your most obedient Servant, S. H COVEBNTOA,

Settlement Officer, Sehwan

Through
The Collector of Larkanat

APPENDIX III.

Lisr of fvillages under the present irrigational settlement of the Johi taluka of Larkana district.

Na	Namen of rillagee	No.	Namen of villagen
	1st growp.	46	2nd group-contd.
		46	Khuh Mano.
1	Shah Morio.	47	Nali.
2	Bahawalpur.	48	Thul.
3	Drigh Hethin Jagir. *	49	Araro.
4	Johi.	50	Miran Machhi.
5	Dara Machi.	51	Bakhir Sbahid.
6	Gaba.	52	Naunari.
7	Chana.	63	Jampur Lundki.
8	Abad.	54	Naushahro.
9	Kharich.	55	Nai Taki.
10	Sakbro.	56	Pat Suleman.
11	Khanwah.	57	Shol Jagir (unsurveyed).
12	Gahichoro.	58	Wahi Pandhi.
13	Aruni.	59	Shori Jagir (unsurveyed).
14	Makhan Belo.	60	Jolah.
15	Lohri.	. 61	Halejo.
16	Shah Hassan.	62	Sakar Halejo (unsurveyed).
17	Dabhri.	63	Potho.
		64	Pherodero.
	2nd group.	65	Drigh Mathin Jagir (unsurveyed).
18	Phulji.	66	Allahyardero.
19	Mothiri.	67	Haji Khan.
20	Khat.	68	Gaji Khan.
21	Buthi.	69	Kubo Kalandar.
22	Kur Jamik.	70	Patori.
23	Sarangri Jagir. *	71.	Mianji Kandi.
24	Jampur Pawharki.	72	Patoro.
25	Vageji.	73	Hasnani.
26	Per Dhoaxi.	74	Kot Chakay.
27	Kur Kalan.	75	Pai.
28	Machhko.	76	Hairo Khan. Muriddero.
	Barani.	78	Masudero.
		79	Naichki.
29	Berah.	80	Mirwah.
30	Hilly Tract (unsurveyed).	81	Suk Nai.
31	Gorandi. .	82	Pohor (unsurveyed).
32	Phadik.	83	Nuro.
33	Wahi Pir Gaji.	84	Jhalko.
34	Dhaunk.	85	Duabo.
35	Tori.		Dehs transferred, from the
36 37	Angai. ${ }^{\text {Basham Fakir. }}$		Kakar taluka group II,
38	Chhini.		Kakar settlement.
39	Pat Kanhiri.		Barani dehe.
40	Sawiro.	86	Tor.
41	Bahlel Shah.	87	Ladhodero.
42	Shadman.	88	Rajodero.
43	Khadani.	89	Kasbo.
44	Tok Kasim.	90	Malko Jagir (unsurveyed),
45	Kukrani.	91	Lalhar Barani.

APPENDIX III-A.

List of villages under the proposed irrigational settlement of the Johi taluka of Larkana district.

No.	Name of del	No,	$\mathrm{X}_{\text {ame }}$ of deh.
	1 gt group.		2nd group.
1	Dabhri.	35	Rajodero.
2	Shah Hassan.	36	Kasbo.
3	Lohri.	37.	Tor.
4	Khanwah,	38	Ladhodero.
5	Makhan Belo.	39	Malko Jagir.
6	Gahi Charo.		
7	Aruni.	*	8rd group-A.
8	Sakro.		
9	Abad.	40.	Hairo Khan.
10	Kharich.	41	Muriddero.
11	Chana.	42	Masudero.
12	Gaha.	43	Pat Gul Muhammad.
13	Dara Machi.	44	Naichki.
14	Johi.	45	Ber Bughio.
15	Slah Morio.	46	Lalhar.
16	Bahawalpur.	47	Chakar Kot.
17	Thariri Jado-Shahid.	48	Pherodero.
18	Kot Bajo.	49	Gazi Khan.
19	Pir Dhuari.	50	Haji Khan.
20	Vageji.	51	Wahi Pandhi.
21	Jampur Panhwarki.	52	Drigh Mathin Jagir.
22	Kur Jamik.	53	Hasnani,
23	Buthi.		
24	Khat.		3rd group-B.
25	Mathiri.		
26	Phulji.	54	Naunari.
27	Kur Kalan.	55	Baghiari (Patori).
28	Machhko.	56	Mianji Kandi.
29	Berah.	57	Nuro.
30	Dhori Kinri, (hilly tract).	58	Jhalko.
31	Kur Faujo.	59	Duabo.
32	Drigh Hethin Jagir.	60	Suk Naio.
33	Saranjri Jagir.	61	Pahor.
34	Pat Kanhiri.	62	Malar Barani.

. Na.	Name of deh,	So.	Name of dek,
	Srd group-B-contd.		3rd group-B- contd.
63	Kathia Barani.	85	Pat Suleman.
64	Tori Mathin (Tori Barani).	86.	Thul.
65	Din Panah.	87	Chhini.
66	Mirwah.	88	Sawro.
67	Patoro.	89	Bahlil Shah.
68	Keti Nai.	90	Shadman.
69	Kubo Kalandar.	91	Tok Kasim.
70	Allahyardero.	92	Khandani.
71	Naushahro.	93	Angai.
72	Nai Taki.	94	Basham Fakir.
73	Pai.	95	Tori (Hethin).
74	Haleja.	96	Pir Gaji Shah.
75	Sakar Halijo.	97	Phadak.
76	Potho.	98	Dhaunk.
77	Jalab.	99	Gorandi.
78	Khuh Mono.	100	Shol Jagir.
79	Nali.	101	Shori Jagir.
80	Kukrani.	102	Unsurveyed cultivation in the
81	Araro.		Kohistun, i.e.
82	Miran Machi.	(i)	Nai Gaj Valley.
83	Jampur Landki.	(ii)	Nali Valley.
84	Bakhir Shahid.	(iii)	Ber Makan.

APPENDIX IV.

Statemant showing the details of population in taluks dohi.

APPENDIX V.
Statement showing the occupation of the people in taluka Johi.

8. H. COVERNTON,

Settlement Officer, Sehwan.

APPENDIX VI.

Statenent showing sales in taluka Johi.

Tears,	Clesa.	($\begin{gathered}\text { No. } \\ \text { of } \\ \text { osese. }\end{gathered}$	Area,	Total sum for which cold	$\begin{gathered} \text { Sale } \\ \text { rate } \\ \text { paxacre } \end{gathered}$	Total meaess ment.	$\begin{aligned} & \text { Average } \\ & \text { pertora } \end{aligned}$
			Re. ${ }^{\text {a }}$	Ra. a.	Res, a	Re.	Rin, min
2898-99.			1,681 493 4	48,269 88 8,617			
	B.-By mon-ryursuiturists to egrioultatiste...	15	493 688 680	8.617 6.614 10	1914	856 1,265	
	D.-Between Dunagricaltaristy ...	6	63880 687	6,140 1,40	8811	1,268 8	
$\begin{array}{r} 1899 . \\ 1900 . \end{array}$	A-By agzicalturists to non-sgrioulterieta...	61	85188	39,895 18	4618	1,708 10	
	B--By nul-agricultarista to mricaltarista ...	5	${ }^{84} 26$	1,884 12	${ }_{29}^{29} 2$	1295	
	C.- Between agcioultariats ${ }^{\text {a }}$...	17	15518	4,049 2	281	81010	
	D.--Betreen nun-agricaltariats ...	9	1184	2, 2380	2414	2368	
1900-01.							
	B. - By non-agriculturists to agrionitazista... C-Betrean agrionitarigts	$\frac{1}{8}$		$\begin{array}{r}175 \\ \mathrm{~s}, 278 \\ \hline 8\end{array}$	248 88 88	$\begin{array}{r} 146 \\ 1788 \end{array}$	
			8810 70780	S,, 278 2,810 8		1,415 ${ }^{172} 8$	
1901-02.	A -By garicaltoriste to non-agricaltarists...	54					
	B. - By non-agricaltaxisth to ngricnltarists...	11	14889	8,571 0	24.0	29715	
	C.-Between agricnituriats	14	1924	3,486 0	${ }^{18}$	3848	80
	D.-Between non-agriculturists ...			2,895 0			
2002-03.	A.- By agrioniturists to non-agrioaltarists...						
	C,-By nod-agricultarists to agrioulturista...	16		5.77718	80 16	${ }^{384} 7$	${ }^{2} 0$
		$\frac{89}{12}$	$\begin{aligned} & 40017 \\ & 19828 \end{aligned}$	$\begin{array}{r} 6.618 \\ 10,575 \end{array}$	${ }_{54}^{16} 10$	$\begin{aligned} & 81011 \\ & 3872 \\ & \hline 2 \end{aligned}$	2 20
1908.04.	A.-By agrionltarists to noa-agrioultarista.						
	B. - By Donagricaltarista to agricalturiate...	82	82922	11,135	${ }^{38} 12$		
	C.-Botween egricaltarista	27	20481	8,908 0	831	4099	
	D.-Between nor-agriculturists ...	17	38088	18,161 0	4711	76110	
190405.	A.-By agricultariste to nonagrioultariets...		1,032 15	21.924		2,064 12	
	B.-By rion-agrioultnrista to agricaltarista...	${ }^{23}$	+456 34	$0,658 \text { o }$	21.8	91811	
		$\begin{gathered} 29 \\ 6 \end{gathered}$	305 180 88	$\begin{aligned} & 7,960 \\ & 1,972 \\ & 12 \end{aligned}$		610 861 8	
1905-06.							
				18,81618 5,112 8			
	B.-By non-agriculturiata to agricaltazista...	18 21	$\begin{array}{r}17928 \\ 295 \\ \hline 29\end{array}$	5,112 7,329	2818	859 800 8	
		12	391 1	7,414 0	226	6628	
1906-07.	A-By agriculturiste to non-agriouitariets...			11,899 7			
	B.-By non-agriealtarista to mgriculturista...	19	3070	7,184 0	${ }^{23} 6$		
	C. Between agricultarigte is	34	2254	6,266 9	2713		
	D.-Between поп-agricaltaribte ...	8	92429	2,102 5	228	189	
1907-08.	A.- By agrioulínriste to non-agricalturiste....						
	B.-By non-agrienltariste to egrionlteriste....	31	61737	8,158 2		1,235 14	
	C.-Betmeen agrisultarists	68	59114	16,735 0		1,182 11	
	D.-Between non-egrienltarists ...	14	24820	4,394 0	1711	${ }_{407} 0$	

S. H. COVERNTON, Settlement Officer, Sehwan.

APPENDIX VII.

Statement of sub-letting in Johi taluka.

S. H. COVERNTON, Settlement Officer, Sehwan.

APPPENDIX VIII.

Statemint shoving mortgages in Johi talaka,

S. H. COVERNTON,

Settlement Officer, Sehwan.

APPENDIX IX.

Stapmuny of agrionltural stook in Johi taluka of the Larkana district.

APPENDIX X.

Statiment showing wells in dohí taluka.

Year.	No. of villagess					Totar.	Arra of colitivation oxpari WELLS ALONs OB ATDED BY wbles.	
		In 488	Disumed	In ns c	Disased.		On welle alone.	Aided by wella
1898-99	20	47		9		56	A. E .	A. g.
1899-00	20	47	\cdots	9	\cdots	36	1516	5610
1900-01	20	49	\ldots	7	...	56	395	
1901-02	20	51	...	5	...	56	2735	\ldots
1902-03	20	50	-	7	\ldots	57	4820	
1903-04	20	52	...	6	...	58	25.20	
1904-05	21	49	...	12	...	61	461	
1905-06	24	53	...	14	...	67	18 -	34.30
1906-07	24	59	\cdots	10	...	69	345	725
1907-08	24	64		6		70	30	1026
Total...		521	- ${ }^{\circ}$	85	\ldots	606	25728	15936

S. H. COVERTON,

Settlement Officer, Sehwan,

APPENDIX XI.

Statement of crops in the Johi taluka (average of the last 5 years) from 1903-1904 to 1.907-08.

[^4]S. H. COVERNTON,

Settlement Officer, Sehwan.

APPENDIX XII.
2. 170-8

APPENDE：
Statement showing area of cultivated land（excluding jagirs and forests and includin irxigation，during the two quinquennial perids c

