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PREFACE

TaERE seems to be no book in existence, at least in English,
, that presents in a coherent form the mathematical treatment
of the theory of political economy which has been developed
daring the past eighty years or more. The more familiar
parts of the theory are assumed by writers or indicated in
footnotes or appendices, the less familiar must be sought
in the treatises or journals in which they appear ; the various
writers on the mathematical theory have proceeded from
different hypotheses and adopted different notations, and
students are consequently hindered in the use of this very
valuable aid to analysis. Though the simpler applications
of mathematics made by competent writers and lecturers
can be appreciated by any intelligent readers and students,
the more complicated analyses are only within the power of
those who have mathematical aptitude, and it is for them
that this book is arranged. The actual number of mathe-
matical theorems used is quite small, but among them are
some uses of the calculus which do not form part of the
~~usual elementary curriculum, and these are brought together
inan appendix.

I have attempted to reduce to a uniform notation, and to
present as & properly related whole, the main part of the
mathematical methods used by Cournot, Jevons, Pareto,
Edgeworth, Marshall, Pigou, and Johuson, so far as these
are applied to the fundamental equations of exchange and
to the elementary study of taxation. Since I cannot be sure-
that I have not in some cases misinterpreted these writers,
1 have not given many detailed references, and must content
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myself with this general acknowledgement of indebtedness.
I have not intended to advance any new theorems in econo-
mies, nor do I claim any originality in mathematical results,
for the few theorems which I have not consciously adapted
from others may jn fact already have been published.
Perhaps, however, there is in my analysis a more definite
attempt than has been usual to deal equally with the hypo-
theses of competition and of monopoly, to find a place for
incomplete monopoly and to indicate how perfect competition
and perfect monopoly are mathematically the extreme cases
of & more general conception.

My thanks are due to Professor A. C. Pigou and Dr. H.
Dalton for adviee on the general contents of the study, and
to Mr. L. R. Connor who has devoted much time to cor-
rection and verification of the detail.

A L. B

March, 1924,
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INTRODUCTION

Ecoxvouics deals with the producti hange, p
consumption, and use of material goods and immaterial services.
The whole subject of wealth and welfare has two aspects, one
subjective, moral or psychological, the other objective or material
From the one we may consider the attainment by economie
action of an abstract good, or hedonistically the pl or
satisfaction derived from the possession or use of things, or the
desire to obtain goods; none of which terms are arithmetically
mesasurable. From the other we msy have in view material
goods and actual services which can be mensm'ed by quantity or
by money vulue At first sight it might appear that math

was confined to the objective aspect, but this
is not the case. If we cannot measure, it is trae that we cannot
apply the arithmetical processes of addition and multiplication
and their converse ; but we may be able to detect equality and
inequality, relationship, eontinuity, variation, and other properties
which lead to algebraic expressions.

It is proposed in the following treatment to have in mind
two entities; the one i ble, the satisfaction derived
from economie goods or in some cases the desire o obtain them,
the other measurable, e.g. the physical quantity of goods. The

d may be compared with & measurable slmdow cast by an
undefined ob_]ect. The more exact relati ip is as follows:
write U (2, y...) for an algebraic fanction of measurable quantities
2,y...; let it be 8o related to an entity we will call 8(=,y...),
where § is not & calculable function but the non-measurable
satisfaction derived from quantities z,y..., that the following
postulates are satisfied.

Postulates. (1) When ,y... vary without affecting the valne
of U(s,y...), more z balancing less y, &ec., §(z,¥...) remsins
anchanged.

ma B




2 INTRODUCTION

(2) When #, g... vary so as to increase U (,...), §(2,9...)
i , and if U d 8d

(3) When there are successive variations of @, ..., the first
increasing U from U, to U,, the second from U, to Uy, so that
the second increase is greater than the first (Uy— U, > U,— 1)),
then the second incresse in § is greater than the ﬁrst the
postulate still to be true, when less is written for greater.

The first and second of these postulates are fundamental.
U is measured on a definite scale, like the height of a ther-
mometer. T6 any point on this scale corresponds a level of
satisfaction, to be compared with the personal sensation of hest.
When U increases, when the thermometer rises, § the satis-
faction is i d, the tion of heat is intensified. But
a movement of 5 points (6 degrees) on the seale does not give
a corresponding measurement of increased eatisfaction, the
inteneification of sensation is not measurable. The thermometer
is calibrated ; the imaginary vessel of sensation is not.

The first two postulates, together with the assumptmn that
péople in their ic aim at incressing their eatis-
faction, are sufficient to obtain all the equations of eqtul}bnum
and in general all propositions that depend on the direclion as
distinet from the curvature of lines or the concavity of surfaces.
Propositions depending on the sign or magnitude of the second
derived function of U, which can be identified in the sequel by
a careful reader,* require the third postulate. In terms of our
analogy we should have that if in two successive periods the
thermometer rose 5 and 8 degrees, the intensification of sensa~
tion in the second period would be greater than in the first.

The first two postulates are sufficient to connect 8 maximum
of § with & maximum of U. .

For convenience of working it is assumed that @, g... can move
by infinitesimal steps, so that a value corresponds to every scale
reading, and that U (z,y...) is & continuous functio, i.e. that to
a small change in 2, y... corresponds s small change in U. The
great part of the analysis, however, would hold with close
approximation if the quantities moved by finite steps, if these
were small, The diffienlty, if it be one, could be met in part

® The third postulate is only required for pp. 18, 15, 56,
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by the use of the ealeulus of Finite Differences, instead of the
Differential Calculus, but the results would be akin, and the
slight improvement would not compensate the increased com-
plexity. We may leave this difficulty with the remark that in-
the rare cases where the things or services exchanged are not
r‘"l\ln of conti variation (m qun.ntity or quallty), the
results from the equations require some adjustment.
Since some name must be given, U will be called the utility
function. The utility to which it relates is that generally called
utility or value in exchange.




I
SIMPLE EXCHANGE OF TWO COMMObITIES.

§ 1. Marginal utility, indifference curves, offer curves.
Consider first the problem of two p 4 and Bi h

ing two commodities X and 7. "This analysis is used in the
elementary discussion of barter, and by many writers in the
fandamental treatment of foreign trade. The restriction to two
commodities is equivalent merely to snpposing that the posses-
sion of other goods does not affect the exchange between the two
in question. The restriction to two persons is more mpommt,
gince it rules out questions of competition.

H
Oy 13
As axes =]

9%

02

Frouse 1.

4 and B start with ¢; and &, of X and e, and 4, of 7.
4 receives 2 of X from B in return for y of ¥,
After exchange 4 has
=0 +z and \§=a,—y,
and B has =84~z and £, =b,+y.



6 SIMPLE EXCHANGE OF TWO COMMODITIES

In the figure ,§, and £, are measured horizontally to the right
and vertically downwards from O, . O, ¥ = a,.

MOX is drawn horizontally to the right, and M0 = q,.

O represents A’s initial position with reference to his axes
0,,E,and 0,,%,.

OY is drawn vertically upwards from O, and YO produced to
N, 80 that ON = &,.

Through N a line is drawn horizontally to the right to O, so
that NO, = 4,.

0, produced and 0,;%, vertically upwards form B's axes,
viz. O, E,; and 0,,E,, and O represents B's initial position as
well as 4's,

The axes OX, OY are those on which # and g, the quantities
exchanged, are measured.

Let \U(£, &) and U4, &) be funchons expressing the
utility to 4 and B respectlvely of the p or ption
of £, £, units of the commodities X und Y.

Then U (&, &) =1U(ey+o,0,—9) =7 (2, 9).
and U &) = ,Ulh—2, b +3) = ;7 (0, 9),
where the function 7 is defined by these equations, so that
17 (2, ) measures the utility enjoyed by A after the exchange of
y for @, and ,7'(z, y) measures the utility enjoyed by B after the
exchange of 7 for y. For each value of y there will be an 2 which
will just compensate 4 for the loss of y. The locus of such
points is , 7 (2, ) = 0, and this equation gives 4's indifference
curve through the origin, viz. OR.

For another locus of points, viz. ,7 (2, 7) = 1, 4 will gain one
unit of utility, and so we have a family of curves ;7 (z, 3) = PAE
in which the successive curves ,7 (2, y)=0, 1, 2... are 4's
indifference curves. A movement from one point to another on
the same curve does not change the amount of utility.

To any such curve, 7 (2, y) = ¢, & tangent at a point on it

Con) s @oz). Y, +0-) .7, =0t
where ,V,, , ¥, are the partial derived funetions of 7 (2, y), and

* This can be regtrdsd as a surface, and in the subsequent argument the
' plane curves may be considered as contour lines of this surface,
t Appendix, p. 92,
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1%, 1%, are the results of writing z=2,, y =9, in these
derivatives.

This tangent passes throngh 0 if

-5 '1'7:,7!1 af,=0
and therefore 2 Ve 4y Py, =0
is the equation to the tangent from O to 7 (z,9) = ¢, if (,¥,) is
on this curve,

For any named ratio of exchange p = g/z, the locus of exchange
is y = pz. This line cuts many of £'s indifference curves and
touches one, namely that for which p= —,F, /¥, , which it
toaches at (z,, ¥,)-

1t is evident from the figure that the curve touched is higher
up the scale of utility than the earves cut. Consequently if 4
is free to ch the te to be exchanged at the named
ratio, he will exchange y, for =,.

As p varies, all the points of contact of the tangents satisfy
the equation £.,7,+y.,7, =0.

This is the locus of points (0Q,Q) at which 4 is willing to
deal, if he cannot control the price. It is called £'s offer curve.

n'

{In the figure
—22 242+ 20x—4y = 252=25.,F (zy).

1 1
Piz=gg(—22+20); ¥, == (—4y-9)

The tangent whose point of contact to a curve is (z,, ¥,) m
@—2)(—25,1 200+ -y (~49—4) =0.
This passes through the origin if
z, (25, -20)+y, (45, +4) = 0.%
The Jocus of points of contact of tangents through the origin

is therefore z(22—20)+y(4y+4) =0,
ie. Z+2)'— 102+ 2y = 0.
This is the equation of 4's offer.]

* The equation to the tangent is then = (x,—10)+2y(y, +1) = 0.
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Similarly B's indifference curves are those coneave to OF, OT
is that through the origin, and B's offer curve is 0Q, @, the
equation of which is

2.2724-}/.21; =0,

§ 2. Equilibrium of exchange.

Assume in the first instance that the bargain is made as
a whole, not the result of a series of exchanges.

B will try to take that point on 4’s offer carve which is most
advantageous to him, which will be where 4's offer touches one
of B’s indifference curves (Q,). Similarly 4 will aim at a point
@,, where B's offer touches one of 4's indifference curves.

Let the offer curves intersect at Q. The double curve Q,Q @,
is called the dargaining locus. If B is the stronger bargainer he
may secare a point between @ and @, ; but if 4 snd B are of equal
bargaining strength, they will only both be willing to deal at
the exchange rate and amount given by Q. In fact this is the
position attained if the formulae are regarded as representing
the transactions of two individuals in, or subject to the law of,
a market ”,* in which case there can only be one price, snd
where neither party is at an advantage with respect to the other.
If this position is disturbed, it is to the interest of ome or the
other to revert to it.

In equilibrium we have, therefore, from the two offer curves
and the identities given,

]]='Z=—‘V—?~=——_—2_E=1§-'=2L—rﬂ-
r —J, Fy 1Wes ™ 2l
These relations are obtained thus : {
Dpbo=D (a+2)=1.
2= D,,7 (2.9) = Dy Ulay+2,0,—9) = D, U 64,4E)
=D\ U ki b - Dy sy = Dy \ U610 18) =1 Ui

Similarly RA /™
But Dy lfz = Dy (0,—y) = —1,

and 1’; =D;, UGk 6D - D, b= =1l
Similarly Fa= —oUs.

. Peychics, Edgeworth, p, $9.  Ses Appendix, pp. 84-5.
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These are the fundsmental equations of equilibrium of ex-
change, and are due to Jevons.

At the position of equilibrium 4’s and B's indifference curves
touch, and the common tangent passes through O.

172 = D, ¥ (,3), y constant, is the marginal utility to 4 of an

mcrement of X, when z and y are already possessed.®

Similarly ,U;,, .U, are the marginal utilities to 4 of incre-
ments of X and ¥ when 4 possesses 1§, ,£;, and ,Up,, 4U, sre
interpreted similarly for B.

§ 3. The contract curve. .
If the exchange of y for # is not made as a single transaction
from the position O (when 4 has 4, and a,, and B has §, and 5,)
but from some other place, in other words if O varies: or, what
comes to the eame thing, if 4 and B do not know each other’s
position and make ive trial bargainst: then temporary
equilibrium may be reached wherever a pair of indifference curves
touch one another so long as each gains, or st least does not
lose, utility.
Af any such point
1BAY, = (—gradient of ;7) = (—gradient of ,7) = ,V/;7,
The locus of such points, ealled the contract curve, is therefore
‘Vz . ’7'—:"2. ,V; =0 or ,U,. 2Uea—oUty iU, = 0.
The intersection of the offer curves evidently lies on the
contract curve. KQT is the contract curve in the figure. The
segment R7' between 4's and B’s zero indifference curves is that
within which the bargaining can terminate.

§ 4. The demand and supply curves.
If y is eliminated from the equation

14 =y/z=lV,/—lVy,

we obtain an equation between p and z, say

» =f(a).

* More eorrectly V. 3z is an increment in utility due to an increase from
ztozs+3z
+ Principles of Ecomomics, Marshall. App. F., p. 791. Edition 1907.
10 c
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If Y is taken as being money, then p is the price of a unit of
X, and the equation is that of &’s demand curve.
Next eliminate y from the equation
p=ygft= = V/tV
the resulting equation, say p = ¢ (2), is B's supply curve.
[In the figure 4’s demand curve is obtained by writing
¥ = pz in the offer equation. The result is
2%z +2p+2—10=0,
which may be written
= {—1++/(1+202—24%} /22 -f(z)
B's indifference lines are drawn from the equation
—3y%—42+36y = 20z = 20.,7 (2,9).

1 1
2'74, = 2—0(—22—4); ’Iy = %(—6y+36).

B’s offer is z(—2x—4)+y(—6y+36) =0,

i.e 2t 4+ 342+ 2218y = 0.
B’s supply equation is
3p%2—18p+2+2=0,
or p=1{94 V(81 —6x—32%}/3z = ¢ (z).

The contract curve is
(—22+20)(—6y+36)—(—22—4) (—4y—4) =0,

ie. zy—202—34y+176 = 0.

The offer, contract, supply, and demand eqnntlons are satisfied
by @, = 429, , = 3-08, p = 0.707.]

Both 4 and B gain by the exchange, 4's gain being , 7 (7, 7,),
B's 3F (2, 3))-

[In the example , 7 (2,3,) = 1-5; ;¥ (2,3, = 2:3.]

§ 5. Elasticity of Demand.
The demand curve being p = f(), the quantity
1= —p/(eDzp)
is culled the elasticity of demand. D,p is generally negative (see
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P- 55 below), the quantity d ded d ing when ‘the price
increases, and y is then positive. ’

L} % 1, according as 1)% —zDp.

w  » Delem) 20
w» D30
DEMAND CURVE.
P
15¢

0 5 T X
Quantity
Froure 2.

In figure 2 D p = —NQ/NL, where # = ON and p = NQ,
and the tangent at @ meets OX at L.
~.n=NL/ON.
Figure 3 shows the values of y = p», where 2 = ONy = NE,
and represents the offer curve.
dz  —dp
i

n may also be written » where 3 and 8p are

small finite changes (vanishing in ‘the limit), and in this form is
seen to be the ratio of a small relative increase in # to the corre-
sponding small relative decrease in .

When 5 =1, ON' = N'Z, and by a well-known geometric
property L’Q’, and therefore the d d curve, touches at Q' a
rectangular hyperbola in which pz is constant. It is also
evident, since here D,{pz) = 0, that pz is & maximum and is
momentarily constant. At the same time D,y = 0 and at the
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corresponding point of the offer curve (R’) the tangent is hori-
zontal.

As 7 diminishes and approaches O, D,p becomes very great
negatively, and a great increase of price diminishes # very little ;-
ultimately when 7 = 0 the demand is said to be perfactiy inelastic,
and the demand curve is vertieal. .

On the other hand as 7 increases above unity, D, » becomes
small, and a small change in p makes a great changeinz. Perfect
elasticily is reached when 7 is infinite and the demand curve

horizontal.
OFFER CURVE.

x

5 10 15
Quantity

Freuze 8.

§ 6. Money prices.

Let ¥ be money which 4 is paying and B receiving. Then
~ 1V, =10, = x, say, is the marginal utility of money to 4,
and U, = ¥, = &, its marginal utility to B.

We get certain simplifications if we suppose the marginal
utilities of money to be unaffected by the sale and purchase of 2,
or, in other words, that 4 and B have so much money that this
particular deal does not sensibly affect its marginal utility.

