HIGHWAY CONSTRUCTION, ADMINISTRATION AND FINANCE

$B y$
E. W. JAMES
Chief, Division of Design, United States
Bureau of Public Roads

alk

A Series of Articles First Published in Spanish in Ingeniería Internacional and with permission

146397
plaming a matoval hightay systma

The marked improvements in design and structural efficiency of the automobile during the last 15 years, the tremendous increase in motor vehicle registration in Western Burone and in JTorth and South America during the last twelve years, and tine possibility of the satisfactcry use of motor trucks demonstrated during the World War, unquestionably create the assurance that the modern world has a new element which must be provided for and developed in any complete system of national transport.

This new vehiclo requires a system of highweys on which to operate. Italy is recognizing the new derane by the construction of motor routes; Spain is once more turning attontion to the improvement of a road system which has been littile changed since the Mapoleonic. pericd Portugal is awakening to the nossibilities of comercial and tourist development; and France is proposing an ambitious irmprovement in the famous system of Routes Nationales by instituting a new classification of super routes to be provided with modern pavements.

In Canads the Dominion has provided for a system of grants to the Provinces for road construction, and in the United States, under the provisions of the Federal Aid Acts, a program of road cons struction has been instituted which can only be described as magnificent in its size and conception. It is only a question of a few years "before the less developed nations of the lestern Hemispiere will strongly feel the same need and impulse tovard road constriotion on a scale larger than they have ever before considered. Already liexico, the Argentine Republic and Chile are taking the first steps toward the ceveloprient of highways having a truly national significance.

With such great developments in sight it is timely to consider ways and means of assurinp; that funds shall be spent risely and to the best advantage, for the financial probler involved in the highway progran is in all countries the fundamental and difficult one to solve. To keep expenditures to a minimum we must attempt three things; (1) to select the right roads to be improved; (2) to determine the correct types to build a.t any time; and (3) to build prceressively, but so that all work done may be salvaged in future work.

To handle these matters most effectively the best method is deliberately to plan a national inghray systen. The fact that pionoer roads and trails have developed, that some rcads have already been improved, that cities have grown and the rural istricts have been put under cultivation should not detér us from attempting such a plan.

"developed_-in at least two directions, fixed the limit at seven per cent of the"
Page sixtyone , ine should read:
"eighteen gallons to each cubic yard of stone. The coated stone is then"

Mhis may disclose errors made in the past, but it will enable us to aycid such mistakes in the futura. It maj lead to a chemie in lcoaticn and priority of coustructiou for many miles of highweys, but if it does it saves money. Studies $c f$ state highway systems made in the United States during the past three years clearly domonstrite the value cf such worik even at a late date. But obvicusly the ecrlier in the highwey history of a ccuntry such studies are made the groater gocd will flow from them.

Highway systems may be Dlanned as in England, France and Spain for the nation as a whele by the central gevernment or, as in the United States, by separate political units with a necessary authority to correlate and conmect tile several itcte cr provinsial systems left to the central goverrme:at.

Nic State has an entirely free hand in laying cut a highmay system. Aside from the topographic influences, the major drainage channels and the effects of climate, there is alrofs a netwert of existing ronds and trails tc be considered. Fortunately, these existing roads have levelcped neturally to meet growing demends and they usually are located so that the cen aciventegeously be brought into a scientific system of highweys. But such rcutes have grown up under the lak of least resistance, and frequently hrere lccal defects thet must be cinnfed and improved. The most commen defects are cxcoss curvature and consequent length resulting from insufficient groding, excess gradients resulting from the some couse, and net infroquently, too many lines of trerel dovelop, bocause in the past it wes just as ensy to tike cno bed road as enother.

The first detail in approacking a national or state hirginey plen is to make a gemeral survey of the entire area to lo covercd by the proposed system in order to determine the eerernl character and condition of econcmic develcmment. Such a survey shcild be statistical and the data should be tabulated for both recad and specific compariscns, and also placed upon a suitable mep by graphic means in crder that the conditicns may be visurilized and their geogrephic relntion fixed. The dots most usefnl are perulation; agricultural production in tomnge for general crops and in cost for. special crops, such as diiry products and food stuffs delivered directly for consumption; and manufectured products by cost. The areas supplying these facts should te defincd, and in entering the information on the mop, not cnly shculd the locations be skown, tut also by an appropriate series of cclors cr siading ench area should be given a quantitative distinction. In recions where there is confusion of data, and this may frequently cocur, it may be necessary to use several maps, cne to show ropulation, another to carry agricultural areas and production, and ancther to show industrial regions and their outplit. A most unusual map has recently teen prepared for the State cf Iemnsylvania, U. S. A., showing quantitatively 24 separate items throughcut the State. On the basis of such a map alcne a state hichway system can ke laid out, at least diagramaticallj, and the roads would have to be altered only as required by topography. A map so involved as this one is not reccmended, however. It will be found much mere convenient to

Eroup related data and use sepayte rege fcr showing the related information.

After such an eccnomic survey has been made the question of topography should be studied. It would always be helpful to have complete and detailed topographic maps, but seldom are these available until long after the time when a highray system should be plamed. In the United States such a survey is today only ajout 45 per cent complete and so the absence of sich detailed information can not be allcred to prevent adequate planning to meet the current and early future needs of highway transportation. Then the ifme comes to fix the exact location of a road for imprctenert, they a detailed survey of that road will be needed ard in the absence of general topcgrapinic data the road surveys will themselves have to be extended sufficiently to disclose the nost economical location, thuch $\boldsymbol{c f}$ this information can be secured by recomaissance surveys.

Finally, it will be necessary to have a careful and full study of the existing traffic on the rcais as they are. Sucn data in some cases will not represent the conditions that must be met in the future, but they will furnish a satisfactery measure of the relative importance of routes.

The details of a traffic survey are important. They should be bcth quantitative and qualitative. The varicus counts should be classified appropriately to cover the different kinds of traffic flowing on the highways. Local practice and customs will indicate the classifications. Probably no two countries can use exactly the same subdivisions. For instance, in England heavy steam or gascline tractcrs called lerries are not uncomon. On the otner hand they de not exist for general use in the United States. The large twowheoled cart is used rather generally throughtout South America. It is very localized in the United States and the high vipeeled type. is confined almost exclusively to lumbering operations in the Southern States.

It is probable that ultimately the classifications of . traffic will approach a sort of standard form because as metor transport develops the successful types, themselves highly standardized, will comprise a larger and larger part of the tetal traffic.

Traficic data when in hand sloould also te takilated in sumary form for various routes; and diagrammatic presentaticn of the density and type cf traffic should ke show on a suitable map. In the Pennsylvania State map already referred to all traffic data were included; but the use of separate maps will be found more conrenient in most cases.

With the information in hand as descrited abcve, ve are ready to attack the details of the problem. Te shall assume that we are dealing with a naticnal system rather than a state or provincial system. The first thing to be considered is the rrobably

-4-

adequate mileage of roads in the system as a whole and in the several political or economic subdivisions of the system. The nation will be made up of a wide and interesting variety of areas each characterized on an economic map both as to the type or quality and as to the develop. ment or'quantity. Some areas will be acricultural, perhaps whole States may be so classed. Others will be chiefly industrial. There will be desert areas, mountainous areas, forested areas. Some regions will have large cities or towns in considerable number, others will have a single, central metropolis and a sparse and scattered popula-. tion in the rural sections. To arrive at some reliaile cata as to the amount of road mileage, widely distributed, that will serve these various subdivisions of a nation, we must turn to a study of other countries. In England, France and the United States, respectively, we have a great variety of economic and natural conditions for wish such data are at hand. England is largely a manufacturing country highly developed. France is a manufacturing and agricultural nation. In the United States there are separate political subdivisions known as States, that are characteristically divided into manufacm turing states, agricultural states, mountainous states, desert states, etc., and the conditions affecting the distribution of population are as varied as will be found in any western naticn.

England, a manufacturing nation, hes 2.6 miles of public highway per square mile of area. Nassachusetts, U. S. A., a manufacturing State, has 2.34 miles por square mile. Pennsjlvania, anotiner manufacturing state with, however, a large north central agricultural section, has 2.03 miles per square mile. Chio, not unlike Pemsylvania economically, but mucir less mountainous, has 2.07 miles per square mile. Connecticut and Rhode Island, both typically manufacturing States, have 2.52 and 2.13 miles per square mile respectively.

Well developed agricultural States like: Illinois, Iowa, and Missouri, have respectively, 1.72, 1.87 and 1.62 miles per square mile. Indiana, ail especially advanced agricultural state, with many mining and small industrial centers, has 2.12 miles per square mile. Southern agrictiltural states, devoted to cotton and corn production, like Georgia, Alabaina and Mississippi, have 1.62. 1.14 and 1.14 miles per square mile. Arizoma, a desert state, has 0.19 miles; Nevada, a similar state, has 0.24 ; and Colorado, a distinctly mountainous state, has 0.46.

France, which as a nation, is probably the most advanced so fir as concerns the highvay plan as distinguished from construction, has 2.1 miles per square mile.

These figures represent the total miloage of public highway which will serve areas of different generil economic classes when those areas are highly develcped for each respective class.

Based on conditions of general development in firope and the United States, which may be considered as representing the

Abstract

-5 typical development of national areas, we find then, that a characteristically manufacturing region ahould eventually have approximately 2.3 miles of highmay per square mile. Other types of area can likewise be classified in the same manner and we can compile a tatle like the following:

Miles of Highvay
Per Square liles of Area

Highly developed manufacturing areas	2.3
Highly developed flat agricultural areas	1.7
Tell developed hilly agricultural areas	1.4
Hountainous areas	0.7
Desert areas	0.3

These figures comprise all those pioneer roads and trails that necessity has established including the later wagon roads cleared through forests, marked acrcss prairie and plain, and finally created by law as the public highways of tha state cr nation. For cur purfoses these roads represent the ultimate requirements. In some less developed countries such a mileage may not now exist; eventually it will. It represents the human demand for avenues of communication. These are the roads that must be considered in laying out a national highway plan. The problem becomes largely one of selection and discrimination with some necessary additions and much needed correction of detailed alignment and locaticn. No possibility exists in any country today that all of this large mileage could be highly improved. It wold be uneconomical to improve such a mileage, as well as financially muinous. The actual traffic, is so small on much of this mileage that improvement is not justifiable.

In laying out a national system cf roads for improvement at the general expense the mileage resulting from the application of this table to the areas must not be used, but a certain empirical fraction cnly. This will be a surprisingly small fraction, but it will constitute the national highway system. The state road system in liassachusetts comprises 8 per cent of the total public road mileage. It was the second state in the United States to criginize a state highway department. In Nev Jersey, which has the oldest state highway department, organized in 1893, the state system comprises 824 miles, or approximately 6 per cent of the tctal mileage. California has about 9 per cent in its very adequate state system; Naryland approzimately 14 per cent in the most advanced state system in the country; Penasylvania about il per cent: Few York 10 per cent, and Rhode Island 12 per cent.

The Federal Aid Highway Act of the United States drafted on the basis of providing at least one highway entirely across each state-even the least developed-min at least two directions, fixed the limit at 7 per cent of the total public road mileage, vith a provision for ultimately increasing this as develcpment should require. In France the national roads are 5.7 per. cent of the whole mileage; in England 18.7 per cent. In the lcrg run it appears that -
greater difficulties ultimately attend the execution of a program that is too large, than cne that is smaller, even though the initial designation is eventually found to be too swall. It is always easy to meet lccal demands or national demands by adding mileage. It is almost a hopeless task to reduce the scope of a naticrial layout cnce it has been made and published.

Actual traffic counts over large systems of highways and emfirical analysis indicate that abcut ten per cent of the total public rcad mileage will care for abciut 75 fer cent of the traffic. In scme States which are in large part desert or mountainous, the percentage should no doubt be larger, not so much because of purely local requirements, but in crder that adequate comecticns may be made with the rcads of contiguous territory.

The wisdom of experience, common sense, expediency and public policy therefore indicate, especially in fartly developed conntries whose revenues hare not yet began to meunt with rapidly increasing wealth, that a low per cent be chosen. The seven fer cent adcpted in the United States may be taken as a basis, remembering that there are in that ccuntry state systems, which include from 50 to 100 yer cent greater mileage than the Federal aid system.

We find that ky applying this facter to the figures in the table above that we get a new set of figures rerresenting the actial miles of highway per square mile that should be included in a national system according to the type of area.

Miles cf Highway
Per Square Viles of Area

Highly develofed manufacturing areas	0.161
Highly develoced flat agricultural areas	0.119
Fell developed hilly agricultural areas	0.098
Licuntain areas	0.049
Lesert areas	0.021

By determining the respective areas of tive several economic divisions intc which the national territcry has becn classificd, wo cen at cnce determire the equitable raad mileago. which shculd be included in each division, This mileage will furnish the tesis for laying cut the national highways. It will be impessible to adiere to these figures rigcrously but the clcser they are fcllcwed the fewer relative inequities will be intrcducedinto the system. Frequently, esfecially in small desert areas, nct enough mileage will be found tc crcss the area, and because of its lccation it mist be crcssed by any adequate system of roads. In sucin cases cbvicusly. scme concessicn must be made.

A broad consideraticn of highway needs, the stridy cf highway derelorment, and the history of actual construction as dictated ky popular opinicn, willingress to provide funds and actual requirements to meet ever increasing traffic enable us to lay dewn some
convenlent principles to guide we in orar selection of the nationsd system. These principles are supported and confirmed by our economic and traffic studies.
(1) Development of local roads is fundamental. This postulates a radiating group of shor.t roads around important centers of population. Except in metropolitan areas, such as New York, Chicago, St. Louis, Lendon, Faris, Marseilles and Buencs Aires, it is seldom that more than seven such radiating roads are needed. In ordinary large cities, like Tucuman, Nendoza, Santiago de Chile and La Paz, five or six will serve; and in a great number cf cities having a population up to 30,000 , four will answer.
(2) The extension of local roads should be made in properly chosen directions, which can be determined by the existence OP other large centers of population. Provision shculd be made to carry roads through a line of lesser centers, and across highly develcped areas.
(3) The ultimate joining of routes radiating from different centers.a

The method of procedure is relatively simple. With the economic data available it is possible to designate areas of relative importance and to locate the various cities, large tows, and even smaller settlements that represent the major and minor population centers. The economic data is supported by the topographic data in most cases, and these two are always to be considered together. By a study of the facts the country can be divided into areas of relative development and of topographic types. These areas will be desert, mountainous, forested, cultivable or cultivated in varying degrees and will be densely, moderately or sparsely inhabited. It is not necessary that these divisions of the nation shall coincide with lesser political divisions, although if the provinces or states are set off by natural boundaries like mountain renges, large streams, or marked alterations in topography, then the economic divisions and the political divisions may coincide more or less completely.

In any case we shall have a rational subdivision of the national area into regions of economic classification.

On a national map as a wcrking basis, with the economic areas platted, the work of laying cut the system may proceed. The layout should be diagramatic, similar to the map of New Jersey shom herewith. ijo close attention need be given at the moment to the existence of public roads and straight lines may be used to connect points which control the laying out of the rads. The selection should be governed by the traffic data arailable. The first choice should be the most important road in the area; the other roads to be selected should follow in degree of importance until the allowable mileage is exhausted for the area.

The same process should be followed in each of the other
economic areas. Where traffic data are available it will be found that the system will be connected and correlated. If traffic data are not used and general information, the engineer's judgment, or popular cpinion is followed, it will be found in all probability that at the boundarics of the contiguous eccnomic areas the roads sometimes do not meet. This is a condition ccmmonly found, especially with respect to political subdivisions. It occurs between tows in the New England States, U. S. A., where the tow is the basic political unit. It cccurs between counties in practically all the cther states. One town or county will insist that its east and west road is most important. An adjacent town or county on the north will equally insist that its north and scuth road is most important. This condition results from the strictly local point of view of the cfficials and citizens, and often from inaccurate information as to the facts. In all such cases correlation must be insisted upon. If the existing amount of traffic requires the inclusion of the road thet does not fit as a through connection such road may ve left in the system as a radiating road from some convenient and more cr less important center.

To visualize this process of selection a map cf Peru can be used. The radiating roads, with certain roads extenced to meet adjacent similar extonsions from other centers, are shown around the cities of importance. This map does not show a complete national system, but it illustrates a conditicn that will no doubt exist in many countries of Central and South America.

The mileage as completed by the method here outlined provides an adequate system of national roads, based on area requirements, for a well developed country. It will; therefore, be found in many cases that this mileare is more than is needed at present to surply sufficient radiating roads at all centers of population requiring them, and to extend these to make connections necessary at this time with other radiating groups. In other words, places will be lacking at which to locate a considerable balance of the mileage. To meet this condition the values in the second table should be reduced by a further percentage to the point where the system fits the conditions. In this way the original relations are maintained, and the comparative importance of each economic area is recognized equitably and fairly.

The reduction of mileage is the practicable and comon sense solution in a case of this kind. It results in a naticnal system more nearly in consonance witil existine develcpment, wealth and population. But we may make another solution if we consider that the additions beyond such a point as that indicated on the map of Peru are speculative and to that extent tentative. Ve can continue adding selected routes until the total computed mileage for the national system is entirely absorbed. Such a system, if it correctly anticipates future development, will be the national highway system justified and necessary, at that future time when the national area will have developed to a point comparable with that of Europe or with the eastern half of the United States.

For instance, it may be definitely known that a certain area, although not nov developed, is good agricultural land. There may be a river falls, junction of two streams, lake outlet or other point at which, on account of potential ceocrarkic value, a city will probably exist at some future time. To this point, or at least toward such point a route may be extended, and a certain mileage absorbed in radiating roads. A case like this is specifically represented by the proposed establisiment of Hahuel Hauris in northern Patagonia. In the region of the Andean Laizes in Western Argentine there may be several points that could be tentatively chosen and woriced into the systen. This procedure clecrly articipates future develorment, and it is definite?y understood that all such mileage is subject to alteration and shifting as actuai grom and progress demand. In the United States, especially in constructing forest roads, futuro development is recognized; and even in the vicinity of cities some of the main routes clearly demonstrate that where the engineer can project well chosen roads, population will follow. This same thing exactly happened in the case of the railroads, and can happen again in the case of highways. But such advance planning is not to be included in current construction programs. until financial conditions are sound enough to permit, and this mileage only serves to locate tentatively the balaice cf the total. system above immediate requirements.

In studying and laying out the system a streight line, diagramatic method has been recommended. As soon as the layout is completed the next step is to select the roads that such lines of communication shall follow. There will always be tri ils, wacon roads or maybe some highway improvements existing when the national plan is undertaken. In most cases there will be no difficulty in determining what actual road or trail is to be selected as the physical counterpart of the schematic route arpcaring on tine mop. In the United States, which considering their growth, wealth and needs, were really late in undertaking a national system of highways, it was found that traffic already existing between some points was so dense as to require two or more roads. This condition is most unlikely in countries of younger growth. The traffic surveys, taken on the existing roads, will always serve to show what roads should ordinarily be folldwed where alternatives exist. There may be necessary departuro from such old roads when construction surveys ere made; but in most instances such differences will. be local and incident to the correction of alignment and grade. If, however, little used or entirely new routes with greatly superior physical characteristics exist the engineer should give thom carcful study at the proper time.

