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PREFACE 

THERE seems to be no book in existence, at least in English, 
. that presents in a coherent form the mathematical treatment 
of the theory of political economy which has been developed 
duriug the past eighty years or more. The more familiar 
parts of the theory are assumed by writers or indicated in 
footnotes or appendices, the less familiar must be sought 
in the treatises or journals in which they appear; the various 
writers on the mathematical theory have proceeded from 
different hypotheses and adopted different notations, and 
students are consequently hindered in the use of this very 
valuable aid to analysis. Though the simpler applications 
of mathematics made by competent writers and lecturers 
can be appreciated by any intelligent readers and students, 
the more complicated analyses are only within the power of 
those who have mathematical aptitude, and it is for them 
that this book is arranged. The actual number of mathe
matical theorems used is quite small, but among them are 
some uses of the calcnlus which do not form part of the 
'~ elementary curricnlum, and these are brought together 

in an appendix. 
I have attempted to reduce to a uniform notation, and to 

present as a properly related whole, the main part of the 
mathematical methods used by Coumot, Jevons, Pareto, 
Edgeworth, Marshall, Pigou, and Johnson, 80 far as these 
are applied to the fundamental equations of exchange and 
to the elementary study of taxation. SinCjl I cannot be ~. 
that I have not in some cases misinterpreted thes& writers, 
I have not given many detailed references, and must cOntent 
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myself with this general acknowledgement of indebtedness. 
I have not intended to advance any new theorems in econo
mics, nor do I claim any originality in mathematical result., 
f9r the few theorems which I have not consciously adapted 
from others may ~ fact already have been published. 
Perhaps;however, there is in my analysis a more definite 
attempt than has been usual to deal equally with the hypo
theses of competition and of monopoly, to find a place for 
incomplete monopoly and to indicate how perfect competition 
and perfect monopoly are mathematically the extreme cases 
of a more general conception. 

My thanks are due to Professor A. C. Pigou and Dr. H. 
Dalton for advice on the general contents of the study, and 
to Mr. L. R. Connor who has devoted much time to cor
rection and verification of the detail. 

A.L.B. 

March,1924. 
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APPENDIX 

SUMMARY OF THE MATHEMATICAL IDEAS 
AND FORMULAE USED 

THE following notes arc oJ!ly likely to be useful to those who 
have at some time studied the elements of the calculus in an 
ordinary course. Only a very limited region of the calculus is 
used in ordinary economic reasoning, but in some respects it 
is of a kind to which prominence is not given in the usual 
mathematical training, while much attention is devoted to other 
aspects of its use, in physics, &c. It has therefore seemed worth 
while to trace the theory of the calculus from the beginning up 
to the theorems and methods used in the text, to enable readers 
to refresh their memories about the particular results wanted 
and to become used to the notation adopted. The definitions 
and proofs are not rigid in the mathematical sense, and any 
careful reader will detect uumerous lacunae. 

The results may, however, be accepted as tme in the sense and 
with the limitations used in tbe text, and complete proofs can 
readily be found by those who have sensitive mathematical 
consciences. 

Function •• 
If two variables IIJ and y are so related that y is determinate 

when IIJ is given, y is said to be an (explicit) function of IIJ. This 
relationsbip is written y = f(z}; bnt since several functions 
may be involved in the same problem, variants off (e.g. F, .p .•. } 
or other letters (x, U ... ) are used alse to express tbe functions. 

If two or more variables IIJ, y, z ... determine another variable, 
", then" =f(lIJ,y,z ... }. 

If IIJ and y are connected by any equation such as 

lIJ+y+8=0, "'+2,,'-7=0, sin(lIJ+y)-3=0, 
the relationship may be written generally as 

f(z,,,} = 0. 

f is then said to be an implicit fnnction. 
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It is often not necessary to know the form of the function nor 
to he able to evaill-ate it. Important relatione can he establiehed 
and resulte obtained from the mere knowledge that certain 
quantities determine others. 

The function contain. n\lIIlbers and often conetante (generally 
written a, lJ, c . . '.). that is quantities which remain unchanged 
while IIJ,!I ••• vary. It is necessary to know these numbers and 
coDstants if the function is to he evaluated numerically. 

/("") means the value of /(IIJ) when the particular value IIJ, is 
given to the ,general variable IIJ. 

