$V 120$

ROXAL̈ COMMISSION ON

SCIENTIFJX INSTRUCTION AND THE \&DVANCEMENT. OF SCIENCE.

LONDON:
PRINTEU BY GEUKGE EDWARD EYRE AND WILLIAM SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCELLENT MANESTY. ROR HER MAJESTY'S STATIONERY OPRICE.
1873.
[C. 868.] Price 8d. ${ }^{4}$

T9(A). 3 .M $7 t$ A872:1-1 15696

 CONTENTS.$\underline{\square}$

COMMISSIONS
REPORT
APPENDIX

ROYAL COMMISSION ON SCIENTIFIC INSTRUCIION AND THE ADVANCEMENT OF SCIENO

VICTOR1A R.

Victoria, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen, Defender of the Faith, To Our Right Trusty and Right Entirely Beloved Cousin William Duke of Devonshire, Knight of Our Most Noble Order of the Garter,Our Right Trusty, and Entirely Beloved Cousin Henry Charles Keith Marquess of Lansdowne,-Oưr Trusty and Wellbeloved Sir John Lubbock,' Baronet,-Our Trusty and Wellbeloved Sijt. James Phillips Kay-Shuttleworth, Baronet,-Our Trusty and Wellbeloved Bernhard Samuelson, Esquire,-Our Trusty and Wellbeloved William Sharpey, Esquire, Doctor of Medicine,-Our Trusty and Wellbeloved Thomas Heary Huxley, Esquire, Professor of Natural History in the Royal School of Mines,-Our Trusty and Wellbeloved William Allen Miller, Esquire, Doctor of Medicine, Professor of Chemistry in Kings College, London,-and Our Trusty and Wellbeloved George Gabriel Stokes, Esquire, Master of Arts, Lucasian Professor of Mathematics in the University of Cambridge, Greeting :

Whereas We havê" deemed it expedient for divers good causes and considerations thator Commission should forthwith issue to make Inquiry with regard to Scientific Instruction and the Advancement of Sciencैe and to Inquire what aid thereto is derived from Grants voted by Parliament or from Endowments belonging to the several Universities in Great Britain and Ireland and the Colleges thereof and whether such aid could be rendered inge manner more effectual for the purpose.

Now Know Ye that We reposing great Trust and Confidence in your Ability and Discretion have nominated constituted and appointed and do by these Presents nominate constitute and appoint you the said William, Duke of Devonshire-Henry Charles Keith, Marquess of Lansdowne-Sir John Lubbocke-Sir James, Phillips Kay-Shuttleworth-Bernhard Samuelson-William Sharpey-Thomas Henry HuxleyWilliam Allen Miller-and George Gabriel Stokes-to be Our Commissioners for the purposes of the said Inquiry.

And for the better enabling you to carry Our Royal Intentions into effect We do by these Presents authorize and empower you or any three or more of you to call before you or any three or more of you such persons as you may judge necessary by whom you"may be the better informed of the matters herein submitted for your consideration and also to call for and examine all such Books Documents Papers or Records as you shall judge likely to afford you the fullest information on the subject of this Our Commission and to Inquire of and concerning the Premises by all other lawfil ways and means whatsoever.

And Our further Will and Pleasure is that you or any three or more of you do Report to Us under ybulr ${ }_{r}$ Hands and Seals (with as little delay as may be consistent with a due discharge of the Duties hereby imposed upon you) your opinion on the several matters herein submitted for your consideration, with power to certify unto Us from time to time jour several proceedings in respect of any of the matters aforesaid, if it may seem expedient for you so to do.
And We do further Will and Command and by these Presents ordain that this Our Commission shall continue in full force and virtue and that you Our said Commissioners or any three or more of you shall and may from time to time proceed in the
execution thereof and of every matter and thing tberein contained although the same be not continued from time to time by adjournment.

And for your assistance in the execution of these Presents We do hereby authorize and empower you to appoint a Şecretary to this Our Commission to attend you whose services and assistance we require you to use from time to time as occasion may require.

Given at Our Court at Saint James's, the Eighteenth day of May 1870, in the Thirty-third year of Our Reign.

By Her Majesty"s Command,
H. A. BRUCE.

ROYAL COMMISSION ON SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

VICTORLA R.

Vicroria, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen, Defender of the Faith, To Our Trusty and Well-beloved Henry John Stephen Smith, Esquire, Master of Arts, Savilian Professor of Geometry in Our University of Oxford, Greeting :

Whereas We did by Warrant, under Our Rqyal Sign Manual, bearing date the Eighteenth Day of May, One Thousand Eight Hundred and Seventy, appoint Our Right ${ }^{\text {Itrusty }}$ and Right Entirely Beloved Cousin, William, Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty and Entirely Beloved Cousin, Henry Charles Keith, Marquess of Lansdowne, together with the several Gentlemen therein named, to be Our Commissioners to make Inquiry with regard to Scientific Instruction and the Advancement of Science, and to inquire what aid thereto is derived from Grants voted by Parliament, or from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such aid could be rendered in a manner more effectual for the purpose: And whereas since the issue of the said Warrant William Allen Miller, Doctor of Medicine, one of the Cammissioners thereby appointed, hath deceased:

Now Know $\mathbf{Y e}$, that We, repoling great Trust and Confidence in Your Zeal, Discretion, and Integrity, have authorized and appointed, and do by these Presents authorize and appoint you the said Henry John Stephen Smith to be a Commissioner for the purpose aforesaid, in addition to, and together with, the Commissioners now acting under the above-mentioned Royal Warrant.

Given at Our Court at Saint James's the First Day of December 1870, in the Thirty-Fourth Year of Our Reign.

By Her Majesty's Command,
H. A. BRDOE.

Professor Henry John Stephen Smith, M.A.,
To be a Commissioner for inquiring into
Scientific Instruction and the Advancement of Science.

THIRD REPORT.

TO IHE QUEEN'S MOST EXCELLENT MAJESTY.

May it please Your Majesty,
We, the Commissioners appointed by Your Majesty to make Inquiry with regard to Scientific Instruction and the Advancement of Science, humbly beg leave to present to Your Majesty the following Report on the Universities of Oxford and Cambridge.

We have received a large amount of valuable information from persons well acquainted with, and deeply interested in, the progress of Scientific Education and Research within these two Universities; and the evidence thus placed at our disposal contains not only a full account of the present state of scientific study m them, but also much that is suggestive of hope for the future.

In reporting on this evidence, we desire at the very outset to guard against a possible misconception. Our use of the term Sclence in this Report is limited, by the scope of the duties assigned to us, to the Sciences of Organic and Inorganic Nature, meluding under that general designation the Sciences of Number and Magnitude, together with those which depend on Observation and Experiment; but excluding the Mental and Moral Sciences, as well as all those parts of human knowledge and culture which are not usually regarded as having any scientific chatacter. In dealing with the relations of the Universities to Science, we shall use the word in this restricted sense; and we can refer only in a very secondary manner to the equally important duties which such academical bodres owe to literature and learning, and to education in other than purely scientrfic directions. Nor must it be supposed that in referring only incidentally, as we shall have to do, to subjects which justly form a large part of the business of an University, we intend in any manner to undervalue them, or even to suggest any comparison between the place which they occupy in University Education and that which bas hitherto been assigned, or which ought hereafter to be assigned, to training in the methods of Science. Least of all should we wish to imply that there is any antagonism between the literary and scientific branches of education and research; it is rather our conviction that neither branch can be ueglected without grave detriment to the other; and that an University in which the Mathematician, the Experimental Philosopher, and the Biologist are actively engaged in the endeavour to advance human knowledge in their own provinces, is not on that account less likely to be productive of original labours in the fields of Literature and Learning.

For the sake of convenience we have classified the subjects referred to in the evidence under the following heads :-
I. The Courses of Study and the Examinations.
II. The Professoriate.
III. The Scientrfic Institutions within the Universities.
IV. The Colleges.
V. The Relation of the Universites to Technical Education, and to Education for Scientific Professions.
VI. The Duty of the Universities and the Colleges with regard to the Advancement of Science.
We shall consider these subjects in order, observing, however, that, as we shall recognise throughout the twofold character which ought to attach to the Universities as centres of Scientific Education and as centres of Original Research, much that would properly fall under the last two heads will of necessity be anticipated in earlier parts of the Report.
$306 s 6$

I.-THE COURSES OF STUDY AND THE EXAMINATIONS.

L.-Matriculation and Entrance Examinations.

1. Neither at Oxford nor at Cambridge is there at present any University Matriculation Examination. At Oxford, its place is usually supplied by a College Entrance Examination, of which the subjects to a certain extent, and the standard to a very great extent, vary in the different Colleges. With regard to the Unattached Students who are allowed to reside without belonging to any College or Hall, the Censors are authorised to impose, and do impose, an Entrance Examination in lieu of that required by the college authorities; it is understood, however, that the standard of the Censors examination is not intended to be a very high one. At Cambridge, Trinity College stood, till lately, alone in having an Entrance Examination; one has recently been established at Trinity Hall. When there is no entrance examination, the tutors require a certificate of fitness from a Master of Arts of Cambridge or Oxford. The regulations respecting Unattached Students are entrusted by the University to a Board constituted for the purpose.
2. At both Universities the question has been frequently rased, and it has been brought before us in the evidence, whether it would be desiable to institute an University Matriculation Examination, and if so, what should be the subjects of examination, and what standard of attainment should be required ? The question is one of a double aspect, affecting the Public and First Grade Schools on the one hand, as much as the Universties on the other. It is not improbable that the Masters of the Public and other Schools would prefer to see an uniform matriculation standard sanctioned by the Universities, instead of having to prepare their pupils, as at present, for examinations requiring such various degrees of proficiency as the College Entrance Examinations. At the same time, it must be borne in mind that the advantage which the schools would thus obtan would, so far, at least, as Oxford is concerned, be more apparent than real, inasmuch as those colleges which now mantain a high entrance standard would most probably refuse to accept the University Matriculation Examıation in the place of their own severer test; and thus the inconveniences arising from the alleged uncertainties and fluctuations of the present entrance examinations would not really be got rid of; while a new inconventence would be superadded in the co-existence of two examinations, one by the College and one by the University, both being intended to test the same thing-the fitness of the candidate to enter upon a course of University study.
3. But independently of the well-founded claim for a more uniform and satisfactory test than any now existing of the proficiency of a schoolboy when his school studics are just ending, there appears to be a growing disposition on the part of many Masters of Schools to admit the Universitues to a larger share in the direct guidance of school studies than is at present conceded to them. One way of supplying such guidance would be to mstitute a Matriculation Examination, at which, in all probability, if the Universities Should offer no objection, a certain number of pupils would offer themselvea who had no intention of continuing their studies as resident students. So long as the older Universities abstain from instrtuting a Matriculation Examination (or some equivalent examination, such as that which we shall presently propose), they do, pro tanto, neglect the function which is most usefully and efficiently discharged by the University of London, that, namely, of systematising and stimulating education in a large number of schools.
4. It is, however, contended by those, whether masters of schools or others, who are opposed to an organised matriculation system, that the enormous indirect influence which the University curriculum and the later University exammations exercise over the course of school instruction is sufficient for all useful purposes; and that more is gamed by leaving to the schools their present fieedom, than by attemptng to enforce the same course of study upon all. A common objection to a "Matriculation Examination is based upon the fear that if the standard were low it would exercise a depressing rather than an elevating mfluence on the schools; and that if it were high it would be exclusive, and would keep away from the Universties a certain number of students who at present find therr way to them. If it were only the careless and the idle who would thus be rejected, the Univesities would be by so much the gainers; but there are cases of a very different kind and deserving of much more consideration. A young man may have a fair share of rough untrained ability, but if his circumstances have not enabled him to enjoy the advantage of a good secondary education, he may easily find himbelf worsted in an examination which ought to be adapted to test boys from the upper forms of the best schools in the country. This objection (which, indeed, would be much weakened, if secondary education in England were more satisfactorily organised than it
is) might, to a certain extent, be obviated by so arranging the examination as to admit of a certain number of options between different subjects, so that no one would be rejected who could give satisfactory proof of his fitness to profit by academical instruction in any one of its more important branches. It may be mentioned that at Oxford students are usually required iby their Colleges to pass ther Responsions at the end of the first term of their lesidence, and may pass it before coming into residence at all, though they may also postpone it for a year. The elasticity of this arrangement is thought to have some advantages as compared with the "hard-and-fast" line of a Matriculation Examination.

II.-Proposed Examination on leaving School.

5. While we fully appreciate the importance of the Matriculation Examination as conducted at the University of London, which is essentially an examunng body, we are of opinion that as regards Oxford and Cambridge, which are teaching as well as examining bodies, an examination on leaving school, analogous, in some respects, to the Abiturienten Examen in Germany, would be open to fewer objections than a Matriculation Examination on entering the Unversity, and would possess gicat advantages of its own. Such a "Leaving Examination" could only be estabhshed by the co-ordinate action of the Universities on the one hand, and the First Grade Schools on the other ; unless, indeed, the duty should be undertaken by Government, in which case the control of the examination would, in all probability, be entirely withdrawn from the Universties. At the present moment the two Unversities have expressed their willingness to undertake the examination of Frrst Grade Schools; and with the view of taking immediate action in the matter, a Delegacy has been appointed at Oxford, and a Syndicate at Cambridge, with power to form a Jount Committee representing the two Universities. In the present state of the negotiation, however, it might be premature to assume that the plan will be accepted by all the First Grade Schools.
6. We prefer a "Leaving Examination" to an Examination at Matriculation for the following reasons:-
7. The education of a great number of the pupils of a First Grade School ceases when they leave the school. What is wanted in the interest of this large class of boys is an examination supplying not only a standard in accordance with which their school teachng may be directed, but a test whether that teaching has been efficient. A satisfactory standard is supphed by such a matriculation examination as that of the University of Londou. But, as it must be piesumed that only a certan proportion of the semor boys in any school present themselves for matriculation, that examination fals to afford an adequate test of the general merits of a school, because at is appled only to seleeted candidates from the school, and not to all the senior boys without exception. It might be desirable, in a " Leaving Examindtion," to allow of more than one standard of proficiency, and it is altogether mprobable that the lowest of the standards allowed could be kept as high as the piesent standard of the Matriculation Examination at the University of London. But, however this might be, the result of a "Leaving Examination" would supply the hest conceivable criterion of the goodness or badness of the teaching given in a school, because it would (as a general rule) be undergone by all the senior boys alike, and would place on record the proportion of successes to failures.
8. These considerations have satisfied us that a "Leaving Examination "might exercise a most beneficial influence upon the First Grade Schools, by reaching a class of pupils who never proceed to eny University examination at all. But we also concerve that the "Leaving Examination" might be so arranged as to harmonize with the system of University instruction, and might thus be made equally suitable to those students who intend to pursue an University course. It would, we thmk, be very undesirable to make admission to the Universities depend on the passing of the "Leaving Examination;" on the contrary, we should wish the opportunities of entering the Universities to continue as unrestricted as they are at present. But the "Leaving Examination" might serve to mark the limit between school studies and Unversity studes, so that the student whose performance in the examination had come up to a certain standard, might be supposed to have acquired such an amount of general culture and scientific knowledge as to entitle him, thenceforward, to be left as free as possible to choose for himself among the great lmes of literary or scientific study. At the same time we should recommend that ia student who should, for any reason, be unable to offer himself for a " Leaving Examinatiou," or who should fail to attain the required standard, should not suffer any disadvantage at the University, beyond that of incurring the obligation to pass an equivalent exammation at some later period in his course. ${ }^{\text {. }}$
9. We are of opinion that it is of the utmost importance for the future of scientific education in England, that, in case such an examination should be instituted, those parts of science which are suitable to form part of the education of boys should be fully recognised in it. We feel it necessary to insist strongly upon this point, because any disparagement of science, in comparison with other subjects, in an examination intended for schoolboys upon leaving school, would put insurmountable obstacles in the way of the efforts that are now being made to procure the more general recognition of certain scientific subjects as parts of the ordinary work of a school. Whether, in such an examination, any specified subjects should be made compulsory, or whether, in every case, an option should be allowed between different subjects, are questions which may be safely left to the Universities and the Schools. But we could not approve the institution of a Leaving Examination in which classical or mathematical subjecis alone were rendered obligatory, while no simular requirement was made with regard to any part of the sciences of observation and experiment. Such a "prajudicium" against science would not only exercise an influence adverse to some of the best tendencies at present observable in the schools, but would greatly detract from that impartiality which the Universties should endeavour to maintain with regard to all the great branches of human knowledge.

III.-Proposed arrangements with regard to the Scientific Curriculum.

10. As to the curriculum of study to be prescribed to the student when he has once been admitted to the University, there is less divergence of opinion than there is as to the conditions under which he should be admitted. There is a general concurrence among the witnesses, that the student, at an early period of his academical course, should be left free to choose for himself among the principal lines of study, and should not be hampered and distracted by being compelled to pass examinations in subjects having no direct bearing on his own immediate pursuits. Mr. Pattison, indeed, would go further, and would insist on the course of the scientinc student being free from the very beginning, without the University tequiring him to devote any time to literary studies, or expecting him to pass any examination whatever in non-scientific subjects. He says, "I would propose that when a young man comes up to the University, " st should be open to him to matriculate at once as a scientific student; that he should " not be checked in that career at any point by a classical requirement; that if he " chooses to enter as a scientific student, the University should know nothing of him " but as a scientufic student, and that it should not throw what I may call a bar in his "way by seeing whether he knows anything of Greek or Latin. A young man does not "usually come to the University until 18, more usually it is 19 , but 18 is the earliest " age, and by that time I think that a good school might have laid a sufficient ground" work in literature, either classical or modern, and that there would be quite enough to " do in the three years during which he is in the University, to conduct him through "a course of mathematics and natural science." Again, to the question of he "woald "allow a young man who had had no literaly training whatever to enter himseff on " the scientific side in the Unıversity of Oxford" $?$ " the University is concerned, I would have the University take no cognizance of " that matter if he chooses to enter as a scientific student. I would have the University " take no cognizance of any literary attainments. Whether you should require the " schools to certify themselves in any way of a man's hiterary attanments, is a different "question; but I would not have the University put a barrier in his way at the begin" ning." Mr. Pattison would also dispense with the Matriculation Examination, "in order " to avoid the waste of time which now occurs in preparing for subjects which are not " afterwards to be studied."
11. On the other hand, Professor J. C. Adams in answer to the question, "You would "s not wish mathematics and physics to be studied to the exclusion of literary culture ?" rephes, "Certainly not. I think that hiterary culture is extremely important, that with" out it the mind is apt to become narrowed, especially if it be exclusively.devoted to " material objects, and that in consequence even physical studies themselves are likely " to be pursued with less success. I should not, therefore, be at all in favour of establishing
" separate schools of science where the scientific studies should take the place of literary " or of mathematical studies." He does not, however, consider it imperative that classical and physical studies should both be carried on to the end of an undergraduate's course ; for in reply to the question, "At a certain period, do you think that "classics might be laid aside, and the student's attention might be devoted to mathe-
" matics and physical science?" he says, "After a certain time, and after a certan

[^0]answer to the preceding question it would appear that he contemplated the requirement of the "previous examination" as sufficient. When this evidence was given the regular time at which a student was obliged to present himself for the Previous Examınation was in his third term.

12 We have already stated that, in our opinion, it is essential that some evidence of literary culture should be required by the Unversity from every student; and in the interests of science itself we should not be disposed to, see the standard of literary attainment which is expected from the scientific student placed at too low a level., Rather, we regret that a principle so sound in itself should receive only an one-sided application; and admitting, as we do, that literary cultivation, up to a certain point, is indispensable for the scientific student, we are of opinion that, in like manner, evidence of coriesponding scientific culture should be required from the student of Classical Literature or of Theology. The Regius Professor of Greek at Oxford appears to admit that the present, system is indefensible, when he says, "It may very fairly be retorted on this plan which Qu. 3897.
"I have just suggested, 'then you require Literature as a condition of taking a degree ${ }_{*}$ "" but you do not require Science.' I should be inclined to require from evergone a "certain amount of Science before he, took his degree. I should put the different " indıviduals on the same footing in that respect." * * * * "I think 1 " would wish to leave it in this way, that I am prepared to demand Latin and Greek and " a farr amount of Science of everyone; but I am not prepared to say, considering the "small amount of Physical Science that is at present taught in the country, that I " would make the amounts equivalent."
13. Since the greater part of the evidence relating to the Universities was received, the University of Oxford has been engaged in remodelling its Examination System, the general effect of the changes being to carry out, to a centain extent at least, the views laid before us by the witnesses, and to allow a greater freedom of choice between different branches of study than had previously been conceded. According to the Statute now coming into force, every scientific student who wishes to obtain the degree of Bachelor of Arts has to pass three examinations in non-scientific subjects; the first, Responsions, at the end of his first term; the second, Moderations, at the end of his fourth term; the third, an examination in Divinity (or in substituted matter) for which he cannot offer humself before his twelfth term. If it be admitted that a certain proticiency in both Greek and Latin is to be expected from an University Student of Science,-a question on which we do not propose to express any opinion in this Report,-the amount required at Responsions and Moderations wull probably not be regarded as excessive; while the early period at which these examinations may be passed leaves him free to attend to his scientific work during that portion of his University ressdence which is by far the most valuable, as being not only the longest, but also the latest in point of time. In fact, if a student pass Moderations in his fourth term, he has two full years before he can offer himself for an examıation in Honours; and, f he pleases, he may prolong this period to two and a half or to three years. Nor is his all; for if he has obtained an Honour in any one of the Honour Schools at the - Inal Examination, he acquires the right to offer himself for examination in any other bonour school as late as bis twentieth term. Thus, a Student in Natural Science who should obtan wisurth class in the School of Mathematics would have nearly four years, after passing Moderations, which be might devote almost without interruption to his scientric work.
14. As, however, an University course of five or even of four years is of inconvenient length, it wrould be very desiable for the scientific student to obtain the privilege of passing Moderations as soon as be finds humself prepared for that examination, instead of pussing it, as at present, at the end ff the first year. The effect of this alteration would be, not to lower the standard of literaxy acquirement at present expected from him, but simply to give him the opportunity of showing, at the earliest period possible, that he can satisfy the requirements of that standard. The anticipation of a classical examination at the end of the first year not unfrequently altogether prevents a student from srttling down with ploper regularity to his scientufic work; not to mention the obvious teadency of the arrangement to unduly lengthen the course of those students who, at first coming up, could pass both examinations without difficulty. It must be ardmitted that of this change were introduced, the University would combine, to a much gieater degree than at present, the two advantages of maintaining the stringency of its literary requirements, and of leaving the scientific curriculum unfettered, almost from the commencement of the student's residence. But if, as we have already recommended, a "Leaving Examination" should be instituted in connexion with the University, it would seem certain that the most satisfactory mode of securing these two objects conjointly would be to require
in that examination whatever amount of literary attainment might be thought desirable ; so that the scientific student who had shown the requisite literary proficiency in the "Leaving Examination" would find himself absolutely free, except so far as the examination in Divinity is concerned, from the first moment of his entrance to the University, to ${ }^{*}$ devote his whole time and energy to his scientific studies. And we are of opinon that any system which does not concede, from the first, this freedom to those students of science who have given proofs of sufficient literary acquirements, involves an interference with their course of study which in many cases is prejudicial.
15. In tae University of Cambridge a wide option as to choice of subjects of study on the part of the students already exists. After passing the "Previous Examination" including certain additionaì subjects for candidates for honours, such students are free to devote themselves entirely to that branch of study in which they aspure to honours ; and should they succeed in obtaining them, or even be declared by the examiners to have answered sufficiently well to deserve an ordinary degree, they may obtain their degree without the necessity of reverting to any other branch of study. And the tendency which of late years has existed to allow a student to pass the previous examination at a continually earlier period of his course has culminated in a regulation recently passed whereby he can present himself for examination even in his first term of residence. By a regulation similar to that existing at Oxford, a Student of Natural Science who obtans honours in either mathematics or physics may offer himself for examination for honours in natural science a year later than the normal time.
16. It will be seen, from what has been said, that the arrangements of the Uuiversity of Cambridge do allow, and those of the University of Oxford might, without much difficulty, be so modified as to allow, nearly complete freedom to scientific students. On the other hand, it is important to bear in mind that, if we except the requirement at Cambridge of Elementary Mechanics, nothing is done, at any part of the course in either University, to exact from all students alike any knowledge, however small, of the elements of the sciences of experiment and observation. Such obigatory subjects of study appear to be viewed with increasing disfavour by the authorties in the Universsties. Nor is the reason far to seek. It is found that while work which a student chooses for himself is well done, that which he is forced to do, and does against the grain, is ill done, and is comparatively unprofitable to him. Indeed, if the Unversities are left to themselves in the matter, it is much more probable that the literary tests now required from scientific students will be lowered, it may be even beyond what is desirable, than that any new requirement of a minimum of scientific knowledge will be smposed on Students of Classics, or Divinity, or Laws. For a body of teachers to maintain such a requirement would be very difficult, on account of the intense repugnance with which it would be regarded by a large number of the best students. If, in spite of the traditions of three centuries, it has become an open question whether Greek should be a compulsory subject of University education, it may well be considered that it would be difficult, if, indeed, it were desirable, to give an obligatory character to any other study. In all recent changes in the system of University teachng and University examinations, it is impossible not to recognise a tendency in the direction of that complete freedom of study which. is. so ably advocated in the evidence of Mr. Pattison; nor can we escape the conclusion that this tendency will receive and ought to receive yet further development. We think, therefore, that the literary student should retain a freedom of choice similar to that which we have already insisted on as being of the first importance to the student of science. But, just as we should require the student of science to give evidence, in his "Leaving Examination," of sufficient literary culture, so we should expect the student of literature to give proof of corresponding screntific knowledge in the same examination; fallure to pass the examination involving, in the case of both classes of students alike, not exclusion from the Unversity, but only the oblgation to pass an equivalent examination at some subsequent period of the University course.
17. Should the Universities ultumately adopt the pranciple of allowing the student, on his first coming into residence, to choose for himself the branch of study to which he will devote himselt, it is earnestly to be hoped that when that time arrives, the state of secondary education in the schools of the country may be such as to enable the student to exercise his choice with intelligence and discrimination. Some opportunity should have been afforded to him, durng his work at school, of acquainting himself, to a certain degree, with the objects and methods of more than one of the typical branches of human knowledge. Unless some such breadth of view has presided over the teaching given to the student at school, the best-intentioned youth, when he comes to the University, is only too likely to ran on in the old grooves of his school training, and, from the mere influence of habit, to forego the exercise of a well-advised chotce between
the different lines of study that are put before him. It must always be remembered that up to a certain point in the pupil's development, the subjects of education are of necessity compulsory, and must be selected by the teacher for him; and while it is desirable that when this point is once passed, a wide latitude of selection should be allowed to the student, it is of no less importance that the compulsory subjects, in which he receives his previous training, should, be rightly chosen for hm. It is not easy to see how the Universities can retan any mfluence or control over thati previous trainng if they allow themselves to become great schools of highly specialized branches of knowledge, without insisting, in the ease of all their students alke, on certan elementary attainments which ought to be the common property of all educated men. Such influence and control over secondary education is an important function of the Universities, and we are of opinion that they ought to justify their claim to it by requiring certain definite literary and scientific attainments from all their students alike; although it should be left to the student himself to determine whether he will offer evidence of these attainments before entering the University, or as soon after entering it as he may see fit.
18. The separation of the scientific curriculum from the literary one, which, at both Universities, has almost become an accomplished fact, has, given ise to the suggestion that in the case of science students, degrees in sclence might be taken in the place of, degrees in arts., So far as the proposed substitution of the degree of Bachelor of Science for the present degree of Bachelor of Arts is concerned, the opmian of the witnesses whom we have examined does not appear to be favourable to the change. While attributing the utmost importance to the independent existence of a scientific curriculum, they regard the institution of separate degrees. in science as a matter of very subordinate interest, and as turning, in fact,-on the value likely to be attached to a new name in comparison with an old one. Viewing the matter in this light, they appres hend that it might be a positive disadvantage to the science students to give' them the degree of Bachelon in Science instead of the old degree in Arts, the position of which, in the eyes of the public, has been established by long lapse of time. Moreover, there is reason to believe that the science students themselves would not care to see a line drawn between them and their fellow students in classics and literature.
19. These objections, however, do not apply to the institution of higher degrees in science, to be obtained only after the ordmary degree in arts. And it has been suggested, though not by witnesses specially connected with Oxford or Cambridge, that the older Universties might, at no very distant period, imitate the example of the University of London, by instituting a Doctorate in Science; requiring, however, that candidates for this degree should not merely show proficiency of knowledge as tested by examination, but should also offer some orginal contribution to science. We shall return to this suggestion, to which we attach much importance.

IV.-Proposed University Scholarships in Natural Science.

20. We are also of opmion that, in addition to the College Scholarships, University Scholarships in Natural Science should be founded at both Universittes; scholarships comparable to those which already exist for various branches of classical learning, and, at Oxford, of mathematical science.
21. At Oxford the Hertford Scholarshrp for Latin Literature and the Ireland Scholarship for Greek and Latin, of which the first is accessible to candidates who have not been matriculated for more than two years, and the second to candidates who bave not been matnculated for more than four years, have been found of the greatest use in maintaining a high level of Greek and Latin scholarship among the candidates for honours in the Unveisity. The same service is rendered to Mathematics by the Junior Mathematical Sclolarship, for which candidates can compete untll the end of their second year, and by the Senior Mathematical Scholarship, which is intended for students who have alleady taken their degree. It must be remembered that in the University of Oxford the examinations for honours are not competitive; and although there is no evidence before us to show a desire on the part of the University to abandon its present system, and to adopt a competitive one instead, it is felt that the introduction of the principle of competition by means of the examinations for the University Scholarships, reacts in a most favourable manner upon the examinations for degrees; and that the standard of mert to be expected from a candidate for a first class in the classical and mathematical examinations is maintained by means of the competition for the scholarships at a higher level than in all probability if would otherwise attain.
22. To carry out this principle with reference to the examinations in science, we should wish to see three University Scholarships offered every year; one in Physice, one in Chemistry, and one in Biology. It would probably be desirable to fix the time up to which candidates mught compete for these scholarships somewhat late in the academical course. The prospect of obtaining an University Scholarship is so great an incentive to exertion, and the honour, quite apart from the pecuniary value, is so highly prized, that we should expect a considerable impulse to be thus given.
23. In connexion with this proposal it may be proper to mention three Foundations which already exist and which have for their object the encouragement of certain special branches of scientific study : (1) The Radcliffe Travelling Fellowships, of the value of 200l. per annum for three years, of which one is filled up every year by a competitive examination in Medicine. Candidates are required to declare that they intend to graduate m medicine and to travel abroad with a view to their improvement in that study; but if no candidate of sufficient mert complies with these conditions, the compettion is thrown open to all candidates who have satisfied certain other academical requirements. (2) The Burdett Coutts Scholarships for Geology, of which one is offered every year, the subjects of examination being geology generally, and so much of experimental physics, chemistry, and biology as is necessary for the understanding of geological science. Candidates must have passed all the examinations required for the degree of Bachelor of Arts. (3) The Johnson Memorial Medal, which is awarded once in every four years for an Essay on some prescribed Astronomical or Meteorological subject.

Although all of these foundations appear to us useful in their different directions, they cannot be regarded as rendering the same services to scientific education which might be expected from the three University Scholarships which we should desire to see founded.
24. At Cambridge the system of arranging the names of those who obtan honours in the various triposes in order of merit renders the competition so keen in the cases of mathematics and classics, for which Honour Triposes hare long been established, that in these subjects the additional stimulus of University Scholarships seems hardly required. There are various University Scholarships for Classics, but none for Mathematice, and yet there is no lack of energy in the prosecution of mathematical study. Indeed, until lately the Mathematical Tripos was much more popular than the Classical, notwithstanding the disadvantage at which mathematics were placed as compared with classics in respect to University Scholarships: of late the numbers on the two lists have been more nearly equal. The Natural Sciences Tripos has not bitherto proved nearly so attractive. We think that until its position is more firmly establshed, the establishment of University Scholarships for Natural Science would foster its growth.
25. At Cambridge, as at Oxford, certain Foundations exist having for their object the encouragement of Scientific Study or Research:-(1) Two Smith's Prizes are awarded annually to the two commencing Bachelors of Arts who are deemed the best proficients in Mathematics and Natural Philosophy. (2) The Adams Prize is offered every second year to the author of the best Essay on some subject of Pare Mathematics, Astronomy, or other branch of Natural Philosophy. (3) The Sedgwick Prize is offered every third year for the best Essay on some subject in Geology or the kindred sciences. (4) The pensions charged by Mr. Worts upon his estate for the remuneration of two Travelling Bachelors of Arts, bave been converted into a fund from which the University may make grants from time to time, by Grace of the Senate, for the promotion or encouragement of investigations in foreign countries.

Of these foundations the first is so far blended with the Mathematical Tripos that it seems to exert little independent influence; the second and third are rather of a nature to reward study, pursued subsequently to the regular Academical Course, than to operate as a stimulus to undergraduates; the fourth is exceedingly wide in its scope, and rather enables the University to carry out, from time to time, certain desirable objects than acts directly as a stmmulus to exertion. Hence none of these foundations, useful as they are in their way, fulfil in any degree the office of an University Scholarship.

II.-THE PROFESSORIATE.

26. Our attention has been especially directed to the following questions relating to the Professoriate:-
I. What should be the number of Professors, and with what assistance should they be provided?
II. What duties should be assigned to them, with special reference to the question whether both teaching and original research should be included in those duties?
III. What should be the mode of their appointment ?
IV. What should be their emoluments, and how should such enoluments be provided $?$
V. Should a Council of Science be organized for Unversity purposes?

r.-Present and Proposed Professoriate.
 (A.) Present Scientific Teaching Staff at Oxford.
 Existing Professorships.

27. The following is, 'a schedule of the 'Scientific Professorships in the University of Oxford:-:

Regius Professorship of Medicine Savihan Professorsbip of Geometry	Founded temp. Henry VIII.
" $\%$ of Astronomy	1619.
Sedleian Professorship of Natural Phylosophy	1621.
Professorshup of Botany	1622.
Proforso of Experimentai Phlosophy	1749.
	1780. 1813.
of Geology	1818.
Waynflete Professorship of Chemistry	1854.
Linacre Professorshhp of Physiology	1857.

28. Certain older Professorships have now disappeared: thus the Aldrichian Professorship of the Practice of Medicine is now united with the Regius Professorship of Medicine, but although the Clinical Professorship is at present held by the Regius Professor of Medicine, the two offices are not united.

The Tomlins Prælectorship of Anatomy and the Aldrichian Professorship of Anatomy are now united with the Linacre Professorship, their joint stipends being charged with the salary of a Demonstrator of Anatomy, who is also Keeper of the Physiological Collection in the University Museum.

The Aldrichian Professorship of Chemistry was suppressed at the time of the first appointment to the Waynflete Professorship in 1865, and its stipend is now applied to the payment of a Demonstrator of Chemistry.

Besides these two Demonstratorships of Anatomy and Chemistry, the University has also provided a Demonstrator of Experimental Philosophy.

> . . Instruction provided by the University.
29. The following is a statement of the Professorial Lectures during the Academical jear 1872-73.

Professor.	Subject.	Placen, Days, and Hours.
Mioharlmas Tarm, 1872.		
Ragius Professor of Medicine (H. W. Acland, D M.).	Clunical Instruction at the Infirmary	The Radclife Infurmary, Tu, S.-IL.
Savilan Professor of Geometry (H. J. S. Smith, M.A.).	Harmonic Properties of Figures	The University Museam, M., F.-M'.
Savihan Professor of Astronomy (C. Pritchard, M.A.).	Spherical Astronomy gnd Astronomıcal Instruments.	The University Museum, W., S.-11.
Sedleian Professor of Natural Philosophy (B. Price, M.A.).	Hydro-mechanes -	The University Museum, Tu., Th., S.-1.
Profossor of Expermmental Philosophy (R. B. Clifton, M.A.).	Optical Instruments and Physical Optics.	W, S. -12.
Professor of Botany (M. A. Lawson, M.A.).	Minnte Anatomy of Plants; 2ncludiag Practical Demonstrations in Microscoprcal Mampulation.	The Herbarium, M., F.-1.15.
Waynflete Professor of Chemustry (W. Odlung, M.A.).	The Successonon of Chemical Ideas Explanatory and Catechetical Lecture	The University Maseum, M,Th.-12. The University Museum, Tn.-11.
Linacre Professor of Physiology (G. Rolleston, D.M).	Human Anatomy and Phyiology, with special reference to Ethnology.	The Unversity Museam, M , F.-12.

Profesoor.	Subject	Placea, Days, and Hours.
Deputy of the Professor (E. Ray-Lankestar, M.A.).	General Classufication of the Animal Kingdam.	The University Museum, S.-1.
Professor of Geology (J. Philhps, D.C.L).	The Successave' Conditions of Land and Sear, taken in order of Geologreal Time.	The Unversity Mussum, M., W.7 12.
Норе Professor of Zoology (J. O. Westwood, M.A). Professor of Mineralogy (M. H. N. S. Maskelyne, M.A.)	Structure and Classification of Articolated Ammala	The University Museum, Honrs to be arranged.
Lent Term, 1873. Regins Professor of Medicine	Clinical Instruction - Sanitary Defects in a Village or Town; illustrating thereby the principles of General and Santary Admimstration.	The Raulclufe Infirmary; 8,-10. On the spot, at trmes to be fixed.
Savilian Professor of Geometry	Pure Geometry (in continuation)	The Univeraty Museuma
Sedleman Professor of Natural Phulosophy.	Dynamics of Rigid Systoms	The Unuveraty Museum, Tu, Th. S_{H} -1.
Savilan Professor of Astronomy	Ninth and Eleventh Sections of the Pruncipia, and the Lunar and Planetary Theories.	The Unveraty Museun, Tu, W., \mathbf{S}_{1} -11.
Professor of Experimental Phulosophy.	Optical Instruments and Physical Optics.	Physical Laboratory, University Mu seй ${ }^{2}$, W., $8,-12$.
Professor of Botany -	Contnnuation of subject begun last term.	The Herbarzum, to be fixed.
Waynflete Professor of Chemistry.	The Succession of Chemical Ideas (in continuation).	The University Maseum, M., Th.12.
Demonstrator of Chemistry (W. W. Fisher, M.A).	Elementary Organic Chemistry -	The Unversity Museum, Tu., F.
Deputy of the Professor (W. F. Donkin, B A).	Elementary Inorganic Chemistry	The University Museum, W., S.
Linacre Professor of Physiology	Nervous mystema -	The University Museum, Tu., F.12.
Deputy of the Professor	General Classification of the Anumal Kungdom.	The University Musenm, S.-1.
Professor of Geology	Will assist Students in Geology sine ulla solennutate.	The Unuversity Musenm, M., W. 12.
Hope Professor of Zoology	Entomology: four Lectures-(1), Structuxe; (2), Transformations; (3), Economy ; (4), Classafication of Articulate.	The University Museum. F.-2.
Professor of Mueralogy - Easter Term, 1873. Regius Professor of Medıcine -	Clumesl instruction (in contmuation)	The Radeliff
	Demonstration of santary defects in a village or town as illustrating general prunciples of santary administration.	To be fixed.
Savilian Professor of Geometry	Pure Geometry (a continuation of the courses grean in Muchselmas and Lent Terms).	The Unversity Museum, M, F--11.
Sarlan Professor of Astronomy Sedielan Professor of Natural	Problems in Applied Mathematica	The University Mnseam,
Philosophy.		
Professor of Experimental Philosophy.	Optical Instruments (conclusion of course).	The Unversity Museam, W., S--
Professor of Botany -	Structural, Systematic, and Economic Botany.	The Herbarium, M., W., Froil.
Waynfiete Professor of Chemistry Demonstrator of Chemistry	Elementary Organc Chemestry	The Unrve
Depaty of the Professor	Elementary Inorganic Chemastry	The Unversity Museum, W, 8 .
Linacre Professor of Phymology	The Crcalation - -	The University Museam, Tu, Fr-
Depaty of the Professor	General Classufication of the Animal Kingdom.	The Unversity Museun, 8.-LI.
Professor of Geology	Theoretical Geology. Interior of the Earth. Land and Sea. Physucal Geography. Succession of life. Geologacal Time.	The Dniversity Museam, M., Wr 12.
Hope Professor of Zoology	Will not lecture, bat will see gentlemen desirous of advice and direco tron in the stady of Zoology drily.	The University Maseum-Every day between 1 and 4 p.m.
Professor of Mineralogy -	Minerals of Lithological mportance -	

30. In addition to these Professorial lectures, arrangements were made during the sarne Academic year for Practical Instruction in Anatomy and Microscopy in the work rooms of the Anatomical Department; in Chemistry and Physics, in the Unıversity Laboratories; in the detection of the adulterations of food, in the Laboratory of the Medical Department; in the use of Astronomical lnstruments, in the Museum Observatory; and in Botany at the Botanical Garden.

Instruction provided by the Colleges.

31. In addition to the above courses of instruction which are provided by the University, a certain amount of scientific teaching is given in the Colleges. The lectures, enumerated in the lists which follow, "are those which are advertised as public lectures, and which are understood to be accessible to all members of the University. A very large amount of private instruction, in addition to the lectures, is of course given by the lecturers in their respective colleges. There are several Mathematical Lecturers in the varions colleges, besides those whose names appear in list (1.), but theie are no College lecturers in Natural Science besides the Lee's Readers and those whose names appear in list (3).
(1.) Combinea Mathematioal Leciures.

(2.) Legciukes by Dre Lisk's Readers (Christ-Chureh).

(3.) Combined Lagotires in Natural Soiknoe.

Subject	Leeturex.	Places, Days and Hours
Micharlmas Term, 1872 (Merton, Magdalen, and Jeaus Colleges).		
The Outlines of Zoological Classification.	E. Chapman, M.A. -	The Laboratory, Magdalen CollegaTo be arranged.
The Facts on which the Modern Studies of Chemistry are founded.	T. H. G. Wyndham, M A.	MertonCollege Science Lecture Room, Ta., Sat,-9.
Lext Trrm, 1873 (Merton, Magdalen, and Jesas Colleges).		
Outhnes of Zoological Classufication (in continuation).	E. Chapman, M.A.	Magdalen College Laboratory, M1 $\text { W, F. F }-10 \text {. }$
Minerals which are of importance as the Constituents of Rocks.	T. H. G. Wyndham, M.A	Magdalen Collcge Laboratory, Tues. Sat., at 9.
The Mineral of Coal and Saline Deposita.		
The course will bo in connexion with a practical class for the recognition of the Minerals mentroned in the lecture.	- - -	Mineralogical Laboratory, University Museam.
Eabter Terim, 1873 (Merton, Exeter, Now, Magdalen, and Jesus Colleges).		
Outhnes of Zoological Classtication (concluded). On the Chemustry and Physiology of the Albuminates (commenced).	E. Chapman, M.A.	Magdalen College Laboratory, Mon Wed.,-10.
Typical Roek Specimens, contunasthon of course of last term.	T'H. G. Wyndham, M.A.	Magdalen College Laboratory, Tu, Fri-9.
The Cell Theory in relation to Animal Structure.	E. Ray-Lankester, M.A.	Exeter College Laboratory, Mon, Wed.
Mechamics for the Prelmunary Honour Examination.	C. E. Bickmore, B.A. -	New College, Mon., Tb - - ${ }^{\text {9, }}$

32. It will be seen from these lists that (with the exception of Pure and Applied Mathematics) nearly the whole of the Science teaching in the University devolves upod the Professors and their Demonstrators. The two Professors of Pure and Applied Mathe matics (the Savilian Professor of Geometry, and the Sedleian Professor of Natural Plulosophy) occupy a position in some respects different from that of the other Professorb in consequence of the fact that a large amount of mathematical instruction is given if
the different Colleges by Mathematical Lecturers. Thus, the position of these two Professors with regard to the teaching of Mathematics in the University can hardly be said to be different from that which is held, for example, by the Professor of Greek, or of Latin, or of Moral Philosophy, with regard to the teaching of those subjects. Again, Christ-Church has the advantage of its three Lee's Readers in Physics, Chemistry, and Physiology; and in a few of the Colleges arrangements have been made for supplying the scientific students with a certain amount of tutorial assistance. But after makiog every allowance for the belp thus afforded, the fact remains that the main responsibility of teaching Natural Science within the University is thrown upon the Profersors. It is not surprising, therefore, that we have found a general agreement among the witnesses whom we have examined as to the necessity of increasing the number of University Teachers of Science. This necessity arises not so much from the number of students at present attending the courses, as from its being essential that all the principal scientific subjects should be properly represented, and that teaching in any one of them should bo accessible to any student who may need it.

(B.)-Present Scientific Teaching Staff at Cambridge.
 Existing Professorships.

33. The following 1s a schedule of the Scientific Professorships in the University of Cambridge, and of the Demonstratorships attached to them:-

Instruction provided by the Unversity.
34. A tabular statement is appended of the lectures of the Scientific Professors for the Academical year 1872-3, extracted from the programıe published by the ViceChancellor at the beginning of the October Term.

Professont	Subjecta	Places, Deyb, and Hoars,
Mloeamlmas Trimi, 1872.		
Regius Professor of Physic (G. E. Paget, M.D.).	Clunical Mediane - * '	Addenbroke's Hospital, M., W., Th., F.-10 arm.
Professor of Chemistry (G. D. Liveing, M.A.).	$\left\{\begin{array}{lll} \text { Chemistry } & \text { a } & \text { - } \end{array}\right.$	
	Practical Chemistry -	University Laboratory, M., W., F.1 p.m.
Plumian Professor of Astronomy and Exporimental Phulosophy (J. Challus, M.A.).	Practical Astronomy and Magnetism -	Astronom, Leet Room, M.', Tu., W., Th., F.-I p.m.
Professor of Anatomy (G. M. Humphry, M.D).	$\left\{\begin{array}{l}\text { Anatomy and Physiology } \\ \text { Praotical Anatomy }\end{array}\right.$	New Museums, Tu, Th., S.-mi p.m.
Professor of Geology (Deputy of A. Sedgwick, LL, D.). *	Geology and Palooontology	Geol. Lect. Boom, M., W., F.12 m .
Jacksoninn Professor of Na tural and Experimental l'halosophy (R.Willis, M.A.).	$\left.\} \begin{array}{ll}\text { Mechanies and Mechamsm- } & \text { The Steam Engine, \&c. - }\end{array}\right\}$	New Museums, M., Tu., W., Th., F.-1 p.m.

[^1]
35. In considering the list of the scientific Professors' lectures, it must be remembered that Pure and Applied Mathematics have for a long tıme been zealously studied at Cambridge. The Mathematical Tripos was in existence long before the Classical Tripos was established, and even after its establishment continued for many years to form the chief road to academical distinction. These subjects are accordingly taught, at least in all their ordınary branches, in every Cöllege." The Mathematical Professors being thus relieved from all elementary teaching, their lectures are devoted to some of the higher branches, followed only by the more advanced students, and are not, for the most part, of a nature to attract large classes. And, as the information to be obtained in a professor's lecture , does not come and ought not to come in a shape in which it is immediately availabled for rapid production in a written examination, it does not seem probable, considering the keenness of the competition for high places on the Mathematical Tripos, that students would be willeng to interrupt their more direct preparation for examination by attending numerous courses of professors' lectures. Whether the influence which this examination, exerts on the studies of the students may not be excessive, is a question which seems to deserve the serious attention of the University.

Instruction provided by the Colleges.

36. In addition to these courses of instruction which are provided by the University, a certain amount of scientific teaching, available beyond the limits of individual Colleges, is given by certain Colleges which have combined into groups, as shown in the subjoined lists. These Lectures are open to the students of the respective groups of Colleges, either gratuitously or on payment of a certain fee; but other Matriculated Students of the University may attend on payment of a fee, or of an increased fee, as the case may be.
(1.) Intike-Collegiati Lefctures.

Natural Scuence.

Comparative Anatomy and Physiology	Dr. Bradbury	-		Downing College, T., F.-9 to 10.
Chemustry	Mr. Lewis -			Downing College, M., W., S.- 9 to

Mathematios.

Natural Souences,

| Comparative Anatomy and Physiology |
| :--- | :--- | :--- | :--- |
Chamustry	\quad	Dr. Bradbury	
Mr. Lewns	$\quad: \quad: \quad	$	Downing College, M., W., F.
:---			

Mathematios.

