Dhenanjayaras Gadgit Litrary
 тімпиим
 GIPE-PUNE-064925

THE

MATHEMATICAL GROUNDWORK
 0 F
 ECONOMICS

SERVANTS OF INDIA SOCIETY'S
BRANCH LIBPARY
BOMBAY

THE

MATHEMATICAL GROUNDWORK OF

 ECONOMICS

 ECONOMICS}

AN INTBODUCTOEY

TfEATISE

EY
A. Le BOWLEYY, Sc.D., F.B.A.

OXFORD
AT THE CLARENDON PRESS
1924

Oxford University Press

London Edinburgh Glasgow Copenhagen
 New York Toronto Melbourne Cape Town
 Bombay Calcutta Madras Shanghai

Humphrey Milford Publisher to the University

$$
\begin{gathered}
X:(B 28) \\
F 4 \\
64925
\end{gathered}
$$

Printed in England

PREFACE

There seems to be no book in existence, at least in English, that presents in a coherent form the mathematical treatment of the theory of political economy which has been developed during the past eighty years or more. The more familiar parts of the theory are assumed by writers or indicated in footnotes or appendices, the less familiar must be sought in the treatises or journals in which they appear; the various writers on the mathematical theory have proceeded from different hypotheses and adopted different notations, and students are consequently hindered in the use of this very valuable aid to analysis. Though the simpler applications of mathematics made by competent writers and lecturers can be appreciated by any intelligent readers and students, the more complicated analyses are only within the power of those who have mathematical aptitude, and it is for them that this book is arranged. The actual number of mathematical theorems used is quite small, bat among them are some uses of the calculus which do not form part of the usual elementary curriculum, and these are brought together in an appendix.

I have attempted to reduce to a uniform notation, and to present as a properly related whole, the main part of the mathematical methods used by Cournot, Jevons, Pareto, Edgeworth, Marshall, Pigou, and Johnson, so far as these are applied to the fundamental equations of exchange and to the elementary study of taxation. Since I cannot be sure that I have not in some cases misinterpreted these writers, I have not given many detailed references, and must content
myself with this general acknowledgement of indebtedness. I have not intended to advance any new theorems in economics, nor do I claim any originality in mathematical results, for the few theorems which I have not consciously adapted from others may in fact already have been published. Perhaps, however, there is in my analysis a more definite attempt than has been usual to deal equally with the hypotheses of competition and of monopoly, to find a place for incomplete monopoly and to indicate how perfect competition and perfect monopoly are mathematically the extreme cases of a more general conception.

My thanks are due to Professor A. C. Pigou and Dr. H. Dalton for advice on the general contents of the study, and to Mr. L. R. Connor who has devoted much time to correction and verification of the detail.
A. L. B.

March, 1924.

CONTENTS

CHAP. Page
INTRODUCTION 1
I. SIMPLE EXCHANGE OF TWO COMMODITIES.
§ 1. Marginal utility, indifference curves, offer curves 5
2. Equilibrium of exchange 8
3. The contract curve 9
4. The demand and supply curves. 9
5. Elasticity of demand 10
6. Money prices 12
7. The atility surface 14
Addrnduk : Independent, complementary, and alter- native utility 14
II. MULTIPLE EXCHANGE.
§ 1. Notation 19
2. Equations of equilibrium for perfect competition 20
3. Equations of equilibriom for monopoly 22
4. Aggregate demand and supply 25
Note: On universel monopoly 26
III. PRODUCTION.
§ 1. Factors of production 28
2. The law of substitution. Joint demand for factors 28
8. The supply curve 30
4. The integral supply curve 31
5. Elasticity of supply 32
6. Increasing, constant, and diminishing retarn 33
7. Marginal supply prices 34.
8. Several manafacturers, one commodity 36
9. Alternative demand for factors; several commo- dities 88
CHAP. Pag\#IV. SUPPLY AND DEMAND OF THE FACTORSOF PRODUCTION.
§ 1. Disutility. Labour 40
2. Capital 42
3. Equation of supply 43
4. Equation of demand 43
5. The share of the factors 44
Notation 46
V. GENERAL EQUATIONS OF SUPPLY AND DE- MAND IN A STATIONARY POPULATION.
§ 1. Interdependence of equations 47
2. Supply equations 48
3. Demand equations 50
4. Combination of supply and demand 51
5. Stability of equilibrium 53
VI. APPLICATIONS OF THE GENERAL EQUA- TIONS.
§ 1. The inclination of the demand curve 54
2. The case of alternative demand 56
3. Demand and supply of one commodity; prices and quantities under competition and under monopoly 58
4. Various questions of monopoly and combination : I. Manufacturers. II. Factors. III. Bilateral. IV. Consumers 60
5. Joint and composite demand and supply. De- rived demand 65
VII. SURPLUS VALUE, RENT AND TAXATION.
§1. Producers' surplus 69
2. Economic rent 70
3. Taxation, in the case of competition 72
4. Taxation in the case of producer'a monopoly 75
APPENDIX. SUMMARY OF THE MATHEMATI- CAL IDEAS AND FORMULAE USED 78
INDEX 97

APPENDIX

SUMMARY OF THE MATHEMATICAL IDEAS AND FORMULAE USED

The following notes are only likely to be aseful to those who have at some time studied the elements of the calculus in an ordinary course. Only a very limited region of the calculus is used in ordinary economic reasoning, bat in some respects it is of a lind to which prominence is not given in the usual mathematical training, while much attention is devoted to other aspects of ite use, in physics, \&c. It has therefore seemed worth while to trace the theory of the calculus from the beginning up to the theoreme and methods used in the text, to enable readers to refresh their memories about the particular results wanted and to become used to the notation adopted. The definitions and proofs are not rigid in the mathematical sense, and any careful reader will detect numerous lacnase.

The results may, however, be accepted as true in the sense and with the limitations used in the text, and complete proofs can readily be found by those who have sensitive mathematical consciences.

Functions.

If two variables x and y are so related that y is determinate when \boldsymbol{x} is given, y is said to be an (explicit) function of x. This relationship is written $y=f(x)$; but since several functions may be involved in the same problem, variants of f (e.g. $F, \phi .$.) or other letters ($x, U . .$.) are used also to express the functions.

If two or more variables $x, y, z \ldots$ determine another variable, u, then $u=f(x, y, z \ldots)$.