/(:z:) is said to De continuons over the range IIJ = a to IIJ = 6, 
when :z: can take all values from a k 6, to each of which there is 
a real finite value of/(:z:), and when, if:z: makes a finite change, the 
change in /(IIJ) is also finite. This may be explained by saying 
that a continuous function can be graphically represented by 
a line drawn without the pen leaving the paper or marking a 
sbarp angle. The definition here given is only a preliminary or 
popular one, but it is sufficient for the, sequel. 

Deriveil junction. or differential coe.fftcient •• 

Let the valnes of !I corresponding to a range of values of III be 
plotted on squared paper, 80 that when I» = OM, y = MP, and 
aBI/} increases from OM to ON, P moves along a curve (or straight 
line) to Q. The line PQ is the pap" of the function; y =/(1)>) 
is the equatian of the curve (Fignre A, p. 81). 

The point P is written (I/}, y). I/} and y are the co.ordinat., 
of P; I/} is the abaciBla; y the ordinate; OX, 0 Yare the a:z:ea 'If 
.. eference. 

Let the co-ordinate. of Q' be IIJ +" and y + k, so that (if P L iB 
parallel to OX and meete NQ in L) MN = ", LQ = k. 

Draw PT.to touch the curve at P, aud join PQ and produce it. 
Then 

tan QPL = LQ+PL=k/" = (y+k-y)/" = (f(tJJ+lz)-/(tJJ»/lz. 

Now let Q approach P along the curve. The chord PQ rotates 
about P, till as Q reaches P it coincides with PT, and the angle 
QPL become. the angle TPL = 8, say. 
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Ton8 is the limit of (f(x+n)-f(Ill»)/k, when Ii approaches, 
and finally hecomes, zero, This result i. written 

tan 8 = T t/(Ill+hl-:f(lIIl (h-+O) = IJz!l* =I'(IIJ), 
L 4 

each of these expressions heing a convenient way of writing the 
process and result hriefly, 

For example, the grnph in Figure A represents 

!I =/(!1J) = 1+7",-x2
, 

r:J;an8 = IJz!l=I'(x) 
= C{1+7(",+hl -(X+;>'}-{1+7"'-IIJ'} (HO) 

= r..;7h-2;",-h
2 

= 7-2x, 

Thns when!1J = 2 (and !I = 11), the point P in the figure, 

1'(111) = 7-4 = 3. 

The tangent at P rises 8 units vertica.lly to 1 unit horizontally, 
The gradient is 3. . 

f ('") is the rats of increase of f ('") per unit change of III at 
the point ,", 

I' ('") is called the der;fJed function, the de";'fJat;fJe,' th~ 
differential coejJici.ent or the gradient of f('"). 

When f ('") is positive the curve rises to the right. Where 
f' (x) is zero <'" = 3i in the figure) the cnrve ceases to rise. 
Whenl'('") is negative (1II>3i) the curve fa.lls, 

The fIUl,"imum of f("') is when I' ('") = 0, if (as in this case) 
1'('") changes from positive to negative as III increaSes through 
the maximal position, that is if at this point the curve is concave 
to OX (and above it). 

If now we take the cnrve 

y = "'-7",+ 15, f('") = b-7. (~'ignre B.) 
/' (!1J) = 0, when," = 3i. 
/,(,")<0, when ,"<3i. /,(!1J»O, when ,">3i. 
f(,") is a minimum when.," = 3i. 

• Formerly this expreaaioD w.:. written ~. Since thi. nggesta • traction 

and Dot the result of a process, the form. bera used fa to be preferred. 
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The ",ini",,,,,, of 1(11:) i. when /' (II:) = 0 and the carve is con
vex to OX (and above it). 

These resnlte are general. The first test for the presence of 
a mwmnm or minimUm is that /' (II:) = O. To decide whether 
this gives a maximnm or gives a miaimnm it is necessary to 

3 

2 

I 

15 

2 

OL-~M~-LN~~~ ____ X 
I 2. 3 4 5 
y-I+7x-x' 

OL-~~-L~~------X 
I 2 3 4 5 
y-"'-Tx+15 

FIGUllB A. FIOUBB B. 

know the .ign of I' ("') for values of fIJ to the left aad right of 
the maximal positioa, ualess (!IS ~ -very often the case) we know 
II priqri which to expect. . 

Succe"ilJe differentiation. EJ:pan.iOlI8. 

The process o'r differentiation can (if course be applied to the 
derived faaction. We thus obtein lIhe "cOtld derivative, aad so 
on successively. 