We can now transfer our schematic map to a read map of the country, usually taking the country in sections (by provincos or states), and on a larger scalc. This now map will constitute tho baso map for legislative or other authoritative action promulgating the national system.

It will be desirable in some cases, oven when so littlo as four or five per cent of the total computed mileage is wortred into the system, to diviae the whele plan into tivo cenoral divisions, such as primary and secondary roads. This classification may be done in tro common ways. The primary roads nay be made continuous as a kind of back bone or sizeleton for the wholc body of roads, and the socondary classification then becomes discontinuous as a group of appendages to tho primary system. This mothod has been prescribed by law in the Unitod States with certain minor qualifications, and is exemplifiod alsc in tie routes nationales of France as compared with the routes departementales and routes vicimaux. On the other hand the two classes may te tased ontirely on typos of construction, certain higher types being classed as primary and roads destined to bo of such types in tho initial coilstruction rrocram aro rado primary. Others aro socendary and of lower types of construction. This method produces a systom of discontinuous primary roads as woll as discontinuous secondary routes.

Somo students of hignray economics prefer not to attompt any classification into primaroads on a basis of importanco of the routes. They adopt a division into priority grouns, thos c to bo built first, gencrally within a certain period; tioso to be built next; and finally, a lest group that can be conomically postocned. Elaborate studies for reconstruction programs in somo of the largest and wealthicst States in the United States have recontly been based on tinis method with considerablo success.

As a mattcr of fact, tho primary and secondary classification based on rolativo importance of routes is more or less artificial, and is ontirely porfunctory so far as tho carly construction program is concorncd. It is im ossible to confinc construction to the primary roads until these are completec, because what are important as routes, frequontly have unimportant soctions wiich must bo delayed.

With tho systom nory planned and basc maps propared, it is possible to decido on types and attempt a first period of constructicn. The first road to be built should bo the most importent section existing in tho systom. It may bo five kilomoters or 100 kilometers in longth, but it demands first construction. This is the simplo and universal rule to follow from the point of viev of the enginecr and conomist. Howover, it is quite common as a mattor of political cxpediency to make a distribution of funds by political subdivisions; and to build for instanco the ten roads of greatest importance in each of ton districts, rathor than tho ton roads of ereatest importance in the wholo country. The lat tor method might, result in tho construction of ton roads all in cno region goographically ruch rostrictod.

The types to bo built will depend largoly on traffic in tho carly yoars of dovolopmont of such a national system as any country in Latin Amorica is likely to have. As the systoms becomo perfected other considerations will become of more rclativo importance.
-11-

Unfortunately, ongineering date aro not yct sufficient to enablo a rational choico of types on any cract basis. Wc must contont oursclves with cortein broad gencralizaticns bascd on wide cxpericnce and past practicc.

In gencral the following table will serve as a guido in tho selcctions of types.

Table
Pronosed Types for Initial Constructicn Bascd on Averege Daily Trcific Count
0 to 100 vehicles
100 to 300 venicles
300 to 500 vehicles
500 to 1500 vohicles

More than 1500 vchieles

Earth
Selectod materials, sand-clay, top-soil, etc4
Grivel
Surface troated gravel, macadam, bituminous madadam, and other intermediato types
Bituminous concretc, brick, Portland coment conercto and other pavement types.

These propesod types of construction may be show in the working maps for domonstration murposes. Thoy will, horjever, have to bo changed as traffic changes. It is scldom of advantage to plan the actual trpes much ahead of the finencial progran. ior this reason the mothod of programing the construction will be considered together with tioc financial problems in a lator paper.

The types as sclectod for the first period of construction may be entered on the map by appropriatc symbols or legends and so far as concorns the general control which is exorciscd by a national highray system over the construction program our first problcm is finished.

EAPTE ROSD DESIG: AID COLSTAECTIOM.

Seeing that highrays are takine their place as an integral and more and inore important element in the national transportation system of every country even the design and construction of earth roads, formerly the simplest and crudest work of road building, in no longer to be despised. Fighway construction is so costly and the demands of traffic so insistent and so rapidly growing, that highway designers in planning an earth road minst at once solve some of the most advanced problems in highway encineering.

Then the State of Massachusetts, one of the first in the United States to have a state highray system and a higlaway commission, undertook systematic hichway construction in 1850, the work was done to neet the traffic then existing. The Massachusetts system was inexpensive to ecnstruct, when compared with current estimates. A few thcusand dollars per mile served to provide adequate roads for that day. As traffic increased, and as it finally changec sbout 1906 to 1910, Massachusetts and other States, and likewise cther nations like England and France, added to their originghuinvestment by maising bet-. terments and improvine surfaces. The capital costs of such roads have been distributed over a generation. ...

The state or nation that jegins to build roads today finds itself confronted with a nev and heavier type of traffic, differently propelled, applyine different forces to the road surface and requiring conditions of economical operation not at all dissimilar to railvays. Then we built along the line of least resistance to orisinal construction. Now we must build along lines that will insure the least maintenance and cperating cherges.

It is a fact, however, that the countries of Latin America have a better opportunity to distribute their costs over a period of years much loncer than may one of the United States, liko Arkansas or Montana, the begins in thess days systematic road building under state direction. In Latin Amorican thore is now, and probaijly there will be for many years, a considerable portion of steel tired and horse-drawn vehicles among the tctal traffic. Consequently, there will be some opportunity to build progressively, such as rarely exists in the United Sitates today.

It may not be financially possible nor econarically justifiable to construct high type surfaces, such as sheet asphalt, brick, or concrete, then some roads are laid out and greded, and there will be no present or inmediate denad for such types. They mivy be postponed in many sections for a longer or shorter period, depeading on the growth and prosperity of the recion; but costs tomay are so hieh that it is imperative that nothing be constructed along incorrect or unscund lines.

Ve must keep before us the principle that ivhile the road building may be made progressive, each adrance being mede to noet increasingly hecry demands, it must be so prosecuted et every step that
all that has gone before shall be salvaged in the new work no matter how long that work may be postponed. A highway may be graded and drained to meet the needs of a small rural traffic; surfaced first as a gravel road; then topped with a course of bituminous macadam; scarified, prepared as a base and surfaced with some type of mixed bituminous concrete; and finally reconditioned as a duplex road with two concrete sections having a bituminous center, or as a heavy pavement with bituminous shoulders. But each step must be so ordered as to make it develop as much as possible of the value remaining in the preceding one. In this way and in this way only can a highway system be economically handled under the tremendous and increasing demand of modern traffic.

Earth road building, thereiore, involves much more than mere grading and the installation of needed drainage structures. Every detail of alignment and gradient must be studied and adjusted just as if the surface were to be of the most expensive type. Where the possibility of alternate locations exist both must be investigated to determine the one ultimately the most economical.

The general highway plan already described in a previous article may be assumed to exist and certain sections to be so located and conditioned that it is decided that they are first to be graded and drained. This may be done for two purposes: An earth road may be entirely adequate for the small amount of light agricultural traffic using that particular piece of road. The total nuriber of vehicles may not exceed, for instance, one hundred per day and there may be no heavy trucks or other heavy vehicles likely to use the road except under favorable conditions, as in dry weather. It is to be noted in passins that an earth road in good condition and under favorable weather conditions will carry practically any weight of traffic in small quantities, provided the tire width of vehicle is controlled. On such roads the limiting feature is rather the number of vehicles than their weight. Of course, such a surface will not stand up in wet weather.

Also we may have to construct an earth road where the traffic is so heavy that an earth road will not be adequate, where the daily traffic may be several hundred vehicles including many heavy ones, because the topography may be such as to require considerable deep filling. It would not be good practice to place an expensive surface on such fills, especially.if rigid tyoes of surface involving either concrete base or pavement are projected. In such cases it will be necessary to grade and drain and let the earth embsinkment settle for at least one round of seasons. During this time the road must be opened to accommodate the traffic, and during such time it must be used and mointained essentially as an earth roud.

The determination of location is the first problem in earth road construction. The general highway plan will indicete the general route, but there may still exist a choice of alternnte locations for actual construction alignment. The study of alternate routes solves this detail and the solution should be one that can stund for all time.

The decision will often be determined by the existence of certain controlling features. There may be several settlements that demand local service, an irrigated area may lie so that it must be served by the proposed improvement. A gap in the hills may decide the question in favor of one. route as against the other. These are general considerations and often may be settled by established policies as well as by strictly engineering principles and the law of least resistance.

For instance, we must recognize the principle that the highway is first of all for local service. Because long after the country has reached a high condition of development, local traffic will constitute 75 to 90 per cent of the traffic flowing on the road. It is generally the fact that more than one line can be run and each will be equally satisfactory from the technical point of view though costs may vary. It is a sound policy, when conisidering existing local settlements, to deviate from a direct line in order to give such points adequate highway service, provided only that distance is the only technical feature involved. Te are justified always in the early days of highvay plaming in accomiodating as many local centers as possible, even at added cost. But in all such cases, the location secured should, except in lensth, be equivalent to the best obtainable. Ho added curvature or increased gradient, no unfavorable soil conditions, nor excessive unnecessary drainage should be accepted in order to accomodate unimportant small centers of population. For such purpose spur roads should be used. The map of Iowa, U. S. A., published last month in the first article of this series shows a large number of such spur roads built to give small centers contact with the inproved higinay systex.

In actually determining the final line, consideration should be given to the ultimate requirements of the route, so far as they can be foreseen, and not merely to the present traffic conditions. The specifications for the location survey should determine the maximam gradient; mininam radius of curvature, minimum tangents, and any other elements that require docision at this point in the work, just as though the highest type of pavement were under consideration.

The maxirum allowable grade is often set at 6 , sometimes at 5 per cent. But it is truer economy amd better desién to adopt a less rigid policy. It is true that for horse-drawn vehicles a 6 per cent grade long had strong support among designers, but the future vehicle is to be motor driven, and as we are now designing for the future as well as for the present we should consider the motor vehicle as controlling and not the horse. Consequently, we can use grades up to 9 per cent, provided they are short and properly placed.

A gradient of 9.0 per cent, not over 1000 feet $10 n 3$, can be climbed by a motor vehicle in second gear without difficulty and the average eut omobile operating in high gear can travel uninterruptedly on the following grades:
$\frac{\text { Lngth of mradient }}{\text { Feet }}$

1,000	5.4
800	5.7
600	6.3
400	7.3
200	11.0

Per Cent ef Gradient
5.4
5.7
7.3
11.0

In the above table it is assumea that the approach to the grade is at a speed of 25 miles per hour, and the final speed at the top is not less than 15 niles; and the tractive resistance assuned is that for natural earth in good condition.

In the matter of curvature, cur viens likewise mact be scmewhat revised. Curves of 80 to 100 feet radius. shculd not be tolerated as they heve been until recently. Not leṣs than 250 feet radius should be constructed, and in flat and easy topograpiny a minimum of 500 feet should be made the regular policy, and 1,000 feet secured where pessitle.

Our fundamental principle of selvacing old road values mist be recalled at this point. Fe can salvage a partly graded profile, but we can not salvege am abandoned aligruent. Consequently, we must resist the tendency to introduce pcor alignizent, sharp turns and curves and short tangents, when it is impelled cnly because of proposed low type surfacing. It is just as inportant to adhere to en alicnment of first quality for a graded earth road as it is for an expensive type of pavement.

In selecting eurves, therefore, the policy of the engineer should be altosether controlled by the ultimate jequirenents. It will be desirable ultimately to introduce such refireinents as easenent curves, widening on curves, and compensation of grades for curvature; and the engineer respousible will be able to determine to rhat extent these must be introduced in the original wark in order to avoid losses in future reconstruction. the decision will depend largely on tie riath to which the roadway is at first to be graded, and the radius of curvature in each case. It vill of ten be possible to salvace all or necrly all of a grade if simple curves are used cricinally and cascment curves and widening introduced sinultaneonsly at a later date. The difference between the external of simile circular curves and.the external of the same curve with an easement spiral intrcduced is someriat less then 2.0 feet for extremely sharp curves and less tian that for curves of less degree, so that little is lost if simple curves are first built in and - Later cesed. By skillful adustment of the center line practically all loss of grade can be avoided.

The width of the original grading need not be that of some future high-class improvoment. The grade can alizays ba widered without sorious less of work done. The actual width of first eenstruction will depend on the traffic existing and conterplated, but it should bo noted thit it is cencrally easicr to maintein a troo-lanc curth road then a onelane road, vecuuse or loss concentration of traffic.

Each traffic lanc of acalarfaced road should bu 10 foct wide. The graded ridth shculd be medo dependent on this figurc. The width of shouldors should not be less than four feet, and where safoty demands should be zider. Accordingly, if wo arc contcmplating at first a single-lanc rad, the minmm width in fill should bu 18 fuet (6 N. .) and in cut, 22 foet (7 M.). For a propesed two-lanc road these dinionsions should be respectivcly 28 feet (9 M) and 32 feet (10 M .) .

The cross scetion aill vary according to the nature of the topography. In prairie regions, in the level pampas and across deserts, a relativcly lor grade should be used, but conerally the entire road should be in fill. If tinc rainfall is much above $2 E$ inches per year, the surface of the grade should be about 18 inctes above the prcbable level of water in the ditches. In hilly and mountainous regions, cut and fill scetions, similar to railrcad work, should bc used. It is not coonomical to adhore to onc uniform cross section, and theco should be no besitation on the part of the engincer in changing his cross section design to secure the greatest eccnomy in earthrork. line widtl betrieen shoulder lines is the detsil that alone need be uniform.

On the assumptions made herein we shall often find thetthe ccst of grading alone is excessive, and not justifiable by existing deminds of treffic. To meet this condition it is only necessary to lay a new grade line on temporary assumptions as to naximum gradient. We may reduce cuts, snd correspondingly reduce fills to bring the quantities moved down to what is a reasonable estimste from the point of view of present funds. Note thit in general no veriation is to be made in alignment. Thes is for the reason mentioned above, The partly graded profile is not lost, but the abandoned line is. Later, when a surface is to be pleced, end therefore final profile nust be used, the cuts can be deepened and ridened, the fills raised, ard the profile cenerally adjusted to its final line.

At the same time that a road is graded, it is generally considered ecenomy to install perranent drainage features. This fact applies especially to culverts and briages rinich, unless deliberately built as temporary structures, will normally have a life lone enough to reach the time when the road will require surfacing and baybe erin reconstruction. If long lived structures are to be built, certainly they should be on final line and grade. Finth respect to culverts, this holds as well as for bridges of larger span and greater cost. Eut it does not hold with respect to subdrainage. If is not necessaiy that the so-called French arains, tile drains, blind drains, etc., be installed at the time an earth road is graded. It may be desirable to introduce theso features, but like ∇-drains, Telford base, ana othor sub-base features nothing is actually lost by postronine these details to a time whon a surfuce is to be laid. They shotld not, howover, 'ee postponed beyond that time.

The ultimate use of subdrainage and sub-bascs rill depend largely on the kind of inatural soll existing in tiee subgrade. Also the treatment of the finished earth road should cepond to no small degree on this same detail. Even if traffic is not in excess of 100 veaj.
oles and nothing better than a common carth road is required, novortheless, the engineer is ofton justified in doing something better if it can bo done at littlo or no greater cost. Then the grading operations aro going on, there will frequontly be disclosed certain types of soif, such as disintegrated rock, indurated sand, plain sand, and even loam that are far superior to clays and heavy loams as a surface for traffic. When such materials are found they should be so handled, if at all possible, as to bring them into the top layer of all fills, and if it can be done, cuts should be surfaced with the same selected materials.

This handing of the excavation and the deposition of material in fill to secure the best results will require careful plaming and almost constant attention on the part of tho eaginecr in chargo. Unfortuntely, no general plan can usually bo mado in advanco beccuso tho soil conditions bolore the visible surface are not casily or choaply ascertainable. But as good material is exposcd during tho progress of the work, the handling methods should be so plenned as to utilizo these materials to the best advantage at the surface of the graded road.

The usual simplo appliances and genoral mothods of handling ordinary earthrork need not be discussed. Cnly one point necd bo .emphasized, and that is that grading over long distances should then possible bo so balanced, at tho time tho profile is trarled out and quantities computed, that the work of grading may be done with the simplest possible outfit and equipment. The rork should bo planned to involve generally an occnomical wagon haul, whoelor, or slip haul, as tho caso may require. But combinations of such equirment rithin short distances should bo avoided. This adjustment presents a nice problem for the engincor, but it simplifies tho equirmont needed to do the $j o b$, tonds to roduce costs, and croates woik adapted to the capabilities of small as well as of largo contractors.

The usefulness of an earth road is dopondent ontircly on its adequate maintenance. Its deterioration is so rapid under unfavorable conditions of weather that not only is traffic seriously hempered by neglect of proner maintonance, but loss of invostment is rapid bocause of weathoring of tho slopos, distortion of tho surface by ratting, and washing away of shouldors. Tho problem of maintaining earth roads, thereforc, should be constantly before the enginecr responsiole.

The simplost, choapest and best implement for general carth road maintenance is a drag, and a common wooden drag has novor been surpassed on narrow roads for quality of rosults producod. The old fashioned split log drag used in the early days of carth rocd improvemont in the Unitod States was composed essontially cf a log spit into halvos, these turmed so that the split surfieos feced tho samo why, and cross bars introduced to hold the two half logs in tho preper rolative position. But this primitive implemont has given evey to larger and heavior equipmont moro suitod to repid wrik end adaptod to uso behind motor trucks. In oither case, the acticn is tie same.

The drag is drawn elong the road while the surface is damp after rain. In this condition, the ridges and ruts that may have been formed by passine vehicles while the road was wet and soft are smoothed away or filled with crumbled earth. wiater lying in depressions on the surface is splashed out over a large area and exposed to more rapid evaporation, and the process at once quickens the drying out of the earth and insures its being smooth and in proper form as it hardens. Dragging should not be done in dry weather or when the road is dusty, as the nork tends at such times to aggravate the dusty condition.

Steel drags have been designed to cover pracijenlly the entire width of an earth road at one operation and these produce good results if they can be operated at times when the road is practicaliy clear of all traffic. Otherwise, drags covering one-half the road width are most practicable and satisfactory. It is necessary to use two and sometimes three draga in combination to cover a wide road. lost modern drags are adjustable so they can be made to cut little or much, and brush the loosened material toward the center or toward the shoulders of the road as desired. Usually all material should be dragged toward the center. Shoudd this overbalance the natural tendency of the material to drift and wash toward the shoulders and result in increasing the crown of the road excessively, the drag should be reversed in operation so as to brush the loosened material outward toward the shoulders.

Generally speaking, the maintenonce of an earth road surface is accomplished by adequate dragging. No other work is required so long as the road is not permitted actually to lose its proper cross section. Some distortion of forms will, however, be alnost unavoidable, and in such cases, a blade-grading machine is needed in order to cut the surface more deeply and brush the necessary material to one side or the other to reshape the crom and true the cross section. This kind of equipment, like the drags, may be combined so as to cover the entire width of road at one operation by using three blade graders. A single blade grader may be used, however, and equally good results be secured.