Natural Somencis

(2.) Limctures if the Natural Scifinces.

Open to Studente of Trinity, St. John's, and Sidney Sussea Colleges

37. The Inter-Collegiate Lectures on Pure and Applied Mathematics contained in list (1) by no means represent the whole of the teaching on those subjects given by the Colleges. The lectures which the Colleges provide for their own students are not publicly advertised.
The students of Natural Science are at 'present much less numerous than those of Mathematics, so that it is not probable that an individual College would establish lectures in a branch of Natural Science merely for its own students. Thus the lists of lectures given may be taken as fairly representing the amount of teaching in:Natural Science which is given outside the Professoriate.
These lectures for the most part are on the footing of ordinary College lectures, but the position of the Trinity Prefector of Physiology closely resembles that of an University Professor. He is allowed by the University the use of a room in the New Museums for a temporary laboratory, and his lectures are open to all members of the University.

(C.) Compabison with the Ingtrdction Pronided by the University or Berlin.

38. In comparison with the lists of Professors and Lectures in the two Universities which we have given, we would place the following list of the Scientific Professors and Scientific Lectures in the University of Berlin. As this list does not inclade the lectures given by the Faculty of Medicine, the principal courses on Anatomy and Physiology are not included It may also be observed that the list conveys the impression that the organisation of the instruction is in some respects incomplete; for example, while the supply of lectures in Chemistry may be said to be profuse, there is not a single lecture in the 1 hilosophical Faculty on any part of Electricity, theoretical or practical. But, notwithstanding this and some other obvious defects, it is impossible not to be impressed with the evidence which
the list affords of the abundance and varrety of the scientific teaching given in the University of Berlin by Professors of great eminence. We would particularly call attention to the fact that the list includes not merely general courses adapted to the requirements of those students who are incerested in science only as a part of a liberal education, but also special courses on subjects taken from some of the newest and most interesting fields of scientific inquirs; so that instruction of the kind most lukely to develope a sclentific spirit in the mind of the learner, and given by the most competent teachers, is put withon the reach of every student.
List of the Soientifio Lieotures announced to be given in the University of Berdin in the Academioal Year, 1872-73

Natural Sclencis.

Prof. Du Bors-Reymond *
Piof. Poggendorff
On Some Results of the Recent Dovelopments of Natural Science.
General History of Physucs, from Galleo to the Present Time.
Theoretical Physics (using the Elements of the Differential Calculus).
Prof. Helmholtz
Piof. Dove
Experimental Phyeics -
Terrestrial Physics; or
Terrestrial Physics; or, Mähematical and
Physical Explanations of Geographical Phe nomena.
Prof. Dove
Prof Helmholtz-
Dr. Warburg
Acoustrcs and the Physiologieal Theory of Music Theory of Heat

The recent History of Chemistry
The History of Chemistry
The first part of Inol ganic Chemstry (with experiments)
Theoretical Chemistry -
Organic Chemistry, with special reference to
Medicme and Pharmacy.
Organue Chemstry (second part)
Organc Chemistry (with experments) -
Organic Chemistry
Experimental Chemistry
Chemical Nature of Minerals -
Chemical Nbture of Minerals -
Chemical Pranciples of Metallorgy
Chemistry and Technology of Dyeung
Poisons and their Detection in the Body (for Medical and Phermaceutical Students), llustrated by experiments.
The Organce Buses Forensic Chemistry (with experiments)

Chemical Conferences

Monday-6-7.
Wed., Sat.-11-12.
M., W , F. $-2-3$.

Daly, except Saturday-12-1.
Tu., Th., F—11-12.

Tuesday-6-7
M, Tu, F.-3-4
M., Tu , W , F.-4-5

Once a week, at an hour to be fixed later.
Wednesday-6-7.
Dally (the hour to be fixed Inter).
Saturday-4-5.
Duly, (except Saturday)-8-9.
Four times a week
Daily except Tuesday-5_6.
Dary except Tuesday-5-6.
Five times a week (hours to be
fixed).
Tu., W., Th--9-11.
Saturdays -5-7.
Twnce a week.
Twice week (hours to be
fixed).
Saturday-4-5.

Saturdsy-8-9.
Three tumes a week (hours to be fixed).
30636.

Leoturer.		Snbjeot.	Daya and Hours.
Prof. G. Rose	-	Minerslogy = -	Daxly-mi2-1.
Do.	-	Crystallography - -	Sat.-10-11.
Dr Sadebeck	-	Mineralogncal Topography of Germany -	Sat.-6-7.
Do	-	Mineral substances employed in the Arts	F., Sat.-2-4.
Prof. Roth	-	General and chemical Geology -	Tu.. F-2-8
Dr. Kayser	-	General Geology - -	Three times a week (hours to be fixed).
Dr. Iossen	-	Petrogrsphy - - - -	M., Th., F.-11-12 ; Tu,-11-1.
Do.	-	Petrographical Exercises on the Determination of Rocks, in the Museum of the Academy of Mines.	Th.--12-1.
Prof Beyrrch Do.	-	Palæontology - Geognosy (with spectal reference to the stran tified rocks).	$\begin{aligned} & \text { Daily'(except Saturday), 10-11. } \\ & \text { W., F.-2-4. } \end{aligned}$
Prof. Koch		General Botany (ie., History of the Development of the Vegetable Kingdorn).	M., Th.-5-7.
Prof, Braun	-	Special Botany, on the Natural System, wnth special reference to Plants of Medicinal and Economical amportance.	Daily (except Saturduy)-8-4.
Do.	-	Botamical Conference - -	F.-6-7.
Dr. Kny		On the Anatomy and Development of Planta, with microscopic demonstrations.	M., Th., Sat.-8-9.
Dr. Ascherson -		Geographical Distribution of Plants	W., Sat-6-7.
Prof. Garcke		Pharmacology - . - -	$M, F,-9-11$
Do.	-	Officmal Plants - - - -	W., Th.-2-8; Sat.-9-11.
Do.	-	Officinal Bestus -	Once a week (hour to be fixed).
Prof. Peters -	-	Generaland Special Zoology (with demonstrations in the Zoological Museum).	Daily-1-2.
Do	-	Comparative Anatomy - - - -	Hours to be fixed.
Dr. Gerstaeckar	-	General and Special Entomology (with macroscopic demonstrations).	Three times a woek, at hours to be fixed.

Mathematical Sonences.

39. Besides these courses of lectures the following arrangements for practical work were carried on throughout the academical year.
The Physical Laboratory of the University was open daily from 10 to 4 for practical work, under the direction of Professor Helmholtz.
Theoretical and practical exercises in Optics, and other parts of Mathematical Physics, were conducted by Professor Erman in his laboratory, on Wednesdays from 11 to 12, and at other times to be agreed upon later.

Practical work in Chemistry, under the direction of Professor Hofmann, daily from 9 to 5 (on Saturdays from 9 to 2).

Practical work in Chemistry, under the superintendence of Professor Sonnenschein in his laboratory daily from 8 to 12 and from 2 to 6.
Chemical investigations under the direction of Professor Wichelhaus in his laboratory (daily).
Practical exercises in Organic Chemistry, under the direction of Dr. Liebermann, in the Laboratory of the Academy of Manufactures.
A "Repetition "in Inorganic and Organic Chemistry, in the form of a conference,
illustrated by experiments, by Dr. Sell (four times weekly).
Exercises in Zoology and Zootomy, by Prof. Peters.
Botanical Investigations, under the direction of Professor Braun.
Anatomical and Physiological Investigations, under the direction of Dr. Kny.

Exercises on the determination and description of plants, by Dr. Ascherson.
In addition to the above there were, in the Winter Semester:Repetitions in Organic and Inorganic Chemistry, by Dr. Pinner; and Introductory Exercises on the use of the Microscope, by Dı. Kny.
In the Summer Semester :
Mathematical Exercises under the direction of Professors Kummer and Weierstrass.
Practical Exercises in Mineralogy, by Dr. Bauer.
Practical work in Botany under the direction of Professor Garcke.
Botanical Excursions with Professor Garcke, and also with Dr. Ascherson.
40 The Principal of Owens College and Professor Roscoe (in a Report which was submitted by them to the Extension Committee of Owens College, and which is given at length in Professor Roscoe's Evidence before this Commisson) have made somo important observations with reference to a similar list (that of the Berlin lectures for the Summer Semester of 1868). "It is unnecessary to say that we do not ser, " forth this list of teachers and lecturers as a pattern for us to follow in Owens "College or in English Universities generally. We only desire to point out and "emphatically to press the importance of the principle that the existence (in dut "" proportions) of a plurality of teachers is an indispensable prerequisite both for breadth " and depth of instruction. Where only one teacher is charged with one leading branch " of study, it is barely within his power to provide the systematic teachngg necessar "" for pass-men; whereas, If, as in German Universities, several teachers lectur "concurrently on subdivisions of a subject, the more advanced students have the " opportunity of studying more thoroughly some one section of their subject. Th "teachers are also induced, by the opportunity of lecturing on special subjects, to
" engage in profounder investigations; and thus that other aim of University institution,
" Whe advancement of science and the promotion of a learned class-is furthered."
With the general tendency of these remarks we entirely concur; and although there is evidence to show that the scientific teaching at present supphed by the Universities has attained a high degree of excellence, so far as is compatible with the limits withn which it has been confined, we are, nevertheless, of opinion, thal it is inadequate in amount, and that due attention has not been paid to the principl that "the existence of a plurality of teachers 18 an indispensable pre-requisite both fol " breadth and depth of instruction."

(D) Proposed additions to the Scientipic Professoilate at Oxford.

41. At Oxford the position of the Chairs of Experımental Philosophy, of Chemistry, and of Fhysiology furnishes conclusive evidence that some further subdivision of the subject must be introduced before the system of instruction can be regarded as having attained that standard of perfection which we have a right to expect in a great Englisb University.
42. The Professor of Experimental Philosophy has the duty of teaching the subjects of Experimental Mechanics, Sound, Heat, Light, and Electricity; and it is 1 mpossible thal any one man should give courses of lectures with sufficient frequency on all these parta of Physics. In a School of Science in which the teaching is completely organized 14 would be proper that in each year, or, at any rate, in each two years, an adequate course of lectures in each of these subjects should be open to every student. With only one professor to lecture in them it is impossible that the cycle can recur within four or even five years
43. The extent of the subjects practically assigned to the Linacre Professor of Physiology is also far too great. Upon him devolves the duty of teaching the whole of the science of Bology, so far as the animal kingdom is concerned; the duties of the Hope Professor of Zoology being confined, partly by statute, and partly by custom, to the care of the Hope Collections, and to lecturing on certain parts of invertebrate zoology which are not admitted as fundamental subjects into the University examinations, and which, consequently, are not taken up by students who have to pass those examinations. The imperative necessity for a division of the subjects of the Chair of Physiology, and at least for the separation of the Anatomy from the Physiology, has been urged by the Linacre Professor, in his Evidence before this Commission, and also in a lettef addressed to the Vice-Chancellor of the University of Oxford, which is primted at length
"I will conclude by stating, in the third place, what, in the event of any larget " plan being brought under consideration for the rearrangement of the several Charr
" connected with Biology, should, in my opinion, be the division of the subject. If it " should be thought that the University should aim at developing the study of Biology
" mainly in relation to the purpose of general as opposed to that of professional education,
" and should lay weight, therefore, manly upon the anatomical and morphological aspects
" of the subject, it is still no exaggeration to say, that the subject, even when thus
" limited, is now far too large to be entrusted to the care of any single professor. Two
" professors, one with the title and duties of Professor of Comparative Anatomy, Zoology,
" and Histology, the other with that of Professor of Human Auatomy and Physiology and
" Ethnology, ought at once to divide the field at present iif charge of the Linacre
" Professor. The scientific appropriateness and the ecouomical advantages of combining
" the subjects of Zoology, Comparative, Anatomy, and Histology are sufficiently obvious.
" Ethnology again, or 'Anthropology,' is a subject which, hawever vast and growing, is
" nevertheless one which the Professor of Human Anatomy and Physiology in Oxford
" should farrly be expected to deal with, if not from its historical and philological, still, at
" all events, from its Natural History side. The development within late years of collec-
tions illustrating this latter aspect of Anthropology is no less remarikable than that of
" literature treating of it from every point of view; and the establishment in Oxford
" of a professorship with such duties as those indicated would cause such collections to
" gravitate hither as being a place eminently fitted, by reason of the many and various
" departments of human knowledge, as of art, of history, and of ethics, represented within
" its precincts, to be a home for therr preservation and utilization. But Biology would bear
"s still further division with much advantage, and a third Chair should be established to
" represent and expound the Physiological as opposed to the Anatomical and Morphological
" division of Biology. With thas Chair the Professorships of Medicme and the duties of
"teaching what has elsewhere been called the Institutes of Medıcme might, I would
" suggest, be combined.".
44. We are disposed to go further than the Linacre Professor, While agreeing with him as to the necessity of charging one Professor exclusively with Physiology; another wnth Zoology including the Comparative Anatomy of both recent and fossil forms; and the geographical and geological distribution of animal; and a thud with Anthropology and Cthnology; we must demur to the proposal to combine the Chair of Medicine with that of Physiology. The science of Physiology is more than enough to occupy the energres of any one man, however great his abilities, and the Professor of Medicme, as a practical physician, could not be expected to find time to keep up a real knowledge of any science save that of Medicine.
45. We would further suggest that provision should be made for the instruction of those members of the University who are unable or unwilling to undergo a complete technical training in Botany or Zoology, in the broad principles and large truths of Biological Science. For the purposes of general culture an acquanntance with the principles of Biology is of more importance than a knowledge of special Physiology, Zoology or Botany, nor is it of less moment that the Botanical, Zoological or Physiological Specialst shall have acquired a familiarity with those prifciples at an early period of his career. The establishment of a Chair of General Biology, with approprate piactical instruction, is probably the only means of attaning the object here indicated.
46. As a Chair of Botany already exists, there would thus be five chairs in the department of Biology. But if, as we shall hereafter recommend, Oxford should undertake to furnish the prelminary scientific disclplne which is necessary for the student of Medicue, it will become necessary to establish, in addition, a special Professorship of Human Anatony. This Charr, however, we should regard as belonging to the Faculty of Medicine, and not to the Department of Biology.
47. We do not think it would be necessary to requite complete academical residence from the Professor of Anthropology and Ethnology. A full course of lectuies on these subjects, delivered once a yen, would probably suffice for the requmements of University students.
48. Again, in the case of Chemistry, it is of great mportance that the cycle of lectuies should recur each year; but consideling the vast extent of the subjects which, in the present state of science, must be included in a chemical course, it is manifestly impossible that this should be effected by one professor. The courses have accordngly been butherto chtefly biennial; and even with this extension of their duration, a large part of the science has inevitably been excluded from the syllabus.
49. It is not less evident that the Chairs of Pure and Apphed Mathematics are overweighted wilh the number of subjects assigned to them: it must however be remembered that the deficiency thus occasioned in the Unversity teaching of these suljects is of less immediate consequence, on account of the instiuction in them which is supplied by the Colleges.
50. Without, therefore, attempting to decide what should be the ultimate organisation the Scientuic Faculty in Oxford, we are of opinion that arrangements should be made a the earliest possible opportunity for the establishment of two Professorships in Physice and two in Chemstry, in addition to those already existing ; for the redistribution of tho Biological subjects (exclusive of those assigned to the Faculty of Medicine) in such e manner as to secure their being represented by five independent professors; and for tho addition of two Chairs, one, in Pure Mathematics and one in Mathematical Physics Lastly, on grounds to which we shall hereafter refer, we are disposed to recommend tha, establishment of a Chaif of Applied Mechanics and Engineerıng.

(E.) Proposed Additions to the Scientific Paofrssoriats at Cambridge

51. In the University of Cambridge the whole of the Science of Chemistry in its notif vast extent is represented by only one Professor. We think that Chemistry can not Jng represented with any approach to adequacy by fewer than two Professors, and that of would furnish ample occupation for three.
52. There are already four Professorships which are regarded as Mathematical, but 1 should be remembered that the care of the Observatory has from the first been attached to one of these. Two of these professorships are by the original foundations in part astronomical, and the case of the Observatory has naturally been associated with one of them. When it is remembered how totally different are the methods by which the results are arrived at in Physical and Practical Astronomy, it will be seen that there for ample room for two Astronomical Professorships, especially if the care of the Observator ? is associated with one. The distribution which would abstractedly be the most desirabit would evidently be that the care of the Observatory should be associated with the teach ing of Practical Astronomy and Geodesy, while the other Astronomical Professor shoult represent Physical Astronomy. One of the Mathematical Professorships is expressly devoted to Pure Mathematics by the terms of its foundation ; and in the application of Mathematics to certann branches of Physics other than Astronomical, there is sufficient occupation for a fourth Professor.
53. As to Experimental Physics, the Jacksonian Professorship is denominated a Profe. sorship of Natural and Experimental Philosophy, but the terms of the ongmal foundif tion are exceedingly wide. The present Professor, following the direction given to the Jacksonian Professor's lectures by his predecessor, lectures on Mechanism and the Steam Engine. Such lectures are plannly required, whatever may be the designation bit the Professor who gives them ; but while belonging to general culture, they are impert. tively required from the student of Cuvil Engineering. They do not at any rate fall undet the head of Experimental Physics, which, therefore, is at present represented by a singh, Professor, except in so far as the lectures of some of the Mathematical Professors may be of an experimental character.
54. We think that, considering the great range of subjects embraced in Experimenta Physics, that subject and Civil Engineering could not be adequately represented by ley than three Professors.
55. There is at present no Professorship of Physiology, though the Trinity Prelector of Physiology discharges in great mensure the duties of an University Professor. We think that a Professorshp of Physology ought to be established in a permanent manner, which, along with existing professorships, would make four for Biological subjects, exclusive of the Regius and Downing Professorslups of Medicine ; and, generally, that the arrangemenks of professorships as regards the Biological subjects should be rendered as complete as we have recommended for Oxford.

(F.) Adjonn Professors, Demongtrators, and Assibtants.

56. Although the witnesses have been unanimous as to the necessity of etrengthening the professorial staff, they do not entirely agree as to the way in which this should be done. Mr. Pattison would increase the number of independent Chairs of Scrence to twenty or even to thirty. On the other hand, there appears to be a feeling that the priucipal subjects should not be too much divided, although it is admitted that at present they are too much grouped together.
57. It must not be forgotten that an increase in the number of independent Chairs would render it necessary for the Universities to provide increased accommodation in laboratoried, and addtional apparatus. With the view of utlizing to the utmost the existing appliances of this sort, some of the witnesses have guggested that the increase of the Prolessoriate should, as far as possible, be provided for by an abundant supply of skilled assistants,
of demonstrators, and of assistant professors, rather than by increased numbers of independent lecturers.
58. The necessity for skilled assistants and for demonstrators of course made itself felt at a very early period, and though a certain number of such assistants and demonstrators have been supplied, yet the need for an increase in the number of these subordinate offices has already become apparent. It may be mentioned, for example, that at neither University is any assistance of this kind at present afforded to the Chair of Geology, or to that of Botany.
59. A Natural Science Professor should bave, in the first place, sufficient skilled assistance to relieve him from all mere drudgery in the preparation of his lectures. In the second place, he should have such further assistance as may be necessary to enable him to carry on original researches. And, thirdly, although no professor would wish to hand over the superantendence of the practical teaching in his laboratories entirely to others, he should be enabled to discharge this duty of superintendence without an undue sacrifice of time. The work should be done under the professor's eye, but its detalls should be entrusted to competent demonstrators, appointed by and responsible to him.
60. So far there is a general agreement; but the question whether assistant professors should be appointed at all, and if so, how far the dependence of the assistant professor upon the principal professor of the subject should be carred, has given rise to some divergence of opimon. We have already stated that we regard as indispensable the establishment of a certain number of new Chairs, to be independent of, and to take equal rank with, the existing Chairs. If the Universities are to become great Schools of Science, it is of the first importance to secure for them the permanent services of a very considerable number of scientific men of established reputation; and we cannot perceive how this object is to be attained otherwise than by offerng to such men, whthout any reservation whatever, the same academical status which has hitherto been enjoyed by the University Professors. We consider, therefore, that in any extension of the Professoriate, this is, without doubt, the first point to be attended to. But we are also disposed to attach great weight to the suggestion that, in addition to the Professorships - representing the great divisions of Natural Science; University Teachers, who might be termed Adjoint Professors or Readers, should be appointed to undertake the instruction in special branches. It would be undesirable to place an Adjoint Professor in a position of complete subordination to the Procipal Professor of the subject; and it would probably be very difficult to arrange any plan of partial subordination which could work satisfactorily. We are, therefore, of opinion that the Adjoint Professors should not be regarded as assistants to the Professors, but should be responsible for the due discharge of the duties assigned to them to a Board or Council, appointed by the Unversity, and not to any indıvidual Professor.
61. It is important that the Universities should be able to secure the -sel vices of men who have shown their ability to promote science, and to become successful teachers of it, by offering them places, such as the Adjoint Professorships, which would give them an opportunity of distinguishing themselves; and, with this view, it is very desirable that as much independence as possible should be allowed to the Adjoint Professors, in order to make the appointments attractive to the best men. On the other hand, as it is obvious that the perfection of the means and system of instruction in the Universities is of primary importance, an organisation of, and control over, the courses of instruction would be necessary, as otherwise there might be an excess of lectures in some subjects, and a deficiency in others. We are of opinon that these difficulties might be overcome, and a sufficient amount of liberty combined with systematic organisation, if, as we shall presently recommend, a Central Board, or Council, should be formed, representing the Scientfic Fuculty, and having definite functions with regard to the scientific teaching within the Universities.
62. We may observe that the financial argument in favour of extending the Professoriate (at least in the irst mastance) by the institution of offices not intended to take equal rank with the existing Chars, rather than by increasing the number of the Priacipal Professorships, will probably lose some of its force when a careful estumate is made of the difference which the adoption of the one plan or the other would make in the charge to be lad upon the funds of the Universities. It is quite true that the emoluments of an Adjoint Professor need not be so great es those of one of the Principal Professors; and that to this extent there would be a saving. But whether an additional professor of any subject be termed an Adjoint Professor, or whether his Charr be regarded as coordinate with the existung Chars, the difficulty would always reman that of he is to be of any use at all he must be furnished with the necessary apparatus; he must have a room to lecture 1 m , a room or rooms to work in, and the classification of the
students will also probably require additional space. Laboratories of chemistry, physics, and physiology have been already provided; it would, therefore, not be necessary to create a large establishment for any new professor. But it is certam that the only way in which the Universities can increase the usefulness, at the same time that they increase the number of the professors, is by being ready to make, from time to time, such moderate additions as may be necessary to the buildings which they appropriate to science.

II.-Duties of Professors.

63. The duties actually assigned in the University of Oxford to the Scientific Professors are very different in different cases. The number of lectures required from any professor is not more than 40 or 50 in the year, so that, in the case of a professor who has no laboratories to superintend, the duties of the office cannot be described as onerous, and might, perhaps, be increased without any disadvantage; but the case is very different with the Professors of the three leading subjects of Physics, Chemistry, and Biology, whose time during the University Terms is almost entirely occupied by their work as teachers. No doubt by supplying these Professors with more assistance than they at present have, their duties might, to a certain degree, be lightened ; but the difference will, nevertheless, always remain considerable between a professor whose duties consist only in lecturing, and one who has also to superintend a great department in a scientific institution in which practical work is carried on.
64. In the University of Cambridge the duties of the Scientific Professors are regulated, so far as relates to the general scope of the respective Professorships, by the terms of the foundation, but so fai as relates to lectures and residence, by Statutes made under the Act $19 \$ 20$ Vict. c. 88 . The University Statutes contain a provision, to which we shall have occasion presently to refer at greater length, that the University shall appoint Boards for reviewing the more important departments of study. The Statutes of each. individual Professorship enact that it shall be the duty of the Professor to give lectures in every year, and to order as well the subject of such lectures as the times and places of delivery, according to a scheme to be approved from time to time by the Board of Studies connected with his particular department, of which Board the Professor shall be a member; and that it shall be the duty of the said Board to provide that the subjects of the said lectures be determined with regard to the objects of each particular Professorship.
65. The Statutes also prescribe a minimum amount of residence in the University. For the Mathematical Professorships the minimum prescribed by statute is six weeks in the Michaelmas Term in every year, and twelve weeks in the Lent and Easter Terms. In the other cases it is enacted that the University shall have power to determine from time to time, by Grace of the Senate, the time for which the Professor shall be required to reside in the University in every year, such time not to exceed eighteen weeks. Inf neither case is there any precise definition of what constitutes ressdence. The minimum determined by Grace has usually been fixed at eighteen weeks. It may be remarked that the new Statutes have practically had the effect of abolishing non-residence on the part of the Scientific Professors, so that actually the question whether the minmum is satisfied, is not likely to arise.
66. Whale the Statutes throw upon the Board of Studies the duty of approving, or otherwise, the schemes of lectures of the Professors, the University has in a few instances prescribed a minimum. Thus the Professor of Experimental Physics is to deliver at least one course of lectures in each of two Terms, the total number of lectures delivered in the whole year being not less than forty; and the Woodwardian Professor is to deliver at least one course of lectures in each of two Terms.
67. It has been suggested that, in the case of certain professorships at both Universithes, the functions of Original Research might be separated from direct instruction. To a professor the duty of teaching is a matter of darly routine ; whereas, Ornginal Research is a duty which belongs to no day in particular, and which is, therefore, very likely to be neglected in companson with the other. Nevertheless, we cannot see any just and sufficient reason, in the case of the professorshrps, for a total separation of the two functions; and even Sir Benjamin Brodie, who has supported the view that some distinction should be made between offices appropriated to teaching and those approprated, to origival research, would not have the separation absolute, and would consider it' of importance that even a professor whose cbair was founded chiefly with the latter view, should be cailed upon to produce, from time to time, in the form of lectures, the results, of investigations in new departments of science. Lecturing is not the only mode in which scientific instruction may be imparted. A professor who should undertake thd
direction of a laboratory in which advanced students were to be trained in the methods of scientfic research, would be very far from holding a sinecure office, and would be rendering the highest, as well as the most direct, service to scientific'education.
68. We have no doubt that for a professor the duty of teaching is indspensable, but we agree with the witnesses whom we have examined that Original Research is a no less important part of his functions. The object of an University is to promote and to maintain learning and science, and scientific teaching of the highest kind can only be successfully carried on by persons who are themselves engaged in original research. If once a teacher ceases to be a learner, it is difficult for him to mantain any freshness of interest in the subject which he has to teach; and nothing is so likely to awaken the love of sceentific inquiry in the mind of the student as the example of a teacher who shows his value for knowledge by making the advancement of it the principal busmess of his life.
69. It has been, to a certan extent, a complaint against the School of Natural Scieuce in Oxford that hitherto it has produced but very few orignal workers. The complaint (if well founded) may, perhaps, be accounted for by the circumstance that the school has not been long in existence; but there can be no question that it is of the utmost importance to impress upon teachers and learners alike that one, and, perhaps, the chief criterion of success in the teachng of science is its leading to new discoveries. To promote this end the Universities probably can do nothing more useful than to increase the number of persons employed, under whatever name, in the teaching of science, taking care at the same time that while such duties are assigned to them as may prevent their offices from being sinecures, they shall be left with time and energy enough to carry on original work. We consider this to be a point of great importance, and we should regret to see any scientific office whatever established in either of the Universities without its being understood that it is expected from the holder that he shall do what is within his power, not only for the diffusion, but also for the increase of scientific knowledge.
70. It ${ }^{\text {thas }}$ been stated in some parts of the evidence which we have taken, that the duties of lecturing and teaching which are required from the Professors are such as seriously to interfere with therr leisure for original investigation, and a wish has, therefore, been expressed that the provisions of the Professorial Statutes as to the number of lectures to be given should be relaxed. We cannot concur with this suggestion. In estimating the amount of teachung and lecturing which can properly be required from a P_{1} ofessor, we do not forget that he is expected to keep himself well acquainted with all the latest advances in some very wide department of knowledge, a task which, at the present rate of scientific productiveness, is no light one. But, on the other hand, we cannot leave out of sight that the University duties of a Professor last for only six months, and that he has thus the invaluable privilege of benng master of his own time for fully one half of the year. It is, therefore, only reasonable that during the University Terms he should devote a fair proportion of his time to the work of teaching. And we feel it to be our duty to say that, in recommending, as we have done, the foundation of a considerable number of new Scientific Professorships, our intention is that duties of a very substantial hind should be attached to each of these offices, with a vew to the establishment of an efficient and complete course of unstruction.

III.-Appointment of Professors.

71. The mode m which the University Professors should be appointed has given rise to much discussion. It need hardly be stated that to secure a right mode of appointment is a matter of the most vital consequence; and this is strongly felt at Oxford and Cambridge, where the numbers of the Professoriate are so limited that a single inefficient or unsuccessful appointment might cause very serious detriment to the whole system of instruction.
72. There is a very general agreement that a Scientufic Professor should be appointed by a Boaid constituted ad hoc; aud it may be mentioned that at Oxford the Clinical Professorship is the only Scientific Professorship the election to which is now vested in the Conyocation of the University. What should be the precise composition of an Electing Board is a very debateable question. Sir Benjamin Brodie has expressed a decided opmon that an Electing Board should be composed entiely of men of science. " I, myself," he says, " have come to the conclusion that by far the best mode of making scientific appoint" ments is to make them by a small board of persons who understand the special subject
" in reference to which the appointment is to be made, and the sort of board which I
"" would suggest would be this: In the first place I would put two professors, say, of Qu. 360 ,
"the subject in the University. I would begin with them; then I would put on
"t the board another official person, another professor, for example, of some other s06s6.
"University, to be associated with the two professors that I have mentioned, and would "allow those three persons to nominate two other members of the board, indiviuals " to be selected not with reference to a particular professorship, but to be nominated " for some time prior to any appointment, men distingulshed in science and eminent " for their knowledge of the subject of the Chair. We have had some experience at " Oxford of this mode of constituting a board, and of the way in which it works, and
"I have come to the conclusion that it is a very good mode of making such appoint" ments." A feeling, however, has been expressed by other scientific men that in certain cases the interests of science are more safely entrusted to a board in which some kind of neutral and businesslike element is represented; or at least that appointments made by sach a board would be above all suspicion of scientific clqueism which might possibly attach to a board consisting entirely of men eminent for their knowledge of the subjects of the Chair. Perhaps the general opmion would be in favour of combining several different elements upon the Electing Board, in some such manner as that suggested in the evidence of Professor H. Smith :
" Can you give us your views as to how an Electing Board should be constituted ?-I " should certainly wish an Electing Board not to be a large one, so that there might be a "sense of responstblity attaching to the individuals composing it. I should like to see
" three elements represented upon it ; first, the local scentific element, on account of the
" keen interest which scientific men resident in an University are sure to take in the
"" appointment of those who are to be their fellow workers; secondly, I should like to
" see the outside scientific world also represented upon such a board; and, thirdly, I
" should wish to see some impartial and simply business-like element also present. A
" board so constituted would, I believe, work well. A purely local board would be objec.
"tionable, on account of the difficulty of passing over local claims."
"Do you think that the Professors themselves should have seats in the Electıng Board ? "-I think that one or two of the local Professors ought to be upon every bourd, but " do not think that they should form the majority of any board. I ought to explain " that I should not wish to bave one and the same Electing Board for all professorships
" I should have different boards for different groups of professorships."
73. The evidence of Dr. Rolleston is to the same general effect; and we are disposed to concur in the view taken by these two witnesses. The preponderance in any electind board should unquestionably be given to the scientific element, which should bl represented by scientific men both within and without the University. The presence of scientific men belonging to the University itself is evidently necessary, not only because they are well acquanted wth the working of their own system, but also because they are certain to attach the greatest mportance to the choice of the persons with whon they will have to work, and on whose fitness the success of the work in which the are themselves engaged in a great measure depends. The feeling of the Universitte themselves would probably be adverse to the proposal that an Electing Board should consint entirely of their own Professors. It is not safe to allow any body of men to perpetuate itself by co-optation, however desirable it may be that it should have some share in the appointment of its new members. And since, at Oxford, the endowment of several of the Professorships has been in part obtained from the Foundation of a College, it would probably be thought right that in such cases the College should have some voice in the Electing Board.
74. Each of the Scientific Professorships in the Universty of Oxford has its own special Statute, assigning the duties of the professor, and fixing (except in the case of the two Chairs of Geology and Mineralogy) the mode of appontment to the office. A tabular statement of the different modes of appontment will be found in the subjomed note.* As

[^2]it is desirable, on the one hand, that the board appointing to any professorship should be . small, and, on the other hand, that it should be mainly composed of persons well acquainted with the actual state of those branches of science which form the subject of the Chair; we are of opimon that in reconstituting the electing bodies it would be advantageous to adhere to the precedent afforded by the existing Professorial Statutes, and to provide by separate enactment for the mode of appointment to each professorship; except in any case in which it might be found that the circumstances of two or more Chairs were so precisely simlar as to render the same electing body equally suitable to each. It would be natural that the new statute of any chair should place on the Electung Board, as the representatives of science outside the University, the Presidents for the time being of certain scientific socleties, or the holders for the time beng of certain important scientific offices, such as that of Astronomer Royal or Professor at a sister University. Stmularly, the representatives upon the Electing Board of the Scientific Faculty of the Unversity itself mught be either the holders for the time being of certain professorships, or they might be persons nominated to serve on the Electing Board by the "Councll of Science," which, as we shall-presently propose, might be organized within the University. Lastly, it would be in accordancu with academical tradition that the Unversity at large should be represented by the Chancellor or by the Vice-Chancellor, or, in certain cases, by a person nommated by the College which had contributed to the endowment of the Chair.
75. From a list already given it will be seen that there are twelve Screntific Professorships in the University of Cambridge, exclusive of the two Medical Chairs. The fou Mathematical Professors are elected, one by the Heads of Colleges, the other three by special boards.* The eight remaining Scientific Professors are elected by the members of the electoral roll (with the addition, in one case, of a few privileged individuals \dagger), that is, mainly by the resident members of the Senate.
76. A Statute passed under the authority of the Act $19 \& 20$ Vict. c. 88. not only governs many of the existing professorships, but also has been held to be binding in case of the endowment of new professorships out of funds avallable to the University. Thas statute provides that-"the appointment to every such new professorship shall " be made by vote of the members of the Senate on the electoral roll."
77. This mode of election has been much discussed, and is very generally disapproved of. The electing body consists indifferently of those who are and those who are not specially acquanted with the subject to which the professorship relates. It is too large to meet together and elect by repeated scrutinies in case the votes should in the first instance, be duvided between several candidates, a circumstance which is liable to render the election a matter of chance. The electing body is so large that the sense of individual responstbility is enfeebled, and there is danger that considerations of personal friendship may outweigh the clams of public duty; and such considerations are all the more likely to intervene since so large a proportion of the electing body consists of residents.
78. On this point Mr. Bonney remarks:-"I think a change is very desirable. Though, Qu. 5326. " the result of the elections that I have seen has always been that which the University " might be thoroughly satisfied with, I do not think that the body which elects is a good " one; it is too large. It is very difficult to get men fairly and well to weigh the attain" ments of the candidate; they feel their individual responssbility to be small, and I " think it would be far better that comparatively small boards," mainly composed of "persons experienced in the particular science, where the sense of personal responsibility "would be very great, should elect." In this opinion we entrely concur; and we think that in the formation of any new Board of Electors, the recommendations which we have made with respect to Oxford should apply equally to Cambridge.

[^3]79. The opinion entertained as to the best constitution of an electing body has been shown in a very substantial form by the regulations which govern those professorships which have been founded by bequest or subscription subsequently to the enactment of the general statute above referred to. Three such have been founded since the statute was passed, two by bequest and one by subscription; it matters not for our present purpose that they are not sclentific. The model of the statute has in no instance been copied, but in every case the election has been vested in a small special board.
80 We do not anticipate that any great dafficulty would be experienced in carrying out the proposed alterations in the Professorial Statutes. In the case of some of the Oxford professorships the change in the mode of appointment could be made by the University itself, acting with its existing powers; in other cases the consent of the College which had contributed to the endowment would have to be obtained; while in a third class of cases the consent of the Queen in Council, or even additional Parliamentary powers would be necessary. In the case of the University of Cambridge, we believe that the consent of the Queen in Councl to a petition of the University would in every case be necessary and sufficient.

IV.-Emoluments of the Professors.

81. The emoluments of nearly all of the Professors in either University originally depended upon ancient endor ments, and, with the exception of those of most of the Professors of Divinity, were of very small amount. In the course of the last twenty years these emoluments have been raised, and the average stipend of the Scientific Professors at Oxford is now a little above 500l. a year, and about 450l. at Cambridge, exclusive of Fellowships, which may be held by professors under exceptional conditions. At Oxford, a Fellow of a College who becomes a professor, does not thereby acquire the right of holdng his fellowship free from the restriction of celibacy, but he becones eligible to a fellowship free from this restriction, at his own or any other College. Two of the Scientifid Professors have been thus elected to fellowships; but no account has been taken of these fellowships in the above estimate of the average professorial stipends. At Cambridge a Fellow who obtains a professorship does not as a rule vacate his fellowship by marriage and a married professor may be elected to fellowship.
' 82 It is of great importance in the interest of the Universities that these places should be such as to render them attractive to the most eminent scientific men that can be found to take them, and it may be doubted whether the amount which has been named is sufficient for the purpose. When an office is offered to a man, the duties of which are to form the business of his life, it is certainly right that the remuneration accompanying ${ }^{4}$ should be such as to enable him to marry and maintain a family in a suitable manner.
83 Auother point to which our attention has been strongly directed is the desirability in the interest of the Universities of obtaimng retiring pensions for professors. The system at present existing in both Universities is, that if a professor, from age or frobl declining health, should become incompetent to perform the duties of bis office, a certain portion of his stipend is assigned to him by the University, and a Deputy Professor is apponted to discharge the duties of the office in the interim. As an arrangement intended to meet the case of temporary illness, this plan would appear to work well, but it does not appear to be very suitable in the case of a long-contimued incapacity from ill healilh or old age. It would seem desirable that when a professor is permaneatly disablld from discharging the duties of his office, he should be superseded, and that a new election should take place at once; and it is disadvantageous that the incoming professor should bc burdened with a payment to his piedecessor, because it is the interest of the University that the place when it is, vacant should be made as attractive as possible to candidates We should, therefore, wish to see a well-considered system of retiring pensions instituted in the Universities, and we believe that this would be conducive, not only to the comfor of the professors themselves, but also, which is of more importance, to the maintenance of an uniformly high standard of instruction.
82. There is but one quarter to which we can look for the funds which would be neces sary in order to introduce improvements in the directions which we have indicated. Th Universities themselves (considered as distinct from the Colleges which they contain) ar not very wealthy bodies. The Unversity of Ozford is the richer of the two, but th funds at its disposal are almost completely appropriated, and there does not appear y be any probability of an immediate or rapid augmentation. The revenues of the Collegd are, therefore, the only available source for any increased expenditure for Universit purposes. To a certain extent the Colleges at Oxford have already contributed to, th) University, the increase that has taken place in the emoluments of the scientific onf other professors having been derived almost entirely from their funds. At Cambridg
the Colleges have contributed to the University by taking upon themselves a tax formerly defrayed by the University. It is not improbable that further demands of the kind may be made upon the Colleges of both Unversities, nor are we led to suppose by the eridence before us that they would regard such demands as conceived in a spirit of hostlity.
83. It has been suggested, and the proposal seems a very reasonable one, that the Colleges should annex fellowships to the professorships, the restriction as to celibacy being of course withdrawn. This has already been doue in a few cases, and there would seem to be no reason why it should not be done in all. The advantage would be a reciprocal one, because in most cases the Callege would be as likely to obtan a valuable member of. its governing body, as it would be by an election founded on a competitive examination and, on the other hand, the advantage to a Professor who becomes a member of one of these Corporations is very great indeed, and is not to be measured by the pecuniary advantage alone, as he thus acquires an increased interest'in the studies and business of the University, and increased opportunities of becoming acquainted with the requirements of the students. The evidence of Professor Fowler on this point is deserving of Qu, 13,737. attention.
84. At Cambridge there appears to be an unwillingness to allow a Professor to become, ex officuo, a Fellow of a College; but, as already mentioned, nearly all the Colleges have accepted a Statute enabling a Fellow who is a Professor to retain his fellowship after marriage, and allowing the Governing Body to elect a professor, though married, to a fellowship. If this plan has the advantage of beng more acceptable to the Colleges, it has the obvious disadvantage that the University does not make the most of the money virtually bestowed upon it, since the uncertainty of election to a fellowship might prevent an eminent man from standing for a professorship for which he' would have become 'a candidate if he had been sure of holding a fellowship with it.

V.-Proposed Council of Science.

87. There is alieady more than one body within the University of Oxford which, to a certain degree, discharges administrative duties in connexion with science. The first of these is the Delegacy of the University. Museum. This body consists of the ViceChancellor and Proctors for the time being, and of six other persons elected by the Congregation of the University. No professor lecturng within the Museum is eligible as a member of the Delegacy, but all such professors have the right to be present at ats meetings, as assessors, without a vote. The duties of this Delegacy refer exclusively to the financial and otber arrangements requisite to carry on the business of the Museum. Any proposal for new expenditure upon the Museum is brought before them in the first instance, and if approved of by them is passed on to the Hebdomadal Councll, who have the power of rejecting or modifying it, as they may think proper. But, as great weight naturally attaches to any measure sanctioned by the Delegacy, the Hebdomadal Council, as a general rule, do not withhold their approbation, but submit the proposition of the Delegates to the Convocation of the University, with whom the ultimate decision upon it rests. The Delegates of the Museum, however, have no educational functions, and they have no control of any kind over the teaching given by the professors.
88 The other administrative bodies are of quite recent creation. The Board of Studies of the Natural Science School was instituted by a statute passed only at the conmencement of the year 1872. The Scientufic Professors (with the exception of the two Savilian Professors) are ex officio members of the Board, which also contains the Examiners for the time being in the Natural Science School, and all persous who have served as examiners in the School within the two years preceding. The duties assigned to this body are, to exercise a general supervision over the subjects of examination in the Natural Science School. They have no power of controlling many manner the courses of instruction given by the professors, or of materfering with the examiners in the conduct of any particular examination; but they may frame from time to time regulations as to the conduct of the exanninations; and, within the limits prescribed by the University statute, they may issue notices explanatory of the range of the subjects included in the examination, and may recommend heatises to be studied in connexion with them. These powers they have already exercised, in publishing a complete syllabus of the subjects of examination in the Natural Science Scbool, accompanied with a list of works to be studied. This hist does not appear to have been dıawn up upos any uniform prnciple; no books whatever being recommended in some subjects, while in others the list is so extensive that it can hardly scrve as a guide to the ordinary learner, though it may be very valuable to some ddvanced students.
88. The Board of Studies of the School of Mathematical and Physical Sciences is composed of the two Savilian Professors; the Sedleian Professor; the Professor of Experimental Pbilosophy; the Examiners for the time being in the School; all persons who have served in that capacity within the two years preceding and three persons added by co-optation. The duties of this Board are simular to those of the Board of Studics of the School of Natural Science. The Medical Examinations are not under the supervision of a Board.
89. From the limited scope of the functions of these various bodies, as well as from the constitution of the first of them, it is evident that they cannot be regarded as representing, in any adequate manner, the Scientific Faculty of the University. We are of opimon that the best mode of providing for this important object would be to replace them by a Single Admunistrative Body, representing every department of science, and having wider but stll definite powers entrusted to it. Without attaching any importance to the name, we shall, for the purposes of the present Report, desiguate this proposed administrative body as "the University Council of Science."
90. The duties of the Council would, we conceive, be two-fold-educational and financial.
91. If, as may be expected, the number of Professors and Adjoint Professors, engaged in the teaching of science should hereafter be considerably increased, it would becomo indispensable that the arrangements for the discharge of their educational duties ehould be made, not altogether independently, but as the result of mutual agreement. The task of co-ordinating these arrangements would not always be an easy one, and would, we thunk, be most safely entrusted to a Council of Science. It would be of great importance that the supervision exercised by the Councl should not assume even the most distant resemblance to a vexatious interference; but it should be carried at least to such an extent as to provide that the teaching on the different subjects should be duly co-ordinated, so as to prevent, for example, a plurality of courses upon one subject, while others equally important were neglected. It is impossible not to apprehend that if the teaching staff should become very large, some inconvenience might arise from a continuance of the almost unrestricted freedom at present allowed to a professor of choosing the time at which he will lecture as well as the parts of his subject which he will include in his course; and we cannot but think that some attention to united action in these respects is essental to the establishment of a School of Science which it is intended should be worked upon a large scale.
92. A further educational duty might eventually devolve upon such a body, that of endeavouring to co-ordinate such scientrife instruction as mught be given within the Colleges with that given in the University. At the present moment, however, it must be admitted that this duty would be a light one, because the amount of such instruction, except so far as it is mathematical, which is at present given in the Colleges is so small as to be in the last degree unlikely to interfere with that provided by the Unversity Teachers. Bur if, as may be hoped, the screntific instruction given in the Colleges should receve a considerable development, it would become very desirable that such a co-ordination should be attempted to prevent the waste of teaching power which must otherwise ensued
93. The main financial duty of the Council of Science, would be one which now (withid a lumited sphere) falls upon the Delegates of the University Museum, that of taking into consideration all apphcations which require the expendtture of money for scientific put poses, and of determining whether such applications should be brought before the Unversity with the weight of their recommendation. It is difficult to see how, without such a prelimmary scruting by a competent body, the demands of different undividuals and of various scientific subjects can be dealt with by the University in an uniform and satisfactory manner. It would be desirable that the Councll of Science should have "d discretionary power of making grants, up to a certain moderate amount, in aid of original researches, or to obtain the temporary assistance of a lecturer. But in all cases in which a larger expendture was required the consent of the University would no doubt have to be obtaned in the usual manner.
94. What the precise composition of the Council of Science should be, and within what limits its powers should be confined, are important questions, which, however, we may leave to be discussed within the Unversity itself. It would probably be best that the numbers of the Councl should be considerable, in order to ensure a fair representation of all the interests concerned, it beng intended that a great part of the work should be done by Committees according to the usual practice of Academical Delegacies, If this view of the composition of the Council should be adopted, all the Professors ant Adjont Professors might be made members of it ex officio; a certain proportion of non official members, elected possibly by the Congregation of the University, belng added
in order to represent the instruction given in the Colleges. The infusion into the Council of Science of such an elective element would tend to give the University at large an increased interest in the proceedings of the Council; and it would also provide a mode of admitting to the Council, from time to time, a certain number of persons who, not happening to hold any academical office, might nevertheless be eminently fit to take part in its deliberations. It may be added that a Councll, containing such a representative element, would be more likely to deal successfully with the complucated questions relating to the co-ordination of University and College instruction.
95. With respect to bodies exercising administrative duties in connexion with Science, the arrangements of the University of Cambridge bear a strong general resemblauce to those that have been now adopted in the University of Oxford. The Museums and Lecture-rooms Syndicate at Cambridge is analogous to the Delegacy of the University Museum at Oxford, while the Board of Mathematical Studies and the Board of Natural Sciences at Cambridge answer to the corresponding Board at Oxford.
96. The Museums and Lecture-rooms Syndicate is a permanent Syndicate, which was formed in connexion with the establishment of the new *Museums. All the members are appointed by Grace of the Senate, and vacate thear seats by rotation, the retring members not being re-eligible at that election. There is no provision excluding Professors, as at Oxford, and, in pornt of fact, the Syndicate usually consists in part of Professors, in part of other Members of the Senate. The Syndics have no educational control, and their duties are mainly financial. The University has set apart 1,500 l. a year to the maintenance of the Museums, and out of this sam the Syndicate defray the ordinary expenses of management, on their own responsibility as regards smaller sums, subject to the sanction of the Senate as regards the larger.
97. The University Statutes made under the Act 19 \& 20 Vict. c. 88 , after providing for the establishment of a Board of Theological Studies, enact that " the University shall "" appoint Boards for revewing the more important departments of study recognised in the "University, and reporting theieon to the Senate, which Boards shall severally comprise " the Professors and Public Lecturers, whose duties connect them with such departments, " as well as such other persons as may be determined from tume to time by Grace of the
"Senate; and it shall be the duty of such Boards to consider the schemes for lectures "submitted to them in every year by such Professors and Public Lecturers, and to
"' approve of the same, or to remat them from time to time for further consideration or " revision, with amendments or alterations therein."
98. In accordance with this Statute the University has appointed among others (1) a Board of Mathematical Studies; (2) a Board of Natural Sciences; to which, in consequence of its close connexion, in many respects, with the Board of Natural Sciences, we must add (3) a Board of Medical Studies. These Boards are compoced, first, of certain Professors as required by the Statute; secondly, in the case of the Board of Mathematical Studies, of the Moderators and Exammers of the current and two preceding years; and, in the case the two other Boards, of the Examiners of the current and last preceding years; and, thirdly, of a certan number of members appointed by Giace of the Senate, who retre by rotation.
99. So far the machinery for co-ordmating the lectures of the different Professors appears to be complete; but it may be questioned whether the provsions relating to the Boards are not too stringent, and, consequently, not easily carried out. It seems probable, therefore, that additional provisions will be required for securng greater regularity and unity of action, and should any considerable modffications appear desirable, we are disposed, for the reasons we have given above, to recommend the establishment of an University Council of Science at Cambridge, similarly constituted and with sumilar powers to that which we have suggested for the University of Oxford.