In this ease 4’s indifference curves are parallel to one another;
for the gradient at the point (z, ¢) of the curve ,7 (zy) = const.
is given by Dy = —,V./,V}, = ,¥,/x,, and this depends on z
alone since ¥, cannot under the hypothesis be affected by y; so
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that for any assigned value of # the tangents to 4’s indifference
curves are parallel, and similarly for B’s indifference curves.
The equation of the contract curve becomes
kg Vot ry ¥, =0,
which only involves # and represents therefore a line {(or eon-
ceivably lines) parallel to OY.
The offer curves are
2. Fe—yx, =0 and z.,V,+yr, = 0.
A’s demand carve is "
p= ;;-;V===f(w),
and B’s sapply cirve is
p= —Kl’-dé= ¢ (=), )
without any elimination.

L7 = —sU, and is negative.]

In A's demand curve x,.D.p =,¥,, where ,V,, is written
for the second partial derivative of ;7 with respect to 2.%

P | S/
3.1 Veo —83y
2 i 2
and. g 1 according as ,KE —z.,Vere

At this point we use our third postulate for the first time. It
is evident that , ¥, = ,U _ is positive so long as U increases with
eatisfaction, and greater satisfaction is obtained by increased
possession of @. There may of course be a position of satisty
when , ¥, = 0 and p = 0, and even of negative satisfaction when
1V, is negative and 4 would pay to have less of #. Similarly
&y, Ky, 80d JU | are positive and 47}, 1, are negative.

Now assume, as in fact is generally the case, that successive
equal inerements of @ add less and less satisfaction, and, in
agreement with this,

Fiot+280,5)— 7 (2482, 9) <, ¥ (v +32,9)—, 7 (=, 9)
for all values of # and y in the problem.

* See Appendix, p. 90.
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Then for a constant y successive steps of , 7 are of diminishing
height, D, 7 (i.e. V) diminishes as # increases and ¥, is negative.

In the ﬁgure (p- 5) the converse of thls is seen, viz. that equal
increments of ;7 need ively i ing i te of @, for
the segments ma.de by 4’s indifference curves on any horizontal
line increase to the right.

Since x; is positive and ;¥,, is negative, D, p is negative if
the marginal utility of money is tant, and the d d curve
falls continually to the right, and 7 is therefore positive.

If 4 and B are bargaining in similar conditions, it follows that
aUt,¢, = ¥, is negative, and the segments of lines parallel to
OY cut by B’s indifference curves increase succesaively vertically.
But if B is a producer employing labour and using materials, his
position is no longer similar, and the argument no longer
applies ; this condition is dealt with in detail later on (pp. 28 seq.).

§ 7. The utility surface.

Now consider ¥ no longer to be money but a commodity, as
is X. We have then all the following expressions megative :
xUG,G, vyy’ 1U£.€, = 1¥ees aUG,é, = 3Vaus sUf.f, = z’;/y'

If in the figure (p. 5) we regard z= 0, z = 1, ... as contour
lines, they indicate the surface or hill z =,V (z, ). Ascent of
this bill in any fixed direction between east and south starting
from A4's zero indifference curve becomes less and less steep till
the summit in that direction is reached. Similarly B’s surface
becomes less steep as one travels from his zero indifference curve
in a direction between north and west.

These conditions hold generally, but further complications are
found when we take into account possible relations between the
uses of X and of ¥. These are considered, together with some
more general aspects of the utility functions, in the following
section, which may be postponed till the more elementary and
fundamental analyses in the subsequent chapters have been read.

Appenpur, Tae UriLity Surrace,
Independent, complementary, and alternative wiilily.

The slmpe and propert.les of the utility sarface relating to the
i ge of two dities depend in part on the question
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a

whether the uses of the two dities are i dent or
correlated. Here the discussion is of a theoretical nature the
more practical aspects, when both commodities are being pur-
chased by a third person, are considered in chapter VI.
Only 4’s surface is considered and the prefix 1 is dropped.
Asofferisz. V+y.V,= 0, 4 giving y in return for 2.
In this eurve
Dy= =D (. V+y.V)=Dy(z. V+y. V) *
¥ const. x const.
L+o. V,+y. Y,
T T eR 1y Y,

and if p = 3/&, then y—pz =0,
and .. D.y—p—zDp=0.
Eliminate .D,y, and simplify. We obtain
Dop= =V (W2 +2V,. V. E—F,. (B
@ Vi@ .V, + V+y. V)

Here use the third postnlate of p. 2; then ¥, and V,, are
negative. ¥, is positive so long as 4 is not aat.‘mted with X, and
I is negative if 4 has any use for ¥,

D, p is the gradient of 4’s demand curve.

¥,y is zero if X and Y have completely independent uses, so
that a change iny does not affect the marginal utility of z, i.e. V.
In this case D, p is always negative.

V., i negative where X and ¥ bave joint or complementary
utxhty, where an increased parting with ¥ (i. e. an increase of y
and a diminution of ¢,) diminishes the marginal utility of X
(e.g. paper and ink). In this case also, D, p is always negative.

V., is positive where X and ¥ are alternative to each other
(e.g. bread and meat) and an increase of y (a diminution of £,)
increases the marginal utility of . In this case the sign of
D_p is not determinate. It ean be shown that, if

K (V= By B> U= T By 4 T W) >0,
D, p is positive. This will happen if the marginal utility of X
changes slowly as # changes, but rapidly as y changes, while ¥,
changes very rapidly as y changes.
* See Appendix, p. 92.
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v h=% Y| h=1
] 0
1
10
15 1
0 2
o o } X
X N
(&) . (2)
Y, h=1 ! Y h-»o0
20
15
0
S
o X ° X
0
©
Y| h=1
0 J
5 ®
10
15
20,
(o} < X
(v)
atoe. Complementary Utility.
Frouze 4.

For some purposes the utility surface may be considered to be
a conicoid with sufficient approximation, without implying that.
this is the general form. We may then write its equation in the
form
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Y Y| h=-%
o)
5,
10, . .
15
' 20
o] [+} X
. (s)
Y| Y] © h=-1 0
(o]
Y| Y] h>~co
0
5,
10,
18
2
[+] X 0O A
O] ()
r. Independent Utility. 6 to x. Alternative Utility.
Frouze 4.

5=V (z,+,5,+y)

= 7(”0: .Yo) +"I:)z.+.y I;,"‘ '}z’ .Vznn'l'ry Vz,v,+ h” zollo’*
where ¥, ;, stande for the result of writing @, for » and g, for y
in the second partial derivative of 7 with respect to o, &e.

* See Appendix, p. 91,
L0 D
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Here the products of cubes of & (the distance from the starting
point) and third derived functions are neglected.

Paying regard to the known signs of the differentials, we may
write ¥, =2y, I{lo = —2f, Ko’o= -2a, I;ollo= ~25, where
a, b, f, and g are positive.

Write 7, , = —24. % is zero if X and Y sre independent,
positive if their uses are complementary, negative if they are
alternative.

Measure utility as above a zero level at which z,, #, are the
quantities possessed.

We have 2z = —(az®+2kzy +43%)+ 292 —27y.

A’s offer curve is

aa® + 2 hxy + by — gz +fy = 0,
and his demand curve
bprw+ 2hpn+fo+av—g = 0.

Independence. The indifference curves are similar and concen-
trie ellipses, which become circles if ¢ = 8. Figure 4,7 (p. 17).

In the sequel take @ = & = 1 by a euitable choice of units,

Complementary uses. The indifference curves take the shapes
of Figures 4, A to E as % increases from zero. When £ = 1 they
are parabolae.* If also f= —g, 2=—(z+3)+29(x+y),
Figure 4,c¢ and in any one indifference curve z+y is constant
and p= —1.

Such a case would arise if a landowner was paying for buildings
on part of his estate by giving parcels of land, and reached a point
at which he would only accept farther buildings if land were given
back with them.

If A< 1, we have ellipses ; if 4 > 1, hyperbolae.

Alternative uses. As A diminishes from 0 to —x, the carves
take the forms of Figure 4, 6 tok. When 0>%> —1, the curves
are ellipses, when 2 < —1, hyperbolae, when % = — 1, parabolae.
If, when 4 = — 1, £ =g, we have straight lines as in Figure 4,1;
z—y is then constant, and p = 1, This occars when it is com-
pletely indifferent to 4 whether he bas X or ¥.

* The figures are drawn from the equation s = —2#—2hxy—y* + 102y,

except Figures 4, cand 1 where the coeflicient of y in taken as 10 and as —10
respectively.
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§ 1. Notation.

It is not difficalt to extend the principal results of the first
chapter to any number of persons and commodities. In this
part of the analysis the first essential is to make sure that the
eonditions supposed are sufficient to give a determinate solution
and that no condition is redundant. This chapter is devoted to
the exhibition of these conditions without any reference to the
cost of production, We assume that persons bave in fact
quantities of dities, of which one may be money, which
they are willing to exchange with each other.

Let there be m commodities called X,, X,...X,...X,,, and
» persons, 4, B, C..., shown by prefixes 1, 2, 3... to the quanti-
ties and functions related to them.

We shall regard the 7 person and the s** commodity as
typical, where # stands for any namber 1 to #, and » for any
namber 1 to m.

Suppose that the #* person starte with ,a, units of X, and
after exchange has ,{, = 4,4+ 2,. 3, is positive if he is receiv-
ing and negative if he is giving, the symbol invelving the

necessary sign.

[In Chapter I 4 was giving a positive quantity y ; this would
now be written ,z, = —y ; the other letters correspond as follows:
=Y = T8, 0y =4y, (a3 =dg, 4 =6y, 8, =5,

Let py:Pot Byt oon i py be the price-ratios at which all the
exchanges between X,, X,... aremade. If X, is money, p,, =1,
and p,, p,, &c. are money prices.

We bave then to determine m X # quantities such as &, and
m—1 price-ratios.

Let (U (s «ortfreeeef) be the utility to the #2 person of
poesession or consumption of £, of X, ....&, of X,...,6, of X .

c2 :
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Write U, for the partial derivative of ,U with respect to £,.
¢Uy is then the marginal utility of an increase in the possession
of the commodity X, when ;£,...,6;...s6, aTe already possessed ;
it depends in general not only on £, but also on the amounts of
the other commodities.

Then if 3 (,U) is the increment of utility due to exchanges
resulting in increments of ...3 (,£,) of X,..., we have

3(U) = Ui 3(E) + oo+ U B0E) 4o b U (i) *
=03 () + o+ U, 32+ oo+ U 3 (7),
since (£, = 42, + @, and therefore 8 (,£,) = 3 (,z,), &e.

‘We must now distinguish between two eases, that of competi-

tion or the open market and that of monopoly.

§ 2. Equations of equilibrium for perfect competition.

Any two persons 4 and B interchange quantities of any two
commodities X, and X, in quantities so small relatively to the
whole amounts exchanged by all persons that their exchange
does not significantly affect the price-ratios, which are therefore
not subject to variation in the process of differentiation. The
price-ratios are the same for all persons. This is the condition
of the open market.

Writing the last equat.xon for this case, only z, and LA varying,
we have . b(lv)‘_" U, 3 (@) +,0; . 3(12)
and 30 = =,01.3(2)+,0s - 3(2)-

As in Chapter I exchanges will be pushed till both £'s and B's
utility is maximized, at which position 3 () = 0 = 3 (,U),

1362 #1053 (m) = 0 = 41, . 3 (g} 4,0 - 3 ()
Also for both persons the sum epent equals the sum received,
L he P B = 0and py 2 40 2, =0,
whence
21802475 3(2) = 0 = p, . 3 (&) +7,.3 ().

From these equations eliminate the guantities 3 (,z,), &e., and

we obtain

1 1 1
—-U=—-U and —. U, =—., U,
Pllll’zl’nl’x’lﬁa’z

* See Appendiz, p. 90.
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These equations are of the same form as in Chapter I, but now
the values of U, &c., depend not only on the two commodities

exchanged but also on the t of all dities p d
Writing similar equations for all exchanges we have
Mazimizing equations -
1
;;'lu"‘ _;"_'tvr='"—};—‘v’”’(m 1) # equations.

for t=1,2.,1a:
Thus at the position at. which the exchanges are completed

the qua.ntlty — .U, is the same for all commodities to the same

person, and equnls ¢Um» the marginal utility of money, if X,, is
money. In simple words, in spending money the greatest satis-
faction is obtained when the transference of s trifling sum from
one puarchase to another would have an insignificant effect on
satisfactions If sugar (X)) is 84. a lb. and butter (X,) 2+ a 1b,,
so that p, :p; = 1:3, then at the final purchase the utility of
a % 1b. of sugar is one-third of the utility of a % 1b. of butter, and
U = 3.,U,. 2d. gives the same satisfaction spent either way.

We have two sete of quantitative equations to complete the

solution. For each dity the t bought equals the
amount sold. Hence : SERVANTS OF INDIA SOCIETY'S
Commodity equations BRANCH LIBRARY
t=n BOMBAY

F @ =0% for r=1,2..m | m equations.
tol :
Again the sum spent by each person equals the sum received.
Hence
Personal equations
"B pep,=0fort=1,2.1n # equations,
ral H
Bat the sum of the commodity equations, multiplied by
25, P, &c., and that of the personal equations both give
2p, ., = 0, the summation extending over the m xn terms,

* This equation is the abbreviation of &, + @y +... + &y =0,
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and therefore one of these m+#2 equations is deducible from
the others.

‘We have then m+z—1 equations to combine with the
(m—1)n maximizing equations, that is mn+m—1 equations in
all. These are just sufficient to determine * the ma quantities
&, and m—1 price-ratios, or, if X,, represents money, m—1
prices.{

An important corollary is that every person can maximize his
satisfaction at the same time.

§ 3. Equations of equilibrium for monopoly.

Suppose now that 4 produces all of X, or so much that he can
influence the price, and consider his dealings with B who cannot
affect prices when exchanging X, for X,. Write p = 2,/7,-

For B as in the case of competition we have

p=014U, = —2/z,
where —u, is the quantity of X, that B gives in return for #; of
X..1 .U, and ,U,, either or both, involve 3, so that z, can be
eliminated from the two equations and p obtained as a function
of #,, eay p = f(,) the form already used for & demand curve.

4 maximizes , U, so that as before

0= blU =,0,8a, +1U,bz,. §
Also p ., +x, = 0, but now p varies and the equation of varia-
tion 3(p.2)+3 (z,) = 0 does not reduce to p3(z)+3(z) =0,

but to ¥ {2,/ (2)} +32, = 0,
ie. {f (=) +2,1f (2))} b, + 3z, = 0.
Hence the competitive equation .

1 1

— U ==.7

i T g e
is replaced by the equation

U

11 = U
@)+t (@) T
* See Appendix, p. 94.
1 Actually multiple solutions each giving a set of values of z,, &c., are
possible, but only one set is likely to be applicable to known conditi
== —m,andy e -7 = 07,
§ See Appendix, pp. 89-91,
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Since flz)+5,/' (%) = -Dzl(}"t)) = _-Dz,("’s);

the differentiation being performed on the curve
23Uy +2. U, =0,
we may write this equation
2O+ 4,03 Dy () = O.

_ In fact D, (=z,) is the gradient of B’s offer curve, and U,/ U,

is the gradient of 4’s indifference curve, so that the condition is
that B’s offer curve touches one of 4’s indifference curves, as at
Qs in Figure 1 (p. 6).* Equilibrium is at @, instead of at Q.
But that figure and the analysis in Chapter I assume the existence
of only two commodities, while the functions in the equations
just used include quantities of X;, X, ... as well, though these
are not supposed to vary during the exchange between 4 and B
of X, and X;.

If 4 has no use for X, himself, or his use is satiated, ,U; = 0
and the equation becomes D, (z;) = 0.

In this case , is a maximum in X
B’s offer curve, as is illustrated in
the accompanying figure. The hori-
zontal lines are 4's indifference lines

r——— 7oy

which depend solely onz;. 4 ch ] Zm2
the highest possible point on B's Bl offr
offer carve (where D, (z,) = 0), that .
is where it touches an indifference

line, as at @ in the figure. OM =2,, o M X
MQ ==, and QM/OM is the price Frauze 6.

of 2, in terms of z,.

If there are only two commodities and B has the monopoly of
the d the position is indeterminate without farther informa-
tion, for example of the relative strength of 4’s and B's positions
in bargaining. In the figure on p. 5 the bargainers aim res-
pectively at @, and @;. In the figure here given B’s im-
difference lines wonld be vertical and 4’s and B’s offer curves

® But in that figure it must be supposed that 4 is polist of y, and
foreing B to give him z on favourable terms, aince there he is paying with
Y and buying X. In the analysis just given 4 is paying with X, and
buying X,.
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indeterminate; 4 would try to push B up the 0X scale, and B
to push 4 to the right. A possible equilibrium is when they were
on the summit of the hill indicated if the indifference lines are
contours, where they would both reach satiety.
If there are many commodities, 4 still monopolizing the first,
write A’s equations
101 86m)+,Upd () +.. = 0
Pt Py @yt ... =0
(7 1m)+re (@), =0
Since as in competition
1 1
])—; . 1U2 =i; . 1U3 = aeny
and 3(py 1) = D, (pro1m) - 3(:2)
U 1 1
A= U=, U=,
Dp(n-m)” pa T py R ’
where p, is connected with &, by the aggregate demand for X,
of B, C... (see p. 25).
Then, if also B monopolizes X,, C X, and o on, in the maxi-

we have

mizing equations 1 1
PREL I /98
2”2 3”

are replaced by L, (I'z 2’":) z,(Ps )

but this process must stop before the last commodity is monopo-
lized, for it is found that as in the case of two persons and two
commodities the problem becomes indeterminate when there is
Do un d dity. The final p,, cannot be expressed
asa funchon of z,,.