Thus in the first example taken, 
/,(11:) = 7-211:. 

net II 
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The second derivative 

IJ'~y =/" (I))) = ~7-2 (.1'+hl-(7-2al\~_O) = -2. 

If /" (I))) is negative, f' (I))) if positive is becoming less as al 
increaseg, and if negative is becoming n~merically greater 
negatively. 

A little consideration will show that if j" (I))) i. negative the 
curve i. concave to OX (if above it), and if/,' (al) i. positive 
the curve is convex. 

The complete test for a maximum (if/,' (al) is not zero) is 
that f' (al) = 0 andj" (I))) is negative, and for a minimum that 
j' (al) = 0 and jn (I))) is positive. 

In the adjacent Figure (e) of a convex curve, PTi. the tangent 

y 
at P and meets the ordinate of 
a neighbouring point Q at T. 
PL i. parallel to Ox. 

Write 
~al = ,I = MH, ~y = k = LQ. 

~.1' and ~!I are .mall finite in
crements or • infinitesimal.' of 
al and y. 

LT = PLtsnLP'l' = ,If (al). 

---::I-~---,L-x ~y = HQ-MP 
o ;.""" c. N =j(lIJ+h)-j(l))) = LQ 

= LT+TQ=f(I)))·~IIJ+TQ. 
TQ, the departure of the corve from it. tangent, diminishes as 

Q approaches P. 
We shall im mediately give an informal proof that TQ i. eom

parahle with ,I", i.e. with (~"')'. Assuming this we have 

~y = f (I))) • ~'" + a quantity involving (a",)". . , }'ormnla 1. 

,'. ~ = f (I))) + a quantity involving ~"" and in the limit, 

when ,I is zero, ~ = IJ~. 
To obtain a rough proof of the proposition just used, draw the 

tangent at Q to meet MP at 7'. The gradient of this tangent 
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IS r {", + Il). In tbe case where Q is above T. it is eVident. (the 
curve being continuous and k small) that QT' cuts P L between 
P and L and therefore QL<V' (",+A). Hence 

Af ("')</(",+11)-/("') <!if' (",+11). 

and I(",+II)-/{"') =V'(",+cA). 
where", + ck is some value intsrmediate between", and", + A. aud 
continuity is assumed. 

The same result is obtained if the curve is concave. and this 
proposition is true for all continnous functions. 

Hence similarly 

j'(",+c")-1"("') = c1zJU("'+'l'h) 
where c1• is intermediate between 1 arid c. 

Combining these resnlts. we have 

ay =/(",+h)-f(z) = lif'(",) + ""'/" (z+c,A). 
where c and Cl are proper fractions, and k = az. 

A change in y is therefore obtained approximately by multi
plying the change in '" by the ,first derived function. the 
equation being the more exact the smaller the change in z. 

This result is fundamental in a considerable part of the appli
cation to Economics. 

A rough examination of the general expansion of f(",+k) 
can, be obtained as follows. 

T.ke z as fixed, say "'0' and" as variable. Write 
1("0+11) = F(II). 

Thus in Figure C let 

OM = .... lIP =/("'.). NQ =/(",.+11) = F(It). 
Snppose that F(") is expansible in ascending powers of" with 

all the terms finite and the series convergent. i. e. tends to a 
unique finite limit when the number of terms is increased 
indefinitely. 

Write'F(II) = a.+all1+a.k"+a.h'+a.It'+ .... where a •• al'" 
are constants to be determined. 

Differentiate successively with regard to A. 
F' (II) = al + 2a.h+ 3a,h'+4a.ks+ .. . 
FU(A) = 2a,+ 3. 2 a," + 4 • 3".,,"+ .. . 
rU(II) = S. 2a.+4. 3. 2a.k+ .... 
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In each of these equations take the case where " = O. 

a. = F(O), <It = F' (0), a. = ~ F" (0), 

aa=2\F"'(O), ... a.=~}i'r{O) .•• , 
where F' (0) is the result of writing h = 0 after F(") is differen
tiated and 80 on. 

Then F' (0) is the gradient of the cnrve PQ at P and therefore 
is the same as f' ("'.), that is the result of writing IIJ = /II. in the 
derivative of f(IIJ). Similarly F" (0) = I" (/II.) and so on. 

We have then 

f(IIJ.+n) = F(n) =I(IIJ.) + It/' (IIJ.) 