Both drags and blade graders may be draim bry animals or by motor trucks. The amount of mileage under maintenance and the organization of the working force will largely influence the type end weignt of equipment.

The action of the drags is to smear and to close the more or less plastic earth surface, squeczing out free water and inducing rapid evaporm ation and hardening of the earth. This must be done soon after reins and when the roads are still moist. Usually tie day after the rain stons is a good time to begin drageing unless the rain has becn a long one. The best time can easily be determined by inspection. The color of the soil will begin to change and to becone slightly lighter. When this chance is noticed it is time to drag. To do the work in a single day, enough drags must be provided to cover the total milcage at the rato of 20 to 25 miles to each motor truck outfit, and from 5 to 10 wilos to cech animal drawn outfit. The smaller drags should be given short houls and the heavy equipment the loncer ones.

In the days when a large mileage of earth road was maintained with small drag equipment, it was sliccossfully done by employing on part time the farmers along the road. The same practice might be successfully worked out in many places. Plantation and ranch ovners could be induced to become responsible for the drageing, and their employees could actually do the work.

Earth road work is simple, but it demands persistence to be made effective. There are still in agricultural regions of the United States, where the soil is not mach superior in stability to that of the pampas of the Argentine, some roads that are kept in remarkably good condition except during rainfall and immediately afteriard. The efficiency with which earth road maintenance is done will do much to influence the attitude of public ojinicn toward highway improvement and very considerably influence the increase of motor car registration. These in turn may be depended upon to creato a cenand for a ereater mileage of road of a constantly improvinj type. This cycle of action and reaction is responsible for the reat era of road building thet every progressive nation. Iaces today..

- . 21.
 GRAVEJ AND OTHEX EICRIT ROAD SURFACES

It will :e found that a lavge mileage of ony highway system requires sone form of surface at the time of initial planning. Other sections originally constructed as earth roals uill eventially Uevo to bo surfaced. luch of this mileace, rrotably liprerde of 60 per cent, will be satisfied with surfaces of cravel, sard-clay, top-soil or variations of these types. In general, all roais carryine un averace traffic of from 100 to $5 C 0$ vehicles per day will come within this group of roads of light surface.

Whetber the first construction involves the placine of a surface or not, the details of grading, including nll the considerations of alignment, Eradient, curvature, etc., will be taken care of as described in the preceding article on earth noads. Tais paper will revien the materials and operationc used in the consturtion and mintenance of the large group of suxfaces consisting of eravel and sirilar materials. If, for reasons of economy, the grading was not entirely completed at the tine of original construction as an ecrth road, the road should be brought to proper profile before surfacing. Othervise, surfacing placed on such a grade will later have to bo discarded if the grade is changed.

Assuming that traffic gradually increases and thet each sucm cessive betterment of the common earth road can be progressively used for a few years, the first advance that should be made is the treatment of the natural earth with some material that will increase the stability of the soil. All such work certainly will meet o:ur economic requirement that it be subject to salvege as the betterments are successively adàed.

The best and usually the most available naterial for the first treatment of an earth road is sand or fine gravel. Suitable material can usually be identified by an engineer without the use of epecifications or teating sieves, and specifications need be resorted to only when materiais are beiriz puachased from sono producise plant, or furnished by a contractor, when it will bec ome necessary to have sone measure of quality ta protect the buyer. In general, wiy eooa clean sand will serve, but the coarser and cleancr the materiel the better. It is unnecessary at this stage of construction to distingisin between sand and fine gravel. They run into each other. Usually all material may be classified as sand thet passes a cuarter inch mesk and all material gravel that is retained on that mesh, ard a satiafaotomy material may have not more than 20 per cent retained on a cine-quarter incir mesh and all passing a three-quarter inch nesh. The conron sources of material are river and streem ralleys, there sand and small gravel bers are cormon. Often tiee meterial is duedged from the river and washod in the process of eroçging, Bunotimos the banks are exposed at ataces of low water and the material can bo dug and lcadç cirectly into carts or trucks.

There are regions, however, like the nor thern pampas of the Argentine where material of this kind is scarce and costly, but south of Rio Negro, in Patagonia, it is plentiful and will furnish a satisfactory material for treating an almost unlimited rileage of roads. $\cdot 1$

The simplest method of treating an earth road that shoms evidence of too costly maintenance and unsatisfactory service, is to haul sand and deposit it in a line, called a wincrow, along one side of the road. A blade grading machine is used to brush a small quantity of aand over the entire surface, if possible after a feriod of licht rain. The sand rill work into the soil and vhen the road urics the surface will be harder and firmer than natural eerth, and in wet weather it will be less absorbent of moisture. An ordinary heavy loarl road will require at least two inches of sand and if the nature of the soil is such that the two inches of sand are taken up entirely in a single seam son or less, additional sand should be dumped into the windrow and spreed until the natural soil refuses to retain any inore.

Hundreds of miles of earth road are being sended in this way in the United States and the method is very satisfactory, even on heavy black prairie loams, provided the rainfell does not exceed about 22 inches per year.

This simplest of processes is not so satisiactory where rainfall is excessive nor does it serve where the natural soil is itself composed largely of sand or sandy material. To meet these conditions at a relatirely low cost the first step in the betterment of a grajed earth road may re the placing of top-soil or sand-clay surface. Sanamelay is oither an ar-. tificial or a natural mixture of the two naterials named, in such proportion that in dry weather it will not crack by shrinkage and in wet weather will not slake, or at least till not slake rapidly. It is a mixture closely approximating that required for ordinary burned building brick, with perhaps slightly more sand.

If the natural earth contains much clay the sand may be spreadias described above, or hauled and spread directly from carts or wegons. After spreading about three or four inches of sand, the entire road should be plowed about eicht inches deep, harromed thoroughly, and thon shaped to proper crossmsection vith a blade grading machine. Tho crown of the road may be reduced slightly celow thet indicated for a plain ocrth road, and made approximately thiee-quarturs of an inch per foot.

If the natural soil is sandy and the road is unsetisiactory because of ruts formed in dry weather, or if the material is practically all aand, then the treatment consists in adding clay to coaplete the sand-clay mixture. The finishins process is the same as in the first cese.

When the subgrade contains little or no plastic materiel like clay and yet is not sandy but is rather a loam or silt, it may hecome necessary to add both send and clay to produce the necessary mixture. In such cases the material may be used to advantage when found in its natural. state. It occurs generally in two natural forms; in eeological strata con-
taining often sufficient iron oxide to make it a very serviceable miterial, in which case it may usually be identified by its ieep red color; and also as top-soil, a mixture of sand and clay in vincil the ijchly plestic materian has been altered by aeration. It is to be found on the surface where a relatively high state of cultivation of a sondy loan has existed and also occurs naturally where a sandy loan soil has been thorouchily leached and aerated, but remains uncultivated. Natural red sand-clais yay be found extensively throughout a large area north of the Ls Plata in Uruguey and in southern Brazil. Therever they exist they may ve economically used in the early stages of road surfacing.

Some attempts have been made to establisi a test for a good sandclay, but most of them are so elaborate that they are neraly worth while. The best ray to test it is to try it out on the road for a short diatance. An engineer observing its action is use vill soon de able to judge a cood material.

The maintenance of a sand-clay or top-soil road, as also of a sanded road, is practically identicel with the maintenaice of an ordinary earth road. The only essential difference is that the former will sometimes require the addition of sand to keep then in good condition. Under weather and traffic such surfaces lose sand and this riast sometines be replaced if the loss is excessive.

Instead of using sand-clay or top-soil to surface an earth road, It may be advisable to use eravel or some other matorial of a more durable character. Some of those used are marl; caliche, a soint poridery limestone that sets hard after being wet and compacted; colitic limestone, such as corel formations; bank cravel containing clay binder and sand; river gravel, almost frce of clay; chert; novaculite; scoria; low grade iron ore; etc.

The avoilable marls represent a rather Fide rance of materials. The common shell marl is useful; caliche, which is found in rexes, Arim zona, and New Mexico, and is like the tepi-tate of twe Nexicar plateau, is encellent. It is sinilar to the tosca rock that exists in the pampas in scattered locations. It is a material that should be carefully prospected. If it can be found in sufficiently well distributed deposits on the pampas, it will furnish on cxcellent source of raterial fom bailding a road surface that will accomodate traffic for a lencthry peiod.

Any of these merl-like materiels are subject to use in the seme way. Care must be taken to keed them unaixed with eartl oi sand as they act mach better in a relatively pure state. The valieble elcment in oll of then is the carionate of lime tis.t acts as a ceneatine wherial. Finey should be placed on the road so as to produce a corpocted ticiness of about 8 inches. The cheapest method is to spread the material entiroly across the desired width of roadway at the needed depth end then festher or taper the edge to approximately an inch in thickness. mhis cives swie additional widtin and makes it possible to mantain the surface cieajly witk a blade grader.

It is usually worth the cost to roll a road of marl or soft Iimestone, although it is not necessery. If a roller is used, plenty of water should also be used to sprinkle the surface so that the bonding yalue of the lime will be developed. A blade crader can bo used to shape the surface before, during: and even after rolling, and the surface may be finished to a remarkably true and uniform section. In spite of all care in construction, however, such roads will suffer seriously by abrasion if traffic is relatively heavy and will become intolerably dusty in ary weather. They can, however, be successfully treated for these difficulties by methods to be described in another papor.

All the marl and similar materials are amorphous in character, and readily coment together if moisture is present in sufficient quantity. If the surface is kept smooth and true by frequent use of a blade grading machine, and if material is added wherever local weaknesses develop in the surface, roads of this kind can be kept in satisfactory condition for several years. They cannot be well maintaized with light drags and require a heavy grading machinc, operated inith some degree of skill. Tiney should alvays be patched when necessary with the same material of which they were built.

Better than the marls are the great varieties of gravel that can be used successfully in surfacing a road. There are almost no limitations as to quality of gravel to be used in such vork. Felspathic, granitic, quartz, and calcareous grevels are all gooa, and as to size, practically any gravel source can be developed and handled so as to produce usable naterial. The harder and tougher the gravel particles the more durable the surface rill be, and the best possible gravel road will require careful control of material with respect to its durability, size, grading, and content of bincior. Eut ideas regarding gravel road construction have changed ereatly in recent years, and if eravel is cheap and plentiful it may be used witiout much regard to the quality of its constituent mineral. The only exception is that gencrally a shale gravel is to be avoided because it breaks dow into clay so rapidly.

Gravel should contain between 15 and 20 per cent of clay as a binder, but no hard and fast rule can be set. Some fine gravels having much less clay are entirely satisfactory. More clay may safely be present also if there is a high por cont of coarso sand. The mair num size of pebble should not bo greater than two inches, and fencrally a smaller maximum gives bettor results. Some engineers are specifying as lois a maximum as one inch. It will be found that in semi-arid or arid regions the smaller the gravel the better it will bond.

When grevel is specified es large as a tro-inch maximu it is desirable to insure that it be well graded, and for that reason some control of the intermediate sizes is provided by requiring that lot more that 75 nor less than 55 per cent of the material siall pass $11-1 / 4$ inch mesh, or not more than 60 nor less thais 45 per cent shell lass a one inch mesh. The control size is about at the midile renge
of the gravel, and should not depart roore than ten or fifteen per cent in either direction from a straicht line grading. It is sometimes required that not less than 60 or even 75 per cent of the material delivered shall be retained on a onemuarter inch screen. This fraction is then classified as gravel; that part passing the screen is sand.

With the increasing practice of using generally iner material and reducing the maxinum size, it becomes less necessary to have intermediate control and more important that the clay content be not excessive. The best test of a satisfactory gravel is that of service, and the refinements of specifications for surfacing gravel are generally for the sole purpose of securing a gravel approximotely like some especially successful kind.

Gravel banks are the result of depositions and consequently a satisfactory material can usually be found, but if the bank has too large an amount of stone above two inches in size, it nnay be desirable to crush it and so use the entire product. In min case the large pebblcs mould have to be screened out of the surface course, and if handed this much it adds little to the cost to crush ard save the material. If this method is too costly, then a two-course road surface may be laid and the large gravel cen be used in the bottom course. This method is much less in favor than it used to bed

Ordinarily the gravel road will be built on the graded earth, or possibly on an old sand-clay or top soil road. A graded earth road should be drageed or bladed until the top is practically flat, with a crown of not over one-quarter inch per foot. A layer of 2 to 6 inches of gravel may be apread evenly over the surface directly from truchs or wagons, or the gravel may be dumped in a windrow along one side and brushed over the surface with a blade gradinc machine. The tiickness of the course of gravel will depend on the kind of material, tie condition of the subgrade and the climate. A good sand-clay gravel containing plenty of coarse sand and a relatively higii per cent of clay may be spread full 6 inchos thick. It mill sompact with its natural. moisture or with a vely little rain. On ties othar hand a sandy gram vel, fine and cortaining little clay can not be advantageously spread deeper than two or three inches at a time. All of the gravel so laid should be spread over the entire width of tho earth grade, so that When maintained with a blade grader no earth from the shoulaers rill be mixed with the gravel.

If the cravel surface is to be built over sand-clay surface, it rill be better to place the eravel in a windrow anc swoed it over the sand-clay only when the latter is wet or softened by rain.

It is seldom ϵ onomical, and except in case of a two-coursc gravel road, it is not especially दesirable to roll a gravel surface. Traffic can be depended upon to compact the suiface provided the material is kept well shaped and true by frequent and tirely use of a eradine machine. If large sized gravel is to be user, however, and a two-course surface built, the first or botton course nay be rolled with advantage.

In such a design, it is desirable to require trench construction, as it is called, for the lover course. This method of building requires that the shoulders be built up to a thickness about equal to that, of the lower course of gravel rinen spread loosely over the subgrade. Both gravel and shoulders are then rolled at the same tine, the first passage of the roller being mede so that one rear wheel will lap tive junction of the earth shoulder and the gravel base. In this ray coarse gravel up to 3 inches in size may be used, but if the climatic conditions are such as to produce much ground frost, it is likely that in course of tine the larger pieces of gravel will mork upiards and nay even come through the top layer of surfacing and give trouble because of their large size.

Then the base course has been thoroughly compacted, the top course or wearing surface should be spread over the entire ridtin of the road, including both shoulders and base. For this layer only fine gravel should be used, including particles up to one ince in size. Tilis may or may not be rolled; because here again we have the same conditions as in a one-course surface and trafific may be depended upon to compact it if a blade grader is kept at hand and the surface is maintained in-a smooth, uniform condition as it gradually corapacts.

From the above it is seen that a gravel road mey be constructed more satisfactorily if gradually built than if built as a single operation. The first eravel spread rill to some extent be incorporated into the subgrade until the mixture is stabilized, and the amount of clay, loam or other binding material present is just enough to form a mixture that will have a minimum of voids and consequently will be least absorbent of water and least likely, to disintegrate in dry weather. When nearly all of the first application of gravel surfacing, whether it be a top course or a single course, has become compacted, additional pravel should be spread so as to produce a layer of loose material about one inch thick over the entire gidth of the road. This covering of fine locse gravel appears to serve a variety of purposes and is now soucht and often provided with much care by the best road builders. It prevents abrasion of the compacted gravel, furnisnes an absorbent material for rain, inm duces a more uniform inear on the road surface, prevents the formetion of small holcs, and furnishes a constant supply of excess material to fill any ruts, holes or local depressions that may occur, including the characteristic ridges, or vashboard effect, produced by heary traffic.

The method of maintaining a gravel road that is most effective is first to keep the cover naterial present in correct quantity, viz., about one inch thick. This will be brusled gradually to the sides and center by traffic, leaving bare strips where the wheels custonarily pass. It should be maintained by using the grading machine as frequently as needed to respread it, or to add to it by bringinc upon the surface more gravel from the side. On heavily traveled gravel roads there should be kept along the siues or a.t least along one side a vindror of ner materisl. This can in the course of maintenance be worked back and forth across tio road, leaving each time as ruch material as may be necessary to maintain the cover and fill all depressions that form.

If a gravel surface because of insufficient or improper care, becomes rough and irregular so that the use of the blading macinine will not quickly corrcet its condition, it is advisable to scarify the entire surface, except the cxtreme shoulders, to a depth of about 2 inchos, move all the loose niftcrial to one side, and tinen Eradually respread it age in so that traffic may again compect it as in the case of original construction.

Finally, gravel roads may be maintained with bituminous surface treatments, and this method will be described in a leter paper in coancom tion with similar treatments on watorbound macedem.
-管

WATER BOUND MACADAN

The water bound macadam introduces us for the first time to a type of surface that is the result of a conscious effort to find a solution for a specific difficulty in road building. It was the begiming of the modern rcad. lhactanns' problom was to prevent a surface composed of rock fragments from disintegrating. He discovered the effect of the cementing velue of stone dust, and reasoned that sufficiently heavy traffic would provido enough such dust as the offect of ebrasion to keep a broken stonc road constantly supplied witin its necessary bonding material. MacAdm चas rigit; but treffic has chenged in many placos, and we are confronted with the limitations of the rater bound macajam type, and must use means of converting it into some thing more suitable for motor traffic.

In some countries it will bo many years before horse-drawn traffic will drindlo to the low placo it holds in tho United States. In France the macadam typo is atill en adequate surface for a great part of the nationel road system. In Spain and Portugal no other type has evor been built until vary recently. But where motor traffic does exist in considereble quantity water bound macadam no loneer serves as an econumical surfaco and must be modified to meet tho ner conditions.

It rill be uscful, havever, to follow through the construction of vatcr bound macadam and a simpler form of crushod rock surface, and use then as an introduction to bituminous surfaces. This is tho historical and logical order.

A wator bound macadam surface is composed of crushod rock, and depends for its stability as a surface on the intorlociting of tho stone particles and the weakly cemontitious propertios of rock powders. It is a type that can probably be used for many years in large parts of Latin America bocause of the abundant supply of rock and the largo proportion of animal drawn vehicles. It will be a valuablo type where grevol is not availeble, end the possibilities of salvaging it are so grod that it may woll be resorted to for many yenrs as the principal type of pavoment for general use in most of the South Americen Republics. The limit of its economical uso vill dopend on motor traffic. In 1910 tho automobile registration in Massachusetts was 31,360 . By that time there were approximately 37 cars per mile of state road in the state, and the proportion of horsc-drarm to motor propolled vahicles was 62 to 38. By that dato the soriously destructive effect of motor driven traffic had become clearly recognized on Massachusctts roads, which had beon construeted lergely of water bound meadam. The same general limits may be assumed as applying in South Amorica,

The first valuable tests devised for road matericls hed roference to macadam, and of these the tests for rardness and comenting volue are the most importent. It is a fact that in the United States we today give less weight to rosistanco to atresion and more to cementing value. This is so because practically all

.30

water bound macadam there is mon alterod to some simple form of bituminous surface. This sem course may no doubt be followed to some extent in Latin Amorica. espocially in the vicinity of large cities.

Where, then, it is still cdvisable to build a macodan road any sound stone may be used but it siould preferebly bo a stone of considerable toughness, and have a cemonting veluc as detemined by the Pege Impact Test of not less than 50. The tocghess as tosted in tho pege Impect macinine should if possiblo be irom 8 to 10 , and the French coefficient of wear about 7, but in Floricia, U. S. A., successful macadan roeds for ligint traffic have beon constructed of soft limestono having a Fronch coofficient es low as 2.5. Finen motor traffic increases those surfaces ded to bo protectod but thoy served for many yoars.