If x and y are connected by any equation such as

$$
x+y+8=0, z^{2}+2 y^{2}-7=0, \sin (x+y)-3=0,
$$

the relationship may be written generally as

$$
f(x, y)=0 .
$$

f is then said to be an implicit function.

It is often not necessary to know the form of the function nor to be able to evaluate it. Important relations can be established and results obtained from the mere knowledge that certain quantities determine others.

The function contains numbers and often constanta (generally written $a, b, c \ldots$), that is quantities which remain unchanged while $a, y \ldots$ vary. It is necessary to know these numbers and constants if the fanction is to be evaluated numerically.
$f\left(x_{1}\right)$ means the value of $f(x)$ when the particular value x_{1} is given to the general variable a.
$f(x)$ is said to be continuous over the range $x=a$ to $x=b$, when x can take all values from a tc b, to each of which there is 2 real finite value of $f(x)$, and when, if x makes a finite change, the change in $f(x)$ is also finite. This may be explained by saying that a continuous function can be graphically represented by a line drawn without the pen leaving the paper or marking a sharp angle. The definition here given is only a preliminary or popular one, but it is sufficient for the sequel.

Derived functions or differential coefficients.

Let the values of y corresponding to a range of values of x be plotted on squared paper, so that when $x=O M, y=M P$, and as $\boldsymbol{\infty}$ increases from $O M$ to $O N, P$ moves along a curve (or straight line) to Q. The line $P Q$ is the graph of the function; $y=f(x)$ is the equation of the curve (Figure A, p. 81).

The point P is written $(x, y) . x$ and y are the cooordinatee of $P ; x$ is the abscissa; y the ordinate; $O X, O Y$ are the axes of reference.

Let the co-ordinates of Q be $a+h$ and $y+k$, so that (if $P L$ is parallel to $O X$ and meets $N Q$ in L) $M N=h, L Q=k$.

Draw P T to touch the curve at P, and join $P Q$ and produce it. Then
$\tan Q P L=L Q \div P L=k / h=(y+k-y) / h=(f(x+h)-f(x)) / h$.
Now let Q approach P along the curve. The chord $P Q$ rotates about P, till as Q reaches P it coincides with $P T$, and the angle $Q P L$ becomes the angle $T P L=\theta$, say.

Tan θ is the limit of $(f(x+h)-f(x)) / h$, when h approaches, and finally becomes, zero. This result is written

$$
\tan \theta=\mathrm{L}^{\mathrm{t}} \frac{f(x+h)-f(x)}{h}(h \rightarrow 0)=D_{x} y^{*}=f^{\prime}(x),
$$

each of these expressions being a convenient way of writing the process and result briefly.

For example, the graph in Figure A represents

$$
y=f(x)=1+7 x-x^{2} .
$$

$$
\begin{aligned}
\operatorname{Tan} \theta & =D_{z} y=f^{\prime}(x) \\
& =\coprod^{t} \frac{\left\{1+7(x+h)-(x+h)^{2}\right\}-\left\{1+7 x-\alpha^{2}\right\}}{h}(h \rightarrow 0) \\
& =\coprod \frac{t h-2 h x-h^{2}}{h}=7-2 x
\end{aligned}
$$

Thus when $2=2$ (and $y=11$), the point P in the figure,

$$
f^{\prime}(x)=7-4=3
$$

The tangent at P rises 3 units vertically to 1 unit horizontally. The gradient is 3.
$f^{\prime}(x)$ is the rate of increase of $f(x)$ per unit change of ∞ at the point x.
$f^{\prime}(x)$ is called the derived function, the derivative, tha differential coefficient or the gradient of $f(x)$.

When $f^{\prime}(x)$ is positive the carve rises to the right. Where $f^{\prime}(x)$ is zero ($x=3 \frac{1}{2}$ in the figure) the carve ceases to rise. When $f^{\prime \prime}(x)$ is negative ($x>3 \frac{h}{2}$) the curve falls.

The maximum of $f(x)$ is when $f^{\prime}(x)=0$, if (as in this case) $f^{\prime}(x)$ changes from positive to negative as a increases through the maximal position, that is if at this point the carve is concave to $O X$ (and above it).

If now we take the carve.

$$
\begin{aligned}
& y=x^{2}-7 x+15, f^{\prime}(x)=2 x-7 . \quad \text { (Figure B.) } \\
& f^{\prime}(x)=0 \text {, when } x=3 \frac{3}{2} . \\
& f^{\prime}(x)<0 \text {, when } x<3 \frac{1}{2} . f^{\prime}(x)>0 \text {, when } x>3 \frac{1}{2} . \\
& f(x) \text { is a minimum when } x=3 \frac{3}{2} .
\end{aligned}
$$

[^0]The minimum of $f(x)$ is when $f^{\prime}(x)=0$ and the carve is convex to $O X$ (and above it).

These results are general. The first test for the presence of a maximum or minimum is that $f^{\prime \prime}(x)=0$. To decide whether this gives a maximam or gives a minimam it is necessary to

Figure A.

Ftaure B.
know the sign of $f^{\prime}(x)$ for values of \boldsymbol{p} to the left and right of the maximal position, unless (ps is very often the case) we know a priori which to expect.

Successive differentiation. Expansious.
The process of differentistion can of course be applied to the derived function. We thus obtain the second derivative, and so on successively.

Thus in the first example taken,

$$
f^{\prime}(x)=7-2 x
$$

8761

The second derivative

$$
D_{x}^{2} y=f^{\prime \prime}(x)=\mathrm{L}^{\mathrm{t}} \frac{7-2(x+h)-(7-2 x)}{h}(h \rightarrow 0)=-2
$$

If $f^{\prime \prime}(x)$ is negative, $f^{\prime}(x)$ if positive is becoming less as a increases, and if negative is becoming numerically greater negatively.

A little consideration will show that if $f^{\prime \prime}(x)$ is negative the curve is concave to $O X$ (if above it), and if $f^{\prime \prime}(x)$ is positive the curve is convex.

The complete test for a maximum (if $f^{\prime \prime}(x)$ is not zero) is that $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)$ is negative, and for a minimum that $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)$ is positive.

In the adjacent Figure (C) of a convex curve, $P T$ is the tangent at P and meets the ordinate of
 a neighbouring point Q at T. $P L$ is parallel to $O X$.