+ ~h'j" (IIJ.)+ ••. ~ k' f' (IIJ.) + ... 
Formula 2, 

the process being continued as far as we please. 
This is Taylor'. Series. 
In the functions need in the text it is generally the case that 

the succeesive terms become rapidly smaller over the part of the 
curves tbat are considered in the neighbourhood of equilibrinm. 
Snch an assumption is mnch more hazardons when larger changes 
are considered, as in the cases of taxation and monopoly 
(pp. 60 and 75 seq). 

Standard derivativu and .... le, '!/ differentiation. 

The following are standard derived functions, as shown in any 
text-book on the calcnlus : 

.D" (111") = ,""'-1, 
where IS is any positive or negative integer or fraction; 

e.g. .D".//II = illJ-t • 

.D,,{a") = a" .log.a. .D" ( ... ) = .... 

])" Qog,,/II) =! .log"e. .D"Qog."') =!. 
'" /II 

])"(sin,,,) = COS"', .D"(cos,,,) = -sin"" .D,,(tan"') = eec'"" 
where /II is the radian measure of the angle. 
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Also the following working rules are easily proved from the 
definition of a derived function: 

D", (of(.,» = tJ .f' ( .. ) ; 
e.g. D", (3.,) = 3, Il" (3"') = a x 2., = 6.,. 

Il,.j (a.,) = if' (aID) ; 

e.g. D".m(tJID) = acostJID. 

Il",{f(.,)+a) =f' (ID); 

e.g. D., (.,.+ 3) == 2m. 

]).,/(ID+a) =f' (.,+a); 
e.g.' D., (;10 + a)1 = 2 (ID+a), for if f(.,) = .,., I' (.,) = 2..,. 

These rules may be combined, thus: 

D., {al(h.,+c)+d} = ah .1' (6;10+ c) ; 

e.g. D.,{2sin(3z+4)+5} = 2X3cos(3z+4) = 6 cos (aID + 4). 

If f(ID) and </> (ID) are two functions of ID, the following rules 
ean be obtained : 

D., {/(.,)±</> (ID)) =f' (.,)±cp' (Jl); 

e. g. D., (.,s + log.") = 2m + I/ID. 

D., {/(") X </>(.,)} =/' (.,) X </> (.,)"+/(") X </>' (.,); 

e.g. D.,(.,ssin.,) = 2.,sinID+.,sc08.,. 

D", {/(")+</> (;IO)} = {f' (.,) x </> (.,) -/(") x </>' ("')} +(</> (.,»1; 

e.g. D", (tan.,) = D., (sin .,+cou) 
= {C08 IDxcos.,-sin., X (-sin.,)}+cosl ., 

as above. 
= (c08'ID+sin2 .,)+cos·" = 1 +tan2 ID = SeelID, 

If y = F(u), where" =/(ID), 

~=~ x ~=F(,,+&u)-F(") x/IID+a")-f(ID), 
aID au aID au aID 

identically. 

In the limit, obtained by diminishing aID and consequently 
au and ayalso, 

D",'1 = DuF( .. ) x D.,/(z); 
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e.g. if F stands for log,. f for sin. and so ,,= sin "' • 

.D", {log, (sin "')} = .Du (log, ,,) x.D" (sin "') 

=! X cos'" = ~ x cos'" = cot",. 
U Bln:tJ 

.D" {sin ("'o)} = 2", cos (",0). 

These forms and rules are sufficient for the differentiation of 
common functions of one variable. 

F"flcti07l' of two or more fJariahllll. Partial differentiation. 

Let a variable,. depend on two other variables", and y. so that 
,. = f ("" y). and let ", and y depend on another variable t. 
Required to connect a change in t with a change in z. 

I~-----L----~-------X 

Fnnm.B D. 

To fix ideas. suppose a point to be moving in the pIane XOY 
(Figure D), and at any time t to be at the point K ("" y). Let 
a vertical KP (z) be erected whose height is f("'. y). 'l'ben aa 
the point moves about the pIane XOr, P will move always 
vertically over the point on a surface whose equation is 

z =fC"'.y). 

Consider movements parallel to OX, i. e. to the plane ZOX. 
If the point moves from K to L. y is constant (say yJ while II 

varies, and P traces out a plana curve PQ. The gradient at 
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P of this curve is .D.,/(IIJ,yJ, that is the result of differentiating 
f(lIJ,yJ where Yl does not vary. This expreBBion is variously 
written 

~z ' 
.D., (z) (y oonst), i,;' I' (lIJ,y) (y const), I." and "., : Formula 3. 

f."is at once the briefest and most convenient of these forms. 
It means the result of the proceBB of differentiation, with respect 
to IIJ applied to the function, y being kept constant; e. g. if 

1(IIJ,y) = a",o + hyl, I., = 2a11J, lu = 2hy. 