The rock should preferably be a trep rociz or limestone. Theso unquestionably givo the best results for water bound macadam. The rock should be quarried and crushed to small perticles, and screened into 3 or 4 sizos. Three sizes mill ordinarily scrve. The maximum size of stone for uso in the bottom course of macedem depends on its toughness: A soft stonc, easily broken, should stert with larger fragmonts than a hard, tough rock. Whe second or wearing course should be of smallor sizo and finally theio should be a third scparation consisting of all stono chips and dust corrbined. These may be separatod and considerod as third and fourth sizos. Tho following table exprossos tho grading that is usually sought and indicatos the extromes for a hard trap and a soft limestone.

Tabie I

Sizos of Crushed Stone for Tater Bound Macadam

Tho construction of watior bound macadam requiros the uso of

-31-

heary power rollers and sprinicing certs. The subgrade whethor it
be an old sand-clay, top-soil, Erevel, cr carth rond si:ould be
brought to a reason:bly true section, and the shouiders should be
built up to the depth of the loose stone for the bese course vith
earth or other material. The stone is thon sproad in tho broad flat
trench thus formed by the raised shoulcers, and to insure even cistri-
bution and true edges it is desireble to place boards elong the
sides to mark the soparation of stone ard shoulder moterici. Care
should bo taicon to spread the stone ovenly and to movo all the pilo
that is dumped on the subgrado. Lorg pronged rokes erc cxeellont
implements for spreading and forts are necessary for rapid vork.
When the stone has boen sproad the boards along the sides siould
be removed and the rolling should be startea at the odecs, with the
-first passage of tho roar whoel lapping the junction of shouldor and
stone. The rolling should be continued until the center of the road
is roached. It should then be started at the other side and rrogress
to the center. The baso stonc should be thoroughly locked and
wedged until a man walking on tho compacted laycr does not disturb
the separate stones.

The shoulders should then be raiscd agein, if necossaty to the height of the top course of stone and this should be spread, using the side Doards again as a guide. Ordinarily it is good practice to dump this size of stone on a laree shect of metal, called a dumping boerd, and to sproad it by hand from this point. It can be spread by specially constructed dump wags or trucks, but these are hardy economical unless a large miloage of stono road is to be built.

This courso of stone should be rollod in the semicie marnor as the baso stone and whon well locked, the stone chips, if these have bech screencd out separately, should bo spircad lightly over the surface and then swept in with stable broins. Those chips fall into the interstices between tho stones and gradually fill theri. The courso should then bo rolled again and if nocessary to securo: a tightly wedgod surfaco more stone chips should be spread and swept across tho surface.

The surface should then bo sprinicled, the stono cust should be sproad, more watcr should be applicd and the final rolling bogun. This work should not be hurrica. It should in fact ecnsume soveral days. Each day tho rollor should be run back otvor two days ' work and correct any dofects or irrogularities the' dovclop: Dust and water should bo added until tho mirture flows boforo the rollor, and caro should be taron to omphasize tho rolling at the cdecs so that the crotm and truo cross soction will vo mainteinod.

- Finally; a thin rajor of screcnings and cust should bo sproad over the surfaco and for soveral deys after the road has boen opened to traffic it should be sprinicled cnough to keop it almoys wet.

Macadam road construction must be conductor with consicerablo caro and requiros a good foromin tho can vary the time of rolling,
adjust tho sprinkling, both as to quantity and time, and abovo all so handlo tho rolling as to provont e soft stono from becoming roundod, bocausc eftor that it cen bo modged togetiner only \quad rith groatest difficulty, if at all.

In placo of macedem construction thoro has beon cevclopod a form of crushod stono surface which con bo mainteincd to ro oessily then vator bound meadam, but wich coos not iond itsolf so rocily to the subsequent uso of bituminous matcrial. It requiros much loss care in construction and its rosults aro so noarly as good es macadom undor light motor traffic tiat it is now gercre.lly proferrod.

Tho ontiro product of tho crusher is soperatod into tro sizes, overything abovo ono inch going into ono bin and ovarything through onc inch into tho othor. The lerge stone is spread and over tho surface is scatterod sandy 100 m or sandy clay as a binder. The road is thon rolled, using a small amount of rater to moiston the bindor, and tho noxt sizo meterial is sproed in ono hoavy blankot over tho ontiro surfaco, much as fino gravel is sproad in a gravol road, and traffic is alloryed et onco to uso the road.

As the surfaco courso is compectod, tho fine metcricl acts much liko gravel and must bo workod back and forth, and all ruts kept filled by uso of a blado grador. If rincor is not sufficiont a smill amount of send-clay or cven lonm may bo addod. The surfaco is roally mado of artificial gravol and it is just about as good as thet typo of surfaco.

The maintennnoo of wator bound macadam there most of the traffic is on stocl tircs is not difficult. A supply of the top courso stono end of chips and dust should be kent in storago piles along the roadsido and stonc coverod with tho scroonings should bo put into all holes that form. If the now matorial can bo ratered and rollod it will alrays givo much bottcr rosults. But this ficthod of repair is practically imiossiblo whero thore is much motor traffic, for tho passing cars scattor tho note and looso matorial and offoctivoly provent its forming a bond with tho old stono. It was this difficulty, together with tho disintegretion of the macednm surfeco and tho intolorablo dust thet rosultod from the loosonod matorial, that oarly domonstratod tio insdequacy of this typo undor automobilo traffic and lod to its practicel abminoment in tho Unitod Stetes. Tho crushod stono road on the other hend is mainteinod just as a grevol road is, by uso of a blado grador. This typo doos not depend on tho coroonting propertios of rock proders to hold tho stono in placo. Cley or lom bincors are uscé, and tho surfaco has a covoring of loose small stone and scroenings that is maintainod in rogular section by tho greding machino.

Tho difficulty of maintaining rator bounc macicom uncier hoavy motor treffic anc to a much loss dogroo of gravel ronds, at onco introduco the subject of surfece treatmonts with bituminous
 as macadam are in fact surfaco-treatcd macednns, and ticir surfacos aro being maintsincd with oils or ters and stonc chins, send, or fina grevol. A varicty of bituminous metorials aru aveilable for this rork of surfceo treeting stono chd greval rocds. Some aro applicd hot, somo cold. They rance in concistoncy ell the ary from crude oils to heavy meterials cquel to thoso used for ponstretion mecadam or hoavicr, Engincors donotrgroc oil ony or thet is best. In fact, somo aro bost for ono form of aprlication and oticrs for difforent trontmonts. That is catiroly succossiul for use in treating a ratcr bound maccarn will not sorve 2t all on grovol. Practico in surface troating varica rith tro enginocr and his oxperionco. end thoro are too prevaling idoas among onginoors relativo to tho finish of surfece trootmonts. Ono group profors a loathery or rubbery met having enough stonc to give it sumport, but ossontially a bituminous protection to tho underlying neccians. The othor profers a moscic finith fill of stono es mossiblo. The tondoncy in practico is tomirc anoseic finish. enc the mitor hes alweys proforred it during a long cxporicnco.

A typical mothod of surfeco trocting a macncam with a hot oil, using stono chips for covaring matoricl, may bo coscribce as follows:

Tho water bound macadem roxi should bo kopt uncor treffic long onough aftor comploted to compect it thorouginly, Spots which revel in tho moentimo should be constantly repairca by covoring tho places rith stono chips and stonc dust ade froly matoring and rolling. When the surface troatmont is to bo opplied, all accumulated dust shoula bo swopt to tho sides by moens of a rotery strect broom or with hand brooms. To the surfece thus clennod the bituminous. metorial should bo amplicd at the rato of about ono half gellon per squaro yard. The bituminous metoricl is epplicd by nonc. or by distributing magon or truck. Besidos hand-pouring pots tharo is a largo varicty of officicnt cquipmont for this rork: tank ragons for distributing hot or cold matorial undor prossurc or by grevity, send and stone sprondors, broms, and vacuum rocd cloanors. But it should bo kopt in mind thet such hocevy cxponsive equipment is selcoa sconomical unloss it con bo ront in serrico and operotion most of tho timo. Tho type of cquignont to bo used, thorcforo, ens rhetion hame or mechino methods sizall bo omployod rill copond on tice location and quantity of mork of this rind to bo dono. Fhon the miloggc of sur-faco-troatod roar in my ragion bocones lorge, thon mecime equipmont can bo introcucon with tho conomios that may bo expocted from such methods.

A varicty of bituninous meterials may bo usod nud sometimes usod in combination of tro oils, too ters, or a tar ancan oil. wo total application raroly orcoocis 0.5 gnllon por squero yard of sum fece whathor mad is onc or more applicetions.

-34

After tho bituminous materisil hes boon sproad tino ontiro surfece should bo coverod with thin lifycr of stonc chins, peasized gravol, or coarsc sand, deponcing on the quality of bituminous netorial usod. tho stono chips should bo clean and all should pass a half-inch mosh. Grovol, if usod, shoulc likoriso be froo from clay ot othor dirt, but mey contoin scmo snend, and should c.ll poss a 3/8inch screon. Tho smount of such covor antcrial usoc vill very with the quantity ond quality of bitumen and with the jucumont of the ongincor.

Accordingly tho emount of stono chips or grovel thet should bo usod varics from as little as 18 pounds to as mach as 60 pounds por squaro yard. It may bo oxprossod convoniontly in squerc yeres por cubic yard of covor metorinl, whon it vill mano fron 160 superficial yards to 50 superficial surcs por cubic yard of covering. Tho scant applicetion of covcr intorial procuces a locthery met; the hoavy application, a moseic met. In the lattor caso it rill bo found that bitumen will not it first hold sll tho covcring applica. Much of it will be brusinc torare tho sicos of tho rced by traffic. It should bo broomod bacie over the roed two or threc times as tho sun softons the surface and causos the bitumen to "bloed" or como up through the covering raterial. Gradually the blocding will stop, indice.ting that the bitumon hes bonded all tho stono it cen hold to the read surface. If sand is usod with a hoavy bitumon a lathery cifect rill bo produced. The larger tho matcriel uscd to cover tho bitimen the more the surfaco will be lino a mosaic.

In e.ll cases, oxcopt whon sand is usod, it is bettor but not nocossary to uso a rollor to fix tho cover matorial fimly and uniformly in place. Tho largor tho stono the greeter the bonefit of rolling. This nothod of surfaco treating a macadam road is tinc simplest of scvoral mothocs in common prectice.

Bituminous materials, suitable for cold and hot applisetions with thoir chsmetoristics, as detominod by tho tosts of tho binoricon Socicty for Tosting Miterials, or of tho U. S. Buroau of Fublic Roads, are listed in the following tabulation. Tho quantity of bitumen to bo applicd per square yarc anc tho mount anc line. of cover netcrial aro also indicatci.