Write $\delta x=h=M N, \quad \delta y=k=L Q$.
δx and δy are small finite increments or 'infinitesimals' of x and y.
$L T=P L \tan L P T^{\prime}=h f^{\prime}(x)$. $\delta y=N Q-M P$

$$
\begin{aligned}
& =f(x+h)-f(x)=L Q \\
& =L T+T Q=f^{\prime}(x) \cdot \delta x+T Q .
\end{aligned}
$$

$T Q$, the departure of the carve from its tangent, diminishes as Q approaches P.
We shall immediately give an informal proof that $T Q$ is comparable with h^{2}, i.e. with $(\delta x)^{2}$. Assuming this we have $\delta y=f^{\prime \prime}(x) \cdot \delta x+\mathrm{a}$ quantity involving $(\delta x)^{2}$. . . Formula 1. $\therefore \frac{\partial y}{\partial x}=f^{\prime}(x)+$ quantity involving ∂x, and in the limit, when h is zero, $\frac{\partial y}{\partial x}=D_{x} y$.

To obtain a rough proof of the proposition just used, draw the tangent at Q to meet $M P$ at T^{*}. The gradient of this tangent
is $f^{\prime}(x+h)$. In the case where Q is above T, it is evident (the corve being continuous and h small) that $Q T^{\prime}$ cuts $P L$ between P and L and therefore $Q L<h f^{\prime}(x+h)$. Hence

$$
\begin{gathered}
h f^{\prime}(x)<f(x+h)-f(x)<\eta f^{\prime}(x+h), \\
f(x+h)-f(x)=h f^{\prime}(x+c h),
\end{gathered}
$$

and
where $x+c h$ is some value intermediate between x and $x+h$, and continuity is assumed.

The same result is obtained if the carve is concsve, and this proposition is true for all continuous functions.

Hence similarly

$$
f^{\prime}(x+c h)-f^{\prime}(x)=c h f^{\prime \prime}\left(x+c_{1} h\right)
$$

where c_{1}, is intermediate between 1 and c.
Combining these results, we have

$$
\partial y=f(x+h)-f(x)=h f^{\prime}(x)+c h^{2} f^{\prime \prime}\left(x+c_{1} h\right),
$$

where c and c_{1} are proper fractions, and $h=\delta x$.
A change in y is therefore obtained approximately by multiplying the change in a by the first derived function, the equation being the more exact the smaller the change in a.

This result is fundemental in a considerable part of the application to Economics.

A rough examination of the general expansion of $f(x+\pi)$ can be obtained as follows.

Take a as fixed, say x_{0} and h as variable. Writs

$$
f\left(x_{0}+h\right)=F(l) .
$$

Thus in Figure \mathbf{C} let

$$
O M=x_{0}, M I P=f\left(x_{0}\right), N Q=f\left(x_{0}+h\right)=F(h) .
$$

Suppose that $F(h)$ is expansible in ascending powers of h with all the terms finite and the series convergent, i. e. tends to a onique finite limit when the number of terms is increased indefinitely.

Write $\cdot \boldsymbol{F}\left(h_{1}\right)=a_{0}+a_{1} h+a_{2} h^{2}+a_{3} h^{3}+a_{6} h^{4}+\ldots$, where $a_{0}, a_{1} \ldots$ are constants to be determined.

Differentiate successively with regard to h.

$$
\begin{aligned}
& F^{\prime}(h)=a_{1}+2 a_{2} h+3 a_{3} h^{9}+4 a_{4} h^{3}+\ldots \\
& F^{\prime \prime}(h)=2 a_{3}+3.2 a_{3} h+4.3 a_{4} h^{8}+\ldots \\
& F^{\prime \prime \prime}(h)=3.2 a_{4}+4.3 .2 a_{4} h+\ldots .
\end{aligned}
$$

In each of these equations take the case where $h=0$.

$$
\begin{aligned}
& a_{0}=F(0), \quad a_{1}=F^{\prime}(0), \quad a_{2}=\frac{1}{2} F^{\prime \prime}(0), \\
& a_{3}=\frac{1}{2.3} F^{\prime \prime \prime}(0), \quad \ldots a_{r}=\frac{1}{4!} F^{\prime}(0) \ldots
\end{aligned}
$$

where $F^{\prime}(0)$ is the result of writing $h=0$ after $F(\Lambda)$ is differentiated and so on.

Then $F^{\prime}(0)$ is the gradient of the curve $P Q$ at P and therefore is the same as $f^{\prime}\left(x_{0}\right)$, that is the result of writing $a=x_{0}$ in the derivative of $f(x)$. Similarly $F^{\prime \prime}(0)=f^{\prime \prime}\left(x_{0}\right)$ and so on.

We have then

$$
\begin{aligned}
f\left(x_{0}+h\right)=F(h) & =f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right) \\
& +\frac{1}{2} h^{2} f^{\prime \prime}\left(x_{0}\right)+\ldots \frac{1}{r!} h^{r} f^{\tau}\left(x_{0}\right)+\ldots
\end{aligned}
$$

the process being continued as far as we please.
This is Taylor's Series.
In the functions used in the text it is generally the case that the successive terms become rapidly amaller over the part of the curves that are considered in the neighbourhood of equilibrinm. Such an assumption is much more hazardous when larger changes are considered, as in the cases of taxation and monopoly (pp. 60 and 75 seq).

Standard derivatives and rules of differentiation.

The following are standard derived functions, as shown in any text-book on the calculus :

$$
D_{x}\left(x^{n}\right)=4 z^{n-1}
$$

where $\#$ is any positive or negative integer or fraction;
e.g.

$$
D_{x} \sqrt{x}=\frac{1}{2} x^{-3}
$$

$$
\begin{gathered}
D_{x}\left(a^{x}\right)=a^{x} \cdot \log _{a} a . \quad D_{x}\left(e^{x}\right)=e^{x} \\
D_{x}\left(\log _{a} x\right)=\frac{1}{x} \cdot \log _{a} e . \quad D_{x}\left(\log _{e} x\right)=\frac{1}{x}
\end{gathered}
$$

$D_{x}(\sin x)=\cos x, \quad D_{x}(\cos x)=-\sin x, \quad D_{x}(\tan x)=\sec ^{2} x$, where \boldsymbol{x} is the radian measure of the angle.