It should be noticed in this case and in all cases of maxima,
that the change in the quantity maximized is very slow as the
variable moves away from the position that gives the maximum,
For example, in the figure on p. 23, 4 will lose little of X, if he
gives perceptibly more of X;, moving M to the right.

More generally A receives, eay, Z(r,) =2, f(z,), where
S(=)) =p, the price at z; from the demand curve.
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Let Z be the value of #; that makes R{z,) 2 maximum, so that
F@+7f' (&) = 0, and let 7+ be 2 neighbouring value.
Then
RE+H)-RE)
=(Z+4).fE+ -1 (@)
= @+H {fE)+E.S7 @) +37. f"(f)+--.}*—ff(f)
=i{f@+z./° @)+ 8. f (=)+ BE+B) S @)+
= Ef' @ +iPE+BS" @) +..
The inerease in p is
SE+H=f@) = A @ +3S" @) +...

Write 2 = A%, neglect terms involving A% and for simplicity
suppose f*/(Z), the change of the direction of the demand curve,
to be small so that we can neglect also A% (z).

Write —3 R, —3p for the changes in R, p. Then

3R AE () 3 3 _ A:rf’(z)

- Tme N MmN

so that approximately the relative decrease in the price equals
the relative increase (A) in the quantity received by the purchaser,
while the relative decrease in the amount received by the mono-
polist equals the square of A. 1If, then, the decrease of price is
10 % (A = 0-1) the increase in #, is approximately 10 %, but the
decrease in R is only a.bont 1%. A monopolist may often find it
to his ultimate ad to ge his customers by not
exacting the uttermost farthmg

§ 4. Aggregate demand and supply.

Let 2, be the sum of those of the quantities ,a,, gz, ... that
are positive, that is of the amounts that are bonght; then —a,
is the sum of the remaining negative quantities, the amounts
that are sold.

Lot there be n” purchasers, where #’ is of course less than .
The %’ quantities of which .z, is typwal are connected by the

equations [ R A R . R
p _U U il' Ur .
I 1Un U wUn

* See Appendix, p. 84,
176 B
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where we may suppose for simplicity the terms in the denomi-
nator to depend on money, so that p,,= 1 and ,U,, is the marginal
utility of money to the #* person. We have n'+1 equations,
from which the #” quantities such as ,r, can be eliminated, leaving
a relation between p,., #, and prices and quaxtities of commedities
other than the 7. This may be written p, =f(z,), where,
though the function involves other commodities, we can study
the change in p, due to a change in #, (by the method of partial
differentiation, for example) on the hypothesis that other prices
and quantities remain constant, or are affected so little that they
may be regarded as constant. This is the aggregate demand
equation for X,, which may be considered by the analysis used
on pp. 9-12 above. The elasticity at any point on it, depend-
ing only on the value of 7, and the direction of the curve at that
point, is not affected by any ordinary corresponding changes in
the other quantities.

An aggregate supply equation can be obtained in the same
way, but supply is better studied in relation to production as in
the following chapters.

Note. On universal monopoly.

Consider the case of three monopolists A, B, C and three
commodities, and one other person D. Let A monopolize X,
B X,, and C X,, producing #,, #,, and z, respectively, and let D
possess, but not monopolize X,, Then

5= ==
Ty = =13 — %3 N )
Ty = — Ty — g3 T
[ et o R = e
where z,, 7,, 2, are written for 2,, ,z,, and 4,
Pro®y P Bat Py By Py @ =0 ;
Pregy ¥ Py Ty b Py Byt Py 5, =0 e . (id)
Pra"’x"’?ra"e"‘?a""a"‘h =0

Gl . (iii)

e N )
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L/ P U/ S/

= - P A 7
b5 Py Dz.(ﬁz‘l's) Ps ®
‘El = ’—U’ = ‘—Lls = ‘1—7‘ D (Vl)

P P Ps P

‘We have nineteen equations to determine sixteen z's and three
price ratios. Set aside the terms containing the differential in
(iii), (iv), and (v), and also the first equation of (v). From the
remaining fifteen equations eliminate® p, and thirteen #'s (all
but z;, z,, %), and so obtain p, as a function of 2,, z,, =, 7,
and p,; then keeping #,, 7,, p, and p; constant we can obtain
D.(p;). Then the first equations of (iii) and of (v) enable us to
eliminate p, and z,.

We have now eliminated fifteen quantities and have left
%,, Zy, Py, 80d p, connected by the three equations

L Ol
Z,,(p) (7.72) M s e (p®)
in whatever form they take after the eliminations.

From the middle equation express p, as a function of z,, #,,
and p;, and differentiate the equation so found to obtain D, (p,).
Then from the first and middle equations we can express , and
23 each in terms of 2, and p,; but we cannot connect p, and z,
and therefore cannot differentiate p,, which is necessary to com-
plete the solution.

If, however, the last denominator were p,, as it would be if
C had not polized X, the last d three equations would
involve the three quantities r,, z,, and p,/p,, which could be
found ; or we conld have simplified the whole analysis by writing
P=1.

The analysis ecan be extended so as to include more eom-
modities.

1t is not of course denied that exchange would take place if

all the dities were polized, but it is shown that
further information is 'y to determine the amounts
exchanged.

* See Appendix, p. 94.
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PRODUCTION

§ 1. Factors of production.

The indifference curves of a person supplying commodities are
not decided, except very rarely, by the utility of them to himself,
but by their cost of production.

Let the production of Xy, X, ... X, depend on the use of such

Juctors of production as capital, labour, and materials, » in namber,
which we will eall ¥,...¥,... ¥,, 7, being regarded as typical.

‘We shall have to consider later the laws that govern the supply
and price of the factors. At present suppose that a producer can
obtain as much as he pleases of each factor at an unvarying price
which he cannot influence.

Any factor is to be regarded as usable in the production of any
commodity. It will be found throughout that when one is not
used a corresponding equation drops out.

The quantity of a factor used for a given quantity of produc-
tion is not fixed, but the increased use of one factor and decreased
use of others may leave the production unchanged.

We have to discover the mathematical formulae which measure
the amounts of the different factors used in the production of one
commodity, and the relative amounts of one factor used in the
production of different commodities. We have farther to deter-
mine the distribution of each factor among different manufac-
turers of one commodity.

§ 2. The law of substitution.

Joint demand for factors.

First let there be only one commodity and only one producer
or manufacturer.

Let y...9,...5, be quantities of the factors (such as ¥, bours
of labour, the use of g, acres of land, and of £100y, worth of
capital) nsed in the production of  units of the commodity.
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'The quantity z depends, in a way that is presumed to be known,
Ol «..¥g.e, 60 that we may write
 2=F(9,...550.8,)
where F is a function of given form. .
Let z;...7,...7 be the prices per unit of ¥,...Z,... F,, sup-
_posed given, .
Let g’z be the cost of production of the # unite.®
The manufacturer’s aim is so to choose the quantities such as
7, as to minimize #/. The resulting organization of production
msy depend on the magnitude of @, and the problem must be
solved for each value of 2, which is therefore kept constant in
the solution.
Wehave pa=mg+...+5.0,+...+75,5,.
N¥PR) =30 =1 3t e 47, WY+ o+ 7, 37,
Also since z does not vary
0=3s="F, .35+..+F, .3y, +..+F, .09t
where I",‘ is the partial derivative of ¥ with respect to g,. Elimi-
nate 3y, .
1
230 = ITy {(my. By —m, . F ) 355+ ...
L4 +(my. By —my  F, ) 37,4}
When 2/ is & minimum 3p’ = 0 for all possible small variations
of ...9,....f In the last equation 3y,...3y,... are independent
of each other, and the solution is obtained by putting each
coefficient equal to zero.

Then 7Py =m . Fy,
1 1 1
—F, =..=—. =..=—F,.
and w = F, = F,
This is the law of substitution, which determines the amount
of the factors used in the production of a dity. In words,

at the cheapest cost of production the rate of increment in the

* The lotters with / always relate to production or supply and the cor-
responding letters without to eonsumption or demand. ¥or a tabular state-
ment of the complete notation, see p. 46.

4+ See Appendix, pp. 89, 90,
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amount produced by varying one factor alone (or the marginal
increment) is proportional to the price per unit of that factor.
A consequence is that at the minimum the transfer of a small
sum from expenditure on one factor to expenditure on any other
leaves the price of production unchanged. (Compare the corre-
sponding statement relating to expenditure on commodities,
p. 21.)
[For example, take
#=F(y,9,)=20"+3ny,, 80d ;=2 7, =1,
Then  po=2y+y,, F, = 4y,+3y,, F,=3%.
The solution for # = 10, say, is obtained from the equations
25,%+ 3.71!2 =10, } (47, +37) = 31,
whence " =16, g, =105, 7/ = 042,

2

3 e
Fioure 6. Production Diagram. ’
Geometriceally (3, 7,) is the point P, where s tangent * parallel
to my + 7,9, = 2y, +y, = const. touches F(y,,y,) = 10.]
¢

§ 3. The supply curve.
The v+ 1 equations, z = F(y,...y,...3,)

Fr=ny+..+59,+..+1,9,
1 1 1
;;Fﬁ= aea =;;FV,= wes =;:-F’,)

* See Appendix, p. 92.
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are sufficient to eliminate the » terms such as g, and to give p’
as a function of 2, say 2" = ¢ (2).
This is the supply curve for X.
If $=F= aly!.+"'+asys+"'+ayyv!
so that 7, =a,, &e., the solution breaks down. In this case
VO T T e P TS +1r,,y,,
aht.tayt+..tay,
g0 that 7/ may be anywhere between the greatest and the least of
such terms as n/z. If #, /a, is the least, § is a minimum when
only ¥, is used. 'This is the extreme case of alfernativg factors.
‘On the other hand, if ¥, and 7; are only usable jointly in the

proportion g, : ¢;, we may write a; %, + 4,7, = ¢’y’, and replace
’

1 1 a

=. ==F =.. — F, =..

™ I"x, ER L by ma ey Y :
still having sufficient equations. M
3|

§ 4. The integral supply curve.
‘Write p = p’2, the cost of z
units of X. 2
Then p = z¢ (z) = x (), say.
p = x (#) is the producer’s offer
ciirve,and may be called theintegral 1|
supply curve (Fig.7), to distinguish )
it from o = ¢ (¢) which is called Quantity .
simply the supply curve (Fig. 8). 1 2 3
[e. g in the above example Froomg 7 Integral Supply Curve.
p=ra=7p Q25 +354,) 3
=25+1l.9,
and  §(47,+3y) = 3y,.
" Eliminate y, and y, and we have s
p=3v4 &
the integral supply carve ; and
4
=37 o
the supply curve.]

Cost

-

Quantity

1 2 3"
Frovze 8. Supply Curve,
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§ 5. Elasticity of supply.

It is evidently important to analyse the relationship between
changes in the quantity produced and the expense of producing
them. For this purpose we may use either p or 7.

‘Write =~ W - E"E H
where 3z a small iner t of @ is connected with —37' & small
decrement of p’, or proceeding to the limit, write
== 0@ |

¢ i8 the elasticily of supply, corresponding with 5 the elasticity
of demand, It is generally written with the negative sign, so
that it is a positive quantity when ¢’ (2) is negative.

Write € = p/z.D_p1, s0 that ¢ measures the ratio of the relative
inerease of cost to the relative inerease of output, while ¢ measures
the ratio of the relative decrease of price to the relative increase
of output. e % 1 according as the expense of producing [z]
involves what may be called increasing, constant, or diminishing
efficiency of money.” ¥

€ has an interesting connexion with the marginal contributions
(F,,) of the factors to the production.

. 1 1 1
te —. = ...=—, = .= —. = k.
Write = F, : = F, - 7,

In the curve p = x ()

tou t #mdp+..+wdy ... 1
D p= L= i | 597 = e
=1, 3= L By ogito By byt K

~e=pha = (my o byt ) b
_ ¥ Ys ¥
e R A
Also, since p = p'z, ¢ = &p'.

* This term is used by Mr. W. E. Johnson, Economic Jownal, 1918,
pp- 507 59g.
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The relation between ¢ and ¢ is & simple one.
‘ Dyp=p' +oD, zp"
- p/ea; =p'—p'/e

'.—+—=1 and ¢=—
e € *e=1

§ 6. Increasing, constant, and diminishing (or decressing)
return.

‘We have three cases,
Increasing return.

M - P
%
& - ¥
ad
X
O X o X
Integral supply curve. Supply curve.
Freusz 9.

Here €> 1, ¢ is positive and ¢’(«) negative.

The more there is produced, the smaller the supply price.
2D ,u—pn<0, and hence by differentiating 2.0,*u<0, so that
the integral supply curve is concave to the axis of «.

Constant return.
] P
& R B,
Y 1 P-4
.0 X (o] X
Integral supply line. Supply line,

Ficure 10.

Here € = 1, ¢ is infinite, ¢’(2) is zero, and the supply curve
becomes a horizontal line.

2D,u—p =0, D2p=0, D p is constant, and the integral
supply cnrve becomes a straight line through the origin.

LY ®
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Diminishing return, )
M P : P

\@ ) ? ‘ ¢
¥
[o] X O X o} X
Integral supply curve. Supply curves.
Fraoze 11.

Here e< 1, ¢ is negative and ¢’(#) is positive.

The more there is produced, the greater the supply price.

D, is positive and the integral supply curve is convex to
the axis of 2.

§ 7. Marginal supply prices.
The supply price, 2’, is simply the whole cost of the production
of  divided by 2. 'We may obtain another view as follows,
The cost of producing &+ 82, with the organization of factors
which minimizes cost at that rate of output, is greater than the
cost of producing 2 under the organization appropriate to # by
the quantity x (z+32)—x (2).

Write
3z)—
Pa=t@ = [XERXE iy - 5,
Then

n =D} = (@) +2¢'(e) = +2D,7
=@ (1-1)=1s@="=-

P'; i8 & definite function of #, which equals p’ in constant retarn,
>p' in diminishing return, and <p’ in increasing return.

z
Also f Ppdz=p=p's,
o

s0 that p” is the average value of p’,, over the region 0 to .
' 18 called the marginal supply price, and 7°,, = @ (2) the
carve of marginal supply prices,*

* Bee Pigou, Economics of Weifare, pp. 981 soq.
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['ss s m0t the cost of the last unit produced, but the additional
cost of producing one more unit affer adapting the organization
of the factors of production.]

P P

R } $ix)
" Q T el
/

N N Q
) R
SN B
o M X M X
Inereasing return. | Diminishing return.

Fioure 12.

In the figures /@ = p', M8 = p’,,, where OM is the amount
produced per unit period.

The area OMQN = p'® = area OMSE, and therefore the area
RNT = the area 7Q8.

The following numerical examples may elucidate the relation-
ship of the quantities:

Increasing return.

z » 4 Pa
(units produced).  (whole cost). (average cost). (marginal price).
1 20s. 20s.

z =1} 15s.
2 85s, 174s. i oy
8 5s. | 15, A g
4 50s. 12%s. %

Here p’ = ¢ (3) = 22§ —2}2, ¢'(z) = — 23, 0", = 223 — b2,
16s. is the cost of producing two units less the cost of produc-
ing one. With such small numbers the continuity is lost.

Diminishing return.

z » v Y

3 20 20

2 s m IR
4 110 724 z=8 8

Here p' = ¢ (z) = 173 + 232, p', = 173+ 62,
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§ 8. Several manufacturers, one commodity.

There is little difficulty in obtaining the equation of the supply
curve, when there are several manufacturers of a commodity,
who owing to difference in situation or ability combine the factors
of production in different ways, indicated by the prefixes before
F. (It may be left to the reader to modify the argument to fit
the case where the manufacturers use identical methods and
similar organizations.)

Let there be #’ manufacturers or producers of X, who working
under different conditions combine the factors in various ways.

Let x;...7,...%, be the same for all producers,

Let the #* manufacturer mse amonnts ;¥,....¥;....¥, of the
factors and produce = of X, and let & be their aggregate pro-
duction. \

Then '
z2=12+...+ZF...+ 2. ¢ 1 equation.
&= F(4.08,0..8,) for t =1...0". : #’ equations.