This quantity .fz is called the' partial d."il1ed III ... tiQfJ (or 
derivative or differential coefficient) with respect to IIJ. 

If the point P had moved along the tangent at P in the plane 
of PQ it wonld have risen .if." to T, when IIJ increased to ID+A, 
A being XL. 

Similarly if we take movements pa.rallel to or or the plane 
zor, let the point in the plane xor move from K to M 
(KM=A:) and P trace the curve PRo Its initial gradient, 
would be I y , and if it had moved along the tangent to PR it 
would have risen kly • 

Now if A and A: axe small the heights of Q and R only differ 
from those obtained at T and the corresponding point under R 
by quantities involving A" and"" (by formula I), which are 
therefore very small The rises in the two paths are therefore 
very nearly Itl., and if,. , 

Further it can be shown (though the complete proof is diffi
cult) that the rise along the path Q8, where KLNM is a rect
angle and N8 is vertical, differs from the rise along PR only by 
a quantity of the Oluer 11k. 

If, t.hen, the point in the plane xor moves from K to N by 
ap.y path and in consequence a line F8 is traced on the surface, 
the increase of height from P to 8 differs from AI., + if, by a 
quantity involving A", 1c', or ItA: as factors. Write a" for this 
increase. 

a" = e+a .. -z =/{tIJ+A,y+k)-f(tIJ,y) = lif.,+lfy 1 F la 
.,. ... . tel ,ormu 4, =J.,.utIJ+Jy.uy,approxlma y, : 

where ~IIJ, ~y are the increments of IIJ and y. 
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Let at be the time interval between K and :N. 

&z ~", ~.V • at = /" . ~ + lu . ~ appronmately. 

Now proceed to the limit wben ~t approaches zero, and conse
qoently a"" ay, a. approach zero, and the qoantities hi, gl, M,&c. 
which are omitted in Formula 4 vanish. We have 

lJ,. =1". lJ,"'+ly ' lJt!J. 
Thus if "= o",'+l>y', where", = cost, y = sint, I" = 2 a"" 

fy = 2by, lJ,lIJ = -sin f., lJ,y = cos t, and 

lJ,z = -2a",sint+2bycost 
= -2acostsint+2hintcost = (6-a)sin2t. 

[This resnlt may also be obtained directly by writing 

"= acos1t+bsin"t, 

bot it is not nsnal that the substitotion shoold be 80 simple.] 

The equation does not depend on tbe geometrical illustration 
but is universally true. For example we may take t, wbich is an 
independent variable completely at choice, as identical with IIJ, 
and obtain lJ,," =1" +1". lJ"y . • • Formula 5. 

The r88ult may be generalized to any number of variables, 80 

that if Z =/(IIJ.", .... IIJ,.), 
lJ," =1"l.lJ,IIJ,+/",.lJt"'.+ ... +f"".lJ,IIJ,.. Formula 6, 

and lJ"l"=/"t+I",.lJ",IIJ.+ ... +I"o.lJ",,,,,,,, Formula 7. 

e.g. If "= "'1" +IIJ."'. + "'."'. =/"("'.,!J!,."'.), 
1"t=,2"'1+1IJ., f"t=lIJa, f",,="'.+ lIJi, 

and lJ",z = 2"'.+IIJ'+"'J.lJ"1"'1+{IIJ.+",.).lJ",IIJ •• 

We cannot evaluate this till we know the relationship between 
IIJ. and .... and between "'. and "'" 

The formula is commonly used aa 

a" =/"t. a"',+I ... · allJ.+ ... +/"o' 3",,. •• }'ormula 8, 

the variahle on which "',. "' .... 11. depend not being named. 
In this form it is very im porttlnt in Economics. 
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In word", 11" a quantity II is dependent on variables "'I' "' •••• "'n' 
and these variables o,\"ing to a common cause have at the same 
time small increments a"'I' a"', ...• whose squares and products 
are negligible, then the resulting increment in I! is obtained by 
adding the increments in "'1> "'s"" each mnltiplied by the partial 
derivative of z with respect to,it computed on the assumption 
that the other ",'s do not vary. 

Maflrim4 Q1ul mi'lima. 