	Ymars	Catmext．													
				Erom．		Osimamers．		Wins．		Enverate 5x mex．		Paxar		要最是	
		4 Ars		4．w．		Aㄹat	asentic	4xam．	Ampant	Avan．	Anteso ment	4	anamer	m	Acever
sutireme．		A． 5 ．	Brat		78．	4．	\％ ma_{4}	A．e．	nat a	4． 8	8．．${ }_{\text {c }}$	A． 8	B．${ }^{\text {c }}$	4	B
Deblut		\cdots	\cdots	\％ 818	$\begin{array}{ll}14 & 3 \\ 10 & 1\end{array}$	－	\cdots		$\begin{array}{lll}258 & 1 \\ 181 & 1\end{array}$	＊＊	\cdots	$\begin{array}{ll} 0 & y \\ y & 4 \end{array}$	4 4	\cdots	＊
Whb Eama	$\begin{gathered} 1898-1809.40 \\ 18002-1003 . \\ 1005-1004.50 \\ 2007-1008 . \end{gathered}$	\cdots	＊＊＊	50	\％ 11	＊＊＊			$\begin{gathered} \text { 10\% } \\ \text { en } \\ \hline \end{gathered}$	$\begin{array}{ll} 1 & 1 \\ \vdots & 1 \end{array}$	$\left.\begin{array}{ll} 1 & 11 \\ 5 & 4 \end{array} \right\rvert\,$	1188 588		\cdots	＊
tohlar ${ }^{i}$	$1809-1809$ to 10081085. $1003-1809.0$ $1007-1808$.	\cdots	＊＊	\cdots	\cdots	\cdots	\cdots	\cdots	＊＊＊	＊＊＊	ws	\cdots	\cdots	m	＊
Ehament en	$\begin{gathered} 1898-1698+0 \\ 19021800 \\ 1004-180440 \\ 1907-1908 \end{gathered}$	\cdots	＊＊	58 5 8	284 40	＊	\cdots	＊＊	\cdots	\cdots	m	\cdots	＊＊	＊＊	＊
Mathendiolo ．	$\begin{gathered} 1896-1800 \text { to } \\ 190 z-1803 . \\ 1504-1004+0 \\ 1007-1008 . \end{gathered}$	\cdots	＊＊	＊＊＊	\cdots	${ }^{* *}$	\cdots	\cdots	＊＊＊	\pm	\cdots	＊＊	\cdots	＊．．	！
Gant prame．	$2898-1008$ to $1002-1983$. 1008.1904 to $1007-1900$.	\cdots	\cdots	$\begin{aligned} & 00750 \\ & 011 \end{aligned}$	$\begin{array}{ll} 2,000 & 7 \\ 1,888 & 2 \end{array}$	$\begin{array}{ll}0 & 8 \\ 08\end{array}$	$\begin{aligned} & 7818 \\ & 60 \\ & \hline 68 \end{aligned}$	0 3 00 88	$\begin{gathered} 615 \\ 10811 \end{gathered}$	$\begin{gathered} 10 \\ 88 \end{gathered}$	126 21	＂．＇	\cdots	\cdots	＊
Aroul	$\left\lvert\, \begin{gathered} 1890-7809 \text { to } \\ 10082.1003 . \\ 1003-100150 \\ 1007-1000 . \end{gathered}\right.$	\cdots	\cdots	$\begin{array}{ll} 670 & 18 \\ 404 & 8 \end{array}$		\cdots	$\cdots 3$	5025	$\begin{array}{rrr}38 & 7 \\ 11 & 0\end{array}$	$\begin{array}{ll}15 & 20 \\ 28 & 0\end{array}$	 89 88	$* *$ \cdots	＊＊＊	∞	
Hivo		\cdots	\cdots	20985		F08	110 311		$\begin{aligned} & \operatorname{sen} 7 \\ & \operatorname{sen} 7 \end{aligned}$	$\begin{aligned} & \text { 19.97 } \\ & \text { iss 1s } \end{aligned}$	304	\cdots	\％	＊＊	
Abed		\cdots	\ldots	1,40988 1,489	$\begin{aligned} & 4,0 m 21 \\ & 8,0 m \end{aligned}$	$\begin{array}{ll} 150 & 3 \pi \\ 288 & 0 \end{array}$	$\begin{aligned} & \text { en is is } \\ & 1641 \end{aligned}$	$\begin{array}{ll} 6 \\ 485 \end{array}$	$\begin{gathered} \sin 18 \\ \cos \mathrm{~g} \end{gathered}$	$\begin{array}{ll} 48 & 90 \\ 7 & 50 \end{array}$	$\begin{aligned} & 117 \\ & 188 \\ & 108 \end{aligned}$	＊＊	\cdots	＊＊	
Enator	$\begin{gathered} 1898-1899 \text { to } \\ 1992.1008 \\ 19: 13-1904+0 \\ 1007-1008 . \end{gathered}$	＊＊＊	＊＊	1，804 in 1，805 Y	$\begin{aligned} & 6,27810 \\ & 8,568 \quad 28 \end{aligned}$	$\begin{aligned} & 789 \\ & 785 \end{aligned}$	$\begin{gathered} 0015 \\ 0015 \end{gathered}$	$\begin{gathered} 148 \\ 785 \end{gathered}$	$\begin{array}{ll} \mathbf{7} 8 & 1 \\ \mathbf{y y} 0 & 0 \end{array}$	$\begin{array}{ll} 11 \\ 01 & 5 \end{array}$	$\begin{gathered} 80 \\ 92 \end{gathered}$	＊＊	\ldots	\cdots	
Chase		－ $0 \times$	114	1,48888 1,1468 18	$\begin{aligned} & 4,10815 \\ & 8,8816 \end{aligned}$	$\begin{gathered} 68 \\ 2089 \end{gathered}$	$\begin{array}{ll} 10 & 3 \\ \cos & 0 \end{array}$	10888	$\begin{array}{ll}300 & 0 \\ 30\end{array}$	$\begin{array}{ll} 52 & 20 \\ 00 & 86 \end{array}$	180	＊＊	\cdots	＊＊	＊
Gnim	$\begin{gathered} 1809.1699 \text { too } \\ 1902-1908 \\ 108 .-1804 \\ 1001-190 . \end{gathered}$	$\begin{aligned} & \cdots \\ & 025 \\ & 088 \end{aligned}$	$\begin{aligned} & m \\ & 114 \\ & 012 \end{aligned}$		1，253 0 rei 14	$\begin{array}{cc} 20 & 54 \\ 24 & 1 \end{array}$	$\begin{gathered} n 10 \\ 0 \end{gathered}$	$\begin{array}{lll} 100 & 51 \\ 110 & 0 \end{array}$	$\left.\begin{aligned} & \text { ssen } \\ & \text { san } \end{aligned} \right\rvert\,$	$\begin{array}{ll} 7 & 2 \\ c & 20 \end{array}$	61	＊＊	＊＊	\cdots	
Dase M （1aht		118	8	28880㩆 18	$\begin{aligned} & 5110 \\ & 1008 \end{aligned}$	$\begin{aligned} & 1818 \\ & 2 \times 82 \end{aligned}$	$\begin{array}{ll} \cos & 10 \\ 0 & 6 \end{array}$	$\begin{aligned} & 38 \\ & 5 \times 58 \end{aligned}$	$\begin{array}{ll} 810 & 6 \\ 67 & 6 \end{array}$	$\begin{aligned} & 148 \\ & 20180 \end{aligned}$	340 488	＊＊ 10	\cdots	\cdots	
\％obi	1608.1896 to ［ifoz－1903． 1005－1904 to 1007－1908．		＂＊＊	$\begin{aligned} & 400 \\ & 60 \end{aligned}$	$\begin{aligned} & 148 \\ & 1021 \end{aligned}$	$\begin{gathered} 181 \\ 5 \\ 50 \end{gathered}$	$\begin{aligned} & 510 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 609 \\ & \cos 9 \end{aligned}$	$\begin{array}{ll} 1,868 & 0 \\ 1,88 & 0 \end{array}$	$\begin{array}{cc} 80 & 1 \\ 69 & 1 \end{array}$	$\begin{array}{cc} 15 \% & 4 \\ m & 1 \end{array}$	$\begin{aligned} & 016 \\ & 150 \end{aligned}$	\％ 18	\cdots	
Bunselipat ．		\because	\geqslant	$\begin{aligned} & 818 \\ & \pi 11 \end{aligned}$	1008 4 $\mathbf{4}$		$\begin{aligned} & 1,70 M 11 \\ & 2,900 \end{aligned}$		$\begin{array}{ll} 3 & 5 \\ 14 & 5 \end{array}$		$\left.\begin{array}{ll} 58 & 8 \\ 208 & 18 \end{array} \right\rvert\,$			\cdots	
Bun Morto	$\begin{gathered} 1899.1899 \text { to } \\ 1908.1009 \\ 1090.1604 \\ 1007-1900 . \end{gathered}$	\cdots		$\begin{aligned} & 18 \\ & 60 \\ & 68 \end{aligned}$	$\begin{array}{cc} 50 & 18 \\ 100 & 7 \end{array}$		$\begin{array}{ll} 508 & 18 \\ 84 y & 1 \end{array}$	$\begin{aligned} & 11050 \\ & 10014 \end{aligned}$	$\begin{array}{ll} 38 & 2 \\ 3 & 20 \end{array}$	$\begin{array}{lll} \mathrm{HI} & 5 \\ \mathrm{~N} & 8 \end{array}$	$\begin{array}{ll} 100 & 9 \\ 8 & 5 \end{array}$	\cdots	\cdots	\cdots	

CII.

abari shown in italics) in eqch surveyed village of the taluka Johi, under each kind of he cursent settlement, with the assessment thereon.

Nume of deL	$\begin{array}{ll} \hline 1 & \\ \hline & \\ \text { Yous. } \end{array}$	6.8		ceabip.											
				Bres.		Orass now.		Lim.				81343.		Hinctice	
		Arree.	${ }_{\text {dex }}$	Aran.	Sesers:	Ares.	Aneena.	Atom	$\Delta_{\text {asegnt }}^{\text {mentit }}$	Atra.	Amesent.	Ame	Aosent	Avere	${ }_{\text {max }}^{\text {max }}$
Patori			Re. a.	A. g ..	Ba. a.	4. 8.		4. g \ldots \ldots \ldots	man .. \cdots \cdots	A. s .	H2...	4. ${ }^{-}$		4.8	\%
M mancijwabdi	". ${ }^{\text {. }}$	\ldots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	\cdots	-
Maro		\cdots	\cdots	\ldots	\ldots	\ldots	...	\cdots	\ldots	838 888 8	$\begin{array}{rr}1.504 \\ 500 & 4\end{array}$	\cdots	\cdots
Jhaiko	\cdots	\cdots	\cdots	...	\cdots	\cdots	\cdots	808	$\begin{gathered} \text { 2,809 } 18 \\ 007 \\ 007 \end{gathered}$	\cdots	\cdots
Duabo		\cdots	\cdots	$\stackrel{\square}{.}$	\cdots	\cdots	\cdots	...	\cdots	\ldots	\ldots	2,10\% 39	$\begin{array}{ll} 1,008 & 8 \\ 1,108 & 0 \end{array}$	\cdots	\cdots
BukNal	\cdots	\cdots	.'.	...	"'*	...	\ldots	$\begin{gathered} 1,0889 \\ 808 \% \end{gathered}$	$\begin{aligned} & 2,0 \infty \\ & 2,05 \\ & 2 \end{aligned}$	\cdots	!
Praiore	\cdots	… \cdots	\ldots	\ldots	\cdots	\ldots	\ldots	$\begin{aligned} & 1888 \\ & 1088 \end{aligned}$	$\left.\begin{array}{ll} 34 & 0 \\ 290 & 1 \end{array} \right\rvert\,$	**	is
	$\left\|\begin{array}{c} 1898-1898 t 0 \\ 1002-1009, \\ 1803-1901, \\ 1807-1806 . \end{array}\right\|$	\cdots	\cdots	\cdots	...	\cdots	\ldots	\cdots	… 11	..	\cdots	$\begin{aligned} & 23829 \\ & \pi 3 \end{aligned}$	$\begin{array}{ll} 18 & 1 \\ 48 & 11 \end{array}$	\cdots	4
Mahar-Barsai....		\ldots	\cdots	$\stackrel{.}{.}$...	\ldots	\ldots	\cdots	\cdots	..'	\ldots	657 21 307 307	8004	...	-
Toxtim Buranit.		\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	$\stackrel{-}{*}$	\cdots	...	\cdots	845 57888	$\begin{gathered} 1,8 e 826 \\ 8 \end{gathered}$...	\cdots
Toik Baran ...		\cdots	\cdots	\ldots	\cdots	\cdots	...	\ldots	\cdots	\cdots	\ldots		4, 414	\cdots	\cdots
Din Paninit ..	$1899-1509$ to $1902-1503$. 1803-1004	\cdots		\ldots	"..	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\begin{gathered} 35 \\ 385 \\ 385 \end{gathered}$	\% 18	\cdots	it
Rajodiera -		\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	$\begin{aligned} & 41818 \\ & s \in 21 \end{aligned}$	$\begin{array}{ll} 65 x & 16 \\ 500 & 8 \end{array}$	\cdots	\cdots
Lubo		\cdots	\cdots	--	\cdots	\cdots	\ldots	\cdots	\cdots	$\begin{aligned} & 20888 \\ & 30810 \\ & 308 \end{aligned}$	$\begin{array}{ll} 208 & 8 \\ 305 & 8 \end{array}$	\cdots	\cdots
Ladono Dora		\cdots	\cdots	\cdots		\cdots	\cdots	\cdots	-	\cdots		3238 2431	$\begin{array}{ll} 48 & 11 \\ 818 & 8 \end{array}$	".	-
Tara..		\cdots	\cdots	\cdots	\cdots	--	\cdots	\cdots	\cdots	\cdots	\cdots		mis	\cdots	*
Lelhar		\ldots	\cdots	\cdots	\cdots	\cdots	...	\ldots	\cdots	\cdots	...	1,01618 1,104 4	$\begin{aligned} & 1,287 \\ & 1,068 \\ & \text { is } \end{aligned}$	\cdots	*
Bar Bugbio		\cdots	\cdots	\cdots	\cdots	\cdots	...	\cdots	\cdots	\cdots	\cdots	$\left.\begin{array}{lll} 708 & 8 \\ 884 & 19 \end{array} \right\rvert\,$	2004.004	\cdots	\cdots

Wuras of doh，	Year．	O4R0n：3 t．		EHABIT．											
				Byca．		Ornme mow．		Lim．		Lym aidin 35 3LOW．		Bamizt．			
				Areen	Arsent－ ниеп．	4础．	AEsantw mont．	Aras．	Anemer	stom，	$\underset{\substack{\text { Aosome．} \\ \text { mant．}}}{ }$	Asam．		Aven	${ }^{\text {An }}$
Fat Ous，Muha manad	$1898-1809$ to 1902.3603. $1003-1964.60$ $1007-1008$.	A． E． \cdots \cdots \cdots	Rs． a． n． \cdots	A． 8.	Ren m ．．． \cdots	4． 8.	Ef．a	A．${ }^{\text {E．}}$	埤．．．	A． ．．． \ldots ．．．				4． 8.	H
Wtrath	$\left\lvert\, \begin{gathered} 3809-1899 \text { to } \\ 10003-1806 \\ 1007-1006 . \end{gathered}\right.$	\cdots	\ldots	＊＊＇	$\stackrel{*}{*}$	＊＇．	－	\cdots	\cdots	\cdots	\cdots	81080	808 808.8	\cdots	：
Fraloby	$\left\|\begin{array}{c} 1898-1899 \text { to } \\ 100218009 \\ 1003-190+10 \\ 1007-1808, \end{array}\right\|$	\cdots	\cdots	．＂．	\cdots	＊＊	＂＇	＂．．	\cdots	\ldots	\cdots	$\begin{aligned} & 720 \\ & \text { \% } 20 \end{aligned}$	11714	＊＊	\％
吾ulro Khana ．．		\cdots	\cdots	．．．	\cdots	\cdots	\cdots	＊＊	\ldots	\cdots	\cdots		3814	＊＊＊	\％
Muridiaro ．		\cdots	\cdots	．．．	\because	\cdots	＊＊	＊＊	\ldots	\cdots	\cdots	620 15 455	1.0012 76112	＊＊	
Maidera		\cdots	＊	\cdots	\cdots	＋	\cdots	\cdots	\because	\ldots	＊＊	1,188 07811	$\begin{array}{ll} 2,141 & 1 \\ 1,485 & 14 \end{array}$	\cdots	$\stackrel{1}{4}$
Trematal	$\left\lvert\, \begin{gathered} 1898-1899 \text { to } \\ 1802-1004 \\ 1800-100440 \\ 1007-1500 . \end{gathered}\right.$	＂0	\cdots	\cdots	\％	＊＊	．＂	\cdots	\cdots	＊＊	\cdots	$\begin{aligned} & 48012 \\ & 30025 \end{aligned}$	$\begin{aligned} & 7017 \\ & \cos 18 \end{aligned}$	\cdots	
Fatom		\cdots	\cdots	．．．	\cdots	\cdots	＊＇：	\cdots	\cdots	．＂．	\cdots	$\begin{aligned} & 138 \\ & 358 \\ & 358 \end{aligned}$	3i48	\cdots	4
Eroti xitat		$\stackrel{+}{*}$	＂．．	\cdots	＊＊	\cdots	\ldots	．＂	＂＊＊	\cdots	＊＊	100 104	\％ 4	\cdots	\％
Tabo talender．	$\begin{gathered} 1898-1899 \\ 1808.1003 \\ 1008-1008 \\ 1000 \\ 1007-1008 . \end{gathered}$	$\stackrel{*}{*}$	．．．	＂．	＊＊	＊＊	\cdots	\cdots	\cdots	\cdots	\cdots	$\begin{aligned} & 04 \\ & \text { se } 18 \end{aligned}$	60 3	\cdots	
taji Kaxi ．．．	$\left\|\begin{array}{c} 1808.1809 \text { to } \\ 1802-1008 \\ 1009-1008 \\ 1907-1808 . \\ \hline 0 \end{array}\right\|$	$\stackrel{+}{\square}$	\cdots	＊＊	＂	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	$\left.\begin{array}{ll} 856 & 31 \\ 394 & 20 \end{array} \right\rvert\,$	$\begin{aligned} & 85015 \\ & 05015 \end{aligned}$	\cdots	
Hajk Kan ．．．	$\left\|\begin{array}{c} 1898-1908 ~ t o \\ 1062-180 . \\ 1003-1004 \\ 1007-1808 \end{array}\right\|$	\cdots	ים:	＂．．	\cdots	：	＊＊＊	\cdots	\cdots	\cdots	\cdots	$\begin{aligned} & 71016 \\ & 800 \% \end{aligned}$	$\begin{array}{rrr}1.138 & 8 \\ 981 & 7\end{array}$	．．．	
Alahyutiaro－	$\begin{gathered} 1898.1809 \text { to } \\ 1200-1808 . \\ 1969-1004.6 \mid \\ 1007-18 n 8 . \end{gathered}$	\cdots	\cdots	＂	\pm	＊	．．．	\cdots	\ldots	\cdots	\cdots	31010 197	$\begin{aligned} & 5018 \\ & \text { ais } 0 \end{aligned}$	\cdots	
Yuablesiro ．．．		\cdots	\cdots ：：	\cdots	$*$ \cdots	\％	＂•＇	\cdots	＊＊	\cdots	．．．	$\begin{aligned} & 680 \\ & 7180 \end{aligned}$	8018	＂．．．	
Yad That	$\left\lvert\, \begin{gathered} 1899-1800 \text { to } \\ 100021003 . \\ 1009-1804 \text { to } \\ 19 p 7-1808 . \end{gathered}\right.$	．． ＊＊	3at 4ep		\cdots	\cdots	＊．．	\cdots	\cdots	\％	＊＊	1438 980		\cdots	，
Pain me		m	＊＊	بی بی	\cdots	\cdots	\cdots		\cdots	\cdots	4 \％	$\begin{aligned} & 15038 \\ & 11088 \end{aligned}$	$\begin{aligned} & \text { ex } \\ & 19018 \end{aligned}$	\ldots	1
Chatay Kot ．．．	$\left\|\begin{array}{c} 1890-1809 \\ 10020.1000 \\ 1003-100150 \\ 1007-1008 . \end{array}\right\|$		\cdots		＊＊ ent	\ldots	\cdots	$\stackrel{*}{*}$	\cdots	\cdots	\cdots	1，007 81 8450	1，006 18 2，8\％0 18	$\begin{aligned} & \cdots \\ & a \end{aligned}$	，
Eheroaspo ：	$\left\lvert\, \begin{gathered} 1898-1899 \text { to } \\ 1902.1908 \\ 1913-1904 \\ 1007-108 \end{gathered}\right.$	\cdots	＊．．	\＃：	$\stackrel{*}{*}$	\cdots	\cdots	＂＊	$\stackrel{.}{ }$	＊＊	\cdots	$\begin{aligned} & 4638 \\ & 80519 \end{aligned}$	5013	\cdots	