Also the following working rales are easily proved from the definition of a derived function :

$$
D_{x}(a f(x))=a \cdot f^{\prime}(x) ;
$$

e.g.

$$
D_{x}(3 x)=3, \quad D_{x}\left(3 x^{2}\right)=3 \times 2 x=6 x .
$$

$$
Z_{x} f(a x)=a f^{\prime}(a x) ;
$$

e.g.

$$
D_{x} \sin (a x)=a \cos a x
$$

$$
D_{x}(f(x)+a)=f^{\prime}(x) ;
$$

e.g.

$$
D_{x}\left(x^{2}+3\right)=2 x .
$$

$$
D_{x} f(x+a)=f^{\prime}(x+a) ;
$$

e.g. $D_{x}(x+a)^{2}=2(x+a)$, for if $f(x)=x^{2}, f^{\prime}(x)=2 x$.

These rules may be combined, thus:

$$
D_{x}\{a f(b x+c)+d\}=a b \cdot f^{\prime}(b x+c) ;
$$

e.g. $D_{x}\{2 \sin (3 x+4)+5\}=2 \times 3 \cos (3 x+4)=6 \cos (3 x+4)$.

If $f(x)$ and $\phi(x)$ are two functions of x, the following rules can be obtained :

$$
D_{x}\{f(x) \pm \phi(x)\}=f^{\prime}(x) \pm \phi^{\prime}(x) ;
$$

e.g.

$$
D_{x}\left(x^{2}+\log _{e} x\right)=2 x+1 / x
$$

$$
D_{x}\{f(x) \times \phi(x)\}=f^{\prime}(x) \times \phi(x)+f(x) \times \phi^{\prime}(x) ;
$$

e.g. $\quad D_{x}\left(x^{2} \sin x\right)=2 x \sin x+x^{2} \cos x$.

$$
D_{x}\{f(x) \div \phi(x)\}=\left\{f^{\prime}(x) \times \phi(x)-f(x) \times \phi^{\prime}(x)\right\} \div(\phi(x))^{2} ;
$$

e.g. $D_{x}(\tan x)=D_{x}(\sin x \div \cos x)$

$$
\begin{aligned}
& =\{\cos x \times \cos x-\sin x \times(-\sin x)\} \div \cos ^{2} x \\
& =\left(\cos ^{2} x+\sin ^{2} x\right) \div \cos ^{2} x=1+\tan ^{2} x=\sec ^{2} x,
\end{aligned}
$$

as above.

$$
\text { If } y=F^{\prime}(u) \text {, where } u=f(x), ~\left\{\begin{array}{l}
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u} \times \frac{\delta u}{\partial x}=\frac{F(u+\delta u)-F(u)}{\delta u} \times \frac{f(x+\delta x)-f(x)}{\delta x},
\end{array}\right.
$$

identically.
In the limit, obtained by diminishing $8 \mathbf{x}$ and consequently δu and $8 y$ also,

$$
D_{x} y=D_{u} F(u) \times D_{x} f(x) ;
$$

e.g. if F stands for $\log _{\theta}, f$ for sin, and so $u=\sin x$, $D_{x}\left\{\log _{a}(\sin x)\right\}=D_{u}\left(\log _{a} u\right) \times D_{x}(\sin x)$

$$
=\frac{1}{u} \times \cos x=\frac{1}{\sin x} \times \cos x=\cot x .
$$

$$
D_{x}\left\{\sin \left(x^{2}\right)\right\}=2 x \cos \left(x^{2}\right) .
$$

These forms and rules are sufficient for the differentiation of common functions of one variable.

Functions of two or more variables. Partial differentiation.
Let a variable z depend on two other variables x and y, so that $z=f(x, y)$, and let x and y depend on another variable t. Required to connect a change in t with a change in z.

To fix ideas, suppose a point to be moving in the plane $X O F$ (Figure D), and at any time t to be at the point $K(x, y)$. Let a vertical $K P(z)$ be erected whose height is $f(x, y)$. Then as the point moves abont the plane XOY, P will move always vertically over the point on a surface whose equation is

$$
z=f(x, y) .
$$

Consider movements parallel to $O X$, i. e. to the plane 2OX.
If the point moves from K to L, y is constant (say y_{1}) while x varies, and P traces out 2 plane curve $P Q$. The gradient at
P of this carve is $D_{x} f\left(x, y_{1}\right)$, that is the result of differentinting $f\left(x, y_{1}\right)$ where y_{1} does not vary. This expression is variously written
$D_{x}(z)(y$ const $), \frac{\partial z}{\partial z}, f^{\prime}(x, y)(y$ const $), f_{x}$, and z_{x} Formula 3. f_{x}, is at once the briefest and most convenient of these forms. It means the result of the process of differentiation with respect to x applied to the fanction, y being kept constant; e.g. if

$$
f(x, y)=a x^{2}+b y^{2}, f_{x}=2 a x, f_{y}=2 b y
$$

This quantity f_{x} is called the partial dexived function (or derivative or differential coefficient) with respect to x.

If the point P had moved along the tangent at P in the plane of $P Q$ it would have risen $h f_{x}$, to T, when x increased to $a+h$, h being KL.

Similarly if we take movements parallel to $O Y$ or the plane $Z O P$, let the point in the plane $X O Y$ move from K to M ($K M=k$) and P trace the curve $P R$. Its initial gradient. would be f_{y}, and if it had moved along the tangent to $P R$ it would have risen $k f_{y}$.

Now if h and k are small the heights of Q and R only differ from those obtained at T and the corresponding point under \boldsymbol{R} by quantities involving h^{2} and k^{3} (by formula 1), which are therefore very amall. The rises in the two paths are therefore very nearly $h f_{x}$ and $k f_{y}$.

Further it can be shown (though the complete proof is difficult) that the rise along the path $Q S$, where $K L N M$ is a rectangle and $N S$ is vertical, differs from the rise along $P R$ only by a quantity of the order $k k$.

If, then, the point in the plane $X O Y$ moves from K to N by any path and in consequence a line $F S$ is traced on the sarface, the increase of height from P to S differs from $h f_{x}+k f_{y}$ by a quantity involving h^{2}, k^{2}, or $h k$ as factors. Write δz for this increase.

$$
\begin{aligned}
\delta z=z+\delta z-z & =f(x+h, y+k)-f(x, y)=\left\langle f_{x}+l f_{y}\right. \\
& =f_{x} . \delta x+f_{y} . \delta y, \text { approximately, }
\end{aligned}
$$

where $\delta x, \delta y$ are the increments of x and y.