-35

PRBLE II

$\ldots 35 a-$

TABLE II

	Float Test	$\begin{gathered} \text { Ioss at } 163^{\circ} \mathrm{C} . \\ \text { in } 5 \text { Hours } \end{gathered}$	Float Tost of Rosiduo	: \vdots $:$
	:		:	:
	:		:	:
Oil for thin Cold Application	:	Hot more than	: Eiot loss than	:
	:	30 per cent	: 90 Sec .	:
	:		: at $50^{\circ} \mathrm{C}$:
	:		-	:
	:		;	:
$0 i 1$ for hot	${ }^{\text {c At }} 32^{\circ} \mathrm{C}$	Hot more than	Hot less than	:
	'not less :	15 per cent	: 110 Scc.	:
Application	'than 60 sec :		at $50^{\circ} \mathrm{C}$.	:
	:		;	:
			:	:
```Tar for Single cold```	:		:	:
	:		:	:
Application	:		:	4
	:		:	:
	:		:	:
	$: 10$			,
Tar for hot	: At 32 ${ }^{\circ}$ C.		:	:
	: 60-150 Sec.:		;	:
Application			:	:

$-35 b=$

## 



## TABLE II

	:Termerature: $:$ \#hen $:$ Applicd	$\begin{aligned} & \text { Quertity } \\ & \text { ner. } \end{aligned}$	$\begin{gathered} \text { over } \\ \text { :Werial } \\ \text { to Tse } \end{gathered}$	Quantity of Cover Matoria].   per Sq. Yard	:	
	:		:		:	
	:		$: \quad:$			
$\begin{aligned} & 011 \text { for thin } \\ & \text { cold } \\ & \text { Application } \end{aligned}$	:Air temper-:	$1 / 3$ to	: 2 end 3/8:		:	
	: aturo :		: Eravel or:	28-35 lbs.	:	
	60 F. :	gallon	$31 / 2^{\prime \prime}$ stono		:	
	:		: $\quad$ :		:	
Oil for hot	$: 200^{\circ}-250^{\circ}$		: $1 / 211$		:	
	$: 200^{\circ}-\mathrm{F}_{0}^{250}:$	1/2 to	${ }_{101}^{1 / 2 " \text { grav: }}$	30-40 lbs.	:	
Application	:	gallon	$: 1 / 2^{\prime \prime}-3 / 4^{\prime \prime}$			
	:		: stone			
	Tar for Singlo:Air temper-:			: $\quad$		
				: $:$		
cold	: ature atto :	1/3	:			
Application	: least 50 :	gallon	: Sand	25-30 lbs	:	
	: F.		:			
Tar for hot	: $200^{\circ}-250{ }^{\circ}$	$1 / z$ to	$: 1 / 2{ }^{\prime \prime}$ grax ${ }^{\prime}$			
	$: \mathrm{F}^{2}$.		${ }^{1 / 01}$ :	30-40 Ibs;		
Application	:	:sallon	61/2"-3/4"		:	

Surface treatments will last under nomal traffic for that typo of work for periods ranging from eight yonths to several years. Genorally the hoavior treatments aro now omployed becauso of thoir longar lifc. The surfaco will not almays romain intact, owing to local week spots. Thoso will broak away from the macadam bclor and form annoying holos, small in size, but doep and with abrupt sides. To maintain such a surface roquires a supply of the sero bituminous matcrial as used for the genoral troatment and cover matorial. If the brdak in tho surfaco is only through the truatmont and not into the meaciam, a small anount of bituminous matcrial should bo brushod woll into the hole, and covored with stono chips or gravel. Stono chips, bectuso of their angularity, will alvays be found better than erevol for such repairs, even whero gravol was uscd originally for the general trcatmont. This covor matorial should bo lightly tomped by hand to sot it vell in place.

If tho broak is into the uncorlying macadam, as well as through the surfece tratment, a alfferent process should bo used in repairing the brealc. A quantity of stone pessing on inch mosh should be availeble. This should be coated with tho bituminous materiel, preferably by placing it in a fino wire basket and dipping it into tho biturnen supply, or by pouring the bitumen through it from ono buciect or containcr to another. It should be allowed to crain thoroughly so that no oxcoss of bitumen oxecpt thet nocessary to coat the stono is loft. This coated stone should be put into tho hole in the surface, until it is filled a little above tho surface level, and should then be covered plentifully with clean stonc chips and thoroughly tamped.

This mothod of occasional repair of isolated poaknosses vill sorve to koop a surface-treated macadam road in good condition until the troctracnt has beon vorn down practically to tho original macadam. As statoc, this vill rosult in from 8 months to 3 or 4 years, according to tho weight of topping and type of bitumen used. It will then bo nocessary to retrcat the surface according to the original method oxcopt that a smallor quantity of bitumen and a corrosponeingly smallor quentity of covor material should be used. Using the lightest bituminous matorial, as little as one-tenth of a gallon por square yard may servo for rotreatmonts; froquently as little as tro-tenths is used for practically any of tho other materials up to the hoaviest commonly omployed in this kind of work. Troo-tenths aro as littlo as a mechanical distributor vill aproad. Loss than this, if dosired, must ordinarily bo sproad and broomed by hand.

The typo of construction described in this papor will gonorally givo good sorvice under traffic up to 1,000 vehicles a day. It cormonly fails by shoving and dovelops folds or ravos, making the surface irroguler and rough. This condition is difficult to combat or corroct onco it occurs. It is best prevonted by adopting a consistont practico of filling the surface as full of stono or grovel as possiblo, socuring always a surface heving a mosaic appearence; and by avolding ontiroly tho loathery or rubbory type of vork.

Each retreatment should be postponed until tho cxisting treatment is well worn down to the original macadan and the rotreatments should be as scant as will serve to rostoro a good wearing mat. Every effort should be made to prevent the accumuletion of a mat so thick that it will iron out under treficic and form waves. When this wavy condition finally provells, as it will if traffic increases and necessitates more and mon frequout retreaments, it can not be, cheaply or casily correctec, rac it is an indication that this type of surface. is no longer adequate. Heavier bituminous wort of nuother thes aust be rese foct tor ont this rill be


## BITUMINOUS SURTACSS OF MODERATE COSTT

In previous erticles we have described those types of surfaces that are a heritage of the days before the autonobile. The first and simplest method of treating the older types with bitumen to meet the new conditions was described under vater hound macadam.

We have now to consider a veriety of surfaces $\psi_{i}$ at have been devised to meet the new traffic. Mese types probably would never heve existed, certainly not outside of cities, but for the motor propelled rehicle. They are wat we include in the term modern types of pavement and most of them are indeed very modern.

The principal distinction between earlier and modern surfaces is that in the latter we use prepared or artificial binders and no longer depend on the natural cementinf value of rock powder, or the efficacy of clay to hold stone particles in place. Iristead we use a ter, an oil, or a native asphalt of suitable quality, or we resort to an artificial Portland cement. All of the bituminous types may be used in designs which contermlate the salvaging of other low type surfaces such as gravel, water bound macadam, and crushed stone. I.t is possible to use them to a certain extent also in reconstruction over send-clay and top-soil.

The simplest and least expensive bituminous surface used is the single surface treatment already described. 'It was soon found tiat traffic rapidly wo re such thin mats to a point where they broire awey froin the underlying course, and a heavier type of traatment was developed, known as a doible surface treatment, or sometines as inverted penetration. The significance of the latter name vill be plealn later. These heayy surface treatments are used to salvage water bound macadan, first-class gravel rcads, and occasionally-almost experimentally still-sand-clay end top-soil roads.

In addition to the single and doubie surface treatments, and inverted penetration, there are bituminous macadam, a type widely used ard of much value; a variety of thin surfaces or mate on the road; and a type of sand-asphalt that is a premixed surface approaching the stancard sheet asphalt; but adaptable for licht or modern traffic only. Three of these surfaces will ke fully described, ard the others briefly covered by reference to their essential variations from the more general types.

The simplest is the double surface treatment, for use on old or new water bound macadam, and on cravel roads of the best sort which are reasconably Iree fron clar binder. The water bound macadem should be ir excellent condition, thoragn comparted, smooth and restilay before the double treatment is attempted, aind in the case of gravel
roads, only the best of this type should be made the base for such treatment.

It is a scund principle that as we advance our types of surfaces we should also advance the quality of our bases, bacause we expect the better types of surface to carry more traffic, of course, and we must pas more for such surfaces. So we must protect our investment and insure great er endurance by providing bases for traffic heavier both in respect of quality and also of the weight of separate units.

The preparation of the surface is the same as that described for surface treating a water bound macadam, and consists of sweeping from the old road all loose dust, and exposing thereby the well bonded stone. On this the first application of bitumen is made, preferably by means of a pressure distributor, at the rate of 0.3 to 0.4 of a gallon per square yard. At once the surface is covered with a layer of $3 / 4$ inch to $11 / 4$ inches stone at the rate of one cubic yard 100 se measurement to 40 square yards of surface and lightly rolled. A second application of bitumem is applied at the rate of about 0.4 to 0.5 of a gallon per square yard and the surface is covered with a layer of $1 / 4$ to $3 / 4$ inch stone, clean and free from dust, at the rate of one cubic yard loose measurement to 75 or 80 square yards of surface. The surface is then finished with a power roller, care being taken to direct the rolling so that the surface is not distorted or the stone displaced, but so that it is maintained in a true, regular cross section. The process of rolling the second application of stone compacts and wedges the entire mass, and to some extent the first application of bitumen is forced upward by the squeezing process and penetrates from the bottom. This accounts for the name sometimes given to this type. The resulting surface mat is about $1-1 / 4$ to $1-1 / 2$ inches thick and represents the best surface that has so far been developed by the method of surface applications.

A number of different grades of bituminous material have been used, but practice is becoming rapidly standardized for this type of work and the following specification may be depended upon to provide a satisfactory material:

## Asphaltic Oil for Double Surface Treatments.

1.     - The Asphaltic oil shall be homogenecus, free from water, and shall not foam when heated to 175 degrees $C$.
2. Specific Gravity $25^{\circ} \mathrm{C}$., not less than 1.000 .
3. Flash point, not less than $175^{\circ} \mathrm{C}$.
4. Melting point $38^{\circ} \mathrm{C}$. to $66^{\circ} \mathrm{C}$.
5. Penetration at $25^{\circ}$ C. 100 grams, 5 seconds, 120 to 150.
6. Loss at $163^{\circ} \mathrm{C} ., 5$ hours, not more than 2 per cent. Penetration of residue at $25^{\circ} \mathrm{C} ., 100$ grams, 5 sec onds, after heating at $163^{\circ}$ C., as compared with penetration of asphaltic cement before heating, not less than 60 per cent.
7. Total bitumen soluble in carbon tetrachloride, not less than 99 per cent.

## 8. Dractility at $25^{\circ} \mathrm{C}$., not lesm whation 50.

The stone used may be any grade of material suitable for water bound macadam, and in addition any other hard rock, even though it has a low cementing value. This characteristic is obviously of little significance where an artificial binder is being used.

In some cases a third application of bitumen and stone is made simply as a sealing coat, but this variation of method is unusual.

Resembling the surface treatments, but differing in the method of applyinc, are the mots mixed in place. These have been developed for use where the underlying macadam or gravel road is not first class, or is even loosened and ravelled. A variety of light oils, even fuel oil, may be used. These are applied first to the swept road surface; over the oil a thin layer of loose material including the sweepings is brished with a grading machine. A second application of oil is made, more loose material brousht over the surface, and the whole loose surface worked bachward and $f$ orward acrose the road enough times to mix the oil and stone or crourel thoroughly. The surface is then shaped and allowed to compact under traf fic, or may be rolled to expedite the consolidation of the mat. If traffic is depended upon, a grading machine must be kept available to maintain the cross section true wile the consolidation is going 0

These mixed mats are useful in arid or semi-arid regions wher there is not enough rain to carry off the oils used. the results are somewhat better than single surface treatmentis on well consolidated macadam, but not so good as double surface treatments.

The most important of the moderately priced bituminous surfac is the standard bituminous macadam built by the penetration method. This is the best knorm and most widely used medium type pavernent, and its use is constantly increasing. In sone states it has been developed for use under heavy traffic in designs having unusually heavy bases and thick wearing courses. Such construction, however, removes it from the moderately priced class and places it with the pavement class of surfaces.

The lightest design for bituminous pavement is a base 6 inches thick and a wearing course of 2 inches. The base course may be increased by using double courses of 4, 5, or 6 inches each; and the wearing carse may be increased to $2-1 / 2$ or 3 inches. The commonest cross section design in the United States is 6 or 8 inches bas and a $2-1 / 2$ inch wearing course.

The base is laid exactly as the base for water bound macadam except that a wider variety of stone and sizes may be used and the stone is not so completely bonded with water and stone dust. It is comon to employ a base stone graded from $1-1 / 2$ to 3 incies in size.

By thickening the base a wide range in quality of stone is permissible.
1 The base course or courses are thoroughly rolled and conpacted and the finished base is made true and uniform, the voids being filled by brooming chips or sand over the surface and rolling either ary or with a moderate amount of water.

Upon this base course enough stone graded from 1-1/2 to 2-1/2 inches is spread to give when compacted a wearing course of the deptis required. For a $2-1 / 2$ inch $t$ op, the stone should be spread at the rate of one cubic yard to approximately 12 square vards; anci for a 3 -inch course, one cubic yard to 10 square yards, all by loose measurement. The spreading of this course of stone mast pe carefully done and the surface must be left very true and even. The stoze is then rolled sufficiently to make the surface firm and to disclose irregularities or low spots. These are filled and the rolling continued until a true, firm but not closed surface is obtained. When a softer stone is used, less rolling must suffice else the stone will break and the surface will be too much closed.

When the top course of stone has been adequately rolled and low places filled with additional stone where necessary, the first application of the bituminous binder is made. This process calls for great care and much of the success of the work will depend on the attention paid to this detail. The total rate of application should be about onie gallon per square yard for each inci denth of stane. This rule holds for surfaces of 2 and $2-1 / 2$ inches in thickness, but should not be used with 3 inch tops as it provides eacess bitumen. As a part of this material must be withheld for a second application or seal coat, it is customary practice to hold ore-half or three-quarters of a gallon per square yard for the seal coat and the balance of the total amount is poured as binder into the wearing course.

The application may be made by hand or by distributors of the gravity or pressure types. Excellent equipment has been developed for both methods. If the mileage to be constructed is large and the time limited, especially if hand labor is costly, mechanical equipment should be used. The pressure type of motor distributor is the best as it drives the material heavily ageinst the stone particles and into the voids, If dust remains on the stone this process somewhat counteracts the presence of such dust and insures a better contact. On the other hand, the distributor may be so heavy and the weight so balanced over the rear axle as to cause excessive rutting of the stone and considerable distortion of the surface. Heavy and exceedingly skilful rolling is then necessary to bring the surface back to proper cross-section. It is sometimes difficult to start and stop the flow from the nozzles of a distributor so that entire control of the quastity applied is had at the starting and stoppins lines of the several trips. Specifications require sometines that building paper or other covering shall be spread orer the stone at the start so that full rate of di scharge shall be made just as the
equipment reaches the exposed stone, and that the flow siall be cut Off as soon as it begins to diminish as the tank becomes empty. Paper may be slipped under the dripping nozzles at the end of the run to prevent the formation of "fat" spots, that is, places having excessive bitumen. Similarly, protective covering is spread to prevent lapping the distribution at the junction of two successive runs of the distributor. These details may appear to be meticulous and even unnecessary, but bituminous macadam is sonetimes referred to as the "least fool-proof" type of bituminous surface built, and this reputation results from the fact that disregard of these careful details produces an unevenly bonded road, "lean" in some places, "fat" in others, that is, havins too little or too much bitunen; and once this condition is produced it cannot be corrected except by removing the stone and starting over again. This wori of correction is so costly that it is not done and in consequence we have many miles of poor bituminous macadam that might with proper care and skill just.as well have been first class.

If the amount of work to be done is relatively small and the program gives anple time, especially where hand labor is cheap and susceptible of being adequately trained for the work, hand pouring is to be recommended. Some engineers actually prefer this method, and believe that superior results can more certainly be secured. They adopt mechanical methods for the sake of speed and ecoriomy where labor is costly.

Hand pouring is done with pouring pots of metal, having wide flat nozzles. The pots hold usually 3 to 5 gallons and have a strainer across the top so that foreign materials, blown by the wind, will not get in and clog the spout. The pots are filled with the hot bituminous material at the heating kettle or from the discharge valve of a tank mounted on wheels and supplied from a central supply and heating station. The temperature of the mat erial should be between $135^{\circ} \mathrm{C}$. and $177^{\circ} \mathrm{C}$.

The men chosen to pour should be provided, with heavy gloves, trousers, and shoes because the temperature of the bitumen is sufficient otherwise to take the skin off exposed parts of the body by the end of a day's work. Before pouring is begun and as it proceeds, the foreman should lay out a definite length of road. surface to be covered by a single pot of binder. If the pots have 8-inch nozzles and the application is to be at the rate of 1.5 gallons a square yard, the length of a single strip covered by the contents of a 3 -gallon pot will be 27 feet; or if the man is to walk forward and back, pouring two adjacent strips, the length will be 13.5 feet. The pouring may be done crossways of the road and if the width is 15 feet, two passes across and back, will be enough to empty the pot. In any case the area to be covered should be carefully marked by a stake or other handy means and the pourer trained. to walk and pour at a speed adjusted to exhaust the contents of the pot in exactly the right distance. With a little nractice men will become very proficient in doing this and once trained the se same men
should be kept at this part of the work. Often it is required that the pouring be done in Tines at an angle of 45 degrees with the center line. This is an advantage in reducing the tendency, often experienced in hand poured work, toward an uneven or ridged finish.

As soon as the first application is made, intermediate stone graded from $3 / 4$ to $1-1 / 4$ inches is spread over the bitumen coated coarse stone until it is so entirely covered that the roller wneels will not pick up the stone. The intermediate stone sinould be broomed lightly actoss the surface so that-the void's are well filled and excess stone brushed to the sides. Rolling should then be started at the sides in the mamer customary for mater hound mecedam and the surface should be thoroughly compacted by wedeine. the small st ane tightly into the voids. Great care shoula be taken not to distort the surface, especially not to destroy the lor crown used in designs of this type. The final appearance and the smooth riding cualities of the road deyend largely on the rollirg and it requires a rolleman of great skill aid patience to get a really good finish.

When the st ane has been thoroughly campacted and loched, ti:e seal coat is added, consisting of the remaining one-half or threcquarter gallon of binder and an additioral layer of fine store, graded from $1 / 4$ to $3 / 4$ inch. The surface is aerin rolled and brought to final finished shape. It may be or sued to treffic as soon as the bituminous binder has thoroughly chilled.

A variation of this type is sometimes built using two sizes of stone. This is possible when the wearing course is designed 2 inches thick. In such case the first stone laid on the base is 1 to $1-1 / 2$ inches in size. After rolling as described, the biader is ayplied and the stone used to wedge the surface is graded from $1 / 4$ to $3 / 4$ inch. 'This size is used also in the seal coat. The process of construction is otherwise the same as described.

Obviously, any stone suitable for use in water bound macadam is satisfactoy for bituminous macadem, and in addition mery rocks may be used that have a low cementing value. Sleg from blast furnaces and steel mills makes excellent aEgregate provided only that it is not of the highly acid or glassy kind. Soft limestones, even oolitic limest one end corel rock have beon surcessfully employed. Jast how severe the requirements sinculd be for ruality of st ane depends upon the density of traffic and probable weight of individual traffic units. A French coefficient oi 6 or 7 is quite sufficient for first-class construction of this type..

The bituninous binder, if an asphalt, should have a standard penetration of 80 to 120 and if a tar; should give a float test of 150 to 180 seconds. A Eeneral specification is givem herewith.

## -45-

## Asphalt

The bituminais material, wich shall be oil asphalt, or fluxed Bermudez asphalt, shall meet the followine reguirements:

1. Specific Gravity at $25^{\circ} \mathrm{Co}$, for oil asphalt,
not less than
for fluxed Bermudez, not less than 1.000
1.040
2. Flash point, not less than
$175^{\circ} \mathrm{C}$
3. Penetration at $25^{\circ} \mathrm{C} ., 100$ grams, $5 \cdot \sec$ onds 100 to 120
4. Ductility at $25^{\circ} \mathrm{C} .$, not less than $\quad 30$
5. Per cent of total bitumen soluble in carbon
tetrachloride, not less than
6. Per cent losa at $163^{\circ}$ C., 50 grams, 5 hours, for oil asphalt, not more than 1 for fluxed Bormudez, not more than 3

Penctration of residue at $25^{\circ} \mathrm{C} ., 100$ grams, 5 sec. as per cent of original penctration, for oil asphalt, not less than

60
for fluxed Bermudez, not less then 50
7. Total Bitumen percentage, soluble in carbon àisulphide, for oil asphalt, not less than 99.5 for fluxed Bermudez, not Iess thon 94.0

A well-built bituminous macidan will satisfactorily carry as traffic up to 1500 vehicles per day including 50 to 60 trucks up to $3-1 / 2$ ton capacity. It actually will carry a srect weel heavier traffic than this, but it will beccme more or less distorted, begin to shove, and form corrugations or shallow waves in the surface. These can not be eliminated successfully by any maintenance methods that are inexpensive and consequently it is al ways well to consider carefully the limiting trafic. Beyond 1500 vehicles per day the cost of mapinterance rises sharply.

The method of constructine bituminous macadam nay be varied by first costing the large stone with bitumea by mixing the material at the rate of 18 gallons to each cribic frot of stone. The coated stone is then laid, the intermediate stone is spread over the surface to key and wedge the larger stone, and rolled as in the method already explained. This variation of the process requires dry stone, and even heated stone is cuesirable. It adds to the cost and undoubtedly prodnces a somewhat better result.

A final surface to be described amone the types now under consideration is the so-called sand asphalt. This much resembles standard sheet asphalt and its durability inc reases the more nesrly it approaches the standard type, but it is generally built as a cheaper form, by utilizing a natural sand, witiout ainixture with other sands or any other treatment to produce an ertificial, scientific grading of the fine aggregate. It is a useful type in desert regions, or wherever the natural soil is notably sandy. It has been used with success on Cape Cod, Massachusetts, U. S. A., and along the coastal plain from the Virginia line to southern Ploride It may be constructed as a combination base and top or as a tcp where a suitable base of other material is available. It snould make an excellent, relatively inexpensive type for use in the southern Argentine, Patagania, the Atacama desert and the entire northern arid regi on of Chile.

When built as a combination base and top, the total dept上 should be at least 5 inches, of which 2 inches is top or wearing course.

The sandy subgrade should be carefully leveled and compacted as thoroughly as possible. If water is available thoroughly wetting the sand as it is rolled will greatly facilitate consolidation. In places where wat er is not available the sand may be stabilized by spreading upon it and harrowing in a layer of one or two iaches of clay. Rolling will then be much more effective than on dry sand.

The mixture $f$ or the bottom course is prepared hot and is composed of 91 to 94 per cent of sand and 6 to 9 per cent of asphaltic cement. The sand is heated prior to mixing to a temperature of 225 to 350 degrees Fahrenheit, and tiee work must be so handled that the mixture may be placed and rolling started with the temperature of the material not under 265 degrees and not over 325 degrees $F$. The composition of the sand is not controlled