	Yeass	antrame$\text { Aroz. }\left\{\begin{array}{c} \text { Amones. } \\ \text { meat. } \end{array}\right.$		KHabip,											
(Mamean doh.						Oves	now.				anmen LOT.	Baxa			1804.
				Aras.		Arem.	Annerattowat:	Ares.	Argexp ment.	Aras.	Anreppa ment.	Arsm.	A mex.	Arts	5
Hilijo ...		4. \quad.	焐. $\begin{gathered}\text { c. } \\ \ldots \\ \ldots \\ \ldots\end{gathered}$	4. \quad. \cdots \cdots \cdots	R\%. \ldots \ldots \ldots	A. \cdots \cdots \cdots	Re. a.	A. p.	Ra. a \ldots \ldots \ldots	A. E.	8. ${ }_{\text {an. }}$			4. \%. ...	\%
mikat Halijo ...	1806. ${ }^{2} 898$ to $1902-1008$. 1803-1204 20 1907-1908.	\cdots	\cdots	\cdots	\cdots	"*	...	\cdots	.".	\cdots	\ldots	\cdots	**	\cdots	
Potho	A.	..	\cdots	*	"-.	...	**	**	..*	400 18	\%eot	\cdots	
Jinab	$\left\lvert\, \begin{gathered} 2889-1890 \mathrm{ta} \\ 10021903 \\ 1092-1803 \mathrm{to} \\ 1007-1003 . \end{gathered}\right.$	\ldots	\ldots	...	\cdots	\cdots	\cdots	**		sen 11	...	
Went Preath ...		\cdots	\cdots	...	\ldots	**	**	...	**	\cdots	\cdots	$\begin{aligned} & 6585 \\ & 7858 \\ & 78 \end{aligned}$	$\left.\begin{array}{rr} 306 & 0 \\ 1, m 8 & 5 \end{array} \right\rvert\,$	\cdots	
Thuh Mmo	\cdots	...	**	\cdots	"	"*	\ldots	\ldots	"*	$\begin{aligned} & 6018 \\ & 883 \\ & 82 \end{aligned}$	078	\cdots	
Mall m		\ldots"	"	\cdots	.'.	**	...	**	**	1,183 888 83	1,880 18 1, 4018	\cdots	
Yiburani .	$\left\|\begin{array}{c} 1809-1290 . t 0 \\ 1007.1003 . \\ 1803-10034 \\ 1007-1003 . \end{array}\right\|$	\cdots	\cdots	\ldots	**	\cdots	\cdots	\ldots		$\begin{aligned} & n \% \\ & 74 \% \end{aligned}$	\cdots	
Artio ..		**	...	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	...	\ldots	\cdots	\cdots	\cdots	
Mimanembl ..	$\left\|\begin{array}{c} 1809-189980 \\ 1902-1503 . \\ 1803-100410 \\ 1007-1008 . \end{array}\right\|$..	.'.	\cdots	\cdots	***	\ldots	14t 17 74	17 8 08 5	\cdots	
Jempur Lindial.	$1878 \cdot 1890$ to 1902-1909. 	-•	\cdots	\cdots	\cdots	**	...	-	\cdots	$\begin{aligned} & 31710 \\ & 1018 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	\cdots	
Wuthlr Whithid		\cdots	...	\cdots	\ldots	\ldots*	\cdots	...	\cdots	$\begin{aligned} & 320 \\ & 371 \\ & 311 \end{aligned}$	10e 10	\cdots	
Pat Sulimana		\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\ldots	\ldots	378	$\begin{gathered} \text { En } \\ \text { 19 } \\ \text { ini } \end{gathered}$	\cdots	
Thal .	$\begin{gathered} 1809-1608 \text { vo } \\ 11079-1083 . \\ 1018-1904 \\ 1007-1008 . \end{gathered}$	**	...		***	$\begin{aligned} & \text { Eat } \\ & \text { ave } \end{aligned}$	\cdots		\cdots	\cdots	\cdots	48 *1 $\%$	1,sen $\frac{1}{6}$ sen	\cdots	
Chtod	$\begin{gathered} 1008-1809 \text { to } \\ 1002-1043 . \\ 1005-1904, \\ 1007-1508 . \end{gathered}$	$\begin{aligned} & \cdots \\ & \text {... } \end{aligned}$		\ldots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\ldots	$\begin{aligned} & 580 \\ & 3083 \end{aligned}$	$\begin{aligned} & 1, r 00 \\ & 1,600 \end{aligned}$	\cdots	
Stwre	$\left\|\begin{array}{c} 1808-1809 \\ 1002-1009 \\ 1003-1004 \\ 1007-1008 \end{array}\right\|$				$\rightarrow 4$ $\rightarrow 4$	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	$\begin{aligned} & 078 \\ & \text { 90 } 20 \end{aligned}$	1,419 8 1,200 13	\cdots	
Pat Menbri in		$\begin{aligned} & \text { *. } \\ & \text {.. } \end{aligned}$	** =ax			\cdots		\cdots	...	\cdots	\cdots	\cdots	\cdots	\cdots	
Hoblu mbin .	1898.1890 to 1012-1005. 1008-100 100 1007-1906.	$\stackrel{.7}{ } \cdot$	\cdots	...	\cdots	$\begin{array}{ll} 817 \\ 815 \end{array}$	36\% 1	\cdots							

8abI																Torm	
		\%vo	nor						+					$\max _{\substack{\text { Raxi }}}$	2		
4 mm		man	${ }_{\text {anem }}$		mis	4ros	${ }^{\text {Anmoser }}$	men	${ }_{4} 4$ mean			s	${ }_{\text {Amen }}$			Ara.	Anminest
a.										..	-			4. 8.	$\begin{gathered} \text { Benet } \\ \ldots . \end{gathered}$		sa. an 68 10 +
-					\cdots				\cdots	\because	88	3	\cdots	\ldots		\% 0	
?					\because				18.5	${ }^{6} 0$	$\begin{aligned} & 6 \\ & \frac{5}{2} \end{aligned}$		\cdots	-	$\begin{array}{ll} 1 & 18 \\ \hline 18 & 28 \\ 808 & 4 \\ \hline \end{array}$	$\begin{aligned} & 1,91218 \\ & 1,16 \end{aligned}$	
\%					-				\cdots		$\begin{aligned} & 59 \\ & 39 \end{aligned}$			-		$\begin{aligned} & 2,448 \\ & 3,26 \% \\ & 3, \end{aligned}$	
;-											$\frac{1}{2}$	${ }^{0} 18$		-			
in												0			$\begin{array}{ll} 1050 & 20 \\ 1050 & 0 \end{array}$	1,700 1,589	
-										\ldots	$3_{2}^{0} \frac{3}{3}$	\% 11				18010 108 998 198	
										$\stackrel{*}{*}$		$\begin{array}{ccc} 81 & 8 \\ 3 & 8 \\ 120 & 8 \\ 0 & 18 & 6 \end{array}$		$\begin{array}{lll} 20 & 3 \\ 6 & 5 & 5 \\ \hline & 5 & 7 \end{array}$			
					"..	- ${ }_{0}^{018}$		\cdots	\cdots			
										\cdots	3	$\ldots 8$					
										近	(18068						
										$\begin{aligned} & 808 \\ & 608 \\ & 608 \end{aligned}$					3,086 60,891 0 2,962		

E. H. Covernton, Settlement Officer, Sehwan.

APPENDIX XIII.

- Statement showing demands and realization in Johi taluka for the years beginning from 1898-1898 to 1907-1908.

Year.	Criosg	Beminaion	$\begin{gathered} \text { Hevenue } \\ \text { for } \\ \text { Collection. } \end{gathered}$	Arreast
	Rs. 8. p.	Rs. an p.	Rs. ${ }^{\text {a }}$ a, p.	Rs. a. ps
1898-1899.	87,986 15 0	23,193 30	59,153 06	5,640 116
1899-1900	86,880 - 90	36,100140	$48,14810 \quad 2$	2,631 010
1900-1901.	1,55,235 4 0	17,181 80	1,26,792 21	11,261 911
1901-1902	1,43,509 4. 0	21,557 50	1,13,430 86	8,521 66
1902-1903.	1,57,396 00	18,893 770	1,19,592 90	18,910 00
1903-1904.	1,26,341 30	19,330 14.0	98,247 7 \%	8,762 140
1904-1905.	78,421 50	23,288 410	45,957 100	$\begin{array}{llll}9,175 & 7 & 0\end{array}$
1905-1906	97,597 3 0	3,563 14 0	91,428 0	2,605 65
1906-1907.	$\begin{array}{llll}1,70,023 & 9 & 0\end{array}$	3,799 0 0	1,46,406 1	19,818 711
1907-1908.	1,56,903 $13 \quad 0$	16,670 150	1,28,656 880	11,576 60
Total	12,60,295 10	1,83,579 4	9,77,812 814	98,903 4 8
A verage	$1,26,029.8$	18,357 1410	97,78140	9,890 $5 \quad 3$

B. H. COVERNTON,

Settlement Offioer, Sehwan.

APPENDIX XIV.
C.

APPENDIX
Stateming ahowing the results of the proposed rates as compared with the cultivation of the last 5 years of the settlement

5anw 4 4030			Eny会			menes			4.154		
1	空	营				$\frac{8}{4}$	产	茦	考	¢	＋
1 \cdots \cdots		82， \square \square \square			ma， ․：－	$\begin{gathered} 4! \\ 18 \\ 19 \end{gathered}$	$\begin{gathered} 10_{0} \\ 110 \\ 0 \\ \hline 8 \end{gathered}$	$\begin{gathered} \text { Eay } \\ \hline \end{gathered}$			
	\cdots	\pm	\cdots	\cdots	\cdots	8	${ }^{118} 8$	－ 80	$\begin{array}{r}02 \\ \hline 81 \\ \hline\end{array}$	\％	${ }_{3}^{278}$
\cdots	＊	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\stackrel{\square}{\square+.}$	${ }_{0}$	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	＂＊	\cdots
\ldots	＂．	\cdots	\cdots	\cdots	\because	\cdots	\cdots	：－1．	\cdots	$\stackrel{*}{*}$	\cdots
…	\cdots	\cdots	\cdots	\cdots	\％	\cdots	\cdots	\cdots	8	8	${ }^{8}$
\cdots	\cdots	＂＊＊	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	15	${ }^{8} 8$	${ }_{69}{ }^{37}$
＊．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	7	$8{ }^{81}$	${ }_{38}^{178}$
7	4	173	$\stackrel{\square}{-}$	\cdots	＊＊＊	\cdots	\cdots	＊	19	${ }^{4} 88$	${ }_{6}^{4}$
\cdots	$\stackrel{\square}{*}$	＊＊	\cdots	\cdots	＊	\cdots	\cdots	\cdots	${ }_{88}^{88}$	8_{88}^{88}	186 $\$ 12$
$\stackrel{-1}{6}$	\pm	${ }^{197}$	\cdots	\cdots	\cdots	\cdots	\cdots	\％	70	${ }_{8}^{8} 8$	3278
－8	3	＂184	\pm	\cdots	\cdots	\cdots	\cdots	\because	61 61	${ }_{8}^{8}{ }_{8}^{\text {a }}$	${ }_{178}^{188}$
．．．．	\cdots	$\stackrel{.}{.}$	－	\cdots	4	$\frac{7}{7}$	${ }_{0}^{1} 8$	8	48	8	118
．．．	\cdots							8			
．．．	\cdots	\cdots	\cdots	\cdots	\cdots	2	0	1	188	88	${ }_{489} 880$
\％	\％	${ }^{* \prime 2} 158$	\ldots	\cdots	＊	\cdots	\cdots	$\stackrel{4}{*}$	128	${ }_{8}^{88}$	30\％
79	3	${ }^{-123}$	\cdots	：	\％	$\stackrel{7}{4}$	\cdots	＊	79	88	1895
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\frac{11}{n}$	1． 8.8	$\begin{array}{r}16 \\ .6 \\ \hline\end{array}$	10 10	888	888
\ldots	\because	\cdots	\ldots	\cdots	＊＊	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$1 \begin{aligned} & 1 \\ & 0 \\ & 0\end{aligned}$	${ }^{18}$	${ }_{29}^{19}$	88	${ }_{7}^{7}$
\cdots	\ldots	\cdots	4	${ }^{8} 8$	${ }^{6}$						
\cdots	\cdots	\cdots	\cdots	\cdots	\because	\cdots	\cdots	\cdots	${ }_{89}^{98}$	${ }^{2} 9$	${ }_{898} 108$
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	$\frac{1}{2}$	1． 6	\ldots	\cdots		\ldots
\cdots	\cdots	\cdots	\cdots		－						
\cdots	：．．	．．	－	\ldots	．．．	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots	\because	\cdots	\cdots	\％	${ }_{3}^{104}$	8	
\cdots	\because	－	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	189 189	\％	${ }_{698}^{979}$
\cdots	\cdots	＊＊	\cdots	．．．		\cdots	\cdots	\cdots	119		238
	＂＊	＊	\cdots	\cdots	\cdots	．．．．．．	…	＂．．．	218	8	416
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	II	$\begin{array}{lll}1 & 8 \\ 0 & 8 \\ 8\end{array}$	$\begin{gathered} 17 \\ 5 \end{gathered}$	${ }_{\theta 1}^{81}$	${ }^{8} 8$	${ }^{188}$
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\begin{gathered} 80 \\ 80 \end{gathered}$	${ }_{0}^{1} 8$	哲	$\begin{gathered} 00 \\ \hline 0 \end{gathered}$	${ }_{8}^{8} 8$	${ }_{150}^{80}$
\cdots	\cdots	\because	\cdots	\cdots	\cdots	$\begin{aligned} & 31 \\ & 81 \end{aligned}$	${ }^{1} 10$	$\begin{aligned} & 50 \\ & \text { 16 } \end{aligned}$	\％	${ }_{8}^{8} 8$	${ }_{21}^{18}$
．．．	\cdots	\cdots	\cdots	\cdots	\cdots	17.	${ }^{13} 8$	$\begin{array}{r} 29 \\ \hline \end{array}$	${ }^{1} 1$	${ }_{\text {8．}}^{8}$	8
\cdots	\cdots	\cdots	\cdots	\cdots	\％	4	${ }_{0}{ }_{0}$	8	$\stackrel{\sim}{\square}$	\％	＂
\cdots	\cdots	\ldots	\cdots	\％．	\cdots	夗	${ }^{1} 8$	$\xrightarrow[\substack{188 \\ \hline 6}]{\substack{\text { che }}}$	1	818	4
38	\pm	＂0085	\cdots	．．．	\cdots	280	${ }^{1} 8$	\％ 819	1，588	${ }^{2} 8$	S 5,072
\cdots	\cdots	\cdots	\cdots	＋	\％＊	${ }_{67} 8$	$1{ }^{1} 8$	${ }_{658}^{658}$	\cdots	－	\cdots

c 170－18

IIV.
existing rates in each village of the Johi taluka on the basis of the average (1903-1904 to 1907-1908).

	硠					2
	붕		昭			\％
	：		：	：$: 1: 1$	aram	
	：		：	； 3 ：$: 1$	Rose	
	：	¢ ：	：		Anem	
	：$:$		：	1：！：	Ata．	
	：		：	：：：：	Bate．	䍖
	：		：	：$: 1$ ：		
	：		$1:$	：$: 1 \mathrm{~B}$	Ara．	
	：	：	：：	： i ：	8，	，
	：	：$: 1 \mathrm{l}$	：	1：：4：$: 1$	Amemmant	\％
	$1:$		：		Amm	
A！	：		：：	： $1: 10$	2mom	5
：	：	：	：	11 $1: 4$		
	：		：$:$	！： 1	amen	
	：	位：	：	：1：$: 17$	Rate	\％
	：		：	： $1: 14$	Anmmat	\＃