In Figure D (p. 86) II is a maximum or minimum where the 
tangent plane to the sUliace on which P moves is horizontal, so 
that when motion takes place in any direction the point starts 
along the plane and then falls below it (in the case ·of a maxi
mum). or rises above it (in the case of a minimnm). Where 
I! =/("',y) and thc tangent plane is horizontal, evel'y line in it 
is horizontal, so that Iz = 0 =/y , since these al'e the gradients 
in two of the directions. 

More generally. when I! =/("'1' 11' ..... Q;n), II cannot be a 
maximum or minimum, unless the effEct of an infinitesimal change 
oi' any of the ",'. is to make az = o. From formula 8 this will 
be the case jf 

o =/zl =1,., = ... =1,"" •.• Formula 9. 

If we know a priori. as is.often the case, that there is a maxi
mum or a minimum in the region considered, these squations 
are sufficient. If n~t, terms of a higher degree in the increments 
must be examined. 

[e.g. 11= "'"+y'+2m+ 4y = (.71+ 1)'+(y+2)"-6, 

i. clearly n minimum when '" == -1, Y = - 2. 

In this case. Iz = 2.71+2, = 0 if", = -1, 

and f y =2y+4,.,=Oify=-2 .. 

If, however, II = ","-2.71Y+ 29'+ 2.71+ 4;, 

Iz = 2",-2y+2, 19 =. -2m+4Y::HI, 

and these are zero if aJ = - 4, Y = ~ ... 
All we can say without further examination is that, if there is. 

a m""';ilJ\um or minimum, it is at this point.] : 
1711 N' 
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It is often the case that "'to "' •••• are not independent, hut are 
connected with each other by one or more equations. Tb.e equa
tions 0 = fz, =/." = ... will not then in general be consisteut 
with the connecting equations and the partial derivative. cannot 
all vanish together. The procedure then is to eliminate as many 
of the ",'s as there are connecting equations and proceed with the 
remainder taken as independent variables. 

[Thus,if z=",2+,r+2",+4y and y=",+2, 

Z = "'+(",+2)'+2",+4 ("'+ 2) = 2.,0+ 10 .. + 12, 
Dzz = 4 .. + 10, = 0 if", = -2·5, 

and, since lJ2zz = 4 and is positive, this gives a minimum for t, 
viz. z= -1' 

This is the solution of the problem of finding the lowest point of 
the given snrface in the vertical plane 11 = "'+ 2. The minimum 
of z without any restriction is -5 (p. 89) when", = -1, 
y= -2.] 

The process of partial differentiation can -be carried on suc
cessively. Thus, if z =1("',11), fzz = Dz(f,,), y const., is the 
second partial derived function of z with respect to "'. It will 
measure the change of gradient of the curve PQ (Figure D, 
p. 86). Similarly fgy measures the change of gradient of the 
cnrve PRo Izy means Dy(fz), '" const.; it can be shown, hut 
not easily, that the same result is ohtained from D,,(lvl, y const., 
so that /zy = 1 Y". This measnres the change in the gradient of 
the tangent parallel to the plane ZOX due to a movement of the 
section in the direction 01'. 

The more complete statement of the equation to which 

at =1 .... aa"+/,,,. a",.+ ... 
is an approximationJ is 

az =! .... b, +1 .... 3"',+ ... 
+1{f.,.z.(a'",)'+/ ...... (3'".J·+... FlO ormoa1, 

+2/" .... 8,",.3,".+ ... } 
+ terms involving cobes and higher powers of 3,". 

where all possihle squares and producte are inclodoo in { }. 
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An expansion by this formnla is used on pp. 17-18 above. 
An investigation of the complete formnla can be made on the 

lines of that on pp. 83-4 and formula 2, as follows. 
Write 

1("'0+ A,yo+ 1) = F(h, 1) 
= /J +6,.1 +6.1+ c,A' + c.hk+ c.k"+ti,As+a,,,21 

+ ti.1Ik" + tl,k" + ..•• 

Differentiate successively with respect to " and to 1. 

Flo = 6, +2c,1I+c,1+3a,"'+2tl.h1+d.'!;'+ ..• 
Fhh = 2c, +3. 2a,"+2t1,1+ ... 
Fhk = c2 +"2«.A+2«.1+ ..•. 

Take the case in each equation where 11 = 0 = 1. 