beyond requiring that it shall all pass a $1 / 4$-inch sieve and be graded from coarse to fine. Almost any natural sand deposit will furnish adequate material.

On account of the character of subtrade on which this type is usually built, it is impracticable to use a roller heavier than a 6- or B-tone tandem weighing about 200 pounds to the inch of width. Care must be taken to roll the edges well before progressing toward the center. To support the edges of the mixture and furnish a guide for the sreaders and rakers, timber forms of suitable depth must be used. Two by eight inch-timbers set on edge with the shoulders benked high against them on the outside may be employed. These dhould preferaily be left in place winen the surface is completed, but this is not imperative.

After the base has been rolled it should be allowed to cinill th oroughly before the second or top course is laid.

The base course should be kept clean; no traffic should be allowed upon it, and before nlacing the surface mixture a paint coat of one gallon of bituminous binder to 16 square yards of surface is applied to the base course.

The surface mixture may be the same as the base mixture, but the work will be much improved by more closely approximating a standard sheet asphalt grading. The following is suggested, and experience shows that a combination of not more than two natural sands, and often a single sand, will suffice to give the desired result.

Passing	10	mesh	and	retained	on 40
$"$	40	$"$	$"$	$"$	$" 80$
$"$	80	$"$	$"$	$"$	$" 200$
$"$	200				


Per cent
14 to 50
30 to 60
16 to 40
0 to 5

The sand is heated as for base course before mixing and mineral filler is added to raise the percentage of material passing a 200 -mesh sieve in the finally prepared material up to 10 to 15 per cent. The total fine aggregate and filler should be 88 to 90.5 per cent, and the bituminous cement 9.5 to 12 per cent.

The top course is handled and laid at the same temperatures as the base course and rolled in the same manner. As this course is final, the raking must be done with great care and the rolling must be skillfully managed so that the surface as finished shall be true and regular. It is possible, and often required, that this type of work be finished so that under a straight edge 10 feet long laid parallel to the center line, there shall be no
depressions greater than $1 / 16$ inch for each foot in ciistance to the nearest resting point of the straight edge. Very careful work is demanded to secure such close conformity to a true surface.

Where there are available some of the lighter materials already discussed in describing gravel roads, such as marl, caliche, sand-clay, top-soil, etc., the base may be constructed of any of these and the mixed base may then be omitted. In such case the base course of light natural material must be thicker than 3 inches. Usually not less than 6 or better 8 inches should be used. The mixed top course is laid on the base as already described.

Sand-asphalt is a relatively new development. Until ten years ago only two or three sections, and all of these very short, had been laid. None of them carried more than very light treffic. But within the last five years this method has developed cualities indicating that it is satisfactory for a traffic of 800 to 1000 vehicles, and it is dustless and susceptible of construction where water is almost non-existent and no other natural material available them the desert sands.

## FIGHER TYPE PAVGMENTS

The present article will cover in a necessarily brief manner the first introduction into a hifhway system of the more costly and durable types of surfaces usually referred to as pavements. Were we building a national highway system pari passu with the development of the country from pioneer conditions intil traffic becomes as dense as it is today in some advanced countries, we should find the types to be described as the ones finally constructed, in point of time. The course of road building could economically follow closely the series of steps outlined in these papers. But in fact we are never able to pursue such a course, because our highways are behind our traffic in development. Some construction, therefore, even on a highway system being newly planned must consist of the higher types thet represent the final forms of surface that the highway engineer knows:

Where iraffic is denser than 1500 vehicles per day, including 100 or more trucks of $31 / 2$ to 5 tons capacity, it is found that some form of pavement is justified. In the list from which the desigming highway engineer may choose are several forms of bituminous concrete, Portland cement concrete, brick, or sone other block pavement, and with the exception of the Portland cement concrete pavement these may be constructed on a variety of bases. Consequently, there are on the whole a large number of designs available; and in addition to the standard types there are numerous patented pavements which are variations of one or other of the standard types.

The original studies for laying out a national highway system will disclose some locations at once requiring a hisher type of construction; or subsequent traific increase will demand the reconstruction of an existinc lighter type, the salvaging of as much as possible of the existing surface and the building of some form of modern pavement. The first condition permits a free selection of types to suit existing requirements. The latter condition frequently limits the choice or even determines it if the greatest advantace and most economical service is to be obtained. The three general classes of pavement are bituminous concrete, concrete, and block. In the large building program of the United States Government under the Federal Highway Act the mileage of these several classes which have been built may serve as an indication of the judgment of a lerge number of engineers who have worked under the greatest possible variety of conditions. Under that program the pavements built are distributed as follows:

# Pavements Built on Federal Aid System 

To September 30, 1927

Bituminous Concrete	1,751 miles
Brick	778
Portland Cement Concrete	14,408

It should not be assumed that this same order would prevail
in any other country. It does not in Frence, nor in England. In both of the countries mentioned, pavements on tic rural highrays represent only a relatively small mileage, anc in both cases bituminous or bloci types have been fatored over concrete. In a continent. lite South America there coal is not available and oil is abuident and may be in mach greater abundance in the future, it is lirely thet econony may determine the prevailing type of high-cless construction with a different result from that appearing in the United States. In any case, the dictates of economy should prevail, and it should be bome in mind that equally serviceable pavements may bo designed and constructed in any of the three classes mentioned. The enfinecr must stady his local conditions and malse careful estimates to determine what type to build.

Bituminous concrete differs physically from bituminous macadam in that the aggregate, composed of sand or stone or both; is very carefully greded according to sizo and is mired with the asphaltic coment before being laid upon the baso prepired for the surfacing course.

Bituminous macadam, as previously described, has the asphaltic material added after the stone is sprecd, by what is known sometimes as the penetrition method, and the combination of aggregate is not graded except as necessary to secure a certain degree of mechanical bond.

The bituminous concrete pavements may be subdivided into three groups according to whether a fine egeregnte, fassing a sieve having 10 meshes to the linear inch, is used; or a graded aggregate contrining particles passing a $1 / 2-i n c h$ screen end retained on a $1 / 4$-inch screen, in addition to sand such as thet confined to the first group; or finally $a$ graded stone and sand aggregate ranging from $11 / 2$ inches to cust.

An example of the first eroup is the ordinery and common standard sheet asphnlt used on city streets in grecit quantity, and severil other patented types designed in en effort to roduce the cost of the standard type. The second group is represented by the pavements built unjer Topeks specifications in which arproximately 25 per cent of the aggregate consists of stonc ranging from $1 / 2$ to $1 / 4$ inches and sand which is itseli graded anproxinntely as for a shect esphalt. Also included in this group is the District of

Columbia specifications, Amiesite, Bessonite and some gravel mixtures of similar compositions. A variety of crushed gravel or stone mixture is now being extensively tried in sone oi the western states of the Uni ted States and should this type develop satisfactory qualities it may taie its place in this group, although it presents some radically different elements in its preparation and construction. Finally there are the large agsregate mixtures containing stone as large as $11 / 2$ inches and havinc. both stone and sand carefully graded. There is in use today no stanciarci type of this group, which is unquestionably best represented by the patented pavement laid under the name of rarrenite-bitzulithic.

All biturinous concrete mixtures are desicned and depend on the principle of internal stabilit- Thet is, the material composing the aggregate is separated into sizes and the voids existing in the largest size are filled with the next mailive size so far as possible. The voids in this convination are silied vi th the next smaller size and so on until finally ail voics are theoretically full. Bituminous materizl is added in sufficient quantity to coat all particles and prevent them from ticving on one another. In practice the complete filling of all voias is impossible at any reasonable cost, and in the various mixtures made some omit the large stone and some the fine. Some rely on a stiffer srade of asphaltic cement to fill a certain amount of remainine voids as well as to hold the particles in position. The standard example of this type is undoubtedly sheet asphait. phis mixture is composed entirely of sand passing a 10 -mesh sieve, mincriul filler. passing a 200 -mesh sieve and asphaltic cement. The theoreticel specific gravity of a voidless mixture may be 2.26, and in actial practice a specific grovity of 2.20 should be secured, indicatirg voids in the final product, as left by the roller, amountins to 2.6 per cent.

Volumes have been written on the theory of designing tacse mixtures, and our knowledse is by no means complate today. if full description is impossible in an article lixe this and the rocder is directed for a further study to some of the standard texts on the subject.

The bituminous concrete type of pavement is laid on some adequate base, as it has little or no beem streneth and must be continuously supported. Bases used are of two common kinds, the rigid and non-rigid. The fomer is usually a Fortlend cement concrete base, but it may consist of an old Fortland ceaent concrete pavement thet is beint salvaged or an old bricl: or bloci: pavement similarly treated. The base if new should be at least 6 inches thick, and if soil conditions are not favorable this depth should be increased. Non-rigid bases may be of water bound macadam; rolled stone suitably filled and compacted but rot necessarily water-bonded; gravel bases of consilersible variety; othor light materials such as caliche, tepitate, ereen (i. e. new) shell or old shell from bank deposits; good grades of marl; or in feict of
any non-slacking material, reasonably impervious to water and capable of being thoroughly comnacted. These materials, like the marls, shell, and soft lime rocks, may be licht and friable when dry and very non-resistant to abrasion, but because they are entirely covered and protected from the traffic iy the bituminous concrete wearing surface, they will nevertheless serve adequately as bases for such types. The thickness of such bases should be at least eight inches compacted. The bituminous concrete surfaces are expensive, and no chances should bd taken of losing them by having inadequate supyort. Such surfaces under modern motor traffic are exceedingly durskle and more oftern fail beceuse of insufficient support than from wearin; cut. It is, therefore, false economy to reduce a non-rigid, or any base design for such pavements to the point where full life or such pavernents carnot be secured. Another form of non-risid base widely used is known commonly as "black base," because it too is a bituminous concrete mixture, designed on the same principle as an asphaltic concrete weering course, but usuaily with less care and attention to the theory. Such black bases should ke at least 4 inches thick under favorable conditions of soil and climate, and are much improved by having a subbase of gravel or stone 4 to 6 inches thick. Thear the blacl base may be reduced to a 3-inch thickness.

When sheet asphalt or an Amiesite mixture is used it is almost universal practice to introduce a binder course between the base and the wearing surface. This binder course is almost idertical with a black base in composition and serves to provide an even surface on which to place the wearing course, reduces the needed thickness of that course, which is a more expensive mixture, and binds it firmly to the base. Where a bituminous concrete contains larger stone particles than a sheet asphalt or Amiesite it is not customary to introduce a binder course, because suci tops may be laid thicker than the fine mixtures and thus a sincle course can be made sufficiently stakle to resist movement under the effects of traffic.

Typical designs with dimensions are shown herewith, but these types lend thenselves freely to combination in a variety of ways to accomplish the salvagine of former surfaces and the complete possibilities of design can only te sugeeested. Typical formulae for a number of mixtures are also Eiven. These -are subject to some adjustment to meet the characteristics of local stone and sand supplies.

Bituminous concrete must be prepared and laid with great care. The ingredients of the mixture must be proportioned by weight and thoroughly mixed after drying and heating. The temperature at which it is laid varies someriat, but in most cases should be from $200^{\circ}$ to $325^{\circ} \mathrm{F}$. on the road. The spreading and rolling must be cone with great care, and the fullest possible compression should be obtained.

The construction of bituminous concrete has developed a great variety of equipment consisting of large stationary plants, portable plants, spreading devices, rollers, and miscellaneous hand tools. This class of surfaces is susceptible to repair, and other machinery is required for such work, among which the surface heater or "turtle beck" heater is today almost indispensable where a large amount of repair work is to be done.

The use of bituminous concrete is especially to be recommended in a continuous series of construction and salvabing operations, as the last or final surface. It is always possible to use an old base, or old road surface as a base for tinis inind of work, provided the old material is of sufficient depth, thoroughly compacted and stable. By means of "mblack base" or binder course, irregularities in the old surface can be removed, either by local patching or by laying a full course. On this a wearing surface of bituminous concrete can be laid. Practically all old road surfaces, even if badly worn and irregular, may be salvaged as part of a new design for $a$ bituminous concrete, and this pavement in turn has a long life and is susceptible of extensive repairs when necessary, so that it is a satisfactory type to use as a final wearing surface regardless of what may have preceded it.

Before leaving the list of bituminous concrete types, reference should be made to the combinations of rock and native bitumen which occur in nature and are commonly known as rock-asphalts. These consist of a sandstone or limestione impregnated. with asphalt and found in ledges sometimes of considerable thickness. The per cent of bitumen existing in the combination varies from amounts inadequate to act alone as binder, to a quantity so large as to make the use of the material impossible until additional. stone is added. These materials are usually characterized by the exceedingly intimate mingling of the asphalt with the particles of stone. In the sandstone type every grain appears to be completely: covered; in the limestone type the very rock appears to be impregnated with the bituminous material. No doubt this condition is the result of great pressure at the time of the geological formation of the deposit.

The rock asphalts can ordinarily be used either hot or cold depending upon the amcunt of bitumen present, the additional fluxing bitumen that may have been added, and the thickness to which the material is spread and rolled. They can be handled and adapted to cross section designs, either in original construction or in salvaging processes much as bituminous concretes are used. They are especially valuable in salvaging operations. Should deposits of rock asphalt be discovered in any SpanishAmerican country, care should be taken to develop the supply for road building purposes.

Portland cement concrete pavements are no doubt at the present time receiving more favor for rural highway construction
than any other type. In spite of certain defects that appear to be inherent and which certainly have not yet been overcome, this type appeals strongly to the ongineer because of its homogeneous character and the consequent fact that it can be handled in dosign with greator precision than any other pavement material. It is consequently on this type of pavement that most studies havo been made rolating to the offocts of impact, of passing loads, of strain distribution and of the effects of subgrade conditions. As a result this paroment has been set up, not so much as a stenderd, but as a unit with which other pavements are compared to determine their relative ability to carry certain given loads.

Coment concrcte pavemonts hove passea through a somewhat remarkablo change in dosign within tho last six years. Formorly constructed with a ocnter thicker than the edges, they are now vory gonerally built trith a thickened edge. This chango has resulted from the mathomatical analysis of Vostcrgaard of tho Burcau of Public Roads and from tinc exporimontal ${ }^{-}$. roads tests mado at Batos, Illinois and Pittsburg, Colifornia: The Bates experimental studies produced the formuie proposed by Mr. Older of the Illinois Stato Highray Commission for designing a concreto pavement cross-section. The formula for the edge thicknoss is:

$$
\begin{aligned}
& \mathrm{d}=\frac{3 \mathrm{w}}{\frac{3}{s}} \text { and for conter thickness, } \\
& \text { where }{ }^{d_{c}}=\begin{aligned}
& 0.7 \\
&=\text { the wheel load, and } \\
& s=1 / 2 \text { the modulus of rupture } \\
& d_{c}=\text { center thickness in inches } \\
& d=\text { the edge thickness in inches }
\end{aligned}
\end{aligned}
$$

Those formulae produce designs usually referred to as 9-6-9, 9-7-9, $10-8-10$, etc., and are typically shorin in the cross-section reproduced herewith. It is quite possible to design a concrete mixture according to the water-cement ratio theory and thus, having determined the strength of concrete that will result, the assumption of strength can be made accordingly in the Older formula and the pavement desigiled. No other type of pavement can be controlled to any such degree.

The continuous and fruitful studies that have been made of concrete mixtures during many years indicate that good concrete can not be produced by careless methods. There is a pronounced movement current to change from the method of proportioning by volume to that of proportioning by weight, and this change, which was recently recommended by the committee on Standards of the Anerican Association of State Highway Officials maris a distinct advance in the control of concrete work of all kinds.

## -55.

Heretofore the prevailing mixes used for concrate pavement construction have been 1-2-4. 1-2-3, or 1-1-1/2-3. The new methods now coming into use, which recognize the bulking of damp sand, the shrinkage of coarse aggregate, and the effect of the water-cement ratio, do not permit using a constant mix for all conditions even on a single job. The engineer must study the materials used and design a mix to produce the desired result. As in the case of bituminous concrete mixtures, a full discussion of this development of theory and practice in connection with concrete would carry us ferr boyond. the limits of this paper, and the reeder should seek such information in the technical reports vhich are aveilabie.

When first built, concrete pavements were considered really monolithic, but it soon became clear that a concrete slab will crack in spite of any moans we have so far been able to devise. In view of this inherent charactoristic wo now usually build a road as a series of slabs, which are formed by inserting joints. Good practice indicates that a conter joint shall be built in if the pavement is 18 fect or more in width, and it is now recommended that in 3 and. 4 lane pavements the longitudinal joints shall be 10 feet apart, separating each pair of traffic lanes. Dowell bars or other suitable mechanical moans should be used to prevent such joints from slipping。

When a concrete pavement is built of plain concrete, and no attempt is made to reinforce with steel, transverse joints oxcopt for construction purposes may be omitted. But if tho pavement is reinforced with steel mesh or bars, thesc should bo discontinuous in 60 foot longths and definite provision made for transverse joints at. 60 foot intervals. Tho longitudinal stecl should be carried across the joint, or Dowell bars provided for that yurposo, and such stcel should bo tight on one side of the joint and slip in the other to permit of a certain mount of contraction. From 40 to 60 pounds of steel per square yard are comonly used to reinforce the slabs which are, in a 20 foot pavement, 10 to 60 feet in size.

As already indicated, the concrete pavement is not the final pavement because at present it is not adaptable to convenient repair with concrete. Fortunately it does not, or at least should not require much repair, if properly built and in the future no doubt it will have a longer life than the average heretofore attained. But when the pavement is in need of minor repairs, these can best be made with bituminous materials. The use of alumnite and other quick setting cements may furmish better methods in time. Then a conc rete pavement, for any reason, becomes badly broken up it may be salvaged by
placing upon it a bituminous oencrete top or wearing course. In some instances a second course concrete has been laid upon the first. The joint is waterproofed with a heavy paint coat of hot tar well broomed on, and the ner top is laid about 4 inches thick and reinforced. Relatively little of this latter. work has been done.

Concrete does not adapt itself to the salvaging of other pro-existing surfaces to any great extent. It is larcly if ever economical to recover gravel or stone in the existing road for use as concrete aggregate; usually the most that can be done with such material is to grade it out flat and roll it down to strengthen and improve the subgrade, or to brush it aside with a grading machile aftor thorouglily scarifying it, and use it as material with which to build shoulders against the concrete pavement. The maintenance of the shoulders immediatèly adjacent to a concrete surface is generally diffim cult, and the use of old gravel or stone that may bo available as salvaged material for constructing heavy shouldors is thoroughly worth while.

Before passing to a consideration of brick and block pavements, attention should be given to some of the designs into which bituminous concrete and Portland cement concrete are worked in connection with reconstruction or with the advancing in type of certain classes of lighter reads.

One of the most serviceable uses to which concrete may be put is to the construction of curbs cf three general. dosigns in connection with the widening of old gravel, water bound macadam, bituminous macadam, or bituminous concrete surfaces. Tho line and grade of tho nev surface must, of course, be adjusted to develop as much of the old as possible. The curbs are then constructed in proper position. They may take the form of a marginal curb to be flush with the top of the hew pavement, they may be two or three feet wide and flush with the top of the now work, or they may be of varying width, according to the widening done and be at such an elevation as to unite with the old base to form a wider base, over which a complete new wearing surface is laid. These forms of roconstruction are best shown by illustrations. After the curbs or edgings are laid the old surface is repaired, nov base laid if necessary between the old base and the curb and all the old and new base betwoen curbs is then covered with bituminous concrote. The elevation of the new curbs is usually one inch belcw the proposed elevation of the new center, and by this adjust ment it is possible to roduce and re-shape the crom of the now road to conform to modorn practice regardless of what crown previously existod. A variation of this reconstruction produces a duplex road, usually a three lane road, havince two outside lanes of concrete and the center of what remains of tho old surfaco, treated with bitumen in some form. An illustration of such a road and a sketch of the cross-soction are shown.

The third general type of pavements to be considered is brick or block. The principles of construction are the 'same whether brick, granite block, setts, durax, or other form of block is used. In every case the block should be considered as a surfacing material, and an adequate base must be prepared. Fortland cement concrete or other forms of base constraction are used. The baso can rarely be finished so smooth as to receive the blocks directly and if it could be the slight variations of the blocks themselves would require that some provision be made to take up such irregularities. Accordingly on the base a sand cushion is spread averaging ono inch thick. This cushion has varied considerably in brick designs from time to time. A mixture of sand and Portland cemont, plain coesso sand, stone chips, slag chips, and a mixture of sand and bituminous matorial have beon used.