1 1 1 H
;;.th‘-—"._’lT,.tF’;= u--=;;-th'; § “l(,_l) equntions.
fort=1..2" : .
where 4y, is to be written for y, in ,F, , &c, after differentiation.
Let 47" . ;= be the whole cost to the £* producer, so that
d"-t"'=“"1't!1+--'+“".:'L7.1+'"+"-'l!v'5 ’ -
fort=l..a.:" equations.
‘We have now %’v+»’ + 1 equations, and »’» quantities such as
13, and #’ guch as . ’
From the »+1 equations with prefix £ we ean eliminate
¥1.+-2¥, and obtain ,p’ as a function of ,z, say,

= (A =14
and combining these »’ supply equations with the first equation
above express z as a function of ,p"....0"...x 7"
‘We need #’ further equations to determine these prices, which
depend on the following considerations.
If the producers’ supply equations show constant or increaring
retarn, no equilibrium is in general reached theoretically till one
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bas driven all the others from the market or combined with
them.* But mcreasmg may give way to decreasing return
when & producer takes on miore than be can'manage, and in that
case (not here analysed) more suppliers than one remain,

With deereasing return and competition, when there-are many
producers and no individual contributes enough to the supply
to exert a perceptible influence on the price, each will extend
his production till the cost of producing one more unit (after
adjustment of factors is allowed for), equals the selling price
given by the demand curve p =f(#). That is, if his marginal
supply price 8- ;p'y, till

= (2)+2¢'(@) = ' + 28D (") = p =1 ().
‘We have then the »’ equations needed, thus

(@) = 10"+ D, (0) = oo = 8"+ @Dy (1) = ..
~ =8’ + w8 Dy(n 1)
In the whole problem we have n'»+22'+1 equations, which
are just sufficient to determine n'y terms such as .y, n as 1,
n’ as ;p’, and @, in terms of the #’s and the constants of the
fanctions. '
The # producer makes a profit {/(#)— (@)). 2. The
relationship of this to rent and surplus generally is discussed
in Chapter VII below.
*  The assumption that an individual cannot affect the selling
price requires examination. If the price were momentarily at p,
as given by the above equations, the first prod could obtain
a greater profit by reducing his production to that given by
Dy { f(@)—¢ (@)} =0, ie. f@)+af (@)= 10"m,
if other producers were not affected. As a result it can be shown
that the selling price would increase, and then the other pro-
ducers would push up their production till the marginal supply
price of each equalled the new price. This would cause over-
production at the new price, which would therefore full' The
above equations therefore give stable equilibrium, if ne producer
is predominant. !

* Soe, however, Pigou, Economics of Welfars, pp. 439-41.
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‘If there is only one producer, or if they all combine, we have
monopoly, which is discussed in Chapter VII, § 3 seq. below.

The case of two producers, ¢ duopoly’, may be illustrated by
the following simple example :

Let the demand line be p = e—# (2, +,), and the suppliers’
lines p, = Lz, p, = l2;.

The first supplier varies ; to maximize

(c—k(@to)—ha)2,
g0 that he aims at @, given by
c—2(k+ )@ ~bry~ kD, (v) = 0.
The second aims at x, given by
c—2(k+1)z,—ke;— kD, (z) = 0.

To solve these we should need to know 2, as a fanction of z,
and this depends on what each producer thinks the other is
likely to do. There is then likely to be oscillation in the neigh-
bourhood of the price given by the equation

marginal price for each = selling price,
unless they combine and arrange what each shall produce so as
to maximize their combined profit.

§ 9. Alternative d d for factors; distribution of the
factors of production among several commodities or
among producers of different commodities.

The general problems of production of several commodities are
discussed later, but without a eomplete analysis we can show
how the proportions of the available factors are distributed when
manufactarers of different produects compete for their use.

Let 2,...%...7, be quantities of m commodities produced, each
by one manufacturer only, and g, be the cost of producing =,.

Then  po=m .9 % 0.4 %, . Yrgt oo+ Frys

where g, is the amount of ¥, used in producing @,.
Then D, (p,) = =,, and similarly

B = 'Dh,( = y,,(l"'v) = ene 'r, (F'-)
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Henoe any, the s®, factor is used till the marginal increment
of the cost of the product due to the uwse of that factor is the
same for all the commodities. If one person is producing two
commodities he will have distributed his use of each factor till
he gains nothing by diverting it from one undertaking to
another.* :

* See Marshail, Principles of Economics, Edn 1907, p. 848,
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SUPPLY OF AND DEMAND FOR THE FACTORS
OF PRODUCTION

§ 1. Disutility. Labour,

So far it has been agsumed that to any oné manufactarer or
producer, the prices of the factors (r, 7;...) hive been invariable
and known.

‘We bave now to determine equations relating to these factors,
to obtain supply curves of the form #”, = ¢(y,) and demand
carves as 7, =f(7,), and to consider the equilibrium of supply
and demand. We shall then, in a later chapter, bring together
these new equations and those of demand for and supply of
commodities.

The ultimate factors are labour, capital,and land as defined in
economics. In production there are also intermediate factors
such as raw materisls and partly manufactured goods, whose
prices are determinable from the general equations of the next
chapter and need not be considered here.

Labour. Let W (}) measure the disutility of labour, # involving
a conception of the same character as U (utility), but of the
opposite sign, so that # (/) is negative.

The primitive theory was that a man worked till the fatigue,
disagreeableness, or disutility of labour equslled at ite margin
the marginal utility of its reward or payment. Thus if he was
prodncmg Y which he mtended to consume himself and y the

duced was a function of /, the quantity of labour
needed he would maximize U(y)+ # ({), and stop when

3@ =27 (),
U-Di(9)=-W,,
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: ’

when T, is the marginal utility of y and #7; is the marginal
disutility of labour.

Here 2, (y) is the rate of production at the margin where he
stops.

If A, instead of working for himself, is selling ¥ t6 B, who
pays him in X, giving @ units for y units, he stops when

8,U(e) = —3W(J),

) @ By 8 T8l
The ratio of y:@ equals the price, p, of X in terms of I,
= 8y : 32 since it is the same for all units. Proceeding to the
limit we have A’s offer %. To.Di(g) = =Wy,
while B’s offer is ce. U=y ,0,.

If the production of g per unit time of labour is constant, or
if instead of measuring labour by the hour we measure it by its
output, y = ¢/, where ¢ is a constant, and D;(3) =e¢. By choice
of units we may take ¢ = 1 and A’s offer becomes

E.IUE"-‘: —I.Wl..

That is we simply write ¢ for g, W, for l'Vy, and (U, for ,7, in
the equations of p. 8.

The above statement only holds good in modern industry in
the relatively raxe cases of production for one's self or directly
for a consumer, or at will for an employer or a client.

It may be amended 28 follows :

Either, given the length of the working week, a quantity of
Iabour or of ¥ is offered at any wage it will fetch. .

Then y is known, and B's offer gives 2 in terms of g.
afy = 1/p = p,/p, is the wage per unit y, p,y is the cost of
labour and equals p,a, the aggregate wage. Wages are in this
case determined by the demand for the total of labour available.

Or, combined labour may fix the length of the working week
by regard fo average disutility of labour, the trade unions

et -4
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deciding at what point (having regard to the demand for labour)
an hour’s wage just compensates fatigue and loss of leisure foe
the ordipary man. In this case the original offer equations of A
and of B apply, but A is & multiple person. This seems to be the
best hypothesis for the sequel, the lshour being divided into
a number of groups (by locality and skill) with impassable
barriers.

Also it is assutned that in equilibrium all available labour is
employed, except when we consider labour as monopolized.

§ 2. Capital

We do not need to know the mominal value of eapital, but
only the product which its use in conjunetion with other factors
gives in a year or other unit of time.

Let #, be the offer price for the use of capital giving a unit
-product, just as we took a price indifferently for labour or its

product. B
The nominal value of capital may be found either by ita cost
of repl t or by di ting ite yield, problems which do

not arise in the general equations of equilibriom.

Either, the amount of capital may be taken as fixed—A may
have capital which is of no use to him, as a man may have labour
ability which he cannot use to eatisfy his own wante—in which
case the demand curve will be sufficient to determine #’,.

Or, there may be an offer curve for capital, in which case
capital is simply the ¥ that A offers in the fundamental equa-
tions. A may either have physical capital (water power or s
building) which he can use for his own direct purposes, or liquid
capital which he can spend or invest, or transferable capital
which he can lend to members of a society outside the group
considered. This may be taken as the usual case, and in the
sequel there are included disutility equations for capital

ZLand. The classical theory of rent (apart from general theories
of surplus value) depends on the consideration of the use of separate
acres of ]and.®* For the present purpose we may regard it as one

* See p. 70.



BUPPLY OF AND DEMAND FOR THE FACTORS OF PRODUCTION 43

form of capital. If it is given in extent there is no disutility

sequation and there is one less unknown (7). But we obtain
greater generality if we suppose that A owns land which he can
either use for his own pleasure, or for production for himself, or
lend to another for productive purposes. -

§ 3. Equations of supply.

Thus for the three factors of production eitker the amount is
known, or we have equations of the form

1 1
,n,'_'s't”rs = —ﬂ—,. tUr = =4,

where for the #** person ;W is the marginal dientility of furnish-
ing the factor ¥, ,U, is the marginal utility of any commodity
he receives in exchange, and in particular ;« is the marginal
utility of money to him,

This gives the supply equation of a factor of production by
a person (or multiple person) as

1
o= = =900

§ 4. Equations of demand.

At present suppose the demand to be due to the use of a
factor for the production of one commodity, X, regarded as typical
of all. A more general method can easily be obtained by the
resder after the next chapter.

‘We have

p=re=af@)=my+..+75,+.. 41,7,

where p =#(z) is the demand curve for @, and we take the case
of no profit when p’= p, while ...m,... is the price at which
the factor ...¥,... is bought.

Also we have the equations for the minimum cost of production
(- 29) 1 1 1
= F=..= — P =.= — F,.

L
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Omit g, and eliminate all the y’s except y,. An equation is
obtained involving g,, m;...7,...7,, and p. Consider the variation
of n, and y, only and write the demand equation as =, =f(y,)
where the function involves the supposed unvarying priees of the
other eommodities and of the commodity produced.

In competition ', = =, and therefore /'(3,) = ¢ (3,) gives the
position of equlllbnnm

Combined labour or suppliers of any factor can maximize
¥ (a’;—=,), in which case

T3S 33 = ¢ 5 +3,4" )
determines the value of y,.

§ 5. The share of the factors.
We have =, = D, (i).
Write n, = — @, /#,/” (¥) the elasticity of the demand for ¥,.
If now g, is increased by 3y,, the amount received by the
snppliers of ¥, is increased by
('”.sys) 53' s (!, ,(1’3) + ’rs) b-’i
= (s (35 + 7). b3, = %, (1—1/n) 35,
This is positive, zero, or negative according 8s 3,>, =, or < 1.
If disutility is disregarded so that %’; = 0, then in the case
where n,< 1, the amount received is greater if the supply is
curtailed and reaches 8 maximum at
D,'(ar,_y,) =0.
In this case, and in that of combination in § 4 where
D, v,("syc) = -Dy,(”lc!a):
a trade union could increase the aggregate income and aggregate
advantage of its members by raising their rate of wages and
causing some to be out of work or to work short time. Every
one, including those at play, could get more.
The proportion (p) of u received increases by

D,0)-05= Dy funi ) -39, = (10D _ Tty oy,

. L
slnce =y = Dy,"l = "f‘l ~1/ns~p). 3y,
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This is positive only if n;>1/(1—p), and then is the greater
the smaller is p.*
The fall in price paid per upit ¥, is

Sw.= —f By = T—sb N
Ts f [CARIA s s

hd -l’igon,-'émumu‘u of Weljare, p. 710.



NOTATION.

n persons 4, B, C..., indicated by prefixes 1...7...7.
m commodities Xj...Xp..Xp.
» factors of produetion ¥,...Y,...%,.
2y +.@p.0.%,, total quantities of X)... consumed or saved, which
equal total quantities produced.
&, quantity of X, consumed or saved by £ person.
&'y quantity of X, produced by # person. :
Yo Fge0y, botal quantities of ¥,... used, which equal total
quantities supplied. .
#,s Whole quantity of ¥ used in the manufacture of X,.
F/+s quantity by ¥_ used by £ person in the manufacture of X,.
¥'s quantity of ¥, supplied by 7' person.
F, production function of X, involving #;...9,...%,-
42"y average cost of production of /., i.e. eost per unit of
production of X, by #** person.
2’ supply price of X,. 7', = ¢,(z,). Supply fanction,
2y demand price of X,. p,=f,(#,). Demand function.
«’y supply price of ¥,. #’',= ¢,(z,)-
w, demand price of ¥,. =, =f,(y,)
¢« Tharginal utility of money to #** person.
Uy marginal utility of X, to £ person.
+#, marginal disutility of supply of ¥, by ¢t person.
#r = Xr(,), cost of producing z,.
€= p/eD p.
o+ expenditare of £'* person in unit time.
n = —f(2)/zf’ (¥) = elasticity of demand for a commodity.
¢ = —¢ (z)/z¢’(z) = elasticity of supply.
Ny = —/5(8,)/¥s- $4(9,) = elasticity of demand for ¥,.
¥ @) =f)-)=p—1"
m, = ,p’ .z = cost of producing z by #* person.*
¢2'm = marginal supply price of #& person in producing X, or
average cost of production of X,, by #* person, according to the
context.
* Written s on pp. 84-5.
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GENERAL EQUATIONS OF SUPPLY AND DEMAND’
IN A STATIONARY POPULATION

§ 1. Interd d of ti

In the preceding chapters we have studied partienlar sspecte
of supply and demand under various hypotheses which limited
the generality of the resulte; in order to reduce the unknowns
fo the number of conditions stated and to make the problems
...... inate it was y to that other quantities
were for the time being invariable, .

In fact the actual determination for any price or quantity
involved depends on every other; we can only obtain a complete
solution if we restrict our universe to two persons and two com-
modities, as in Chapter I, or extend it and include all eonditions
in any interdependent series of equations, as is done in the
following paragraphs.

The notation of the previous chapters is followed, and their
principal equations are introduced without farther proof.

Let a community contain s persons who have no external
commercial dealings (a restriction which can be modified without
difficulty), who produce or manufacture snd consume m comme-
dities (such as X,), whose supply depends on » factors of prod
tion (such as ¥,), the whole occurring in some fixed period, such
25 & year.

Let the £ person produce’ ', of the #** commodity, and
supply o¥’, of the ¢ factor, and let him consume or save &, of
the 2 commodity.

The equations allow for every person producing a.nd using
some of every eommodity and factor, but it will easily be seen
that when any of the quantities is zero a differential or other
equation drops out.
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§ 2. Supply equations.

Let @, be the total amount of X, produced, which is also the
amount consumed or saved.

Let m,...7m,... be the prices of factors per unit, taken as the
same to all producers. If there is monopoly of any factor so
that its supply price #’° does not equal the price = paid for it,
we should have sufficient additional equations of the form
3(m—n"})y, = 0 to allow the solution to be extended over the
additional unknown,

Write g, for the total amount of ¥, used by all persons for all
purposes, 7,; the total used in the manufacture of X, and .,
the amount used by the 7 person in the manufacture of X,.

" ¥, is also the total amount of ¥, supplied.

Let ;2 be the average cost per unit of X, to the #** person in
the manufacture of X,.

We have the following equations :

Amounts produced
i=n E
=3 o, for r=1,2...m | m equations,
t=1 :

Production functions

L t=1,2..n ; .
& r=tFr(t.7n-"tyrs"'lyrv) for r=1 2.1 ;ma equations.
=1, :

Supply of factors
f=n" :
Y= fora=1,2.. | ¥ equations.
¢=1. :

Whole' use of factors

r=mn . H
Y= D Yy for s=1,2...» : v equations.
el " ’ ;
Use for separate commodities
t=n :

r= l, 2...m

e=1,2..v ; mo equations.

Yrs= 2 t¥rq for
=1



IN A STATIONARY POPULATION 49

Cost of production
pinid t=1,2..u} .
Py e = Tye Yy, for el 2.m ™ equations.

=1 B
Law of substitution -
'—Dy, ) =.. '——-Dy‘(lFr e i
i —la2.g. ™ (v—1) equations.
‘D (i) f°" 1: 2m
Dlsutlhty of supply of factors
1 1 H
° F= _E"W;_"'_qr_,," * | nv equations,
=—xfort=12.n:
‘where i« is the marginal utility of money to the #® person, not
necessarily constant.
‘Wehave mny + mn+my 4 nv +m+ 2v equations for determmmg

mny*® quantities such as L/,s

mn¥ » " &
mn oo » . tﬂlr
my¥® -, ”» Yrs
ny * ’ » » ly’s
n » » 2,
v* 8 » Ys
v 5 » Ts
n " » o«

Eliminate those marked * and so obtain m supply eqﬁaﬁons t
involving quantities such as z,, ;»’,., and ;.

If there is only one producer of each commodity and the costs -
per unit are p'y ...p"y... 0"y, or if there are several producers each
with these costs, then we have p’, instead of ,p,, o9',... for
each value of 7, and m equations involving t‘uantmes sueh as

" @, P’y 80d k.