/J = F(O, 0), h, = Flo' ", = !Fhh: ", = Fhk , and similarly 
6, = Fk , c. = ,Fkk • in each case 0 being written for 11 and 1 
after differentiation. 

Bnt then (as on p. 84) Fh = the gradient at P of the curve PQ 
(FigureD,p.86) =1.,. Fh =fy,. and simil''''ly F I•I• =1.,.,. &c . 

. ". ~z =/(",.+A.'yo+1)-/("'0'Yo) " 
= hl.,+ify, +'(A~.,., +2hkf.,y, +1~U'Y'): Formula 11. 

+ terms involving cubes of A. &c. i 
This result can easily be extended to any number of variables. 
The above analysis is not a proof, but a determipation of 

coefficiente on the hypothesis that an expansion of this kind is 
pOBSible. 

With two variables/("'.y) is a maximum or minimum at 
("'o.Yo) only if I., = 0 =Iy, and the complex term involving 
squares is of the same sign for all variations j this is the case if 
I., ... xly,u, > (I,.",)'. Given this condition. I("'o.!!.) is a maxi
mum or minimum according as I.,., is negative or positive. " 

TaIlgelll •• 

It is often necessary to determine IJ.y when we are given 
I("',y) = o. I(m.y) = 0 i. the equation of " plane curve and 
IJ.y is its gradient at any point ("'.y). 

Write. =/("',y). 
.'" 1(2 
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Then az=fz.afIJ+I,.ay and IJzz=/z+I"IJzY (pp. 
87-8, formulae 4 and 5), 

But since z = 1(I11,y) is always zero, z is invariable, h is uro, 
and Dzz is zero, 

,',0 =/z+/y' Dz!J, or IJzY= -/zll,· 
The tangent at P, which we will call (111" YI) (see Figure A, 

p. 81), i. a line through (fIJI' yJ with gradient DzY, and ita 
equation is therefore 

Y-YI = (fIJ-l11l ) tan TPL = (fIJ-flJJ, D:y, 

that is (fIJ-flJJ ,/z, +(y-yJ .1" = 0, , Formula 12, 

where 1",,1'1' are the results of writing 111 = 1111 , Y = YI in the 
partial derivatives of I (iii, y). 

Thus, if l(fIJ,y) =am'+2h"'!l+by'-c = 0, 

Iz= 2"",+2ky, 1'1= 2h1l1+26y, 

and the tangent at a point (flJl'YI) on the curve is 

("'-I11J (2""'1 + 2ny,) + (y-yJ (2nfIJ, + 26y,) = 0, 

that is 111 (""', +hyJ +y (lIZ, +bYt) = U,"+ 2h1l1'YI + by,' 
=":. 

Notice that we can write an equation for Dzy at once from 
such a curve a. a",I+2h1l1y+6y'-c = 0, thus 

2u+2hy+Dz y(2fll11+26y) = 0. 

Intl!J1'ation, 

Integration is the procese of finding the original function when 
tbe derived function is given, and is the reverse of differentiation, 

The symbol J signifies integration, and is defined by 

11'(",)·tk =1(111) +C, 

where C (any constant) is introduced, since evidently 

Dz{f(fIJ)+C} =/'("')' 

Thns J z"-l dz = ~111"+C, since Dz(~z") = zn-' , 
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The most important use of integration in the present connmon 
is in its relatiollllhip to areas. 

Write "(31) = F(z). 
Let CIJ be the graph ofy = F(z) from 11= II (O.A) to 11= 6(0B) 

(Figure E). 
Divide .AB into • eqoal parts 

.AN,.. N1N .... each = az = (6-11)/ .. 

o 

~~+-+-+-----~E 

o B 

Let Nl P.. Ns P s... be ordinates, and complete the rectangles 
as in the figure. 

Take the ease of a carve that rises from C to IJ; other eases 
can readily be handled in the oame way. 

Let 8. $' be the areal! of the rectilinear ligures 

.ACR,.P.R.P. .•• IJ. and .AQP. QIP. .•• IJ. 

Then the curvilinear area .ACP.p •••• IJ is intermediate between 
8 and $'. $' - 8 = sum of such areas as QR,.. Ql R..... and 
approximately = az x EIJ. where CE is parsIlel to..AlJ. When 
• is large and therefore hi is smaIl. this difference is negligihle 
as compared with 8. and 8 may be identified as the area of the 
carve. 

Take • 80 large that (az)· ('&D be neglected. 