III.-THE SCIENTIFIC INSTITUTIONS WITHIN THE UNIVERSITIES OF OXFORD AND CAMBRIDGE.

1.-Oxford.

101. The following ecientific nastitutions exist within, or in connexion with, the University of Oxford:-The University Museum, the Claiendon or Hyde Institute, the Botanical or Physic Garden, the Radcliffe Library, and the Radcliffe Observatory. Of these, the last two do not belong to the University, but are under the absolute control of Dr. Radcliffe's Trustees. The University Act of 1854 has however given to the Radcliffe Observer the status of a Professor withia the University, and has so far recognized, greatly to the advantage of the University, the connexion between the Radcliffe Observatory and the University.
102. It is unnecessary to say that the Bodleian Library is as invaluable to the scientifig as to the literary student. But, as it is not exclusively, or even principally, a scientific institution, we have not included it in the preceding enumeration.
103. The evidence of Dr. Acland contains an interesting account of the movement whicl led to the erection of the Unversity Museum. From his evidence and that of Professo Price, it appears that a large sum, amounting to nearly 85,000 ., was originally expended it the purchase of the site, in the erection of the building, and in providing a certan propor tion of the fittings, and that since that time further sums, amounting in the whole to nearly 15,000 ., have been expended upon the completion of the internal arrangement and on additional fittings.
104. The collections at present comprise (1) A cabinet of Pathological Anatomy, formeq by the present Regius Professor of Medicine, to which has recently been added thd Collection of Schroder Van der Kolk, which has been purchased by the University ; (2) A Collection of Comparative Anatomy and Physiology; (3) A Collection of Zoology, including the extensive Hope Collection of Invertebrate Zoology; (4) Collections of Geology; and (5) of Mineralogy.
105. Contunual additions are being made to these collections; but even in their present condition they may probably be described as adequate for the ordsnary requirements of students, while in some directions they are sufficient for the purposes of the most advauced investigators. As mstances of this larger development may be mentioned the Craniological collection formed by Professor Rolleston, and meluded in the collection of Comparative Anatomy and Physiology, the collection of Saurian remains in the department of Geology, and, above all, the Hope Collection of Invertebrate Zoology.
106. A great part of the collection of Comparative Anatomy and Physiology, is the property of Cbrist-Church, and has been lent to the University on condition of its being freely accessible to members of Christ-Church.

107 It appears from the evidence that the space in the Museum which can be devoted to the exhibition of specimens is almost completely occupied.

108 The Laboratories for Pathology and Physiology, and Chemistry, which surround the central court of the Museum, are described as just sufficient for all present requirements. Sometmes, however, there is a little difficulty in finding room for all the students who want places in the practical laboratory of Chemistry. The rooms originally appropriated for Physics, which, however, were very inadequate for the purposes of that brancis o Science, have, since the building of the Hyde Institute, been placed at the disposal of the Professor of Chemistry, and it is in consequence of this accession that the space allotter to Chemistry has become sufficient for immediate purposes. The Laboratory attached to the Department of Medicine is at present chiefly used by the Deputy of the Regrut Professor of Medicine for sanitary investigations, such as analyses of water, adulterated food, and the like. The Physiological Laboratories, though sometimes overcrowded, ma in the main be described as sufficient for the present, because certain parts of th instruction are given in the central court, where a considerable number of the specimen are placed.
109. Some of the architectural peculiarities of the Museum have, perhaps, rendered it original construction, and its present maintenance, more costly than they might hav been. The expense of warming the great central court, roofed as it is with glass, very considerable, and the cost of lighting it would be so great that this part of th building is not used at night. It has also been found that the repairs of a buildind constructed as it has been, are likely from time to time to be very heavy. Care, how ever, was taken in the orginal design to provide for the possibility of future extension the back of the building having been left in an unfinished state, so tbat whenever th necessity for extenston shall arise, as it must at no veiy distant period, it can be carric
out without any great cost, and without interfering with the architectural arrangements of the building.
110. The Hyde Institute for Experimental Philosophy was built by the Clarendon Trustees out of a fund amounting to about $12,000 \mathrm{l}$., which had accumulated ander the provisions of the will of Henry, Lord Hyde, who ded in 1753, and of which the original destination was to found a Riding School. ' The building, when completed and fitted up, was made over by the Trustees to the University. The whole sum of $12,000 \mathrm{l}$. was expended upon the building and the fittings, so that the cost of maintenance and of providng apparatus devolves entirely upon the University funds. The most minute attention to all the details of the buildng was given by the present Professor of Expermental Philosophy, and the result is described by persons competent to judge as eminently satisfactory. ' The Institute, though separate from the Museum, is close to it, and is connected with it by a covered passage, so that no time is lost by students in passing from one department to another.
111. We think it necessary to call attention to the cordition of the Cabinet of Physical Apparatus placed in the Hyde Institute. The University granted, when the present Professor came into office, a sum of $1,000 l$. in aid of the formation of such a cabinet, and there is in addition a benefaction, conferred by Edward, fifth Lord Leigh of Stoneleigh, High Steward of the University, who died in' 1786, which is entirely appropriated to this object, and which now amounts to 90l.' a year. But the collection of apparatus existing' at the time when the University grant was made was extremely antquated and imperfect; and those who are acquainted with the costliness of physical apparatus when made with the precision which the accuracy of modern' observations requires; and also with the number and variety of the instruments which are nedessary for experimental work in the many different sciences included under the name of Physics; will have no difficulty in conceiving that this amount has not been found sufficient to establish a really satisfactory or complete Cabinet. A comparison of the apparatus in the Hyde Institute with that at the College de France or the Ecole Polytechnique in Paris would serve to show how much more must be done with'the Oxford collection before' it can "be regarded as worthy either of the building in which it is placed or of the University to which it belongs.
112. A collection of scientific Books has been obtaned for the purposes of the Museum, without any cost to the University, through the wise liberality of the Radcliffe Trustees, who have allowed their Library to be transferred from its former place in the Radcliffe Dome to the Museum, placing, at the same tıme, the Radcliffe Dome at the disposal of the Bodleian to be used as a Reading Room. A great advantage has thus been secured, both for the Bodletan and for the students at the Museum; an advantage which, so far as the latter are concerned, has been turned to the best account by the Radcliffe Librarian (Dr. Acland), who has arranged a well-selected Students Library in the Readıng Room, which also contains all recently purchased works, and a large collection of scientific periodicals. It is, perbaps, to be regretted that there is at Oxford no students' lending library except a very imperfect one of small extent which has been formed by the Ashmolean Soclety. It would be a great additional benefit to the Students of Natural Science if, under certain conditions and with proper exceptions, books were permitted to be taken from the Radcliffe Library, as is at present the case with the Unversity Library at Cambridge.
113. The annual cost of the Museum, including the Hyde Institute, but not including the Radcliffe Library (the cost of which is entrrely defrayed by the Radcliffe Trustees), amounts to 2,451l. Of this 376L. is defrayed out of certain trust funds - the Aldrichian Fund, the Tomlins Fund, the Hope Fund, and Lord Leigh's Fund. The remainder constitutes a charge upon the yearly income of the University. The annual expenditure is distributed as follows : for the Chemistry Department, 626l. ; for the Physical Department, 655l.; for the Department of Zoology, 85l.; for the Physiological Department, $90 l$; for General Purposes, 9951 .; but, as a large proportion of the expenses of the Physiological Department and of the Zoological Department are defrayed under the item General Purposes, this statement can only be regarded as giving precise information with regard to the Departments of Chemistry' and Physics.
114. The fees charged to the students in the laboratories for practical work are as follows : in the Department of Physiology, two guineas a term; in the Departments of Chemistry and of Physics, three guineas a term in each. The fees for lectures are in every case small, and many of the courses given by the professors, are entirely gratuitous. The fixed salaries of the Demonstrators and Assistants; but not those of the Professors, are included in the above gross expenditure of 2,451 l. a jear.
115. The present condition of the Botanic Garden requires, and we have no doubt will receive, the immediate attention of the University.

The Garden was founded in the year 1622 by Henry Danvers, Earl of Danby, and
Qu. 13,792. " under five acres but thar includes a great deal of rround which is motal area is "s under five acres, but that includes a great deal of ground which is made no use of at
"all for growing plants; it contains also the Professor's residence and the library,
" the museum, and the herbarium."
Qu. 13,757.
"For the purposes of teaching, it is necessary, certainly, that we should have a "s garden of moderate size. I believe that a large garden is not required, but it should "f be a larger one than we have already. I beleve also that we ought to have a large " number of herbaceous plants, which are easy to keep up at a small expense. We " ought also to bave a large area covered with glass, but these houses ought to be low.
"* * * They would not be expensive to keep up, while they would be cheap to buld
" and cheap to keep in repair, and they would grow a great number of plants for us."
"Financially it is in a bad condition. The keeping up of the garden has cost bither-
"to considerably more than there are funds for its maintenance, or, rather, I ought to
" say, it has done so up to the present time, for there has been a considerable inciease
"" of nearly 100 l. a year, which would, under ordunary circumstances, be sufficient for
" all purposes; but owing to the great rise in the cost of labour and in the price of
"coal, particularly the latter, I am afraid that that sum will be caten up, and we shall
"s have nothing left for the repars of the garden without further grauts from the
"University."
The state of efficiency of the garden for the purposes for which it was founded "is " at present very bad. The gardens contain a large number of plants, but they are " in very bad order, owing to the want of larger houses and more room. The gardens "s and houses are very small for the number of plants which we have got crowded into
"them. The houses also are in exceedingly bad repair, and in some cases they
" are absolutely falling to pieces."
The Herbarium contains (besides ancient collections made previous to the time of Linnæus, and now kept separate in order to illustrate the history of Botanical Science) a British Herbarium, intended as an herbarium of reference for students, and a General Herbarium, the gift of the late Mr. Fielding. This herbarium is described as being now in a good condition and as being one of the largest and most valuable in England, after those a^{4} Kew and in the British Museum. The cabinets in which it is placed are, however, "bad, and utterly unsuited for the purposes to which they are applied." It is now being rapidly arranged, and the post-Linnæan collections are being incorporated with it. The museum, containing collections of such parts of plants as cannot conveniently be ancorponated with the herbarium, is in a bad condution, owing to the ravages of insects, and is so ill lighted as to be almost useless to students. The Professor thinks "it ought to be entrrely remodelled." The library is "a very good one indeed, " but it cannot be made of much use at present, at least not nearly of the use of which
" it ought to be capable, because it is separated from the Museum and from the
"Herbarium by the whole length of the garden; consequently, if you want any books " at all to compare plants with, you have to go right through the garden to get them. "It ought to be placed under the same root with the Herbarium and with the Museum,
" in order to make it really useful." It further appears from the Professor's evidence that it is under the consderation of the University whether the garden might not be removed to the Park, where th would be in the immedinte neighbourhood of the University Museum. The cost of putting the present garden into good working order
Qu. 13,794. is estimated at between 3,0001 . and 4,0001 ; the cost of removing would, of course, be greater.

* See Ap-
pendex II. Rev. R. Mam, the Radchffe Observer, contaning an outline of the history of the Radcliff Observatory from its first foundation, in 1771, to the present time. From this paper it appears that the expenditure for the year 1870-1, which may be taken as an average year, amounted to $1,265 l .88$. $5 d$., and that the present staff (which bas never been exceeded) consists of the Observer, two Assistants, and one Computer. With this limited staff, Mr. Main has provided (1) for the prosecution of regular meridional observations of stars and certain planets; (2) for the tolerably constant use of the heliometer; (3) for the prosecution of the system of photographe meteorology, in addition to the usual eye observations. of standard instruments; (4) for the regula reduction and publication of the Observations. The volume of observations annuall) published by the Radchiffe Trustees furnishes ample evidence of the great amount of successful work that is done at therr Observatory.

117. 'The duties of the Ranclifie Observer are not educational, although the present Observer has at all times shown the greatest willingoess to admit advanced and meritorious students to the benefits of practical instruction within the Observatory. Indeed, the great success of the Institution dates from the time when the offices of Radcliffe Observer and Savilian Professor of Astronomy were separated from one another; although, in conséquence of the separation, the Savilian Professor of Astronomy was left but poorly supplied with instruments for educational purposes, and with none whatever suitable for research. The Pıofessor states,* however, that the University has recently granted the sum of $2,500 \mathrm{l}$. for the purchase of a refiacting telescope, of $12 \frac{1}{4}$ inches aperture, and for the erection of a suitable building to contain it; and that, at a still more recent period, Mr. Warren De La Rue has offered to the University "his well " known reflecting telescope, together with all its valuable appurtenances, including " among them no less than four mirrors, each'excellent of its kind, besides all the " mechanical means necessary for the most accurate grinding, polishing. and testing, " after Foucault's method, of large mirrors and object glasses;" so that the deficiency of appliances, under which the study of Astronomy at Oxford has bitheito laboured, may be regarded as on a fair way to be completely remedied.
118. The general impression which has been made upon us by the evidence relating to the Scientific Institutions at Oxford is, that the University in recent times has acted with great liberality to Natural Science, and has shown the utmost willingness to recognize its claims as a great branch of education. But considering the great' position so justly allowed to our ancient Universities, and the great opportunities of usefulness which their wealth and their prestige confer upon them, we think it would be a matter of' regret if they should allow their Scientific Institutions to fall short of that standard of excellence which has been attained elsewhere; and we are obliged to say that although nothing can be more admirable, in many respects, than the arrangements of the Oxford Museum, as far as they have yet been carried, yet that in extent of appliances, and in completeness of range even for purely educational purposes, they are at the present moment far outdone by many Institutions upon the Continent of Europe.

II.-Cambridge.

119. The following Scientitic Institutions exist within, ol in connexion with the University of Cambridge:-The Botanic Garden, the Observatory, the Cambridge Philosophical Society, the Woodwardian Museum, the New Museums, and the Physical Laboratory.
120. The Botanic Garden was founded by the Rev. Richard Walker, D.D., in 1762. The original site having been deemed unsuitable, both from size and position, a new garden was many years ago formed, a little outside the town. It is managed by a permanent Syndicate. The old site is partly occupied by the New Museums and lecture rooms.
121. The Observatory was erected in 1822-4, at an expense of upwards, of $18,000 l$., about one-third of which was rased by sulscription, and the rest was granted out of the University chest. The transit instrument has recently been replaced by a very fine transit circle. Theie is also an excellently graduated mural crrcle of 8 feet diameter, and a large equatorially mounted refractor of nearly 12 maches aperture, the gift of the late Duke of Northumberland, Chancellor of the University. The other instruments need not be enumerated. The care of the Observatory was formerly attached by Grace of the Senste to the Plumian Professorship, but has now been, attached to the Lowndean Professorship. The observations made at the Observatory are regularly reduced and published.
122. The Cambridge Philosophical Society was established in 1819, and obtained a charter in 1832. Though au independent corporate body, it has from the first been closely connected with the University. It was originally established by members of the University, and the charter provides that the fellows shall be graduates of the University. It publshes Transactions, which form a convenient vehicle in which members of the Unversity can make known their onginal investigations to the scientific world. Eleven volumes of these important Transactions have already appeared. The evening meetings afford opportunty of scientific discussion and of making known onginal investigations, even though they may not afterwards be published in the Transactions. A few years ago the Society parted with its house, on being permitted by the University to occupy with its library a room in the New Museum. The evening meetings are held in a lecture room in the same building. A fine collection of stuffed British birds and one of British insects, formerly the property of the Society, have been given by the Society to the University, and now form part of the Zoological Museum
123. Ten years ago the geological and mineralogical collections were contained in two rooms under a wing of the University Library. A building on the side of the old Botanic Garden contamed a single lecture room, which was used by the Prufessors of Chemistry and Botany and by the Jacksonian Professor. An adjacent room served as a laboratory for the Professor, but there was no students' laboratory. The botanical collection was contained in a store room, where nothing could be displayed, and the collection of comparative anatomy was contained in a small adjacent building where the specimens were most inconveniently crowded.
124. But about the year 1865, the University expended a sum of about 30,0001 , in the erection of museums and lecture rooms in connexion with Natural Science, which have been built on the site of the old Botanic Garden. The mineralogical collection has been removed into a spacious and well-lighted room in this building, and the well-known Woodwardian Collection has expanded into the space formerly occupied by Mineralogy. The Botanical Collection, which, as we have explained, was formerly contaned in a mere store room, is now arranged in the new building, to which also is removed the collection of apparatus belonging to the Jacksonian Professor. The bualding on the side of the garden, which formerly was used by three professors, is now entirely devoted to Chemistry, and, with certain additions and adaptations, now includes proper Laboratories both for the professor and for students. The collection of Comparative Anatomy, formerly so much crowded, is now properly displayed in a wing of the new building, and the building which formerly contained it is now devoted to Human Anatomy.
-125. The New Museums contain no sufficient provision for the study of Experimental Physics. This want, which of late years has been strongly felt, has been mef by the establishment of a Physical Laboratory, now being erected at the expense of the Chancellor.

IV.-TTHE COLLEGES:

126. In relation to the Colleges, our attention has been principally directed to the following points:-(I.) The Scholarships; (II.) The Fellowships ; (IIL).) The Organisation of the Instruction given in the Colleges in relation to the Instruction given in theUniversities; (IV.) Contributions from the Colleges to a fund for University purposes.

I.-The Scholarships.

127. The following is a list (extracted from the Oxford University Gazette) of the whole number of scholarships filled up in the Colleges of the University of Oxford during the year 1872, and of the number of such scholarships appropriated to the various subjects of academical study. It should be observed that in the examination for classical scbolarships, a mathematical paper is often set, which has some, weight in the determination of the result, particularly when the classical merits of the candidates are nearly equally balanced. The exhibitions are so frequently filled up on the ground of merit shown in more than one direction that no attempt to classify them is made in the list.
, 128. The number of scholarships and exhibitions offered for competition may differ slightly from the number actually filled up, because no, candidate of sufficient merit may present himself, or because, on the other hand, the College may be induced, by the excellence of the competitors, to give an addtional scholarship or exhibition. Thus it would appear that in the year 1872, to which the following list relates, six Natural Science Scholarships were filled up, whereas only five were offered.
'Scholarships filled up un Oxford from January to Decomber 1872.

maustions nre set in Modern History and Literature, with translationis from Frenoh and German into Engish, and vies verst, ns an alternatuve for the Classical papers.
128. It is evident upon a comparison of the numbers contained in this list that the Scholarshps offered for Natural Science are but a small fraction of the whole number.

The state of the case appears to be that the Colleges do not offer Scholarships for Natural Science because they fear they would not get good candidates from the Schools; and the Schools do not teach Natural Science because they are afraid of injuring the prospects of their pupils by dıminishing their chances of obtaining a Scholarshıp. It cannot be doubted that the effect upon the schools of this unequal distribution of rewards has been, and is, very discouraging to scientific study; and that it has exerted a most unfavourable influence upon the number of Natural Science Students. So important has this point appeared to some of the witnesses that we find Professor Clifton expressing the feeling that Scholarships for Natural Science are even more needed than Fellowships. "We want," he says, "more scholarships, and perhaps more fellowships,

* See Ap-
pendix,
vol. 1., pp.
25-27. " for not so certain about the fellowships, but certainly more scholarships are required should be a much greater proportion of Scholarships [for Science] compared with "Fellowships. It appears to me much more important to make a number of students " than to reward a few, because what you want is to increase the supply of students."

130. Without being prepared to concur in this estimate of the relative value of the two objects, we are nevertheless of opinion that it is of great importance, with the view of promoting the study of Natural Science in the First Grade Schools throughout the country, that there should be an immediate, and ultimately a large, increase in the number of Scholarships offered for this subject by the Colleges.

IL.-The Fellowships.

131. The number of Fellowships in the University of Oxford is about 370. The number till recently was somewhat larger, and probably exceeded 400; but a reduction was effected by the changes introduced by the University Commission of 1854. Of these Fellowships, at the date of the return printed in the Appendix'to Vol. 1", 120 were held in connexion with educational offices within the Colleges, and 23 in connexion with offices, such as buisarships, which, though not directly educational, are indispensable for the purposes of the college business and government. The remaining Fellowships are chiefly held by non-residents, and must be regarded as alnost, if not entirely, sinecure offices.
132. The condition of the University of Cambridge is not very different in this respect.
\dagger Appendix, The number of fellowships is about 350. \dagger Of these about 120 are held by persons hold.
vol. 1., p. 28. ing educational offices in the Colleges or the University, or other college offices similar to those just described, while the remaining 230 are chiefly held by non-residents.
133. Whether the existence of these sinecure fellowships is defensible is a question upon which the witnesses whom we have examined are not unanimous. Mr. Pattison is of opinion that the system should be entirely changed, as the following extracts from his
Qu. 3791. evidence will show. Qu." Do I understand that your proposal would be to supprese all " fellowships the holders of which are not employed in teaching, or in doing University "work of some kind ? - I am afraid that if I were to say that 260° fellowships "s should be suppressed, I might throw ridicule upon the whole proposal.
Qu. 3792.
Qu. 3793.

Qu. 13,573.

Qu. 13,573. "Qu. Is it your opinion that a considerable pioportion of them might be suppressed $?$ " but theie $1 s$ a great difference of opinion as to how far that should go. Qu. But you "are of opinion that men's minds are prepared for a very large suppression of non" working fellowships ?-I think that a large majority of the residents in the University " would be in favour of a further large suppression of fellowships."
Agam, in reply to the question "I may say that the great preponderance of opinion " amongst the witnesses from the Unversities who have been examined is, that a larger "amount goes in mere rewards than is at all called for, or is desirable-would you " be so good as to give us your view upon that point?" Lord Salisbury, the Chancellor of the University of Oxford states, "Considering the amount of controversy "that prevails on University questions, it is astonishing how great an agreement there " is upon that point. I have heard from all schools, theological and political, in the "Universities, a coincidence of opinion that the present application of the revenues of

Qu. 3975.
" fellowships is exceedingly unsatisfactory."
134. On the other hand, Professor Jowett observes, "I think that fellowships fulil a " very important purpose, partly in supplying teachers to the University and still " mole in supplying to young men-the means of passing through the University into " a profession. That is a very great good which they do at present, and I should not " like to see it materally infringed upon. That a number of highly educated young " men are able to go to the bar or to some other profession, having leisure and being free " from pecuniary anxiety, and not being compelled to slave for the press, or lose their "time for the sale of making money for seven or eight years of their life, seems to me
" to be a very great national good, and I should not wish to see that use of fellowships " infringed upon; but the property of the Colleges is greatly increasing, and I thank we
"can afford to supply a considerable sum for University purposes, without serioúsly
" affecting the number of the fellowships."
135. Whilst giving every weight to the considerations urged by Professor Jowett, and admitting to the fullest extent the great stimulus which the higher eduçation has recerved at Oxford from the system of election to fellowships by open competition, we are nevertheless satisfied by the evidence laid before ns that an unduly large proportion of the revenues of the Colleges is expended in sinecure fellowships ; and we have reason to believe that this opinion is shared by a large and increasing number of the resident members of both Universities. We believe that if those fellowships which may properly be described as prize fellowships, were made terminable, so as to secure a rapid succession, it would be possible to effect a great reduction in their number, without weakening, to any important extent, the stimulus to education which is afforded by the present system. We also think their value might be diminished, at least in some cases.
136. It is doubtless advantageous to the country at large, as has been urged by some of our witnesses, that young men of ability, who choose to enter into one of the great professions, should be supported, or nearly so, in the early years of their professional career, and thereby be enabled to apply themselves at once to the higher studies of their profession, instead of wasting their energies in drudgery of some kind, for the mere purpose of obtaining a temporary livelihood. But this end may be secured by means of fellowships tenable only for a limited period. It has been urged that the feeling of security given by the system of unlimited tenure greatly enhances the value of a fellowship. No doubt $1 t$ is a vely comfortable thing for a young man to feel that, come what may, he is secure of an income so long as he chooses to remain single. But we can see no adequate reason why he should be thus comforted at the expense of the College, when he has preferred the more attractive prospect of a professional career in the outer world to the work of the College. And although there is a natural wish to deal tenderly with ill health, yet we cannot see that a general rule of unlimited tenure can be justified on the ground that it affords a provision in the exceptional cases of a failure of health, to the consequences of which men in general are exposed.
137. It has further been urged that the conditions under which a non-resident fellowship is at present held are such as sometimes to enervate rather than to stimulate the holder. A man who holds a fellowship is likely to feel that he is not absolutely dependent upon his professonal work; and this feeling sometimes prevents him from throwing himself upon his own exertions. There are many mstances of young men who persuade themselves that they have given ther profession a fair trial, and make up thein minds to abandon it, simply because, being in possession of a fellowship, they find that it is possible for them to lead a comfortable existence without going through the long-continued exertion and the tedous waiting which success in one of the great professions requires. To such men a moderate enolument, held for a limited period, might be even more advantageous than a fellowship held under its present conditions.: Nor m estimating the use to the public of the fellowship system can we leave out of sight the loss of time that it entails to many men who ultmately fail to get a fellowship at all, but who linger on at the Universities for two or three years, after taking ther degree, in the vain hope of obtaining one of these great prizes.
138. We are therefore decidedly of opmion that the fellowships awarded as prizes are excessive in number if not in value, and that the system ought to be remodelled. We are fuither of opinion that in any such remodelling a considerable proportion of the fellowships should be suppressed or consolidated for the purposes of contributing to the general fund of the University, and of endowing, within the Colleges and the University, new institutions, or new offices, in aid of Education or Research. But it must be remembered that, as Piofessor Jowett has stated, the property of the Colleges at Oxford, in some instances at least, is greatly increasing, so that quite independently of the suppression of fellorships there will in all probablity be considerable sums avalable for these purposes. In any case, therefore, we ale prepared to admit that a great part of the fellowships ought to be retained as fellowships, and the problem that has to be solved is how to employ those which are so retained in the most useful manner possible.
139. The following are the chief purposes to which, in our judgment, the fellowships should be applied :-

In the first place a certain but not a very large proportion of the fellowships will be always required, as at present, for the payment of the persons entrusted with the management of the college estates, and with the government and administration of the colleges themselves.

Secondly, a large number of the fellowships is at present employed, and probably a still larger number ought hereafter to be employed, in connexion with the Instruction given in the Colleges.

Thirdly, a smaller, but still a considerable number of fellowships ought to be employed as Terminable Prize Fellowships.

Fourthly, a certqin number of fellowships ought, as we have already said, to be united with Professorships in the University; the University professor becoming ex officio a Fellow of the College and a member of its governing body.

Lastly, it is, in our opinion, most important that a certain number of fellowships should be appropriated to the Direct Promotion of Learning and Research in various directions. It has been objected to this proposal that the fellowship system, as hitherto admnistered, has not shown any great tendency to encourage Original Research, either in the field of learning or in that of science; that, when an office is created simply and solely with the view of giving a man leisure and opportunity for orignal research, there is always the appearance, to say the least, of creating a sinecure; and that it is impossible, as Professor Jowett has said, to get a man for money who can make a discovery. But, though you cannot get a man for money to make a discovery, you may enable a man who has shown a special capacity for research to exert his powers ; and we are of opmion that, unless an effort is made to do this, one of the great purposes for which learned bodres, such as the Colleges, exist, may run the risk of being wholly lost sight of, Scientific discoveries rarely bring any direct profit to their authora, nor is it desirable that original investigation should be undertaken with a view to immediate pecuniary results. "Research," as Lord Salsbury has observed, "is unremunerative: it is highly "d desirable for the community that it should be pursued, and, therefore, the community " must be content that funds should be set aside to be given, without any immediate " and calculable return in work, to those by whom the research is to be pursued."

It may be that properly qualified candidates for such scientific offices would not at first be numerous, but we believe that eventually a considerable number of Fellowships might be advantageously devoted to the encouragement of Original Research.
140. We think that such fellowships as might be expressly destined for the advancement of Science and Learning should only be conferred on men who by their successful labours have already given proof of their earnest desire, and of their ablity to promote knowledge; and we believe that appointments, made with a due regard to thas principle, would be abundantly justified by results. A man who has once acquired the habit of orignal scientific work, is very unlikely ever to lose it excepting through a total fallure of his health and strength; and even if it occasionally happened that a fellowshp awarded on the grounds of merrt, as shown in original research, sbould only contribute to the comfort of the declining years of an eminent man of acience, there are many persons who would feel that it could not have been better expended in any other way.
141. We should not wisk to attach any educational duties properly so called to a fellowship awarded with a view of encouraging Original Research in Science. But for many reasons we should think it desrable that the holder of such a fellowship should be expected to give an account, from time to time, in the form of public discourses, of the most recent researches in his own department of science.
142. We now proceed to offer some suggestions with regard to one of the most difficult questions relating to the Fellowships, the Conditions of their Tenure. In doing so, we think it desirable to treat separately the cases of fellowships held by those who aspire to make their way in the outer world, and by those who look to an University career.
143. In the case of the former, or non-resident class, the tenure of the fellowship should, as we have already said, be limited to a term of years; and we are disposed to think that a term of seven years would suffice for every useful purpose. In the case of such terminable fellowships, held by non-residents; the restriction of celibacy which, originating doubtless in the celibacy of the clergy, has been very generally retained as a means of leading to a more rapid succession, becomes unmeaning, and ought we think to be removed.
144. The most important use of the latter, or resident class of fellowships, is to enable the Universities to retain a large staff of able teachers and workers.
145. From the evidence before us it appears that the colleges find some difficulty in obtaining efficient tutors and lecturers. Professor Jowett observes, "We have always a great "s dificulty about teachers. In fact, at Oxford the whole thing seems to require to be " re-constituted; there is such a difficulty in keeping the best men there, and they "stay for so short a time. If we are to keep men as teachers, we must get rid of the "condition of celibacy."
146. There are other difficulties, which are not adverted to by Professor Jowett in these remarks, besides that occasioned by the restriction to celibacy. One of them 19 that in endeavouring to obtain teachers not only do the Colleges, to a certann extent, bid against one another, but each College bids against itself. A College offers a distinguished man, shortly after he has taken his degree, an income say of 250l. a year as a Fellow, and of 250l. a year additional as a Lecturer, so that, in fact, the College offers him 500l. a year if he will stay and be a teacher, but at the same moment it offers him 250l. a year even if he goes away. Under these circumstances we can hardly wonder that the inducements offered by tutorships and lectureships are not sufficient even in the first instance to command the services of the men whom it would be most desirable to retain; and the difficulty is greatly increased by the further fact that as the University system is at present organized the teaching offices in the Colleges do not offer any very inviting prospect of further advancement.
147. A man who accepts a fellowship and a lectureship in a college will find that at the end of 20 years' of service he is much less fit for the special work on which he has been engaged than he was when he began 1 t, and probably he will also find that he has not been in the meantime preparing himself for any other occupation for which he would be more suitable, and in which he might obtain larger emoluments. In former times, when the connexion between fellowships and the obligation to take holy orders was almost universal, the difficulty which is here referred to did not arise. It was met by the system of College Livings. It was then the most natural thing in the world for a young clergyman to devote hmsself for mine or ten years to giving.instruction in Classics and Theology, and if work of this kind was not continued too long ti was generally thought to form no bad preparation for the duties of a parish priest. But at the present tume, the Fellowships are very largely held by laymen, and there appears, for some reason, to be a growing disinclination on the part of the men who now engage in tuition in the Colleges to take Holy Orders. Thus the layman who becomes a college tutor or lecturer finds himself entrrely cut off fiom every other profession, and dependent exclusively upon that of teaching, the great prizes of which are to be found in the Public Schools and not in the Colleges, masmuch as the professorships are too few in number to offer much prospect of promotion within the University, while the headships are still to a great extent restricted to clergymen. It is uot surprising under these crrcumstances, that there is a widespread feeling in the Universitres that the tutorial system is falling into a state of disorganization. It is felt that the college tutorships and lectureshrps do not lead to any permanent positions in the end, although they are, perhaps, a little too highly paid at the beginning, if, at least, we regard the fellowship as part payment for the work done. What is wanted is a graduated succession of offices, such as would make the business of a College Tutor a profession which an able and distinguished young man might embrace without imprudence.;
148. To a certain extent this want has been already supplied, in both Universities, by the increase which has recently taken place in the number and value of the Professorships. But, as we have already seen, these offices are still so few, and, in some cases, so poorly endowed as to offer little inducement to a man to look forward to an University career. Further do we not think that an University office is in every case the most fitting reward for a man who has shown himself emmently useful in College work.
149. We are, therefore, of opinion that it is to Offices within the Colleges that we must mainly look for inducements to able and useful men to devote themselves to College work. We think that one who has proved his success as an Educator, might fitly be elected to a Permanent (or, as we shall here call it, a Senor) Fellowship, which should be free from the restrittion of celibacy, though subject, as a rule, to the condition of residence in the Uaiversity and of readiness to take some part in the work of the College or the University:
150. A Senior Fellowship would ulso (in accordance with the recommendation already made) be fitly conferred on the ground of services rendered to Science or Learning by Original Research.
151. The question remains, what should be the status of a resident fellow who aspires to a senior fellowship?
152. An advantage attending the old system of tenure undoubtedly is, that while it does not offer a man a permanent provision unless he looks forward to leading a hife of celibacy, it yet permits him to apply his mind to any course of study, free from all care as to his immediate future. We fear that the anxieties attending a short tenure would have the effect of discouraging men from engagng in Orggaal Research; and even in the less uncertain career of Education, we fear that the prospect of election to a senior fellowship would be so uncertain that unless a considerably longer tenure were allowed
to Probationary (or, as we will now call them, Junior) Fellows than would suffice for non-residents engaging in professions, the University would be drained of its best men.
153. On the other hand, if there were no counterbalancing advantages in a non-resident fellowship, we fear the effect might be to cause men to lunger on at the University who would do better to engage at once in a profession. We think, therefore, it might be advisable for the individual colleges to make such an adjustment between the advantages of the two kinds of fellowships as should preserve a due balance in their attractiveness.
154. The Junior. Fellows might be expected to reside in college, and thereby aid in preserving the discipline of the place. Accordingly, the retention of a junior fellowship might in the discretion of the college be subject to the restriction of celibacy.
155. While it is only right to give a junior fellow ample time for exhibiting his capacity for an Unversity career, it seems highly desirable to allow a fellow who had preferred the junior to the non-resident tenure, but who afterwards found that he was not suited for University Work or Original Investigation, and had small chance of promotion, to engage without delay in some profession independent of the University. We should, therefore, allow a junior fellow the option of stepping on to the non-resident tenure, in which case the same proportion of the whole time of tenure of a non-resident might be allowed to him as remained to him of his time of tenure as a junior. The option of a newly-elected fellow to be placed on the non-resident tenure, or of a junior to transfer himself to the non-resident class, should be limited by the restriction that there be at least a certain number of jumors, so as to preserve a sufficient staff of fellows resident in college.
156. The questions relating to the tenure of Fellowships, which we have now discussed, have been incidentally brought under our notice in various parts of the evidence which we have taken. These questions are also raised in a Memorial submitted to the First Lord of the Treasury, by a large number of influential resident members of the Uniyersity of Cambridge, a copy of which has been forwarded to us, and will be found in the Appendix to this Report.*
157. We are convinced that the future interests of Scientific Study and Research at the two Unıersities must of necessity be greatly affected by any changes that may be made in the tenure of the Fellowships, and, consequently, in the Constitution of the Governing Bodies of the Colieges. But as we have not taken a complete body of Evidence on this subject, and as we consider that any attempt to do so would lead us into mquires beyond the scope of our Commission, we shall abstan from offering any detailed recommendations with regard to these important questions. We desse, however, to express our conviction that of the Colleges are to become, to a greater degree than in times past, the homes of men distinguished for Original Research in Science, provision must be made for attaching such men in a permanent manner to the College Foundations, and for rendering them permanent members of the Governing Bodies.
158. The following proposals appear to us to sum up the results of the preceding discus-, sion. To adapt them to the case of some of the smaller foundations, important modifications would be required; and, even in the case of the larger Colleges, we should wish them to be regarded only in the light of suggestions, which we teel to be worthy of attention, but at the same time to be by no means free from objection.
(1.) That there should be three classes of fellows. which we have distinguished as senior, junior, and non-resident.
(2.) That the senor fellowships should be permanent, and free from the restriction of celibacy, but subject, as a general rule, to the conditon of residence in the University and readiness to take some part in the work of the College or University.
(3). That the elections to the seniorty should, in ordinary cases, be made from the class of juniors, but should not be limited to that class.
(4.) That the junior fellowships should be tenable for, say fourteen years, and should be subject to such restrictions as to residence in college and duties as may appear desirable to the several colleges.
(5.) That the non-resident fellowships should be tenable for about half that tume, free from all restrictions.
(6.) That a person elected to an otdinary (as distinguished from a senior) fellowship should bave the option of beng placed on the junior or non-ressdent tenure, and that a junor fellow should at any time be at liberty to place himself on the non-resident tenure (but not conversely), with a proportionate allowance for the unexpired portion of his time of kolding his fellowship as junior fellow; provided that the number of junior fellows be not suffered to sink below a certain minimum.
159. The effect of these proposals would be to constitute in each College a seniority of a very permanent kind, because its members would hold their places for life, and would be free from the restriction of celibacy. Whatever share in the government of the College it might be thought proper to assiga to the holders of the terminable junior fellowships,
it is evident that the influence of such a permanent seniority would be very great, and that the prosperity of the College would depend in great measure on its constitution. According to the above proposals (taken in connexion with the recommendations we have already made), the seniority in each College would consist, (i) of University Professors officially attached to the College; (ii.) of persons elected for eminent services to Learnung or Science; (iii.) of men who had given some of the best years of their lives to the service of the College, and had proved their fitness for college work. It would be for the Universites, and the Colleges, to consider whether a body so constituted would be in all respects suitable for the important functions it would have to discharge. In particular, it would be worthy of careful consideration whether such a seniority should be allowed to appoint its own members by co-optation, or whether the whole body of fellows should elect, or whether the filling up of vacancies should be vested in some authority external to the College; or, lastly, whether some course intermediate between these several modes of procedure should be adopted.
160. With regard to the present system of appointment to fellowships in Oxford, we do not find that it has worked favourably for Natural Science. Until the last twenty years there were but few open fellowships, and of these none were offered in the University of Oxford for any subjects but those of Classical Literature, with a very rare exception in favour of Mathematics. A great change has taken place within the last twenty years, and the Statutes of most Colleges now require that therr system of examination should be such as to render their fellowships accessible from time to tume to proficiency in the various branches of study which are recognzed in the Schools of the University for the time being. As Natural Science is one of these, it follows that it is the duty of every College which has this provison in its Statutes to offer from time to time a Fellowship for Natural Science. It is not easy to say how many fellowships have been givenifor Natural Science withon the last twenty years, because fellowships are often given, and most properly so, not on the ground of merit in any one direction alone, but on the ground of proficiency in more than one subject. Roughly speaking, however, the number of fellowships that have been given exclusively, or principally, for all the subjects included under the general name of Natural Science, may be taken at twelve. The whole number of fellowships filled up by open competition during that time exceeded two hundred.
161. Although it thus appeans that the number of fellowships given for Natural Science has been instgnificant, we have evidence that there is no unwillingness on the part of the Colleges at Oxford to elect fellows in Natural Sclence; and we have repeated assurances from the Cambidge witnesses that no such reluctance is felt at that University. Since the system of open election to fellowships was introduced at Oxford, twenty years ago, the Colleges in general have carried it out in the most loyal sprit, and have shown themselves desirous of securing for their society the men of the most eminent ability whom they could obtain; and since the establishment of the Natural Sciences Tripos at Cambridge there have been several persons elected to Fellowships for proficiency in Natural Science. But the difficulty to which we have already referred with regard to the scholarships exists no less in the case of the fellowships. The-Colleges at Oxford are afraid to offer fellowships for Natural Science on account of the smallness of the number of candidates; and the number of candidates is prevented from increasing by the uncertainty whether any tellowship will be offered. At Cambridge, on account of the smallness of the number of candidates, a high place in the Natural Sciences Tripos is not always by itself considered a sufficient guarantee of excellence, and the number of candidates is kept low partly by the uncertanty as to immediate reward in the shape of a fellowship, though in great measure, also, by the want of a promising career in after life. It must also be remembered that as the Colleges at Oxford have hitherto been literary rather than scientific societies, composed of persons well acquainted with certain branches of knowledge, and very competent to judge of literary ability in all its various directions, they have had a natural tendency to choose men of whose fitness to be fellows they could themselves form an opinion, rather than to take upon trust a man of whose merit they could only judge upon the testimony of ochers. But there is every reason to believe that if the electing body of any college in either of the two Universities were once satisfied of the eminent ability of a Natural Science candidate, they would be as glad to welcome him into their society as they would be if he had chosen to pursue one of the older branches of academical study. In the interest of Natural Science itself, it cannot be wished that fellowships should be rendered too easily accessible to Natural Science Students. A man who is elected as a Natural Science Fellow appears, in a certain sense, as a representative of science in a learned and very critical society; and it is extremely desirable that the representation should not be inadequate. What is to be desired in the interests of Natural Science Students
is not that the number of Fellowships appropriated to them should be immediately increased to any very great extent, but that they should be bestowed with more regulaity than at present, and that their number should increase proportionately with the number and claims of Natural Science Students. It is very important for a Student to know that he will have a chance of obtaining a Fellowship within a year or two after taking his degree if he can show that he deserves one, and not to be perplexed by the feeling that, however fit he may be, he may not have a chance at all.
162. The evidence of Professor Clifton and Professor Jowett upon this point appears to us to deserve great attention.
163. At Cambridge the mode of awarding fellowships differs in some important particulars from that which prevails at Oxford. The most important difference 2s, that at Cambridge, as a rule, there are no Fellowship Examinations, but fellowships are awarded by the Colleges on the evidence furnished by the University Examinations. Trinity College, which forms about one-fourth of the whole Unwersity, is, indeed, an exception, for there fellowships are awarded by the result of a Fellowship Examination. At King's College also, admission to which formerly was confined to scholars coming from Eton, the present Statutes prescribe that the fellowships shall be awarded according to the result of a special examination. At St. John's College there is a Fellowship Examination, but the result appears to form only one element out of many whereby the electors judge of the merits of the candidates. At the smaller Colleges the merits of the candidates are judged of mainly by the results of the Unversity Examinations.
164. This last remark leads us on to another important difference between the two Universities. At Oxford the Fellowships of each College are filled up in accordance with the results of a competitive examination held by the College, but open (when the fellowship is subject to no clerical restriction) to all members of the Uuiversity who bave passed the examinations required for the degree of Bachelor of Arts, and in many cases open also to all graduates of any University in the United Kingdom. At Cambridge, on the other hand, those Colleges which award their fellowships according to the result of a Fellowship Examunation, open the examination, as a rule, only to members of the College, though the Statutes give power to the Governing Body, on any occasion when they think fit, to throw open the examnation to members of the Uuversity. At the smaller Colleges it is generally understood that the electors look in the first instance to members of their own College; and in case there be no candidate of sufficient merit, or the needs of the College require a Fellow having some special qualifications not found among the otherwise eligible members of the College itself, they then "go out of college," as it is called, that is, elect to the Fellowship a member of some other College.
165. At Oxford, where the examinations for degrees are not competitive, it would be difficult to suggest any mode of electing to Fellowships other than that by competitive examination; but at Cambridge, where the names in the honour lists are arranged in order of merit, there is something to be said on both sides with respect to the desirableness on otherwise of special fellowship examinations. On the one hand, the wider study which such a system demands, enlarges the foundation which lies at the base of a subsequent career of professional activity or original research, as the case may be; and means are afforded of remedying the result of accidental falure in a final examination, such as might arise from temporary illness or other sumilar cause. On the other hand, it is urged with great force that by the time a man has taken his degree, aupposing him to have been industrious while an undergraduate, he has had enough of study pursued with a view to the immediate production of his knowledge at a moment's notice; and that be should then be left free to pursue his studies in a more systematic and specialized manner, and his originality should be no longer cramped by preparation for an impending examination. We attach great importance to this freedom from the immediate pressure of examination at such a stage of the student's progress, and are disposed to regard the advantages which may attend the holding of special fellowship examinations as too dearly purchased by its sacrifice. But whatever differences may exist in the system of election to fellowships in the two Universities, we think it very desirable that in both of them alike orignal research should be encouraged by taking into account any evidence of power in this direction which a candidate for a fellowship is able to give.

III.-The Organisation of the Instruction in the Colleges in relation to the Instraction given in the Universities.