Let δt be the time interval between K and N.

$$
\frac{\delta z}{\partial t}=f_{x} \cdot \frac{\delta x}{\partial t}+f_{y} \cdot \frac{\delta y}{\partial t} \text { approximately. }
$$

Now proceed to the limit when δt approaches zero, and consequently $\delta a, \delta y, \delta z$ approach zero, and the quantities $l^{2}, k^{2}, h k, \& c$. which are omitted in Formula 4 vanish. We have

$$
D_{t} z=f_{x} \cdot D_{t} x+f_{y} \cdot D_{t} y
$$

Thus if $z=a x^{2}+b y^{2}$, where $x=\cos t, y=\sin t, f_{x}=2 a x$, $f_{y}=2 b y, D_{t} x=-\sin t, D_{t} y=\cos t$, and $D_{t} z=-2 a a \sin t+2 b y \cos t$

$$
=-2 a \cos t \sin t+2 b \sin t \cos t=(b-a) \sin 2 t .
$$

[This result may also be obtained directly by writing

$$
z=a \cos ^{2} t+b \sin ^{2} t,
$$

but it is not usual that the substitution should be so simple.]
The equation does not depend on the geometrical illustration but is universally true. For example we may take ℓ, which is an independent variable completely at choice, as identical with a, and obtain

$$
D_{x} z=f_{x}+f_{y} \cdot D_{x} y \text {. . . Formula } 5 .
$$

The result may be generalized to any number of variables, 80 that if $z=f\left(x_{1} x_{2} \ldots x_{n}\right)$,

$$
D_{t} z=f_{x_{1}} \cdot D_{t} x_{t}+f_{x_{2}} \cdot D_{t} x_{2}+\ldots+f_{x_{n}} \cdot D_{t} x_{n} . \text { Formula } 6,
$$

and

$$
D_{x_{1}} z=f_{x_{1}}+f_{x_{2}} \cdot D_{x_{1}} x_{2}+\ldots+f_{x_{n}} \cdot D_{x_{1}} x_{n} \text {. . Formula } 7 .
$$

e.g. If

$$
z=x_{1}^{2}+x_{2} x_{3}+x_{1} x_{3}=f\left(x_{1}, x_{2}, x_{3}\right),
$$

$$
f_{x_{1}}=2 x_{1}+x_{3}, \quad f_{x_{2}}=x_{3}, \quad f_{x_{0}}=x_{2}+x_{1}
$$

and

$$
D_{x_{1}} z=2 x_{1}+x_{3}+x_{3} \cdot D_{x_{1}} x_{4}+\left(x_{2}+x_{1}\right) \cdot D_{x_{1}} x_{3} .
$$

We cannot evaluate this till we know the relationship between x_{2} and x_{1} and between x_{2} and x_{1}.

The formula is commonly used as

$$
\delta z=f_{x_{1}} \cdot \delta x_{1}+f_{x_{n}} \cdot \delta x_{9}+\ldots+f_{x_{n}} \cdot \delta x_{n} . . \text { Formula } 8,
$$

the variable on which $x_{1}, x_{2} \ldots x_{n}$ depend not being named,
In this form it is very important in Economica.

In words, it a quantity z is dependent on pariables $x_{1}, w_{2} \ldots x_{n}$, and these varisbles owing to a common cause have at the same time small increments $\delta x_{1}, \delta x_{2} \ldots$, whose squares and products are negligible, then the resulting increment in z is obtained by adding the increments in $x_{1}, x_{2} \ldots$, each multiplied by the partial derivative of 2 with respect to, it computed on the assumption that the other x 's do not vary.

Maxima and minima.

In Figure \mathbf{D} (p. 86) \boldsymbol{z} is a maximum or minimum where the tangent plane to the surface on which P moves is horizontal, so that when motion takes place in any direction the point starts along the plane and then falla below it (in the case of a maximum), or rises above it (in the case of a minimum). Where $z=f(x, y)$ and the tangent plane is horizontal, every line in it is horizontal, so that $f_{x}=0=f_{y}$, since these are the gradients in two of the directions.

More generally, when $z=f\left(x_{1}, x_{g}, \ldots x_{n}\right), z$ cannot be a maximum or minimum, unless the effect of an infinitesimal change of any of the a 's is to make $\delta z=0$. From formula 8 this will be the case if

$$
0=f_{x_{1}}=f_{x_{2}}=\ldots=f_{x_{n}} . \text {. Formula } 9 .
$$

If we bnow a priori, as is often the case, that there is a maxinum or a minimum in the region considered, these equations are sufficient. If not, terms of a higher degree in the increments must be examined.
[e.g. $z=x^{2}+y^{2}+2 x+4 y=(x+1)^{2}+(y+2)^{2}-6$:
is clearly Ω minimum when $a=-1, y=-2$.
In this case, $f_{x}=2 x+2,=0$ if $m=-1$,
and

$$
f_{y}=2 y+4,=0 \text { if } y=-2 .
$$

If, however,

$$
z=x^{2}-2 x y+2 y^{2}+2 x+4 y,
$$

$$
f_{x}=2 x-2 y+2, f_{y}=-2 x+4 y+4
$$

and these are zero if $m=-4, y=-3$.
All we can say without further examination is that, if there is. a maximum or minimum, it is at this point.] :

It is often the case that $x_{1}, x_{2} \ldots$ are not independent, but are connected with each other oy one or more equations. The equations $0=f_{x_{1}}=f_{x_{3}}=\ldots$ will not then in general be consistent with the connecting equations and the partial derivatives cannot all vanish together. The procedure then is to eliminate as many of the x 's as there are connecting equations and proceed with the remainder taken as independent variables.

$$
\begin{aligned}
& \text { [Thus, if } \quad z=x^{2}+y^{2}+2 x+4 y \text { and } y=x+2, \\
& z=x^{2}+(x+2)^{2}+2 x+4(x+2)=2 x^{2}+10 x+12, \\
& D_{x^{2}}=4 x+10,=0 \text { if } x=-2 \cdot 5,
\end{aligned}
$$

and, since $D^{2}{ }_{x} z=4$ and is positive, this gives a minimum for 2 , viz. $z=-\frac{1}{2}$.