94 APPENDIX 

Then from p. 82, formula 1, 

f(aHfJJ)-f(a) =1' (a). ~fJJ = :F (a). ~fJJ = AC. J.N, 

f(a+2~fJJ)-f(aHfJJ) = F(aHfJJ). ~fJJ = NIP"· N1N, 

f(a+".afJJ)-f(a+n=1 ~fJJ) = F(a+"-1 ~fJJ). ~fJJ. 

Adding we have, since 6 = a + "~3', 
f(6)-f(a) = sum ofsnch areas as J.CR1N. N,P,R.N, 

= S with sufficient approximation 
= area of curve. 

It is not difficult to verify that this 6nal equation is absolutely 
true, when we euppose " inde6nitely increased. 

The area of the curve is the limit of the sum oC the rectangles • 
F(fJJ). ~fJJ from fJJ = a to fJJ = 6, when" i. de6nitely increll8ed, 

• b 

= limit of~ F(.,). ~III and this is wtitten fa F(.,) .d.,. 

The whole process is then summarizp,d as 

area of curve = J.bF(fJJ)dtJJ= Ia/(fJJ)d"=f(b)-f(G) I Formula 13. 

Thus the area from OX to the curve y =.,' is for any value of III 

,'" rdfJJ = ~"'-l. 0 = 1"'. Jo • 

Note Oft elimination. 

Two linear equations 

~fJJ+bly+Cl = 0, ", • .,+6,y+c, = 0 

give one pair of valnes oC fJJ and y, viz. 

'" 1/ 
61c.-6.c1.= cla,~c~~ = aI6.-a.61• 

Or we can eliminate y and obtain one equation for III, 

(~b.-".~JfJJ+CI6.-c.61 = o. 
From two equations involving three 'quantitiea e, y, e, 

~",+61Y+"'Z+~ = 0, ".:r:+6.y+c.z+tl. = 0 
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we can eliminate one (z). and obtain .;, relation between the others, 

( ..... -II.cJ.,+ (6.c.-6.cJ 1 +a, •• - •• a. = o. 
Or we can say. from the first equation, 

z = - .!.( ... .,+6.,+tlJ. c,. 
and when this value of z is written in the second equation we bave 

•• (a • .,+6.y+a.)-c.( ... .,+6,' + a,) = o. 
From this it caD. be seen that, if we have .. linear equations 

connecting" quantities. we can determine the quantities separ
ately. and that. -if there are more than " quantities, we, can 
eliminate .. - 1 of them and obtain one equation invol ring the 
remainder; the procedure being virtually to eolve for ,. -1 
selected quautities from ,,-1 of the equations and Bubstito,te the 
results in the first equation. 

With linear equations, if the quantities II. 6, ••.• and ,. are 
given the eolution is only a matter of patience. When we have 
the earne problem involving squares, producte, or other functions 
of ." , •••• the procedure is the same essentially, thou,gh it is not 
always possible to carry it out by simple methods. 

Thus suppose we have three equations involving fonr quantities 

/'("''',Z,1)=0. f.(", ",".1) = 0, f.(II,fI,",y) = O. 

Solve the third as an equation in y. obtaining 

y=F(u,,,,.,). 
Put this valne in the first and second, obtaining 

11; Cu, ",.,) = 0, F. C .. , fI,.,) = o. 
Solve the la.t equation for." obtaining., = 4> (u. ,,) and put 

this valne in F, (u, fI,") = O. We have then one equation in
volving " and fI only, ., and 1 being eliminated. 

e.g. Eliminate III and 1 from the equation. 

III+v"+r = 20, .. ·+2v'+" = 30, 11+"+1 = 10. 

From the second and third equation. 

,,"+2 • .2+(10-"-111)1= 30 
III = 10-,,± .,130- .. 1-2,,". 
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Then Crom tbe first 

.. '+~'+ (1O-"t '11"30-112 -20')2 = 20, 

wbicb reduces to 

5",+ v'+ 6,,2~-120"'-120u~' 
+900u'+580~'-2000"+100 = O. 

Thus tbe actna! solution rapidly becomes laborious in quite 
simple cases. 

Wben there are as many (,,) equations 88 variables, and .. -1 
variables are eliminated, tbe remaining equation in one variable 
is not generally linear and tbere may be several real roots, each 
giving a set of simultaneooa values for tbe variables. The 
equations are tben said to have multiple solutions, and som.e 
furtber knowledge is DeceBBBry' to know whicb is appropriate to 
the problem. 
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