[If durmg the exchange of X, the variations in the quantities
and prices of all other commodities and of the marginal utilities

t See Appendix, p. 94.
8761 "
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of money are negligible, these give simple supply equations
?'» = ¢,(#,) as before, ¢, involving the unvarying quantities
Byei®pyy Bppyeeslpg, 80d jxigx]

If there are many producers of X, under decreasing return,f
none on a scale to affect ’, the joint offer price, the #*% person
adjusts ,0’, so as to maximize (5, —,7",) . 2y, and we have

Pr=u'rt @, D, ()] for f=1l.n i mn equations.

v r=1..m :

If & person's limit is reached before the maximum, his @, is
that of his greatest capacity.

These combined with the previous equations suffice to eliminate
the mn terms ,p',, and we have in all cases 7 equations involving
such quantities as @,, p’,, x. (Result A.)

If a number of producers combine, they are to be treated as
one producer whenever their combination affects the market.

§ 8. Demand equations.
Amounts consumed

i=n H
z, =3 @, for r=1,2...m | m equations,
t=1 ‘
where z,, the total consumption, ig the same ss the total supply.
Utility equations
1 1 1 :
— === =.=—. = : .
nt? ot m U = { mn equations.

for t=1,2..2
Eliminate the m» quantities ,z, and so obtain m demand equa~
tions connecting quantities such as p,, #,, and ;x. (Result B.)
[if fluring the exchange of the r* commodity variations in
the prices and quantities of all other eommodities and in the
marginal utilities of money are negligible, this gives simple
demnnq equations p, = £, (z,) as before, where f involves the
unvarying quantities @,...%,_,, #,41...80, 18- qt.]
* There can be only one producer in the long run under constant or

increasing return, see pp. 86-7 above.
3 The left-hand side of the equation = ,p’m the marginal supply price, p.84.
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§ 4. Combination of supply and demand equations.

We have from Results A and B 2m equations involving such
quantitiesas &,, p,, #’y, i, or if ;x is eliminated 2m—n equations
for 3m unknowns.

To complete the solution we have still to introduce two sets of
relations, similar to those in Chapters II and III, pp. 21 and 37.
The first, takes into account the whole income “of each person
from the supply of factors or the net value of produetion, which
must equal his expenditure together with saving., The second set
connects z; with p’;, p, with 2%, &e. Thus for each person

Income = expenditure + saving.

Income from supply of factors is the sum of such terms a8
g+ 43’5, 8nd that from production or manufacture of commodities
the sum of such expressions as ;2",.(p,—2',), the excess of
selling over cost value.

Hence for the #* person

yam =m

2‘"& tys+2(1'f t[’r) tw —zpr ®r

s=1 r=1 r=1
for £=1,2..n:
But the total of the left-hand expressions equals (from the
cost of production equations) the total of the right-hand expres-
sions, when all incomes ave added together, and therefore ‘the
group gives only #—1 new equations,
Now combining all the equations, and eliminating # such
terms at jx, we have 2m— 1 equations connecting the 3m quanti-
ties such as z,, p,, o', all other quantities being eliminated.

1) equations,

To connect p, with p, we must distinguish between com-
petition and monopoly.
‘When the exchanges take place under competition }

p T
or when there is producets monopoly *
S(p—p'y)w, =0 for r=1,2...m,
where p, and p', involve o,.

equations,

# For consumers’ combination, see p. 64 below.
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Eliminate 7', and we have 2m—1 equations, sufficient to
determine ,...2,, and the price-ratios p,: g1 .0 t e

If the m™ commodity is money, p, = 1 and all prices are
determinate. If money is solely precious metal produced and eir-
culated commercially, 2’,, (the amount of it produced) is obtained
from the equations. If the supply of money is gerrymandered, -
g0 that the /% person obtains 7, units of currency for nothing,
#t; would be added to his income ; but analysis is not capable of
dealing with undefined political interference with currency. If,
however, the aggregate income as in a socialist state were given
and the method of its distribution, the equations might become
determinate.

The above analysis has p ded by ive elimination,
but it is evident that there are sufficient equations to determine
every z, g, p, m, &c., involved. - Further, a change in any one of
the multitudinous equations affects the solution for every quan-
tity and price; the whole is interdependent, and it is only by
arbitrarily assuming constancy where none exists that isolated
examination is possible. We can, however, with due caution
assume that when one quantity varies some consequent varia-
tions have negligible effects; and we ean also after eliminating
a group of quantities study interactions in the remaining group.

In the groups of equations those which express mere identities
should be distinguished from those which depend on volition,
and the hypotheses relating to the latter should be specially

studied. They may perhaps be classified as industrisal, commercial,
or hedonistie.

Industrial: the law of substitution involving
1
= D, (,F,).
Commercial : the maximizing of

(p’r_tp,r)’t'{n (Ze=p) 2y (m1~7"D 51,

where some absence of competition allows it.

o . 1 1
Hedonistic : — W= e =—.,U,.
1r“ 8 t P'tr
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It is only this last group that is seriously open to criticism.
It depends ultimately on the idea discussed in the opening
pages (1-3), and it should be notlced that it does not involve
the third postulate.

There remains the general assumption that persons in economie
matters act under economic motives with adequate knowledge.
There are many transfers of wealth on other grounds, and the
equations are not salways pressed to the maximum. Also
ignorance and miscalculation are common, and the mere clinging
to eustom may prevent advantageous changes.

§ 5. Stability of equilibrium.

The whole solution is statical. If exchanges were established
at the rates given by the equations, no forces would disturb them
till some of the constants involved (such as the number of
persons) changed. The questions at once arise whether there
is more than one set of solutions and whether the equilibrium
is stable.

There is nothing in the nature of the case to prevent multiple
eolutions, but in practice if we bad any numerical values there
is not likely to be difficulty in knowing which set is appropriate.
‘Whether the position is stable can be judged from the inter-
section of the pairs of demand and supply curves for each factor
and commodity as discussed in the following chapter. There is
stability if the supply curve crosses the demand curve from
below on the left to above on the right. If an unstable position
were momentarily obtained, there would be adjustment till the
next position of etable equilibrium was reached.

Though the solution is statical it is generally possible (as in
most statical problems) to determine in what direction the
system will move if there is a given change in any of the
constants, as for example more land, capital, materials, or labourers
brought into the system. But an actual solution, when defined
changes take place continually over a period, would involve
comphcated analysis, and little progress has as yet been made
in such an investigation.

It should be added that in the preceding analysis the X’s and
T's have been kept distinct artificially. In fact, the results of
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one production may enter as materials in another, so that an
X, may be a ¥,. There is no serious analytical difficulty in
allowing for this and obtaining the requisite number of equa-
tions, but the treatment would become more complicated and
would not lead to compensating enlightenment. The marginal
utility of equations has probably been reached.

In the following chapter certain problems arising out of these
equations are discussed.




VI
APPLICATIONS OF THE GENERAL EQUATIONS

§ 1. The inclination of the demand curve.

As a preliminary we will discuss the direction of a demand
curve. -

Our equations for one consumer are

p=02t 00,8t o F P Ty,

1 1 1
71. Ul—...—-z. U'_'"—P—m" Up=rx,
where #,...7,, are bought in & unit of time during which his
whole expenditure is g, and his marginal utility of money is «.

If the uses of X,, X,... ure independent, U, does not involve
any x except @, and therefore U ,*= D, (U} is zero, and
similarly U, ,-= 0 for all pairs #, 7.

In this case p, = 1 U, is the demand curve, and if « is not
K
1
sensibly affected by the amount of dealings in X, Dy, 2y = -+ Uns

which is negative if utility grows by diminishing increments
when 2, increases by equal increments, an assumption discussed
on p. 13 above.

If the uses are not independent, we have (« still constant)
«Dypy = Uy + Uy« Dy (%) + ..., (see Formula 7, p. 88)
and the sign is indeterminate till we have further information.
There may be cases where Uy, and D, (%,) have the same sign

and their product is greater than — U),.
Consider two commodities only, and let p and p, be kept

constant while p,, #,, and @, change. In such a case x is not
constant.

* U, stands for Ds, (U), #y...const., and U;, for Dy, (U %1, %y...const,
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The equations are  p,z, +p,7, = 4,
P Uy=p Uy =0,
which will give the demand curve for #,, if #, is eliminated.
To examine these, take the utility surface in the form
U= —az?—2he,2,—bx,%+ 292, + 2fr;,
. 0 that U, = —2(az, + iz,—g),
U, = —2(hay+bz,—f),
Uy= —2a, U, = =24, Up=—24
2 and & are then positive.

Then Py a2y + iy —g)—py (b + by, —f) = 0,

and, 2, being eliminated, the demand equation for 2, is
oo, . @y~ 20, @ —(pb—po f) Py + up® . &y + uhpy—pitg = 0,
where g, and #, are the only variables,

Then

Dy 1. (20py@y ~ 20, + p, f—pb) = —bp*+ 2y —apy,
which can be expressed as
Doy - (bpyoy—hpyy + 39, U) = —bpt+ Zﬁﬂzl’l—al’z ’
where 4, §, and U, are positive.

If 4 is zero or negative, i.e. U, zero or positive, and the uses
of X; and X, independent or complementary, them D p, is
negative.

§ 2. The ease of alternative demand.

If % is positive, i. e. the uses of X, and X alternative, then
D, p, may be posmve or negative.

A case is found in which D, p, is positive, when the utility
surface is 2= —x,2,+40r,+100z,,
and the income equation is

D2 +p,a, = 840,
and p, is fixed at 40.

Then U; = 40—z,, U, = 100—z,, and the demand curve is

found to be P12, — 507, + 380 = 0,

D, (p)=

which is positive when z, < 50..

50::
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If at one time p, = 10, then 2, = 12, z, = 18., Now let 2,
rise to 12; then #,.= 184, x, =15} satisly the equations.
That is, a rise in the price of X, causes a greater consumption
of X, and a smaller consumptlon of X, in these particular
condmons.

Sxmllnrly, if the price of X, were fixed, we should ha.ve

D, (ﬁn) =

20.r

and, if p, rose, z, would increase if it started at less than 20,

Mr. W. E. Johnson deals with this problem more exactly in
the Eeonomic Journal, 1913, pp. 500 seq.—pages which suggested
the paragraph above.

As the double result is surprising it is
worth while to show that it can be
illustrated.

A purchaser wishes to epend . £840 on
land for a house and garden; he wants
at least 15 yards frontage, and apart from
that he aime at maximizing the avea, A
rectangular plot has frontage 40 yards
(4B), and depth 100 yards (4.D). A pur-
chaser buying frontage 4K (x,) obtains
the land 4X7'0, and may buy an addition
in the strip TCBK at £p, a yard measured
from C; he can only buy up to say half
this strip. Let him buy CZ (#,). The
portion not bought is shaded.

The area bought is ) Axn K B

Fieure 18.
40x 100— (40 —2,) (100—@1),

and the amount spent is p,,+7,%, = 840. Hence we have
the equations just given.

At p, = 40, p; =10, the corner point M is at- @, = 12,
&, = 18,

At p, =40, p, =12, M, is at &, = 18,, 2, = 15} ; thus z,
isincreased ; but at p; = 42, p, = 10, )/, is at v, = 8,2, = 18-1,
and z, is increased.

2761 X

D
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§ 3. Demand for and supply of one commodity: competition
and monopoly.

‘We now return to the subject of Chapter II, no longer con-
sidering exchange between possessors of goods as there, but
separating producers from consumers.

If ju is the #*® consumer’s expenditure in the unit of time, and
the other letters have the same meaning as in Chapter V,

r=m
=D Ppe iy, for t=1,2..n n equations.

r=1
t=n

o, =@, forr=12..m m equations.
t=1

1 1 1

gortle = o= Ve = e = oo U | s,

for t=1,2.2

Eliminate the mn quantities 2, and we have m equations
connecting such quantities as p, with such quantities as 2, and
4. Suppose the u’s given. Solve these equations separately
for the 2’s and we have demand equations

Py =1 (22,
Similarly from pp. 49, 50, if we take the marginal utilities of
money to the producers as constant, we have supply equations

P = Py (B Bypen ).

Though all the 2’s are involved in each equation, we may
study their varistion independently. Supposing then all the
quantities except those of X, to remsin unchanged, we have for X,

p=S@), 5 = ¢(2).

Ignore such exceptional cases as those treated in the last
paragmph and take f7(z) to be negative.

¢ (z) is posmve, Zero, or negntwe according as the return is

ing, constant, or i ing in the sense of Chapter III.

Pure competition. Here we suppose that mo producer can
affect the price, and that the entreprenenr’s earnings are included
under one of the factors of production,

In this case p =p’, f(z) = ¢ (z) gives the solution. The
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position is stable when at it the supply curve crosses from below
the demand curve on the left as in the figures,

1:_"‘ P P,

T.'j R
M—8 M

2 s M ] )
LY y L N, =
@ F f L :
L\ E 3 Q_¢
Y| s Hi In : f
[ X o K X o K HNX
Decreasing return Constant return Increasing return
Fioure 14,

For if the price NQ at the quantity ON gives the intersection
of the curves, then if less than ON is produced the demand price
is higher than the supply price and production is increased, while
if more than ON is produced the excess cannot be sold at so
mauch as it cost and production is diminished.

Monopoly. Suppose that there is only one producer * and that
the consumers bave no alternative for the commodity and are
not ‘combined.

If the monopolist aims solely at maximizing his profit, he will
fix # so as to make (p—p’) @ a maximum, where ' is his average
cost price when he is producing @ in the unit of time.

Then if a production #, gives the maximum, #, satisfies

D, {{/(z)—¢ (a)) =} = 0.

Write ¢ () for f(#)—¢ (z). Then

z)+z, ¥ (v) = 0.
In the figures V(=) +ay (@)

OK = z,, KR = f(z,), KE = ¢ (z,), ER = vy ().

2, . ¢'(2)) = T, L, positive in (i), zero in (ii), negative in (iii) ;
z,.f (@) = —MT,, where T} R, 7, E are tangents to the curves,
and OK is the quantity at the maximum profit,

ER =y (z) = —a,. ¥ (&) = T, L+ MT,,
and therefore ER = 37, T,, in all cases.

* The profits of individual producers in competition, and of two producers
in duopoly, are discussed in Chapter XII above. The former case is also
included in the general equationa. Here one important case is disoussed
in move detail.
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In competition the quantity would be ON, and the price would
be NQ if the curves meet at Q, if monopolizing did not alter the
supply curve.

Let the tangents meet at G and draw GH perpendicular to 0X;
then OK = £ OH, )

Consider the relative positions of H and N. Ifin the regions
RQ, EQ the curves are approximately straight, G and @ and
therefore H and N nearly coincide, and supply under pure mono-
poly is approximately half that under pure competition. The
increase in price is of course in all cases f(2,)—/(ON); this
Ne
29
at @ is a sufficient approximation to the curve @R. The rise is
the greater the less the elasticity.

In fact, however, the increase in price made by the monopolist
is infl d by certain iderations. -

The process of monopolizing may introduce considerable reduc-
tions in cost of production, bat the supply curve would have to
be lowered very greatly (in the case of constant return approxi-
mately by LT) to bring R back to Q.

If the price is high there is an inducement to use substitutes,
and the public may tend to give up the use of the commodity.

If profits are great, there is an inducement for rivals to try
to break the monopoly.

If in d_eferénce' to public opinion the monopolist lowers the
price he may make a small sacrifice in his profits and increase
the output perceptibly (see p. 25). If n is elasticity of demand,
the quantity will be increased from =, to- #,(1+1), if

“the price is lowered from p to p(l—%), while the profits fall

equals where 7, is the elasticity of demand at @, if the tangent

only from P to P (1—A3%), approximately.

If the polist makes no ies and ises his power
to the full, it will be seen from the figures that in ordinary cases
of constant and of i ing return OK is less than % ON, while
in decreasing return it may be greater or less.

§ 4. Various questi of poly and bination
1. There is nothing to prevent monopely in the production of ol
dities, if the factors of production are not alzo monopolized.
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If in the general equations X,, is money and therefore g, = 1
and there is only one producer of each eommodity, we have (as
on pp. 49, 50) sufficient equations to obtain

Pr =T (@ i), #r= Op @ree @pen )
for each dity, and the polists’ equations
3(p,~1')) 2,
are not inconsistent with each other.

. IL. If production is mot, but the factors of production are,
monepolized, so that the first person controls ¥;, the second 7,
and so on:
In the case of the ﬁrst factor o3’), 3¥'1.--n¥'y 8re zero, the

equations ;. M=, ;. Wy =, &c. drop out, and the
2 3
supplier aims at maximizing (7, —7"))y,, so that
3 {‘tﬂl_l‘",l)yl} =0.
For example, take the case of one commodity X;, two factors

Y, ¥, (say labour and capital), and one multiple purchaser with
prefix 3.

The demand curve for X, is —. U} = g, say p =/ (2,).
n

The producer’s equation is #, = F(y, 3,), where

1 1
770 =7 Fy» SERVANTS OF INDIA SOCIETY'S
and, if the producer makes no proﬁl, BRANCH LIBPARY

22 =19+ 77, BOMBAY

Eliminating p, and ,, we can obtain separately =, and n; as
fonctions of g, and y,.