166. The evidence before us is not favourable to the proposal that each college separately should ustitute a Laboratory for educational purposes. The reasons in favour of concentrating the practical instruction of the students to a considerable extent in a few institu-
tions are obvious. A considerable expenditure of time on the part of the Instructors, and of money on the part of the Colleges, would be occasioned if each College were to undertake a Laboratory of its own, and to teach its students in it. It is at once better for the students, and a more economical use of the funds of the Colleges, that the practical Instruction, so far as it is not given in the University Laboratories, should be given in Laboratories belonging not to a single College, but to a group of Colleges. . It would be undesirable to prescribe, by any definite rule, what should be the division of labour between the University laboratories and the college laboratories, as this must depend on the discretion of the University Professors on the one hand and of the College authorities on the other. But the most convenient arrangement would probably be that the more elementary instruction should be given in the college laboratories, and that when the student had attained a certann degree of proficiency he should pass under the hands of the Professors in the central laboratories of the University.
167. There can be no doubt, however, that the institution of Separate College Laboratories might be of great use in plomoting a spirit of Original Research among students who have already obtamed their degree. It would probably be by no means either necessary or desirable, under existing conditions, that every college should contain a laboratory intended for purposes of this kynd ; but wherever it could conveniently be done, few things would be more to the credit of a College not merely as a place of education, but also as a Home of Learning and Science, than to have a place within its precincts in which any of its fellows or graduates who are incluned to devote their time to original inquiries should have opportunities of doing so with advantage. When the suggestion which we have already made, that celtan Fellowships should be awarded with the express view of promoting original research and mquiry, is carried out, an immediate and obvious use for such laboratories will arise.
168. But whatever may be the case with the laboratories, it must be considered indispensable, so long as the present relations of the Colleges to the Universities continue, that the Colleges should appoint Lecturers in Natural Science. Without such Lecturers the students in Natural Science will be at considerable disadvantage as compared with their fellow students in classical or other literature. A great deal is done by a College Tutor for his pupils that cannot be expected from an University Professor. Every young man requires from time to tıme a certain amount of private instruction and private advice as to his studies, and also a cettain amount of watchful control over them. Assistance of this kind is abundantly given by the college tutors to their pupils in mathematics, and in literature ; and in every college in which there are Natural Science students it is extremely desiable that there should be some one capable of dong as much for them in regard to their scientific studies.
169. We are of opinion that the Lecturers in Natural Science, whom we should wish to see appointed in every college, might, besides giving private instruction to ther college pupils, be most usefully employed in giving lectures, accessible to all the members of the University, upon various subjects of Natural Science. These lectures would probably be inter-collegiate, as are those already given by the existing College Lecturers on Natural Science.
170. As we have already stated at length with reference to the Scientific Subjects, a large proportion of the lectures, upon all subjects, which are now given in the Colleges are of an untel-collegiate character, three or four colleges uniting together and making a combined arrangement for their lectures, so that all the students of any one of the colleges are admitted to all the lectures of any other of the colleges entering into the arrangement. There exist alrendy several gooups of colleges formed upon this principle. The system, although of recent introduction, appears to have become firmly established, partly from the difficulty of supplying instruction in all the various subjects which are now admitted into the courses of study at the Universities, and partly from the feeling, that when the services of an able teacher have been secured by a college, his powers are, to a certain degree, wasted unless the advantage of his instruction can be extended beyond his own college.
171. The advantages of this united action, on the part of groups of colleges, are evident. It has not only rendered gond instruction more widely available to the students, but it has done what is no less important-it has improved the quality of the lectures given. A college lecture given to the college pupils of the tutor was often given under rather depressang circumstances, and the result was not in every case satisfactory; but a lecture given to the students of three or four different colleges of necessity acquires a very different character. The lecturer has to do his best, and there can be no doubt that many of the inter-collegiate lectures are so excellent as to make it desirable that they should be delivered, not in a half private manner as College Lectures, but as public University Lectures.
172. But the disadvantages which arise from the incompleteness of the system are no less obvious. There are colleges included in these groups, but there are also colleges left out; and the system cannot be regarded as more than partially successful until some arrangements are adopted rendering possible the admission of these colleges into the existing groups, or the formation of new groups including them. In consequence of the incompleteness with which the principle of combination has been carried out, as well as in consequence of the great benefits which have resulted from its partial introduction, it is more and more generally felt that what has been done hitherto can be regarded only as the first step in the direction of a more regularly organized system of teaching in the Universities. The next step will probably be to give a recogaized University position to the most eminent and successful of the College Lecturers, and thus to secure their services for the University at large.
173. The lectures which could most advantageously be given by the College Lecturers in Natural Science, would seem, under the present circumstances of the Unversities, to be chiefly those which do not require experiments, or which require only very simple experiments, and very easily procurable specimens. Such lectures are of two very different kinds:-elementary lectures on various parts of Mechanical Philosophy, Cbemistry, and Biology; and lectures suited to advanced students on the more theoretical parts of Natural Philosophy. It would be extremely desirable that lectures of both these kiads should be occasionally given in the colleges. Lectures of the first kind would supersede the necessity for elementary instruction in the same subjects being given by the Professors, and might thus relieve them in certain cases of a burthensome part of their duties. Lectures of the second sort would probably be given only at intervals and to small classes. Nothing could be more conducive to the usefulness of the Natural Science Lecturers, and, indeed, to their own improvement, than that they should be expected from time to time to give public instruction in special departments of Physical Science, and even in some of its most advanced theories; and it would be very undesirable, if indeed it were possible, to confine their duties to the giving of elementary lectures. As a general rule, the College Lecturers on Natural Science would be young men desirous of working their way upwards in the Universithes; and it would be for their interest, as well as for that of the University at large, that they should have opportunities of showing, by their success as lecturers, their fitness for professorial offices. Their lectures would not necessarily have any formal University character, and might, or might not, be recognized by the University. They would be given by virtue of the right which the Universities have always recoguized as belonging to every Master of Arts, that of giving public lectures, under what conditions he pleases, upon any subject included in the Faculty of Arts.
174. We have already referred to the exastence at Christ-Church, Oxford, of the three Lee's Readerships in Physics, Chemistry, and Physiology. These Readers are supplied with working rooms and apparatus partly in Chnst-Church itself; and partly in the University Museum, upon which Christ-Church has a claim for such accommodation, in consequence of its having lent to the University Museum a large number of biological specimens. It has been proposed that the Lee's Readerships should be made University offices; and there are certanly strong reasons in favour of the proposal, as the University would thus immediately gan what it greatly needs, an accession to its teaching power in these three branches. The change would involve a two-fold difficulty, which, however, need not be regarded as insuperable, partly on the side of the University and partly on the side of Christ-Church. Christ-Church might not wish to surrender the special advantage which its students derive from having their own Reader on the spot, and the University might not wish to accept as a Professor, or even as an Adjoint Professor, an officer elected by the governing body of Christ-Church.
175. One other particular suggestion has been made to which we thmk it right to refer. It has been thought that it might be advantageous to devote one or more colleges separately, and especially to the Natural Sciences. We confess that we do not look upon this proposal with favour. If it were possible only in this way to obtain a home for Science and for scientific men within the Universities, we should have no hesitation in considering the plan one worthy of adoption; but as this is far from being the case, we consider that the objections to it outweigh the considerations that may be urged in its favour. In the first place there would be an almost insuperable difficulty in carrying out such a measure. It would probably be regarded as a very revolutiondry proceeding to seize upon a particular college and to devote it to one particular branch of learning or science, although a precedent for such a measure has to a certain extent been furnished by the Commissioners of 1854, in the manner in which they dealt with the exceptional circumstances of All Souls' College. But we feel even more strongly that the interests of

Natural Science would be most imperfectly served by such a measure. Its position in relation to the various branches of learning is not one of separation or antagonism; it should rather be regarded as running through the whole of human knowledge, and as inseparably blended with every part of 1 it . We think that it would be better both for science and for learning that they should be intermingled together in the different colleges in such proportions as the requirements of education in the Universities and in the country may, from time to time, seem to render necessary, rather than that an endeavour should be made to separate the one from the other in any arbitrary manner.

- IV.-Contributions from the Colleges to a Fund for University Purposes.

176. We have already more than once referred to the proposal that a general University fund should be formed, to which the Colleges should contribute. It appears to be generally admitted that the Universities have a real claim (though one of a somewhat vague and undefined nature) to be supported or at least assisted by the Colleges; and the fact is unquestioned that while some of the Colleges are very wealthy the Universities are comparatively poor. The income of the University of Oxford is derived partly from endowment, partly from the profits of its Press, but, to a very great extent, from the taxation. of its members. The gross amount of income in the year 1871-72 was $31,718 \mathrm{l}$. 19s. 4 d ., and the gross expenditure was $30,730 \mathrm{l} .15 \mathrm{~s}$. 2 d . The condution of the Uypiversity of Cambridge is very similar to that of Oxford, but a larger proportion of its - come is derived from taxation. The gross amount of income was, in the last year, $23,206 \mathrm{l}$. 18 s . 2 d ., and the gross expenditure, exclusive of investment of a portion of the balance in the hands of the Vice-Chancellor, was 22,400l. 19s. 6d. So that it will be seen that although, in the case of both Universities, there is a certain surplus of income above expenditure, it is not greatly in excess of what, must necessarily be reserved for contingencies.
177. The evidence before us leads us to believe that, as soon as objects are clearly defined for which the Universities require assistance, the Colleges, generally speaking, would be ready to consider them favourably, but that they would be reluctant (and not unnaturally so) to contribute a fund until it was known for what purposes that fund was intended. So much depends upon the relations as to teaching that may ultimately be established between the Universitnes and the Colleges, that it is very difficult to say what sum may eventually be required by the Universities.
178. Besides the Professorships in Natural Science, the foundation of which we have already pointed out to be urgently necessary, it is probable that many Professorships, or Public Readerships, in other branches of Learning are indispensably required In illustration of this remark it may be perhaps not improper to mention that no public lectureship on the English language or English literature exists at either Unıversity. But, without entering further upon matters which lie beyond our province, it is especially important for us to notice that in the case of the Natural Sciences a largc outlay for Laboratories, and the other material appliances necessary for the cultivation of science, is required over and above the expenditure necessany for the payment of Professors, Adjoint Professors, and Demonstrators. This disadvantage in the position occupled by Natural Science is inherent in the nature of the case, and cannot be remedied ; but it should be borne in mind that the difference between the Natural Sciences and the various Departmenta of Literature is to a certain extent more apparent than real. In former times the great libranes, which are indispensably necessary for the stady of ancient literature and learning, were formed at a vast cost, and were placed in buildings not unworthy of the objects which it was sought to promote. The debt of gratitude which we owe to those who in past times rendered this service to their successors is very great; but while we acknowledge this delt, we must remember that on the present generation the duty has clearly devolved of imitating therr example, and of setting by the side of those institutions which former ages created for the Advancement of Learning, other institutions founded in a similar spirit, and devoted to the Advancement of the Sciences of Observation and Experment. In claiming for Natual Science a large share of whatever funds may be contributed to the Universities by the Colleges, we do so in no spinit of illiberality towards the older studies, but only from the feeling that they have been, to a great extent, provided for in the past, and that the time has now arrived in which the newer studies ought to be placed in a similar position of advantage.

V. THE RELATION OF THE UNIVERSITIES TO TECHNICAL EDUCATION, AND TO EDUCATION FOR SCIENTIFIC PROFESSIONS.

179. If for the moment we regard the Universitres simply as educational bodies, and leave out of sight their duties as upholders of learning and promoters of original inquiry and research, we can have no hesitation in admitting that their main function in relation to science is to maintain its position as a part of liberal education. How this is to be done is no doubt well understood at the Universities themselves, and it is only for the sake of completeness that we refer to it here. The art of doing it consists, in the first place, in teaching well whatever paits of science are taught at all, and, in the second place, in selecting for the instruction of the general student such parts of science as tend best to give him a correct idea of its whole structure, and ane most hely to be useful to him in his subsequent course of 'life. But subordinate to this general function of maintaining science as a great and necessary part of hberal education, there are other more special considerations which ought not to be wholly lost sight of. Foremost amongst these is the immediate necessity which has arisen for supplying the country with a highly educated class of Teachers of Science. In consequence of the improvement which has taken place in the First Grade Schools, there is an increasing demand throughout the country for good scientific teachers, and it is probable that at the present moment the demand exceeds the supply. It is to the Universites that we must look to meet this demand, and to meet it in as perfect a manner as they can. The smallness of the number of science students at Oxford and Cambridge has been made, and with some justice, a ground of reproach; but it would not be farr to measure the usefulness of the Schools of Science at the two Universities by the number of their students. It must be remembered that more is done for the ultimate diffusion of scientuic knowledge throughout the country by supplying the first grade schools with three or four first-rate teachers in the course of a single year, than by giving during the same time a good education in the elements of science to a nuch larger number of general students. It is, therefore, of much importance that the education of students of scieuce should be such as especially to fit them to become teachers of it; and to this point, we believe, much attention is at presenc paid.
180. But the profession of teaching is not the only profession for which science studente should be prepared; although it is, perhaps, the only profession for which they should obtain a complete preparation at the Universities. Professor Jowett observes, "I am " inclined to think that physical science can only be spread in one way, and that is by " connecting it with the professions. There are two professions with which you would " naturally connect it-the medical profession and the profession of an engineer; and " if you want to increase the number of physical science students and to arouse the spirit " of physical science in the University, you must draw from those two classes of students " of medıcine and engineering." Without altogether adopting this view, we are, nevertheless, prepared to admit that only a few young men are able to devote themselves for two or three years to any pursuit whatever without beng able to see defnitely whether the pursuit is one by which they will be able to live afterwards. Unless, therefore, scieuce students can be made to feel that their study of science is leading them up to a profession in which they can maintain themselves, their numbers are not likely to receive any large accession.
181. The pruncipal professions for which extensive preliminary scientific studies are required, are, the profession of medicine, the professions of consulting and manufacturing chemistry, and of covil, mechanical, and telegraphic engineering in all its various branches. With regard to all of these the tendency of a great amount of the evidence which has been laid before us is to show that the Universities ought not to undertake to give direct professional or technical instruction. For example, the difficulties in the way of making either Oxford or Cambridge into a great School of Medicine are very considerable. It is sufficient to advert to the size of the towns, and the consequent smallness of the hospitals that could be placed at the disposal of the students, as one circumstance amongst many which would render such an attempt unadvisable. Nor are the difficulties less which stand in the way of any attempt to give a complete education in civil engraeering at these Universities. According to the evidence which we have taken, so much of this education must of necessity be practical, that a complete technical education in engineering cannot possibly be given in a town in which there are no manufactures On the other hand, the professions of medicine and of civil engineering both require, though in different directions, very thorough and very extensive prehminary scientific training; and in these professons the feeling appears to be
growing that the highest possible development should be given to these prelminaly studies. It is our opinion, therefore, that the Universities should provide to the fullest extent for the theoretical instruction of sach professional students.
182. There would probably be no difficulty in securing this object, so far as the profession of Medicine is concerned, if the department of Biology in each of the Universities should hereafter receive an adequate organization,
183. With regard to Civil Engineering, at Cambridge the Jacksonian Professor gives a course of lectures on the Principles of Mechanism, and the Professor of Experimental Physics gives courses on different branches of that subject, but there is no Professor of Civil Engineering, unless the Jacksonian Professor can be regarded as such. The only preliminary instruction that is offered by the University of $\mathrm{Oxfor}^{\text {x }}$ is that to be obtained in the Hyde Institute; and considering the great number of subjects which have to be taught in that Institution, it would be too much to expect that a course of instruction could be provided there exactly surted to the wants of professional students. The first step towards meeting these wants would be to provide a Professorship of Civil Engineering, and to place such appliances at the disposal of the Professor as would enable him to give to students intending to devote themselves to that profession the same kind of assistance which is now given with so much ability and success in Scotland at Edinburgh and Glasgow, and in Ireland at Trinity College, and in the Colleges of the Queen's University. The functions which might be usefully discharged by an Unversity Professor of Civil Engineerıng are stated with great' clearness in the evidence of the late Qn. 9506, Professor Rankine.

VI--THE DUTY OF THE UNIVERSITIES AND COLLEGES WITH REGARD TO THE ADVANCEMENT OF SCIENCE.

Research a primary Duty of the Universites,

184. On no point are the witnesses whom we have examined more united than they are in the expression of the feeling thatit is a Primary Duty of the Universities to assist in the Advancement of Learning and Science, and not to be content with the position of merely educational bodies. We entirely concur with the impression thus conveyed to us by the evidence, and we are of opinion that the subject is one to which it is impossible to call attention too strongly. We think that if the Universities should fail to recognaze the duty of promoting Origual Research, they would be in danger of ceasing to be centres of intellectual activity, and a means of advancing science would be lost sight of which, in this country, could not easily be supphed in any other way. There is no doubt that at the present time there is a very strong feeling in the country in favour of the wide diffusion of education, and of the improvement of all arrangements and appliances which tend to promote it, from the simplest forms of primary instruction up to the most advanced teaching that can be given in an University. But there is some reason to believe that the Preservation and Increase of Knowledge are objects which are not as generally appreciated by the public, and of which the importance is not so widely felt as it should be." On this point we would direct especial attention to the remarks of Sir Benjamin Brodie: "For education we construct an elaborate and costly machinery, and " are willing, for this end, to make sacrifices; but, on the other hand, the far more " difficult task of extending knowledge is left to the care of individuals, to be " accomplished as it may; and yet it is this alone which renders education itself
" possible. I really am anclined to think that in former days a more real and earnest
"s desire must bave existed to preserve knowledge as a valuable national commodity for
" its own sake than exists now; and the reason that I say this is, that we have existing
"" in the Unversities of Oxford and Cambrige records of another condition of things
" with legard to knowledge than that which exists at present. In the first place we
" have extensive libraries which could only have been founded and preserved for the
"sake of the preservation of knowledge itself; and in the next place the collegiate
"foundations in the Universities were originally and fundamentally, although not
"absolutely and entrely, destined for the same objects. * " * This object is
"certainly not less important in modern than in ancient society. I presume that in the
" middle ages knowledge would altogether have perished if it had not been for such
"foundations, and it appears that now from other causes the pursuit of knowledge and
" of general scientific investigation is subject to very real dangers, though of another
" kind to those which then prevailed, and which make it very desirable for us to preserve
" any institutions through which scientific discovery and the investigation of truth
" may be promoted. * * * The dangers to which I refer, are dangers
" which arise partly even from the growing perception of the practical importance of
" knowledge, which causes a very great draught indeed to be made upon the scientific
" intelligence of the country. In the first place, almost every scientific man is caught
"up instantly for educational purposes, for the object of teaching alone; and, in the
" next place, a very great draught indeed is made upon science for economical purposes;
"I mean for purposes connected with practical life. In sanitary matters we have
" numerous examples of the vast amount of work done by scientific men for public and
"practical objects. So that the supply of scientific men is not equal to the demand
" for those objects alone. Manufactures offer another great field of accentific employ-
" ment, and it is to be observed that these are the only ways through which an income
"can be obtained, the pursuit of scientric truth being an absolutely unremunerative
" occupation."
185. We believe that the dangers referred to in these remarks are real; and their existence induces us to lay down, as emphatically as possible, the position that the Promotion of Original Work in Science should be regarded as one of the Main Functions of the Universities, and should be specially incumbent upon the holders of those fellowships which, as we have already recommended, should be awarded with a view to encouraging original research. As regards the Professors, we have already insisted on the importance of so arranging their duties as to give them abundant leisure, and, what is no less indispensable, abundant opportunities for Original Investigation, by providing the external appliances necessary for it. We think that the great national interests connected with the advancement of science form one, although only one, of the grounds upon which the endowment of professorial offices is defensible, and regard it as a great advantage that
an opportunity is afforded by the peculiar circumstances of the Universities of giving encouragement and maintenance to a class of persons who are competent to advance science, and who are willing to make its advancement the principal business of their lives.

186 We have already stated, but we would repeat it here, that we would on no account have offices founded within the Universities without special duties attached to them. It is an absolute advantage, if not 1 n all, at least in many cases, to a man who is engaged in some abstract part of science, to be compelled to produce, in the form of public discourses, the results of his labours; and it can be no disadvantage to him, under any circumstances, to be obliged to devore some moderate part of his time to showing, if it were only by the example of his own work, to younger men, how scientific studies should be carried on with the view of promoting human knowledge. We believe that in all ordinary cases a certann amount of educational work is of advantage to the scientific worker, and we also believe that for the promotion of the highest scientific education it is very desirable to bring the original worker into direct personal contact with the student.
187. We have also already spoken of the propriety of awarding Fellowships in certain instances, not, as at present, by an examination test, but for services rendered to Science in Original Research. Although we should wish, as we have already said, to see this done from time to time (as it has already been done at Cambridge) in the case of persons who have already made themselves eminent in science, and whose accepting the Fellowship is rather to confer an honour upon the office than to receive one from it,' we also think that a wider application should be given to this principle; and, that whenever a Fellowship in Natural Science is offered for compettion among the younger Graduates of the University, such evidence as any candidate can offer of his aptitude to become an useful worker in science, should always be taken into account in the award. Nothing, we believe, would tend to give the students at the Universities so just an idea of what science is, or of what the objects are which those who pursue it should have in view, as the adoption of the principle by the Universties and the Colleges, that the highest honours and rewards in Natural Science are to be conferred upon men who' can offer some evidence that their names are likely afterwards to find a place on the list of those who have added to human knowledge.
188. The proposals to which we attach the nost importance with a view to the Encouragement of Original Research at the Unversities are the two to which we have just referred: (i.) the Establishment of a complete Scientific Professoriate ; (ii.) the Appropriation, under certann conditions, of Fellowships to, the Mantenance of Persons engaged in Orignal Research. But, in addition to these main proposals, other suggestions are contained in the evidence before us, to which we would call especial attention: (i) that Laboratories should be founded expressly intended for Rêsearch, and for the Training of Advanced Students in the methods of research; (ii.) that Scientific Museums and Collections should be mantaned to an extent beyond what is required for purely educational purposes ; (iii.) that a Doctorate in Science should be instituted.

Proposed Laboratories for Research.

189. It is one of the disadvantages of an University course that a young man, up to the time of taking his degree, is straining every nerve in order to master a certain amount of knowledge in which he has to pass an exammation; and however improving this process may be to him in certain respects, the impression is widely entertained that it is not calculated to develope the originality of his mind, or those pecular qualities which fit a man to become a discoverer in Science. As it is indispensably necessary that the student should be well grounded in his work, and should have a thorough comprehension of the methods and principles of his branch of science, before he attempts to add to it, it is not easy to see how this disadvantage could be remedied during his undergraduate course; but as soon as his examinations are passed, it is surely time that he should be led to regard his studes from another point of view, and to give them a different direction. He should then be placed in a laboratory devoted to orginal research, and under the immediate care of persons who are principally engaged in work of that nature.

On this point we would again refer to the evidence of Sir Benjamin Brode: "I should Qu. 3593.
" like (speaking of my own department and departments which are cognate with it,
"and I have no doubt that the same remark would also apply to Physiology and to other
" subjects) to see those professors have under their control laboratories suited for "scientific research and investigation, in which they should take a certain limited " number of students who would work, partly as their pupils and partly as their " assistauts, for those ends. And I should myself say that this is an educational
"function of the most important character possible, because you would here really
"carry scientific education to its end. If you do not do this you stop short of the most
" mportant part of all in scientufic education. Now the real perfection of science is
" shown only in scientific inquiry-the perfection of science not only in its general
" results, but the perfection of science as an instrument for education; and if you
" leave out in the University system any provision for scientific research, you are
" leaving out the most important feature of the subject. Those pupils would be persons
" who would ultimately pursue the sceence as their main business in life, and become in
" their turn the teachers and the professors of the subject. I am not giving a mere
" chimera or dream, but this is already, though not exactly in the way that I am
" suggesting, carried out to a gieat extent in Germany."
No less important, as giving one view of this question, is the evidence which we have
14u. 5867.
received from Dr. Frankland, who says, "In my opinion the cause of this slow progress
" of original research [in England] depends, in the first place, upon the want of suitable
" buildings for conducting the necessary experiments connected with research; secondly
"upon the want of funds to defray the expenses of those inquiries, these expenses
" being sometimes very considerable; but, thirdly and chiefly, I believe that the cause
" lies in the entire non-recognition of original research by any of our Universities. Even
"the University of London, which has been foremost in advancing instruction in
" experimental science, gives its highest degree in science without requiring any proof
"that the candidate possesses the faculty of original research, or is competent to
"extend the boundaries of the science in which he graduates. I consider that
" this circumstance is the one which chiefly affects the progress of research in this
"country, because if we inquire into the origin of those numerous Memoirs upon original
" investigations that come from Germany, we find that a considerable proportion of
" them are investigations made by men who are going in for their science degrees, and
" who are compelled, in the first instance, to make those investigations, and they attain
" by that means the faculty and liking for original research, and frequently follow it
"out afterwards; so that a considerable proportion of the papers themselves are
"contributed in the first place by those men going in for degrees, and a considerable
" proportion of the remainder are obtained, I believe, througb the influence of this pre-
" vious training in research upon the men who have taken the degrees. Further, the
" entire ignoring of research in the giving of degrees in this country diverts also, or has
" a tendency to divert, the attention of the professors and teachers in this country from
"original research. They have not to take it into their consideration in the training
" of their students; they have not to devise, as is the case in Germany, suitable subjects
" for research to be pursued by their stadents; and thus their attention is, as it were,

* taken away entirely from this hughest field of science. And, indeed, if they themselves
" devote some of their time to orignal research, it almost appears to them to be a
*s neglect of their class duties, because their class duties do not require it. Their
"students are to be trained for subjects which are foreign to original research; they
"are to be trained chiefly in subjects that are to be taught by lectures, and by what
"I should call 'descriptive,' as distinguished from 'experimental' or 'practical'
" teaching; and, consequently, I think that in both ways-both by not bringing
"students into contact with original experimental work, and by diverting the attention
" of the teachers and professors in this country from such work, great damage is
"done to the "progress of investigation in Great Britain by the attitude of our
" Universities."

190. Sir William Thomson has gone even further, and has expressed an opinion that the systems of examination in the Universities, as at present arranged, so far from doing anything to encourage the spirit of scientific research, have an exactly opposite tendency.
Qu. 10,741. "That to some degree, competitive examinations produce an elementary smattering of
" science I have no doubt whatever, but I cannot see that they produce much beneficial
" influence; and in the higher parts especially, they have, I fear, a very fatally injurious
"tendency in obstructing the progress of science."
191. The kind of assistance which we should desire to see given in the English Universities to young men who have completed their University course, and who propose to adopt a scientific career, has been from time to time afforded at various institutions in the United Kingdom, among which we may particularly mention the Laboratory of the University of Glasgow, under the drection of Sir W. Thomson. The plan has been adopted in some of the German Universties, and even in the great Polytechnic Schools of that country. In Fraace it has recently been organized on a most complete and extensive scale. The Ecole Pratique des Hantes Etudes is a Government Institution of which the object is to encourage young men to devote themselves to scientific research, and to give them
opportunities of learning its methods. The course pursued by this Institution is to take young men who have completed their prehminary sctentific studies, and, allowing them an annual stipend to defray the expenses of their maintenance, to place them under the care of competent professors, who give them assistance and advice in their first researches, and to whom they afterwards become useful. This plan' appears to us' so excellent in itself, and at the same time so academic in its general character, that we desire to recommend it for adoption at Oxford and Cambrndge. To insure due attention to both classes of students, it would be proper that the laboratories intended for training in the methods of research should be distinct from those in which more elementary instruction is given.
192. We are also of opinion that arrangements should be made, in some of the public buildings of the Unversities, for giving opportunities to members of the Universities, no longer in statu pupillari, of prosecuting researches; although 'we should regard it of primary importance that these arrangements should be such as not to interfere with the teaching duties, or with the scientific work, of the Professors. We agree with Dr. Frankland that one "cause of the slow progress of original research" in England is " the want of suitable buildings for conducting the necessary experiments connected " with research;" and we think that the Unversities might, with great propriety, suipply this want, so far as their own members are concerned. We also think that collections of apparatus should be formed, which should be available for the use of such independent workers in science. There are some obvious difficulties involved in this 'plan', which has been strongly recommended by some of our witnesses, but which, so far as we are aware, has not been anywhere practically tried. We should, however, look with confidence to such a body as the proposed "University Councll of Science" to frame suitable regulations as to the fitness of the persons admitted to the privlege of working in an University laboratory, and as to the securities to be taken for proper care in the use of valuable instruments. We are disposed to think that, under the special circumstances of the Unıversities, they would do more to promote original work by offering faclities of the kind which we have described than by making grants of money similar to those which are made in aid of special researches by the Government Grant Committee of the Royal Society. The plan would have the collateral advantage of rendering residence at the Universities attractive to scientific men.

Proposed Special Scientific Collections.

193. Although we think it desirable that Scientific Museums and Collections should be maintained in the Universities to an extent which would render them available for original research, as well as for the purposes of education, we do not attach the same importance to this point as to the preceding, because museums and collections have been formed and will be formed in other places than in Unversities, whereas laboratories adapted for the instruction of students in the methods of scientific investigation are not likely to be founded except in connexion with educational institutions; and although it is a disadvantage to a scientific man not to have all the collections that he desires immediately ai his hand, yet, considering the proximity of the Unversities to London, it cannot be said that this disadvantage amounts to more than an inconvenience.
194. We also are of opinion that it is very desirable that such more extensive collections as may be formed in the Universities should, as far as possible, be kept separate from the more limited collections intended for educational purposes. A Museum may be very easily made too large for these purposes, and instead of giving the student clearer ideas, may serve to confuse him.

Proposed Doctorate in Science.

195. We have already referred to the possiblity of instituting Higher Degrees, to be conferred upon students, not in accordance with the results of an examination, but upon their giving proof of capacity for original research. The evidence of Dr. Frankland and of Sir William Thomson, which we have already quoted, and to which we might add that of the late Professor Rankine, appears to us concluswe upon the point that there is a real danger in the examination system; and in our opinon this danger might be guarded against by instituting a higher degree in science, the obtaining of which ahould be regarded as a great honour, and which should not be awarded except with reference to original work. The plan of requirng from a candidate for the Doctorate in Science 2 dissertation embodying an account of some origunal research of his own is strongly approved by such competent witnesses as Dr. Siemens, Dr. Carpenter, and Professor Erankland. This plan has been adopted in several of the German Universities, and has now become the established rule in France.

VII.-CONCLUSION.

196. In concluding our report we beg leave to point out that in regard to many of the most important questions, the evidence of the witnesses is, on the whole, characterized by a remarkable unanimity; while with regard to a few points of primary interest, and a large number of details, there is a considerable divergence of opinion. Taken as a whole, the evidence has convinced us, that, although much has been done in the Universities towards the Promotion of Scientific Education and Research, much remains to be done; and that changes, or at least extensions, of no inconsiderable importance have now become indispensable, if the work, which has been so well begun, is to be continued successfully. We have endeavoured to indicate what, in our own judgment, should be the general direction of such changes, and we have not altogether abstained from offering suggestions as to particular modifications or improvements of existing arrangements: but we are sensible that questions of detal are lukely to be best discussed in the Universities themselves, where they will come under the consideration of persons who have made the theory and practice of education the business of their lives, and whose judgment, on all points connected with the working of, their own system, ought to carry great weight.

All of which we humbly beg leave to submit for Your Majesty's gracious consideration.

(Signed)	DEVONSHIRE.
	LANSDOWNE.
	JOHN LUBBOCK.
	*J. P. KAY-SHUTTLEWORTH.
	B. SAMUELSON.
	W. SHARPEY.
	'G. G. STOKES.
	HENRY J. S. SMITH.
	"T. H. HUXLEY.

* These Commissioners have authorized the Chairman to append their names to the Report, in consequence of their absence from London.

J. Norman Lockyer,
 Secretary.

1st August 1873.

APPENDIX TO THIRD REPORT.

APPENDIX I.

Leiter addressed to the Viof-Ceancellor of the University of Oxford by the Linacraf Professor of Peysionogy in the Universixy.

[^4]we Buffer very considerably from deficmency in teachingpower, and the perso important class of men who, heving campleted the Nahiral Science curiculum requiste for the Degree of B.A, wish to continue to reside in Oxford, and commence to prepare themselves for a Medical career Considering, is I do, that my first duty is to the Natural Science School, and having now for several years back had ss many Studenta working for that School in the Brological Depariment as could have anythung like adequate superpision and assistance given to them by the Demonstrators and myself, I find it rmpossible to gire any efficsent superiatendence even to the smail number of persons whe now for several Terms back have been practsing Human Dissection in the Museum Yet, though it would be in my judgment exceedingly inexpedient to encourage University Students who might be intending to enter the Medical Profession, but who had not been through the Biological Department of the Natural Science school, to begn thear preparstory stadies ay Antaropotomy, the opp. Itink be purnished to any of our Students why should, I think, be furnished to any of our Students who, having been through that coune of prehmany tram Tha wished to prolong theur ressdence $1 n$ the University. meet thenr needs, however, another Demonstrator would he required, and es the whole of his time would not be taken up with the work in question, he might relieve the present Semor Demonstrator of some of the teachmg-work for the Neing relieved from which, he would have more time to give being reheved from which, he would have more time to give to his sitrictly statutable dutnes of Curator of Collections,
duties, I may say, dauly growng in importance and urgeney, Wuth the accessions made and with those requured to be made to the Museum Series.
"A second deficiency in the Biological Department of the Univeraty Museum as working at present les in the fact that the sum of $145 l$ per annurn, assigned to the mantenance of Collectrons and spent on the procuring and preparainon of Specimens, leaves no margin for the purchase of instruments and apparatus, such as mucroscopes. The addinonal expense which the Univeraty would, in accordance With these suggestions, undertake, may be taken as about 30 per annume for sonentific apparatus, and for the stapend of a Demonstrator about $120 l$; in all $150 l$ per snnum; a sum which, when added to that already pard by the University Chest for the stipend of a Demonstrator and for the procurng of Specimens, would amount to something about 3502 a year, a sum less by 502 , that xs , than the sum which the Unuversity Chest at Cambriage pays to Demonstrators alone And the sum total of public money wheh would, moluding this addition, be expended upon the Amatominal Department of the University Museum, would be considerably less than that which is expended in esch of the other two Departments, that of Physics and that of Chemustry, which correspond to the two other Drysions of the Natural Science School,
"The making of the addition indicated to the teachunus and working-power of the Brologncal Department is, I must say, urgently necessary, if the study is to be prosecuted hers upon a seale commensurate either with its intinisie impons tance, or with what the dignity of the Univeraty and the examples and precedents of other Institutions suggest
"I will conclude by stating, in the third place, what, in the event of any larger plan being brought under tonsude. ration for the rearrangement of the several Chars connected with Brology, should, m my oprion, be the division of the subject. If it should be thought that the University should aim at developing the strudy of Brology mannly in relatuon to the purpose of Gencral as opposed to that of Profeseronal Education, and should lay wetght therefore manly upon the Anstomical and Morphological arpects of the subject, it is still no exaggeration to say, that the subject, even when thus lumuted, is now far too large to be entrusted to the care of any angle Professor. Two Professors, one with the thite and dutzes of Professor of Comparative Anatomy, Zoology, and Histology, the other whth that of Professor of Human Anatomy and Physiology and Ethnology, ought at once to
divide the field at present in charge of the Linacre Profeseor The scientific appropriatenessand the the hinacre Profeseor of combining the subjects of Zoolory Componical advantages and Histology are sufficiently obyous, Eomparative Anatomy, Anthropology, growng, is nevertheless one which the Profeser of Humd Anatomy and Physiology in O ford expected to deal with, if not from its Historical and Philological, still at ail events from its Natural Hiatory Phulological, atill at ail events from ats Natural Hiatory
aide. The development whthin lata years of collections allo. The development Whthin lata years of collections
Illustrating thus latter aspect of Antluropology is no less ilustrating thus latter aspect of Antluropology is no less point of view, and the establishment ing Oxford of s Prom fessorship with such duties as those mdecated would cause such coflections to gravitate huther as benng a place empnently fitted, by reason of the many and varnous departments of Human Knowledge, as of Art, of History, and of Ethios, represented within its precincts, to be a home for ther preservation and uthizatuon. But Buology would bear still further divaron with much advantage, and a third Chaur should be establisked to represent and expound the Phyenological as opposed to the Anatomical and Morphological Division of Biology. With this Chair the Professorships of Meducine and the duties of teaching what has elsewhere been called the Insthtutes of Medicine maght, I would arggest, be combined.
"What I have felt myself bound to state I have put in the fewest possible words, knowing as I do, that no one is better sble than youradif to supply what from various causes I may have left unsaid.
"I am, dear Mr. Vice-Chancellor,
"Yourt very truly,
"The Very Rev. The Vice-Chancellor,"

APPENDIX II

Statement of the Rev. R. Mans; M.A., F R.S., F.R.A.S., Radcliffe Observer,

The buildung of the Radcluffe Observatory at Oxford was begun in 1771, and active observing was commenced at the begnnung of 1774 under Dr Hornsby Its foundathon was due to the zeal of Dr. Hornsby, and to the mumificent liberality of the Radeliffe Trustees, who consented to bear the enture expense of buiding it and furnsshsented to bear mene
ing it with mastruments, and ulhmately of providing the
f funds for the mauntenance of the observer and has assistants. It was under the drection of Dr. Hornsby from Its foundation till the year 1810, under that of Dr_{5}. Robertson from that trme tall 1827, and under that of S. Rugaud, Esq, from 1827 fill 1839 ; all these gentlemen holding successevely the office of Savihan Professor of Astronomy in the Unvversity.
Up to the close of Mr Rugand's durectorshinp, the observations made (chieffy With the transit notroment and poural qnadrants or mendian crroye) were not reduced and were series exists in MS, chjefly of the sun and moon and prino ceries exists Four copies yere repwired to be mede of them, of which one was kept at the Observatory, and the others were sent respectrwity to the Bodlean Library, the Radclufo were sent respechavery the Royal Soctety
: It is donibtful, in the present state of Astronomy, and since the reduction and publinataon of the Greenfich planetary and lungr results, by the present Astronomer:

Royal, whether they are worth the expense and trouble of reduction and publication; but thas detracts nothing froma theur orignal value, of from the good use whyeh might have been made of them if they had been reduced and published at a time nearer ther own epoch
Mr. Rugaud was succereded 1 ni 1839 by Manzel Johnson, Esq., and wrth has drectorship began a totally dyfferent system, and the scientufic history of the Observatory, as, known to the publc, datea from this time.
Two changes were made at this tume which have greatly contributedto the success of the Observatory, the firat being the dipassocistion of the offices of Savilan Professor and Radcliffe Observer, and the second the regalar reduction, prating, and publohngg of the observations With a view aiso of stal urcreasmg the usefuiness of the Observatory, poesible comstraction of the Mesars. Heprold, of Hamburgh, possible constrraction of the Mesars. Reppold, of haznourgh, delegs $n \mathrm{~m}$ sta construction, dud not come into use till the dear 1850
U_{p} to thas tume Mr Johnon, with one assintant (the presert finst asastant, Mr. John Lucas), was engared in the re-abservetion of
Thas catalogue, which may be called Mr Jobuson's Opus Magnuun, and contains 6,317 日ters, was compled and printed
during the lifetime of Mr. Johnson, but he did not live long enough to see its publication The introduchon was written and the work published by the present Radcluffe Observer, the Rev Robert Main, who succeeded Mr, Johnson In the year 1860. Commencing with the year 1850, Mr. Johnson was engaged for two or three years whth the heliometer, the most noteworthy results of his observations being the redetermination of the parallax of 61 Cygni; and bis researches on photometry or the relative magnitude of stars In the year 1854 he began that aystem of photom graphic meteorology which has been contmued to the present time with conaiderable advantage to science. fin the small volume of meteorological resuits attached to the astronomical volume every year, there are not only grven the journal of daily observanons and ordmary weather phenomena, but the resuits of every kind (presaure, tranperature, and hy the wind or the wha, enarich from the photographic sheets for every two hours, and the monthly and yeary meam of the inn's moar andle, so as to are for any hour of the dey the function requred (whether give for any hour of the day the functon requred (whether pressure, temperatare, or mossture) min therma ond the hour The velocity and direction of the wind at any hour is considered as a mechancal force, and the resultant is obtamed for every two hours, in monthly results, and the final mean for the year 28 also computed. These investigations have led already to some interesting discoveriea.
Mr. Johnson died march 1859, and was succeeded at Madsummer 1860 by the present Radclife Observer, the Reverend Robert Mann. Mr. Main has contnnued the general system adopted by his predecessor as much as posarble, hus chief object being to provide (as far as the muted force at hus disposal allows him), lst, for the vigo rous prosecution of meridional observatnons of stars and certann planets, includung, the sun and moon, 2ndly, for the tolerably constant use of the heliometer by humself almost exclusively, 3rd, for the prosecution of the system of meteorology prevously established, * and 4thly, for the regula eduction, printmg, and publication of the observations.
The results already arrived at under Mr Mann's drector-
shp may be breely summed up as follows:-

1. The compilation and publication of a second Radeliffe Catalogue of 2,386 staris from the observations, 1854 to 1861_{2} ooth yeara inclusiye.
2 The re-observation (essentially completed) of the stars of the British Association Catsiogue, which requre to be re-observed, and which are visible in this latitude, togethe whth the re-observation stil in progress of Struve's double
tars, and or othor hats
3 The estabhsament in 1862 of the Carrington transit curcle, whioh superseded the use of the tranait instrument 4 The observation
4 The observation of about 600 double stars with the hehometer, and the remeasurement of the disks of the large planets.
a Observatory.
It may be finally mentioned that the present establish ment of the Observatory (which has never been exceeded) consists of the Observer, two assistants, and one computer.

- The mateorolopical observations will from the date, May 20,1878 bo more unatul to tha publio by the Obsorvatory belng inoluded amongad the minand atations, which are to bo added to the

The astronomical mstruments of the Radcliffe Observatory are at present (1873),-
Hyrst, those in ectual use -
I. A transit curcle by Simms, formerly belonging to Mr. Carrington, with telescope of 66 mehes focal Mr. Carmngton, whith telescope of 66 inches focal length and 5 inches
42 inches in diameter
2. The helometer, of which the telescope is of $10 \frac{1}{2}$ feet focal length and $7 \frac{1}{2}$ mehes aperture.
3 An equatorzally-mounted telescope of 10 feet focal
length and 7 inches aperture.
4. A 42-nnch achromatic teleacope by Dollond, and
another smaller unmounted telescope.
5. Four sidereal clocks, of which two are by Dent and of firstrate excellence, and a sidereal box chrono meter by Dent.
Secondly, those not in actual use.-
1 The two 8 -feet mural quadrants by Brd, with the corresponding 12 -feet zenuth sectorg, which were established in 1774.
12. The transit-instrument and meridian grele used during the whole of Mr. Johnson's directorship, but now superseded by the transit-circle.
There are beardes a large unmounted reflechng teleacope, of which the murror (by Short) is of 18 mches diameter, and a smaller 10-feet Newtonian telescope by Herschel. The latter matrument us avalable for occasional use.
The meteorological instruments consist of a barogyaph, thermograph, and hypograph, and an anemograph for auto matic registration of the corresponding elements; and or the ordmary standard matruments (barometer, dry and wet thermometers, and maximum and minumum thermometers for eye observations taken three tmes a day.

Radchiffi, Observatory, Oxford
Expenditure for one year, Vin, from Midsummer 1870 to Midsummer 1871.

Observer's salary - - $\quad-\quad \begin{array}{ccc}E^{2} & s & d . \\ 600 & 0 & 0\end{array}$
Mr, Lucas, first assistant (addıtional) $\quad \because \quad 40 \quad 0 \quad 0$
(Note.-There is a bequest under the will
of Bird of 1206 per annum, for pay-
ment of the salary of an assistant at the
Observatory)

Tradesmen's bills and general ex-
601010
penses, meluding printing the
annual volume of observations
$\begin{array}{rrr}49 & 7 & 10 \\ 132 & 2 & 8 \\ 52 & 7 & 9\end{array}$
110194
$34417 \quad 7$
$21,265 \quad 8 \quad 5$
Robert Main,
Radcliffe Observer

APPENDIX III

Statement of the Ruy. C. Peitceard, M.A., F.R.S., Savilaan Professor of Astronomy in the University of Oxford.
The Savilan Professor of Astironomy aims at the establishment in Oxford of an efficient school of Astronomical Physics.
To enable the Professor to carry out this new, the University has recently voted the large sum of $2,500 \mathrm{l}$ for the purchase of a first-class refracting telescope of 124 inches aperture, and for a suitable bulding to contam it. This and all the other modern appliances for researches connected and all the other mal Physics.
In addition to this, and in furtherance of the same objects, Mr Warren De La Rue, FRS, DCL., \& D ., has very recently offered for the accoptance of the Universaty his well-known reflecting telescope, together with all its Faluable appurtenances, including among them no less than four murrors, each excellent of its kind, besides all the mechanical means necossary for the most accurate grinding polsshing, and testing, after Foucault's method, of large
mirrors and object glasses. The Hebdomadal Councll have aiready advised the acceptance of this noble gift, and there can be no reasonable doubt but that it will be provided wheh a proper location, and with the means of applying it to the purposes for which it was constructed.
Independently of these larger and more valuable matruments, Oxford alzeady possesses, for the use of students, a very serpiceable tananit, and an excellent sitazimuth by Troughton and Simms. There are also clocks and chrono meters and amaller telescopes available for instruction, or for independent research. It 18 expected that the buildings will be completed and the instruments in adjustment-before the end of April 1874; thas being effected, the Unuversaty Fill be in possession of almost all the means necessary for the prosecution of researahes in the Physics of Astronomy on a vary efficient scale.

C Pritchard Sardluan Professor of Astronomy.

APPENDIX IV

UNIVERSITY REFORM.

To the Rt. Hon. W. E. Gladstone, M P, \&c. \&c. mbuty Colliege, Cambriage, Sin, Apri 25, 1873 . We have the honow to submut to you the sccompanyng document, and beg leave to draw your atteninon the and purport
In accordance with a feeling generally current on the University regarding the necessity of the reforms here indicated, a meeting was held at Cambridge no the month of December last, consishang of perroons angaged in University Education, on which oceasion the resolutions embodied in the document were drawn up as expressing the changes considered to be of the greatest urgency.
Thus documaent has since recerved the sxguatures which are now attached. The fact thast go many respdents, nelinding oo very large a majorty of the most influential and mininat members of Unversty, of ail political opinions, should suppors the proposed resolutions, is, we trust, a sufficient proof that they are, in their estumation, necessary and unportant.
has lately been much respectung the Tenure of Fellowships has latery been much aiscusaed. We do not therefore consuder 18 requyste to leay before you yeasons in detail for the expedrency of the reforms here edvocated. We may, howevers observe that reform on this point has become an number of laymen who now occupy educational posts at Cambridge.
It גs universally admutted that the present regulations connected with the Tenure of Fellowshipe are hughly unsathisiactory. They sernously dimunsh the number of learned ressienta in Cambriage, They are detrmental to the deprive her of the educational services of many of her depist members.
Reforms analogous to those proposed in the first two resolutions have already been carried out in several of the Colleges. It has been the desire of other Poundations to reorganise their Statutes in a simalar manner, bat the late refusal of Her Majesty in Councl to accede to the alterations in the College Statutes proposed by the Master and Fellows of Trunty College has left no alternative but to lay the subject before you, Sir, as the Head of the Government, in he confident assurance that you have truly at heart the interests of learning, and are most anxious to render the Unversities efficient schools for the promotion of scrense and culture.

> We beg to remarn

Fauthfully yours
Robert Burse, Fellow, Senor Classical Lecturer and inte Tutor of Thmuty Colleg
H A. Moran, Fellow and Tutor of Jesus College.
[Document referred to in the foregoing letter.]
We, the undersigned, being resident Fellows of Colleges and other resident Members of the University of Cambndge engaged in educational work or holding office in the Unuversity or the Colleges, thanking it of the greatest unportance that the Universaties should retann the position which they occupy as the centres of the highest education, are of opumon, that the followng reforms would wacrease the educational efficiency of the University, and at the same tame promote the advancement of scrence and leaming.
I. No Fellowshy shonld be tenable for life, exeept only when the original tenure is extended in consideration of wervices rendered to education, learming, or scmence, actively and durectily, w comension with the University ar the Colleges.
II A permanent professtonal career should be as far as possible secured to resident educators and students, whether mavned or no
III. Provision should be made for the assoctation of the Colleges, or of some of them, for eductional porposes so to secure more efficient teachming and to allow to the teachers more lessure for private study
IV The pecumary and other relations subsustang between
IV The pectinary and other relatnons snasusting between
the University and the Colleges should be sevsed, and, if
necessary, a representative Board of University Finsince should be arganised.
We are of opinion that a scheme masy be framed which hall deal with these questions in auch a mannet as to pro mote burultaneonsly the interesta of education and of learang, and that any scheme by whuch those interests should be dussociated would be ingunous to both.

Pbopissors.

J C. Adams, Lowndabn Profesaor of Astronomy.
Churehul Babington, Dieney Profesoor of Acohav-
C. C Bab
C. C Babington, Professor of Botany.
A. Cayley, Sadlerian Professor of Mathematics.
J. Challis, Plumuai Professor of Astronomy.
S. Colvin, Slade Professor of Fine Ayts.
H. Fawcett, Professor of Political Economy
W. W Fisher, Downung Profensor of Medici

G V. Harcourt, Professor of International Law.
G M Humphry, Profeasor of Anatomy and Ply.
Brology.
B. Hi Kennedy, Regius Professor of Greel
J. B Lightffoot, Hulsean Professor of Divimity.
J. C. Maxwell, Profeseor of Chemistry.
W. H. Muller, Professor of Muneralogy.

Alfred Newton, Professor of Zoology.
G. E. Paygt, Regius Professor of Physic.

E H. Palmer, Lord Almoner's Reader in Arabic.
J R Seeley, Profesaor of Modern History.
C Swamson, Somisian Professor of Divinity.
B T. Westeott, Regius Professor of Divnity.
R Wilhs, Jaoksonisn Professor of Naturai and
Experrmental Philosophy.
W. Winght, Professor of Arsbic.

St. Prter's Colleaf.
A. Dey, Fellow and Libraraan.
J. Porter, Fellow and Tutor
C. Wordsworth, Fellow, Assistant Tutor, and Dean.
Clarer Combas.
T. O. Bonser, Fellow and Librastan,
L.Ewbenk, Fellow and Lecturer.
H. Re Maddock, Pellow.

Gonviles and Caius Cobisar,
R. L. Beasly, Lecturer
N. M Ferress, Fellow and Tutor.
E. Lamb Fellow and Bursernan
J. Lamb, Fellow and Bursar.
E. Venn Felloss and lecturectures.
hinity Hall.
E. A. Beck, Fellow and Lecturer.
E. Carpentex, Fellow and Asostant Tutor.

A R Hayes, Lecturer. ${ }^{\text {W }}$ Walton, Lecturer of Magdalene College, and Fellow.
Compts Christr Conlear.
S. S. Lewns, Fellow and Librarian.
C. W Moule, Fellow and Lecturen
B. Walker, Lectirer of Eitr John's College, and late Fellow.
King's Collzgr.
A Ansten Leigh, Fellow and Tutor
Arthur Beard, Precentor and Lecturer.
J. E. Nuxod, Fellow.