This is the solution of the problem of finding the lowest point of the given surface in the vertical plane $y=x+2$. The minimum of z without any restriction is -5 (p. 89) when $x=-1$, $y=-2$.

The process of partial differentiation can be carried on saccessively. Thus, if $z=f(x, y), f_{x x}=D_{x}\left(f_{x}\right), y$ const., is the second partial derived function of z with respect to a. It will measure the change of gradient of the curve $P Q$ (Figure D, p. 86). Similarly $f_{y y}$ measures the change of gradient of the curve PR. $f_{x y}$ means $D_{y}\left(f_{x}\right), x$ const. ; it can be shown, but not easily, that the same result is obtained from $D_{x}\left(f_{y}\right), y$ const., so that $f_{x y}=f_{y x}$. This measures the change in the gradient of the tangent parallel to the plane $Z O X$ due to a movement of the section in the direction $O Y$.

The more complete statement of the equation to which

$$
\delta z=f_{x_{1}} \cdot \delta x_{1}+f_{x_{2}} \cdot \delta x_{2}+\ldots
$$

is an approximation, is

$$
\begin{aligned}
& \delta z=f_{x_{1}} \cdot \delta x_{1}+f_{x_{2}}, \delta x_{2}+\ldots \\
& +\frac{1}{2}\left(f_{x_{1} x_{1}}\left(\partial x_{1}\right)^{2}+\dot{f}_{x_{2} x_{1}}\left(\delta x_{y}\right)^{2}+\ldots\right. \\
& \left.+2 f_{x_{1} x_{1}} 8 x_{1} .8 x_{1}+\ldots\right\} \\
& \text { Formula 10, } \\
& + \text { terms involving cubes and higher powers of } 8 x \text {, }
\end{aligned}
$$

where all possible equares and products are included in \{ \}.

An expansion by this formula is used on pp. 17-18 above.
An investigation of the complete formula can be made on the lines of that on pp. 83-4 and formula 2, as follows.

Write

$$
\begin{aligned}
f\left(x_{0}+h, y_{0}+k\right) & =F(h, k) \\
& =a+b_{1} h+b_{2} k+c_{1} h^{2}+c_{2} h k+c_{2} k^{2}+d_{1} h^{3}+d_{2} h^{2} k \\
& +d_{5} h k^{2}+d_{4} k^{3}+\ldots .
\end{aligned}
$$

Differentiate successively with respect to k and to k.

$$
\begin{aligned}
& F_{h}=b_{1}+2 c_{1} h+c_{2} k+3 d_{1} h^{2}+2 d_{2} h k+d_{3} k^{2}+\ldots \\
& F_{h h}=2 c_{1}+3.2 d_{1} h+2 d_{2} k+\ldots \\
& F_{h k}=c_{2}+2 d_{2} h+2 d_{\mathrm{a}} k+\ldots
\end{aligned}
$$

Take the case in each equation where $k=0=k$.
$a=F(0,0), \quad b_{1}=F_{h}, \quad c_{1}=\frac{1}{2} F_{h h} ; \quad c_{8}=F_{h h}$, and similarly $b_{2}=F_{k}, c_{3}=\frac{1}{2} F_{k k}$, in each case 0 being written for \hbar and k after differentiation.

Bat then (as on p. 84) $P_{h}=$ the gradient at P of the curve $P Q$ (Figure D, p. 86) $=f_{x_{0}}, F_{k}=f_{y_{0}}$, and similarly $F_{l h}=f_{x_{0} x_{0}}$, fsc.

$$
\begin{aligned}
\therefore \delta z= & f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right) \\
= & h f_{x_{0}}+h f_{y_{0}}+\frac{1}{2}\left(h^{2} f_{x_{0} x_{0}}+2 h k f_{x_{0} y_{0}}+k^{2} f_{\left.y_{0} y_{0}\right)} \quad\right. \text { Formula 11. } \\
& + \text { terms involving cules of } h, \text { \&c. }
\end{aligned}
$$

This result can easily be extended to any number of variables.
The above analysis is not a proof, but a determination of coefficients on the hypothesis that an expansion of this kind is possible.

With two variables $f(x, y)$ is a maximum or minimum at (a_{0}, y_{0}) only if $f_{x_{0}}=0=f_{y_{0}}$ and the complex term involving equares is of the same sign for all variations; this is the case if $f_{x_{0} x_{0}} \times f_{y_{0} y_{0}}>\left(f_{x_{0} y_{0}}\right)^{2}$. Given this condition, $f\left(x_{0}, y_{0}\right)$ is a maximum or minimum according as $f_{x_{0} x_{0}}$ is negative or positive.

Tangents.

It is often necessary to determine $D_{x} y$ when we are given $f(x, y)=0 . f(x, y)=0$ is the equation of a plane curve and $D_{x} y$ is its gradient at any point (x, y).

Write $z=f(x, y)$.

Then $\quad \delta z=f_{z}, \delta x+f_{y}, \delta y \quad$ and $\quad D_{x} z=f_{x}+f_{y}, D_{x y} \quad$ (pp. 87-8, formulae 4 and 5).

But since $z=f(x, y)$ is always zero, z is invariable, δz is zero, and $D_{x^{2}}$ is zero.

$$
\therefore 0=f_{x}+f_{y}, D_{x} y, \text { or } D_{x} y=-f_{x} / f_{y}
$$

The tangent at P, which we will call (x_{1}, y_{1}) (see Figure A, p. 81), is a line through (x_{1}, y_{1}) with gradient $D_{z} y$, and its equation is therefore

$$
y-y_{1}=\left(x-x_{1}\right) \tan T P L=\left(x-x_{1}\right) \cdot D_{x} y,
$$

that is $\left(x-x_{1}\right) \cdot f_{x_{1}}+\left(y-y_{1}\right) \cdot f_{y_{1}}=0$. . Formala 12, where $f_{x_{1}}, f_{y_{1}}$ are the results of writing $m=w_{1}, y=y_{1}$ in the partial derivatives of $f(x, y)$.