Now			Hzas mmusa．			Haxam			．mm		
4	㶳	H	4	容		$\frac{8}{4}$	\％	直	4		－
4.	2e． 4	ma	${ }^{\text {ait }}$	4．	\％	4	Buta	！ Ba	4	Bent	${ }^{\text {Pa，}}$
\cdots	．．．	\cdots	\cdots	\cdots	\cdots	4	$1{ }^{10} 8$	${ }^{85}$	\cdots	\cdots	\cdots
\cdots	－	\cdots	＂	\cdots	\cdots	${ }_{8}^{88}$	${ }_{6}^{2}:$	88	\cdots	＂：	．．．
＂＇	．		－			129	12	27			
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	${ }^{23}$	${ }^{8} 8$	${ }^{12}$	\cdots	\ldots	．．．
\cdots	\cdots	\cdots	\cdots	\cdots	\％		${ }_{6}^{15}$	${ }_{48}^{88}$	\cdots	\ldots	\cdots
\cdots	$\stackrel{.}{\text { a }}$	\cdots	\cdots	\cdots	…	19	${ }_{0}^{1}{ }_{8}^{4}$	250	\cdots	$\stackrel{.}{\text { ．．}}$	．＇．
＂．：	\cdots	\cdots	\cdots	\cdots	\cdots	489	号盛	${ }_{\text {\％\％}}^{\text {\％}}$	\cdots	\because	\cdots
．．	\cdots	\cdots	\cdots	－	ㅍ．．	翟	${ }_{0}^{1} 8$	2， 2107	\cdots	\cdots	．
＊．		${ }^{*}$	\ldots	\cdots	\cdots	g14	18	2，294			
\cdots	：＂：	\cdots	\cdots	＂．＇	\cdots	816	${ }^{1} 8$	4	$\stackrel{\square}{*}$	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	${ }^{218}$	${ }^{1} 8$	${ }_{169}^{507}$	\cdots	\cdots	\cdots
\cdots	．．．	\ldots	\cdots	\cdots	\because	$9{ }^{917}$	${ }^{1} 8$	${ }_{188}$	$\stackrel{\text { \％}}{ }$	\cdots	\cdots
\cdots	\cdots	\cdots	．．．	＂．：	\cdots	4	${ }_{0}^{1108}$	${ }_{80}^{80}$	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	${ }_{1}^{1,097}$	${ }^{3} 10$	${ }^{1,780}$	－	\ldots	．．
：＂＇		＂＇	\cdots								
\cdots	\cdots	\cdots	\cdots	\cdots	\because	，1，680	${ }^{1} 8$	${ }^{3,188}$	\pm	\cdots	．．．
…	\cdots	\cdots	\cdots	\cdots	\cdots	${ }^{68}$	$0^{1} 8$	${ }_{204}$	\cdots	\ldots	\cdots
．．．	\cdots	\cdots	\cdots	\cdots	\cdots	${ }_{1}^{1,088}$	${ }_{0}^{1}$	${ }_{4}^{2} 518$	\cdots	\cdots	\cdots
\cdots	\cdots	\cdots	${ }_{80}^{30}$	${ }_{1}^{128}$	8	${ }_{285}^{288}$	${ }_{0}^{12}$	${ }_{108}^{508}$	$=$	\cdots	＂
\cdots	\cdots	\cdots	34	${ }_{1}^{1} 10$	${ }_{80}^{88}$	${ }_{268}^{868}$	${ }^{1} 8$	－ 8	$\underline{\square}$	\cdots	\cdots
\cdots	\cdots	：	\cdots	\cdots	\because	${ }^{878}$	1 0 3 0 3	${ }^{208}$	＝	\cdots	\cdots
\cdots	\cdots	＊	$\stackrel{.8}{*}$	118	${ }^{10}$	1	${ }_{1}^{110}$	${ }^{2}$	－	\cdots	\cdots
\cdots	\cdots	\because	\cdots			${ }^{007}$	18	\％	\cdots		＂＇．
\cdots	\cdots	\cdots	\cdots		\cdots						
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	8	${ }_{0}^{1}$	80	－	\cdots	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	${ }^{89}$	${ }_{0}^{1} 8$	$\xrightarrow{1089}$	\pm	\cdots	：－＇
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	94	${ }_{8}^{2} \frac{8}{2}$	${ }^{515}$	\pm	\cdots	\cdots
\cdots	\cdots	－	\cdots	\cdots	\ldots	${ }_{188}^{198}$	（1）	${ }_{98}^{208}$	$=$	\cdots	\cdots
\cdots	\cdots	\cdots	\approx	\cdots	\cdots	$=$	\cdots	\cdots	$=$	\cdots	\cdots
\％．＇	\cdots	＊	${ }_{\sim}^{*}$	－	\cdots	－	－．	$=$	\cdots	\ldots	．．．
…	\cdots	${ }^{3}$	＂＇m	－	\cdots	＝	$=$	$=$	\cdots	\ldots	\cdots
\cdots	\cdots	\cdots	\cdots	＝	\cdots	\cdots	…	$=$	\cdots	$\stackrel{\square}{\square}$	＂：＇
\cdots	\cdots	\cdots	：．．	\cdots	\cdots	\cdots	＝	\cdots	\ldots	\％．	\cdots
\cdots	\cdots	\cdots	70	${ }_{1}^{1120}$	118	${ }_{\text {10，}}^{16,396}$	${ }^{1} 8$	${ }_{\text {2，}}^{8,288}$	＂：＇	．．．＇	\cdots
2080	\cdots	\cdots	10	110	14	${ }^{265859}$	1．8	2，380	2，696	35	8，07
88	1.	${ }^{18}$	－	139	14	83， 585	0 n	77，78	1；68	$3 \cdot 1$	5，54
\cdots	\cdots	\cdots	\cdots	：．．	\cdots	：．：	\cdots	\cdots	：	\cdots	\cdots
．．＇	＂＇	\cdots	\cdots	＂＊	＂＇	＂	．－	＂	＂	\cdots	${ }^{*}$
\cdots	＊＊	＂i	＂＊		＂	＂	4	＂			

Eharit Burant－
－Dotalis or a rea addar anch rato．

Unwtered $\$, 340$ at 0×0 per some 1,100
Bablo
Dotaff of wroa of exiotiog berant intan

 III Oarden

56
APPENDIX XV．

													T		8																		
	JOAI				frics．		W \quad \％	249．			$\dot{\vec{y}}$							Oo．	Cor	O2N．	Tob	aca．	Fod G	S\％R									
曷	会	$\begin{gathered} \text { 总 } \\ \hline \end{gathered}$	㔛			薥		落 苞	薥			最	曷 最	感	＊	空	$\begin{aligned} & \text { 世 } \\ & \text { 品 } \\ & \text { 䍚 } \end{aligned}$	苕			隶	娄	发品		菏	菬	若		蓸	鼻	等		
		寅富		点萛						容筧			硈貝	品品	容品	吽号号			㐌品買		穿熍	里宫克			茧睍	部号号							
4898－1898．．	110	18	111																														
\％000		1	1.15	\cdots	\cdots	21	88	． $2: 8$	\cdots	\cdots	\cdots	\cdots	84	211	44	32	\cdots		127	40	\ldots	10		．．	\cdots	\ldots					\ldots		
1880－1900．		1.11	1.15	\cdots	\cdots	80	3 6		\cdots	\ldots	．．．	．．．	8 II	218	17	37	．．		1110	． $815^{\text { }}$		40											
1900－1901．		111	$1-16$	40	8.	8.6	84		．．．		\ldots															＊＊	\cdots	\cdots	＊＊	\cdots			＊＊
1001－1909．	－ 1	148	2	－ 12	8.8	8.	8.8	3			\cdots	\ldots	\cdots	\cdots	＊＊	＊＊	\cdots		．．．	．．．	\cdots	＂＇		＂＊	．．．	\cdots	＊＊＇	\cdots	＊＊	＂．	＂＇	\cdots	\cdots
．2002－1909．	\＆ 19	210	214	4.6	88	$\begin{array}{ll}8 & 7\end{array}$	8.1	－ 4		\cdots	－		\cdots	\cdots			．．．		．＊＊	\cdots	．．．	\cdots	\cdots	＊	\cdots	\cdots	\cdots	\cdots	\cdots	．．＊	$4 *$	\cdots	\cdots
：1808．1004		818	815						\cdots	\cdots	．．	\cdots	\ldots				\cdots		．．．	＊＊＊	\cdots	\cdots		\cdots	\cdots	\cdots	＊＊	＊＊	＊＊	．．＂	\cdots	\cdots	＊＊＊
		8							\cdots	\ldots	＊＊	\cdots	．．．		418				．．．		\cdots	．＂					．．．	．．．	＊＊			\cdots	
5004－1005．		． 218	80	81		18		8.8	＊＊		\ldots	\cdots			414				．．．									．．．	．．．				
290k－1906．	914	\％11	$8: 7$	$\times 8$	t	58			210	47	8.6	818	410	818	611						66	7							\cdots	\cdots	\cdots		
2000－1007．	\＆ 15	818	83	615	$8 \cdot 6$	58	45		211	110	87	40		40	613	5.0			15 ：6		610	710						\cdots		\cdots	${ }^{*}$		
2007－1808．	212	8 it	88	615	56		－－7		$2 \cdot 18$	411		311	4.15	42	71	55			168			710					\cdots		\cdots		＊＊	＊＊	．
																											＊＊		＊＊	\cdots	＊＊	\cdots	

APPENDIX XVI.

Statrment showing the general financial results of the proposed setflement of the Johi taluks based on the average of the past 5 years fram 1903-04 to 1907-08.

S. H. COVRRNTON,

Settlement Officer, Sehwan.

APPENDIX A.

Special rules for the revised inrigational settlement of Sehwan, Johi and

 Dadu talukap.
Bule 1.-These rules shall apply to Sehwan, Dadu and Johi talukas only.

The ordinary rules for remissions and for the administration of irrigational

Applicatiot :
Fermer tules how far meintained. settlements shall remsin in torce except in so far as they may be modified by any of the rulea hare following.
Rule 2.-Rule No, 4 of the fallow rules (Speoial Circular No. 20,
Falloms. page 152) shall not apply to barani lands whioh obtain no black water or hill-stream irrigation and have no registered water-supply from a cunal or the river nor to the lands on the Manchhur referred to in Rule 4 following.

Rute 3.-If lands to which a registered source of water-supply from a canal or the river hias been assigned are cultivated as barani and afterwards remain uncultivatel for 5 years, then the fallow assessment to which they become liable in the 5th year shall not be the barani assessment but that chargeable on the description of irrigated cultivation last carried on in the field.

Bule 4.-The special Manchihur remission rules printed on page 165 of the
Remissione.
Commissioner's Special Circulars (No. 2) will continue in force for all lands whose registered source of water-supply is from the Manchhur. Remissions under these rules will als? be given in the same way for p rtions of survey numbers remaining uncultivated owing to flooding by the Manchhur even though their registered source of irrigation is not the Manchhur.

Rule 5.-In barani lands which have received no black water or hillstream irrigs:ion the existing practice will be oontinued of remitting the assessmant on uncultivated portions of survey numbers provided that the uncultivated area is at least $\frac{1}{4}$ of the area of the survey number.

Rule 6.-Remissions on barani cultivation in all lands assessed at one rupee par acre and under shall (on account of the low rates of assessment) not ordinarily be granted. But in exceptional cases where the geueral uature of the calamity seems to demand a large measure of remission or postponement, the Mukhtyarkar shall prepare a statement showing in anuas the general conditions of each deh, and this statement shall he tested by the Assistint or Deputy Collector and its results, with the Collector's recommendation, reported to the Commissioner.

All lands assessed at over 1 rupee per acre ahall be entitled to the benefit of the remission rules.

Rule 7.-(In modification of rules 4 and 6 on pages $572-574$ of Special Circulars, No. 54.)

Except in the purely barani lands referred to in Rule 8 and in the ca-es referred to in Rule 10. if a number which has been cultivated in kharif is cultivated again in the succeeding rabi, then it will be charged according to the rates fixed in the settlement for dubari cultivation. Gardens will form no exception to this rule.

If the second orop is watered with well water only (but the first crop received Indus water), then the dubari crop will be charged as unwatered (i.e., at 8 annas). But if both first and second crops received well water only no charge will be made for dubari crop.

Rule 8.-In barani lands which have received no black water or hillstream irrigation, no dubari assessment will be taken if jambho, sarila or other crops usually grown in rabi be sown in a field which is cultivated in kharif also, but the whole will be treated as a single crop. But if a number sown nss barani is accidentally flooded in kharit with Indus water and is subsequently cultivated as sailabi in rabi then the barani rate will be charged in kharif and the full sailabi rate in rabi. If a field is cultivated in kharif with barani and in rabi with hill-stream then in all dehs the dubari crop will be charged the difference between the kharif assessment and the rabi + dubari assessment.

Rule 9.-In the kackho and the harani hnds of Sehwan talyka, arhari "

- areason intromediata botreon. kharit and rabi. previously reaped, or are
+ Lete mpring orops. crops will be free from assessment provided they merely spring up from the stubble of kharit crops suoceeding rabi and preceding kharif) will be liable to assessment, but if a number be cultivated both in adhawa and also in the nucceeding kharif it will pay only a single assessment for both.

Rule 10.-In irrigated lands if a crop ordinarily grown in rabi is sown at the same time with and mixed with a kharif erop, no dubari will be taken but the whole will be treated as a single kharif crop.

Rule 11.-The special unploughed rate for the Manchhir will apply to all

denesiment

 lands which have actually been watered from the Manchhur and not merely to those whose registertd source of irrigation is the Manchliur.Rule 12.-A clearance allowance of 3 annas per aore will continue to be. given on lands wateredthy the Rajwah and other hill flood eanals in oroup II. of Johi taluka. But no allowance will be given in group III on account of the lowness of the assessment.