Quesn's College.
${ }^{3}$ R. Limby, Lectarer
G Pine, Fellow and Lecturer
A. Wright, Fellow and Dean.

St. Catheaine's Colfzoz.
E. T S Cast, Fellow and Tutos.
G. B Morley, Fellow.
A. Pretor, Fellow and Asenstant Tutor.
A. W. Spratt, Fellow, Assstant Tutor, and Desm.

Jegus Collegr.
C. A. M. Fennell, Fellow and Librarian
H. M. Luckook, Lecturer of King's College, Lec turer and late Fellow.
E. H. Morgan, Fellow, Lechurer, and Dean.
H. A. Morgan, Fellow and Tutor.
A. Westmorland, Fellow and Prelector.

Chatbis's Collige.
J. W Cartmell, Fellow and Semor Desn.
J. F. Moulton, Lecturer of Jesus College, Fellow and Assistant Tutor

1. Pelle, Fellow and Tutor.
J. S Red, Assistant Tutor.
J. Sharpe, Fellow and Junior Dean
W. Sceat, Lecturer and late Fellow.
R. T. Wright, Fellow snd Assistant Tutor.

St. John's Cohmar.
W. H Besant, Lecturer and late Fellow
T. G. Bonney, Fellow and Tutor
E. Carver, Lecturer on Clmical Surgery A. Freeman, Fellow.
P. Frost, Lecturer of King's College, and late Fellow.
C. E. Graves, Lecturer of Sidney College, and

Liecturer and late Fellow.
H. M Gwatkin, Fellow and Examines.

C E Haskins, Fellow
W. E Heitland, Fellow and Lecturer.

W H H Hudson, Fellow and Lecturer,
P. T. Mann, Fellow and Lecturer.
A. Marshall, Fellow and Lecturer
R. Pendlebury, Fellow and Lecturer.
J. E. Sandys, Lecturer of Jesus College, Fellow C. Tand Tutor.
C. Taylor, Fellow

1. Todhunter, Lecturer and late Fellow.

Fellow Webb, Lecturar of Emmanuel College, Fellow

Magdalene College.
F Gunton, Fellow, Assistant Tutor, and Dean.
F Pattrick, Fellow and Tutor.

Trinity Colleggre

W. H. Thompson, Master.
E. W. Blore, Fellow and Tutor

Robert Burn, Fellow, Senior Classical Lecturer,
J and late Tutor
J. W. Clark, Superintendent of the Museums
and late Fellow
W. G Clark, Fellow and late Tutor.
G. F Cobb, Fellow and Jumior Bursar
M. Foster, Fellow and Prelector in Physiology
J. W L Glasher, Fellow and Assistant Tutor
B. E. Hammond, Fellow and Assistant Tutor A E Humphreys, Fellow and As stant Tuto
H. Jackson, Fellow and Assistant Tutor.
R. C Jebb, Fellow and Tutor, and Publuc Orator

J M Image, Fellow and Assistant Tutor.
C. W King, Fellow.

A F Krrkpatrick, Fellow and Assistant Tutor.
H Lamb, Fellow and Lecturer
E T. Leeke, Fellow and late Assistant Tutor.
C. Lestourgeon, Lecturar on Clinical Surgery
H. C G Mouls, Fellow and Junior Dean

W D Niven, Fellow and Assistant Tutor
J. J. S Perowne, Prexlector in Theology, late J Fellow of Corpus Chrsts College.
${ }^{5}$ Prior, Fellow and Tutor
H. Sidgwick, Lecturer and late Fellow.
R. B Somerset, Censor of Non-Collegiate Stu-
V. H Stanton, Fallow

J Stuart, Fellow snd
J. Stuart, Fellow and Assastant Tutor.

C M. Taylor, Fellow send Asesstant Tutor.
C. Thotter, Fellow, Senior Dean, and Tutor

Wright, Bursay
Emmandil Collfag.
S. G Phear, Master
A. T Chapmen, Fellow and Tutar.
W. Chavners, Fellow and Assistant Tutor
F. J A Hort, Fellow and Lecturer.
J. B. Pearon, Fellows and Lectur
W. Rexth, Fellow.

A Rose, Fellow, Assistant Tutor, and Bursar,
E. S. Shuckburgh, Fellow and Assistant Tutor

Sidney Sussex Collegr.
J. C W. Elles, Fellow and Tutor.

G Hale, Lecturer.
J. W. Hicks, Lecturer.
C. Smith, Fellow, Lecturer, and Dean

Downing College.
J. B Bradbury, Lecturer.

R M Lemis, Lecturer.
The following have argned those parts only which are specrifid.-
T. R. Burks, Professor of Moral Theology, I. in substance, and III.
G. F. Bromne, Assistant Tutor and late Fellow
of St Catharne's College, I, II., III.
H Godfray, Senor Esquare Bedell and late
L Godiray, Senor Esqura Bedell and lat
F. L Hopkins, Fellow and Tutor of Trimbs Hall, F. II III, IV.
P. W Letham, Lecturer on Medxcine, late Fellow of Downung College Subject to the omission of "in connexion with the Unyversity and Col leges" in I, and of "students" in II
H. $\frac{E}{}$ Malden, Lecturer of Trinity Hall, I., II, III.
J. E B. Mayor, St. John's College, Professor of Latia, I., MII. Peter's College, I, II
J. H. H. Moron, Law Lecturer of Trmity College, except last clauses of I.
J. Perkms, Fellow and Tutor of Downing College, J. I. II, IV.
J. C. Rust, Fellow and Lecturer of Pembroke

College, I, II.
C. E. Searle, Fellow and Tutor of Pembrok College, I, II., III.
H. B Swete, Foilow and Tutor of Gonville and Carus College, I., III.
Analysis of Signatiores
Total number of signatures, 142,
127 heve sugned all the resolutions
141
139 \quad " No. 1.
$\begin{array}{llll}139 & \# & \text { No. II. } \\ 138 & \\ \text { No III. }\end{array}$
$131 " \geqslant$ No. IV.
Of 17 Heads of Colleges 2 have signed.
Of 33 Professors 26 have sugned.
Of 26 Tutors 20 have sygned.
Of 84 Lecturers and Asssstant Tutors 66 have Of 57 Res
Of 57 Resident Fellows, University and College Officers, excluave of the above, 28 have srgued.
[Mr. Gladstone's Reply.]
10, Downing Street, Whitehall,
Gentlemen, April 28, 1873.
I kave to acknowledge the receupt of your letter of the 25 th, with the mportant document which sets forth the yevps of so large and weighty a part of the Remidents of Cambridge with respect to some subjects of very great moment to the Univeranty.
It grves me great pleasure to find supported by this authoritative judgment a proposal with respect to the tenure of Fellowships, the prineiple of which was included in the Oxford Univeraity bil or 1804, but from which the state of Pariamentary and Academic opmion at the Gume com pelled the Government of Lord Aberdeen to withdraw. thape propeale for extendined and ingung mio a workmg of the Unieranties and Colleges in connerron more effechve application of therr great endowmente ; but I may venture espectfully to assura yon that the arb; but one which, in whatever position I may be placed, will always command my warm and finendly interest.

I have the honour to remam, Gentlemen,
Rev. R. Burn. W. E. Gladstons.

LONDON.

Printed by Gronge E Eraz and Wilinas Spottiswoods,
Priaters to the Queen's most Excellent Majesty.
For Her Majesty's Stathonery Office.

FOURTH REPORT

OF THE

ROYAL COAMMISION.
on

SCIENTIFIC INSTRUCTION AND THE

 ADVANCEMENT OF SCIENCE.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILITAM SPOTTISWOODE PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY. FOR HER HAJESTY'S STATKONERY OFFICE.
1874.
[9. 884.] Price 6a,

CONTENTS.

Pling
REPORT \square - . .

APPENDIX
\qquad

ROYAL COMMISSION ON SCIENTIFIC TNSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

VICTORLA R.

Victoria, by the Grace of God of the United Kingdom of Great Britain and 'Ireland Queen, Defender of the, Faith, To Our Right Trusty and Right, Entirely Beloved Cousin William Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty: and Entirely Beloved Cousin Henry Charles Keith Marquess of Lansdowne,_Our, Trusty and Wellbeloved Sir John Lubbock, Baronet,-Our Trusty and 'Wellbeloved' Sir James Phillips Kay-Shuttleworth, Baronet,-Our Trusty and Wellbeloved Bernhard Samuelson, Esquire,-Our Trusty and Wellbeloved William Sharpey, Esquire, Doctor of Medicine,-Our Trusty and Wellbeloved Thomas Henry Huxley, Esquire, Professor of Natural History in the Royal School of Mines,-Our Trusty and Wellbeloved William Allen Miller, Esquire, Doctor of Medicine, Professor of Chemistry in Kings College, London,-and Our Trusty and Wellbeloved George Gabriel Stokes, Esquire, Master of Arts, Lucasian Professor of Mathematics in the University of Cambridge, Greeting :

- Whereas We have deemed it expedient for divers good causes and considerations that a Commission should forthwith issue to make Inquiry with regard to Scientific Instruction and the Advancement of Science and to Inquire what aid thereto is derived from Grants voted by Parliament or from Endowments belonging to the several Universities in Great Britain and Ireland and the Colleges thereof and whether such aid could be rendered in a manner more effectual for the purpose.

Now Know Y Ye that We reposing great Trust and Confidence in your Ability and Discretion have nominated constituted and appointed and do by these Presents nominate constitute and appoint you the said William, Duke of Devonshire-Henry Charles Keith, Marquess of Lansdowne-Sir John Lubbock-Sir James Phillips Kay-Shuttleworth-Bernhard Samuelson-William Sharpey-Thomas Henry HuxleyWilliam Allen Miller-and George Gabriel Stokes-to be Our Commissioners for the purposes of the said Inquiry.

And for the better enabling you to carry Our Royal Intentions into effect We do by these Presents authorize and empower you or any three or more of you to call before you or any three or more of you such persons as you may judge necessary by whom you may be the better informed of the matters herein submitted for your consideration and also to call for and examine all such Books Documents Papers or Records as you shall judge likely to afford you the fullest information on the subject of this Our Commission and to Inquire of and concerning the Premises by all other lawful ways and means whatsoever.

And Our further Will and Pleasure is that you or any three or more of you do Report to Us under your Hands and Seals (with as little delay as may be consistent with a due discharge of the Duties hereby imposed upon you) your opinion on the soveral matters herein submitted for your consideration, with power to certify unto Us from time to time your several proceedings in respect of any of the matters aforesaid, if it may seem expedient for you so to do.

And We do further Will and Command and by these Presents ordain that this Our Commission shall continue in fall force and virtue and that you Our said Commissioners or any three or more of you shall and may from time to time proceed in the
execution thereof and of every matter and thing therein contained although the samo be not continued from time to time by adjournment.

And for your assistance in the execution of these Presents We do hereby authorize and empower you to appoint a Secretary to this Our Commission to attend you whose services and assistance we require you to use from time to time as occasion may require.

Given at Our Court at Saint James's, the Eighteenth day of May 1870, in the Thirty-third year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE.

ROYAL COMMISSION ON SCIENTIFIO INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

VICTORIA R .

Victoria, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen, Defender of the Faith, To Our Trusty and Well-beloved Henry John Stephen Smith, Esquire, Master of Arts, Savilian Professor of Geometry in Our University of Oxford, Greeting :

Whereas We did by Warrant, under Our Royal Sign Manual, bearing date the Eighteenth Day of May, One Thousand Eight Hundred and Seventy, appoint Our Right Trusty and Right Entirely Beloved Cousin, William, Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty and Entirely Beloved Cousin, Henry Charles Keith, Marquess of Lansdowne, together with the several Gentlemen therein named, to be Our Commissioners to make Inquiry with regard to Scientific Instruction and the Advancement of Science, and to inquire What aid thereto is derived from Grants voted by Parliament, or from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such aid could be rendered in a manner more effectual for the purpose: And whereas since the issue of the said Warrant William Allen Miller, Doctor of Medicine, one of the Commissioners thereby appointed, hath deceased:

Now Know Ye, that We, reposing great Trust and Confidence in Your Zeal, Discretion, and Integrity, have authorized and appointed, and do by these Presents authorize and appoint you the said Henry John. Stephen Smith to be a Commissioner for the purpose aforesaid, in addition to, and together with, the Commissioners now acting under the above-mentioned Royal Warrant.

Given at Our Court at Saint James's the First Day of December 1870, in the Thirty-Fourth Year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE.

Professor Henry John Stephen Snith, M.A.,
To be a Commissioner for inquiring into
Scientific Instruction and the Advancement of Science.

FOURTH REPORT.

TO THE QUEEN'S MOST, EXCELLENT MAJESTY.

May if please Youn Majesty,

We, the Commissioners appointed by Your Majesty to make Inquiry with regard to Scientific Instruction and the Advancement of Science, humbly beg leave to present to Your Majesty the following Report respecting the National Scientific Museums and Collections and the Scientific Portions of the National Museums of a General Character.
For the sake of convenience we have classified the subjects referred to in the Evidence under the following heads:-T..
I. The British Museum:
II. The Museum of the Royal College of Surgeons of England.
III. The National Botanical Collections and Gardens,
IV. The Museum of Practical Geology.
V. The South Kensington Museum, and its Branch Muspum at Bethnal Green.'
VI. Other Scientific Collections.
VII. Public Lectures in connection with Museums.

I. The Bartish Museom.

1. Our Inquiries concerning the British Museum have had reference mainly to the Natural History Collections (including the MineraIogical Collection), which, it has been determined, are to be transferred to a new Building now being erected for their reception at South Kensington.

1 Government and Administration,

2. The British Museum is Governed by, a Board of Trustees. These are 50 in number: 25 are Trustees ex officio, one is nominated by the Crown, nine are Representatives of the Families of Benefactors, and the remaining 15 are elected by those otherwise appointed.* Among the ex-officio Trustees are the Archbishop of Canterbury, the Lord

* The following is the Officual List of the Trustees for $1873=$ *

Officual Trustees: d. 1. 1411
Archbp. of Canterbury ; Lord Chancellor; Speaker of the House of Commons; Lord President of the Council; First Lord of the Treasury, Lord Privy Seal; First Lord of the Admuralty; Lord Steward ifrord Chambellsin; Principal Secretaries of State; Bishop of London, Chancellor of the Exchequer; Lord Chef Justice, Queen's Bench; Master of the Rolls; Lord Chuef Justice, Common Pleas ; Attorney-General ; Solicitor-General ; President of the Royal Society ; President of the Royal College of Physicisins; President of the Society of Antiquaries; and President of the Royal Academy.
Trustee apponnted by Her Majesty: The Hon, and Very Rev, Gerald Wellesley, Dean of Windsor.

Famuly Trustees.,

Earl Cadogan; Earl of Derby..-Sloane Family.
Rov. Fr. Annesley ; Rev. Francis Hanbury Annesley.-Cotion Famıly.
Lord Henry Charles George Gordon-Lennox, M.P.; George Ang. Fred. Cavendish Bentanck, M.P.-Harley. Famaly.
Charles Towneley, Esq.-Townlcy Family.
Earl of Elgin.-Elgin Famaly.
Frederiok Winn Kaght, Esq., M.P.—Kright Famaly. .

Elected Trustees.

Rught Hon. Sir David Dundas; Sir Phulp de Malpas G. Egerton, Bart., M.P ; Duke of Somersel, K.G.; Raght Hon. Earl Russell, K.G ; Rıght Hon. W. E. Gladstone, M.P.; Right Hon. Spencer Horatıo Walpole, M.P.; Viscount Eversley ; Right Hon. Benjamin Disrael, M.P.; Right Hon. Robert Lowe, M.P.; Duke of Argjll, K.T.; Bushop of Winchester; Duke of Devonshure, K.G. ; Lord Aaton ; Viscount Ossington ; and Sir Wulham Strling-Marwell, Bart.

Chancellor, and the Speaker of the House of Commons, who are named Principal Trustees, and with whom rests the appointment to all Offices in the Museum except the Office of Principal Librarian, to which the Crown appoints. The remaining Official Trustees are certain Chief Offcers of State, with the Presidents of the Royal Society, the Society of Antiquaries, the College of Physicians, and the Royal Academy. The General Body annually appoint 15 of their number, who, with the three Principal Trustees, form a Standing Committee for carrying on the Ordinary Government of the Museum. The Standing Committee appoint, from among themselves or from the General Body, SubCommittees for special Superintendence of the several ,branches of the Establishment, one beng for Natural History. The Sub-Committees report ther opinions and recom-
3. The Natural History Collections form four Departments : Zoology, Botany, Geology, and Mineralogy. Each is under the charge of a Keeper 'of Head/ under' whom are Assistants atd tsabordinate bfficers." The whole are placed under a Supetintendent, who
(l.) "To exercise i" general Superintendence over the Departments of Natural History; to transmit to the Principal Librarian the Reports of the Keeper's of ench Department, accompanied by such remarks as he may think proper for the information of the Standing Committee; to suggest such improvements as, in his judgment, may increase the Scientific value and general utility of the collections; and, within the first fortnight after 'Christmas' of every year, to lay before the Standing Committee an Annual Report on the condition of the Collections under his Superintenderce. ': To be the Editor of such Catalogues -and other Scientific Publications as shall be entrusted 'to hin by' the Standing Committee"' and ' to 'see that they are prepared and printed in a proper manner, and it accordance with stich directions as may, from time to time; be given to him by the Standing Committee.
(3.) "To take care that the officers, assistants, attendants, and servants of each Department be regular in their attendance and perform their proper duties;
34. The Reports and Recommendations of the Keepers of the Natural History Collections are transmitted, through the Superintendent, to the Principal Librarian, and by him brought before the Standing Committee, It is the duty of the Superintendent to append to these Reports an expression of approval or disapproval, with such remarks as he
Qu. 6519. may think proper, after communication, if he see fit, with the Keeper making the Report.
5. The Sub-Committee on Natural History, as constituted in 1871, consisted of the

Duke of Argyll, Earl Gadogan, "Viscount IEversley, the Bishop of Winchester, Sir Philip Egerton, Sir Roderick Murchison, Sir Edward Sabine, Sir James,Alderson, and George 'Annesley', Esq.' The Sub-Committee may communicate Idirectly' with the Superintendent, the Keepers and other offcers, and may makes Recommendations to the Standing Committee : which Recommendations, if adopted by that Committee, are embodied in Minutes. These Minutes, as well as other orders and directions of the Standang Committee, are transmitted by the Principal Librarian to thé respective Keepers, a copy being also communicated by him to the Superintendent.
6.1 As we have already stated, all appointments of officers, except that of Principal Librarian, are made by the three Principal Trustees; these, however, have the advantage of learning the opinion of the Standing Committee as to the eligibility of candidates, after that Committee has consulted the Heads of the respective Departments, and deliberated on the matter.
7. The funds applied to the maintenance of the Museum, whether derived from property belonging to the Institution, or voted by Parliament, are entirely under the management of the Trustees. The estimates to be submitted to the Treasury are framed Appendx 1 . under their direction, and the vote is moved by some one of their, number who is a Member of the House of Commons.
8. The opinions expressed in the Evidence laid before us concerning the Constitution and Functions of the Governing Body have been widely different. Sir Philip Grey Egerton, who has had long experience as a Trustee, considers that the general or routine business of the Museum is thoroughly well conducted through the Standing Committee, and he would recommend no fundamental change in the Constitution of the Board of Trustees; but he would confine the duty of the General Body of Trustes to an annual inspection of the Museum, and the appointment of the Standing Committee, to whom the whole management of the Museum should be entrusted for the ensuing year. At the same
time, he thinks' that Natiral "History" is not sufficiently "repiesented on the Board of Trustees, and that the defect should be remedied by appointing more men of scientific eninence as Trustees when vacancies occur, sd as to keep up a due representation ${ }^{\prime}$ of Qu .7523 and Natural Science in the Standing Committee; by which, or by a Board similarly con- seq. stituted, including both men of science and , men of experience in business; a Natural History Museum could, in his opinion, be best administered; there being undett them a Scientific Head or Director over the whole Naturali History Establishment; with a seat at the Board.
9. Other witnesses' whom we have examined have generally expressed unfavourable Qu. 6707, opinions respecting the Constitution of the Governing Body, 'and especially consider that 6771 and seq. Science is not adequately represented. In theirs view tit is' unsatisfactory that the National Collections should be managed by a body' of gentlemen whose time is in most cases fully occupied by other important duties, and the majority of whom are not selected) with reference to any special qualfications for sućh a posta, These objections are, in theire opinion, but partally obviated by ther appointment of a standing Committee and Sub-i Committees. Moreover, it is held to be singularly inappropriate that the three importanto Personages who are the Principal Trustees, occupied as they are in the; discharge of the highest functions in Church and State, should be Burdened, with; the duty of making ${ }^{\text {Q }}$ Qu. 669, appointments to offices of every grade in the British Museum.
10. It has accordingly been recommended by various witnesses that the British Museum should be placed under the direct control of some responsible Government Authority-a- Qu. 6708 and Minister of Public Instruction, if such an office be created, or,' in existing circumstances, seq. the Lord President of the Council; that then'administrationvof the Natural History, Qu73, 670Department should be confided to a Director* appointed by the Crown and immediately ${ }^{672213,} 6755$, accountable to the Minister; that the Director'should 'be an "accomplished Naturalist ;" that the Keepers of Collections and the other officers of the establishment should be subject to his control' and, direction; that the diffetent officers, at least those holding Qu. 6755. the higher appointments, should be apponted, by the Minister, on_{t} the, recompendation of the Drector, or after receiving a report from him; aud that the Director, with suitable aid, should regulate and control the expenditure and prepare the estimates for the approval of the Minister, to be by him submitted, to the Treasury and brought before Parliament.
11. It has been further suggested that in addition to the arrangements above indicated it would be advantageous to appoint a Board of Visitors; who should inspect the Collec- Qu. 6774.' tions at stated times, and, in communication with the Director, acquaint themselves with the working of the Establishment, recordng the result, in Munutes to be transmitted by the Director to the Minister. The Board of Visitars need not be a large Body and it has been recommended thati besides men of general accomplishment and knowledge of affairs, it should include Members specially aequainted with Nataral History, and that to secure this ends' a certain number mighty frame time to time, be nominated by the Royal Society and the several Natural History Societies of the Metropolis.

$$
-2
$$

12. After due consideration of the question, Your Commissioners are of opinion that the objections to the present System of Government of the British Museum by a Board of Trustees, as at present constitated, so far as relates to the Natural History Collections, are well founded; and we have been unable' to discover that *he system is attended by any compensating advantages.
13. We accordingly recommend that the occasion of the remoral of those Collections to a separate building in a different locality should be taken advantage of to effect a change in the Governing Authority and Official Administration of the Natural History Division of the Museum, in the sense indicated by several of the witnesses.

We further recommend-

- 14. That a Director of the National Collections of "the Natural Histary Department should be appointed by the Crown, and should have the entire Administration of the Establishment, under the control of a Minister, of State ${ }_{2}$ to whom he should be immediately responisible; "thiat the Keepers of Coflections should be tesponsible to the Director ; that the appointments of Keepers and other Scientific Officers should be made by the Minister; after communication with the Director and with the Board of Visitors (herein-after referred to) ; and that the Director should prepare the Estimates
to be submitted, after consultation with the Board of Visitors, for the approval of the Minister.

15. That the present Superintendent be the first Director. .
16. That a Board of Visitors be constituted. That this Board be nominated in part by the Crown, in part by the Royal and certan other Scientific Societies of the Metropols, and, in the first instance; in pait also by the Board of Trustees; that the Members be appointed for a limited period, but be re-eligible; that the Board of Visitors should make Annual Reports to the Minister, to be laid before Parliament, on the Condition, Management, and Requirements of the Museum; and that they should be empowered to give Advice on any points affecting its Administration to the Minister.
17. It is no part of the duty of the Commission to attempt to define the boundary between the Scientific and the Art Collections of the Museum; but we conclude that the Collections to be left in Bloomsbury will have reference, in the mam, rather to Literature and Art than to Science, and that the Collections at South Kensington will be exclusively Scientific; we have, therefore, confined ourselves to the question of the Government of the latter Collections.
s
18. The evidence which we have received, however, "leaves no doubt upon our minds that the Banksian Library ought to follow the Botanical Collections to South Kensington. On this point Mr. Carruthers says:
"It would be absolutely necessary [to have a subsiduary lubrary, if the Bothnical and other Natural Hastory Collections are removed to South Kensington]; and I believe that unless the palue of the herbarium were to be greatly destroyed, the Banksian Labrary will be required to form a portion of that aubsidiary library, inasmuch as the Banksian Collection was in contmual use while the Banksian Herbarium was beng formed, and the volumes that form that hbrary were annotated by the workers in the herbarium, so that if fhe books were left behind and the plants aeparated anywhere from the annotations on the books, the value of the plants in their cross references to books would be completely destroyed."

Employment for Purposes of Special Scientific Study and Instruction.

19. The Natural History Collections of the British Museum are not only open to the general public on certam days of the week, but, being intended to supply materiala for study and research, are accessible, at certain other times, to Students of Science, specially qualified, for the more minute and elaborate examination of specimens. We consider it of importance that this purpose of the National Establishment should be steadily kept in view, and carried out in the most effectual manner. To this end it is essential that ample accommodation should be provided in the New Building for properly qualified persons desirous of using the Collections for a Scientific-Object. With a view to affording increased facilities for this purpose, it has been pornted out by some of the witnesses conversant with the management of Museums, that the admission of students need not, as at present, be restricted to private days: and that, by adopting a certain mode of constructing the cases in which specimens are exhibited, it would be quite practicable to enable Students to carry on their-scientific work at the same time that the Galleries are frequented by the Public. The method they propose is described in their Evidence: it consists in making the glazed cases to open at the back, so as to be accessible from the working rooms, whilst they are effectually and permanently closed

Qu 6717towards the public Galleries. Without pronouncing an opinion as to the general applicability of this proposal, we think that it should receive careful consideration when the fittugs of the new Natural History Galleries are planned.
20. Under the present head we call attention to an opinion expressed by several witnesses as to the distribution of the contents of the Museum best calculated to meet the wants of Students and General Visitors respectively. It is held that the object should not be the display of the Natural History treasures in detail, but rather the exhibition of a Selection of Typical Specimens, adequately irepresenting the several departments, for general study; the rest being reserved, and accessible under appropriate arrangements, tor the purposes of special Scientific Investigation. In this view we entirely concur, and we would especally direct attention to the very decided opinion on this question given
Qu. 3107. by Professor Phillips.
21. The Special Collections of Botany and Mineralogy are further referred to in a subsequent part of this Report.

II. Thr Musedm of the Rofal Cozirge of Surgeons or England.

22. This Collection of Human, Comparative, and Morbid Anatomy was founded in the last century by the celebrated John Hunter. After his decease the Hunterian Collection
was purchased by the Government, and placed in the keeping of the Royal College of Surgeons, subject to periodical inspection by a Board of Trustees, which is kept up by co-optation of new members as vacancies occur. Since the Collection came, into the possession of the College, it has been vastly extended and enriched, and is now probably the most complete and best arranged museum of its kind in existence.' It is freely accessible ta Students; and Lectures to Members of the College,' to which any, person interested readily obtains admission, are delivered, on Comparative Anatomy; by the Conservator, Professor Flower, and, on surgical subjects, by Fellows: of the College appointed to that duty, from time to time, by the Council.
23. For the purchase of the original or Hunterian Collection, and in grants for buildings; Qu. 6874. the Nation has contributed 57,500l. towards the expense of this Museum; but the entire Qa. 6869. expense of its maintenance and continued extension, amounting to about 2,500l: a year; is discharged by the College out of the fees payable by candidates who pass the Examination for the College Diploma; and the aggregate sum which has been thus expended far exceeds that supplied by the State.
24. The Comparative Anatomy Division of this Museum, besides a great Osteological Collection, contains an extensive serres of preparations of the internal organs and other dissected parts of animals, preserved in spirits. Preparations of this description are requisite for a well grounded study of Zoology; and as no such series exists in the British Museum, this part of the College of, Surgeons' Museum may be regarded as supplemental to it. . But although it might seem, on this account, desirable to incorporate the Comparative Anatomy Division of the College of Surgeons' Museum, in whole or in part, with the Zoological Collections of the British Museum, there appear to be serious objections to such a measure. For, in the first place, by far the greater part of the collection in question being the property of the College of Surgeons, a very large outlay of public money would be required for the purchase of it, were the College willing to part with it, which we have no reason to think probable. . Again, so large an increase of spirit-preparations in the British Museum would increase the risk of destruction in case of fire ; and, lastly, the transference of the Comparative Anatomy Collection to South Qu. 6854, Kensington would render it much less conveniently accessible than it is at present to Students attending the Medical Schools, who now make use of it.
25. Should the fund at the disposal of the College, owing to changes in Medical Legis, Qui. 6855. lation, or from any other cause, prove madequate for the efficient Maintenance and continued extension of the Museum, we are of opinion that it should recerve support from the State as an Institution intumately connected with the progress of Biological Science in ths country. At the same time, there seems to be no sufficient reason why it should, in such a case, pass from the custody and management of the College, under which it has so long and so greatly prospered.

III. The Namtonal Botanical Collections and Gardens.

26. Two Institutions for the promotion of Botanical Science are at present supported by the State in or near the Metropolis. Of these, one is lodged in the Brtish Museum, under the charge of the Keeper of Botany; the other at the Royal Gardens, Kew, under the Director of the Gardens.
27. From the date of its Foundation in the year 1755, the British Museum has contained a collection of dried plants, the most valuable part of which, at that tme, was the Sloanaan Herbarium ; but Botany ss said by the celebrated botanist, the late Mr. Robeit Brown, Report, to have been almost entirely neglected in the Britsh Museum, from the death of Dr. ${ }_{8317}^{1850}$ Solander, in 1782, until the year 1827. In the latter year, however, the Botanical 8317. Collection was made into an Independent Department, of which Mr. Brown was apponnted Report, Keeper ; and the Banksian Herbarium, devised to Mr. Brown during his life by Sir Joseph ${ }_{8317}^{1830}$. Banks, was provided with accommodation in the Museum. The Collections were at the same time opened to general scientific vistors two days a week, and to foreign Carruthers, botanists visiting England five days a week.
28. The collection, as it now exists, consists of -

1. The Herbarium, comprising,

a. The general herbarium.
b. The British herbarium.
c. Various separate herbaria of historical interest.
${ }^{*}{ }^{*}$

2. The Structural series, comprising,

a. The fruit collection:
b. The collection of gums, xesins, and other natural products.
c, The general collection, consisting of the larger specimens chiefly exhibited to the public; and
d. The microscopical preparations, illustrating the minute structure of recent and fossil plants,
29. It may be remarked that the General Collection of Fossil Plants is under the charge of the Keeper of Geology.
"30 Additions are made to the Collection, by purchase, at the discretion of the Keeper, subject to the approval of the Trustees, and by donation.
Ev. qu.
7725 ; and
Appendux
XV., vol. is,
p. 46, and

Appendis
Report.
Qu. 7734.
Qu. 7735.
" 31. At present the full staff of the Botanical Department is a Keeper and two Assistants, and its cost, during the financial year 1870-71, was 1,767l.
32. With respect to the magnitude and scientific importance of the Herbarium; the Keeper of Botany has expressed the following opinion:-
I I bolievt that our British Musehnh herbarium is mequailed it the worla, and that in not only the opiann which I myself have formed, for I am not very extensively mequasnted with herbaria mbroad, but it is the universal testimony of men who have become sufticiently acquainted with the Britsh Museum herbarium to form an opimion worth considering."
Ack I belreve that the British Museum is visited by all the foreigh botanists that come to this country.
 names of Cosson, Baillon, Triana, and Welwitseh, whe have been here during the year 1871."
"'33.'The Royal Gardens at Kew were the private property of the Crown antil the year 1840.
'34'. In the year'1838, a Cómmittee was appointed by the Treasury to Inquire into the Management of the Royal Gardens and that Committee desired the late Dr. Lindley; aided by, Messrs, Paxton and. Wilson, to Report upon the Condition of the Gardens, and make Recommendations for their future Admunistration. In consequence, a "Report upon "'the present condition of the Botanical Gardens at Kew, with Recommendations for their "future Administration" was drawn up by Dr. Lindley, and was published as a Parliamentary paper in 1840.
135. According to this Report, the Garden (including the Arboretum) occupied 15 acres, and the collection of herbaceous plants was stated to be then "inconsiderable." The Reporter states that "no attempt has been made till lately to name the multitudes of rare "plants it comprehends, and thus to render it a place of public utility;" and, further,
Report, p. 2. "What" names are to be found in the Garden have been fornished by Mr. Smith, the
"Foreman, and the Director [Mr. Aiton] does not hold" himself answerable for them.
": This was most particularly inquired into, and most distunctly avowed; so that by far
": the most difficult part of the duty of the principal officer-a duty on the perfect
"execution of which the credit and utility of the Garden essentially depend-a duty "which can be oniy executed properly by a man of high scientific attainments, aided by * an extensive herbarium and a considerable library; this most important duty is thrust "u upon a foreman, paid small weekly wages for cultivating plants, who, whatever his zeal "and assiduity may be (and in this case they bave been such as to deserve the " greatest praise), has no sufficient means of executing such an office."
36. Dr. Lindley recommended that the Royal Gardens at Kew should become public property, and be converted into a National, Botanical Garden, and brought into close offical relations with the Botanical Gardens of the Colonies; that at least 30 acres should be added to the gardens, and considerable additions be made to the houses; that everything should be systematically arranged and named; that there should be nurseries for the propagation of plants for Government exportation or for public "purposes ; that gratutous Lectures should be given upon Botany in a popular form, but not as a regular academical course ; and that the most beautiful specimens of the Vegetable Kingdom should be carefully preserved for exhibition. He further urged the necessity of providing an extensive herbariam and a considerable library.
37. The Royal Gardens became public property in the year 1840, and most of Dr. Lindley's other recommendations were carried into 'effect by Sir William Hooker, who was appointed Director of the Gardens in that year.

[^5]shows; the naming of the plants wasinsufficiently attended to by, his predecessorss Thenew
 the use of a herbarium,in, the, gardens, which was brokea; up before their transfeyence to the Nation, and partly by the aid of the Banksiati Herbagriums
39. Sir Willam Hooker brought a large private herbarium (which Mr. Bentham 'terms Dr. Hooker's the richest' in Britain) and library to , Kew's and these were increased, at his own expense, until his death in 1865: After his death, the herbarium and library were purchased by the Government at a valuationy and have been added to the public herbarium at Kew, which'was founded in ${ }^{1854,}$, when Mr. Bentham 'presented his large private collection of plants and botanical library to the Nation.
40. In regard to the work done at, Kew at the present time, the latter gentleman, who is one of our most eminent botanists, and who has been for many years well acquainted with Foreign Botanical Establishments, observes :-7.
"1. For the close study of plants-the only sound foundation upon which the science of botany can be usefully established-for their accurate determmation and practical classificston, the requasites are that the herbirium should be as mich as possible, not only as to the genera and species, but as to the varistions of all sorts and repetitions of the mame form from dufferent localities and stations; that the herbarium should be a single one, the geographical arrangement bemg kept in subservience to the screntific elassification, and without any detached smaller herbaris, except such definite historical ones as only require accasional reference like the books of a library; that there should be good accommodation for, the sorting of unnamed collections and fresh arrivals, ample means' for the dissection and exammation of "specmens not only by the staff of the etablishment, but also by'serentific botanists in general who under special regulations, are allowed to work etable In the herbarum, and fione fooms for dapicates requred for exchanges, sute of rooms as the herbarium a botanucal hbrary, as complete as possible, and a series of drawings of, plants, alao as complete as possible; that the herbariam should be in alose connexion with; the National Collection of living plants, and that it should be unider the Kèepership of a resident scientific botanist, wath theirequisite staff of soientific assistants. All these essentumls are ad present afforded by the herkarium at Kew, in adegree far beyond what can be met.with in any other establisbment at home or abroad."
41. For 40 years the herbarium has received almost all Collections made by Goverii- Qu. 6658. ment Expeditions'; and it has been the ehief recipient of contributions from both 'British and Foreign Travellets's as well as from Continental Museums،' is
42. 'At present the Gardens occupy' 300 acres, and' are estimated to contain " 200000 species of plants ; and the following Statement of the operations carried on at Kew is taken from a Memorial (signed by many eminent scientific men) presented to the First Tord of the Treasury in 1872.
ln
r, sc
 possess the Kew. The ostablushment is not only without simval, baf there 18 no approash to nivalry' as regards the extent, mportance, or scientific results of ate operations, Upwards of 130 Folumes on all branches of botany, including a most important semes of Colonial Floras, but excluding many weighty contributions to screntific societres and journals, have issued from Kow. To these are to be added gude books and official papers. This vast hterature has been produced and published through the efforts of the Directors of Kew, for the most part at no expense whatever to, the Nationi.,

5"
"T'o these labours is to be added the correspondence of the Directors with all parts of the world, a mere selection from which, now bound together at Kew, embraces some 40,000 letters addressed to the Directors, and for the most part answered with their own hands.
"During the 10 yaars from 1863 to 1872 molusive, the number of Iving plants sent from Kew to various parts of the' world has been doubled, amounting on an averige to 8,000 or 9,000 annually. Of seeds ripened at Kew, or obtained by the Dipector from vailous parts of the world, the annual average dastributed amounts to about 7,000 .
"Of the practical value of these labours, the introduction of the Cinchona planti into Inda, Ceylon, and Jamaics, the commercial success of which is established, constitutes one of many vilustrations. The introduction of ipecacranha as another. ,
"In India npwards of 30 gardeners, trained at Kow, are now employed in forestry, cotton, tea, and cunchona plantations, Government gardens, \&d, and a far greater number are usefully employed in other parts of the world. - is By the jointefforts of the Directorst a series of complete Floras of India, and the Colomes was set on foot at Kaw, of which those of the West Indies, slli the Australian Colomes, New Zealand, Tropical Africs, the Cape Colonies, and British India, are completed or in progress. These are standard worka of mestimable value to the countries whose plants they describe, as well gs to scientifie travellers and instatutions in Earope."
43. In addition, theret' is the work' of the Economic Muscums, which are thus described by Dr. Hooker :
"Of museums proper, apart from the herbarium, there are three'; they' were designed primarily to illustrate to Qu. 6662. the publue the uses to which plants 'are' put, by exhibating' specmens that illustrate useful plants; maps showing thetr distribution, diagrams showng-thear structuke, sind specumens of the products which they afford. Thoy are arranged scientafically, sccording to the natural systam, snd, as far as we hare procured them, all the products of the plants are shown. At the same time it is the receptacie for all specimens that are not fitted to bo kept in an herbarium; for instance, there are cartain fruis of no knawa economic value which are interesting from ther structure or from their appearance, but which, though they are not of economic Falue, are placed in the museum, because they could not be put into the herbarium. The arrangement of the herbarium is samilar to that of a library. Thus the? minseumst serto a double objett. They eres ancullary to the herbamum in contarung quecimens not fit to ber placedin the herbarwm, and they are ingtruetave to the pubhc, snasmuch as they show the uses to which the plants of all Natural Orders are put."
44. There is no competition between the Kew and South Kensington Maseums; for the Museum at South Kensington consists chiefly of manufactured articles arranged according to their uses. At Kew the fibres used for textile fabrics are arranged under the Natural Order to which each belongs; the European flax going into the case illustrating the Natural Order to which the flax plant belongs, the New Zealand flax under another order, and the hemp under a third; but at South Kensington all the flaxes would be brought together. At Kew little is shown beyond the raw product and one or two manufactured articles to attract public attention immediately to its uses. South Kensington, on the other hand, affords a complete illustration of the uses of Vegetables as applied to Arts and Manufactures, arranged under their applications.
45. The collection of numerous Vegetable Products in the Food Museum at South Kensington is totally different in object from the Kew Economic Museum, and cannot be said to be intended for the promotion of Botanical Science.

Qu. 6664.
Dr. Hooker's Memoraudum, Appendex II.
46. Besides the Drector, who has charge of the whole Establishment at Kew, the Staff consists of a Keeper of the herbaria and library, two Assistants, a Clerk, a Curator of the Museums, and two Attendants, whose pay altogether amounts to 1,792l, a year.
47. Three distinct methods of dealing with the two Botanical Estallishments now maintained at the expense of the State-the one in the British Museum, and the other in the Royal Gardens at Kew-have been put before us by the witnesses who have given evidence.

1. The first proposal is that of the Keeper of Botany in the British Museum, Mr. Carruthers, who thinks that the best way would be to keep both collections at their full efficiency; but that, if only one great National Herbarium is to exist, it should be lodged in the British Museum, and that Mr, Bentham's collection should be transferred to the British Museum, a second Herbarium of a subordnnate character, for use in the Garden and Museum, beng provided at Kew. Mr. Carruthers is of opinion that all Collections purchased by the Government, or made at Government expense, should be sent to the British Museum and worked out there, and that the Kew Botanical Library should be transferred to the British Museum.
2. The second proposal is that of the Director of the Royal Gardens at Kewr, Dr. Hooker, who agrees with Mr. Carruthers, that the Herbarium at the British Museum and that at Kew should both be mantained in a state of efficrency.

But, in disagreement with the Keeper of Botany in the British Museum, the Director of Kew Gardens recommends that Kew should be the ste of the principal National Herbarium; and that it should remain, as heretofore, the centre to which the collections made at the expense of the Government are sent, worked out, and published.

Dr. Hooker further recommends that the Collection in the British Museum should be of a subordnate character to that at Kew, and should be arranged chiefly with a view to Geographical Distribution and to the needs of Botanical Palæontology.

Dr. Hooker does not suggest the transference of any of the Collections now in the British Museum to Kew ; on the contrary, he proposes to recruit the British Museum Collection from that at Kew; nor does he think it necessary that any part of the Library of the British Museum should be transferred to Kew.
3. The third proposal is that made by the Superintendent of the Natural History Collections in the Bitish Museum, Professor Owen, to the effect that the Herbariuma at Kew should be altogether transferred to the British Museum; and that it should be the duty of the Director of the Royal Gardens to occupy himself exclusively with Physiological and Horticultural Botany.
48. As respects this last proposal, we have already shown that, in the opinion of Dr. Lindley, Mr. Bentham, Mr. Carruthers (the Keeper of Botany in the British Museum), and other eminent Botanists, the possession of an extensive Herbarium is indispensable for the efficency of the Kew Establishment. In this opinion we concur, and we cannot, therefore, recommend, as proposed by Professor Owen, that the Kew Herbarium or any portion of it should be transferred to the British Museum.
49. With respect to the first and second propositions, we have now net to consider what arrangement might be theoretically best if the Botanical Establishments supported by the Government were to be organized de nova; but to recognize the fact that two such Establishments have grown up, each of which is doing its own special work efficiently.

We do not think it advisable to interfere with existing arrangements, which are working satisfactorily, for the mere sake of administrative symmetry.
50. The two proposals under discussion, much as they diverge in some respects, agree in advocating the continued existence of two Herbaria, one at the British Museum, and the other at Kew. All Botanists are of opinion that Kew needs a Herbarium. Dr. Lindley, whose opinion we have already quoted, and than whom there could be no more competent judge, 35 years ago urged the necessity of an "extensive herbarium and a considerable library" for Kew; and the Keeper of Botany in the British Museunin expressly speaks of "the "great waste of time which would be incurred in consulting a herbarium at a distance." On the other hand, no one has suggested that the British Mr. CarMuseum should be deprived of its Herbarium, and the Director of 'Kew Gardens, as we ruthera' have seen, proposes to increase that Herbarium.
51. The Keeper of Botany in the British Museum has made suggestions as to the best $\mathrm{XV}_{1,}$ vol, $1, \mathrm{p}$ mode of uniting the two Herbaria, if such'a course should be deemed desirable; but p .45. he has also stated reasons for the separate maintenance of these two Herbaria, which appear to be so conclusive in favour of that course that we recapitulate them here.

1. "The two herbaria already exist, and are to a considerable extent parallel col- Mr. Carlections." In other words, the collections are to a considerable extent in duplicate, and, ruthers' 80 far, nothing could be gained by brnging them together in one place.

Paper,
2, "The two herbaria have been under different management, and, to some extent, $\frac{A p p e n d i x}{} \mathbf{V}$., vol. in 2 express different results of the "close study of plantsi' The important bearing of p. 45 .
this consideration on Botanical Science in Britain can scarcely be overrated,"
3. "The objects of the herbaria are fundamentally different, and in as far as, they "fulfil their objects they are employed for totally different purposes."
4. "The practical difficulties in the administration of two separate, and, to some extent, independent herbaria would be numerous and serious; and, in the course of time, a condition of things similar to what at present exists would result."
5. "It is not an unimportant consideration that the continued separate existence of these two great herbaria is a great security against their destruction by fire."
6. "The expense of the two herbaria is very small. I arn unacquainted with' the amount granted for Kew Herbarium, but, it cannot greatly duffer from that required by the National Herbarium, which amounted for the financial year lately completed to Appendix $1,767 \mathrm{l}$. I know of no way in which the country can ab once advance the interests of XVpendix X , i , Science and encourage its students at a smaller cost and with more important results, than p. 46 . by maintaining in ther full efficiency the two Botancal Collections at present existing."
52. In this, as in other cases, we conceive that the State may' be asked to aid Science with those Appliances which are out of the reach of private enterprise, and as such we regard the Herbaria at the British Museum and at Kew, each of which, being supported by the State, is as much entitled as the other to the name of a "National Collection." And the evidence which has been laid before us leaves us no alternative but to recommend that these two Botanical Collections, the maintenance of neither of which involves any considerable cost, should not be merged into one, but that both be kept in a state of efficiency, and that the special scientific direction which each has spontaneously taken should be retained.
53. As a matter of fact, the Botanical Department of the British Museum, under its present able Keeper, has inclined in the direction of Botanical Palæontology-a direction rendered particularly convenient and appropriate by the existence of a large and valuable collection of Fossil Plants in the Museum; no less, as a matter of fact, under the late and present Directors of the Royal Gardens, has the Herbarium at Kew become the most complete apparatus for the cultwation of Systematic Botany in existence. It is the centre to which Botanists flock from all parts of the world, and with which Botanists of all parts of the world are kept in communication by a system of Correspondence, of vast extent, which could only have been organized by means of the exceptional physical strength and mental capacity of successive Directors.
54. It may be said that if the Kew Herbarium is to remain a great National Scientific Herbarium, the accommodation to be given to Botany in the new bulding at South Kensington is excessive. But we do not think that such will prove to be the case. In the first place, we should not be disposed unduly to limit the power of the Keeper of Botany in the British Museum to purchase systematic collections for purposes of palæontological comparison; and, in the second place, it would be highly useful to have a geographically arranged collection in the British Museum as the complement of the purely systematically arranged collection at Kew.

26060,-RERP IV.
'55, We think it desirable, then, that the callection st the British-Museum should'be maintained and arranged with special reference to the Geographical Distribution of Plants and to Palæontology; and that the collection at Kew should be maintained and arranged with especial reference to Systematic Botany, And we are of opinion that all collections of recent plants made by Government Expeditions should, in the first instance, be sent to Kéw, to be there worked put and distributed, a set being reserved for the British Museum; and that all collections of fossil plants made by Government Expeditions should be sent to the British Maseum.
\qquad
56. It has been suggested to th that some part of the resources of Kew might be advan-
tageously directed towards the advancement of the science of Botatical Physiology, and the Drector of the Gardens states that he has "repeatedly urged young experimenters " to commence, offering them facilities; but the difficulty with thema has always been " 'to give the time and get funds to support themselves," "
57. We agree with the Director in thinking that it is highly desirable that opportunities for the pursuit, of investigations in Physiological Botany should be afforded at Kew to those persons who may be fnclined to follow that branch of science.

IV. The Museum of Practioal Geolday.

58. The Museum of Practical Geology is' administered by a Director, who is responsible to the Lords of the' Cómmittee' of Privy Council on Education.