At one time the proponents of bricir paveraent advocated what was known as monolithic construction, in which a sand-1 comont cushion was used and the brick after boing placed and rolled, were heavily sprinkled with water and the joints between the blocks were then carcfully grouted with a rich creany. grout of fine sand and cement. This type of brick construction was nover ontirely satisfactory and under motor traffic which does not woar brick appreciably the block was not subject to any salvage. It has been found if the brick are so laid that thoy can be removed, that their salvage valuo is high if for any reason the pavement becomes distorted, or has to be widened or rebuilt.

The block are, thereforo, according to present day practice, laid directly on a sand or sand-mastic cushion, rolled and culled and then filled with a specially prepared filler of bituminous material. This serves to seal the pavement water tight and hold the block in place.

There an old road furmishos an adequate base, brick may be used as a new surface and it thus provides a satisfactory step in the series of stages through which many miles of a well planned highway system may pass. But brick should not be placed on any non-rigid baso less than 8 inches thick, and in general any base for brick should be equivalent to 6 inches of Portland cemont concrete.

The only other block pavement that need be considered here is granito block, sometimes called Belgian block, from the country where they wore first used. Granite block is perhaps the most costly of all pavements, and for that roason is rarely used in the United States on rural highways. It must be considered as a surfacing material, and should bo laid so as to be susceptible of salvago. Many miles of old block have boen taken up, recut and rolaid in American citios. The general
design resembles that of a brick pavement having a concrete or otper suitable base, a sand cushion usually one inch decp for recut blocks, and the blocks laid with a bituminous filler. Occasionally they arc still laid as of old with tar and pobble filler, and sometimes with a cement grout. The latter practice prevents any future salvage of the blocks.

Any form of block pavement may servo as a baso for a bituminous concreto when the blocks becomo so. worn as to bo no longer satisfactory as a surface.

In concluding this series of papors on laying out and constructing a national highway system it may be well to emphasize the point of viev taken throughout.

No country can bogin such an undertaking in theso days without carefully considering traffic demands. Present traffic in some localities prohibits the economical use of some types of road that were in gonoral use before the advent of the motor vehicle. Every piece of construction should be planned with an eye to the future and to the possibility, indood to the probability that a bettermont of type will bo roquired. The advantages of permanent line and grade should be devoloped always, even on the first and choapest vork, Local material supplics should be studied and designs made to utilize such materials. Roads should be built only to the extent, and of such types as will pay for themselves. Sound economic, financial, and technical principlos should prevail over the exigencies of transitory poiitical conditions.

## AMALYSIS I

## SHEPT? ASPHALT

Binder Course.		
		$\begin{aligned} & 15-65 \% \\ & 20-50 \\ & 15-35 \end{aligned}$
Sand for wearing surfaco		
	Total passing 10 mesh siovo	100\%
	" 10 " retained on 40 mesh	12-50
	Pessing 10 mosh , retained on 20 mesh	2-15
	20 " " " 30 "	5-15
	30 " " $\% 40$	5-25
	" 40 " " " 50	$5-30$
	" • 50 " " " 80	5-40
	Total passing 80 mesh, retained on 200 mesh	20-40
	Passing 80 mesh, rotained on 100 mesh	6-20
	100 " " "200 "	10-25
	Total "200 "	0-5
	Minoral fillor	6-20
	Asphaltic comont	$9 \frac{1}{2}-13 \frac{1}{2}$



## -61-

## AMALYSIS 3

FINE GRADED AGGREGATE (ICPEKA TYPE)
BITUMINOUS CONCRETE


## ANALYEIS 4

MYPICAL WARRENITE BIMULITHIC


That part passing tho 10 mosh si wo when tosted spparately shall havo the following grading:


Asphaltic Coment
8-12\%

- 83 -

COST REPORTS POK DIZ


#### Abstract

$\pi m+\pi$ In the execution of engineering work it is.jsually necessary to delegate certain authority to field engineers. These men work under instructions given them by superiors who have planned the undertaking, and designed the details. The degree of authority that the field engineer has varies with his position and his duties. In the building. of highways the field man may be in charge of survoys or construction. He may be making recomoissances, running location surveys or bench mark levels, setting grade stakes, or he may be a resident engineer in charge of construction. In any case he is working under certain general instructions that insure that so far as his particular activities eo they shall produce results in karmony with the proposed plans.


It is not always possible for the engineer in chief to follcw the work in detail each day, and that official has in all probability several qeations going at the same tine as well as office duties that demand his attention in connection with other projects that are in the formative stage or are being designed. To maintain that close contact with the various field operations that successful and economicel work demands is always a problem that requires a certain amount of attention. This contact must be naintained by occasional visits to tire field and inspection of work, but these visits can at best be made at irregular and infrequent intervals and at other times the chief must rely on some nethod of field reportine by his subordinates that will give him constant and consecutive information of what is going on. The progress of the work and its cost are the elements by which the competent chief judges of the edequacy of his subordinates to accomplish the details assigned, and the occasional inspections determine the degree of precision and techoical skill with which the work is accomplished.

To secure the necessary réports of field operations some simple, clear, flexible and at the same tine sufficiently comprehensive methcd should be used. The reports must be as nearly as possible uniform and adapted to rapid analysis in the head office. They must be suitable for reporting a considerable variety of operations and furnish satisfactory information for determining unit costs if a system of cost accounting is in use.

Many such systems have been devised and are in use today. In fact, the differences of opinion among enginears with respect to the items and form of cost accourits have doubtless made any fixed practice difficult to establish. Each engineer thinks his method is the best, and no doubt it does suit his particular needs well enough to make him resist any change of system. Frequently the laws governing the fiscrl operations of the state or province require centain forms of accounts and any method of reporting field expenditures must be adapted to s.ioving the necessary information for such records. After all, these matters are details of analysis and should be considered quite apart fron the actual field reports. If these show what is done, where and winch it is done, and who was engaged in doing it, the analysis of costs in the head office can then take any foim that is desired.

A system of field reports used on a large variety of highway work with entire success and satisfaction is described briefly in this paper. The field report consists of a single form for all surveying and construction, and another single form for all subsequent maintenance operations. The first form, on any single piece of work, is naturally discarded when the time comes to use the second.

The two forms are shown herewith in Figures 1 and 2. The first form, it should be noted, is almays used by a man competent to keep records and set down facts intelligently. The second is for use by workmen tho frequently can do little more than write, but who know how to do certain necessary work in the way of road repairs and maintenance.

Figure 1 is for use by surveymen, chiefs of party, resident engineers, inspectors and engineering subordinates, and provides for a daily record of all operations. A concrete case will explain its use.

At the end of each day's work the chief of party or other field man in charge of certain details, makes a report of all operations conducted by him that day. He may have a bench mark party of two setting permanent or temporary benches; a locating party of eight including two axeman; a level party of three; and a crcss-section party of three. He should use a separate form for each separate party, filling in the several forms so that all work done shall be covered, all expenses accounted for, and the personnel employed shown. His own time, spent as front rodman of the locating party, may be charged entirely to the location survey or distributed as his judgment dictates. Sample forms made out for the locating party and the cross-section party are shown in Figures 3 and 4. In all, four forms should be used for that day's work and the total cost should check the total of the four cards. If the survey party operates from a camp, which is maintained with cook and helper, a separate card ahould be made out for camp ctarges or the cook and his assistant may be distributed among the several parties. Similarly, if transportation has to be used, the items for this may be separately reported or distributed among the parties. The manner of reporting camp and transportation costs should be covered in the instructions to the field man in charge; and these instructions will depend on the desired analysis of survey expenses. It is well to note that if the items are separately reported, the field man does not have the bother of prorating such costs against the several parties operating and also that the head office is then free to make any distribution it finds necessary. In making out the report the chief of party may enter the time only of each employee, leaving the head office to enter the rates of pay and the total day's charge. Or the field mon may enter the entire record assuming he has beeir furnished with the necessary information regarding the rates of pay of all employees, and bring down the total cost. Usually in such parties some men are employed directly by the chief of party and laborers like axemen may be frequently changed. So that in some cases no one but the field engineer knows what the rate or pay is.

The daily report forms be post cards already adressed to the Chief Engineer at the betu tifec, or they may be made up in booklets so that they can be torn out. In any case they are all majlied to the head office daily and are there entered on a sumary form like Figure 5. This summery may be made to carry a week's or month's record and it should check with the entire cost of the field work for tha period. It can be used as a check against the pay rolls, and can be taken by the bookkeeper for use in making up any desired set of unit cost accounts that the head office is in the habit of keepi.gg. It is unfortunately the headings for these office cost records that are in disagreement among engineers. Sone comion examples of details over which there is notable disagreement are interesting:

In nem highatay mork it is of ten necessary to mun trial lines before the final satisfactory locetion is fixed. The topography may require this, or it may result from difficulties over rights-of-way. Shall all the cost of trial lines and final line be chsrged against the final location survey, or shall only the cost of tine final line be charged? Shall bench levels, wioh if accurately run are a part of the general control of the area for many engineering and survey purposes, be charged against the cost of survey for the highway or not, or shall a part be so cherged, and if so, what part? Nobody knows; there is no fixed custom and each chief engineer must detemine for himself what he will do. Sometimes the laws direct him what to do and he must compile his cost accounts accordingly.

This form of field report may be used for all succeeding work of surveying and construction. The final construction survey, setting slope stakes, measuring quantities, cross-sectioning borrow pits, takIng check levels may all be reported just as the several overations connected with the originel location suryeys. Then constraction.is started the resident engineers and inspectors can use the same form of report with such headings as may be designated by the chief engineer to cover the operations of building a road. Clearing and grubbing, grading, pipe culvert construction, concrete structires, laying base course, laying top or surface course are suggested as typical heads under which the mork may be classified. The chief engineer vill select the headings adapted to the work being done. Sample forms are show in Figures 6 and 7 for grading and bridge construction.

The classification of operations in this manner has only one relation to cost accounting and to unit cost accounts it furnishes the information of field operations of all kinds in such detail that any reasonable accounts can be built up from the fiela record. But it is to be noted that this method of field reporting does not fix or deaide what forms cost accounting shall taie. There exists the greatest possible variety among such accounts as they have been developed and are in use today. In the United States where highway building has advanced with great rapidity within the last ten years there can hardly be saidt beyet any standard practice with regard to such accounts. The metter is at present, however, under the closest scrutiny and some standariizel system will doubtless be adopted in the near future.

When construction has been carpleted and the highrray has boon placed under maintenenco a eomerime difforont condition exists, and the form represerted by Figuro 2 is thereafter usod in reporting all maintenanee porations.

Maintenanco will be under the general supervision of some engineer official and there may be district or division engineers in charge of large geographical aroes. But the actual work of maintenance will be done by patrolmen or by laborers working in gangs under a boss and oithor the patrolman will make his own daily individual roport, or the boss will report daily for the geng. In either cese, the clerical work must bo reduced to a minimum and it must bo of the simplest sort.

These men never should have authority to hire or discharge laborors; all such duties should be resorved to tho onginecr in charge of the district. Consoquently, it is never necessary that the salaries or costs of materials bo known to the field maintenance laborers. It is necossary only that the amount of labor in hours and the quantities of materials uscd moasured in customary and familiar units, shall be reported. The values in money can bo added in tho hoad office, vhero rates of pay of all labor and costs of all materials are known.

A patrolman, therefore, reporting only for himsclf, indicates by numbers in the proper column the hours he worked at the indicated operations. Such a report card is shom in Figure 8. The total hours must check with the full work day. If rain prevents work the hours so lost should be indicated and the word "rain" entered as shown.

If tho boss of a gang reports for his mon and himself he uses the semo form and gives the total hours of work devoted to each item. The total should chock the product of the men times the full work day. Materials used in maintenance operations arc also to bo reported as indicatcd in Figures 8 and 9, and to accomish this oasily oach patrolman or gang must bo furnished bith a pouring pot of known capacity, if bituminous materials are used, and with a cubical wooden box for measuring small quentities of gravol or crushod stono usod in making minor repairs. If carts or trucks are usod by the gands those should be monsured by the engincor and marks sot at difforent levols insido so that the boss may easily determino the larger quantitios of thoso matorials. that may bo houled and devoted to maintonanco work.

The daily reports from the patrolmen and bosses are summarized on rocord forms in the district ongineer's offico and the costs assignod. Tho daily cards will detormino tho lecetion of the work and tho summary sheots can be made to cover a considerable mileago of road, thus proventing a largo or bulky set of rocords. Espocially where maintenanco is performod by gangs of laborors working togothor tho soctions assigned to a capatoz and his gang may be 10 to 15 kilomoters in longth. Soveral such sae-
tions may be sumarized on sitge sheet. A patrolman equy care for 1 to 5 kilometers depenaing on the type of surface and the rainfall. His reports can be similarly grouped.
-. In all the summary sheets only the total cost figures for each item of work are entered. All the deteil is omitted but will show on the daily reports which may be preserved as long as considered desirable. Sarmple summary sheet for maintenance is shown in Figure 10.

The forms and methods of field reporting herein described have been in satisfactory use many years in a large variety of road mork and have been tested in hard service. They have served their purpose well. In one instance very careful and accurate records of costs on experimental roads were needed and this system of field reports was used continuously for two years and a half while the research work was under ray. The results were satisfactory in all respects.

In using the reports the chief engineer must himself determine what information is to be compiled from them and see that the supplementary office data are available. One such detall, for instance, concerns the unit prices to be charged for materials reported used by the patrolmen and gangs. On a surface treated macadam or bituminous macadam road, bitumen and small crushed stone or clean eravel will be required for routine patching. These materials $\forall i l l$ be purchased and delivered along the highway at convenient intervals. The cost of such materials thus delivered will be known to the district engineer or other official in authority. This rate will be charged for the material as it is used and eventually the total, less certain waste or loss will be accounted for. But before all this stock is gone a new supply will have to be purchased and delivered. The cost of this material will be different in all probability irorn the cost of the first lot. No attempt should be made to distinguish between the two lots stocked along the road, and the patrolnen should not be confused by any instructions to report their use separately. The head office or district office simply adjusts a nev unit price for each material based on the value of the old material on hand combined with the new material delivered. For instence, 6,000 gallons of bituminous cold patching material may have been delivered in barrels along a piece of hightay oi 20 cents ágallon. This is the price used at the head office in making up the summary sheets showing costs of materials employed in maintaining the road. Then there are still 1,000 gallons on hand along the road, a second supply of 4,000 gallons is ordered and delivered at a total cost of 21 cents a gallon. The total cost of bituminous material on hand will be 1,000 gallons at 20 cents, or $\$ 200.00$, and $4,000 \mathrm{gallons}$ at 21 cents, or $\$ 840.00$, a total of 5,000 gallons costing $\$ 1,040.00$, or 20.8 cents a gallon. This new unit price is then used until a new stock requires a further adjustment of price.

## - 68 -

Exactly this same method is used in setting up the unit prices at wisch each other material shall be charged as it enters into themaintenance work. From time to time the rem maining materials should be measured up and checked with the record to see whether the wastage has been excessive or not and to ascertain to a degree whether the patrolmen are carefully reporting. This check ordinarily should be made twice. a year for expensive materials and once a jrear for cheap materials.

A chief engineer faced with the responsibility of spending annually a considerable sum, throuch the labor of a scattered force, and the use of large quantities of materials in small units and equally scattered can only discharge that duty intelligently and properly when he knows within a rcasonable administrative margin where and how the labor and materials are employed. Sone simple but definite method must be resorted to to secure the information, and the method must include to some extent checks that will serve to control its accurate working. The method described and the forms shomi are submittcd as a practical examile of whet can be done. The experience of the engineer wanting some such device will suggest to him variations to meet his peculiar nceds if such exist.

## FIIEANCING A TMAZOTAZ HETHAY SYSTEM

The financing of a Mational Highway Systom should be troatod fundamentally as a mattor of taxation. Unless roads and bridges are built as toll structures, in which case the procceds from their use aro applied to interest, maintonance and rotircmont of tho original cost, the total cost must in tho and be derived from public texes. We aro not concerned et this time with toll structures and are to confino our consideration of the financing to a sustem of freo roads and bridges built for tho gencral use of the pooplo.

No comprohensive study of texation for highway furposos has boon made by any authority recently onough to covar the most important developmonts of the pest two decades in highray construction. It ia not possiblo within the scope of this repor to do moro then discuss bricfly the prosent trend of public practice ond sugeest the poncral principlos in?icetod by it with sone reasons for consiccring thosc indicated principles as some or unsound.

Wo have found the motor vohicle to be the detormining considcration in discussing a goneral highway program and tho detsils of road dosign. Similarly, wo find thet tho motor vohiclo has bocomo tho principal rocognized source of public income to finence the highvays domandod by its orm use. But this is not tho only sourco. Foad texes aro obtained also from:
(1) Diroct roal proporty tax.
(a) Genoral tax.
(b) Special assessments. .
(2) Direct personal property tax.
(3) Whoel tex (occupational tex).
(4) Miscellaneous taxes which roach the highray fund by transfors from genoral state or netional funds.

The real problem in highway taxation is not: so much to discover edequato producing sourcos of rovonue, but rethor to osteblish the proportion which ecch of theso. sources should proporly and oquitably contributo toward tho total highway budget. Tho problon is an involved one, many details are indoterininato, and no expansive stucy has ever beon mace to solvo it on a scund oconomic basis; but tho gencral trend of administrative and legislem tivo action in a largo number of incividual cases scrves to indicato some grouping of the sourcos of teration thet eppears roasoneblo, just, financially sounc, and usually sucçossful boyond anticiprotion. The principal question involved is to establish winct part of highway costs shall be carriod by real mroporty, how far tho notor vehiclo end gasoline taxes should bo covoted to construction, to what cxtont theso should be confined to maintenanco, and what roletion if any should bo meintainod among theso and othor possiblo sourcos as clements in the highray fund of the nation.

For our purpose it is perhaps unfortunate that we have ad the most productive field of example the United States, where motor registration is at present so laree, and where an unksually well distributed purchasinc power and a rapidly advancing highray program have caused a notable development of this source of revenie. Unquestionably, no such rapid increase in actual number of motor vehicles can be expected in South Americen and Central American countries. There the number of motcr venicies is not nov lerge relative to that in the United States, and extension of the registration probably depends on a development of a wider purchasing power than now exists, but this condition is only a temprary one and will be corrected in time. How fast the relative increase will be remains to be ssen.

Assuming the possibility of a respoasive and flexible highway building program, it is undoubtedly true that automobile registration is limited only by population and the ability of the purchasing public to buy. The rate of increase of registration is a function of highray improvement, each one reacting directly on the other. Heither highway construction nor the automobile industry is the cause of the other. The demand for easier and cheaper communication in the common cause. But there is a reciprccal reaction that is going on all the time, if we are to accept the experience of the United States, which is the outstanding example of lerge registration and a big program of modern road construction. The autcmobile was made practicable and used on existing city pevements. Attempted uses of the country roads at once developed an intclerable dust nuisance and accelerated wear. The dust was laid and the road surfaces protected. More automobiles began to use these improved roads adjacent to the large towns and cities. Their use and radius of operation increased, more mileage was improved, until this cycle reached encrmous proportions, involving an increased registration in one year of $2,852,000$ motor vehicles and the construction of at least 21,850 miles of surfaced road.

Today in the United States this cycle can be seen in different phases of its development. There are states with a large completed and connected mileage; there are states with no transstate routes yet entirely improved. There is one state at least whose capital city could not be entered over a paved road in 1926. But in that state the local improvements, the extension of the improved mileage in and immediately adjecent tc the half dozen cities of the state and the numerous large towns, have been accompanied by a nota-. ble increase in the inse of motor vehicles.

It is reasonable, therefore, to cite a parallel between present Latin American conditicns, and conditions as thoy existed in the United States in the earlier years of the automobile. Subsequent extension may be slow cr rapid in the South American field, but experiences may be expected to run closely parallel with those of the United States in the directicu of economic effects. The present
registration there is already safficiont to create a demand for rond improtement, the imrovements made will react on the registration, raising it as rapidy as purchasing ability and poralation gronth permits. This latter will follow the general prosperity of the countries, and roed-building has a sustained history of elwajs promoting prosperity by imrroving commaication.