Rule 13.-In the amended rule 6 printed on page 574 , Special Circniars the words "Gaxdens will however, ete.," down to "natural source" shall be omitted, and the following substituted in their place, "gardens will be assessed acoording to the method of irrigation adopted."
. Rule 14,-The following definitions shall be in force in these talukas and the assessment charged in socordance with them.
(i) Kabi bosi refers to land which receives an artificial supply of water \ddagger Flow. for rabi cultivation whether by wheel or mok \ddagger at any time before the sowing of the seed and which receives no water after the sowing.
(ii) Raii sailabi refers to land which has received natural moisture only whether by flonding or by percolation.
(iii) Rabi lift refers to land which rearives water for rabi cultivation by lift after the seed has been sown, and which had not previously been flooded by natural means or by an artificial mok. \S
(iv) Rabi flow refers to lands which receives an artificial supply of water by a mok for rabi cultivation after the seed has been sown.
(v) Sailabi madad oharkhi refers to land whioh before sowing received a supply ol water by natural flooding and after sowing received an artificial lift supply.
(vi) Bosi madad charkhi is the same but with the words "artificial flooding from a mok" substituted for " natural flooding."
Lands watered before sowing by wheel or flow, from a canal, etc., which after sowing receive well water only will be assessed as bosi.
Adhawa sailabi will be assessed as rabi sailabi in surveyed lands and at "rabi ploughed" in unșurveyed kaohas.
Rule 15.-Na rebate allowance will be given on unwatered sailabi cultivation.

Remurks.

Rules-2, 4, 5 and 10 merely continus the existing practice of the division, but,rule 5 extends to the whole division a concession that for some obscure reason has hitherto been confined to Johi talnka. Rules 4 and 11 make provision for the variations of the Manchhur and the fact that lands may be flooded by it although according to the Settlement Register they have different sources of water-supply. When this happens their position is exnetly the same as that of other Manchhur lands and it would be unfair to treat them different1y. The necessity for rule 6 is explained in the Johi report. The rule is a modification of the rule in force in the Desert taluka of Thar and Parkar. Rules 7 and 13 modify the rules in the Special Circulars to suit the proposed rates Cor dubari. Clearly if gardens are to be assessed according to the muthod of irrigation, there is no reason to continue their exemption from dubari. I see no ceason why a number watered in kharif with river water should not pay. the unwatered dubari rate oven if the dubari orop is on a well. I think the dubari crop must gain some advantage from having bad a watering in kharif from a canal. Such dubari crops are usually garden crops and as such even under the old settlement they had to pay the difference betwreen'the kharif
rate and the garden rate. As this special rate has now been abolished, these crops can well afford to pay the 8 annas dubari rate. But when both erops are grown on well water only there seems no ground for making any alteration in the present custum of taking no assessment for the dabari; especially as this custom is in accordance with the orders of Government.

Rule 8.-The necessity of this rule is shown in paragraph 9 (i) of the Johi report At present if the jambho, etc., is sown at the same time with the late juur, it is usually eutered as kharif, though not invariably. If it is sown among the stiantiag crop bafore harvest ic is usually entered as dubari Obviously it is almost impossible for the tapadur to know if the seed was sown along with the juar or som whh it later and he has to depend on the statements of haris. In any case this jambho orop is usually poor and often consists only of few scattered plants.

The effect of rules 7 and 8 in the 2 nd group of Johi hos been explained in the report. It will be the sams in all other hill-stream dehs ; i. e., if barani is followed by hill-streare duburi the total assessment will always equal the "hill-stream rabi +8 annas. And as the kharif baranterop muit always be of much less import nee than the hill-stream dubari this seems to be fair enough. It would obviously be ahsurd to charge only the kharif rate + a dubari rate, for the total would then be less than the rabi hill-streace alone.

Rule 9.-That arhtri crops should be fres of assass nent is in accordance with the Commissioner's standin orders. Tha proviso appears necessiry to avoil the necesisty o : a definition of arhari ay distinguishe: from the late kharif crops which would be difigult. The rule will prevent, a khatedar from being chag3d marily beows? last year's stubble has sprouted and it also maintins the prin:iple that dubari should in no casa bu charged ia barani lands.

So too to charge duhari on the khar f because of a previous adhawa would be unfair. Except in very rare caves the a lhawa crop is yrown and cut for fodder only, but it is always allowel to spring uaguin in the bollowing kharif as a grain crop if it receives enoush water. It it loas not get water and does not develop: grain in kharii that is no renson for not chargin; the assessment ence. The effect is procively the same as if the kha if crop had been sown and failed and remissions in such cases have been aholisheil by rule 5 except in the 2nd ur up of Johi. In that group the khatedar can petition for remission as usual on the adharia.

The state of affairs referred to in rule 10 is confined to riverside landsgenerally to kaehas or kacha-paka lands.

The necessity for rule 3 is explained in the Dadu report.
Rule 14.-These definitions will relieve from the high rabi charkhi rates all those crops which get no water alter sowing. These are as a rule oilseeds. Their condition and appearance is precisely similar to that of flow bo-i crops and I see no reason why they should be rated higher than flow bosi or why the rates for real charkhi should be lowered on their account. The question whether a crop has received water after sowing or not seems to me more important than the question whether it received its water in Septenber or Novenber. The definitions given are almost the same as those given by Mr. Wali Muhammad in the Kandhkot report, which, were apparently accepted as correct. I have only omitted the words "once only" from definition No. 1. Mr. Wali Muhammad had made no provision for a crop receiving two waterings before sowing and none afterwards. It may be added that while it can be reen at a glance whether a crop has been watered after sowing or not, it is impossible to discover Whether the water was given in September or November.

Melons are oultivated as sailabi in kacha and kacha-paka lands near the river in adhawa, i.e. they sre sown in May and the produce gathered abont the beginning of July. The rabi sailabi rate seems the most appropriate for the cultivation.

Rule 15.-In this division, if a number has as its registered source of water-supply a canal on whioh rebate is given, it appears to have been customary in some cases at least to give it the rebate even when cultivated as sailabi. But the sailabi watering is purely natural and even accidental and requires no clearance of karias to inake it posible. In fact as a rule it does not even come through karias and I see no reason why the rebate should be given.

No. 1698 of 1909.

> Execulive Engineer's office, Camp Puranodero, 6th April 1909:

From

B. Krisemarao, Elquine,
Executive Engineer; Western Nara,

To
Ter seftlement orficeb, SBEWAN DIVLHON.
Sir,
With reference to your No. 20, dated the 3rd November 1908, calling for a report on the irrigation of the Sehwan division, I have the bonout to state as follows :-
2. From the attached summary account of the working 'of main and branch canals during the period of current settlement it will be observed that the river changed its course very often, although during the last δ years it has been fairly steady and favourable as far as Western Nara, Pritchard Canal and their branches are concerned. The smaller canals, viz., Marviwah, Uppey Nurwab, Kolab sial, Phitto and Chario Wahur which take off direet from the river, suffer very much due to the vagaries of the river and their gatisfactory working carnot invariably be relied upon. All these canals appear to have worked fairly satisfactorily, specially during the latter part of the period under report even in years of low inundations the probable reason seeme to be that owing to a more favourable set of the river kigher F. S. levels are' obtainable with respect to Bukkur readings than was formerly the case, as shown by the statement of comparative Bukknr and Baksho Jamali (a gauge on Western Nara, mile 102 in deh Shahmorio) readings, attached, hereto.
3. A separate list of the improvements earried out during the period under consideration is attached and the effects of these improvements are desoribed below :-

Western Nara.-Construction of New Akil mouth and its widening to 80 feet in 1903 and 1904 respectively could not materially improve the supply in the oanal partions comprised in Sehwan division, but its firther widening to 126 feet in 1905 has considerably helped to improve the supply in the portion referred to above by giving about 200 cusees increased disoharge.

Before however the construction of Pritehard Canal, the Weatern Nara in the portion undir consideration was practically a failure and after water was admitted into Pritchard Canal in 1890 the supply in Western Nara became favourable and large areas of waste land began to be cultivated and flow cultivation considerably increased and the height of lift irrigation was materially reduced.

These improvements have materially improved the supply of all dehe. within the irrigation boundary of Western Nara and its branches sliown on the tracings uttarhed; so muoh so that the W. L. obtainable is 4 feet higher than in former years with comparatively increased discharges.

Dingritah.-New cut to Dingriwah was dug in 1908 and had. the effeot of giving adequate supply to the lands dependent on the canal.

Lohriwah.-This canal was originally a zamindari karia which was taken over in 1892 and improved at a cost of Rs. 9,088 . The effect of this was to give a better assured supply to the lands within its irrigation boundary as per trasing attached. Large areas on Lohri Dhoro have moreover been coming under oultivation,

Pritchard Comal.-Was' newly constructed in 1890 mainly as a feeder to. Wertern Nara: New feeder to the dhand feeding the Pritchard Canad excavated in 1903 helped to give a better' supply, but has during the past $\$$ years failed to fulfil its purpose owing to phanges in the course of the river.

3 $170-10$

In the year 1903 the widening of tail portion of Pritchard Canal wes andertaken with s view to reduce the velocity in Pritchard Canal and thereby prevent the deposit of silt in the Western Nara just above where Pritehard Canal tailed into it. This improvement had no direot effect however an regards irrigation advantages in the Sehwan-Ladu sub-division.

Juberji branch ex Pritchard Canal,-Was newly excavated in 1901. It is a branch of Pritchard Canal and.was intended to serve as a feeder and to improve the supply in the tail portion of Kudanwah in deh Juberji of Dadu taluka and has considerably benefited the cultivaiton in the deh.

Barviwah-Old mouth of this canal having proved a failure a new mouth Was given to it in 190;-04 which had the effect of removing causes of, complaint as regards deficient supply. Of late years the new mouth has however been adversely affected due to the changes in the oourse of the river.

Regulator at its head was constructed in 1894: This helped materially to regulate the supply in the canal aconrding to requirements and to prevent its lands from: being: damaged; by rifee floods flowing uncheoked into the Maryiwah.

Upper Nurwoh:-Upper Narrah was widened in. 1891 ta improve the supply and the cansl was ex ented in $18: 52$ and made to tail into Ghariwah. These, improvements had the effect of augmenting the supply ia this canal as well as in Ghari and Wadhu canals and helped to slightly: raise the.water level in them. There has been an increase in the irrigated area of Upper Nurwah. only.

Conversion. of the old road bvidze near Dadu on Upper Nurwah into a regulator in 1892 had the effeet of raising the water level in dehs Kasaciandia, and Marklypur; whereby considerable aress are saved eqen at times of defi * ciency in the panal and are usually brought under "flow,"

Extension of the mouth in 1904-05 and cutting a new mouth in 1907-1e08 were "intendedionly to restore the canal to its working order as' it had been adyersely sffected by ohanges in the course of the river:
4. Water is as a rule fairly evenly distributed over the lands within the irrigation boundaries of each of the three talukas under report. In years of low inundation the distribution is regulated as far as this is practicable. The lands on right bank of Western Nara and more particularly Lohriwah. in Johi taluka are liable to be swept arer by hill torrents. The. area within the boundary of Manchhur Lake is as a rule submerged during the abkalani and is therefore mainly brought undir rabi cultivation: The area under this head has "nearly" doubled and the kharif area has nearly, quadrupled during the periad uader: oonsideration, while about 2,000 aores of land have come under rice cultivation:

Owing to the higher water level now obtainable as indicated in para;graph 2 above the Western Nara, the Pritehard Canal, and their branches have beon oreatly benefted. The area under flaw has considerably increased and: the hëight of liit correspondingly reduced., Moreover large areas formerlys under lift have been brought under rice cultivation.

Similarly the lands dependent on upper Nurwah are benefited though to a amaller extent:' With a higher water level and regulation at the tail regylator there has been a general inorease of cultivation.

MArvivah.- Shows a general increase of flow and rice irrigation while the , area vunder liftt has remained fairly steady. On this oanal the advantage of $/ 4$ higher water level more than compensates for the disadvantage arising: from." an unfarourable mouth.

Kolab Sial and.its branches .Gharitoch and. Wadhutoah-Appeared to have worked fairly satisfactorily. The sarea under. kbarif on Kolab sial has increased somewhat during recent yęars, whereas.there is practioslly little flow. irrigation:

65

Phitta Canal.-On thia osnal the kharif area has remained steady witile * there is a slight increase in rice area.

During the year 1907-08 however the low inundation and unfavourable eet of the river affeoted these minor canals taking off direot from the river, and the areas under cultivation show a considerable falling off.
5. A statement showing the variation in the areas ünder different kinds of cultivation is attached. The statement is based on figures' obtained from the records of the taluka offices. The figures cannot be taken to' be absolutely' correct as they had ta be extracted by darogas of this departiment. They afford however a general indication of the growth of cultivation on the different canals.
6. Statements of the averaye annual cost of oanal clearanoe and maintenarice of bunds and extensions and inprovements are attached. A atatement of wells in each taluks required by the Special Oircular alst accompanies.

Accompaniments.

1. Statement of gage readings.
2. List showing improvements.
3. Statement showing length of canals and expenditure itiourred.
4. Statement of wells,
5. Statement of each kind of irrigation.
6. Summary of working of canslai
7. 8 plans.

I have the honour fo bo
sir
Your moot obedient servent:
B. KRISHEABAO

Executiwe Engineary Wertera Reind

Ammeiry of the working of ounalo in Sehroan division, compited from the records of the Executive Engineer, Western Nara.

Westran Naza.

1890.-The canal did not on the whole work satisfactorily although water legrel was higher by about $1 \mathbf{l}^{\prime}$ dug to Pritchard Canal having been newly excavated for the purpoge owing to the late rise and early fall of the river and unfavourableness of the setiof tre river at its mouth.
1891.-Although the inundation was unusually low and short the canal worked fainly well;. This was due to the favourable change of the river at the mouth of the Akil dhand feeding it. The high flow lands however suffered on account of lower level of vater in the canal.

1892,-The canal worked satisfactorily, due to flood water through Pritohard Canal outering it, and high lands on its banks were cultivated for the first time for some years past but heavy hill fioods damaged the crops.
1893.-The canal was not bunded at the mnuth and continued to flow till the middle of November. In spite of the river having fallen in July and August which had a detrimental effect on the rioe erop in the upper reashes of the canal the. water-supply in the canal below Kakar was better than in any year throughout the season due to flood water brought down by Pritchard Canal.
1894.-There was an abundant supply in the canal throughout the season. The Lashari flord entering into the canal broke out on either side cutting large gaps in the banks and thus swamped the cultivation excepting some high lands and those protected by bunds.
1895.-The supply was deficient due to low and fluctuating inundation although the river was favourable.
1896. -The canal worked pretty well although the inundation was comparatively low and only of an average duration. The river having gone down muok earke then usual want of water was felt at the close of the season. Gume high flow lands suffered from draught and some near the tail of the canal were submerged by the overflow of water from Manchhur Lake.
1897.-There was an aboudant supply of water throughout the inundation. The hilit toneents operflowed the Manchhur and submerged all the land on both banks of the canal as far as the mouth of Muhammad Ali wah.
1898.-The inundation being low and the river unfavourable the canal did not work satisfactorily although its supply was partially augmented by that of Pritchard Canal.
1899.- In spite of the low inundation the canal worked fairly well owing to favourable conditions at mouth. The fall of the river towards the end of the season however had a disastrous effect on the crops which were partially saved by allowing the canal to be bunded ap at about 3 miles above DaimMiani and also at Aroni.
1900.-The inundation was good but river unfavourable, the canal however worked satisfactorily throughout the season. This was mainly due to Lashari floods entering through Pritohard Canal.
1901. -The supply level in the Nara was lower than that of the previous year. In spite of the fluctuating nature of the inundation the canal worked fairly well. This was mainly due to Nangeshah floods finding their way into it through Pritchard Canal.
1902.-The working of the canal was extremely unsatisfactory owing to the double misfortune of a low inundation and the unfavourable set of the river which caused heavy silt deposits at its mouth. Crops were however saved to a cortain extent by bunding up the canal at Aroni.
1903.-The inundation was good and the working of the canal this year san on the whole be said to have been very satisfactory. The supplementary new mouth- 40 feet wide from the Akil dhand-came into operation during the ceason and materially augmented the supply.
1904.-The supplementary mouth was widened to 80 feet and towards the end of July the old mouth was abandoned. The canal worked fairly well in spite of low inundation as it was materially helped by Pritchard Canal. Thio tail portion however suffered a little.
1905.-The new Akil mouth was further widened to 125 feet and was opened on the 4th June. The canal owing to the improvements effected and the excellent inundation worked exceedingly well.
1906. -The canal worked remarkably well throughout the season, the river being favourable.
1907.-In spite of low level of water in river the canal worked satisfactorily throughout the season as the river was favourable:
1908.-The canal worked remarkably, well throughout the season, the river being favourable.