The primary object of this Museum is to exhibit the industrial applications of Geology and the kindred sciences, with special reference to the mineral resources of this Country and its Dependencies; and the Collection of British fossil and rock specimens, illustrating the Geological Survey of Great Britain. The following collections are comprised in the Museum:
(a.) Specimens of British building stones, polished marbles and other ornamental stones, used for constructive and decorative purposes.
(b.) A collection of Britıgh,'Colonial, and Foreign Minerals, specially selected for their economic value, or for their importance to the Student of Mineralogy, Geology, and Mining.
(c.) A Metallurgical Series, comprising specimens illustrating the smelting of ores and the industrial applications of metals and metallurgical products.
(d.) Models of mines and mining machinery, with examples of mining tools; models bf 'ore-dressing 'apparatus, furnaces, and metallurgical appliances, with geological, and topographical models of special localities.
(e) A collection of specimens showing the" technological applications of clays, and fully representing the history and present position of British Ceramic Art; with illustrations of manufactures in glass and enamels.
$(f)^{\prime}$ The Palæontological Collections, embracing a large sexies of British "fossils, stratigraphically arranged.
(g.) A Petrological Collection, 'comprising' specimens of the Ignepus, Metamorphic, and Stratified Rocks of Great Britain.
(h.) A Library of upwards of'20,000 volumes, including works on all those branches of Science which find illustration in the Collections exhbbited in the Museum.

Appendix 1.

59. The Museum is open gratuitously to "the public"on Mondays and Saturdays from $10 \mathrm{a} . \mathrm{m}$. till $10 \mathrm{p} . \mathrm{m}$., and on the other days of the week (Friday excepted) from $10 \mathrm{a}, \mathrm{m}$. till 4 p.m. during the months of November, December, January, and February; and until 5 p.m. during the remainder of the year, with the exception of one month's vacation from the 10 th of Angust to the 10th of September. It is in evidence before us that the, evening opening of this Museum is attended, with considerable expense without corresponding advantage.
60. It is evident that the Collections of Minerals in this Museum are closely allied to the Mineralogical Collections of the British Museum, which it is proposed shall hereafter find a place in the New Natural History Museum.
61. In a Paper printed as an Appendix to our first, volume of Evidence, Professor N. Story-Maskelyne, the present Keeper of the Mineralogical Department of the British 'Museum, expresses, the opinion that the juxtaposition of Mineralogical and ,Biological Collections is not now considered so important as formerly.

* So long as the Brinish Museum might be retained in its integrity, or its collechons might be re-grouped Vol. E. Appa' into dutinct divisions at the present locality, the mineral collection would seem to be in its place among them. XIV.; p. 43. But when once a separation of a part of these collections from the rest is determined on, the logical position of a'collection of minerals in the madst' of a series of biological collections assumes a new and very questionable: phase
${ }^{6}$ The division of created thinge into ammal, vegetable, and mueral is no longer exhaustive; at no longen represents the whole world known to scrence. Organie chemistry and the sciences that deal in organiams treat of certain forms of matter that are organce from one point of view and yet are rot organic from another, and even inorganic chemistry deals m. substances that can only be called muneral by using the word m.what must, even in the present age, be termed an ambiguons sense. The place of a collection of munerals is certamly eather by the ande of the crystallised products of the laboratory, that is to say, it should aid in illastrating the science of chemistry; or that place is to be found where marierals are mosti completely atudadd, technically as well as scientuficully, that is to say, where mining is especially taught."
- 62. Professor Story-Maskelyne then n_{2} expresses his opinion, that the Museum of Practical Geology in Jermyn Street is if
- Whe best and mosit practical destingtuon for the Minerall Department of theg British Museum unden the Vol.I. App: supposed change in the distribution of the collections, and $\mathbf{4}$ thunk this is equally so, whether the objects XIV. 3 p. 44 . embraced in my collection be confined, as at present, to natural minerals, or whether the limits of that collection be enlarged in the manner I have proposed, so', as'to embrace' exthficiaity formed 'mineral' or chemical products.
"Under, any curcumstances, a gallery must be bult to contan the muneralogical collectoon, and the cost of buildang it will not be very' dufferent, whether it be associated with the Biological Museum or with the School of Mines. But I beg to place on record, and in the hande bf Her 'Majesty's'Cominissioners''my strong opinion that the least appropriate destination of this collection would be 10 association with a Biological Musoum."
, , $\ldots+1 h, \ldots+15$

63. We have felt it our duty' te call attention' towthis Opinion buts considering that arrangements have been made for the lodgment of the Mineralogical Collections of the British Museum in the, Newe Buildings which have been begun at South Kensington, and that these Collections could not" be accommbiated in the Museùm bf Practical Geology, which needs all the space disposable for the display of the British Palæontolog!eal, Rock and Mineral Specmens-which, is its primary pbject meq do not base any recommendation upon' it. In connexion whth this subject, we may again refer to the insufficiency of Qu.669-674. accommodation in the Museum in Jermyn Street for the staff of the Geological Survey of Great Britain, upon which Professor Ramsay, the Director-General of the Survey, has so strongly insısted in his evidence ${ }_{\text {lu }}$.

V. The South Kengington Museum, ind ats Brance Museum at Bethalal Greenot

64. The South Kensington Museum is ảdministered by à Director who is responsible to the Lords of the Committee of Privy Council on Education.
65. 65. Though, from special circumstances, the Art Collections of this Museum have been, up to the present time, mosi developed, it has coptained, from its earliest days, several Collections of a Scientific Nature. Those at present existing are:
1. The Food Collection.
2. The Anumal Products Collection.
3. The Structure and Building Materiald "Collection",
4. 'Models of Machinery,"Ships', and Military' apd Navil'Appliancess' '
5. Collections illustrating. Economic Fitomology and Forestry. i
6. Collections illustrating Fish Culture.
7. The Educational Collections.
8. The Patent Museum ${ }^{\prime \prime}$:
The Food Collection.
\because 66.' This Collection; which was"commenced in 1858 , has been formed with a view to 'showing first, the chemical composition of the various substances used as food; secondIy, the sources from which all varieties of food are obtained; and ${ }_{5}$, thirdly; the various 'substances used for adulteration, and the best methods of detecting them.,

* A duplicate Collection of the chemioal analyses of food is used for circulation among country Schools, and large descriptive labels are suppled, to the Managers of country Museums who may apply for them.

The Animal Products Collection.

67. This Collection was established by the Commissioners for the Exbibition of 1851, 'who observed that, whilst the public possessed in the Museums of Kew and Jermyn Street Collections illustrative of the Economic Applications of Mineral and Vegetable SubB 2
stances, there was no representation of the uses of the Animal Kingdom. The Collection consists of Animal Substances employed in Textile Manufactures and Clothing; substances used for domestic and ornamental purposes; Pigments and Dyes yielded by animals; Animal substances used in Pharmacy and in Perfumery; and the application of waste matters, together with Illustrations of the Processes of Manufacture.

We have been informed that tor want of space this Collection has been but little developed of late years.

Construction and Building Materials Collection.

68. This Collection had its origin in a large number of models and specimens which were presented to the Commissioners for the Exhibition of 1851 at its close. In 1859 the Collection had become so extensive from gifts, especially from the Exhibitions in London and Paris, that the Classified Catalogue formed a most useful book of reference on the subject, and was largely sold as such.

The Collection consists of the following objects :-Building Stones; Marbles and Slates; Cements and Plasters; Bricks of every description; Tiles for roofing, flooring, and wall decoration; Terra Cottas; Drain-pipes; Asphalte and Bitumen ; Iron and Metal Work; Woods applicable to building purposes; Glass, and its application; Models of Buildings and Construction; Paperhangings; Papier-mâché Work; Architectural Drawings and Plans.
69. In connexion with this Museum, numerous experiments on the strength of materials have been carried on, the results of which have been published in the Catalogues.

Models of Machinery, Ships, and Military and Naval Appliances.

70. This Collection consists principally of Models of Marine Engines, Ships, and Guns. But there are also specimens and models of machinery of a different character, such as the Jacquard Loom, the Whitworth Measuring Machine, and the Babbage Calculating Machine.

Collections illustrating Economic Entomology and Forestry.

71. A Collection of Economic Entomology is now in course of formation. It is intended to enable the public to distinguish insects injurious to man from those that work to his advantage, and to illustrate the best means of destroying those which are injurious, or of mitigating the ravages committed by them.

This Collection, in its relation to Forestry, contains specimens of the varous kinds of timber attacked by insects, the insects themselves in various stages of growth, and the appearance of the foliage and bark when attacked. The best known means of destroying the insects are also indicated.

Collection illustrating Fish Cullure.

72. This Collection illustrates the artificial breeding of fish, the protection of rivers, methods of capture of fish, \&cc. All or nearly all the Collection belongs to Mr. Buckland (Inspector of Salmon Fisheries). It is on loan to the Museum.

The Educational Collections.

73. These Collections comprise : 1. A Library of Books bearing on Education in which Education in Science is largely represented, and 2. A Collection of School Furniture and Fittings, Philosophical Instruments, Apparatus for Scientific and other Instruction, specimens and diagrams of Natural History, including Mineralogy and Geology, and other Educational Appliances, such as drawing materials, \&c.
74. The origin of the Library and Collections is due to an Educational Exhibition formed by the Society of Arts, and held in St. Martin's Hall in the summer of 1854. When this Exhibition closed, many of the contents, English and Foreign, were placed by the Exhibitors at the disposal of the Society, and a strong desire was expressed that it should become a Permanent Institution. The Collection thus formed was otiered to and accepted by the Government.
75. The chief Manufacturers of Educational Appliances and Pablishers of School Books have largely contributed, and numerous gifts have been received from Foreign Governments, especially at the close of the Exhibitions of 1862 and 1871. In consequence of
the great demand for Educational Works on Scientific Subjects, the vote for purchases has of late years been largely expended in strengthening the Library and Collections in this direction.
76. Special Collections of Apparatus for Teaching the various branches of Science have lately been formed. Duplicate sets of these are circulated in the country.
77. The total number of books and pamphlets in the Library exceeds 30,000 .

78 A Reading Room, ill-adapted and much too small for the purpose, as it has been stated in evidence, is attached to the Library. It is open during the same hours as the $\mathrm{Qa} .13,833$. Museum, and is chefly frequented by students, teachers, clergymen, school managers, and others who wish to consult special books, or to become acquainted with the best Educational Works on the various subjects.

Abstract

The Patent Museum. 79. In connexion with the South Kensington Museum, but under the Control of the Commissioners of Patents, there is also a Patent Museum, consisting of a Collection of patented and other inventions, ill-accommodated in a building which is much too small for the proper display of the Objects. The Collection belongs partly to the Commissioners of Patents, partly to the Commissioners for the Exhibition of 1851, and partly to private persons : it contains many most interesting specimens, especially a series illustrating the History of the Steam Engine from its earliest days.

Proposed Additions to the Scientific Collections of the South Kensington Museum.

80. We consider it our duty to point out the striking contrast afforded by the British Museum Collections, dealing with Biology, Geology, and Mineralogy ; the Jermyn Street Collections, dealing with Geology (Scientific and Economic), Mineralogy, Mining and Metallurgy ; the Kew Collections, dealing with Botany, on the one hand and, on the other hand, the Collections in the Scientific Department of the South Kensington Museum (including the Patent Museum), where alone has any attempt been made to collect together, in a Museum, Objects IIIastrating the Experimental Sciences.
81. While it is a matter of congratulation that the British Museum contains one of the finest and largest Collections in existence illustrative of Biological, Science, it is to be regretted that there is at present no National Collection' of the Instruments used in the Investigation of Mechanical, Chemical, or Physical Laws ; although such Collections are of great importance to persons interested in the Experimental Sciences.
82. We consider that the recent progress in these Sciences, and the dally increasing demand for knowledge concerning them, make it desirable that the National Collections should be extended in this direction, so as to meet a great Scientific Requirement which cannot be provided for in any other way.
83. The defect in our Collections to which we have referred is indeed, already keenly felt by Teachers of Science. If a Teacher of any branch of Experimental Science wishes to inspect any Physical Instrument not in his possession, as a Teacher of Literature would a book, or a Teacher of Biology would a specimen, there is' no place in the country where he can do it.
84. We are assured by high authorities that, on the Continent, Collections of Scientific Apparatus, when combined with Lectures accessible to workmen, have exerted a very beneficial influence on the development of the skill of artizans employed in making such instruments.
85. Lord Salsbury, in Evidence before us, has stated:
"There is another point in which I think that the Goverament might give an advantage of an educational Qu. 13,57a.
kind to Scientifio Ressarch. It would be desrrable, if it were possille, to provide the means of giving Scientufic Instruction to Tnstrumant Makers. My mprression is that their importance to the conduct of sceivntific researchis scarcoly sufficiently recognised by the public, and that it in, I will not say quite, bui almost of equal importance, to have highly educatod and cultivatod scientifia unstrument makers, as to have highly educated sciertufic thinkers."
86. A valuable part of the instruction to which Lord Salisbury refers would be derived from the examination of Collections in which the history and latest developments of each instrument could be studied with a view to its improvement or modification in any particular direction.
87. On this point we have received interesting Evidence from Colonel Strange:

Qu. 10,434. What'is your opinion as to the heed of a museum of scientific instruments, and apparatus, and machunes, and tools used in the arts ?-I think that that is a very mportant branch of the subject indeed. I need soarcely allade to the great importance that ia attached to that on the Continent. The name of the Conservatores dea Arts et Méterers will suggest it at once, which is the very best evidence indeed that I could produce, I have often visited it with great miterest and profit. Moreovar, I bekeve there are saverad others in Parns, some of more recent establushment, of the eame kund I I look, upon that as a most necessary part of any scientific system. No Scientific System can be complete writhout examples of the apparatus that are being unod in all branches of Science, both, in Enginnel and abtoad, and on that point I speuk from experience of the great ase that such a nuseam would be. ${ }^{*}$, ", ** * If there were a great Museum, such as I suggest, containug all the new developments in instruments, and in machues and tools, to which I could resort, I should be able to introduce modifications with far greater confidence, and it would be an enormous assistance to me individually, I find very few persone who have really gutdied what I mull venture to call the phymology of anstruments and apparatus, and such persons would derve very great advantage, I thank, from phyaiology of instruments and apparatus, and such persons would darxve very great advantage, I think, from dufferent minds were collected together in one view, some of which would contann some desideratum of which different minds were collected together in one view, some of which would contan some desideratum of which
they were in search. I think, if they had such a collection to go to, it would materially aid them in the choice of the apparatus that they required, and wonld tend enormonsly to advance exact exporiments. There as no doubt that some years ago there was no nation that could compete at all with England in such matters, but we have taught the rest of the world, and the pupll has now become somewhat in advanoe, in many directions, of his master. Also the spread of seientufic education on the Contment has tended to the application of more; sound princeples of construction in such thangs than with us.
88. Although the question of the Establishment of a Museum of Scientific Apparatus is more closely allied to the objects of our Commiesion than that of A Museum of Mechanical Iaventions, we think it right to call attencion'to the proposals made by a Committee of the House of Commons apponnted to Report on the PatentOffice Library and Mustum.
89. That Committee gave, in the following terms, their conception of the nature of the "General Museum of Mechanical Inventions," the establishment of which they contemplated :
"' It appears to your Cosamittee that the chef purpose of a General Museuma is to 'dillustrate and explain the commencement, progress, and present position of the most mportant branches of mechanical invention; to show the chof Bteps by which the most remarkable machines have reached therr present degree of excellence, to convey interesting and useful informationf and to stimulate invention."
90. With regard to the Funds which would be necessary for the Establishment of such a Museum on an adequate scale, the Committee, referring to a large sum which had accumulated from the fees paid by inventors (which Fund at the end of the year 1871 amounted to $923,741 \mathrm{l}$. 8s. 11d.), stated that-
. s Your Committee consider that the principal object of the fees payable under the provisions of the Patent Law Amendment Act, was to provide for the proper working of that Measure, and not for the purpose of uncreasing the general revenue of the country. Without entering upon the question whether or not a claim exists to have the surplus exclusively devoted to the purposes of the Act of 1852, your Commattee are of opmion, that for the fature the annual sarplus, revenue accrung from the operation of that Act, should be so appled to the extent which may be necessary."
91. We agree with the Committee as to the general character of the objects to which the Fund in question should be appropriated.
92. We consider that this Fund, which is derived in great part from the Applications of Scientific Principles, to various uses in the Arts and Industries of the Country, would be very properly spent in bettering some of the conditions on which invention and discovery depend; and we are of opinion that, among the uses to which such a Fund could be most advantageously applied, the Establishment of such a Museum of Scientific Apparatus as that which we contemplate, would rank among the most important; and we are convinced that such a Museum would have a material influence upon the spread of Scientific Instruction throughout the country, and would, therefore, largely foster Invention and Discovery.
93. We accordingly recommend the formation of a Collection of Physical and Mechanical Instruments; and we submit for consideration whether it may not be expedient that this Collection, the Collection of the Patent Museum, and of the Scientific and Educational Department of the Sonth Kensington Museum should be united and placed under the authority of a Minister of State.
94. Whether this union be effected or not, we are of opinion that it is desirable that the Scientific Collections now placed at, South Kensington should be subjected to a critical revision with a diew to restricting them to such objects as are of National Interest or Utility.

VI. Other Scientipić Collections.

95. The only Public Scientific Museums and Botanic Gardens besides those already referred to which receive drect aid for their maintenance from the Government are the Edinburgh and the Dublin Museums, and the Botanic Gardens' of those cities. The Edinburgh Museum consists of a Scientific and also of an Industrial Collection. The Natural History Collection,'formed by the University of Edinburgh, was some years ago handed over to the Government, and was lodged in the same building with the Industrial Museum, adjoining the University, and placed under the general charge of the Professor of Natural History, as Regius Keeper, and of the Director of the Industral Museum, an officer appointed by and responsible to the Sciences and. Art Department of the Prvy Council.
96. Evidence has been brought before us on the Condition and Management of the Natural History Collection so transferred; but as we have been informed that the Education Department had appointed a Commission to which it had committed the prosecution of the Inquiry into the Management of the Industrial Museum in Edinburgh, and that the Commission so appointed had Reported; and, further, that the Department had taken administrative action on their Report; we are of opinion that the further investigation of questions concerning the Management of this Museum has been removed from our hands. -We have, therefore, felt it to be our duty to omit whatever passages in the Evidence relating to matters of fact respecting this Museum have been controverted before that Special Commission.
97. The arrangement recommended by the Special Commissioners and adopted by the Government is the appointment of a fully qualified Naturalist, under the administrative control of the Director of the Museum; as Curator of the Scientific Collections; the Regus Professor in the University being relieved of his responsibility as Regius Keeper.
[^6]
Abstract

100. Besides the Museums and Collections which receive aid from the Government, there exist in various parts of the United, Kingdom Local Museums, supported from independent sources. Most, if not all, of these include Natural History Collections, often associated with other objects, especially with specimens illustrative of Archæology and Ethnology, and sometimes of the Industrial Arts.

101. Some of these are under the government of Municipal Bodies; some are maintained by the inhabitants of the locality, and are managed by Committees or Governors elected by the Contributors; while others are connected with Scientific Societies or Naturalists' Clubs.
102. Certain of the great Towns possess Museums of considerable extent, and arranged with skill and care. We may refer to those of the Manchester Natural History and Geological Societies, which, associated as they now are, with a College possessing an efficient Staff of Scientific Professors, are able to afford important assistance, not only in illustration of their lectures, but also to the independent studies of advanced Students.

However, even in the case of many of the larger and more important Museums, many specimens are often required for the completion of their series.
103. The Museums of less important Towns are generally very incomplete. They too often consist of specimens unconnected with each other, the gifts of travellers possessing little or no knowledge of Natural History. When they are the result of the labours of some local Naturalist, or of some Provincial Society, they are of exceptional, and sometimes of great, value; but such Collections are rare.
104. It cannot be doubted that Local Museums greatly tend to create and diffise a taste for Natural History Studies; but if they are to become useful in promoting such studies, and for the purposes of instruction, it is essential that they should contain typical specimens illustrative of Geology, Botany, and Zoology a and, also, as far as possible, a Collection illustrating the recent and fossil Zoology, Botany, and Geology of the district.
105. Museums of this character might be used most advantageously for purposes of class instruction, and for demonstrations by competent scientific persons.
106. In our Second Report, on Elementary Scientific Instruction, we insisted on the importance of more practical Scientific Teaching in Laboratories, and on the illustration by specimens of all instruction in the Natural Sciences depending on Observation. Consequently, we recommended that greater facilities should be given to obtain grants for buildings and for museum fittings [p. xxix. vol, 1.]. We suggested that whenever a Provincial Science School had attanned such a degree of efficiency as to be capable of being orgainsed as the centre of a group of Elementary Science Classes, it should be enabled, among other things, to provide a supply of specimens for the illustration or instruction in those classes.
107. In many towns of considerable population, there are no Museums, or only such as re worthless for purposes of even popular instruction. Yet some of these towns are, as is shown by the Evidence submitted to Your Commissioners, well fitted by situation to become centres of Scientific Instruction to considerable groups of population. On the Coalfields a town containing 30,000 or 40,000 inhabitants is, not unfrequently, the centre of a group of smaller towns existing within a radius of from five to ten miles, and, to a great extent, connected by railways. Within this area, the population is often as numerous as from 100,000 to 150,000 . If a Scrence School, provided with Laboratories and a Typical Museum, existed in such a centre, it would exercise a most important influence on the Scientific Education of the District. The Museum would also be eminently attractive and humanizing as a place of popular resort.
108. We, therefore, consider that the Establishment of such Museums, where they do not exist, as well as their maintenance and improvement where they have already been formed, should be promoted by Aid from the State.
109. The aid here recommended might either take the form of grants of money (as has been already suggested in our Second Report), or of contributions of specimens coming into the possession of the Government which may not be required by the British Museum or other Public Collections.
110. We would point out that the latter proposal is in accordance with one of a series of Recommendations made in 1857 by the Committee which assists the Council of the Royal Society in the administration of the Fund for the Promotion of Science known as the "Government Grant." These recommendations were approved by the Council and communicated to the Prime Minister of the day, in answer to an inquiry as to the measures which could be adopted by the Government or by Parliament with a view to
improve the position of Science, or its Cultivators, in this country.
The Recommendation in question was as follows:-"That duplicate specimens from
"s the British Museum, and other Institutions supported at the public expense, be
"distributed to Provincial Museums." This was in pursuance of a previous Recommendation to encourage the formation of Provincial Museums and Libraries.
111. A difference of opinion prevails among the witnesses as to the possibility of carrying out this Recommendation. Mr. Winter Jones and others connected with the British

Museum have pointed out that the number of duplicates or redundant specimens is insignificant, and it appears not to be the usual practice to acquire duplicates, or to accept them when offered as a gift, as such duplicates are looked upon as an incumbrance; whilst the few which are preserved, as being especially valuable, are utilized for exchanges, and are thus to be reckoned as part of the resources of the establishment. It Qu. 6504, is further urged that the determination of duplicates is a work of difficulty, consuming 6567 . time and labour, and that were they to be habitually received in large numbers, and were the task of assorting them and distributing them to Local Institutions to be thrown Qu 6572 , upon the officers of the Museum, the regular business of the establishment would be 6573 . injuriously interfered with, unless an adequate addition were made to the working staff.
112. Dr. Günther, of the British Museum, a high aathority' in all that relates to the Management of Natural History Collections, while he is strongly in favour of encouraging and aiding Provincial Museums, considers that the most useful and economical mode of bestowing aid would be by'grants of money, to purchase from the dealers in objects of Natural History such specimens as may be required, and he believes that, from the now extended traffic in those objects, there would be no difficulty in procuring in that way all that would probably be wanted.
113. Professor Owen and Professor Maskelyne are decidedly in favour of employing the agency of the British Musenm in distributing specimens to Provincial Institutions, and Qu. 747%. Professor Maskelyne is satisfied that there would be no difficulty in carrying out the plan as regards his own Department.
114. Professor Phillips (Professor of Geology in the University of Oxford), while attaching no importance to the occasional transfer of duplicates from the Metropolitan to Qu. 3103. Local Museums, considers that it would be quite possible for the Metropolitan. Museum to undertake to sapply Local Museums with well-arranged Typical Collections, and that the assistance thus afforded would be of great advantage.
115. We are of opunion, on a careful examination of the whole question, that the organization of any systematic distribution of specimens would present considerable difficulties.
116. We consider, indeed, that the authorities of the British Museum should be empowered to dispose, by gift, in favour of Local Museums, of any specimens which may be ascertained to be duplicates, and which can be dealt with by the present Staff. But we cannot conceal from ourselves that, though the extensive Colonial Dependencies of this Country, and its universally diffiused commerce, make it the centre to which should naturally flow specimens from every quarter of the world, the organization of the machinery for collecting, naming, and distributing duplicates on any large scale, involves a task far more formidable than is apparent at first sight. So laborious a work could not be imposed son the present Officers of the British Museam; for extensive correspondence would be necessary to secure the collection of specimens, and much time would have to be devoted to their discrumination and classification in Typical Collections. Nor conld the distribution of specimens for the maintenance of Provincial Museums be systematically and successfully carried out on such a plan without the aid of Inspectors, charged with the Classification and Arrangement of the Local Collections, and who, thus becoming acquainted with their wants, would be able, in the Department of Collection and Distribution, to provide for the supply of what was locally deficient.
While we thus point out what is the task involved in carrying the Recommendations of the Witnesses into effect, we repeat the expression of our conviction, that, without some method of collection and distribution, or some efficient supervision, Provincial Museums will probably generally continue to be, as most of them now are, very inadequately supplied with specimens, imperfectly arranged, and insufficient to prove in any way a source either of popular attraction, or of more complete instruction.
117. We recommend, therefore, that, in connexion with the Science and Art Department, qualified Naturalists be appointed to direct the collection of specimens in order to supply whatever deficiencies exist in the more important Provincial Museums; and, also, in order to organize Typical Museums, to be sent by the Department of Science and Art into the Provinces to such Science Schools as are reported to be likely to make thern efficient instruments in the instruction of their own Classes, or to form and conduct subordinate classes in the surronnding country, to which specimens could be lent for the illustration of courses of teaching.
118. The Department of Science and Art has already had some experience of the
conditions on which grants of Apparatus for Instruction in Experimental Science can be
anonans. r.
usefully made; and that Department would determine under what regulations Typical Museums could be lent, or more permanently founded.
119. Whenever it was seen to be expedient, in accordance with the suggestions of Professor Phillips and other witnesses, to organize a System of Inspection of Provincial Museums, such inspection could be accomplished at little expense. Scientific men, living in the Provinces, would be eminently qualified for the duty of inspecting Local Museums. They would report on their deficiencies as typical collections for purposes of instruction; they would ascertain to what extent they were usefully employed, and whether the conditions attached to the loan or grant from the Department of Science and Art were fulfilled. These Reports would aid the Department in its administration.

VII. Publia Lectores in, connexion with Mubeums.

120. The possibility of extending the usefulness of the Natural History Collections in the British Museum, by the delivery of Lectures, has been brought before us in Evidence. On this point, we have first to state that, of late years, parties of working

Qu. 6501, 6595.
Qu. 10,119. men, accompanied by one or more gentlemen who take an interest in their instruction, have on several occasions attended at the Museum, to have the benefit of Demonstrations by Professor Owen and others 'of the Officers, explanatory of the principal objects in one or more of the galleries. The service performed by the officers is entirely voluntary. This usé of the Museum has not been attended by any inconvenience, and has been warmly approved and encouraged by the Trustees.
121. As to the expediency, however, of giving ${ }^{\dagger}$ regular Courses of Formal Lectures, the views entertained by highly competent witnesses are widely divergent.
122. Professor Owen, Professor Flower, Dr. Günther, and (with some qualifications) Dr. Sclatet, have all expressed opinions favourable to the delivery of "Lectures" by the Keepers or Assistant Keepers of the British Museum, but it is important to observe that these witnesses attach very different meaninge to the word "Lectures."

123, Professor Owen understands by this term Elementary Courses of Lectures, open to the public without charge, and of character adapted to afford Instruction to the Teachers of Elementary Schools, and proposes that 12 distinct Courses of such Lectures should be available to them; each course consisting of 24 lectures to be given by Officers of the Museum.
124. Professor Flower (Conservator of the Museum of the Royal College of Surgeons), on the contrary, understands by "Lectures" Advanced Lectures. The Lecturer is "to select some subject he happens to , be working at in his duty of arranging " or cataloguing the collection under his care, and to give a short course of " lectures on that particular subject." Professor Flower is not of opinion that the British Museum is a proper place for giving Elementary Instruction, and says" at all ${ }_{r s}$ events the Officers of the Museum would not be the right persons to give it."
125. Dr. Gunther (Assistant Keeper of the Department of Zoology in the British Museum) advocates a far more extensive System of Lecturing than either Professor Owen or Professor Elower.

First, a regular Course of Elementary Instraction to Students, such as is given in the Universities, accompanied by practical work
Secondly, Lectures for the general public, such as are given at the Royal Institution.
Thirdly, Demonstrations of a popular character in the Galleries of the Museum.
126. Dr. Gunther proposes that the Lectures and Practical Instruction of the first class should be given by the Keepers; those of the second class by the Keepers or by persons not connected with the Museum; and those of the third class by the Assistants.
127. Dr. Sclater (Secretary of the Zoological Society of London), though in favour of having Lectures at the Museum (or in its immediate vicinity), would not have mere Elementary Instruction given by the Keepers, and thinks it would be "very objectionable" to connect the teaching absolutely with the office of Curator.
128. Again, My. Waterhouse (Keeper of the Department of Geology in the British Musenm), whose experience as a Curator is as great as that of any of these gentlemen, does "not think it at all desirable" that Keepers or other officers of the Museum should lecture, and is of opinion that lecturing would "interfere very much with their ordinary duties."
129. And Mr. Winter Jones, the Principal Librarian of the British Museum, considers
that the delivery of lectures "is not consistent with the proper performance of the duties" of the Keepers:
130. Professor Maskelyne (Keeper of the Department of Mineralogy in the Brtish Qu. 7462 Museum) would preclude Formal Lectures in the Museum, but would allow a Lecturer to meet his class there to illustrate lectures he may have given elsewhere, by demonstrations in the galleries of specimens which, from their size or value, could not be exhibited in his lecture room. Professor Maskelyne considers that if a Keeper has an aptitude, and also opportunities, for delivering lectures, he should be encouraged to do so, but not Qu. 7460. in the Museum; and he would altogether disapprove of appointing a Keeper simply or chiefly because he was a good Lecturer.
131. With regard to the Demonstrations given in the Natural History Galleries, we are of opinion that though they tend to increase not only the attractions but the usefulness of the Museum, the delivery of such Demonstrations should be in no degree obligatory on the present or future staff of Keepers, and should not receive such a development as to interfere with the discharge of the proper duties of any officer of the Museum.

- 132. But while favourable to the continuance of such "Demonstrations, we are by no means prepared to recommend the institution, in the Museum, of Systematic Courses of Lectures; in fact, on this question we find our opinion to be entirely in accordance with the conclusions arrived at by the Royal Commissioners appointed, in. 1847, to Inquire into the Constitution and Government of the British Museum, as stated in the following extract from their Report, page 35.
"At Q. 2717, and elsewhere in the course of Professor Owen's evidence, will be found some observations. on the expediency of introducng the practice of lectures illustrative of the collections of the Museum. In favour of the introduction of this practice, the mstances are cited of the Hunterian Collection, and that of the Jardun des Plantes and other Continental Instututions. We are of opmion, as regards the Museum, that however undentable the advantages whuch might be derived from some of its collections, as maternals for oral illustration, it would not be desirable exther to place these collections for such purpose at' the disposal of lecturers not attached to the Museum, or to add to the present duties of its officers the obligation of lecturimg We consider the Museum as essentially a repository for the conservation and arrangement of a vast variety of materinal objects, from which men of science, hteratuve, and art may denve assistance to their researches. We belueve that the task of its superintendence and management, whth a view to this mann purpose alone, is sufficient to engross the tume and the abluty of its own officers, and that the full attannment of that purpose might be in some degree hararded by the pursuit of every adventitious advantage which might appear of possible sttaument through the instrumentality of its stores. Without desiring to limit the discretion of the Trustees in dealing with any suggestions of this nature, we cannot take apon ourselves to recommend the systematic adoption of the practice in question, nor to advise that any bulding in the nature of a theatre or lecture-room adoption of the practice in question, nor to advise that a,
should form part of any future addtions to the Museum."

133. Concurring in every respect with the opinions this expressed by the Commis- Qu. 6503, sioners of 1847, we would further point out that, as remarked by several of the witnesses, $6759,6715-$ lecturing and curatorial work are entirely different occupations, aptitude for the one by no 6716,7776 . means implying skill in the other ; and that were the possession' of a talent for lecturing allowed to weigh in the selection of Keepers and their Assistants, the result would, in all probability, prove prejudicial to the interests of the Institution.
134. In accordance, moreover, with the view we take of the proper purposes of the Museum, we are not favourable even to the modified proposal that Lectures should be given in the Establishment by persons specially employed for that duty who are not on the Ofticial Staff; and, indeed, we do not see that any special advantage would be gained by delivering Natural History Lectures at the British Museum; for, as the valuable specimens in the Galleries ought not to be subjected to the risk of rough usage in a Lecture Theatre, and as Special Collections would, therefore, be required for teaching, these might as well be provided and used elsewhere.
135. In considering the question of the modes of turning 'Natural History Museums to account as places of Instruction, it must not be forgotten that much may be done towards this end by other means than by the delivery of Lectures. By the skilful selection and arrangement of the specimens exhibited to the public; by providing Descriptive Labels instead of the meagre indication of names at present adopted; aud, above all, by supplying Explanatory Catalogues suited to the wants of anscientific people, the public might be enabled to teach themselves with as much efficiency as they would be taught by the majority of Lecturers, and with far less trouble and inconvenience than are involved in the Attendance on Lectures.
136. We have formed a decided opinion that. Keepers and other Scientific Officers in charge of the Collection ought not to be diverted from their proper business, which
is the naming, arrangement, and cataloguing of the specimens, by being required or expected to give lectures. The National Collection of Natural History should represent as completely as possible the totality of the forms of animals and plants, both living and fossil; and these forms ought all to be named, described, arranged, and catalogued. The task of bringing the National Collection into this ideal state of perfection is assuredly of sufficient magnitude to occupy for very many years to come the full working power of the staff of Keepers and Assistants.
137. Those whose duty or inclination it is to act as interpreters between Science and the general public should have full opportunity for doing their excellent and useful work; on the other hand, those whose duty it is to instruct the student, not only in the facts, but in the methods of Science, and those, whose no less laborious task it is to disciminate and put m order the endless variety of Natural Objects, so that they may become accessible and useful to the advanced worker, should be enabled to perform these functions without the hindrance and distraction of popular lecturing.
138. The objections, which we have just pointed out to the delivery of systematic courses of lectures in connexion with the Natural History Collections of the British Museum, do not apply with equal force to Provincial Museums, the collections of which are incomparably smaller, are of a different character, and exist for different objects; and we are of opinion that it would be of great advantage for the diffusion of scientific knowledge, that arrangements should be made for giving courses of Scientific Lectures in such Provincial 'Museums of Natural History as have Typical Collections of specimens, and are provided with convenient Lecture Rooms. These Lectures should be explanatory of the contents of the Museum, and accessible to all classes on the payment of a small fee. But it is not desirable that the duty of giving such lectures should be, ex officio, nacumbent upon the Curator, on whose time, especially in the larger Provincial Museums, there are many pressing claims; and, if the specimens are to be largely used for educational purposes, a special collection should be formed for use in the Lecture Room.
139. Again, the objections to the organisation of Systematic Courses of Lectures in connexion with Museums of Natural History do not apply to those Museums, whether Metropolitan or Provincial, which contain Collections of Physical, Mechanical, and Chemical Apparatus; of Geometrical Models; or of Models illustrating the progress of invention in Machinery and in Manufacturing Processes. The objects deposited in such Collections being already fully known, and having simply to be catalogued and kept in order, the work of the Curator is to a great extent mechanical, and his time, if the Collection is not a very large one, would be well employed in making it intelligible, and, therefore, useful, to the public.
140. In accordance with this view, we think it desrable that Courses of Lectures should be given at South Kensington in connexion with the Collection of Physical and Mechanical Instruments, the establishment of which we have recommended. The object of these courses should be to illustrate the progress of Scientific and Mechanical Invention by exhibiting and explaining the improvements from time to time introduced into the instruments and methods emploged in Scientific Research, and in the applications of Screntific Discovery to Natonal Industries. The Lectures should not have an elementary character, and should be given, as occasion may arise, by persons selected on account of their spectal acquaintance with the most recent developments of some important branch of Science.
141. The importance of the question raised by the proposal to organise Courses of Lectures in connexion with Museums, induces us to submit in this place some further recommendations with regard to it. We have felt it our duty to express our disapproval of this proposal, so far as the great National Collections of Natural History are concerned. We also consider it to be indispensable to the maintenance of a high standard of acientific instruction, that the lectures and class teaching given in Colleges and Schools of Science should have that strictly scientific character which alone can meet the requirements of the regular Students of such Institutions; and this opinion is corroborated by the evidence* given to us by some of the most eminent Teachers and Investigators. But we are anxious that it should be clearly understood that we do not underrate the usefulness of popular Lectures on Science, although we are convinced that they ought not to form any necessary part of the business of the working staff of a great National Museum, or of an Institution for the Training of Students. On the contrary, we have arrived at the conclusion that

Lectures on Science, accessible to all classes on payment of a small fee, should be organised in the great centres of population; and we are of opinion that the establishment of such Lectures should be promoted by the Government. In the 'Metropolis,' Lectures on Experimental and Natural Science have already been founded by the Government, and, though tried upon a very limited scale, the experiment has been attended with complete success: We recommend, therefore, that, in the first instance, a greater development should be given to this system of instruction.
142. The Lectures should be of two kinds.-

First. Lectures of an elementary character on the General Principles and most important Facts of Science.
Secondly. Lectures specially intended to familiarize the working classes with the Applications of Scrence to the Arts and Industries of the Country.
143. The arrangements for both classes of Lectures would be greatly facilitated by connecting them, as far as possible, with local Screntific Institutions, and especially with the Provincial Museums, which we have already recommended should receive direct aid from the State, and of which the Collections (and, in many cases, the Buildıngs) would be available for Lecture purposes.
144. The importance of Lectures of the first kind, as a powerful means of diffusing knowledge among the masses of the people, and thereby elevating their condition and making them more useful members of the community, is so generally admitted, that we do not propose to dwell on it here. But the object sought to be attained by Lectures of the second kind is a more special one; and we are induced to recommend the mstitution of such Lectures chiefly by the following considerations.-
145. We have elsewhere stated our opinion that Instruction in the Application of Science 3rd. Report, to the Arts and Industries of the Country should not be largely muxed with the courses para. 181. delivered from purely Scientific Chairs. The immediate objects sought to be attained by a purely Scientific Course, and by one apphed to the Arts, are so far dissimilar, that each can only be effectually promoted by separate modes of instruction. It must, moreover, be borne in mind that the distance which' separates" the Strictly Scientific Course and its Laboratory from the Workshop or "Colourshop" of the Manufactory is very great, and that the education of many of our artisans is at present so rudimentary, that even if they had the time they have not the culture necessary to enable them to derive much advantage from a complete Scientric Course. What is required, therefore, is a form of instruction intermediate between pure Scrence and the manipulations of industry, which may spread scientific knowledge among workmen, and, by readering the relations of Science and Industry familiar to them, promote the improvement of manufacturing processes and the progress of invention.
146. A large proportion of the workmen attending the proposed Lectures will probably have received preliminary instriction in the Elementary Science Classes already founded in connexion with the Science and Art Department. We have recommended that this instruction be made more efficient by the establishment of Laboratories and Museums, which we have suggested should be founded in connexion with Schools of Science in the centre of groups of such classes. The instruction thus provided would form a fitting preparation for the proposed courses, and many workmen would by these successive means be enabled to grasp the whole theory of the application of Science to thear own branch of Industry.
147. Courses of Lectures of the kind which we are here contemplating have been conducted in Paris in connexion with the "Conservatoire des Arts et Méters," an Institution the foundation of which was begun in the year 1775. Its scope and purpose are explained in detail in a Memorandum by our Secretary, which is appended to this Appendux Report, but we may briefly state that it is a great Collection of Geometrical and Me- IIL. chanical Models, of Physical and Chemical Instruments, and of Machinery illustrative of the Progress of Invention. In the Theatre of the "Conservatore," no fewer than 14 Courses of Lectures are given by very eminent Professors on the following topics:Geometry applied to the Arts; Descriptive Geometry ; Mechanics applied to the Arts; Civil Constructions; Physics applied to the Arts; General Chemistry in its relations to Industry ; Industrial Chemistry; Chemistry applied to Dyeing, Pottery, and Glass; Agricultural Chemistry and Chemical Analysis; Agriculture; Agricultural Works and Rural Engineering ; Spinnung and Weaving ; Political Economy and Industrial Legislation; Industrial and Statistical Economy.
148. Each Professor gives two lectures weekly in the evening to suit the convenience of the artisans, by whom they are chiefly attended. The Lectures are intended to
show the application of Science to practive; to render accessible to the workman such portions of scientific knowledge as are most directly germane to his work; and finally to bring under notice and to explain the latest refinements of invention exhibited in the Museum.
149. From a communication received from General Morin, the Director, we learn that almost all the Courses embrace a considerable range of matter, of which the whole can only be gone through in two or three, sometimes more, years; but each yearly Course begins with an exposition of the pronciples, or, at all events, a reminder of them, before the special subjects of the course are discussed.
150. That the classes for whom these lectures are intended appreciate them is beyond a doubt, no fewer than 250,000 persons having attended the courses of last year; and it seems as little open to question that such instruction must have had a most beneficial effect.
151. In bringing thus prominently forward the example of the "Conservatoire des Arts et Métiers," we do not necessarily imply that its arrangements are in all respects suitable for imitation in this country. Instruction on many of the topics dealt with in the fourteen courses of lectures might be given as well in other places as in a Technical Museum. But it is obviously convenient that lectures on Mechanical and Physical Instruments, and on Machinery, should be given within the building which contains the objects described-objects which are not easily moved, and the inspection of which is a needful supplement to diagrams and descriptions.

- 152. In making the foregoing remarks we have been guided by two convictions.

The first, that the diffusion among the people of a general knowledge of Science is in itself an object of great importance, and that, in particular, an acquaintance with the manner in which abstract science is brought to bear upon industrial occupations is of the greatest moment to the working classes of this country, not merely as tending directly to increase the skill of the artisan in his handicraft, but as the best means of awakening his intelligence, by forcing him to reflect upon the general laws which are exemplified by the processes with which he is familiar in his daily life.
The second, that no real Advancement of Knowledge and none of the higher benefits from Science as Educational Discipline are to be hoped for from merely general and occasional Scientific Instruction, whether it be derived from books or from lectures, but that such Advancement and benefits will result only from systematicand sustained study.
153. While, therefore, we deprecate the notion that no Scientific Institution ought to be supported by the State unless it contributes directly in some way or other to the Instruction or Entertainment of the General Public, we advocate the fullest extension of Popular Instruction in Science, whether by Lectures in connexion with Public Museums suited for such purposes, or otherwise.

Conclusion and Súmmary of Recommendations.

154. In concluding that part of the Inquiry Entrusted to Your Commissioners which has reference to Scientific Museums, we deem it advisable to Summarise the Recommendations which we have considered it expedient to make.

With regard to the Natural History Collections of the British Museum, we recom-mend:-
I. That the occasion of the Removal of these Collections to the New Buildings now being erected at South Kensington for their reception, be taken advantage of to effect a change in the Governing Authority and Official Administration of that Division of the Museum.
II. That a Director of the National Collections should be appointed by the Crown, and should have the entire Administration of the Establishment, under the control of a Minister of State, to whom he should be immediately responsible; and that the Keepers of Collections, should be responsible to the Director. That the Appoint. ments of Keepers and other Scientific Officers should be made by the Minister, after commumication with the Director and with the Board of Visitors (herein-after referred to). And that the Director should prepare the Estimates, to be submitted, after consultation with the Board of Visitors, for the approval of the Minister.
III. That the present Superintendent be the first Director.
IV. That a Board of Visitors be constituted. That the Board be nominated, in part by the Crown, in part by the Royal and certain other Scientific Societies of the Metropols, and, in the first instance, in part also by the Board of Trustees; the Members to be appointed for a limited period, but to be re-eligible; and that the Board of Visitors should make Annual Reports to the Minister; to be laid before Parlıament, on the Condition, Management, and Requirements of the Museum, and should be empowered to give him advice, on any points affecting its Administration.

With regard to the Museum of the Royal College of Surgeons, we recommend:
V. That, should the fund at the disposal of the College, owing to changes in Medical Legislation, or from any other cause, prove inadequate for the efficient Maintenance and continued Extension of the Museam, it should receive support from the State, as an Institution intimately connected with the progress of Biological Science in this Country.

With regard to the Nationat Botanical Collections and Gardens, we recommend :
VI. That the Collections at the British Museum be maintained and arranged with special reference to the Geographical Distribution of Plants and to Palæontology; and that the Collections at Kew be maint lined and arranged with special reference to Systematic Botany.
VII. That all Collections of Recent Plants made by Government Expeditions be, in the first instance, sent to Kew, to be there worked out and distributed, a set being reserved for the British Museum; and that all Collections of Fossil Plants made by Government Expeditions be sent to the British Museum.
VIII. That oppoitunities for the pursuit of Investigations in Physiological Botany should be afforded in the Royal Gaidens at Kew.

With regard to the Scientific Collections of the South Kensington Museum, we recommend: -
IX. The formation of a Collection of Physical and Mechanical Instruments; and we submit for consideration whether it may not be expedient that this Collection, the Collection of the Patent Museum, and that of the Scientific and Educational Department of the South Kensington Museum, should be united and placed under the Authority of a Minister of State.
With regard to Provincial Museums, we recommend:
X. That, in connexion with the Science and Art Section of the Education Department, qualified Naturalists be appointed to direct the collection of Specimens in order to supply whatever deficiencies exist in the more important Provincial Museums ; 26060.-Rep. IV.
and, also, in order to organize Typical Museums, to be sent by the Department of Science and Art into the Proviaces to such Science Schools as may be reported to be likely to make them efficient instruments of Scientific Instruction.
XI. That a System of Inspection of Provincial Museums be organized with a view of reporting on their condition, and on the extent to which they are usefully employed, and whether the conditions of the Loan or Grant from the Department of Science and, Art have been fulfilled.
With regard to Public Lectures, we recommend:
XII. That Courses of Lectures be given in connexion with the Collection of Physical and Mechanical Instruments, the establishment of which we have proposed, the object of these Lectures being to illustrate the progress of Scientific and Mechanical Discovery and Invention.
XIII. That the establishment of Lectures on Science, accessible to all classes on the payment of a small fee, should be promoted by the Government in the great centres of population.
XIV. That, in the first instance, with the view of carrying out the preceding recommendation, the system of instruction of this kind, which has already been established by the Government in the Metropolis, should be developed by the institution of Courses of Lectures on the principal Branches of Experimental and Natural Science.
XV. That the proposed Lectures be of two kinds. First: Lectures of an elementary character on the General Principles and most important Facts of Science. Secondly : Lectures specially intended for the Working Classes on the Application of Scrence to the Arts and Industries of the Country.

All of which we humbly beg leave to submit for Your Majesty's gracious consideration,

(Signed)	DEVONSHIRE.
	JOHN LUBBOCK.
	J. P. KAY-SHUTTLEWORTH.
	W. SHARPEY.
	T. H. HUXLEY.
	G. G. STOKES
	HENRY J.S.SMITH.
	- B. SAMUELSONa
	(Feb. 16th 1874.)

I request permission to state that I have withheld my signature from the above Report, not because I disagree with the Recommendations which it contains, but because I have been prevented from taking part in the recent deliberations of Her Majesty's Commissioners.

LANSDOWNE.

J. Norman Lockyer,
 Secretary.

January 16th, 1874.

* Having taken a part in the deliberations which led to this Report, my signature has been appended to it after its presentation to the Queen, only on account of my unavoidable absence from England when it was presented.

APPENDIX TO FOURTH REPORT.

APPENDİX I.