Let the supply equations of the factors be

=¢,(7) and 7, = ¢y(y).

Then if g, and y, are independent of each other, the monopo-

list equations
Dy, {m=2"Yyn} =0 and Dy, {(me—my)g} =0

are capable of solution and give determinate results, -

Similarly all the factors can be monopolized with determinate
results.
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1IL. Bilateral monopoly. 1If, however, the producer is also
monopolist and makes a profit, the case is different.

For simplicity take only one factor.

Our equations are

n=rf@) a,=F@), vha=mnn 1=6()
Ta.ke F(y,) =g, for further simplicity, Then
Phi=m, =Sl vi=0(=)
are the only equations,
Manufacturer tries to maximize {f(z)—m} ;.
Labourer " » {m—p (@)} 2.

The manufacturer fixes in a particular =, and produces o', to
make his maximum, At the ssme =; the labourer farnishes 2/, .
There may be s valae of m, for which z‘, = "}, but without
collusion it will not be obtained.

This result, that with one factor and one user of that i'nctor
the equations become indeterminate, is obtainable with less
simple hypotheses ; but the methed used can be extended to show
that universal monopoly of all factors and all production leads to
indeterminate results.

IV. Consumer's combination. The next question to examine is
whether purchasers of goods can obtain any advantage by acting
together instead of eompeting, and what special power is in the
hands of a person who is the sole purchaser of some special
commodity

Let p' = 45(0) be the supp]y price of X. <

If ap t infl 2’ his gain in utility by pur-
chasing # unite is a maximum at that position on his own offer
curve where U, =«p’. (Point @, Figure 5, p. 23.)

If, bowever, he ean influence price he can aim at that point
on the sellers offer curve, where it reaches highest up the
purchaser’s utiliy surface. (Point Q,, Figure 1, p. 6.) It can
readily be shown that-at this position U, = x.D, {#¢(2)},*
from the consideration that one tangent at @, touches both
curves, and therefore U, = x¢(2) +xz¢’(2).1

[Otherwise, his gain in utility is U(z)—«2¢ (2), that is the
advantage of receiving @ less the utility of the money he pays.

* Offer curve y = z)(x), gradient of utility surface U, /l.
4 See Economics of Welfare, p. 283,
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If x is taken as comstant, this is s maximum when U, = «p"; if*
2’ is constant, and when U, = 2’ +x2 D, p’ when p’ varies.]

Write p = %Uz =f(2), for the equation of the purchaser’s
demand.

In the case of decreasing return ¢’(z) is positive, of increasing
return it is negative.

‘If Q is the intersection of the demand and supply curves, the

quantity ON will be sold at the price NQ, if the purchaser
cannot influence price.

P ) P
S, Q H
L
L Tt X b
T K f s a
M [N X o N M X
Decreasing return Increasing return
Frovre 15. Fioure 16.

If he can influence price he will get the greatest advantage at
a quantity OM and a price MK, when MK produced meets the
demand curve at a point R, such that if XT parallel to X0 meets
OP at T, TR is parallel to the tangent at K; for then

o.¢'(@) = KR = MR—MK = f @)~ (@) =~ U~ (@),
the condition required.

By reference to p. 34 it will be seen MK is the seller’s mar-
ginal supply price at . The proposition may then be stated
thus : under competition the purchaser pays the seller’s supply
price, while if the purchaser is only one (or several combined)
while there are competitive sellers, he can pay the seller’s
marginal supply price.

‘While in diminishing return purchases are restricted and the
price lowered, under increasing return the lowering of price
and the maximizing of purchaser’s advantage is obtained by
extending the purchases.

In both figures draw QL and RS parallel to X0 to meet OP,
and let @L meet RK in H,
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In decleasing return the loss of utility from the decreased
possession of X is

U(ON) - U(om _f U,.do = MNQR.

The gain by decreased expenditure is the gnomon TLQNMK.

Excess of gmn is LTKH— QHR.

In increasing return the gain of utility by possession is QN MR,
the loss by increased expenditure TKM O — LQNO, and the excess
of gain is LZTKH—~ QHR as before.

The general position when ‘either buying or selling may be
competitive or not may be further elucidated as follows.

Ifthere are two persons, A buying and B selling X, and A paying
and B receiving ¥ (money), then A’s offer is ;U,—p.,;x = 0, and
B’s offer is yUy~p/ . ;6 = 0.

If B raises his price above ', he makes extra profit, and some
one else will presumably undersell him. But if he has monopoly
he aims at 3 (p—p)z = 0.

A may, however, refuse fo buy at the higher price, and both
are satisfied only at p = 7, . lUz = x.,Us.

If there are several buyers not in collusion and B is the only
seller, B can ﬁx price. R

If thege are several sellers not in collusion and one buyer A,
A can choose 2’ 50 as to maximize his net gain in utility, which
will give the position illustrated by the figures above.

¥

Since the analysis of consumers’ combinations is not so
familiar as that of seller's monopoly, a numencal illastration
may be studied with advantage.

Let the supply equation be YV =¢(@)= 30—23;, and let the
purchaser’s utility be U(z)= 422—32?% oo that the demand
equation is p = U, = 42—6x = f(2), ;x being taken as unity.

Then the purchaser’s net advantage is maximized when

V(@) =24 (z) = 122—a? = 36— (z—6)*
is greatest ; that is when 2 = 6, p’ = 18,
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The competitive price on the other hand would be where
f@ =), =31 =21

= U(z) Ua 2@ o) UTE@-z6@
2 72 80 26 52 20

8 99 24 24 72 27 .

4 120 18 22 88 83

5 183 12 20 100 85

6 144 6 18 108 86

7 147 0 16 112 85

-Now if the demand was made up by two identical demands,
viz.: f(®#) = 42—12z;, each for #, half the former quantity,
then if they compated they would éach spend 364. on 1} articles,
at 24d. each; if they combined they could each get 3 for 544.,
at 18d. each. The net utility for each is 42z, —62%—p" .2,
which is 13} when #; = 1} and p’ = 24, but 18 when o, = 3
and p’ = 18.

This is & case where two people by combining are able to
take advantage of increasing retarn in supply.

In decreasing return the advantage is obtained by restricting
purchases. Thus if we write ¢ (z) = 30422, U(#) being as
before, in competition each person buys § at p’ = 33, and his
netutility is 33 ; in combination each person buys § at p = 323,
and his net utility is 3-6.

This is a case where two people avoid the etpenge of in-
ereasing the supply.

§ 5. Joint and composite demand and supply.

In the general equations there was no nssumptlon that tbe

demand or supply of the dities or factors were independ
of each other, and in the first section of this chapter specml
cases of depend were idered. But it will be useful to

show how the various problems considered in Marshall's Prin-
ciples of Economics, bk. v, chap. vi (in the text, notes, and corre-
sponding Appendix), are related to the system.

The X’s are * consumers’ goods’, ¢ of the first drder®, ¢in direct
demand’. The ¥’s are ©producers’ goods and factors’, ‘of the
second order’, ¢in indirect demand’.

" X
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The quantities ,,...9ys -7y, (8€€ D. 48) are jointly demanded
for the production of @,,as for example labour, coal, ore, transport,
pig-iron. .

The quantities g, ,...5rs +-¥m; 8re under a composite or allerna-
tive demand for use in various manufactures : e.g. ¥, may be labour.

The necessary equations for these two cases have already been
given,

Composite or alternative supply occurs when a want can be
sapplied by X, or X,,, (e.g. by beef or by mutton). Choose
units (e.g. weight of beef and of mutton) so that p, = p,,;-
Let the relation be so close that they are perfect alternatives,
so that 2, + 4%,,, = &, (say) cannot be separated into its terms.
There is nothing to decide the preference of the consumer.

Then in the utility equations (p. 50)

1

=== U=
prtr ﬁr“trﬂ

is replaced by = ;1-[)2"(‘ U,)=
r

for each of # persons, and » equations are lost and # fewer
quantities determined. '

f=n t=n
Equations 2, = 0, and 2,,, =3 ,,,
. =1 =1
ten
pre replaced by. do=3 &y,
. t=1

while the lost equdtion is made good by Py = Priye
In the expenditure equations +p,. @, +Pps;- Brs1t is re-
placed by +p,. 2, +. .
The remaining equations are unaltered. The amounts pro-
duced of X, and X, are determinate, and the totals of the two
d by each p :

Joint supply occurs when X, and X,,, are produced by the
same process in a determinate proportion (e.g. gas and coke).
If 7, is the proportion for the £ producer, the equation for the
production fanction @', = F,,, is replaced by &', 4, = U &'r

X (B%)

€ 49{}
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The equations involving the suffix £+ 1 drop out in the cost
of production, separate use of factors, and substitution of factors,
In all nv4+n(r—1)=v(z+1) equat:ons drop out. At the
same time the » (» + 1) quantities

yr+l, 51 lyri-l,s’ syri-l,s? b nyri-l,s for 8= ly 2""!-
cease to exist.
If we regard X, as the by-product, then instead of
3 (¢ ps1— 18 r41) 41 = 0, we have '), = 0.
The demand equations are unaltered and the solution is com-
pletely determinate,

[More simply, if we consider the supply and demand of
X, and X,,,, ignoring all other changes and assuming no profit,
and taking only one producer, then

i Opyy = 2y,
I‘r“’r + P = T ¢ (@),
1
and U — Uy =x,
p o 1’r+1 L ’

where ¢ (#,) is the cost of producing #, and a;,.“ combined, give
sufficient equations.] .
The commodities X, and XH_I are jointly demanded, if each is
only usefal with the other (e.g. pens and mk) v
Take the units so that one unit of X, is wa.nted with one of
X, ... Then we have n new equations oV
&, = ey, for £=1,2..7
while in the utility equations
1 1
— Uy =—.,U, =
. tYr Peir tYr+l
=1
T et P
where ,U,, is the marginal atility of a unit.of X, a.nd X,
together, so that these # equations are lost.
The remaining equations are unaffected, so that the solution
is uniquely determinate.

are replaced by U,
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The Derived or indirect demand for factors of production may
be studied from the following point of view. For simplicity
copsider one commodity X ; suppose its demand equation to be
P = f(z), and that its production depends on the factors ¥;...1,.
Required to determine the demand for ¥, that is the prices that
will be paid for various amounts of ¥, when the prices of the
remaining factors (which of course are jointly demanded with it)
are constant.

‘We have then the equations :

P =p', if there is no profit,

e=F(z,9,..)
p=f(@),
Pe=my+.+n gt 1,9,
1 1 1

and ;I'F”l—"'=ar_,F1’t="'_1r—,F-""

from which we can eliminate the quantities y,...3,, 2, p" and 2
and so obtain an equation between =, and g, involving the
tants of the functions and the unvarying prices 7,, 7;...7,.




VII
SURPLUS VALUE, RENT, AND TAXATION

§ 1. Producers’ surplus.

A surplus is obtained when a producer sells for more than his
cost, price or a consumer buys for less than he is willing to give.

Thus the various producers of X, are not assumed in the
previous sections to incur the same cost price. The differences
arée due either to situation or to skill of management or to
other special circumstanees ; the first gives rise to rent, the second
to personal surplus. '

1t is perhaps simplest to assume that part of the entrepreneur's
receipts are due to his own labour, included in one of the ¥’s, and
then the marginal producer gets wages of management and no
profits. )

If all producers are equally favourably situated, then under
constant or under increasing return the most skilled tends to get
all the trade, till and nnless its magnitude becomés too great for
bis ability.

Under decreasing return many producers may remsin in the
industry, and we have the position described above (p. 50) of
which the extreme casejs when |,
no producer supplies enough
to affect the price significantly.

Then the #* person maximizes ™ Q
(pr—!pr) . tz'n so that

D, (o2 - 2") = py.

Write (ef. p. 34) my= o’ .0, ® me
suppressing the ’s.
The #** producer’s profit is o N *
Fraixe 17.

& Do) =my=g’ . pf py—my, . )
where ,p'p, = D, (m,) is his marginal supply price, NQ, while
" = ON, and RQ is his marginal supply curve.
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o’ & *
Then m, =f D (mg).do= |V g/, . dz = area ORQN,
0 o

and (@' . p'y, = aren MQRN, where QM is parallel to X0.
The profit is the shaded portion QRM (Figure 17).

P

x

N
Fioure 18.
Now take the case of only one producer (Figure 18).
Let p =f(z) be the demand curve; p is not now given.
Write p,, = D, (pz) = D, (zf (#)) = NQ, and in the figure let
DQ be the locus of Q. This curve differs both from the usual
demand curve p = f(z) and from the offer curve y = 2f (2).
The producer modifies »* and therefore z so as to maximize
(p—p)z, i.e. px—m, so that at equilibrium
D, (m}= D, (pa),
and therefore p’,, = p,, = NQ.

Then p2 -—f Pniw* = area ODQN, while = = area ORQN

as before.
The profit is

area 0DQN—ares ORQN = ares DRQ,
which is greater than before if (ns is nsual) 2, (p,,.) is negative.

§ 2. Economio rent,

Land bas so far entered into the equations only as a factor of
production measured not in superficies, but by units of produce.
% See Appendix, pp. 92 seq. In each figure @ is marked lt the pasition of

equilibriom. ' _, p_ and z are iables in the i but have
their definite values ON, XQ in the statements of equilibrium.
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Special th of rent depend partly on the different pro-
dactivity of different acres, varying also according to their eul-
tivation, partly on the assamption that the whole ares eannot
be increased.

In fact we do not deal in this book with the inflaenee of prices
on new supplies of labour and capital, except in so far as labourers
may be drawn from working for'themselves or idling, and capital
from use by ite owner or non-use. ~ Similarly we have assumed
that land is limited, and either is all used for production for ex-
change or can be used by its owner for his own enjoyment.

Suppoee a producer of X to be able to hire Iabour and capital
and to purchase materials at fixed rates, and to apply these to
land. .

First let him cnltivate only one plot and vary his production
(z,) by varying the amounts of labour (#,) and material (y,).

His production is =, = F(y,,) and, if p is the selling price
which he cannot, affect, he maximizes pz, —p"2,, where p” is his
cost of production per unit.

The necessary equations are
P”='"1!1+’d'm
-.-IF!: ,- h
s=F(n1),
ting afer eliminating 7, 30d g, in 7' = 4 (z) say.

Under conditions of decreasing return ¢, (#) is positive.
z, is then given by
(P ') = ¢, (@) + 2,9 1(’1) =F'm
His maximam proﬁt is
P u—2)r =51 :’ 3 (=)-
Similarly he cultivates all plats for which_
7= $=)+89',0)
. gives a positive rxoot.
Huloenlma.rgmofmluvnhon is where the root of this
equation is zevo,
The intensive margin on e-chcnlhnted plot is when p=p’,,,
where 2’32 is expense of increasing the product from & toz+2z.
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The profit #,3¢";(z,) is the rent which can be exacted for
plot 1, if his labour and interest on capital are incladed in g,
and g,. If he can command elsewhere a price 2P, for his ability
(in excess of his labour wage) he would pay rent

21'124"1 (z)—P,
the summation being extended over all the plots.

- The above analysis applies with verbal changes to rent of
urban land.

§ 8. Taxation in the case of competition.

Let a tax 7 per unit X, be imposed, to be paid by the producer.
Isolate demand f(z) and supply ¢ () of X,, lgnoung other
commodities.

"Wirite ¢ (2) = f(2)—¢ ().
Before tax, let equilibrium be at ¢ () = 0.
After tax, » ” » "P (’1— H=r.

o TE =S ) RO () K
Receipt from tax B = 7 (#,—¢), o
© B = —a, 6 (@) + £ (@) + 160,y () + termain £, &e.
Consumers’ loss of utility expressed in money is

0 [ t@in-snse)[ @i+ @m-07Emb

= s@in—a i) +e-0) /-6
Write & = o’ +2, - ¢£.
= [ =+ a2, ) + 0= ) 5,8

[+

—f {(f@=8+2f (z,- 8 +——f"(zl—£)+ Mz —%f(fx)
+(.l‘1—f)f(’l

=@~ O+38/ (m—~ O+ (2, — O+ ...~ 5, [ ()

: —(n—8+= {/(zx)—ff(-”l)+!f’/"(”l)-

= —2,£f (@) + 38 (/" (=) +2,/" (z,) } + terms in £

¢ See Appendix, p. 84.
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" Let @ be the position of equilibrium before taxation, I after.

ON = - NQ =f(zl) = 4;(.@'1) MN = E

QN, LI are perpendicular, and K7, QH, LS parallel, to OX

7= KL =JQ(~7f (@)+¢' (=) approx. = —£. ¥’ ()

C = aren QASL = 3JL (HQ+SL) = $£(— 1 (=) (2, —§)
approx.

R =avea KI8L = KL.KT =7 (#—§)

Let P = area QHTK = KL (HQ+SL) = %£4’ (z1) (22,—§€)
approx.