We find that revenues for road buildine are obtained from several sources, the cominonest of chich are direct real rroperty taxation, and direct taxes on the motor venicle and on the fuel used. The shall accept as eenerally established that these forms are :the comonest, the most productive, and have become, tinrough a certain experience, the most acceptable under an aomittedy racid and extensive highway development, like that in the United States. Errors heve been made in the metiod of application and in the details of aistributing the tax. Improper propertions of the cost of road building have been assigned to one or the other of these commonest sources of revenue, but the tazes so leviea have been generally adequate, easily and eccnomically collected, difficult to avoid, flexible in application, and acceptable to the general motor operating public. When the revenues produced heve not sufficed for such an eztended or rapid progregm of construction as desired, increase of the rates has been accepted and in some cases even demanded in comection with definite pians for increased building activity.

We are concerned in determining what are the principles behir the drift of current practice as displayed in the large financing operations current in the United States.

Any developed area must inherently be economically capable of providing for its own imediate transportation demands. The only possible exception to this would be an area absolutely self-containod and requiring no corrunications. A single ficid on a plantation must carry needed fencing charges, as well as cultivation charges, or it can not be operated economically and hence can not be developed. In exactly the same way it must cerry its own transportation charges, to the stage of road improvement satisfactory for the transportation demands of farm land. These may involve nothing better than a simple dirt wagon road from the field to the plantation entrance, or to the adjacent public highway. A group of plantations must similarly be able to carry their own needs for transportation and lines of cormuniceticn, An agricultural or other developed area, be it city, tom, suburb, cI country side, must carry the same costs as a direct charge against the operations of developed business in that area. On the other hand, sucl areas can not projerly be called upon to do moro. A single plantation may bo served adequately by a dirt road, rell graied and drained. A fertile valley wi th a large number of frosperous ranches may require nothing more than a gravel road. A city will reçuire its pavements, curbs, and gutters. Tach should carry the charge for that it individus needs. It is not sound to burcien local develoment with a hoavior charge for transportation than this minimum which is indispensable.

The local traffic whiole sets satisfactory mininmm of wew quate improvertent is not, however, the only traffic that exists. For each area produces not only local trafiic, which is necessary to and remains identified with the localized business operations of the region, but it produces a certain amount of traffic that flows beyond the boundaries of the more or less cleaxly definied losal area. Each region, therefore, not only has a local traffic, but it produces for some contiguous regicn a foreign traffic, and in turn receives from contiguous regions a traffic foreign to its own requirements chis traffic, which is hore referred to as foreign in a purely relative sense, has little relation to tine development of the local areas other than that one in which it orieinates. Cities sond a heavy traffic into and across some poorly developed country sido. The distant rural sections send little or no traffic into tho cities. Some cross roads carry practically none but a very limited locel traffic, cthers carry little more than the accumulation of local traffic in larger but still limited and well defined areas. etill other hightays clearly fill a dual purpose in providing a local rosd and an artery for distant conmunicetion.

The existence of this so-called foreign traffic has come about because the radius of highway transportation has been longthened by the new type of vehicle In use. During the time when horse-drami ${ }^{\circ}$ traffic prevailed, at least during the railroad era, the foreign traffic as here understood never existed as an economic factor in the system of communications. Business creates it, but does not account for all of it. Pleasure and convenience are responsible for a large part.

A further indication that rcal roperty, especially in agricultural sections, should not be called upon to finance a better type of construction than domanded. by the traffic having local origin is found in the experionce of some states that have tried it. she creation of so-called improvement districts in Ariransas, U. S. i., comprising fractional parts of one or more counties, was for some ycars a favorite method of financing highways on the state system. Generally the type of improvement was better than sufficient to meet local reeds. Whe real proporty of tho district was taxed to provide intcrest and sinking fund, bonds being issucd for construction. This practice was continucd until over $60,000,000$ of local improvemont bonds had beon sold. The burden was more tinen tio land could carry. Local opposition to the tames nocessary developed within a few years; in some cases interost remained unvaid, and several districts wont into the hands of rccoivcrs. Finally, the Stete tirough legislative action
provided for motor vehicle and gas taxes, assigned the revenue to the counties to be used according to a sliding scale to meet the charges against improvement districts within tho countios. The rich countios appliod none of these revenues to bond charges and the poorer countics applied from 25 to 100 per cent of such revenuos to thet ond. In all cases tho proceeds had to be used cither to carrying the nighay bonds or in the construction and maintenance of roads. In the other states where improvement district laws arc in forco the experience has not been so scvere, but tends in the same direction if resort to those means becomes excessive. In other cases the taxation of land for over-cievelopod roads had led to such heavy burdons as to affect the mariset value of rural land unfavorably.

It is clear, thereforo, that there must be some other source for highrvay income than the real property undor developmont unless wo impose an undue burden on thet property. Bettor highray facilities than those required by the moro local needs are demandod. It is oqually obvious that this domand flows Wholly from the so-called foreign traffic, with its added facilitics for business, possibilitios of saving in costs, and sources of pleasure and convenionce. This traffic should be mado to carry tho charges incidont to its operation. On this basis wo may turn to motor vohicle rovenues as a logical. probably adequato source for a highray fund to provido the cost of construction to moot the cadditional domands arising from forcign traffic.

If properly lovied and uscd thoro is no tox that bears any moro diroct rolation betweon source and objcct than the motor licenso fco and tho gasolino tax. The incroasc in rates on motor vohicles and the rapid introduction of tho gasolino tax indicates a vide accoptance of this mothod of raising revonue.

If we now cyamine the change in the source of highrvay revonues we shall find an intoresting condition. In 1904 local bond issuos for highrrays in the United States totellod 21,000,000, and the carrying charges werc mot gonerally from property taxes. In 1909 tho tctill was approximatcly $\$ 100,000,000$, and in 1914 it was $\$ 286,557,073$. In 1921 there was a total of $\$ 1,166,124,700$ highray bonds outstanding in the United $\omega$ tatos. At that time tho sta to highway bonds outstanding more $\$ 289,386,500$, leaving a total of $\$ 876,738,200$ in locel is sues. Hore wo have a contimually incroasing local indobtedness for highways. But by 1922 tho stato bonds had mountod to $\$ 367,687,100$. In 1925 the total reachod $\$ 626,832,350$, and in 1926 the accumulated total issucs were $\$ 820,730,100$. In thet year the total state and local bonded hightray debt vas approximatcly $\$ 1,800,000,000 ;$ leaving about $\$ 979,200,000$ to roprosont the 10 cal issucs.

Mow, it is a fact that in some states the counties or other local subdivisions have been orpected to contribute a portion of the cost of state roads in the local jurisdiction. But this hes.been a decreasing rether than an increasing practice, at least since 1916 when the Federal lid Act vas passed by the Congress and a requirenent was mede thet all funds spent on the Tederal Aid Systom sinould bo mecie under the control of the states.

We find that in 1920 the proportion of property tex funds devoted to state road construction cmoriatcd to 29.2 per cont. In 1925 it was 25.4 per cent. In 1926 it 32 dropped below 20 per cent.

Thother this proportion will decrease still furtner can not be forescon. Certininly it can not continue very much farther in vier: of the very offect of motor traffic on the development of largo suburban areas with heavy increase in land values. Tho incroased proportion of high priced land will certainly offset the past tendency toward a continually decreasing contribution of the property tex to the road fund. A similar cffect will flow to a less degree from rural lands whose values are increascd substentially by beine devoted to the production of higher priced, perishoble crops for urban consumption.

Howovor future conditions may alter presont tendencies, these are now clear. The construction of stato roads has been getting moro costly, the roadway wider and the surfaces moro gencrally of higher types, and the shero of the cost cerried by the locel subdivisions has bcon decrecsing and ot the same time local highray bonds have increased stcedily.

This outline of conditions indicates definite tendencios:
(1) The locel units do not hesitato to increaso texes on property for road purposes.
(2) Tho roads built with such prococds arc gonerally lacel and the practice of confining such funds to lowil rocons is increasing.
(3) The participetion of locel funds in the construction of tho stetc roads is becoming not only pronortionatcly less but absolutcly less, duc to provision of largor sums for stetewide highray construction.

Tho experiences reprosentod erc those of forty-cight separato goverrmont units. Thoso soparato agencios are constently obscrving tho various solutions of current probloms found by each other, and they confor and oxchange idens through a largo number of scmi-official and civic chennels. Ench steto closoly watches tho succoss or failuro achieved by all tho others and a cross soction of tho combined cxpericnce discloses a view of
the greatest significance. Tho aim has unquestionebly boen to find a sourco of amplo revenue for highivay rurposes, ono that can bo casily dram upon ber mothods not ecsily cvedod, ono thet is not groatly rosistoc, that operetes without groat cost, and most of all ono that rroduces on the public mind an impression of feirmoss and equity. The constant incroase of motor vehicle license cherges and the introduction and subsequent increase of the gasolino tax demonstrete thet both the form of the impost end its operation aro satisfactory to an cnormously large public. Speco is not available to do moro than tabulato tho oxisting fees and tex rates provailing and to add the $t$ in 1919 the first gasoline tax of ono cont vas laid.

## Table. Mo. 1

Gasline Tax Rates, by Statos, as of August 1,1927 .


> -76-
Table

Automobile Feos and Taxes (Based on minimum reto fot touring car) as of January, 1927.

Rato	i Statos
	:
To \$ 5.00	: 7-Arizona, California, Colorado, Indiana,   : Mifrth Dakotn, Ohio, Utah.
	:
\$5.01 to $\$ 10.00$	: 27 - Delamare, Florida, Idaho, Illinois, Iowa, : Keqnsas, Liaino, Marylaná, Massachusetts,
	: Michigen, Minnosote, Mississippi, Missouri,
	: Montana, Mobreska, İovada, How Hampshirc,
	: Fimp Jorsoy, Fow Moxico, ITon York, Pennsyl-
	: vania, Rhodo Island, South Carolina,
	: Tennossce, Washington, Tisconsin,
	Wyoming.
$\$ 10.01$ to $\$ 15.00$	: 14 - Alabama, Ariransas, Connecticut, Gcorgia,
	: Kontucky, Louisiana, North Carolina,
	: Cklahoma, Orcgon, South Dakota, Tcxas,
	: Vermont, Virginia, West Virginia.

After such a revier of successful practice in rassing funds for the groetest ainglo higinay progrem the veriat has ever scen we may venture to state cortain principles indicatod by the course of this exporionco.
(I) Direct ral property texes should be used to finence only local roads, and only that proportion of the cost of the main roads on the netional system which represents tho domend of treffic having a local origin.
(2) Motor vehicle liconso fees and the gasoline tar should supploment tho property tax in financing the notionel roed system, and should provide so fer as possible for all the construction roquirments incident to the traffic that is not of local origin.

In this second principlo we rocognize that the very olomont that creatos the demand for long, connected, contimuously improved roads and hoerry high type construction is medo the source of the additional rovenuo required to meet the domand, and 'therefore wo should logically add a third principle.
(3) Motor vchicle revenues of all kinds should"be devoted only to the construction, betterment and maintenance of tho national highway systom.

To theso wo must add a final statement beceusc thore are other taxes thot mey be levied to augment the goneral highway fund.
(4) Special taxos such as a crude oil production tax, a mincral tax, or a whel tex-mone of which are dircct levies on roal property-may be used to produce entergency rovonue funds for the netional higinway system.

To determine the proportion of cost of the national highrey system that should equitably be born by local proporty tasation is difficult. It mieht bo possible to do so by mocns of en cleborate traffic consus; but this has never beon dono, and tho cost and time consumod in such a study would hardly be varrantod. Becauso a simple adjustment roula not continue to bo oxact as motor registration increased and uses of the motor vohicle became moro general and moro divorsc. Moreovor local treffic is subject to suddon and unforseen changes duo to the introcuction of now industry, discovery of a retr natural product, uncxpectod success of somo agricultural or develormentel procuction, to colonization in mass and to other lerge chengos of tho same sort.

Then, too, the idea of local traffic is reletivo and the practical dotormination of what is local and that is forcign traffic in the sense usod heroin doponds ontiroly on tho unit of erca. considered, which is genorelly a political subdivision croatod vithout consideration of cconomio or traffic conditions.

For instance, if we consider the state or the province as tho unit of aroa we might find, as we do in the Unitod States, the
foreign traffic as little as 10 per cent of the total. In the contral part of Pemsylvania the foroign traffic, that is traffic from without the State, amountod to 10 per cont as shown in a general study of the highwey traffic. In Connocticut a simi-: lar study of the highrvay traffic disclosed 10.9 por cent of foreign traffic near the central portion of the State. In ehio, noar the State boundaries, the foreign traffic is approximately 50 per cent of the total, and on all parts of principal through routos across tho $S$ tate it mas high, averaging on one main route as much as 23.6 por cent. In tho contral part of Mebraska on a single main routo tho foreign traffic is 16 per cont and in Vormont it is as high as 36.6 per cent during the summer tourist season. But in general the avcrage foroign traffic on tho state highray systoms of several statos that have beon carefully investigated amounts to approximately 10 per cent.

On the othor hand; if tho county is considerod the locel unit wo got an ontircly difforent rolation bet:roon local and foreign treffic, especially if wo consider as the county that arca outside of the incorperated municipalities. Je find in Ohio that on the state roads vithin a county tho forcign traffic amounts to 87.6 per cent, and the local rural county traffic -the distinctly local traffic -- to only 12.4 per cent. In Vermont and New Hampshiro the local traffic on the samo besis is only 10.1 per cent and 6.1 per cont, rospoctively. In Connecticut it is 21.1 per cont, and in Pennsylvania, 7.1 per cont.

In tho United States the county is the principal rural taxing administrative unit and it might appear, thereforc, that the property taxes devoted to the state highways in the county should not exceed 15 por cent of the total cost. If wo aro to adjust the proportion on this besis, however, we should consider tormage and not only source but destination of the traffic, becauso much of it unquestionebly would flow into tho cities whe ro it would pay no part whatevor of the cost of strcots. As a matter of fact, wo find the property tax flowing to state road construction amounts norr to about 20 per cont and as a part of this comes from incorporated areas, which gencrally also pay a county tax, the excess above the relation indicated by a simple.traffic count is not at great variance with the actual proportion gradually approached by the contribution of the property tax toward stato highway construction.

Space forbids discussing in greater detail the proportions If the highray budget to be assignod to the other sources of taxation. Tho appended Tablo 3 shovs the per cent of total state highway rovenue dorived from its several sources. Transfors, stato appropriations and state diroct taxos may all dorive from a direct property tax. They probably do not, but it is conscrvative to assumo it. Then all securities sold may bo (but are not actually) carricd by diroct proporty texes. If the interost on such issucs is 6 por cent the total possiblo property tax reprosented in tho tabular analys is is 18.5 por cont.


Motor vehicle fees and gasoline revenues are divided between construction and maintenance. The proportions devoted to each are difficult to fix, and in themselves are interesting subm jects for investigation.

Fundamentally the financing of a national highway system is a problem in taxation, but the practical operations extend to the detailed methods of handing the highway funcis so as to froduce the best results.

In general the re are but two quite obvious methods. The first is called for want of a better name the pay-as-you-go method; the second is the capitalizing of annual taxation by issuing bonds and obligating thereby the future annual revenues. Each of these methods has had a wide and successful application. The use of one or the other depends on a number of conditions internal to the state or nation choosine between them. The rapidm ity of increase of motor vehicle resistration, the popularity of travel by motor, the financial condition and stability or the state and its ebility to secure credit in the money market have their effect in determining the decisions made in the past.

The pay-as-you-co method imposes no finansial obligations to be met in the future except that of protecting the investment in roads by adequate maintenance. The building program accomnodates itself to changes in the economic status of the nation, and
may be curtailed or extended dich with reasonable flexibistyy It involves the creation and protection of no sinking funds, and the direct construction and ensineerins costs represent the whole cost of the roads built. The program moves along slowly and may, by a careful budgeting of new construction and maintenance, be continued logically and successfully to an indefinite extent. It may be altered to meet chances in development by extending it to supply transportation routes previously undisclosed by the original studies to determine the national highway system.

The use of bonds requires a definite procram of construction in advance, covering what might otherwise consume many years to construct. It may involve the accumulation, investment, and protection of sinking funds. It furnishes a means of more rapidly meeting the popular and economic denand for roads, and this aspect has no doubt been the decidins feature in favor of a great many bond issues. It permits construction programs large enough to secure the advantage of big contracts and low prices. But to realize this advantage it may require goinc beyond the immediate locality, even outside of the state, to find contractors equipped to perform the large contracts. It discounts the future and can not be adjusted, within the life of the securities, to meet temporarily financial or economic depression. It makes the building program more rigid and removes it to that extent from the easy manipulation of local politicians. It involves interest payments, and the safegrarding of a sinking or retirement $f$ und.

A decisi on to adopt the pay-as-you-go method or the bond issue to finance highway constructi on should unquestionably depend to a considerable extent on the status of the hichway system. If the system is small and incomplete, if the autonobile registration is increasing rapidly, if the public is demanding more roads, the bond issue should be resorted to. This response to the popular demand for better and more lines of commanication will start the series of reactions that $r$ esult so favorably on the industries and the economic life of the country. The roads will provide an impulse to greater motor vehicle development and use. This will create a demand for more roads. Together these processes will bring into the industrial life of the nation a new industry and will enliven and revivify others. Lands will be placed potentially in better relation to the centers of population; social IIfe, education, and the entire life of the people will in time feel a strong influence due to the greater mobility, freer intercourse, and closer relations of the public life of the nation.

The pay-as-you-go method should be adopted where and when the national hishway system is more advanced, and should alone be used when the system is approaching completion. It may always be used if annual revenues are plentiful and should be used in any cases where the bonded indebtedness is so heavy as to have affected adversely the public credit.

There will be an internediate period and condition when a combination of bond funds and current revenues should be used. This must occur in any case as a transition period and includes that time when the first construction on modest lines is being salvaged into higher types and at the same time new construction is still proceeding. The new construction extends the system to meet a wider public demand which is entitled to prompt satisfacm tion, and the reconstruction and betterments represent a concentration of demand incident to increases in traffic. This latter obviously can be met more easily by a gradual procran of widening, grade reduction, heavy paving, amelioration of curves, or any of the details that such a program involves. The existing traffic may be put to inconvenience but it is not totally denied by such procedure. The extension of new roads is the first service and if delayed means the denial to some of what has been extended to others.

In considering the issuance of bonds there are further considerations because a choice is presented in the form of bond to be used. In general there are three kinds of bonds: term, serial, and annuity. These have some minor variations such as the deferred serial, annual serial, periodic serial, etc. Term bonds are those which mature after a definite period, Serial bonds are retired annually or at other periods, a fixed portion of the issue being retired at each maturity date. The annuity bond is similar to the serial type, but the retirements plus interest are maintained at a constant figure. A regular serial bond requires the same principal retirements and a decreasing interest charge, whereas the annuity bonds are retired slowly at first, and the principal retirements increase as the interest charge decreases, so that the total payment is practically a fixed amount.

The relation of these forms of bond issues is indicated in the following table: The total cost of the serlal bond, interest, and principal is seen to be the cheapest.

Table No. 4

Total cost of a loan of $\$ 100,000$ for 20 years, interest compounded annually.


In issuing bonds it is an excellent practice to arrange to sell the securities no faster than the program of construction can proceed without dislocating the local materials and labor market. Too big a program is not sound. A gradual increase in the annual or biennial sales provides for a gradually increasing building program, which will react on mot or registration, which will support the increasing issues of bonds. Prices of materials and labor will be least affected and the economies in construction will be greatest ander a procedure of this kind.

One detail must be pointed out that is essential in determining a choice between the pay-as-you-go method and a bond issue. The total cost of the same road varies according to the method cf financing adopted. For instance, if $\$ 100,000$ are to be spent in building ten miles of highway, the cost is $\$ 10,000$ per mile if the funds are produced from annual revenues. But the total cost of a $\$ 100,000$ bond issue, serial type, may be i 142,000 and the total cost of a mile of road paid for by this method would then be \$14,200.

This additional cost is compensated by earlitrivise of ths road than could be had without bords. If this earlier use accommodates enough traffic to earn the difference in cost it is always justified.

Finally, it must be clear from a reading of the fundamentals incident to the laying out of a national highway system, discussed in the first paper of this series, that any lishway expenditure to be justified must be earned by the road in the form of cheaper transportation. This means that there must be enough traffic, and the type oi improvement sholl be such that the actual saving in cost of transportation shall at least equal the cost of the improvement. This alone justifies the cost of hignway construction. During its life a highway must pay for itself; otherwise it will be a luxury, whereas our entire discussion of the creation, design, construction, raintenance, ard financinf of a national highway system has been from the point of view that highways are fundamental requirements in a healthy, progressing, prosperous, and ambitious nation.

## CTLCHED 2003-0.5