Statembent of the Amounts taken for the various Museums in the Estimates for the Financlah : $: \quad$ Year 1873-74.	
	Museum of Practical Geology, Jermyn Street.
h Museum.*	Salares and Wages. Director $-\ldots$$\frac{\mathbb{E}}{200}$
es.	Registrar and Curator - : 600
1 Superintendent of Nutural History - ${ }^{\text {\% }} 800$	"Clerk and Assustant - - 200
Keepers of Departments: 1 nt 6002	
	Attendants and Cleaners - ' . 284
	Purchase
ning 20l. to 400 l pet annum	Specimens for Mussum, and Books for Library
do., lower section, 1500 / 101, to $3101 ., 1,323$,	Purchase and construction of Mming
Junior Asangants, 901 l 10% to 1801. ${ }^{\text {a }}$, 560	
rat-0lass Attendand $1001,5 l$ to 1,070	Furnture and fittings - - $\quad 50$
Second-class do , fol., 4l. to 1002 .	
$42,1,1$	Police - - - - $\quad 400{ }_{4}^{4}, 054^{*}$
tra d	Patent Museum, South Kensington.
on the pening of the Museum till 8	
	Salares and Wages
Saturdays during the summer, de 50	Assistant to Curator - - 168
muneration to persons not on the - 8,336	Wages of Wrter, Mechanics, and Atten-
Museum Establishment, vz, for	Poluce - - - - - 100
preparation of Catalogues of Zoology	Fire Insurances on Models in Museum - 25
Do Botany - - - 200	Incudental Eapenses
350	Carriage of Models, \&c - - 130
rchases and Acqusitions	
merals and Metrontes	Royal Botanic Gardens, Kew.
Fosals - - ${ }^{\text {a }}$	Salarres and Wages : - Et $^{\text {s. }}$
Books for the Departument of Geology : 25	Keeper of Library and Herbarium, ${ }^{-1}$
Zoological specimens - - 1,000	
Books for the Department of Zoology - 25	Clerk to drtto, and two Assistants- $790{ }^{\prime} 0$
Botanceal gpeommens - - - 250	Curator of the Museums - - 1400
Books for the Department of Botany, - 25	Door Keeper - - 4616
2,950	

SCOTLAND.

Edinburgh Museum.

Salaries and Wages

Advertisements, printing, and incidents 300 o

APPENDIX II.

Documents relating to the Botanical Collections at Kew and at the British Mubeum.
[See p. 5-10]
A.-Memorandum with respect to the Herbarium and Library at Kew previous to the Appointment of the late Sir W. J. Hooker as Director.
The question of the Commussioners requires some explana tions, in order to answer it satisfactonly. The Herbernum which existed at Kew previous to the late Sur W J. Hooker's apponintment as Durector, was broken up durnog the changes that were made when the garden was put upon its new footing as a public establishment My personal knowledge of the Herbanum, however, antedates my father's appointment to the Drectorahp from what 1 recollect myself, and from what Sir W J. Hooker told me, 1 behave that it was, for the perzod, extensive, that, it was arranged cheefly according to countries, and was in part st any rato classsiced and
well named A large portion consisted of plants collected by botanical Alarge pornon con the Royal colected by botancal explorers sent from the Royal Gardens to vanous parts of the worid, and styled olmcialy Botanical Coluectors to His Majesty Their origmal mstructions $20-$ one for Kew, the other for Sur Joseph Banks The emi ployment of collectors as a part of the earablughment cessed ployment of coliectors as a part of the establishment censed became Crown property, that is, previous to my father's becampe trown property, that
Towards the close of Sur Joseph Banks's life, a house, called Hunter House, was purchased by the King with the grounds attached, and added to the Royal property. At the instance of Sor Joseph Banks, it was deternined to devote thus to the accommodation of a botanical Library and Herbanum worthy of the coantry, and for which the garden collections would afford a foundation.
One of the rooms was at the time fitted up with bookshelves, as a commencement towards carrying out thrs
project Sir J Banks's death the plan was abandoned; the house remamned empty for some years, and was eventually given an a private resadence to the late King of Hanover. This honse is that now occupped by the Herbanum and Lebrary at Kew, and the bookshelves, which remanned undsturbed, have been devoted to ther ongmal purpose Amongat the collections, of the existence of which of the garden I have evidence dunng the Drectorshup of Mr. Arton, were extensve senes of plants from Australla, New
Zesimand, South Afrca, zesiand, Souti Ainca, the Facilic Kdiands, and brant, besides named specimens of ecultivated plants kept for the Hooker often deplored to me the breaking up of thus Her-
barium, depriving hum, as it did, of the ready means of identrfying many plants in cultuvation at Kew which had been sent there by collectors with the natuve ppecimens transmitted from the sams sources.

I have evdence to show that Ruchard Cunningham, one of the staff attached to Kew, was for many years engaged in the arrangement of the collections and he determunation of the plant in th W J Hooker, then Regius Profeser of Botany at Glosgow Writig nider date January 22 , 1824 (the maject for ung Hunter House havng falien through at that time, owng to Sir Joseph Banks's death) through at that time, owng to Sir Jobeph banks's death), "Mr Ariton to have a room built in the gardens to contan " Mr Arton to have a room built in the gaydens to contain " the herbaris altogether, which is now going on wrth, and
"c as soon as I get thinge set straight in it, I will commence " as soon as I get thange set straight "
" upon a series of S. African planta."

He refere again to this during the followng year (Nov. 3 , 1825) in speaking of "the littie convenience we have $i f$ had till Iately m the garden room to arrange and compare " dried plants with the books."

I am not aware of the extent or condition of the Library at Kew prevous to Sir W J. Hooker's acseamion There awas one of considerable arze, however, which was the private 'property of the Director, bat was used for garden parposes, as was subsequently that of Sur W. Hooker for many years after the commencement of his Directorship Annual cost of the present scientific staff attached to the
Royal Gardens, Kew: Royal Gardens, Kew:

B.-Staremeat by Dr. Hookie respectug the Pugchase, by the Govipnnesent, of the Herbaricm, Imbrary, Botanical Corbespondence, Mandgerifts, Portraits, Drampings, \&c., of the late Sir William Jackson IHoorfe

Royal Gardens, Kew
Dec 17, 1873 ;

Dir,
Dec 17, 1873

$$
\begin{aligned}
& \text { the documents relating thereto. } \\
& \text { J, N Lockyer', Esq, FRS, I am, \&c Dos D. Hooker. } \\
& \text { Secretary, to the Roysl Commirsion on Science. } \\
& \text {, , ", , }
\end{aligned}
$$

Sir W. Erooker, on his decease on August 12, 1865, left instructions to his Executors that his herbarnum (exclusrve of such specmens as were exhibited un the Museams at Kew), together with suck parts of has hbrary as were required to complete that at Kew, his botanical correspondence, collection of portraits of botanists, his manuscripts, drawngs of plants, botanical scenery, \&co, should be offered by his Executors to the Government for purchase at a farr valua nom," "to be deposited at Kewf, as past,"
in poperty attached to the hoya Gardens. In pursuance of these instrachons, the offer was made, Her Majesty's Works, for the purchase of the whole, for a Her Majestys Work
sum of $7,000 l$, vi.,

$$
\begin{array}{lll}
\text { Herbarimm - } & - & =25,000 \\
\text { Books } & \text { - } & 1,000 \\
\text { Correspondence, manuscrapts, portraits, \&e. } & 1,000
\end{array}
$$

The oum asked for the harbarium was based on on estr mate of the actual expenditure incurred by Srr W Hookex on the purchase of specmens and the materrals for they conservation during the 60 years he had devoted to its formation He toolk no account of the value of specimen presented to hm by publio and private bodies, nor of the ralue of the returnis he made for them; nor of the collec trons made by persons employed in Government Expeditione and which collections were presented to humself by the Government; nor of the salanies of Curators pard by himself and engaged upon the arrangernent of the herbanum during npwards of 30 years.
In reference to the herbsinum especislly, a memonal (of which a copy is herownth enclosed), was presented to th Hirst Commisaioner of Her Majesty's Works, urging its pur chase, it whe signed by the drolessors or botany m the Roysi Ingnesn, and Royal Geographical Socleties, and by the Keeper of the Botanical Collections, and the Superntendent of the Nstural History Departments of the British Museum The Memomainsts state that the herbanum was "generally The Memonainste state that the herbarnum was "generally it " 18 in constant and dauly use by the Establushment of "Kew Gardens, to the due working of whoh, whether in "A scientafic or a practical or an economio point of view, w " cannot but regard it as absolately essential," and add theur confidant hope, "that the opportumity may not be " lost of parmanently eatebleahing the unity of a collection " so justly celebrated amongst men of science in all parts "of the poorld."
The offer was anconditionally accepted by the Lords of Her Majesty's Treasury, as shown in the accompanying letter addressed by the Fyst Commssanoner of Her Mapesty's Works to Dr. Hooken is
J. D. Hooker.

(Copy)

To the Rught Honourable the First Commismoner of Hei Majesty's Works.
We the undersigned, having understood that in pursusnce of the instructions left by the late Sir Willam Jackson Hooker, hus herbarmum and botamial collections, together whth such of his books as are wanting to complete the Botanical Library at Kew, have been offered through you to Her Majesty's Government, and beheving that, under the above curcumstances, the sum of 6,0001 . Would be accepted or the whole, beg leave to urge upon your consideration the impartance to Science in gencra, and especinily to the Eatabishment of the Royal Gardens at Kew, that the urivalled collections should be secured to the Nation.
When, in 1852, this herbarium was removed from Sur

Wuram Hooker's private reaidence to the late King of Hanover's houss at Kew, it was siready generaily acknowledged to be the most extensive in Europe, the result of lorty years' incessant exertion and liberal expenditure, and has since been largely increased at Sir Wiltram's private cost. It has ever been mosti liberally lard open to Scientrfic Botanists of thus and other Countries, and is in"constant and daly use by the Establishment of Kew Gardens, to the due working of which, whether in a screntific or in a practreal or inan economic point of niew, we cannot but consider it as absolutely essential.
We believe, also, that the Botsmucal Works not slready in he National Labrary at Kew, but which Sir William allowed the Estabhament the free use of, will be found to be womerous and of great valne
We, therefore, confidently hope that the opportunity may mently establishing the unity of a coillection so justly celebrated amongst men of Science in all parts of the world

Charless Daubeny
Professor of Botany m the University of Oxford.
Professor of Botany in the University of Cambridge
J H Balpour, Edinburgh
G. Wabker Agnott,

Professor of Botany in the University of Glasgow
W. H. Harvey

Professor of Botany in the University of Dublim.
Daniel Oliyer,
Professor of Botany, University College; London
Joht J Bennetit,
Keeper of the Botanical Collections of the Brinsh Museum
George Bentham;
President of the Linnean Society of London Richard Ofen,

Superntendent of the Natural History Departments, British Museum.
In thorough conviction of the propuety and importance of adding Sir Wiliam Hooker's Herbanum to the Botanica Collections at Kew

Edward Sabine
President of the Royal Society
Rod. I. Murceison,
Preatent of the Royal Geographical Somety.
4498.
(Copy)
Office of Works, S W
October 13, 1866.
Sir,
Rbperbing to the correspondence which has taken place on the subject of the herbariam, \&o., of the late Srr inst. Hooker, offered by his Executors, in pursuance of his dens, I am durected by the First Commassoner of Her Majesty's Works, \&co., to aequaint yon that the Lords of the Tressury have informed him that they ave fully sensible of the value of this collectron, and that they are wiling to sanctron the purchase thereof for the sum of 7,000l, viz ,-

out of moneys to be voted by Parliament, and have directed that provisions may be mads tu the Estimates for $1867-8$, to be submitted to Parluament next Session

Therr Lordships are desirons, in the meantime, of having a proper inventory of the collection made, and I am, therefore, to request that you will uform the Furst Comms sioner what course you propose to take for effecting this object.

I am, \&c.
forger Rusifll,
J. D. Hooker, Esq, M D , F R.S

Assistant Searetary

D \geqq

C-Statherent by Mr Bentiah. [See p. 7.]

 (See Question 7205, Vol, I., p. 469.)Sif, \quad 25, Wilton Place, S.W., July 1872. Sincs the recerpt of yours of the 5 th sustant 1 have procured a sight of the Furst Report of the Royal Scantrific Commansaion and perused the paper handed in by Mr. Carrutherrs forraing the Appendix X on in 12 which the stan in ments I made in answer to
everel respecte contradicted.
With regard to the comparative advantages of the Botanical Museums of Kew and the Britash Museum, these may be in a great measure matters of opinion upon which it would be uselens in me wo enter invo any furthe discusion I would ony been gradusly form pard inequent visits to the Brinsh at vamous for the puese of consulitng the collections Mere from the per 1827 to the present time, that here fruporml pot with the preatest courtesy and the have uniformly met with the greatest courtesy and the the part of Mr Brown and his successors, Mr. Beanett and Mr Carruthers, and that I have steadily worked in the Herbarmme et Kew since the private collections of Sir Wulham Hooker and my own were there brought tosether in 1854. From this experience I cannot but adhere gether in 1864. From fusi experience I cannot Butane Department of the Britagh Museum (owing I believe mannly Department of the Britigh Museum (owing I beineve mainly Keepers), very limited during Mr. Brown's time, considerKeepers), very minded Mr. Bennett, still more so under the present Keeper, Mr Carruthers, but still very far below those afforded by the Kew Herbanium and Museum. I shall be ready at any time to subatantarate the details upon which this opinion is founded.
Mr Carruthers' experience I presume to result chefly from his connexion with the British Museum since Mr Brown's death in 1858. I am not aware what personal experience he has of the Botanical Museum and Herbanum at Kew; I never recollect having the pleasure of seemg him there, and to this circumstance I must attmbute som statements in the above-mentioned paper from which think it right to record my dissent
He moludes in the scientific collection of the British Museum" a "structural series" which we are griven to understand was due to the different vewas taken by Robert Brown of the proposed study of plants from that which I had alluded to To this I beg to observe that the Botamical Museum at Kew includes "a frut collection", "a collee tion of gum resins and other products," and "a general "collection exhibiting the form and atructure-of plants "s and consisting of the larger specimens chaefy exlanbited "to the public," infinitely suparior to those of the Britnoh Museum, and occupping three large builungs specialy des ated to them. Musuem was only formed after the example of the one at Kew, 85 was endent to ald those who, hke mysers waiche of its progress durng the three yed to the public The only formanion before a Kortion is the fossil senres

It is aleo to the want of personal acquaintance whth the
It is also to the want of personal acquaintance with the
history of the Kew collections that I must attribute the history of the Kew coll
That Sir W, J Hooker "had no public herbarnum fropa "the time of his eppointment in 1841 tull 1855 It " is therefore evident that a great enentific herbarium "Is is not a necessity to the efficrency of the gardens at "Kew" Sir Wiliam, during all this tmene, allowed his own private herbanum, the richest 4n Brttan, to be used as a public herbarxam in coonexion with the gardea, although kept enturely at his own expense.
That the primary object for which Sir W J Hooker socepted my herbarium in 1855 wras for the une of the Gardens This was not the case My herbarium and botanical ibrary, of upwards of 1,000 volumes, were accepted in 1854 (not 1855), expressly for the use of screntafic botanusts.
I would add that I am quite at a loss to descover in which of my works I can have commutted the error of treating as dupheates whatever I do not estumate at the value of spectes.

I have the honour to be, Sir,
Your obedient servant,
Geomez Bentriam
J. Norman Lockyer, $\mathrm{Req}_{\text {G }}$,

Secretary, Roval Scientric Commossion.
D.mCommunicatrons frow Mn Jomy Ball.
(See Questron 7229, Vol. 1., p. 473),
I.

Athenswm Club, Pall Mall, 28th Nov. 1872.
Sir, Iv accordance with the desure of the Royal Cor Is accordance with the desire of the Royal Coms
musgioners on Scientific Instruction, conveyed to me in your musaionara on Screntafic Instruction, conveved to me in your lettar of the 15 th inst., I beg that you whil have the good-
ness to ley before them the following statement with ness to lay before them the following statement with
reference to the Evidence: given by me on the 28th Marah
1871 . $1871 \cdot$
My attention has been called by Mr. Carruthors, of the Brinsh Museum, to the answer given by mas to question 7229, which, in his opurion, conveys e charge againat hu
in hus copacity as Keeper of tha Bolam an Deparkment.
before the Commerionere $p-473$, rep to
 Whether collections in the Britich Musevm atande unnamed follows :- There

There is an accumulation. I cannot venture to way how large it is, I know, because I have had a recent hasve I mill not say disappeared but cennot now he found and they may wery posapply be lyung in cases thare " and they may very possibly be lying in casas there.
I may be nilowed here to mention the fact that I raceived a proot of my evidence on the eveming preseding my departure from England for a journery to Moroceo, and, thus, had not the opportunity wasily allowed fo takes on the part of the reporter or from maccuracy on the part of the witness.
From whichever cause the error may have arisen, the answer above quoted in in one reapect inscourate. It should have stood! "I have heard a recont inetance," of otherwise conveyed to the Commissioners the fact that, whth the exception of a eingle visit early in the same year, my recent knowledge of the pollections, at the Britaih Museum was derved from others, and not from personal observation.

It seems unnecessary to add that my answer what not intended to convey, and did mot, in my opmion, convey any charge aganst the recent management or the Museum collections, since the remamder of my ovidenoe rendere such a disclamer superfluous.

In the course of a correepondence with Mr, Carruthers haning especual reference to certasn collectiona which bso been supposed to have disappeared, wholly or in part, from the Museum, that gentleman has assured me that all the plants referred to are now in the Museump; and he, moreover, states, with regard generaily to all the Botanical collections orymally belonging to Sur Jaseph Banks, that "everythung tosit became national property"
In and

- place the same reinance on any akatementa made by Mr. Carruthers, or his assistants, Mr. Tmmen and Mr Britten, as to facke within their own knowledge, that 1 do on those of other mea of whth the sbove assertions: but I venture to doubt whether, in oo general a form, the above I venture to doubt whether, in so geacral ficarm, In In en quoted statement is capsile of tull veniticataon, in sny the current duties of ther department, the gentiemon above nomed can have vernfed, specmen by specmen, the exnstence and right classafication of plants that mugt be numbered by tens of thousamds.

I have no doubt, however, that, under the management of the late and the present Keepers of the Botamcal De paxtment, considerable progress has been made towards patiang in order and making accessible the unnamed and unsrranged collections at the Musenm.

That a large accumulation of such collections existed under the managerment of Mr, \boldsymbol{R} Brown, and that some of them, beng unprotected by poison, were extensively attacked by insects, are facte of which I wan personally cognizant, and which were well known to many botanists at home and abroad, as 1 can testify from my pertonal acquankance whth a majonty of the emnent Luropean botanists for the last 30 years. Knowing, from a rathe extensive acquaintance with herbaris, pribic and private, how difticult it is to get mid of accumulat arrass, i was not surpmsed to hear, from the monembilit of finding fre Banch Museum, plant belonging to cotme of the old the British Museam, plane belonging to some of tha old collections; bat I cain tate to which such trquires whit a verred Haring after many vears' absence, reanded in London since the begoning of 1870 , I have but once
visited the Museum collections since that date, and on that occasion, as atated in my evidence, I examined a collection which apparently had not been opened since the time of Sir Joseph Banks.
Under these ourcumstances, it appeary to me that the facts justufied a belhef in the substantial accuracy of my answer to question 7229. The degree in whrch that answer is inapplrcable to the present state of the collections affords a measure of the actuvity and success that have marked the recent management of the collections, and must be a matter of satisfaction to all students of botany.
That I may not appear wanthig in justice to the late Mr. Robert Brown, whose name sh revered by all botanists, ${ }^{4}$ may be allowed to remark that his poiliton, in regard to the Museum coll och Sns, Joseph Banks, the herbenum tise alto ther under he monapent, and ofter the death of the gether unamer it became his private property. The ar ongemothy which the Benkeien Hebpary. Tres trans terred to the British Musenm, still remanning under the terred oment of Mr Brown, very naturally did not change manamement habit of mind of that eminent man. Fully engaged in his own studres, he had no desire to encourage the vistas of hus own studies, he had no desire to encourage the vigta of strangers, a fact obvious to threse who sought do consurt through the courtesy and kindness of Mr. Bennett, hus ssastant, who afterwards took Mr. Brown's place at the Museum.
At that pernod, the example of other large publec collertions on the contment afforded, to some extent, a precedent for deficienceses in order and the accumulation of arrears. So far as my knowledge extends, the first instance of a very large collection, of which every portion was maintained in a state available for mmednate reference, was afforded by the herbarrum at Kew, under the management of the late Su W. J. Hooker.

Truating that the Commissioners will be pleased to publish thrs statement in the Appendix to their next report,

I have, \&c.,
J. Norman Lookyer, Esq., FR S

II.

Athenæum Club, Pall Mall,
My Lord Duke, December 2nd, 1872
In accordance with the desire of the Royal Commissioners on Sceentific Instruction, I have addressed to therr Secretary a note respecting a passage in the evidence given by me in March 1871, to which exception has been taken by Mr Carrathers me
10 for offering any suggestion to the Royal Commissioners the nothonal botanical collections; but I thut I mis the national botamical conit to ; buis thank may wrthout improprety submit to your Grace the followng the sugrestion mude theren may appese to you not un desarving the consideration of the Commissoriers.
I have reason to know that there as a nearly unamumous agreement amongst the most competent British botanste as to the inexpediency of uniting in a single znuseum the oollections now existing at Kew and at the British Museum.
To semove the collectiona from Kew would be to destroy the scientufic charscter of the foremost botanical establishment in the world, and would be regarded as an act of vandalism, not only by all competent judges in our siands. but by all oultivators of natural serence in other oivised countimes.
The value and extent of the Kow collectaons, and ospecially the fact that they have served as the foundation for many of the most umportant botanical works published during the last 25 youra, make it frequentiy necessary for the authors of new works to resort to Kew for the purpose of study. The speoe required for the study and comparison of numerous specimens is considerable, and, in point of fact, the eccommodation afforded in the present building at Kew is at tumes inconveniently limited.
But, in addtiton to a comparatively small number of men, engaged on works of some length and moportance. who resort to the herbarium at Kew for successive weeks, or oven months, there is a far more numerous elass of students, or persons seeking usefur information-many of them returning from the colonies or foreign countries-who seek ready aceess to a puibe cullothon for the puppose of comparnfy specmens wind autzentao types, or otherwise
 to them, and doubly no to the amall and fully-worked staff
at Kew, and to the serious stadents, who must be disturbed if a large class, of what may be called casual visitors, were encouraged to frequent the herbarnum
On these grounds, apart from others that have been urged in endence before the Commissionars, it seems highly desurable that the herbarium connected with the Britush Museam should be manntanned in a state of full efflecency.
In case, however, these news should not prevall with the Royal Commissioneres, and they should serrously entertain. the project of uniting in one establighment the collections at Kew with those at the Bntish Museum, it will become a matter of parazaount importance that they should be and do juige wan and di places.
I venture to suggest that in such an inquury there is Inttle to be ganed by going back through the past history of the eollections, and that no very satisfactory result wil nected respectively pnth Kem and the Bntsh Murson from persong who, justly or not; may be suppqsed to have a dected leanung towards etther.
A course more hikely to assist the Coramissioners towards a safe conclusion would bs to request two on more come petent persons, holding an independent and responsible position, to vait both herbaria, whth a new to compare theur avalabieness for scientific research in their present condition; and the resources at the command of each for supplying deficeencies and keeping pace with the norreasing range of discovery and exploration.
Although I have no means for knowng that they would undertake such a duty, I do not doubt that the professors of botany mo the Universities of Oxford and Cambridge would readily do so in the interest of science.
By allowng the officers in charge of each herbarum to suggest for companison the names of two or throe genera and adding any others they might of thex own mohon select, the gentlemen undertaking the mquary could, with out much lebour, form a farr comparative judgmont as to the present condition of the named collections in both establishments. They should examme into the extent and nsture of the unarranged collectrons m eagh eastablishment, and the amount of arrear existong in the shape of plants named, but not intercalated. Bendes reporting on the present condition of the collections, the same gentlemen should be requested to examine minto the means possessed by each establishment for obtaining new and rare plants from countres stall mpperfectly explored. The very extensive forergn correspondence, uncluding many remote parts of the globe, set on footby the late Sir W. Hooker, and continued by the present Director, has probably offered opportumitue for obtainug dred planan for the royal gardeng, wheh seeds, outh ng, or lving plather pubie mot gardone, buth as ar not enjoyed by any other pubnc natianon; bual of the durectors of man hern actuly recerved form actually recave fom on years, 1 may be permitted here to mentin a pract
In the wey of the sugrested amalgamation of the two in the way or he suggested amalgamainon of bhe wo herbaris whuch has not, o believe, been suggested by any of the witnesses hitherto examined. The specimens in both
collections are glued down upon stiff white paper, but this collections are glued down upon stiff white paper, but this being the larger As it is found that plants laid down on papers of unequal alze cannot be intermixed without injury; papers of unequal alze cannot be intermixed without injurys Brithsh Museum paper eould not be cut down to the Kew gize without semous damage to many unvaluable specunens that cannot be replaced, and it would be necessary to transfer the Kew herbarium to larger paper, or else ineur the certainty of damage and inconvemienca from mixing the two herbana. The transference of the Kew herbannum to larger papar would unvolve the purchase of nearly 1,000 resms of paper, and the employment of from 12 to 20 compotent persons, if such could be found, for a year, and, what is more sernous, it would gravely interfere with th publrcation of four of the most umportant of modern botancal works: The Genera Plantarum, The Flora of Britsh India, The Flora of Australua, The Flora of Tropucal Afruca, not to mention others of less mportance. A minor item, yet not meonanderables, is the fact that the amalgamathon of the herbbaria would in any oase render useless 450 cabin ets now in use at Kew each containug 16 compart ments fo: parcels of plants.

I have, \&c.
Hus Grace the Duke of Devonshure.
$\stackrel{\text { ec. }}{\text { John Ball }}$

E. Stitemintiby Mr Carruthers. x.

On reading the evidences of Miv, John Bail, it waa appar ent to me that his statementre regardung the Botapooal Departinent of the Britisi Musecum were those of a winness
ugnorant of the matters regarding whuch he ventured to ugnorant of the matters regardrag whuch he wentured to
testify.
One statement in his endence (Qu, 7229), as I read in, appeared to reflect personally on meem Keeper of the dopartment, and I accordingly appied to Mr.' Ball for defimse
armation as to the alieged fact
A second statement (Qu. 7217), beng rather a matter of opinion, I resolved to meet by obtaining the testamony of two botanrots, whom no one would venture to characternse the Britshi Museum and efranence in screnct would compel respect to their testinony.
respect to thenr testinnony.
a asked for an opportunity to strbmit the ressult of these inquires to the Commiserioneres, that the errors mught be corrected, and the falso mpressions contanaed 1n the evnCommenssioners, if now submit my observations to wonting
Mr. Ball's statement ts of fact 'm reference to Botameal Department of the Brithh Museum, contamed im hus answer to question 7229,18 ss follows $4=I$ I know, because "I have had a reoent unvtances of onte, that sume very unters "cannot now be found, 'and they may very posshbly be "lyng in casses there"
In a lettet addressed to Mr. Bell, I asked lum for the names of the one collection, and the some very unteresting collections whech could not be found, and ware very possibly lying in cases at the Museum. I knew that, the angle was made whle it was' under my charge, His statement consequently asserted that 1 , the Offical Keeper, was ignorant of several collections in the Musenm, with which he, a comparative stranger, was acquainted. In his reply wntten from North Wales, on the slot August 1872, Mr Ball says ', I I thould tell you that my evidence before "s the Science Commussion was given either one or two daya "" before I left England. I remember that the proof was "delvered late on my last veenngg in London, and that at "a hasty glance I saw many passagee that I shonid have "wnshed to correct; some of thenc errons on the part of " whoever took down my evidences others ampocuracies on " myy own part I have not yet seemr the pubhshed evn-
 " take it for granted that you 'quote from that ysource, I ": camnot be surprised at your caling for an explanation "from me Mr In a subsequent letter (dsted 11 Oct. 1872), Mr Ball stated that the partriculat error in his answer to qu 7229 was, that it " " should have been printed 'I have "' 'heard of a recent instanoe,' instead of 'I have had a "' "recent nnstance'" But' it is mosst obvicus that no hearsay mformation about one collection could supply Mr Bail, as his answer thus amended states, with personal knowledge of several other collections. in thus same letter, Mr Bal gives me the only hiformaina whit he has been an followe :- "I have hittle doubt thatit the collection that I "as had in my mund at the tume was that of Saltes Abysemman " plants, but, from 3 uquurnes made wnthun the last two daya, "Il am led to believe that the impression wnder wheh I "spoke whas meorrect." On receapt of this, I demanded the unquallfied withdrawal of the erronsous, matatement, in terms which would be satusfactory to me, and this beng refused, I moformed Mr Ball of my mintentwon to age his letters in estabishing the trath, and I now seek through. this commmnication to place the facts before the Cormmasgreulation as that given to Mr. Ball's error.
The matter of opmon to which I take exoeption, and which is repeated in different forms in the evidence, in pianoly stasted in the answer to $\mathrm{qu} .7217, \mathrm{~m}$ whuch, while asserting that the establishmentt at Kewf ": as pear per"fectron as it 18 possible in human affairs to attamin to," he declares, "that the tradtrons of the British Museum have " not been favourable to makng the collectiona there su available for the general purposes of serence na mught be desired;" and be consrders "that the collection at the
"Brash Museum mught be made znore valuable to emence " and to scientafic mee than it now is" (Qu. 7216).
1, of course, hy no ciam to celestial perfection in the management of the herbariume, but 1 emphstically sepra-
duate the unfounded statement made by Mr. Ball. daste the unfonnded statement made by Mr. Ball I from te being dreetly associated by Mr. Bell with a name

Which commands the profonad reapeot of every student of otany throughout the world.
To meet this zemertion 1 整ddresbed lettars to two inde pendent botanists, whose work in the herbarmum of the ledge, askong thable them to ipesk from personai knowbility of the collections fores purposes of sorenes.
 made the only vint he has pand to the herbamum withy the last 25 yeare. Dr. Coston had in numerous visitis pone systematically through a considerable portion of the berbe rum He writes from Pans, on the 21 at September 1872, as follows:
"Je pense, des'que J'gursi effectué le déménagement de " moa herbier, que je vais transposter dans is construction "que j'ai fart établur spéonalement pour lui, avour le plasir * collectrons du Brtish Museumes dana les maggnifiques "durection Ces collections sount con in eses a votre habile "facnles à consulter qui je pourrai en bien per do termpi "comparer toutes mes plantea entiques de l'Alaéne, du " Maroc, et de la Tunasse avec les préorenx de lypes éne, du * Brinsh Museum est al mohe. Mon intention eat de " publerer avec M.J' Ball une forule du Maroc et d'illus"t trer par des planches toutes leu espèces nouvelles de ce "prys, encore so peu connu, et sur lequel Is récente explora"pays, de MM. J D Hooker et J. Hall a fourn de of sion " portants documents

* L'herbier du British Museum estit le aeul qui avec l'her* bier du Museum de Parns offre un ausan grand nombre de "collections classuques, et pour le rendre sussi utrle quo "possible aux études botanuques, vous p’avez qu'd con" "inuer à procéder avee le meme soin au elassement dea "f rehes maternux que vous posséder, et dont chaque jour ". vous accrossez encore l'importance par de nouvelles " sequasitions.
"Je n'auras comme amélioration z signaller a la belle "installation de votre herbier qu"a vous recommander, "c comme je crois que vous le fartes déja, de munir chaque " espèce dune chemuse spécisle portant extérneurement une " étquette indaquant le nom de l'espèce, son numéro d'ordre " d'après la monographie la plug_récente, et l'indication de ""paya d'où proviennent les échantillons. J'au eu a re " grettor ls disparition des étiquettes onginales pour dee " " habitude de transcrure les étiquettea au heu de les con" server rehgieusement, a tonjours été rejetée par vous "
The other botansat to whom I apphed was John Miers,
Esq, F.R S., Vice-President L S. Mr. Miers han worked Esq, F.R S., Vice-President L S. Mr. Miers ham worked
impartally in the lerbarrum of the Musenm, an that at impartially in the herbarmum of the Musenin, as in that at Kew, and his numerous mdependent publications are the
best testimonies to the extent, value, and scientific avalabest testimomes to the extent, value, and sementiac avait
bility of the collection of plants at the Brimsh Museum Mr. Miers writes - " The herbanum of the British Mu " Mr. Miers wnites me" The herbanum of the British Mu" seum appears to me well adapted for the purpose of "Hookeman herbarium in proportion to its relative extent I a should state, however, that I have invariably been nhle to " because I basily at the Brisish Museum than at Kew, ar at the same tome the carpological collections plants but " at the same tume the carpological collectrons close at "f to a good botanical hbrary especially to the "the Bank onan collection, together with ready means of "the Bankbnan collection, together with ready means of " Aublet, Solander, and a host of others, necensary to be " consulted for purposes of monographing, these advan"s tages are not obtainable at Kew , where the collections of "tages are not obraunshle at Kew, where the collecions of "In these remarks I do not wish to detract in the smallest " degree from the deservedly high character of the Hooke"nisn herbanum, which is univalled for its nches, "espectally as I have there recerved all the attention I "could desire. But, at the same twme, I think in faimenso "that we should all acknowledge what in due to the Botamical Department of the Britheh Museam for the state "of its collections and the facilities there afforded to " ecientinc workers in that branch of knowledge; I say nothing sbout the conventence to the general body of " men of scrence afforded by the central positaon of the "Mnaeum, -ane of xts greatest advantages, which should " never be lost syght of
I mught take farther exception to statements un the evidence of Mr. Ball bearng on the berbanimm. but, as he has informed mee that, "wnth the earception of a ningle visit "early hast year, my personsl acquanntance whth the col" lectiona at the Bntish Maseum is denved from a few "Fista more than 25 years ago," it is obvicusly vaposable
 knowledge;

Thus is true also of the eridences of Drithornsor in reerence to the herbarum of the Bmishi Museum, I am not awaze that Dr. homson has once nifited the herbanum during the 14 years in which t havg been oflcially connected with it, and he cannot possably firom has personal knowledge declare that "Kewt ws at present the more avaulable for "acrentific reesarch of the two." (Qu. 7242)

William Cariuthers.
Britush Musexm, May 14, 1873.

F--Memorisl presented to the First Lord of the Treasury, respecting the Nationafy Hbrbaris. . [See p. 7.]
To the Right Hon. W. E. Gladstone, First Lord of the Treasury.
Sur, The underagned persons engaged in the puxsurt of botany, or zannstrruchon thereman, desire to call your serious attention to a subject that deeply conceras the progress of Natural Scienoe, and that of those branches of agriculture, hor on Botanical Research
i Thend on Botrict Commussioner of Works, ita a Memorandum presented to Parluament before the close of last Session, presenty yused the question whether it is desurable to transfer to the branch of the Britush Museum aboutto be constructed at South Kenemgiton, the Scientnfic Collections and Lubrary now existing at Kew, and further stated that, pending the decurion on that subject, he considers it his duty to take care that no now expense ahall be mourred at Kew which will embarrass the Ministers of the Crown or the House of Commons in arriving at a decision
The Lords of the Treasury, in their Minute of the 24 th July, decline to refer to that portion of the abovementioned Memorandum, and no statement on that subject has annce been made by any Manster of the Crown which shows whether it has recelved the attention of the Government
Beng strongly of opimon that the proposed measure would be highly detrymentai to the progress of Science, and injurous to all those interests that depend upon it,we beg to urge upon you that the subject is not one mexely of Departunental Interest, and that it would not be unfitung your poition, as First Minister of the Crown, to give your connderation to the followng reasons, which we beg to urge in oppoition to the proposed measure :-
that areat Botameal Garden hee that at
 in alose connexion with ws perfect in Herberum and Botemeal Libreq7 es porible, and theth Heordtron now fulfilled os tos pos arcumbtaces and the presits of sorenoe will admut
2. That suoh a combination of living and dead speamens is requaste for the complete study of plants, as regards their technicel, plyysological, and economio charactens, and that the removal of the Herbanum would be a retrogrado atep in a scientific point of view.
uil show the records of the Colomal and India Office Kew has heen to thmense importance the Establishment a and that weiphty questions are constantly submitted to the Direotor which require ummediate attention, and which could not, in many ceses, be satisfactocly anawered whthout reference to the Library or Herbatum.
4 That every faculty for the revestigation of the inthmate atructure and general habxt of plants, and the study of them in every point of view, which can moasonably be considered withun the soope of pure Botany, is aftorded by the Herbannum and Museum of Botany in connexion with the Gardan, and that it would be easy to point out umportant labours un that durection which have been unstatuted at Kew, while the aystamatic treatment has nlways regarded the more minute characters as well as those whioh are superfical.
5 It has been remarked, undeed, that mportant works, such as the Horrus Kewensss, have been prepared without the axd of an Harbanum at Kow. We would, howevers, revark that the statament is not correct, as there was an Herbunum, which was dispersed before Sw W. J Hooker becarne Director; and the oonditions of Natural Scrence are at he present wimo so completely attered, that it is impossible to zushtuto zay fare comparson, the namber of the publication zo question.
6. That the Museums of

Struotaral and Econome

Botany, which owe ther exptenoe, and amportance to the late Str W. J Hooker, are, often foupd of great, value in the deciston of critical points in the strudy of speciew and that the severance of them, fromy the ,Herhawuun. and, Lubrary would be a serous, losse
7. That in the pnncipal Bqtanuer Gardene ion the Contrnent, where effective work is done, there is in every case a large Herbarrum connected with them
8 That, in the nterest of Botancal Sclence, we thuik it highys dearabie that, beandes the collections now exnstring at Kew, an Herbarrum, or collection of dred plants, as com-
 t South Kensmoton, and that the 1 two Herbanums should be min intimate relation with each other
i9. That trom the delrcate sinf perishasile inature of its conitente, and the necesstiy of referning to numerous spectcontena, an Hersemp persone the the same tme and while it 19 dearable that tudents should have ready means of accers at the Natronal Museum in London to collections whrch may enable them to identify the plants of any: particular country, it is still more essential that the authyors of umportant works in Botanical Science should be enobled, as at present, to pursue there labours at Kew whthout interruption from casual vistors
10 That an Herbdrium as the téast 'costly' of all Collece tions in Natural History, and that which requrres the least amount of space for its proper maintenance, mp proportion the number of objects which it contauns.
11. That the arrangementa of the Herbanum at Kew axp so perfect, and the facilites for study 80 great, that is resorted to from all parts of the world sand it would therefore, be unwise to make a change which is the result is almost certasn to be detrimental, and whoh, we are assured, would be especially distasteful to the leadung Forelg Botansts.
M. J." Berkeley, 'Botanucal Director to the Royal Horticultural, Soceety of Londou
Charies C_{a} Babington ${ }_{5}$ Professor of Botany ${ }_{5}^{\prime}$, Cam
Mridge Lawson, Professor of Botan'y, Oxford.
J. H. Bulfour, Professor of Botany, Edanburgh:

Alexgnder Dickson ${ }_{2}$ Professor of Botany, Glasgow. G. Dhake, Professor of Botany, Aberdeen. Ed Perceval Wright, Professor of Botany, Dublin. Rohert Bentley, FL L S, Professor of Botany, King's College, and, to the Pharmeceutical Soclefy of
W. T. Thiselton Dyer, Professor of Botany, Royal Hortcultural Society, London.
R. O Cumnungham, Professor of Botany and Zoology
W. R. McNab, Professor of Bptany, Royal College,
of Scence, Dublin. George Henslow
George Henslow, MA, FLS S, Lecturer at St. Bartholomew's Hospital, (London), and at the Rogal Agricultural College, Cusencester
John Ball, FRS.
Maxwell T Masters, M. $\overline{\mathrm{D}}, \mathrm{F}, \overline{\mathrm{R} . \mathrm{S}}$
ames Bateman, F.R.S. Trevor-Claske, F.R.H.S
R. Wrevor-Canke, Fis.is. Saunders, F.

Geo. F Wilson, F. RS
Robert Hogg, L L. D, FLL'S :-
W. Sowerby, FLS
D. Moore, Ph D., FLS., MRI.A

Andrew Murray, F.L.S.
Willam Murro, Major-General, C, B, F.L.S \boldsymbol{S}_{4}
M. Pakenham Edgworth, F. L_{L}, S.

John Miers, F.RS, V P.LS
Damel Hanbury, F.R S, F.L.S.
C. E Broome, M A, F L'S.

Leonard Blomefield, M, A, FLS.
J T Boswell Syme, LL LI, FLS
Hugh Cleghorn, M D, F.L.S.
Clements Mark ham, CB, FLS
R C A. Prior, MD, FLS.
Edward J. Warng, M D, FL.S.
Gearge C M Bradwood, MD.
Walter Elhot, K C.S I, FI S.
J Forbes Watson, MA, M D, F L.S.
Ruchard Strachey, Maj-Gen., C'S I, FRS.
E W. Cooke, R.A, FRS, ${ }^{\text {R }}$ L S
Robert Brathwate, M D
Wulham Mitten, A.L.S. C , A, F.L.S
Wiham
John Goucher, F.L.S.S.
J. Iencester Warren, M A.

Worthington G Smuth, F.L.S.
M C. Cooke, MA.
James M. Crombie, M A., PLS
Alfred
Alfred W. Bennett, M.A B B Sc., F.LS
A. G. More, M.R I.A., F.L.S.

Thomas Moore, F L S., Floricultural Director to the Royad Horticultural Socrety of Landon. Thomas Thomson, M D., F.R.S., Inte Superintendent of the Royal Botanic Garden, Calcutta. Charies Darma, M A., F.R.S. George Bentham, F R.S.

APPENDIX III.

Extract from Mr. Lockyer's Report on the Aid given by the State to Science in France. [See p. 21.]

The Grnaral Collections illustrating the Sciences of Observation and Exprermenti in France.
In England the student of natural history finds in the Britsh Museum the most perfect and complete oollection in the world, by the study of which he 18 enabled to increase his knowledge and to carry on hrs inverthgation If, however, a student of mechamice, physics, chemsitry, or astronomy, or of the apphications of these Scrences to the varous had Museum helps his Natural History confrere, he finds Museum helps his Natural his want
This is not the case in France
This 18 not the case Museum of Natural History, which may be likened roughly et Méters which does for the stiudents of the sciences I have named what the Museum d'Histoure Neturelle doce for the students of Natural History. I was extremely struck for the everenended watres of this grangement in truck at the even-handed justice of thas atrangement in France, and was not surprised to find that in many points in which
we are behnd the French, the French themsplves ascribe that bsckwardness to the fact that we are less fortunate than they in not having such an establishment.
The relationship between these institutions from this point of vew is so intimate that 1 have put thern under the amme heading, in order that a moregeneral coup d'cell of the help given all round to Students and to appleers of Scrence in France may be obtained.

There is also another very struking characteristic to which 1 must next draw attention. Both in the Museum of Natural History, and in the Conservatore des Arts et Méners free lectures are given by the men most distinguashed in their special branches in France on the various subjects which are illustrated by the collections of either estabishment, our own small efforts in this directionthe lectures, namely, at the School of Mines-are the only representatives we have of this kind of teaching, which it is universally acknowledged has been accompanied by the happrest tessults If ths be so, then the enormous amount of benefit whech must be derived from the courses of lectures given in these establishmenta in France must be obvious, Last year, for instance, the courses of lectures at the Conservatoire were attended by more than a quarter of a mullion of ancious students, students who not only come to hear, but who instantly, in a great majority of cases, went to enlarge their knowledge by studying the

The Musede of Natural Hibtory

The Museam of Natural History is administered by a Directorohosen from amongst the Professors of the Establish ment; the professors, every five years, sending up the names of three candudates to the Murister of Publue Instruction, by whom the choice is made.
All scientafic admunstrative questions connected wnth the Museum are regulated by a Committee of Professors, which the Drector calls together once a month aut cast, and over Durecteur Suppleant Alls the place of the Drector durne his absence Thas Directeur Suppléant is chosen by the Miniter from amongst the names presented by the Come Mmister from amongst the names presented by the Comhe is named for five vears. The Conmmittee of Profecsors names annually one of ita members as Secretary. The Pronames annually one of its members as Secretsry, The Professors are the Keepers of the collections and are respon-
sible for ther order and arrangement Each Professor mble for therr order and arrangement Esch Professor on the etate and requirementes of the laboratories and collectaons under his charge These Reports are transmitted to the Minster with the opmon of the Commotree and of the Drector. The matérel is inspected once a year.

The present personnel is as follows - Director, M. Chevreul.
Directear Suppleant, M. Mine-Edwarda.
The professors (who are also Adminustratore of these Departments) are, of

General Physiology, M. Claude Bernard.
Comparatuve Anstomy, M. Paul Gervals.
Anatorny and Natural History of Man, M. de Quatrefagea Anatorny and Natural History of Man, M. de Quatre
de Breau. de breau.
Zoology, Mammala and Burds, M. Milne-Edwarda.
Zoology, Reptues and Fish, M Dareste
Zoology, Reptues and Fish, M Dareste
Zoology, Insects, Crustacea, and Arachmda, M. Blanchard
Zoology, Anneldds, Mollusca, and Zoophytes, M Deshnyes
Botany and Vegetable Physiology, M. Brongnarts
Geolog, M Decubre
Mingralogy, Daubree
Mineralogy, M. Delafosse.
Paleontology, M. Albert Gaudry.
Phyaces, applied to Natural History, M. Becquerel.
Phyacs, apphed to Natural History, M
Vegetable Physics, M Georges Ville.
Orgetabie Cheminetry M Ceorges Ville
Organic Chernistry, M Chevreul
All lectures are public and free; the time of the commencement of the course and the programme being settled esch September, snd submitted to the Mmister of Public Instruction for has approval. Each professor gives 40 lectures annually. The lectures are followed by two classes, first, the general public (auditeurs beneoolef), and, secondly the students of the Ecole Normale Supeneure of the third year who must attend at least two lectures a week
The collections are enriched by exchanges, and there ia an elaborate system of distributing duphicates from the collections not only to the local museums in Prance and her colonies, but also even to forelgn countmes. Thus from the muneralogical collection 1,800 duphcates were dis tributed between 1860 and 1865, 3,000 being still retamed.
I annex the budget for the Natural History Mutaume for the present year :-

e 2 maitres de dessin, 2 2,500f. 5,000 sous-bibhothécare d'un secrétafre, agent comptable ${ }^{\text {ab }} 19$ " ${ }^{\prime \prime}$ 2,000 a 4,000ff. -57,000 de 3 grardes des galerres, de 11,500 d'un jardimer-en-chef = 4,000 de 21 préparateuxs, de 1,500 de 20 employes, controleur cher deatelier, y 750 a a $3,000 \mathrm{OH} . \quad 38,400$
Gages des gens de service - . 31,680 323,389
25,400 83,700
Galeries, Laboratoures Matzing

Ateliers et entrecien - - - \quad - 32,800
(trausge, eclarage, et invers -30,500
irtéreur - - \quad - 42,700

The Congervatoire des Arets mit Métiers.
The Conservetoire des Arts et Métiera is the carrying out of an ides of the illustrious Descartes. It is not necessary to go mto its earliest history. I may commence by atating that in 1775, Vaucanson formed at the Hotel de Mortagne, Rue de Charonne, Paubourg Saint Antoine, the first public collection of machunes, instruments, and tools destined for the insinuction of the working classes At has death he left them to the Government of the King (Louss XVIth), and in this collection we have the germ of the Conservatorre. The legacy beang accepted by the Government the Hese spounted to lool stter the collection At the same Tras appous deaded thet all inventore who for the futare mo it was decmed thed by the nation should to ruture might be recompensed by the nation should be expected to be admustrator and conservator of the new industenal museum; and from 1785 to 1792 he had enriched it by museum; and rom 500 new machines
The Revolution, which destroyed so much in France, was of the Rreatest assistance to the conservatoire The Legislative Assembly had created a commission of monuments which was apponitad to look after everything relatng to which was appontad arts, and trades, This, however, they did not do In 1793 the National Conventron charged the Committee of Publio Instruction to undertake the work thus neglected. A temporary commissron of arts was appointed, composed of Vandernionda, Leroy, Conté, Beuvelot, and Molard Afterwards the Abbe Gregore and the celebrated physianat Charles, were members. More than 800 machmes, instrumenta, and the like, were thus collected and placed in the Hotel d'Algullon, Rue de l'Unuversité.
The already acknowledged utility of the collection foundad by Vaucanson suggested that a sumular destination should be given to the collection on the Hotel d'Arguilon and a Decree of the Convention was obtamed, which ruled that there should be formed at Paris, under the name of "Le Conservatorre des Arts et Métrers," a publ'c collection of machmes, models, tools, descriptions, and books of every desarption of art and trade, the constructaon and the employment of which were to be explaned by three Demonstrators attaohed to the establishment, and a draughtsman was also appointed. The Committee of Agraculture and Arta was charged to arrange writh the Minuster of Finance as to the locality of the new Conservatoure
The establishment of this new mstitution whas, however, delayed for some time in spite of many reports urging the necessity for its completion, in one of which I find the " ouchl ne faut leur parler") The present locality an ancient priory, was however at last chosen, and in the 1808 priory, was, however, at last chosen, and in the year 1808 existing in the various collections to which I have referred, were transferred to the new locality, in which they were srran ged in order to realise the intention of founding i practical instruction based upon the actual seang and expractical instion of the objects collected.
In 1806 M . de Champagny, the Minister of the Interior, rased, in the Conservatoire, a school for children, which soon becams very flourshing From 1810 to 1811 this school oontanned 300 students, who afterwayds became sous officiers in the engmeers, employes in the fortnfication branch of the army, atudents in the artillery sehool construotort of works, chuefs of workshops, and the like M. Sohnerder wes one of these chuldren

In 1817 the conservatoure was re-organised. A subdirector was appointed and a councl was created, composed of acrentific men and manufacturers, the function of whoh counoul was to advise the administration of the coneervatoire. The first catalogue of the conservatorre was publashed by the edvise of this council in 1818
In 1819 a new lime of usefulness was added, it was made shigh school of application of acientific knowledge to commeroe and industry, by means of free pubho nastructhon. Three ohaurs were appointed of mechamics, chemistry, and induotrial economy. In 1829 a chair of ohemintry apphed to the arts was added. In 1839 the number of chairs was mereased to 10 ; the professors forming a councul, one of them being chosen, drrecto model of the Natural Fistory Museum.
Thus nevi organisation gave a strong impulse to the ings new organsation gave a strong impulee to the industry and the arts very repudly tone senceas appliad to development Confided to scmentrio men of the first order a great progress wes soon observed im all branches of mdustry; but this was not wnthont its drawbecks, for when the profestory were appointed, the demonstrators were abolushed, and the teachung de visw went with them. M. Monn unforms me that, as a matter of fact, the sernices of the Demonstrators were never requred.