Lohriwae.

1893. -Water sufficient.
1894.-The head regulator remained partially closed. The supply let down ints the canal was quite suffigiont to meet the requirements.
1894. -The lands on the canal suffered to a little extent owing to the low level of the river.
1896.-Breaches were caused in the first 3 miles of the canal by the hill torrents from Nai Gaj daring the months of June, July and August, but the breaches on both the banks were promptly olosed to prevent water from going to waste and only 5 openings, on the right bsak left for the passage of hill flood water into the canal. This increased the cultivation but the fall of the water in September affected the orops to a certain extent.
1897.-Water supply abundant with the exception of the latter part of the season when the oultivators ssed the crops by erecting a second set of wheels. Hill torrents entered into the sanal from Nai Gaj on the 19th August but the volume of water was not great.
1895. -The canal on the whole worked satisfaotorily: Hill floods entered into the canal through the karias at mile 3 right bank on 28th May.
1896. -Water supply good with the exception of the latter part of the season when speoial measures such as "chabbing" were resorted to for saving crops from withering.
1900.-Water supply sufficient throughout the season, The hill floods came down this year as well and the head regulator remained olosed until they subsided.
1901.-Water supply sufficient with the exception of the latter part of the season. Hill foods came this year also.
1897. -The hill floods from Gaj Nai supplemented the water supply in the canal which thus worked satisfactorily.
1903.-Supply quite sufficient throughout the season.

1904,-Water supply good up to the end of August, after which special measures had to be resorted to whioh sared the pultivation to a great extent.
1905.-The ganal worked very well.
1906.- Do. do.
1907. -Worked satisfactorily. Hill torrents did much damage and cut the embankments on pither side.
1208.-Worked satisfactorily. Hill torrents breached the capal in several places but no damage was done to crops,

,KUDANWAF.

1890.-Water supply poor throughout the season.
1891.- Owing to low inundation the banal did not work well. - The oupply in the tail was supplemented from the Pritchard Canal which not only incressed the oultivation but helped, the crops greatly.
1892.-The supply was quite sufficient throughout the seacon.

- 170-17.

1893. Water supply was ample. River floods submerged almost all the land exoept high-lying lands on its banks.
1894.-Water supply was ample. Its lower part was everywhere out up by the crossing of floods.
1895.-As the zamindars expressed not to cultivate land in its first 6 miles the new mouth was closed and the old cleared and opened to reduce the discharge ontering the canal to lessen the danger to embankments. Subsequently new mouth was opened but the river fell too low to be of any great ase. The tail supply was supplemented by a cut from the Pritohard Canal.
1896.-Water supply deficient. Thetail supply was supplemented from the Pritchard Canal.
1897.-Received ample supply of water.
1893.-The canal suffered owing to low inundation. The tril supply was supplemented from the Pritohard Canal and Khudawah also rendered material help to its cultivation from mile 11 to 15.
1899.- Do. do. do.
1894. -The water supply in the canal was not up to the requirements and this rendered it necessary to supplement the supply in its lower reaches from Pritchard Canal and Khudawah.
1901.-Owing to unsatisfactory working of the tail of this canal in Dadu taluka a new out was made from Pritchard Canal to feed it, and the whole including its lower portion was called Juberji branch which worked satisfactorily.

Jtberji branch.

1902.- It did not work satisfactorily owing to low inundation.
1903.-Received an abundant supply of water throughout the season.

1904- Op to 20th July water was sufficient for lift. Owing to chabbing the tail of the canal there was abundant supply from end of July to end of August and consequently all lands got flow supply. In Soptember owing to fall in river the supply was deficient and crops would have suffered but for the olosing of the stop gate regulator on Pritchard Canal.

1905:-Worked satisfactorily.
1906.-It worked very satisfactorily.
1907.-It worked well.
1908. -Worked satisfactorily and no deficiency was felt.

Karowar.
1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.-Water supply good throughout the season.
1893.-Water supply abundant.

1894, -Worked fairly well.
1895. Worked fairly well.
1896.-Worked well.
1897.-Water-supply ample throughout the season.
1898. -The canal worked fairly well and there was sufficient water for the cultivation.
1899.-The canal suffered owing to low level of water in Nara in the end of August.
1900.-There was sufficient supply of water in the canal throughout the season. Crops suffered in places owing to giving water beyond requirements.

1901:-Water supply sufficient for lift irrigation.
1902.-After ceasing to flow two or three times it ceased altogether on 25th September. Orops were greatly helped both by backwater from Ghari and regulation of the Sonmiani sluice.
1903.-The oanal flowed uninterruptedly throughout the season and water supply was aufficient for all land dependent on it which is lift.
1804. -There was a good supply in the canal up to 3rd week of August, when some deficienoy was felt owing to silting at the bead. This was oleared and a better supply thus admitted into the canal.
1905. - Water supply ample.
1906. Do. do.
1907.-The supply was fair throughout the season.
1908.-The supply in the canal was good up to the ond of September.

Lower Nurway.
1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.-Water supply fairly good throughout the season.
1893.-Water supply abundant.
1894.-Worked satisfactorily.
1895. -Worked well. It materially assisted the Phito when river fell.
1896. Worked well.
1897. -Water-supply sufficient except at the latter part of the season and the closing of Sonmiani sluice assisted by rains saved the crops from withering.
1898.-Received a fair supply. Artificial measures had had to be resorted to for saving flow oultivation.
1899.- l'here was a fair supply of water in the canal. Crops at tail only suffered a little.
1900.-There was sufficient supply of water throughout the reason. Crops suffered in places owing to giving water beyond requirements.
1901.-Water supply sufficient for lift irrigation.
1902.-It did not work well. Crops helped by floods entered the Nara through Lohriwah and regulation of the Sonmiani sluice over Nara.
1903.-The supply in the canal was good throughout the season.
1904. -The supply in the eanal was good up to 3rd week of August but poor afterwards up to the middle of September. Special measures had to be resorted to for saving the crops.
1905.-Water supply sufficient.
1906. Do. do.
1907.-The aupply was fair throughout the season.
1908.-Worked satisfactorily.

New Garibi, Old Garibi and Aligund.

1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do.
1893.-Water supply abundant.

1894,-Oultivation submerged by Lashari floods.
1895.-Worked very well.
1896.-Worked well.
1897.-Received an ample supply of water,
1898.-There was sufficient supply of water throughout the season.
1899.-They received a good supply except towards the end of August When the supply failed and the flow crops suffered.
1900.-There was a good supply of water throughout the season. Dry crop suffered to a certain extent from excess of water.
1901.-Received good supply up to the first fortnight of September. Cropa being sown late suffered to an extent.
1902.-W\&ter supply defioient owing to low intundation.
1903.-The water supply was good throughout the season and no deficitncy was felt.
1904. -The supply in the canal was good up to first week of August but deficieat afterwards.
1905.-Water supply sufficient.
1906.- Do. do.
1907. Worked satisfactorily.
1908.-The supply was good throughout the season.

Dingriwar.

1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the spason.
1892.-Water supply somewhat deficient in the beginning of the season only. Bain floods damaged the crops.
1893.-Water supply abundant.
1894.-Heavy hill torrents joined with the river floods submerged almost all the cultivation except high-lying patches.
1895.-Water distributed to the best advantage by tightly closing the regulating sluice at about half its length by turns.
1896.-Worked well.

1897:-Water supply ample. Lift oultivation in the last 4 miles of the oanal was damaged by hill torrents.
1898. - Owing to rapid fall of river and Nars sufficient level of water could not be maintained for all the time and crops suffered in consequence.
1899.--The supply was not good and the crops suffered in consequence.
1900.-The supply in the canal was sufficient throughout the season. Some crops suffered from excess of water.
1901.-Owing to unsteady nature of the supply in the Nara the supply in the canal was not on the whole satisfactory,
1902. - Water supply inadequate.
1903.-The canal worked fairly well.
1904.-The supply in the canal was good up to the list week of Augus and ohabbing the canal at mile 6-0 greatly helped the crops.
1905.- The canal worked most satisfactorily.
1906. -The sopply was sufficient throughout the season.
1907. -The supply in the canal was good throughout the season.
1908. -Worked satisfactorily throughout the season.

Makakiwan.
1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do, da. Brin water damaget
the crops.
1893.-Water supply abundant,
1894.-Water supply sufficient. Heavy hill torrents joined with rivep floods submerged almost all the oultivation except high,lying patches.
1895.-Worked very well.
1896.-Worked well.
1897.-There was a good sapply throughout the season, Crops on its right bank were damaged by Manohhur flood.
1898.-There was a fair supply throughqut the season. Crops below mile 8 suffered for lack of water.
1899. - Owing to low inundation the supply was not good. Cröps suffered. 1900.-Received a good supply throughout the season. Some crops suffered from excess of water.
1901.-Worked satisfactorily.
1902.-The supply in the canal was very poor.
1903.-There was a sufficient supply of water throughout the season.
1904.-The supply was good throughout the season.
1905.-The oanal worked very alisfactorily.
1906.-It worked satisfactorily.
1907.- Do. do.
1908.-Supply was very good throughout the season.

Muhammad Aif war.

1890.-Water supply poor thfoughout the season.
1891.-Water supply sufficient throughout the season.
1892.- Do. do. do. do but oultivation in low lands was damaged by rain water.
1893.-Water supply abundant.
1894.-Water supply sufficient. Floods damaged the crops in its first two miles.
1895.-Worked very well.
1896.-Worked well.
1897.-There was a good supply throughout the season.
1898.-There was a fair supply throughout the season. Late crops suffered a little owing to fall of water in September.
1899.-Supply not good. Cultivation suffered to some extent owing to lack of water.
1900.-The water supply was quite enough throughout the season. Dry crop suffered to an extent from excess of water. .
1901.-Received a satisfactory supply throughout the season.
1902.-There was abundant supply in the canal.
1903.-The canal worked well throughout the season.
1904.-The supply in the canal was good up to the end of July and fair in the month of August and first few days of September. Chahi at mile $1 / 3$ was allowed to save the rice orops,
1905.-The canal worked very satisfactorily.
1906.-It worked satisfactorily,
1907.- Do. do.
1903.-Supply in the canal was good throughout the season.

Sakrowain,
1890.-Water supply poor throughout the season.
1891.-Water supply suffioient throughout the season,
1892.- Do. \quad Rain floods damaged the crops.
1893.-Water supply abundant.
1894.-Water supply suffioient. Rain water joined with floods submerged almost all cultivation except high-lying patches.
1895.--Cultivation suffered to an extent during the latter part of theseason owing to the supply being cut off by the Nara Baid sluice.
1896.-Worked well.
1897.-Water supply sufficient. Oultivatian damaged by Manchhur floods.
1898.-Water supply deficient.
1899.-Water supply fair due to low inundation. High lands suffered.
1900.-Water supply sufficient. Cultivation on its left bank submerged by Manchhur flood.
1901.-Received a fair supply throughout the season.

- 170-18
1902.-Water supply deficient.
1903.-The canal reoeived a good supply throughout the season.
1904.-icthe canal on the whole worked well. Crops being chielly rice the supply was not equal to the heavy demand.
1905.-The supply in the canal was satisfactory.'
1906.-Supply sufficient.
1907.-Supply very satisfactory.
1908.-Supply was very good, but cultivation was submerged by hill torrents during July and August.

Kur Aktar.
1890.-Water supply poor throughout the season.
1891.-Water supply sufficient throughout the season.
1892. Do. do. do. Rain floods damaged the crops.
1893.-Water supply abundant.
1894.-All cultivation submerged owing to overfiow of Manchhur.
1895.-Worked well.
1896.-Worked well. Hill torrents damaged the cultivation on the right bank.
1897. The supply was good throughout the season. Cultivation was submerged by Manchhur food.
1898.-Received a fair supply throughout the season.
1899.-Water supply fair. High lands suffered.
1900.-Water:supply sufficient. Cultivation on its right bank was submerged by Manchhur flood.
1901.-Received a fair supply throughout the season.
1902.- Do. do.
1903.-The canal flowed excellently throughout the season.
1901.-The canal on the whole worked well throughout the season.

1905:-The supply in the caial was very satisfactory.
1906.-Supply sufficient.
1907.-Supply very satisfactory.
1908.-Supply very good.

Chario Wartr, Aral and Dunethr.
1890.-Water supply poor throughout the season owing to low inundation.
1891.-Water supply fair throughout the season.
1892.- Dó. do.
1893.-Water supply good throughout the season.
1894.-Water supply abundant. Karampur flood passed into the canal.
1895.-Water comparatively low owing to low inundation.
1896.-Water supply ample. River floods burst into the onnal.
1897. - Water supply was ample and the floods passed down the canal.
'1898. -The canal' worked fairly well but there was no cultivation owing to fear of lands being flooded.
1899.-There was a very good supply in the caral.
1900.-In consequence of the general complaint of low level of water in

Manchhur, bunds were put up near Sehwan across Chario Wahur and Aral with a view to force more water up the Aral and Dunster into the Manchhur LakeThe canals worked very well throughout the season.
1901.-The canals had sufficient supply of water throughout the season.
1902.-The supply in the eanals was good throughout the season.
1903. =There was a very good supply throughout the season.
1904.-The supply in the canals was good throughout the season and tile canals worked satisfactorily.

1905,-The oanals worked very satisfactorily.
1906.-The canals worked very well.
1907.-The supply in the canal was good throughout the season.
1908.-Water supply sufficient. Rains and river spill water submerged the crops.

Manchetr Lake,

1890. -Received little help from Nara and other feeders due to low inundation and absence of rains. Hill torrents in the beginning of December came down with great force and submerged rabi crops.
1891.-Received supply from Nara, Chario Wabur, Aral and Dunster. No hill floods.
1892.- Unpreoedented local rainfall together with hill floods raised the level to the highest mark on record.
1891. - No hill floods except early in July. Area submerged for rabi was much less than last year.
1894.-Hill torrents joined with river floods raised the water level considerably.
1895.-Water in the lake rose but little owing to low inundation and absence of rain.
1896.-Owing to river having muintained its high level for about 2 months and the hill floods which came 3 times in the season large quantity of water entered the lake.
1892. -River floods aided by hill torcents raised the level of water considerably.
1893. - Received a little supply of water owing to low inundation and absence of rains.
1899.-It did not receive sufficient water owing to low inundation and absence of rains.
1900.-Received a very good supply. The rise was chiefly due to the construction of bunds across Chario Wahur and Aral. The drainage in the beginning was not satisfactory, but after the fall of river on the 1st Ootober water was drained off rapidly and a very large area was made available for rabi.
1901.-Large ares was brought under rabi as the drainage through Aral was satisfactory.
1902.-Rains and canal water flooded large areas in the dhand and the area under rabi was comparatively large but less than in the last year in spite of low inundation.
1894. -This dhand was well filled this year and rabi area was fairly great, and about 3,000 adres more than in the previous year.
1904.-Water through the Aral and Nara filled the lake. Owing to the earlier backflow of water into the river the cultivation increased by about 4,000 aeres more.
1905.-The Manchhur flood was one of the highest on record and the area under rabi was comparatively large though samewhat less than in the previous year.
1895. -The Manchhur got filled from the river and hill torrents and high water mark was higher than previous year which was reoord, but there was a slight fall in the area under rabi.
1907.-Owing to low inundation the canals did not bring in much water but hill torrents greatly helped in filling up the lake and there was a large falling off in the area under rabi.
1908.-The river water and hill torrents submerged large areas of the lake. The lake was drained off fairly well.