Thus, if $\quad f(x, y)=a x^{2}+2 h x y+b y^{2}-c=0$,

$$
f_{x}=2 a x+2 h y, \quad f_{y}=2 h x+2 b y
$$

and the tangent at a point $\left(x_{1}, y_{1}\right)$ on the curve is

$$
\left(x-x_{1}\right)\left(2 a x_{1}+2 h y_{1}\right)+\left(y-y_{1}\right)\left(2 h x_{1}+2 b y_{1}\right)=0,
$$

that is $:\left(a x_{1}+h y_{1}\right)+y\left(h x_{1}+b y_{1}\right)=a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}$

$$
=0 .
$$

Notice that we can write an equation for $D_{x} y$ at once from such a curve as $a x^{2}+2 h x y+b y^{2}-c=0$, thas

$$
2 a x+2 h y+D_{x} y(2 k x+2 b y)=0 .
$$

Integration.

Integration is the process of finding the original function when the derived function is given, and is the reverse of differentiation.

The symbol \int signifies integration, and is defined by

$$
\int f^{\prime}(x) \cdot d x=f(\alpha)+C
$$

where C (any constant) is introduced, since evidently

$$
D_{x}\{f(x)+C\}=f^{\prime}(x)
$$

Thus $\int x^{n-1} d x=\frac{1}{n} x^{n}+C$, since $D_{x}\left(\frac{1}{x^{n}} x^{n}\right)=x^{n-1}$.

The most important use of integration in the present connerion is in its relationship to areas.

Write $f^{\prime}(x)=F(x)$.
Let $C D$ be the graph of $y=F(x)$ from $A=a(O A)$ to $s=b(O B)$ (Figure E).

Divide $A B$ into n equal parts

$$
A N_{1}, N_{1} N_{2} \ldots \text { each }=\delta x=(b-a) / n
$$

Let $N_{1} P_{1}, N_{2} P_{2} \ldots$ be ordinates, and complete the rectangles as in the figure.

Take the case of a curve that rises from C to D; other cases can readily be handled in the came way.

Let S, S^{\prime} be the areas of the rectilinear figures

$$
\Delta C R_{1} P_{1} R_{2} P_{2} \ldots D, \text { and } \angle Q P_{1} Q_{1} P_{2} \ldots D .
$$

Then the curvilinear area $A C P_{2} P_{2} \ldots D$ is intermediste between S and $S^{\circ} . S^{\prime}-S=$ sum of such areas as $Q R_{1}, Q_{1} R_{2} \ldots$, and approximately $=8 \pi \times E D$, where $C E$ is parallel to $A B$. When n is large and therefore δx is small, this difference is negligible as compared with S, and S may be identified as the area of the curve.

Take n so large that ($\delta x)^{2}$ can be neglected.

Then from p. 82, formula 1 ,

$$
\begin{gathered}
f(a+\delta a)-f(a)=f^{\prime}(a) \cdot \delta x=F(a) \cdot \delta x=A C . A N_{1} \\
f(a+2 \delta x)-f(a+\delta x)=F(a+\delta x) . \delta x=N_{1} P_{1} \cdot N_{1} N_{2} \\
f(a+u . \delta x)-f(a+\overline{n-1} \delta x)=F(a+\overline{n-1} \delta x) \cdot \delta x
\end{gathered}
$$

Adding we have, since $b=a+n \delta x$,

$$
\begin{aligned}
f(b)-f(a) & =\text { sum of snch areas as } A C R_{1} N, N_{1} P_{1} R_{2} N_{2} \\
& =S \text { with sufficient approximation } \\
& =\text { area of curve. }
\end{aligned}
$$

It is not difficult to verify that this final equation is absolately true, when we suppose n indefinitely increased.

The area of the curve is the limit of the sum of the rectangles * $F(x) . \delta x$ from $a=a$ to $x=b$, when n is definitely increased,

$$
=\text { limit of } \sum_{a}^{b} F(x) .8 x \text { and this is written } \int_{a}^{b} F(x) . d x .
$$

The whole process is then summarized as
area of curve $=\int_{a}^{b} F(x) d x=\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) \sum_{\text {Formula }} 13$.
Thus the area from $O X$ to the carve $y=x^{2}$ is for any value of x

$$
\int_{0}^{x} x^{2} d x=\frac{1}{3} x^{3}-\frac{4}{3} \cdot 0=\frac{1}{3} x^{2} .
$$

Note on elimination.

Two linear equations

$$
a_{1} x+b_{1} y+c_{1}=0, \quad \sigma_{2} x+b_{2} y+c_{2}=0
$$

give one pair of values of x and y, viz.

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}} .
$$

Or we can eliminate y and obtain one equation for x,

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right) x+c_{1} b_{2}-c_{2} b_{1}=0 .
$$

From two equations involving three quantities a, y, z,

$$
a_{1} x+b_{1} y+c_{1} z+d_{1}=0, \quad a_{2} x+b_{2} y+c_{2} z+d_{2}=0
$$

we can eliminate one (z), and obtain a relation between the others,

$$
\left(a_{1} c_{2}-a_{2} c_{2}\right) x+\left(b_{1} c_{2}-b_{2} c_{1}\right) y+d_{1} c_{2}-c_{1} d_{2}=0 .
$$

Or we can say, from the first equation,

$$
z=-\frac{1}{c_{1}}\left(a_{1} x+b_{3} y+d_{1}\right),
$$

and when this value of z is written in the second equation we have

$$
c_{1}\left(a_{2} x+b_{2} y+d_{2}\right)-c_{2}\left(a_{1} x+b_{1} y+d_{1}\right)=0 .
$$

From this it can be seen that, if we have n linear equations comnecting n quantities, we can determine the quantities separately, and that, if there are more than n quantities, we can eliminate $\overline{n-1}$ of them and obtain one equation involving the remainder; the procedure being virtually to solve for $\overline{n-1}$ selected quantities from $\overline{n-1}$ of the equations and substitute the results in the first equation.

With linear equations, if the quantities $a, b, c \ldots$ and n are given the solation is only a matter of patience. When we have thesame problem involving squares, products, or other functions of $x, y \ldots$, the procedure is the same essentially, though it is not always possible to carry it out by simple methods.