C+P—R =ares KLQ = 3 KL .JQ = §r{ approx.

fo

S g
H J
TE K

. T
gl
R (3
N

Quantity M'N X
Competition : Decreasing Return.

Frouns 19,

The approximation assumes that the curvature of the arcs
LQ and KQ is negligible,

Similar diagrams can be drawn to illystrate ot‘her cases,

Competition being assumed, in increasing return where pro-
ducer makes no profit
C—E=0o{(—¢'@))+E {4/ (@) +¢' @)} +5829" @)

In constant retarn

O-R =38 {-S @)}
In both cases terms involving ¢ are neglected.

With decreasing return, where the supply curve is that
me L .
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aggregated from those of the separate producers, the producer's
aggregate loss of profit is

Porle)—[ 6@ do(e=0. 9 (0 =0 4] $).ds

= (after reduction as in the case of C) )
z, £’ (2) — %€ {9’ (o)) + @, 9" (%;)} + terms in &

s C+P—R = 3£(¢" (&) /" (), if £ is neglected.
Hence in all cases the public, producer and consumer together,
lose more than the revenue gains. In the case of increasing

return the loss is greater than in that of decreasing return.

Now, if we neglect /' () and ¢" (z) and regard the part of
the supply and demand curves involved as straight Jines, we have

P @) v
if ¢ and 7 are the elasticities of supply and demand at z,.
The increase of price is
Fl@—8~r @) = ~£. f @)
now /" () is tuken as 0,
—f' (z) e

=T. 7 =—_T.
= @)+ (@) e—n
In constant return the inerease of price is 7, in increasing
Teturn it is greater, and in decreasing return, less than r.

Tax receipts are at a mawimum when r is so chosen that 1f 2,
is the amount exchanged, z, .y (z,) is a maximum. [This is
where a monopolist untaxed wonld fix the quantity produced.]

If f*(z) and ¢’(z) are taken as constant, which is & less
reasonable assumption than before, since the change of z is now
considerable, and z, is the amount that wounld have been
exchanged if there had been no tax, it is easily shown that (p. 59)

@, = }=2,, and therefore £ =z,, r= —3}2,.¥ ()

R= 322 (z)), C= 32,2 (=f/ (=), P=32"-¢" (=)
C+P—~R = %R in decreasing return,

C—~R = 3R in copstant return.
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The excess of the loss to the public over the ga.m to the-n‘eve?ue’
is half the revenue receipts in these cases.
In increasing return

C—E = gz (—f" (a) —2¢’ (ﬁa))
=3E+§ o’ (—¢ (@),
and the excess of the loss is even greater.

§ 4. Taxation in the ease of producer’s monopoly.
At tax 7, 8 monopolist maximizes (¢ (z) —7) z, say at z,, where

Vi)t ¥ (@) =1
R=r1z, =2 {¥(@,)+2¥ (@)}

Without tax 2, would have been produced, where

V(@) + oy () = 0.
Then P, now taken as loss of profit and tax,

= a1y (@) -2, (¥ (2,)—~7),
and _f f (@) do—a, f @)+, F (@,).
" C+P-R= —mp@)+a,0@)+[ f@)da.
Write 2, = @, + £ and take the case where the supply and

demand are straight lines, so that
S @) =¢" @y =y @) =0
Then, expanding by Taylor’s series,* we find
r=y@—8+@—EV (m—§) = - 28 (=),
E= 228 (z), C=—4f" (®).£(22,—§),
P=zy@m)—(0—6 & @-& @)+E
—tE)-@-oive)+=Evmr
= =&Y (2)+E =¥’ (). (£~2mf),
C+P—R=§£¢ (2)—GE +éx)f (@)

* See Appendix, p. 84.
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Hence on the same assumption
PR @) 2-m
Hence C = %P in constant return,

C> 3P in increasing return, and C = P, if for example

¢ =4/
and C< % P in decreasing return.
In constant return,

C+P—R = {(m+18)(=f () = 5@ +16).

In decreasing return, add ¢*¢’(z;) to this expression.

In inereasing return, if for example ¢’(#) = 4/ (2),
C+P—R =,f(~f"(2) = 2.

In the same case of monopoly, R is s maximum when the
quantity sold after the tax is imposed makes @ ( () + 2y’ (#))
a maximum, and then

V(@) +30y (@) +2% " (2,) = 0.
Take again the case where
SH@) =¢" (@) =" (@) =0.
Before the tax was imposed .-
¥ @) +ay (z,) = 0.

Then, if @, = o, + ¢,

0=y(@m—E+3@—OV @) = —£¥ @) +(22,-30- ¥ @)
* £=4%2, and o, = k2.
1= ~2{y’ (&), as before, = —2,¥’ (&) = ¥ (&1)-
Hence the maximum yield is when the rate of tax equals the

difference between the monopolist's selling and cost prices before
the tax.

B =yield of tax = 42,y ().

P=—Y(@)+BR=4z ¢ () =3R.

C = —32°f' (z), = }R in constant return.
C+P—R=4R+32*(—f (z,)) = §R in constant retarn.

g
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In increasing return in the case when ¢’ =347, C=P =34,
and C+ P—R=2E.

Under monopoly, the increase of price (whether R is maxi-
mized or not) is )

fla—f-flz)= -£f (zx)+—f"(w1)— +or

s if (@) is Oorif §*is negligible.
We have then from the equation for C given above
c= EX —g) x increase of price,

rnta, . .
=Tt inerease of price.

In constant return, increase of pnce is -2-
In decreasing ,, » woon <

'In increas'ing " »
where ¢’ = if',. = Ta

» » > ~, and, in the case

DN i a

Under monopoly, if the tax is not per unit but a lump sum,
the price is unaffected and the amount sold unaffected ; the whole
is paid by monopolist and can theoretically be increased till it
pullifies his profit, and B = &,V (#,), viz. twice the maximum
under a tax per unit.

Nore.—The term ¢ consumer’s surplus’, applied to U (z) —z/'(w),
has given rise to misconception, and has been avoided here. But
it is useful to distingnish two parts of C (pp. 72-3), viz.
U(z,)—Ulz,—§), or MLQN (figure 19), which is the loss of
utility, and (z,— &) f(@,~ £)~z, f(z,), or OSLH — OHQN, whieh
is the increase of cost (which is negative for large elasticity).
The two together give QHSL or C.

Thus if weekly purchases of tobacco beforeand after taxation were
40z, at 3d. and 8 oz. at 64., one ounce worth approximately 4d.
is lost and 3d4. more is spent. The loss to the consumer in this
case iy Qaken 8s 7d.
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SUMMARY OF THE MATHEMATICAL IDEAS
AND FORMULAE USED

Tre following notes are only likely to be useful to those who
bave at some time studied the elements of the calculus in an
ordinary course, Only a very limited region of the calculus is
used in ordinary economic reasoning, but in some respects it
is of a kind to which prominence is not given in the usual
mathematical training, while much attention is devoted to other
aspects of its use, in physics, &e. It has therefore seemed worth
while to trace the theory of the calculus from the beginning up
to the theorems and methods used in the text, to epable readers
to refresh their memories about the particalar results wanted
and to become used to the notation adopted. The definitions
and proofs are not rigid in the mathematical sense, and any
careful reader will detect numerous lacunae.

The results may, however, be accepted ss true in the sense and
with the limitations used in the text, and complete proofs can
readily be found by those who have sensitive mathematical
consciences. .

Functions.

If two variables # and y are o related that y is determinate
when @ is given, y is said to be an (explicit) function of #. This
relationship is written y =f(z); but since several functions
may be involved in the same problem, variants of f(e.g. 7, $...)
or other letters (x, U...) are used alse to express the functions.

If two or more variables 2, y, z...determine another variable,
u, then u = f(2,9,2...).

If z and y are connected by any equation such as

z+y+8 =0, 2*+24*—7=0, sin(z+y)—-3=0,
the relationship may be written generally as
fzy)=o.
f is then said to be an implicit function.
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It is often not necessary to know the form of the fanction nor
to be able to evalnate it. Important relations can be established
and results obtained from the mere kunowledge that certain
quantities determine others.

The function contains npmbers and often constanta (generally
written @, J, ¢...), that is quantities which remain unchanged
while @, y... vary. It is necessary to know these numbers and

nstants if the fanction is to be evaluated numerically.

J(z)) means the value of /(<) when the particular value 2, is
given to the general variable @.

f(z) is said to be continuous over the range z =4 to 2 =19,
when 2 can take all values from @ t¢ 5, to each of which there is
3 real finite value of /(z), and when, if # makes a finite change, the
change in f(2) is also finite. This may be explained by saying
that a continuous function can be graphically represented by
a line drawn without the pen leaving the paper or marking a
sharp angle. The definition here given is only a preliminary or
popular one, but it is sufficient for the sequel.

Derived functions or differential coefficients.

Let the values of y corresponding to a range of values of # be
plotted on squared ‘paper, so that when @ = OM, y = M P, and
a8 » increases from OM to ON, P moves along a curve (or straight
line) to Q. The line PQ is the grapk of the function; y =/(2)
is the eguation of the curve (Figure A, p. 81).

The point P is written (#,7). 2 and y are the co-ordinates
of P; » is the abscissa; y the ordinate; OX, OY are the awes of
reference. -

Let the co-ordinates of @ be #+ £ and y+#, so that (if PL is
parallel to OX and meets NQ in L) MN = 4, LQ = .

Draw PT to touch the curve at P, and join P@ and produce it.

Then

ten QPL = LQLPL=kk=(y+k—3)/k =(fla+ i) —f(2))/}

Now let Q approach P along the curve. The chord PQ rotates
sbout P, till as @ reaches P it coincides with PZ, and the angle
QPL becomes the angle TPL = 6, say.
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Tan 8 is the limit of (/' (z+4)—f(«))/%, when 4 approaches,
and finally becomes, zero, This resnlt is written

tanf = Uw (k=>0) = D, y* = f' (),

each of these expressions being a convenient way of wntmg the
process and result briefly.
For example, the graph in Figure A represents
y=fl@)=1+4+72—2%
Tané = D, y=1"(2)
E{l +7 (z+ﬁ)—(z+Z)’}—{l+7z-z’} (b-.O)

23
Lf7ﬁ -2k l_7 2z,

Thus when 2 = 2 (and y = 11), the point P in the figure,
Vid (:c) =7—4¢=3.

The tangent at 2 rises 8 units vertically to 1 unit honzontally.
The gradient is 3,

J’ (%) is the rate of increase of f(2) per unit change of ® at
the point 2.

S'(@) is called the derived function, the dem:atwe, 'tha
differential cogfficient or the gradient of f(z).

When f'(x) is positive the curve rises to the right. Where
f'(z) is zero (z = 3% in the figure) the curve ceases to rise.
‘When f* (a:) is megative (#>3}) the curve falls.

The mazimum of f(x) is when f’ (z) = 0, if (ae i in this case)
/'(z) changes from positive to negative as & increases through
the mmma.l position, that is if at this point the curve is concave
to OX (and above it).

If now we take the carve

y=a*=72+15, f'(2) = 22—7. (Figure B.)
S (z) =0, when # = 3}.

J (&)< 0, when z<3}. f'(z)>0, when z>3}.
f(z) is & minimum when.z = 3}.

* Formerly this expression was written :—: . Bince this suggests s fraction
and not the result of a process, the form hera used is to be j:re!amd.
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The minimum of f(z) is when f*(z) = 0 and the carve is con-
vex to OX (and above it).

These results are general. The first test for the presence of
8 maximum or minimum is that #* (#) = 0. To decide whether
this gives 2 maximum or gives a minimum it is necessary to

15 15
15 14
15 13
r 12
n n
10 10
s s
8 8
T k4
8 6
‘5 5
4 4
3 3
2 2r
1 1+
o x o
y=x - +15
Fiavzre B.

know the 2ign of f' () for values of @ to the left and right of
the maximal position, unless (as i very often the case) we know
@ priori which to expect. T
e ive diffsrentiati Expansions
The process of differentiation can of course be applied to the
derived fanction. We thus obtain the second derivative, and so
on successively. . i
Thus in the first example taken,

S (@) =17-2z
M

2781
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The second derivative
Dy =1"(c)= UL"L@LQJJ@(&.,O) = -2,

If /' (z) is pegative, f// (z) if positive is becoming less as @
increased, and if negative is becoming numerically greater
negatively.

A little consideration will show that if f*/ (z) is negatlve the
curve is concave to OX (if above it), and if /'’ (z) is positive
the curve is convex.

The complete test for a maximum (if /(@) is not zero) is
that f’ (z) = 0 and /" (z) is negative, and for a minimum that
J’ (@) = 0 and /" (z) is positive,

In the adjacent Figure (C) of a convex curve, P7 is the tangent
at P and meets the ordinate of

4 a neighbouring point @ at 7.

a PL is parallel to OX.
i Write
£ L do=4=MN, dy=k=1LQ
'{/ 32 and 3y are small finite in-
crements or ‘infinitesimals’ of
z aud y.
LT = PLtan LPT = }f* (a).
] L ay=nNg-up
Frovze C. =f@+h)—f(z) =

=IT+TQ=f (z). 32+ 1Q-

TQ, the departare of the carve from ite tangent, diminishes as
Q approaches P.

‘We shall 1mmedxste]y give an informal proof that 7'Q is com-
parable with 2% i.e. with 3z)2. Assuming this we bave

3y =f (v} .3z +a quantity involving (3z)2 . . . Formuls 1.
3

o y—f’ (z')+l quanhty involving 3z, and in the limit,

when % is zero, ——— D,y.

To obtain a rough proof of the proposition just used, draw the
tangent at @ to meet AP at 7, The gradient of this tangent
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18 /" (@+4). In the case where @ is above 7, it is evident (the
curve being continuous and % small) that Q7" cute PL between
P and L and therefore QL<Af'(z+4). Hence

B @ <F (e +D—f @ <If* (o+1),
and S @+ k) —f(2) = Af (m+ch),
where @ 4 ¢k is some value intermediate between # and 2 + 4, and
continuity is assumed. '

The same result is obtained if the curve is concave, and this
proposition is true for all continnous functions.

Hence similarly

I (@t ok)=f' (@) = chf”’ (w+e k)
where ¢;, is intermediate between 1 and c.
Combining these results, we bave
by =S (@+E)=f(a) = If’ @)+ B (2 +rk),
where ¢ and ¢, are proper fractions, and £ = 3z.

A change in y is therefore obtained approximately by multi-
plying the change in @ by the first derived function, the
equation being the more exact the smaller the change in z.

‘This result is fund tal in a iderable part of the appli-
cation to Economics,

A rough examination of the general expansion of f(z+4)
can. be obtained as follows.

Take @ as fixed, say 2,, and % as variable. Write

Slag+h) = Fh).
Thus in Figure C Iet
OM =y, MP = f(a,), NQ = f(z,+}4) = F(#).

Suppose that F(#) is expansible in ascending powers of 4 with
all the terms finite and the series convergent, i.e. tends to a
unique finite limit when the number of terms is inereased
indefinitely.

Write F(£) = gy + oy A+ 2,584 a4 + a it + ..., where a,, ay...
are constants to be determined. '

Differentiate successively with regard to 4.

F(h) = ay+ 20,k + 30,43+ 4a f2+ ...
F'(h)=20,+3.2ak+4.3a,%+...
P (k) =8.2a,+4.8.2a,k+....
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In each of these equations take the case where / = 0.
a=F0), a=F0), a=3F 0,

v 1 e l
=5 ), ..a = ;iF’(O)...,

where F*(0) is the result of writing % = 0 after F (%) is differen-
tiated and so on.

Then F” (0) is the gradient of the curve PQ at P and therefore
is the same as f” (z,), that is the result of writing # = #, in the
derivative of f(z). Similarly F*’ (0) = f* (s, and so on.

‘We have then :

S +8) =F(h) =F(z)+ 4 (=,)
1 1 i Formula 2,
+ Ellzf"(""'a)'*' 1 B+ |
the process being continued as far as we please.

This is Taylor’s Series.

In the fanctions used in the text it is generally the case that
the successive terms become rapidly emaller over the part of the
curves that are considered in the neighbourhood of equilibrium.
Such an assumption is much more bazardous when larger changes

are considered, as in the cases of taxzation and momopoly
(pp. 60 and 75 seq).

Standard derivatives and rules of differentiation.

The following are standard derived functions, as shown in any
text-book on the caleulus : '

D, (a") = na®,
where # is any positive or negative integer or fraction ;
e.g- D,z =3z ),
D, (a%) = a*.log,s. D, (&)=

1 1
D, (oggz) =5 -logze. D, (log.2) = -

D, (sinz) = coez, D,(cosz) = —sinx, D,(tanz) = sec’?,
where « is the radian measure of the angle.
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Also the following working rules are easily proved from the
definition of a derived function :

D ef @) =a.f"(a);

e.g. D,(3z) =3, D, (32} =3x 2z =6z,
© Dof(en)=of (@a);

e.g. D, sin (az) = a cosaz.
2,(f@)+e) =1 (a);

e.g. D, (a*+3) = 2=.