Uppre Nubtiak.

1890.-There was smple water in spite of the low inandation.
1891. -There was a fair supply of water in the canal. The river being unfavoiurable the canal ceased flowing early in the seasun.
1892.-Worked fairly well.
1893.-The supply was fairly good in the beginning, but river went low in August when rotation was resorted to which materially saved the crops.
1894.-The canal maintained a very good supply throughout the season.

1895 - River eroded above and below the mouth. The canal dried 4 times during the season, Water supply was deficient.
1896.-It worked well.
1897.- Water supply plentiful except towards the end of the season when rains assisted the crop.
1898.-There was a good supply of water throughout the season.
1899.-Water supply deficient owing to low inundation.
1900.-There was sufficient water in the canal throughout the season.
1901. -The canal suffered owing to late rise and unfavourable set of the river. Efforts were however made to atilize the reduced supply to the greatest advantage by regulation.
1902.-The supply was sufficient throughout the season in spite of low inuodation due to favourable set of the river.
1903.-The supply in the canal was excellent throughout the season.
1904.-The supply in the canal was defioient throughout the season owing to the dhand feeding it having heavily silted.
1905.-In spite of the mouth of the canal being improved the supply in the canal was not so good as to meet the demands of flow cultivation towards the end of July, but the rise in the rizer in September saved the situation.
1906. -The Wahur feeding the canal was cut into by the erosion of the river. Worked very satisfactorily.
1907.-Supply in the canal was deficient owing to its mouth having been cut into and eroded away by river.
1908.-A new mouth which was completed during the year gave a very satisfactory supply throughout the season.

Kolab Siat.

1890.-There was sufficient supply in the canal tbroughout the season.
1891.-Water supply deficient and crops would have perished had not supply been augmented from Western Nara.
1892.-Deficiency was felt in the early part of the season but there wan ample supply available later on to the end of the season.
1893. The canal worked fairly well till the fall of river in August when Nare water was admitted to augment the supply.
1891.-The canal maintained a very good supply throughout the season.
1895.-Water supply deficient, It dried seyeral times when the river fell very low. Crops suffered,
1896.-Worked well.
1897. - Received a good supply throughout the season.
1898.-Owing to low inundation the supply was limited throughout the season.
1899.- It did not work well and deficiency was felt towards the end of the season. To remedy this a bund across its feeder Wahur was allowed, which pot only saved the standing crops on the canal itself but greatly benefited the crops along its branches Ghari and Wadhu.
1900. -The supply in the oanal was suffieient throughout the season.
1901.-Worked fairly well throughout the season.
1902.-The supply was fair. Chahi across the Wahuy feeding it inoreased
the supply in the canal which benefited the crops on the canal itself and ita branches.
1903.-The supply was very good throughout the season.
1904.-The supply was fair throughout the season,
1905. -The canal worked satisfactorily.
1906.-Supply sufficient.
1907.-Supply in the canal was deficient owing to the low inundation throughout the season.
1908.-Supply was very good throughout the season.

Wadiuwai and Ghariwah brancees of Kolab Slad.

1890. -There was a fair supply in the canals throughout the season. Late crops partly suffered due to sudden fall of the river.
1891.-Water supply deficient. Crops would have perished but for a supply having been given for 3 days from Western Nars.
1892.-A defieiency was felt in the early part of the season but there was ample supply of water for the rest of the season.
1893.-Fall of river in August was compensated for letting in surplus water from Nara into it.
1891. - The canals maintained a very good supply throughout the season. The surplus water was disoharged into the Duabo dband.
1895.-Water supply deficient. They ceased flowing several times during the season whenever the river fell very low.
1896.-Worked well.
1897.-Water supply good throughout the season.
1898.-Water supply sufficient for lift crop. Late erops suffered owing to fall of river in September.
1899.-Supply scanty owing to low inundation.
1900.-Received a sufficient supply of water throughout the season.
1892. - Worked fairly well throughout the season.
1902.-The supply in the canals was fair.
1903.-The supply was sufficient throughout the season.
1904.-The supply in the canals was fair in the first four miles and poor further dowa due to unsatisfactory inundation.
1905.-The canals worked satisfactorily.
1906.-Supply sufficient.
1907.-Supply deficient owing to dow inundation throughout the season
1908.-Supply good throughout the season.

Phimin Canatio

1890. - There was a good supply in the canal in the early part of the season but the river went on changing its course from its right to left bank and baok again causing very heary silt deposits at its mouth; Great portion of cultivation was saved by bringing water into the oanal from the dhand at" it's mouth.
1891.-Supplied partly from river direct and partly from Nam. The Karampur flood coming in towards the tail gave a high level and plenty of water.
1892.-The canal worked yery well. The supply was augmented from Nara in the early part of the season and from end of July more thar suffidient was obtained from its mouth owing to favourable ohange in the xives

1803:-The supply was good and higi up to 2nd Augusti when thie river began to fall but its suppiy was augmented from Westeri Nara and the flood standing in the large dhand near'its mouths:
1894. The cangl maintainedre a nery good outpply throughout this ceasom

170-19
1895.-The canal did not suffer, notwithstanding low inundation, the fiver being favourable. The supply from Nara greatly assisted the crops.
1896. - Worked well.
1897.-Water supply good throughout the season. Rains also assisted the crops. Lands in its last 10 miles were submerged by Karampur floods River was only quarter of a mile from its tail.
1898.-Received sufficient supply of water throughout the season. Late crops below mile 11 suffered.
1899.-The supply was deficient due to low inundation and the unfavour. able set of the river.
1900.-The supply in the canal was sufficient throughout the season.
1901. -The supply in the canal had to be supplemented from Nara to meet the deficiency due to unfavourable set of the river.
1902.- Do. do. do.
1903.-The supply in the canal was poor up to the middle of July, but subsequent rise of the river changed the state of things for the better.
1904.-The supply in the first 8 miles was fair and below 8th mile to the tail the supply was deficient.
1905.- River unfavourable and sapply deficient but was augmented from Western Nara with good results.
1906.-The supply in the canal was fairly sufficient. It was moreover augmented from Western Nara.
1907. - The supply in the canal was fair and supplemented by the Nara branches Lower Nurwah and Muhammad Ali wah.
1908.-The supply in the canal was good throughout the season.

- Pritchard Canal.

1890.- Opened for the first time on 14th July. At the time of opening the river was cutting away its right bank at the village of Nao Goth one-quarter. mile below the canal mouth, the erosion then worked up-stream and cut away rapidly. Of the original of line of canal half a mile was eaten away by river. It augmented the supply in the Nara by $1 \frac{1}{2} \mathrm{ft}$.
1891.-Owing to erosion 3.700 feet at mouth were removed by river and silt to a depth of 7 feet accumulated. The canal assisted the Nara as long as it flowed. It had ceased to flow from 29th June to lst July and finally ceased flowing on 7th October. The river was unfavourable and the supply fluctuating and somewhat deficient.
1892.-Water supply deficient up to 14th July. Since August the head regulator remained olosed till the end of season owing to floods from Rajana bunds entering into the canal. This considerably augmented the supply in Western Nara.
1893.-Remained entirely or partially closed nearly all the season. Served as an escape during. Lashari floods, saving a large part of Mehar and Kakar from being submerged.

1894-Untii the end of June water was not required. Early in July the floods cut into the canal at 19th mile rendering necessary the closing of the head regulator.
1895.-Water supply fair although the inundation was low and fluctuating.
1896. - Water supply sufficient till 20th August, after whioh the river began to fall and the canal ceased to flow on 1st September. Crops however did not suffer much.
1897. -The canal was regulated according to requirementa of the Nara: and it worked fairly well.
1898. - In spite of low inundation the canal worked well owing to favourable position of its mouth.
1899.-The canal worked satisfactorily for the first two monthe and then. the piver began to fall which told heavily on the crops in its upper reaches.

- 1900 -The canal remained fully open up to 19th July 1900, and after-* wards it was kept closed owing to breach having occurred in the canal and subsequently to the water not being required in the Nara. Some cultivation was damayed by Lashari floods.
1901.-The head regulator remained open until the 1st August when it was closed as the level exceeded that of the designed supply 10 feet. Nangeshah floods augmented the supply in Western Nara which saved the crops in its tail portion.

1902. -The canal worked extremely unsatisfactorily throughout the season in consequence of the unfavourable position of the Wahur feeding it and low inundation.
1903.-The river was unfa*ourable at first, but after 20 th June its set was favourable and the inundation on the whole good. The canal worked well and helped Western Nara considerably.
1904.-The canal worked satisfactorily throughout the season although the inundation was not good. This was due to favourable set of the river.
1905.-Worked very well but was not so much utilized as in the past for supplementing the supply in the Western Nara as it brought down ample supply of its own due to further "widening of its New Akil mouth to 125 feet bed width.
1906.-It worked very satisfactorily. Full supply, viz., 10 feet could not be admitted into the canal as there was abundant supply in the Nara and 9.50 was the level of the whole season.
1907.-The oanal worked satisfactorily. Was regulated aocording to the requirements of the Nara as the latter canal bad ample supply of its own.
1903. -The canal worked satisfactorily. Owing to water not being required in the Nara the supply had to be cut off at the head regulator. The river was favourable

Escape Channel.

1895 - Received a moderate supply of water owing to low inundation.
1896.-Water supply good. Canal ceased to flow on 1st September and cultivation saved by erecting wheels on dhands.
1897.-Good supply of water passed down the canal which assisted the crops.
1898.-There was ample supply of water throughout the season.
1899. Do. do. do.
1900.-There was ample supply of water throughout the season. It served as an escape at times of high level of water in Nara.
1901.-Received a good supply of water. Relieved its feeder when there was aurplus water in it during August.
1902. - It did not work satisfactorily throughout the season owing to low inundation.
1903.-Received abundant supply of water throughout the season.

19C4.-Received an abundant supply throughout the season.
1905. -Worked satisfactorily.

1906- Do.
1907.- Do.
1908.- Do.

Marviwah.

1890. - Worked very well notwithstanding poor inundation.
1891.-Wrosion at its mouth caused the oanal to dry earlier in the season.

1892--In the beginning supply was deficient but gradually improved. This was due to the oharacter of inundation. Floods submerged all cultivation in low ground.
1893.-River eroded about $2 \frac{1}{4}$ miles of the canal. Owing to the approaek of river it maintsined a very high level of water which overflowing its banks passed towards Phulji station.
1834.-About a mile of the canal at its mouth was eroded away. Flood after crossing the Pritebard Canal flowed back from the tail which neoessitated closing of the head regulator except for short intervals to save crops in the upper reaches of the canal.
1895.-Water was admitted according to requirements and there was no complaint of deficiency. No erosion at it mouth. It worked satisfantorily.
1896.-Worked very well,
1897.-Worked satisfactorily,
1898.-Water supply scanty owing to low inundation.
1899.-It worked fairly well.
1900.-It worked very satisfactorily.
1901.-Owing to the active erosion of the dhand above the mouth of the canal a large deposit of silt was formed near the mouth resulting in the supply being cut off earlier than usual.
1902.-Owing to the extremely low inundation and unsatisfactory mouth of the canal the canal worked badly. The canal after ceasing to flow twice finally stopped flowing on 24th August.
1903.-The canal worked exceptionally well but owing to erosion at its mouth its first mile was silted and the canal ceased flowing on 6th September, It again flowed on 13th and finally stopped flawing 10 days afterwsids.
1904.-It worked satisfactorily throughout the season.
1905. -Supply sufficient.
1906.-Worked very satisfactorily.
1907.-The oanal suffered greatly as it ceased flowing thripe dpring the season owing to the fluctuations in the river.

1908,-1he panal worked much better than last year.

> B. KRISHNARAO,
> Exegutive_Engineer, Westerp Nara.

Statrment of comparative maximum gauge readings of Bukkur bnd Baksho Jamali.

	Year.		Bulikur	Bataho Jamali,	Yest.	Bukkur.	$\begin{aligned} & \text { Bakshof } \\ & \text { Jamali } \end{aligned}$
1887	\ldots	...	16.6	980	1898...	13.4	11.76
1888	\ldots	...	14.4	$8 \cdot 80$	1899...	$13 \cdot 4$	11.80
1889	\ldots	...	16.6	1240	1900...	14.5	12.60
1890		...	16.0	11.80	1901...	16.4	12.70
1891		...	$14 \cdot 8$	12.00	1902...	13.4	$9 \cdot 40$
1892	...	\cdots	16.7	. 2380	1903...	16.8	11.90
1893	$15 \cdot 8$	13.90	1904...	$15 \cdot 8$	11.60
1894	16.4	13.90	1905...	167	$13 \cdot 10$
1895	$15 \cdot 3$	13•30	1906...	16.6	13.90
1896		...	$15 \cdot 8$	13:40	1907...	137	14.20
1897	$17 \cdot 9$	13:20	1908...	$16 \cdot 1$	$14 \cdot 40$

List showing improvements made in Dadu, Johi and Sehwan talukas eince the introduction of the current settlement, 1890-91 to 1907-08.

$\begin{gathered} \text { Serial } \\ \text { Nu. } \end{gathered}$	Names of morks.	Cost of outlisy.	When completed,
		Rs.	
1	Improving supply of Upper Uner wah	14,136	March 1891.
2	Excavating an extension of the Upper Nurwah to the Ghari wah, Dadu taluka.	15,636	February 1892.
. 3	Additions and alterations to the old bridge over Upper Nur wah for regulation of water	457	September 1892.
4	Excavation of Lohri wah ...	9,088	March 1893.
5	Excavation of Pritchard canal	3,32,128	March 1894.
$5-\mathrm{A}$	Constructing head regulator over Marni wah	3,832	March 1894.
6	Improvements at the mouth of the Aral wah	8,993	March 1901.
7	Making a now out to Dingri wah	6,931	February 1903.
8	Widening Pritohard canal from stop gate regulator at mile 21, and its junction with Western Nara	6,385	July 1903.
9	Excavating Juberji branoh 4, Pritchard canal	8,497	March 1904.
10	Construction of a new mouth to Marvi wah	2,460	March 1904,
11	Constructing a new Akil mouth to Western Nars	1,45,127	July 1905.
12	Extending the mouth of Upper Nur wah...	1,805	October 1905.
13	Widening New Akil mouth to Western Nara to 80 ft . bed width ...	71,168	November 1905.
14	Construction of a new mouth to the Wahur feeding Pritchard canal, Wahur and Marni wal	18,231	March 1906.
15	Cutting a new mouth to Upper Nurwah...	2,000	November 1908.
16	* Widening New Akil mouti to 125 ft . bed width	1,61,691	

- In progreas, practically completed.
B. KRISHNARAO, Executiye Engineer, Western Nara.