Thus suppose we have three equations involving four quantities

$$
f_{2}\left(u, v_{2} x, y\right)=0, f_{2}(u, v, x, y)=0, f_{3}(u, v, x, y)=0 .
$$

Solve the third as an equation in y, obtaining

$$
y=f(u, v, x) .
$$

Put this value in the first and second, obtaining

$$
F_{1}(u, v, x)=0, \quad F_{2}(u, v, x)=0 .
$$

Solve the last equation for x, obtaining $x=\phi(u, v)$ and put this value in $F_{1}(u, v, x)=0$. We have then one equation involving x and v only, x and y being eliminated.
e.g. Eliminate ε and y from the equations

$$
x^{2}+v^{2}+x^{2}=20, \quad u^{2}+2 v^{2}+y^{2}=30, \quad u+x+y=10 .
$$

From the second and third equations

$$
\begin{aligned}
u^{2}+2 v^{3}+ & (10-u-x)^{2}=30 \\
x & =10-u \pm \sqrt{ } 30-u^{2}-2 v^{2} .
\end{aligned}
$$

Then from the first

$$
u^{2}+\tau^{2}+\left(10-n \pm \sqrt{30-n^{2}-2 \tau^{2}}\right)^{2}=20,
$$

which reduces to
$6 u^{4}+v^{4}+6 u^{2} v^{2}-120 u^{3}-120 u v^{2}$

$$
+900 u^{2}+580 t^{2}-2000 u+100=0 .
$$

Thus the actual solution rapidly becomes laborions in quite simple cases.

When there are as many (n) equations as variables, and $\overline{n-1}$ variables are eliminated, the remaining equation in one variable is not generally linear and there may be several real roots, each giving a set of simultaneous values for the variables. The equations are then said to have multiple solutions, and some further knowledge is necessary to know which is appropriate to the problem.

INDEX

A
Aggregate demand, 25. Aggregate supply, 25.
Alternative demand, 38, 56, 66.
Alternative factors, 31.
Alternative supply, 66.
Alternative utility, 15, 17, 18, 56.

B

Barter, 5.
Bargaining locus, 8.
Bilateral monopoly, 62.

c

Capital, 42.
Commodities, 5.
Commodity equations, $21,48,50,58$.
Competition, 20 ; equilibriom in competition, 20, 58.
Complementary utility, 15, 16, 18, 56.

Composite demand, 65-6.
Composite supply, 65-6.
Constant return, 33, 36, 59, 69.
Consumers' combination, 62-5.
Consumers' goods, 65.
Consumers' eurplus, 77.
Consumption, 6, 19.
Contract curve, $9,10,13$.
Cost of production, 29, $81,49$.

D

Decreasing return, 34, 85, 37, 59, $68,69,78$ seq.
Demand, 10 ; aggregate, 25 ; composite, 65, 66; derived, 68; elasticity of, 10 ; indirect, 65 68 ; joint, 28, 65, 66, 67.
Demand curve, 10, 13 ; inclination of, 55.
Derivatives, 80 ; partial, 86, standard. 84-5.
Derived demand, 68.
Derived function, 79 ; second, 81 ; partial, 87.

Differential coefficient, 79.
Differentiation, 79; partial, 86 ; rules of, 84 ; successive, 81.
Diminishing return, v. decreasing.
Disutility, 40; marginal, 41, 43, 49.

Duopoly, 38 .

E

Edgeworth, Prof. F. Y., 8.
Efficiency of money, 82.
Elasticity of demand, 10 ; of domand for factors, 44 ; of supply, 32.

Elimination, 94 seq.
Equations of demand, 50 ; for factors, 43 ; of equilibrium, 20-2. 51,58 ; of supply, 43, 48.
Equilibriam, 8, 20, 51, 58, 59 ; stability of, 53 .
Exchange, simple, 5 ; multiple, 19.
Expansions, 81.
Expenditure, 51.

F

Factore of production, 28 ; demand for, 43 ; share of, 44 ; supply of, 43, 48.
Functions, 78 ; derived, 79.

G

Goods, 1; consumers', 65; producers', 65.

I

Income, 51.
Increasing return, 33-6, 59, 63, 69, 73 seq.
Indifference curven, 6, 8, 10.
Indirect demand, 65, 68.
Independent utility, 15, 17, 18, 55.
Integral supply cuive, 31.
Integration, 92.
Interdependence, 47, 52.

J

Jevons, 9 ; Johnson, W. E., 32, 57. Joint demand, 65, 66, 67; for factors, 28.
Joint supply, 65 ; use of factors, 31, utility, 15, 18.

> L

Labour, 40 ; disutility of, 40.
Land, 42 ; rent of, 70.

\mathbf{M}

Margin of cultivation, 71.
Marginal supply price, 34, 69.
Marginal utility, 9 ; of money, 12, 21, 43, 55.
Market, 8, 20.
Marshall, Dr. A., 9, 39, 65.
Maximizing equations, 21, 58.
Maximum, 80,89 ; effect of small change on, 24.
Minimum, 80, 89.
Money prices, 12.
Monopoly, 22-5; bilateral, 62; oniversal, 26.
Monopoly, equilibrium under, 59.
Monopoly of all commodities, 60 ; of factors of production, 61.

- N

Notation, 46.

0

Offer carve, 7, 8, 10, 13, 31.

P

Partial derived function, 87; differentiation, 86.
Personal equations, 21, 51, 58.
Pigou, Prof. A. C., 34, 37, 45.
Prices, 8, 12, 19, 29.

Producers' goods, 65; eurplus, 69. Prodaction, 28, 49 ; joint, 31. Production function, 29, 36, 48. Profita, 37, 59, 69, 70, 72, 74.

R

Rent, economic, 70.
Rules of differentiation, 84 seq.

s

Satisfaction, 1, 13.
Saving, 51.
Second derivatives, 81.
Share of factors, 44.
Stability of equilibrium, 87, 53.
Subatitution, law of, 28, 49.
Successive differentiation, 81.
Supply, 10; aggregate, 25 : composite, 65-6; curve of, 10, 13, 30 ; elasticity of, 32 ; joint, 65.
Surplus, consumers', 77; producers', 69.

T
Tangents, 91.
Taxation, 72 seq.; maximum receipts, 74, 76; monopoly, 75-6; yield of, 72 seq.
Taylor's series, 84.

U

Utility, 3, 6, 64 ; equations, 21, 50, 58 ; function, 3, 6 ; surface, 14, 15 eeq. See marginal utility.

V.

Value in exchange, 3.
W
Work, 40.

[^0]: - Formerly this expresmion was written $\frac{d y}{d x}$. Sinee this suggeste a fraction and not the result of a process, the form here used is to be preforred.