. . Dufl@ta) =7 (z+a);
e.g. D (x+a)=2(z+a), forif f(z) =%, f (z) = 2.
These rules may be cormbined, thus :
D, {af Gx+c)+d} =ab.f’ (bz+c);
e.g- D, {2sin(3z+4)+5} = 2 x3cos (3z+4) = 6 cos (35+4).

If f(2) and ¢ (2) are two functions of @, the following rules
can be obtained :

D A{/@ 1@} =S (2)+9'(D);

e.g. D, (z*+log, z) = 22+ 1/2.
DS @) xp@)} =1 (D) x ¢ () +1 (=) x ¢’ (@) 5
e.g. D, (#*sinz) = 2zsin s+ 2% cos .

Do {fle)+9 @} ={F @) x$ (D) /(@ x¢' ()} +( @))*;
e.g. D, (tanz) = D, (sin #--cosz)
= {cos # X cos 2—sin & X (—sinz) } <~cos*2
= (cos? @+ sin? z)--cos® 2 = 1 +tan® s = sec?s,
28 above.
If y = F(u), where 4 = f(2),

3y _ %y < dn_ F(u+du)—F(n) xf(m+b:c)—f(m)’

T TR T % S
identically.

In the limit, obtained by diminishing 32 and consequently
3% and 3y also,

Doy =DyF(u)x D.f(z);
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e.g. if F stands for log,, f for sin, and so % = sinz,
D, {log, (sinz)} = D, (log, %) x D, (sin z)
=%x cosz = ;};xcosm: cot 2.
D, {sin (z%)} = 2z cos (z*).

These forms and rules are sufficient for the differentiation of
common functions of oune variable.

Functions of two or more variables. Partial differentiation.

Let a variable z depend on two other variables # and g, o that
z=f(z,9), and let @ and y depend on another variable %
Required to connect a change in # with a change in 2z

R S

Yo
S

[o] X
Fiounze D.

To fix ideas, suppose & point to be moving in the plane X0¥
(Figure D), and at any time £ to be at the point K (z,5). Let
a vertical KP (2) be erected whose height is f(z, 7). Then as
the point moves abont the plane XOY, P will move always
vertically over the point on a surface whose equation is

t=f(z,3)
Consider movements parallel to OX, ie. to the plane ZOX.

If the point moves from X to L, y is constant (say y,) while =
varies, and P traces out & plans curve PQ. The gradient at



APPENDIX 87

P of this curve is D, f(z,3,), that is the result of differentiating
f(z,y,) where g, does not vary. This expression is variously
written

D.() (3 const), . 7" (s,9) (3 const), f;, snd 7, | Formols 3,

J.d8 at once the briefest and most convenient of these forms.
It means the result of the p of differentiation. with respect
to 2 applied to the function, ¥ being kept constant; e.g. if

S(=3) = as* + 8, f, = 20z, fy=26y'

This quantity £, is called the' partial dexived function (or
derivative or differential coefficient) with respeet to .

If the point P had moved along the tangent at P in the plane
of PQ it would have risen 4f;, to T, when @ increased to @ +4,
& being KL,

Similarly if we take movements parallel to OY or the plane
ZO0Y, let the point in the plane XO¥ move from K to M
(KM =4#) and P trace the curve PR, Its initial gradient
would be f,, and if it had moved along the tangent to PR it
would have risen £f,.

Now if £ and £ are small the heights of @ and R only differ
from those obtained at 7 and the corresponding point under 2
by quantities involving 4* and A (by formula 1), which are
therefore very small. The rises in the two paths are therefore
very nearly f, and #/,.

Farther it can be shown (though the complete proof is diffi-
cult) that the rise along the path QS8, where XLNM is a rect-
angle and NS is vertical, differs from the rise along PR only by
a quantity of the order A£.

If, then, the point in the plane XO¥ moves from X to N by
any path and in consequence a line FS is traced on the surface,
the increase of height from P to § differs from 47 +4/, by a
quantity involving 43, #2, or 4% as factors. Write 32z for this
increase.

be=etdz—z=[flo+hy+B)—f(2,y) = +Hfy}
=/z-%2 +fy.by, approximately, Formuln &
where 82, 3y are the increments of z and g.
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Let 3¢ be the time interval between K and N.
3z L.l 3 .
5= Fae 5+ Jy- 6—:/ approximately.

Now proceed to the limit when 3¢ approaches zero, and conse-
quently 3a, 3y, 8z approach zero, and the quantities /3, 4%, 24, &e.
which are omitted in Formula 4 vanish, We bave

Dz =1, . Dyw+fy.Dy.

Thus if z = az®+ 8% where @ = cos?, y =sin¢, f, = 202,
fy=2ly, D,z = —sint, D,y = cos?, and
Dz = ~2amsint+2lycost

= —2acostsinf+2bsinfcosf = (b—a)sin2f.
[This result may also be obtained directly by writing
2z =acos®f+bsin?s,
but it is not usual that the substitution should be so simple.]

The equation does not depend on the geometrical illustration
but is universally true. For example we may take ¢, which is an
independent variable completely at choice, as identical with o,

and obtain D,z =f,+ Sy-Duy - -+ - Formula 5.

The result may be generalized to any number of variables, so
that if z =f(2,2,...z,),

Dyz = fr,« Dy +foy» Dyg ¥ oo+ foy - Dy . Formula 6,
and  Dyz=f, +f, . Dy 4...+ 1, .Uy 2, - . Formula 7.
eg. If =2+ 2,2, 4+ 2,8 = [z, 2,,7),
So =284%, o= [, =4,
and D,z =25+ 334 2,. D, 23+ (2,4 2,). D, 2,
We cannot evaluate this till we know the relationship between
z, and &, and between z, and z,.

The formula is commonly used as
32 =fr. 05 +f,,. 373+ ... +f,,- 32, . . Formula 8,

the variable on which #,,2;...z, depend not being named,
In this form it is very importent in Economies.
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In words, 1 a quantity 2 is dependent on variables »,, ,...a,,
and these variables owing to a common cause have at the same
time small increments 3z, 32,..., whose squares and products
are negligible, then the resulting increment in z is obtained by
adding the increments in @, ,..., each multiplied by the partial
derivative of z with respect to,it computed on the assumption
that the other 2's do not vary.

Mazima and minima.

In Figure D (p. 86) z is a maximum or minimum where the
tangent plane to the swrface on which P moves is horizontal, so
that when motion takes place in any direetion the point starts
along the plane and then falls below it (in the case -of & maxi-
mum), or rises above it (in the case of s minimum). Where
2z =f(z,y) and the tangent plane is horizontal, every line in it
is horizontal, so that f; = 0 = f,, since these ave the gradients
in two of the directions, .

More generslly, when z=f(2;,2;,...2;), z cannot be a
maximum or minimum, unless the effect of an infinitesimal change
of any of the 's’is to make 8z = 0. From formula 8.this will
be the ease if

O0=f =fr,= .=tz « -« Formula g,
If we know a priori, as is.often the case, that there is s maxi-
mum or a minimum in the region considered, these equations -

are sufficient. If not, terms of a higher degree in the increments
must be examined.

[eg. s=0"+2+22+4y = (@+1)%+(y+2)8—5,

is clearly & minimum when z = —1, y = —2.
In this case, f,=22+2, =0 if o= —1,
and Jy=2y+4, =0ify=—2

If, however, z=a*—2zy+29%+22+4y,
Je=20-2y+2, fy = —22+4y+4,
and these are zero if # = —4, y = -3

All we can say without further examination is that, 1f there is.

& maximum or minimum, it is n.t this pomt]
2701
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It is often the case that =, @,... are not independent, but are
connected with each other by one or more equations. The equa-
tions 0 =/, =f, =... will not then in general be consistent
with the connecting equations and the partial derivatives cannot
all vanish together. The procedure then is to eliminate as many
of the z's as there are connecting equations and proceed with the
remainder taken as independent variables,

[Thus, if z=2?+p*+22+4y and y=2+2,

t=+@+2)2+22+4 (@+2)= 222+ 10s+12,
Dyz=4z+10, =0 if 2 = —2.5,
and, since 7%,z = 4 and is positive, this gives a minimum for z,
viz.z= —4%.

This is the solution of the problem of finding the lowest point of
the given surface in the vertical plane y = z+ 2. The minimum
of z without any restriction is —5 (p. 89) when z= ~1,
y=—2]

The process of partial differentiation can -be carried on sue-
cessively. Thus, if z = (@, ), fuz = Du(/s), ¥ const, is the
second partial derived function of z with respect to #. It will
measure the change of gradient of the curve PQ (Figure D,
p. 86). Similarly £, measares the change of gradient of the
curve PR. Juy means D (f;), z const.; it ean be shown, but
not easily, that the same result is obtained from D, ( fy), ¥ const.,
8o that f,,, =f,,. This measures the change in the gradient of
the tangent parallel to the plane ZOX due to a movement of the
section in the direction OY.

The more complete statement of the equation to which
dz=1, . 324/, 3z ...

is an approximation, is
dz=f 35 +S 3+ .. :
+ 3 { o, 301 410, B2 4 ..
+2/2,2,82, . 02,4 ...} |
+ terms involving cubes and higher powers of 3z, |
where all possible squares and products are included in { }.

Formula 10,
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An expansion by this formula is used on pp. 17-18 above.
An investigation of the complete formula can be made on the
lines of that on pp. 83—¢ and formula 2, as follows.
Write
Fleoth gy B = Flh,B)
=a+bh+bk+e B+ e ikt e it +d P+ d, ik
+d AP d B+
Differentiate successively with respect to % and to £.
Fpy=b+20k+e b+ 3d 24 2d bk + d B2 +
Fop=26,+38.2d h+2d,k+ ...
Fop = eo+ 2dph + 2dgk+ ...
Take the case in each equation where 2= 0 = £,
a=F(0,0), b,=F,, ¢;=4F,;" ¢;=F,;, and similuly
b,= P, ¢;= %Fy;, in each case 0 being written for % and £
after differentiation.
But then (as on-p. 84) F, = the gradient at P of the curve PQ
(Figare D, p. 86) =1y Fx = fy,» ond similarly If’M, =0z, &

bz =f (@ +h g+ H)—f (%, 3,)
= Moot Byt § (B pya+ 28RS, o + f,,o,,o) Formula 11,
+ terms involving cubes of 4, &e. |

This result can easily be extended to any number of variables.

The. above analysis is not a proof, but & determipation of
coefficients on the hypothesis that an expansion of this kind is
possible.

With two variables f(z,y) is 2 maximum or minimum at
(%5, 30) only if f; = 0 =, and the complex term involving
squares is of the same sign for all variations ; this is the case if
i fveyn>( Sy Given this condition, f (@0:9,) isa mn.xl-
mum or minimum according s f, . is negative or positive,

Tungents.

It is often necessary to determine D,y when we are given
Sl y) = 0. f(z,y) =0 is the equation of & plane curve and-
D,y is its gradient at any point (2, y).

Write £ = £(z,3).

e X2
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Then 3z=f,.32+f,.3y and Dz =fotly Day (pp-
87-8, formulae 4 and 5).

But since z = f (2, y) is always zero, z is invariable, 3z is zero,
and D,z is zero.

S 0=fo4+f,. Dyy, or Dpyy= ~f/fy
The tangent at P, which we will call (2, ;) (see Figure A,
p- 81), is a live through (#,, y,) with gradient D,, and its
equation is therefore

y~9, = (z—a,) tan TPL = (z—z,) . D4,
that is (@—=2) So,+(y~3) -fy =0 . . Formula 12,

where f,, f,, are the results of writing » = &, y =g, in the
partial derivatives of f (%, 2).

Thus, if  flr,9) = e+ 2kay+igP—c =0,
) fo=2az+2ly, f,=2ko+2ly,
and the tangent at a point (z;,7,) on the curve is
(z—a) (2az,+ 205} + (3 —gy) (242, + 289) = 0,
that is @ (a2, +/4y) +y (hey +6y,) = oz 3+ 24, 3, +89,*

=2

Notice that we can write an equation for D,y at once from
such a curve as a2+ 242y 482 —¢ = 0, thus

2az+2hy+ Dy (2w +25y) = 0.

Integration.

Integration is the process of finding the original function when
the derived function is given, and is the reverse of differentiation.
The symbol { signifies integration, and is defined by

[r@).as=fim+c,
where C (any constant) is introduced, since evidently
D {f@)+C} =7 ().
Thus /z""dz = %z“+0, since Dz(’l‘z") =z,
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The most important use of integration in the present connexion
is in its relationship to areas.
Write f’ (z) = F{z).
Let CD be the graph of y = F (z) from & = a (04) to =4 (05)
(Figure E).
Divide 4B into » equal parts

AN,, N, N,... each = 3z = (b—a)/n.

D
P/
Q
@ 570,
PHe v
Rs
npl :
Q Rz
C R E
o A Ny Ny Ny Ny 8
Frovzz E.

1
les
-3

_ Let N,B, N,P,... be ordinates, and complete the rect
as in the figure. .
Take the case of a curve that rises from C to D ; other cases
can readily be handled in the same way.
Let 8, § be the areas of the rectilinear figures

ACR\ P, R,F,...D,and 4QF,Q, F,...D.

" Then the curvilinear area ACF, P,...D is intermediate between
8 and §. §'—8=eum of such aress as QR,, Q,R,..., and
approximately = 3z x ED, where CE is parallel to 4B. When
» is Jarge and therefore 3z is small, this difference is negligible
s compared with S, and § may be identified as the area of the
curve.

Take # so large that (8z)* can be neglected.
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Then from p. 82, formula 1,
f@a+dz)—f(a) =f (a). 39 = F(a) .00 = AC. AN,
f(a+264:)—f(n+bz) F(a+bz) o= NPl NN

f(a+n 6:2)—f(a+u—1 6.1:) I"(n+u—1 6z) .o,
Adding we have, since b = a +nd,
J(®)—=f () = sum of snch areas as ACR, N, N, P,R,N,
= § with sufficient approximation
= area of curve.

It is not difficult to verify that this final equation is absolutely
true, when we suppose # indefinitely increased.

The area of the curve is the limit of the sum of the rectangles’
F(a:) 3z from # =@ to # =&, when n is definitely increased,

= limit of 2 F(z) . dx and this is written f F(z).de.

The whole process is then summarized as

13 b .
arenof curve = / F@)do= f F'(@)dz = £ (5)~1(4) | Formuls 13.
a '3 H
Thus the area from OX to the carve y = 2* is for any value of
x
/ ordo = 35—} .0 = }
o -

Note on elimination.
Two linear equations .
az+biyte; =0, oztbyte,=0
give one pair of valoes of # and 7, viz.

T v, 1
byey— z"l €193 =34 “16:"“:61

Or we can eliminate y and obtain one equation for 2,
(@ by—ad)) z 4,0y —cyby = 0.
From two equations involving three quantities , , 2,
ax+hy+ezdd =0, az+bytcz+dy=0
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we can eliminate one (z), and obtain a relation between the others,
(ayes—aye) 2+ (bycp—bye)) y +dyey—eyd; = 0,
Or we can say, from the first equation,

z= —}1(41@+6;y+dx),
and when this value of z is written in the second equation we have
(@ +by+d)—~cy(mz+by+d) =0.

From this it can be seen that, if we have # linear equations
connecting # quantities, we can determine the quantities separ-
ately, and that, if there are more than # quantities, we can
eliminate #—1 of them and obtain one equation involving the
remainder; the procedure being virtually to solve for n—1
selected quantities from »—1 of the equations and substitute the
results in the first equation. ’

‘With linear equations, if the quantities 4,5, ¢... and » are
given the solution is only a matter of patience. When we have
thesame problem involving squares, products, or other functi
of 2, g..., the procedure is the same essentially, though it is not
always possible to carry it out by simple methods.

Thus suppose we have three equations involving four quantities

Sil,0,2,5)=0, fi(s,9,25) =0 fi(s,v,29)=0

Solve the third as an equation in y, obtaining

y=F(s,0,2).
Pus this value in the first and second, obtaining
Fi(u,v,2)=0, F,(uva9)=0.

Solve the last equation for z, obtaining # = ¢ (u,v) and put
this value in F; (,v,2z) = 0. We have then one equation in-
volving » and v only, z and y being eliminated.

e.g. Eliminate # and y from the eguations

wief4at=20, w4208 452 =30, s+z+y=10.
From the d and third ti

W23+ (10—u—2)* = 30
z=10—u+ v30—u3—20",
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Then from the first
w434 (10—n+4 +/30—ui—203)2 = 20,
which reduces to
Sub 4 oA 4 61?02 — 12045 — 120 u2®
+ 900424 58002—~20002+4100 = 0.

Thus the actual solution rapidly b laborious in quite
simple ecases.

When there are as many (1) equations as variables, and n—1
variables are eliminated, the remaining equation in one variable
is not generally linear and there may be several real roots, each
giving a set of simultanecus values for the variables. The
equations are then eaid to have multiple solutions, and some

further knowledge is meceseary to know which is appropriate to
the problem.
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