Statement showing length of canals and expenditure incurred in maintenance（works） of canal and bunds in Dadu，Johi and Sehwan talukas from 1907－1908．

	$\stackrel{8}{8}$	d																			部号		
	部		安	$\begin{aligned} & \dot{\Phi} \\ & \stackrel{+}{\mathbf{m}} \end{aligned}$	\％	颜				审	$\begin{aligned} & \text { 89 } \\ & \text { ? } \end{aligned}$				$\begin{aligned} & \text { ళidy } \\ & \text { ed } \end{aligned}$	$\begin{aligned} & \text { to } \\ & \frac{1}{8} \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & \text { 客 } \\ & \text { 各 } \end{aligned}$	\％			
							（ ${ }_{\text {P4 }}$					8 R											晾

B．KRISHNARAO，
Executive Engineer，Western Nara．

Statement showing information regarding wells in Sehwan, Dadu and. Johi talukas.

Names of deham	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { wells. } \end{gathered}$	$\left\|\begin{array}{c} \text { Dopth } \\ \text { of } \\ \text { water below } \\ \text { ground } \\ \text { level. } \end{array}\right\|$	Sreat or salt:	Remarca.
Taluka Sehwan.		Fit.		
Kalo Bhuri	4	20 to 25	Sweet ...	Rabi.
Bhan ...	27	25 to 35	\cdots - ${ }^{\text {\# }}$	"
" ...	1	28	Saltish ...	,
" ...	1	37	Sweet ...	Kharif and rabi.
Arazi ...	9	12 to 15	\% ...	Rabi.
Tando Shahbazi	2	12	...	"
Bakhtawarpur	4	11 to 24	-.	"
Saidabad ...	1	94	" \quad.	
Baid" \quad '.	1	18	" $\quad .$.	Kharif and rabi.
Baid ...	1	12	Sän *	Rabi.
33 ...	1	7	Saltish ...	"
Sultanpur ...	2	25 to 30	Sweet ...	"
Wahur ...	8	23 to 35	\# ...	
Gaber \quad..*	1	31	3 ...	Rabi and kharif. Rabi.
Akher \quad...	3	14 to 28	" \quad-.	Rabi.
Arbi ...	1	14	\% \cdots	\%
"	1	22	" $\quad \cdots$	Rabi and khacif.
Bambha ...	1	15	" ...	
" \quad..	7	19 to 24	\cdots	Rabi.
Talti ...	2	21 to 23	3	Kharif and rabi.
"	1	24	Saltish	-
crı ...	3	25	Sweet	Rabi.
Chana ...	4	21 to 25 22	..	2 rabi and 2 kharif.
Karan . ${ }^{\text {a }}$			" ...	
TOTAL	$\varepsilon 9$	\cdots	**	\cdots
Taluka Johi.				
Johi	11	20 to 30	Sweet	
Vägeji \quad...	1	${ }_{10}^{38}$	3 $\quad .$.	Rabi and kharif.
$\begin{array}{ll}\text { Vageji } \\ \text { Gaha. } & \text {... }\end{array}$	2	10 to 18	\% \quad -	Rabi.
Gana. ...	2	24	\cdots	Kharif and rabi
Däa Maehi	2	25	" $\quad .$.	Rabi.
Channa ...	1	17	...	"
Jharri Jadoshahid	1	12 to 15	Brackish	"
Phulji ...	1	"	Sweet.	3
Shah Morio	1	"	do. ...	3
Bahawalpar	5	"	do.	\%
Total	28	.	\cdots	...
Taluka Dadu.				
Khudabad	8	20 to 25	Sweet ...	Rabi.
Bhand	25	20 to 25		
Buth Malho	2	25	Saltish ...	\cdots
	10	25	Sweet ...	\cdots
Kurpur an	4	20 to 25	n ...	0

80

[^5]B. KRISHNARAO,

Esecutive Engimegr; Westera Nantant

Statement of each kind of imigation in Sehwan, Dadu and Johi talukas during the years 1891.92 to 1907-08.

No. 6825 of 1909.

Public Woris Department.
 Superintending Engineer's office, I, B. B. D
 Camp Sukkur, 7 th December 1909.

From
D. W. HERBERT, Esqume,

Superintending Engineer; Indus Right Bank Division,

To
The COLLECTOR of LARKANA.
SIR,
I have the honour to return herewith the accompaniments to your No. 5373, dated the 16th September last, and to express my regret at the delay, specially as I find that I can add very little useful information to the full account already given by (Mr. Covernton) and the Executive Engineer re. garding the irrigation in these talukas.
2. It would appear that the flooding of the lands by the Escape channel described in paragraph 6 of Mr. Covernton's report on the Dadu taluka can be remedied to a great extent, but proposed works cannot be taken into account.
3. With reference to paragraph 8 of your report on the Johi taluka I understand that the one-tenth of the consolidated assessment is suppored to represent what the land would yield without irrigation, i.e., it would be the average assessment on the whole area not merely on the cultivated area.
4. With regard to the clearance rebate, I understand that this is supposed to be given only when the cost of olearance is excessive, but in the lists cf karias attached to the report Ifind a considerable number only one-quarter mile long.
5. The widening of the Western Nara Canal in 1905 to 125 feet bed width is said to have benefited these talukas. This canal has been working very satisfactory for the last six years, but this year (1909) the gauge reading at the head regulator of the Akil mouth suddenly fell from 10.9 feet on the 19tu September to $2 \cdot 1$ feet on the 23 rd of that month, the Bukkur gauge readings on those dates being $11 \cdot 10$ and 7.4 feet. Whereas with $7 \cdot 4$ feet on the Bukkur gauge on the 23 rd September of the previous year the head regulator gauge read 8.8 feet. This falling off in the supply is due to the Indus having receded for several miles and thrown up large aress of kaohas opposite the mouth of the canal. I have recently inspacted the position and found the conditions for the Nara supply to be very bad indeed. In fact the canal is completely eut off from the river at present when the Bukkur gauge reads below 8 to 10 feet. All the dhands bringing down water from the north are completely silted up at their heads.

The tail of the Akil dhand has also been silted up in a length of nearly a mile. Taking the present difficulties about funds and labour into account it is probable that all that will be done this year, is to make a cut through the silted portion of the tail of the dhand, and so supply the canal from a backwater two miles long, which of course means a considerable reduction in the water level at the mouth of the canal. This cut also may silt up towards the close of the inundation and it is improbable that the supply in the river during September will be as favourable as itwas last year. The Pritchard Canal however ensures a fair supply for the talukas under consideration.
6. Owing to the present very anfavourable position of the river at the head of the canal, the time does not appear opportune for any considerable
enhanoement of the assessments and I would point out that in the 3rd groap of the Dadu taluka it is proposed to inorease the rate for rabi lift from Be. 2-4-0 to Rs, 4 or by 77 per cent. which appears excessive.

> I have the honour to be,
> Sir,
> Your most obedient servant,
> D. W. HERBERT,
> Superintending Engineer, Indus Right Bank Division.

Accompaniments above referred to sent by registered parcel.

No. 7168 or 1909.

Revenue Departmpit.
Collector's offices .
Camp Larkana, 11th December 1909.

Passed on.

The rebates on short karias are in Johi, where the land is up-hill and' clearance greatly needs encouragement.

The bad prospects of the Nara would have to be considered if the proposed assessment were a full one; but it is avowedly pitched muoh lower than the actual value of the crops would justify in order to allow for precarious watersupply. The previous settlement was made at a time when the Nara was much worse than it is likely to be ayain.

C. M. BARER,

Colleotor of Larkana.

No. 7165 or 1909.

Rbvente Drpartmery. Camp Larkana, \(\begin{aligned} \& Collector's office,
\& \frac{16 t h September}{11 th December} 1909 .\end{aligned}\)

From

> C. M. BAKER, Esquire, B. A., I. CS

Collector of Larkana,
To
TEI COMMISSIONER IT SIND.

SIR,

I have the honour to forward Mr. Covernton's settlement proporals for Johi taluka.

2: As regards the canal irrigated part of this taluka there is not much to be said. Mr. Covernton and I agreed to treat the whole of it as one group, as if it were a second group of the Dadu taluka. It is true that there is no taluka where there is more difference between the good lands and the bad lands with regard to water-supply. But the difference is between field and field, not between deh and deh. All the canal irrigated dehs start from the Nara or one of its two branches and slope up through precarious lift cultivation into waterless desert. Unless, therefore, the survey were to be entirely remodelled and the dehs re-arranged according to their water-supply-and this would be most difficult, if not impossible-there is no reason for distinguishing between deh and deh. Mr. Seymour attempted to do so, but his distinctions do not at all agree with the facts. We have, therefore, thought it better to make only one group with moderate rates. The difference of 8 annas between Johi and Dadu seems justified by greater liability to flood in the flow lands and heavy clearance expenses in the kharif lift lands, which slope upwards from the canals. There is less reason for a distinction in the case of the irrigated rabi lands: but the distance from market counts for something and in any case the assessment on these lands is being raised.
3. The reasons for raising the assesament on irrigated rabi I have shown in my remarks on the Dadu report. In Johi, these crops are most valuable and it seems absurd that they should be assessed so little higher than the entirely unirrigated barani and the under irrigated kharif lift.
4. As regards the Manchhur Mr. Covernton's chief innovation is the extension of the special rate on unploughed 'ahur' to all unploughed crops. With this I entirely concur. Special crop rates are out of place in an irrigational settlement. But the distinction between ploughed and unploughed is, I think, a fair one, since the difference really depends on therwater level. It certainly corresponds with the facts as far as I have obgerved them in the last three years. The unploughed crops are geldom, if ever, good, and the unploughed wheat is warse than the unploughed 'ahur."
5. There remains the important question of the barani lands, in whigh we propose generally to lower the assessment to a considerable extent and to abolish remissions. This innoyation was lirst suggested by myself, and I am entirely in agreement with the Settlement Officer's proposals. So also is the present Assistant Collector and so also are the zamindars. I have long thought that the remission system was unsuited to a barani tract of this kind. For one thing the Mukbtyarkar cangot do the remission work properly even in good years. I have seen this taluka in three years of good rainfall and every time the Mukhtyarkar was overworked. Of course he managed to finish the work after some months, but not until many of the crops had been reaped by fhe मaturally impatient haris or eaten by the Brahuisi cattle; while many
samindars do not apply for remission at all, beoause they know it is usoless. I nee l not describe all the difficulties of barani remissions since the Settlement Officer has done so.
6. Sscondly, I consider that the present barani rates are much too high in themselves.

I believe that they were fixed in one of those very exceptional years when the barani crops were really gond. I speak with diffidence on this subject, being aware that though I know this taluks very well you yourself know it better. But I have been in districts adjoining the hills for the last eight years and I have never yet seen these fine barani crops that former Settlement Officers apeak of; and I obsorve that even when some of the crops ars mo lerately good there are always an enormous number of fields which are bad or even entirely unproductive.
7. I believe that the 8 -anna rate now proposed would not be considered a low one in the Dasonn where the normal rainfall must be at least 5 times as heary as that of Upper Sind. I do not know what the Deccan crops are like, but nothing could ba worse than a great part of the Johi orops are every year.
8. Another point is that of the assessment on canal irrigated land $9 / 10$ is water rate. Thus if a juari orop on a canal is assessel at Rs. 2-8.0 the assessment excluling water rate is ouly 4 annss. In the barani rate no water rate is inclu led. Taus if barmi land is assessed at R.3. 2-8-0, as some of it is, it is paying a rate ten timos as high as land on canals.
9. In any case it is indisputable that the people of the barani tracts are imooverished. Perbaps the first few years of this century were exceptionally dry: but th ira have been several yares of good rainfall since, yet the people have not recovered and it has been found nesessary to write off large arrears both of tand revenue and takvi. I therefore submit that we are justified in saying that the system of high assessment eombined with remissions has proved a failure in this part of the country.
10. Owing to the peculiar circumstance of the Johi taluka the revanue syatem, which is simple in normal Sind taluk3s, often presents considerable difficulties. The distinction between the different seasons and different m sdes of irrigation is especially difi sult. I therefore think that the rules drawn by the Settlement Oficer (Appendix A) are necessary and will save a gord deal of misunderstanding.
11. For the reasons given in my remarks on the Dadu report I recommond that the settlement be guaranteed for 20 years.

> I have the honour to be,
> . Sir, Your most obedient servant

C. M. BAKER, Collector of Larkans,

Revenue Survey and Assessment.

Sind.
Revision settlement of the talukas of Dadu,
Sehwan anc Johi forming the Sehwan
division of the Larkana district.
No. 8863:
Revenue Department. Bombay Castle, 25th September 1912.

Letter from the Commissioner in Sind, No. 1975-A, dated 29th June 1912-Submitting, with his remarks, the papers specified in the margin, containing proposals for the revision of assessment rates of the talukas of Dadu, Sehwan and Johi forming the Sehwan division of the Larkana district.
Letters from Mr. S. H. Coverton, I.C.S., Settement
Officer, Sehwan, Nos. 132,133 and 134, dated 23rd April 909, and accompaniments
Letter from the Superintending Engineer, Indus Right Bank Division, No. 6835, dated 7th December 1909, with companiments.
Letters from the Collector of Larkana, Nos. 7165, 7166
and 7167, dated 10th September

Resolution.-The proposals made by the Commissioner in Sind in his letter No. 1975-A, dated 29th June 1912, are sanctioned subject to the modification that the rice rate in group II of the Sehwan taluka and in group I of the Johi taluka should be Rs. 3^{-8-9} as proposed by the Settlement Officer.
2. The accompanying statements show the rates as sanctioned by Government. The petitions of objections disclose no grounds for modifying the orders passed above.
3. The revised rates should be introduced in the revenue year 1912-13, levied in and from the revenue year 1913-14 and guaranteed for a period of fifteen years, subject to the reservation that a further repision will be made if the -RohriSukkur Barrage is constructed and improved water-supply provided before the close of the period of guarantee.

C. W. A. TURNER,

Acting Under Secretary to Government.

Statements referred to in paragraph 2 of the Resolution.

DADU TALUKA.
Kharif.

Group	$\begin{array}{\|} \text { Number } \\ \text { of of } \\ \text { vilages. } \end{array}$	Gardens:	Rice.	Othar flow:	Lift.	lift aided by flow.	Flow aided by lift.	Barani.	Weils.
1	54^{*}	Actording to method of irrigation.	$\begin{array}{rrrr}\text { R. } & \text { a. } \\ \text { 4 } & 0 & 0\end{array}$	$\begin{array}{rrr}\text { R4. } & \text { a, } & \text { b } \\ 5 & 0 & 0\end{array}$	Rs. $\begin{array}{ccc}\text { ar } & \text { p. } \\ \text { 2. } & 8 & 0\end{array}$	Rs. a. 2 210	$\begin{array}{rrr}\text { Rs. a. } & p \\ 212 & 0\end{array}$	$\begin{array}{rrrr}\text { Rs. } & \text { a. } & \text { p. } \\ 0 & 8 & 0\end{array}$	Rs. a. p. 280

Rabi.

* Exclusive of one wholly ferest dek (Belo Choi).

SEHWAN TALUKA.

Kharif:

Rabs.

- Exclusive of one wholly jatir deh (Duri Dero Iaciry, but inclugive of teb unsuryeyed dehs, of which sir are leased.

JOHI TALUKA.
Kharif.

Rabi.

[^0]: This includes assassmont charged on the raysti lands in dehs Chorlo and Badro which were formerly outsido the leque．

[^1]: * Share given to the village Fork people, i. e., the oarptnter, potter, tret

[^2]: - 170-6.

[^3]: - Berani enltivation withoat bende.
 t I. on, which reecives no bill torrent

[^4]: - These appear to be due to the difficulty of distinguishing rabi and kharif barani crops referred to in the report. There is no true wiptor juar in this taluks,

[^5]: Nork-There is an increase of 292 welle in the Divition, moye especisily in Dedu taluka and the quantity of water svailable in them generally is gufficient for irpigatiopat purposes though come wo the, welle arp piltad up and require olearance,