96060-Rep. TV.

I thunk this hasty aketchi will be sufficient to give a goneral idea of the growth of the institutnon unthi it came Ge the hands of 1 ts present distinguished durector, ceknowled be found in France for apradirg o kowlodge of sere be found in France for spreading as knowledge of science amongst the working
The professors and the
the phoressors and the subjects at present taught in this atabishment are as follow:-
Geometry appled to the Arts Professor Colonel Laussedat, successor of the late M le Baron Ch Dupin
Descriptive Geometiy, Prof. De la Gournerie.
Mechanicsapplied to the Arta
Physics apphed to the Arta Ghysies appined to the Arts relations to Industry 1 is Industral Chemintry
Chemistry Chemistry
Chemistry applied to dyeing,
pottery, and glass
Chricultural Chemistry and
Chemical Analyists
Agricultureal Works and
Agricultural Works
Spunning and Wearing -
Polhitical Economy and Industrial Legislation
Industriai and Statistical
Economy
, Tresca

* Edmond

2. Edmond Becquerel.
, Eugène Pélıgot
", A Gurard.
n De Luynes
, Boussingault.
" Moll.
, Herve Mangon
, Alcan.
," Wolowskx.
In order to n Jules, Buratis號 lectures, I append detalled programmes of the lectures for two seasons These are as follow -

Géométrie appluquée ause Arts.

1869-70-GÉométrie de la sphère. Construction et usage du globe céleste Etude des phénomènes astronomiques Instruments dobservation. Mesure du temps Cadran Colendrier Gracion tor figure des positions géographiques Système métrique
1871-72 - Grandeur et figure de la terre Cartes geo graphrques. Etude des formes généralas du terran. Inetruments de lever et de nivellement. Cadsatre. Travau de terrassement. Calcul des surfaces, des déblass, et de remblass Iracé des routes, des canaux, et dea chemins de fer. Tables et instruments propres à abréger les calouls

Geometrue descrpptive.

1869-70.-Principes de la géométrie descriptnve Méthode des projections Lagnes droites, plans, surfaces courbes employés dans les arts Projections cotées. Détermanstion des ombres sur les figures géométrales Notions sur les surfaces réglées et les surfaces topographiques.

1871-72-Explication détarllée des règles de la perspectıve linéaure et des tracés géométriques qu'elle exige Etude Tableaux courbes. Perapective des bes-reliefs. Décorations théâtrales. Perspectaves rapides.

Mécantque appltquée aux Arts.
1869-70.-Machinge \AA vapeur Propriétés des vapeurs. Produchon de la vapeur. Chaudieres è vapeur Dıpositions générales des machines. Théne des machines à vapeur Apparenla de distribution. Calcul des prèces. 1871-72-Principes fondamentaux de la mécantque; démonstration ratronnelle et expermmentale de ces principes. Réastance des matériaux Regles à suivre dans l'etude des questions de mécanique prastque Effet utile dea machines Transport horizontal et vertical des fardeaux. Machines industrnellem

Constructrons civiles.
$1869-70$ - Moysne di la construction (sunte) Parons horizontalen: planchers, voutes. Combles Couvertures Coulement des eanx Bans. Clôtures mobules. Revetements des parois. Fosses Aménagements propres au chauffage et à la ventilation. Transport et mancenvre dea materisuux sur les chantiers.

- 1871-72.-Etude des ćléments materrels qui entrent dans a construction des édrfices. Regles relatives à lear emplor. Exemples et appircationa.

Physique applequée aus Arts.

1869-70,-Princppas généraux du dégagement de l'eleotrumbes. Applications da l'électinito sux arts: pules vol\mathbf{E}
taiques, lumière Electrique, galvanoplastre, dorure, tele graphue, horlogene électingue, sppaneils d'mdaction, apm pareuls electro-magnénques. Actions chmoquea produten par ls lumère: photographre.
1871-72 - Principes fondamentaux de Ia physique Appheatnons diverses de is chaleur; formation des vapeurs emplor de lear force elastigue, sources de chaleur et de froid, chauffage, ventilation Production et propagation des sons Sources de lumuere; écharage, anslyse spectrale Construction des motruments d'optsque.

- Chume gentrale dans ses rapporte avec IIndustric.

1869-70 - Métaux. Propriétés et extraction des métaux usuels et de leura composés. Or, argent, platme Art de lisuels et de leurs composear des matieres d'or ot d'argent, Mercure, cunvre, plomb, antumoine, bismuth, étain, einc, aluminum. Fers, fonts et accers. Etude des principaux alluages employés dans lizindustrie.
1871-72-Phénomènes genéraux de combimaison et de d6composinon Nomenclature et notation chumque. Histoire detaullee des corps simples non metaliques et de leurs Acudes minéraux Ammoniaque Métanx uquelg.

Chanse applaquée a IIndustrue.

1869-70-Soufre Phosphore. Carbone. Azote. Phosphates. Potasse, soude, chaud, magnéne. Conservation des bors Féculeries. Fabncation de la chaux et de l'acrde carbonique. Sucreries Filtres-presses Papetemes Alcool Acade acétıque. 'Cerise Blanc de zine Acrdes stearique, margarqque et oléque. Gaz de la houille Epuration Zclairage
1871-72.-Soufre et sulfure de carbone. Acide sulfurque. Acide chlorhydrque. Soude et sels de soude. Chlorures décolorants et chlorates Acnde borique et borax. Potasse et sels de potasso. Nıtrates et acide mitrique. Chaux, cmenta, plätres. Alumane, sluns, summaum. Combustibles artificiels. Gas d'eclarrage. Phosphore et allumettes:

Chame applaquefe aux Industrees de la Tennture, de la Céramaque, et de la Verrerte.
1869-70.-Verrene Matnères vinufiables. Différentes espèces de verra Fabncation et travall du verre et du
cristal, ete. Verrea colorés Gravure et peinture eur verre $V_{1 t r a v i x, ~ C e ́ r a m q u e, ~ d i f f e ́ r e n t e s ~ s o r t e s ~ d e ~ p o t e r i e s . ~ M a r ~}^{\text {che }}$ thère premères qua servent à Ies fabriquer Préparatoon et travail des pàtes céramques. Décoration des poternes.

1871-72.-Matières premières employées dans la composithon des verres et dans la fabrication des poteries Verres blancs et colores. Preparation et travain des and sortes de pates ceramiques. Couleurb vitufiables. Emaux. Décoration des verres et des poteries.

Chunie Agrrcole et Analyse Chamique.

$1869-70 \rightarrow$ De la terre végetale. Engrais et amendementa. Développerment et constatution des plantes Substances alımentaires. Demonstrations expermentales des procédés d'analyse

1871-72. - Constitution des substances alimentaires. Almentatyon de l'homme Almentation et développement du bétan, De l'atmosphère Demonstration des procedes d'analyse. Endiométrie

Agriculture.

1869-70, - Continuation de l'étude de la production anmana . Elevage tenue et emploi du cheval, Exposé de la production mdustrielle en agriculture dans ses rapporta avec la culture proprement dite Etude des systemes de colture

1871-2 - Les вystemes de culture : classement, analyge, et choix. Changement de aystime Les assolements. lois conditions, et classification Etude des pincrpaux assolements

Travaune Agreoles et Génic Rural.
1869-70-Construction et mstallation des bataments Turaux Habitations et dépendances Logements dea anmasux. Batments pour la preparaion et hem conarvation Examea de quelque cultures so poant de voe da travail qu'elles emgent.

1871-72 -Assainussement du sol t" drainage, tuyaux de dramage, curage des conirs d'eau. Dessèchements; polders; colmatage. Exécution des travaur de culture. Moteurs;

1869-70-Ongines, aractères et proprétes des sub stances textiles. Filature du coton, du chanves, du lin du jute, du chinampass, des lanes, des mones, of autres matieres enumales, pures et mélangées. Moulinage, retordage, gupage et eppretas des fils. Exposé méthodique et détermination des assortiments automatiques Amensgements des nanes.

- 1877-72 -Substances propres aux feutres, sux fils, of aux Ćtoffes en général Filature, retordage et moulinage du coton et des duvets vègétaux, du chanvre, du lan, du jute, du china-grass et autres debris des tiges, feuilles, ecorces et formations spéciales do la paille, du caoutchouc. Emploí des fils métallıques.

Aconome Politique et Legation Industruelle.

1869-70.-L'Econome pohtıque s prncipes et définitions. La liberté du travail Le capital La propnété. L’association, Rapports entre les entrepreneura d'industrie et lea ouvriers, Corporations. Coalitions.

1871-72.-Forces productives Travall. Intelligence. Terre. Capital. La propriété. Le population. Hépargne. production Le commerce. La monnaie. La cooperation. production Le commerce.

Foonomie Industrielle et Statusinque,

: 1869-70,-Nohows générales de geographre phyaque et commerorale Stanique raisonnée des industrias agricole, minerale, manufacturiere, et artistique. Levue economique des pinacipaux prodmess de ces indubtries artistique, commerce, et de la consommation.
1871-72-Notıons générales de géographie physique et commerciale. Statistrque raisonnte des mdustries agricole, minérale et manufacturière Revue économique des principaux produts de ces induaties envisag a aux ders ponts de vue de la production du commerce et de la consommation
Connected with the Conservatoins and the machunes in movement is a Galerre d'Eaperumentation, in which varioub experments are undertaken for the different departments of the Government, and also for andividuals on machine* of new construction which are requared to be examined, Statements of the resuits of the experments made for the greater part in the presence of the inventors themselves, are at once prnted and publighed. This branch of the usefulness of the Conservaterre 18 being rapidiy expanded 1864 more the Government, and for zadividuals, and no objection had Goveraken to the results olbtained in any casa, which is held by the director very pustly to prove the case Which is held by the director very justily to prove tue cara should add that in the case of experments aarried on for should add that in the case of experments carried on for mdivduals the work is done gratuitously by the officers of the conservatoire, excepting, of coursa, the necessary expenses incurred in seting upand dismanting Ereaphatans. ands, and any experiments connected therewith are conr ands, and any experxments connected therewith are cons ducted graturtously by the officers of the establiahmentre to feed the collections, the munuficence of French and foreng manufacturers is perpetually cresting an influx of pew -objects, which perhaps is not altogether disminterested.
-objects, whe case with all the other scientufic eatabhshments of France, there is E special statement given of the work done every year. This publucation is entitled "Annales du Conservatoire," sud contams astatement of all the scientific and technical researches and operations conducted in the astablushment.
The collections are, as far as posaible, arranged in the followng gronps:-

Instruments relating to weighing and meamurng, geology, topography, and hozology These are on the gronud floor on the north ande.

On the sonth side we find, metallurgical gallenes, gallernes connected with spimang and weaving, dyerng in printing, agriculture, and machnes in movetpent

On the first floor on the north side are the hydraulie machunes, civil constructions, geometrical models, specimens of glass work and porcelann, cheminal productar prif ing, exemplifications of the vanous arrangements for warming and hghing, and s movst
On the sorth eide are steam engines, machune tools, specmens of the varnovs smrangements ased in divern isdastrea, apparstus for the ofudy of kanematica, physueo mechanics, and mstramente of plryaces

To give an ideas of the completeness of these collentions, and of the extreme value of them, espenally to those whe msy be engaged in teaching, of an applying acrentific primples to the vamous industries, I venturs to lay before the Commission some extractis from the Catalogue:-

Opricg.

8. Catoptraque.

1, 2 Deux miroirs cylindriques, accompagnés d'une colaction de despins d'anamorphoses sur carton.
$3,4,5,6,7,8,9,10$, Huit mirours métalliques à facettes.
11 Mirour métallique convexe.
12. Grand muroir concave en métal
13. Mirour monté en argent, pour faure your l'intérneur de la bouche (brevet de Marmont)
La boudhe (brevet de Marmont) 15 Eran de $3^{m} .87$, tolle pemte en blanc, tendue sur châsis.
16. Grand écran en tole blanohe crée, sur rouleau
17. Grand porte-lumere on reflecteur a marour plan en
métal, de $0=33$ sur 0 an22, avec monvement de rotation.
18. Réfecteur, également à murorr plan en métal, dianètre $0^{m} 11$.
19. Réflecteur à mirour de métal quu, sans être ma par un mouvement d'horlogerie, peut faurs fonction d'héliostat '
20 Hélostak de 's Gravesand, sans horloge, incomplet
21 Réflecteur en métal, pour chambre obscure.
22. Hellostat de's Gravesand, avec son horloge équatonale, suivant Charles
3. Hellostat de J -T. Silbermenn, par Soleil

24 Tuyaux, draphragmes, verres, dépeadant de lufeents a

$$
\begin{aligned}
& \text { apparells } \\
& \text { Mrour plan en métal, de } 0^{m} .16 \text { sur } 0^{m} .19 \text {, monté on }
\end{aligned}
$$

anve
6 Mroir plan curculare, de $0^{\mathrm{m}} .11$, tourriant dand sa bordure en culvre.
27. Mroir curcularire en glace, pouvant tourner sur son вupport axe
29. Grand murour plan en métal, hauteur $0^{\mathrm{m}} 69$, largeur 49, dans un cadre
30. Mroir de métal à faces concave et convexe, sur son pred, dırm $0^{\text {mi. }} 55$
31 Mroir de métal, à faces concave et convexe, sur son
pied, diam $0^{m i n} 41$.
32 Miroir concave Agglais, de $0^{m} 35$ de diam, sur son pied

3 Mirour convexe de même diamètre, sur son pied
34 Mirorr de Buffon, composé de 48 petıts mıroirs plans, avec son pred.
35 Mirorr ì foyer varrable, de Buffom, formé de 16 glaces nobules
36 Muroir à facottes morustées dens une concavité, sur yon pued.
7. Misor cylindrique concave.
38. Muror oylindrique convex
39. Miror oylindrique, aveo dessins d'snamorphoses
40. Miroir conique, avec dessins d'anamorphoses

49 Mroir prismatique, aveo dessins d'anamorphoses
42, 43. Deux murours en forme de pyramide, avec dessns
danamorphoses.
44. Murore aonvexs à
45. Muror noir, plan
46. Chanot portant uno toile peinte en bla

47 Tablau perspectaf, sur plan oblrque.
50. Mirour concave Anglans de 0 m. 58 , tournant sur son
pied
51 Mirour convexe de mâme drametre, sans pled 52 Murorr convere de $0^{\text {m. }} 36$.
53. Apparell pour vérifer le parallélisme des faces dea murours
54. Apparesls pour les expériences sur les lois de la reflexion et do la refraction, de J -T Sulbermann, par Solesl
55 Muror parabolique en ourvre argente, pouvant s'incl-
ner a volonte, aveo 販 lampe
6 Miroir en acier polh.
57, 58 Deux muroum concaves, en verre étame, de $0^{\text {mu }} 58$ de diamètre

59 Mirom concave sur pied
60 Grand muroir refleateur on ouvre.
61 Lanterne à lampe de Carcel pour les expénences d'optrque, par M. Solenf

b. Droptraque

1. Cuve en glace terminte par deux verres, l'un con cart, l'autre convere, pay les expénenoes sur le réfraction. 2 Cuve en glace
2. Cuve en glace

Cercle de cuivid gradué, -kur un trépieds avec vis à
caler, se possan dana la cave précédente.
5. Petite lentile à causpur pred.
6. Grande lentille à eaur, sur pred
7. Lentalle à eau de $0^{m} 22$, dans son cerule en cuivre.

Petite lentille à eanu dans un cadre.
10. Lentille concave de $0^{\text {man }} .12$, montée

11 Lentile concsve de 0.8 , montée
12, 33, 14. Trois loupes, de divers foyers, sur leurs pieds
15, 16. Deux lentilles montées, l'une convexe, l'autre con eave; foyer de $0{ }^{\mathrm{m}} 33$
17 Boîte contenant trente verres convexes de divers if Boite contenant trente verres convexes do divers foyers, depus $0^{\mathrm{mm}} 33$, jusqu'à ${ }^{2 \mathrm{~m}} .33$, montés en bous, pour la démonstration des proprietes des posesy
18. Verxe canvexe de ${ }^{\text {T}} 11$ de foyery monté dans un
19. Lentille de $0^{m} 25$ de duam., avec guéridon:
20. Parallélupipède de glace
20. Prarallélpipede de glave
22. Verre refriqgent de forme comque
23. Verre réringent en forme de pyramide
24. Polyedre de flint-glass, dit multtphuant.
25. Réservorr d'eau pour les expernences de zéfractaon dans les grandes cuves
26. Apparell de M. Colladon pour l'expénence de la veine flude.
27 Loupe monitée en corne.
29 Apparel pour mesurer la distance focale des lentilles et des mirous sphériques; de J -T. Silbermann, par Soleil.
29 Une grande lentille do Fresnel, a quatre anneaux, avec son patín, par M Franços
30 Deux lentilles ardentes accouplées.
31 Lentulle de $0^{\mathrm{ma}} 33$ de foyer, pour là projection du spectre solare.
32 Première Ientulle de Fresnel, construite sous an direction immédiate par Solenl, donnér par l'Académie des Sciences.
33. Trente-quatre pièces montéed avec fils de couleur. pour representer la marche dea sayons de lumide dans les divers instruments doptique
34 Appareil pour lia mesure des indices de réfraction, accusant une deviation de 10 secondes, par MM Brunner frères.
35
35. Appareil pour is mesure des mdaces de réfraction à dufferentes températures, et pour les rases ultra-violettes, par MM Brunner frères

> c. Chromatique

1. Apparel de sept petits mirours plans.

2 Quatre anclens objectifs astronomques, à très-longs
foyers, de 23 a 27 metres, dont deux de Campani
3, 4 Deux primes équilatéraux ${ }_{2}$ de fint-glass anglais, tournant sur leur axe,
5, 6. Deux prismes semblables
7. Prisme équalateral de flut-glass, tournant sur son are. 8. Prisme équilatéral de flint-glass.

9 Prisme de flint-glass françass
10 Prisme équilatéral de flint-glass, avvec base polle, sur on pied

1112 Deux prosmes de flint-glass, à section rectanguaure, polis sur leurs bases, sur leur pied.
13, 14 Deux petits prismes scalenes, sur leur pred.
15 Polyprismes superposés, de sept manières réfrangibles
différentes.
16, 17 Deux prusmes de cristal de roche, sur leurs pieds.
18. Prisme scalene, en verra colores, sur pied
18. Prisme scalene, en verre colore, sur pied

19 Prisme à angle variable, en fint-glass drasporamètre de Rochon
20 Prisme à angle variable, en verre de Saint-Gobain
diasporamètre, de Rochon
21. Prisme à angle variable, pour l'eau, avec arc gradué, sur son pred.
92 Prisme a angle variable, pour l'eau, avec deur glaces à surfaces paralleles et avec prisme achromatisant klaces à on
23 Grand prisme d'eau, équilatéral
24 Grand prisme desu, equilateral
95, 26. Deux prismes d'eau, équilatéraux
27, 28 Deux prolyprismes à equilaterana a auges paraliele
29. Grand prisme à arr, d'Hawksbee, ì section reotangu-
laure, en glaces parallèles
30. Prisme de verre vendâtre, monte
31. Grand prisme en verre franças, tournant dana une chape, avec pred.
32 Appareal achromatique de Dollond, à trous promea adossés
33. Apparell achromathque, à deux promes, par Cauchois 34 Pent prisme dambre.
35 Sux verres plans, colores, tournani dans leur chape pour la recomposition de la lumuere.
36. Six verres de couleur dans leur chapa

37, 38. Deux ofjectifie sehromatiques, non monté, a deux et a trous verres, pour le démonstrastion.
39 Objectif echromstique, dism, $0=5$, foyer $0^{-1} 11$,
pouvant prendre touters les imelinalsona.
40. Tube porr le gaz nitreux.
41. Appareal pour ln démonstration des effets d'opposition
des couleurs, d'apres M. Chevreul.
42 Prsme creux, monté, pour le sulfare de carbone
M L L Spectre solane de Frauenhoffer, dessuné sur glace, par 45 Dapin.
45 Lentille disposée pour montrear l'aberration de refrangibilite, par M. J Duboseq
47. Prisme en flint blanc, construut par M J. Duboscq.
47. Prisme disposé pour servir à la recomposition de la
lummere par une lentille cyludrique, par M. J. Dubosoq.
Lentupnsme.
$\underset{\text { rannable }}{49}$ Apparenl à doux prismes, pour liquides, à angle 50 Pr
50 Prismes ayant servi à étuder les indices de réfractron, donnés par M. Baille (Comptes rendus de l'Académue, 51
51. Photographue du spectre solaire, par M. Rutherford 1863), donne par ju

d. Viston

1 CEil artificiel, pour la démonstration dea causes du myopisme et du presbynsme
2. Anatomie de l'call, par Pinson, piées en care colorée

3 Pièce de Pimson pour le meme objet.
4. Apparell à roues dentées pour farre monvoir des desques, aiversament colores, pour le melange des couleura.
5. Trois appareils de de Haldat pour la vision.

6 Quatre verres de chromatropes, pour projection.
7. Apparell d'Aume pour la persastance des images lumsneuses sur la rétne, par M J, Dubocg.
8 Apparenl pour l'etude des rayons lumineux dans l'coil, par Mme. Veave Bertand.

-e. Intruments d'optique.

1 Verrse isole formant lunette
Deux loupes de hotamste
3. Petrits

4 Chambre noure il doulle conique, avec glace micrometrique.
5 Chambre nove à donble doulle conque, avee oculare de $\mathrm{cm}^{\mathrm{m}} 22$ de foyer.
7. Chambre norre à prisme mobile
7. Chambre noire dite e portrast.

8 Chambre noure analogue à la précédente
9 Chambre noire avec carse, pour dessiner de paysage.
10 Chambre noure, adapté à un volet
II Ecran curcularre en glace dépolie, moble sur son pied,
12 Exe
. Cran semblable au preceddent, de $0^{m} 35$ de diamètre. 13. Instrument pour la démonstration générale de l'exisa tence des foyers des verres et de Peffet des lunettes amples
et composés
14 Banc de lumsère, dit bane de Newton, divisé sur une longeur de 2 mètres

1. Pettite optrque a muroir, sure son pied
2. Optrque de jour, ou à reflexion.
3. Grande optique de nuit, de Charies.
à la gouache et a l'equarelle, par les pemtres Gaudat, Prévot, Dunouy, Valencieniea et Boltard, pour servir aux deax optiques précedentes.
4. Megascope achromataque de Charles

22 Mégascope lucernal, ou lanterne magiqute
24. Lanterne magique, fausant fonctuon de mucroscope lucernal transparent
24. Grand macroscope lucernal, pour lea objets opaques et transparents, modinit par Charles.
25. Petite boite de porte-objeta destmés à ce microscope.

26 Grand mecroscope solaure, de Martin.
27. Microscope solaire, avec toyaurx et verres.
2. Microscope solame de Dollond
29. Microscope solarre de Dollond, pouvant bervir de microscope ample
30. Microscope anglass de Shuttieworth, dans su boite, avec ses mucromètres.

31 Microscope de Dellebarre, dans as boite avec pièce addrtionnelle, et deax mucrométres en pelare d'ongoon
32 Petat mucroscope sumple, contemant un charancon du
Bresal
33, Ancien mueroscope de Campam.
34. Mieroscupe de Charles, avec ses accessoures.

35 Photometre de M Poullet pour le grosonssement des
36. Colieotion de 50 préparations mucroscopiquen trannparenten, avec porte-liquides, poar lea anfusaires at lee un* cetes, par M. Bourgogne.
37. Collection de 26 échantillons de tesua divers, recouverts de lamelles mnoes, par M. Bourgogae.
38. Porto-lumuère avec sea mocostorres pour profetar lea
phenomernes de polansation et de double refraction, sout aut phenomennes de pormase aot et de double refract

39 Gonooraetre de M Babinet.
40. Goniometre de Charles.
41. Microscope achromstique, avec goniomètre, do M. Brunner, et garnture de verrea de M Nachet.
42 Chambre novee ì prisme, ou pronoproscope, montós sur un volet de la galene.
43 Longue-vue en carton,-Voir F o. 18.
44. Kalé̀doвcope.
45. Chambre claire de M Solel.
46. Photomètre de M. Pouillet, pour meaurar l'mtensite
de la lumerre des corps celestas.
47. Microscope anglans, avec verres de rechange
48. Stéréoccope, avec épreuves sur varre, donné par M.

49 Stéréoscope lunettes, avec six épreaves, donné par
M Duboseq
50. Microscope achromatique, par M. Georgea Ober-

51 Microseope, solaire de M. C. Chevalier, aveo morometre
53. Microscope achromatique de Georgeen, par Maillard b3 Trente-six preparations macroscoppques, par M. Bourbouze.
54. Douze tableaux de fantanmagone ample.
55. Treize tableaux de fantammagore, in mouvements ordmaires
56. Hunt tableaux de fantamagoine à mouvements complqqués

7 Daguerréotype de voyage, de M. Clerget
Grand daguerreotype, par M. Lerebours.
59. Objectif double, pour daquarréotype, donné par M.

Jamm.
60. Photomètre de M. Babinet, par M J Duboscq 61. Collection d'epreuves photographuques, pour projec. hons
62. Collection d'objeta merosoopiques d'hutore naturelle.
63. Six vues fondantes, pone projections,
64. Apparell de projection pour phénakistncope.
65. Quatre tableaux pour Papparel cs-deasua

66 Jeu de lentalles achromstiquet, pour le mictoscope ${ }^{80}$ biare.
67. Spécimen d'ecriture meroscopique, par G Froment. 68. Prisme de flint-glass pour ie redressment des umages, par progection, par M J. Dubosca
69. Collection de vues photographrques, pour projections, par M J. Duboscq.
70 Tete de fantasmagorie, pour projection, par M.J. Duboseq.
7. Quatorze tableaux de fantanmagores, pour projectnons, par M J Dabosce
${ }^{72}$ Lunette photometingue de M E. Becquerel, par M J Daboseq
${ }^{73}$ Neuf tableaux de fantarmagone, sana mouvement 74. Deax tableanx de fantasmagorne, ì mouvement, pas M J Duboseq
75 Apparent pour l'agrandissement des epreuves photographaques, par M J Duboscq
 sition de la lumoère, par M J. Duboscq
77. Photométre de M. E. Becquerel, par M. J Dubotcq-

78 Microscope bnoculare, de Smith Beck et Beck.
79 Aléthoscope par M Ponta, de Venuse
an. Collection de vues transparentea par M. Ponta, do Venise.
81. Collection de vaes noures pary Monta, de Venise.

84 Grande lentille, pour projection, par M. J. Duboseg
85 Microscope ancien de Chi. Chevalier, avec verrees de rechange et prome redreaseur
86. Micrometre, avec divison du to de millimitre en 100 partues.
87. Collection de 60 préparatuons macroscoprquea, par Prtchard
88 Collection de 70 préparations macroscopiquen, par Bourgogne
89. Support pour projection, avee mororr mobile, par M,
J. Duboseq
90. Mice
90. Microscope smple ì price centrie, par la Soceté

Genevoise.
Genevolse

92 Grand appareir photographiqué, avec deux' objectufs de $0^{\mathrm{m}} .90$ de foyer, par M. Lebrun.

f, InterfGences.

1 Couvercle de muror pour les expériences de duffrac-
ton.
2. Apparell pour les anneaux colorés, par Solal
. Apparen pour les anmeaux colores, par Id
. Apparell pour les anneaux colorés, par Id.
6. Apparenl pour les anneaux colores, par 1 Id
6. Appareal pour les anneaux colores, par
7 , 8 . Deux petits mirors epars, monté en cuivre, pour les expénences sur les anneaux colores
9. Grand banc en fer pour les expériences sur la duftracton, sur les interférences et sur la polarisation, avec les dispositions de MM. Fresnel, Arago, Babinet, Poullet, et Schwerd, etc.
10. Collectront de réseaux de Schwerd,' se montant sur Papparell précédent.
11. Quatre lames minces crnstalinnes, d'épaısseur determunee, se montant sur les supports de lappared precedent, par SolenL.
12. Appareil de Fresnel, à deux mirours, disposé suivent les mdications de L. Foucault, pour produrre des retards out des avances dans les ondes, par M Daboscq (Cet apparen se monte sur un support de bane de duffraction PG. f. 9)
13. Appareill de diffraction, par M Ch Chevalher
14. Deux modeles en platrre, de M Engel, repésentant Ponde lumineuse de Fresnel, donnés par M. Vattemare.
15. Réseau crossé pour lo spectre.

16 Surface des ondes hummeuses, d'après Freanel, modèle donné par M. de Sannt-Venant.
17 Surface des ondes lumaneuses, d'après Fresmel, neppe intérieure, modele donné par le même

g. Polarsation.

1. Lunette à prisme de Rochon, par Putors

2 Prisme buréfringent monté.
3. Appareal pour les expénences sur la réfraction conique

- 4. Cyanomètre d'Arago, par Solenl \rightarrow Vorr PH g. 1

5 Soixante-neuf cristaux et objets pour la projection des phénomènes de polarisation, par SoleiL.
6. Apparell danalyse de Nomenberg, par Solenl

Apparell danalyae d'Amici, par Solenl.
9 Apparell de Solell pour la mesure des axes.
9 Rhomboide de spath d'Islande.
10 Deux grandes plaques de tourmalines, paralleles à l'axe ot pollées sur verre.
11. Prsmes de onstal de roche enfumé, taillé parallelement al l'axe

12 Priame de cristal de roche perpendicularre à l'aze.
13. Prisme de verre nour.
14. Prisme de verre enfumé
15. Apparer pour l'analyse des liquides par la lumuere polarsee, par Solel.
16. Appareal propre à démontrer les actions du mag nétrome sur la lumuère polarisée ot sur les dufférents corps, par M, Ruhmkorff.
17. Appareils à deux tourmalines, pour les expérences sur l'absorption de le lumière.
18, 19. Deux plaques de quartz à deux rotations, l'une naturelle et l'autro composée, de Soleil.
20. Plaque de quartz gauche aveo plage droit, et une plaque droit avec plage noire de Soleil.
22. Plaque de quarta parralele à l'axe, de 1 millim. 'épessseur, par Solen
23. Deux plaques de quarta.
24. Deux plaques de quartıs, prrematıques, du même 24. Deax plaques de quarta, prismatıques, du ne
ancle, pour produre ensemble une épasseur vanable
angie, pour produre ensembls une epansens van'un cadran divisé, par Solell,-Vor PH. g 2
26. Appareil pour les couleurs complémentarres, d'Arago 27. Prismea pour la démonstration do la double vefrao thon, de Solell.
28. Morceau de crown-glass de Gunant.
29. 30. Plaques de fint-glass et de erown-glass, de SaintGoban. lemes appare 32 Appareil
petites surfaces planes
 aras formes cristallines, donnée par Marloye
3. Apparen do Faraday, 4 quatre elecho-amonts, poar 36. I action do l'electisicite sur la lumiere.
36. Appared pour la projection des couleurs complémen saures, par M Soleu
37. Apparen de Savart pour la projection des hyperboles, par Solenil
38. Pince de Fresnel pour la double refrachor du verre
par compression, par Solell, " Apparen de M Guérard, compose d'une pyramide ef d'un cobne en verre nor, taillé sous l'angle de polarisation, par Solenl
40 Apparel de Mullery pour les anneaux colorés par polarisation, par Solell
41 Appazel pour montrer la double réfraction da la tourmaline, par Soleil
42 Appazeil pour la projection des eristaux par la lumère polarsee, par M Duboscq
43. Prreme de Nicol, de 0ri34, par Bertaud
44. Deux prismes de ernstal de roche, par Bertaud
h. Phosphorescence.

1 Grand apparell à tubes, pour la phosphorescence; de M Ed Becquerel, par M, Ruhmkorf
2 Grand phosphoroscope en bois nour, avac roues d'engrenage, de M Ed Becquerel, par M Duboseq
3 Phosphoroscope de M Ed Bequerel, grand modèle;
monté sur un support à vis calantes, par M Dubosq
5. Phosphoroscope de M. Ed. Beequerel, par M. Duboscg
6 Tableau au sulfafe de quinine, pour l'expérence de phosphorescence, de Stoke.

Electro-Chimistaya
 a. Galuanoplastre, etc

1. Auge pour la galvanoplestie.
2. Appared de Boquillon

3 Dépôts galvanoplastıques donnés par Boquillor. 4 Épreuves de galvanoplastre exécutées et donnés par M Graeyton
5 Deux appareals de M Ruolz, en porcelane, garnis de leurs électrodes et conducteurs, par M Bourbouze
6. Buste de Volta en galvanoplastae, exécute et donne par M Gueyton
7. Quatre tableaux de spécmens de galvanoplastie plene, executés et donnés par MM Christofle et Cie
8 Première épreuve de galvanoplashe, exécutée par M de Jacobu, donnee par lus

Telegraphy.

a Telégraphse optuque.

1. Telégraphe de Bréguet et Bettancourt.
b. Telegraphse ebectrque.

1 Tólégraphe électrique, système de M. Wheatstones, en deux parties
2 T'élégraphe electrique, syatème de M Dujardım, par
3. Télégraphe electroque à pincean et crayon, avec son dianophore ou manipulateur, de G Froment.
4. Madele de têlegraphe électrique écnvant, avec tous le accessoures et moyens de demonstration, de M. Pouullets par G. Froment.

5، Modele de télégraphe électzrque, syatème de A. Foy.
6 Grande modele de télegraphe, pour la démonstration par M Bréguet.
7. Tendeur pour fils télégraphigues.
8. Modèle de poteau telégrsphique, avec planchette de rechange pour 1'isolement des fils
9. Telégraphe ì lettres, petit modèle, et manupulateur par M Bréguet.
10. Sonnerre, avertsseur, par M Bréguet
11. Modèle de télégraphe électrıque, par M Ruhmkorf

12 Télégraphe magnéto-électrique, par M George
Henley
13. Télegraphe 6́lectrıque, système Morse, par M.

Bréguet ${ }^{14}$ Télégraphe électrique indıquant le passage des tranne aur les cherunas de fer, par M. Bréguet, et composé des aur las chemans

Manpulateur d'mdicateur.
Indicateur à deux aiguilles
15. Télégraphe électro-chumique, système Pouget-Maison-
neuve, par M. Loiseau. tólégraphe électrique, par M Loisean.
Loiseau.
17 Parafoudre à fil drot's par M. Lorsesu.
18. Télégraphe maltare, enplegé en Susse, par M. Hyp. Relard de télégraphe, par M. Hupp.
20. Deux tubes on boss, garnis de leurs vables, pour telégraphes électriques, donnés par M George Henley. télégraphe électanque, donné par fo mêne,
23. Manchon courbe en fonte pour le mAme usage, donné par le même.
28. Bowasola à ainus, pour télégraphe, par M. Bréguet. 29. Récepteur frampais è deux mdioahons s doux mana pulateurs, commutateurs svec parafoudre it conductenrs; donné par l'Admunstration des telégraphes:
30. Récepteur franças à deux indicateurs et à relava donné par l'Administration des tolégraphes.
31 Modèle réunissant quatre supporta divers en poreelatne, deux jonctnons de fill et denx tendeurs, donné par l'Admunistration des télégraphes
32. Modele réwnasant eling supports dufferentes en poroe-
lenne, une jonction de fils et un tendeur, donn' par 'Admunistration des télégraphee.
33 Collectıon d'échantallions de fils télégraphqques, donnée par MM. Siemens, Halske et Cle
34. Telégraphe mppumeux et son manipulateur de MM

Drgney, donnees par eux
35 Isolateurs en grès, pour fils telégraphques, de MM. Bourne et Cie
36 Collection d'échantillons de cables électriques, terrestres et cous-maring, donnés par MM. Ratiner et Cie
36 Sonnerie télégraphque, par M Aubme, domé par 1a Soctété d'oncouragemont:-

Cinematics.

M Ampàre, dans sa, Phslosophre des sciences (1830), a proposé de nommer Conématrque (de numua, nozvement) la sclence qui murait pour objet l'ftude, au point de vue purement géométrqque, des systèmes a l'arde desquele on Csematsque fart ahstraction des forces, et n'envisage, dans enematsque fart absiraction des forces, et n'envisage, dans points mouvement, que les durections et les vitesses relatives ies Moints mobues, M Morin La Reang Willus sous celus de Théorre des mécanrmes ou des organes méesniques.

> Division cengitales.
a. Gudes et supports -b. Apparenls de grassage.-e. Fransformation du mouvement rectulgne contong en mouvement rectilgne continn-d. Transformation da mouvement cirpalaire continue en moavement zectiligne contina, et recr-proquerneati-o Transformation du monvement curculare continu en mouvement rectilggne alternataf.-f Transformation du mouvement circulaire alternatif en mouvement rectiligne altarnatif on intermintent-g Transformation du mouvement crrculare continu en mouvement rectiligne in-termittent.-h iransformation da monvement rectulgne on circulaure alternatuf en mouvement circulaire continn monvement curculaire alternatif ountermattent.- k Trans formation du mouvement circularre alternatifen morvement curculare intermittent - 1 Transformation du mouvemens rectilgne alternatuf en mouvement circnlaure alternatif.m Transformation da monvement criculare contina en monvement circulaure contann, les axes etant dans le prolongement l'un de l'autre out a peil pres,-n' Transformation du mouvement curcularre contina en mouvernent circulaure contina, dans le cas d'axes parralldeles à pethtes dustances o. Mransformation du mouvement circulaure continu en recontrent:-p Transformation de morvernent ourcolayre continu en mourement curcularre continu, dans le eas d'axes paralleles et sutués à de grandes distances.-4. Tramsforma tion du mouvement emrculare contimg, en mouvement circulare continu, dans le cas d'axen quine se recontreat pas -r Mouvement de rotation contunu transforme en mouvements simaltanes de transport et de rotation.-A. Mouvements dufférentele

$$
a_{n} \text { Guides et supports. }
$$

2. Painer en fonte avec coussmets en bronze et plaque d'appul.
3. Palier en fonte pour un arbre très-oharge, avec plaque dappux pour xépartar la pression sur une surface d'étendue uffisante
4 Painer en fonte pour un arbre tres-charge, avec ees conssineta en bronze et at plaque d'appur.
5 Paler pour un arbre horizontal et ur arbee vertical, avec vis de centrage pour la coquile de l'arbre vertical.
4. Console pour soutenur nu arbre de trangmision.

Coulée d'une seule pieve avee la colonne, elle porte un paher srec coussonets pour l'arbre. On préfere aujourd'hus les consoles séparees de la colonne pour la facilté du montage et du remplacement
7. Console pendante, pour soutemr un arbre de transmossion qua doit recevour des poulies.
Elle se fixe à deux solves du plafond.
8 Console pendante, pour acuteasz deax arbres de transmustion parallèesi،
Elle se fixe ans poutrei supeneares do planchet
9. Console pendante pour arbre de transmisaion.

Elle se fire ì l'angle d'one poutre.
10. Suppart d'un arbre te transmasaion,
11. Support ou guide pour arbrea verticanx.

I se fixe it une poutre.
12. Support of gride pour arbres verthomux.

Il sefixe in the poutre.
13 Arbre de rotation aveo sea nupports.
14. Coussinet on alluge dit métal antrafnction, par
15. Coussinet an allige dit métal antr-Aichon, par Dewrance.

16 Coussinet, en alliage dit métal anti-fnchon, donń par Phhppe
17 Modele de la tranamisaion Établie a l'Exposinon Universelle de 1855, donné par MM Nepveu et Cie
18. Chaise pendante, par M Sellers, do Phلladelphie.

19 Cha1se d'applique, par M. Sellers, do Philadelphia
20 Palier de trangmasanon, par M. Sallers, de Phila delphe
21. Charee auspendue, evec griffe d'embrayage, par M. Sellers, de Philadelphe
22 Spécrmens de différentes formes de boulone emplojéf dans la construction dea machnes, par M Schroeder

b Apparerla de gransage.

Appareelle de grasasage continu, par Jacooud,
2 Boite à hule, avec meche de coton agissant par la capillanité
Cet appareil de grasssage s'omplote aveo auceès pous les arbres qui marchent vite, mais il a l'inconvenuent do laiseor vouler l'hmile, méme lorsque l'arbre ne fonctionne pas..
3. Apparel de graisage continu, à chalne, par Decoster.

Une chaine sans fin circulant dans le réservoir d'huule la répand aur les surfaces frottantes pandant que l'arbre tourne.
4 Paher graisseur de M Dyckhoif de Bar-le-Duc, donné par l'anteur.
5. Boite ì granse hydro-gyphoide, par M. Prount.
6. Boita a grausse, घystame Vallod, donné parl'mventeur.

7 Boite a grasse pour les wagons de chemins de fer,
donnée par M. Dieta, de Metz.
8. Modele de palier grassaeur, par M. Grandblanso.
9. Robinet graisseur, potur cylindreaet turoure de machunes
a vapeur, par M. J Brechbiel.
10 Godet graismeur butomatique de M. L. Ameno.
11. Graisseur automatique pour cyindras de maohines a vapeur, pat M. Bounlloma
12 Grabseur
Sociéte d'encoruragement (Vorr Bulletnet, donme paz la Sociéte d'encouragement (Vorr Bulletnn, t LV.)
13 Godet graisgeur à ecoulement intermuttert, système Amenc, donné par l'inventeur.
14. Burette inversable, en caoutchonc, donnés par M onna
c. Transformahon du mouvensent rectilygue continu on ; mouvement rectiligne eontund.

1. Palans et mouflettes,--Voir K. 1.
2. Pouliss fixes.--Vour K 2
3. Pouhe aves claquet d'arret, quí empeche is poule de tourner en sens contraire, et que l'on peut dégager ì volonte Vonk 3
*4. Palans conuque pour is tension des cordagea -Wofr 4.

Cette dappontion est vicieuse, en ce qu'elle conduit employer des poulies d'un trop petit rayon, we qui augmente les pertes de traval produntes par le frotitement et par la rondeur des cordes.
5. Modele servant à verifier approxumativement que le chemm parcouru par le point d'applicaton de la force motrice est égal à antant de fois celui decrit par le fardeau qu'll y a de brins parallèles -*K. 5 .
6 Appareil pour vérifer, par expénence, is théorie dee palans a poriues egales.- \mathbf{K}
Mème but que le precédent.
*7 Palans équipés à ìm brins - Voir K 8.
L'emplor des palans permet, avec un cffort modéré on un petht nombre d'hommes, d'elever de lourds fardeanx on de produre de grandes tensions; mass cea apparelis donnent her à one perte congraerable de traval motexir par suite du frottement et de la rondear des cordes.
8. Apparel pour vénier les proprétés de la, poule mobile - *K. 7.
Weaton.-Vor K. 98
10. Palan de aurete, mantenant is charge à toute ucur, de M Jamet, donné per M Beflary - Vóir K 100
*12 Palan dufférentiel de M Demoor_-Vorr K, 110

4．Transfarmation du nowvenent oarcularre eontent en mowe－ ment rechiggne contunu，et récuproquement．
－1．Vindas a gorges avec poulies pour augmenter la ten－ sion du cordage ou la pursance du trewl．－Voir K． 18
Apparell trop compliqué pour être d＇un bon service．
＊2．Vindas di engrenage et at deux treuals，－Vor K． 10.
＊3．Cabestan avee rouleaux do friction－Vour K 11
4．Treml avec deux roues a poignees，et deux plans molines garmis de rouleaux pour tendre des ernquenelles， Vorr K． 12.
＊5．Tyeuil avee plan molne，－Vorr K 13.
Le mouvement transmos par le treun au poids mobile fant dégager deux déohes latérbux qui perméttent au plateau charge de descendre le long du plan incliné，quand on le juge convenable
＊6．Treur verthcal pour élever un seau de mine et en des－ cendre un autre par l＇action des hommes，tournant siterna－ tavement dans un seas et dans l＇autre．－Vorr D．a 6.
＊7．Vindas avec guide du cordage et leviers d＇arrét du treuil－Vour K 14.
${ }^{*} 8$ Treuil à engrenage，à manivelle－Vour K $15 .{ }^{1}$
＊9 Vindas aves poulte pour soutenur le cordage－Vour K． 16
10 Rainure en forme de pis transmettant un mouvement rectiligne ì une pièce guidée par une tuge parallelle ̀̀ l＇axe de la vis，par Zureda
＊11．Presse as vis pour exprimer les jus－Vour Li b． 29.
12 Chevre orduaire servant à élever les fardeaux
13．Chèvre Chmose à treunl différentiel．－Vorr K 59.
Le reull a deux parties de damères dufférents Le cordage，fixé and brenil par ses deux extrémités，passe sur une poule mobile qui agit sur le fardeau Le cordage s＇enxoule sur l＇un des treunls et se déroule de l＇eutre La guantrite dont le farderu s＇éleve est ì celle dont la roue à porgnées ou les extrémités des leviers se déplacent comme a montré de la duférence des rayons du treul est au rayon de la rous ou au bres de levier de l＇effort
14 Apparell \mathfrak{a} fusée pour régulariser lo mouvement de rameport rectuligne dune bande de papier ou d＇etofe qux se déroule d＇un cylndre pour s＇enrouler sur un autre
15．Crumbillera à coulisse，mue par un pagnon，apparen amploye pour la manosuvie des vannes
${ }^{11}$ Engrenage à pignon et crémaillère．－－Vorr K 68
17．Poulie de M．Fowler，pour câble métaluque，par M．Clant
＊18．Modele de treul \＆̀ engrenage＇dufferentiel de M． Weston－－Vor K．121．
，B，Transformation du movement arculatre contrnu en mowvement rectilgge alternatyf．
1．Bouton de manivelle guade dans un cadre，produisant le mouvernent rectilgne alternatif．
2．Excentrique employé pour transmetire sux tiroms de machines à vapeur un mouvement rectiligne alternatif avec plusieurs repos．－＊A．s． 17.
A a l＇inoonvónient do donner presque toujours heu à un mouvement seceade．
3 Mouvement de rotation＇continu d＇un pignon，trans－ formé en mouvement rectiligne alternatif d＇une cremaillere double．
Lorsque l＇extrémuté oirculaire de la crémaillere arnve pres du prgnon，les dents do celur－al s＇eppuent sur celles de la partre circulare，et le pignon s＇elève ou s＇abaisse pour
 denve）．On le retrouve dans les Artyficieuses machines de Rumell（1585）．
4 Mouvement de va－et－prent transmus par un treuil armé ie dents，qui agiseent alternativement les unes en dessus， les autrese en dessous d＇un châssis traversé par lo treul
Cet appareil donne lieu à des chocs à chaque changement de direction．
5．Mouverment de rotstion contanu transformés en un mouvement de va－et－vient par deux roues dentées．

Ce système est attribué à Lahure
7．Mouvement continu de rotation produisant un mouve－ ment de Fs －et－nent－I．n 10
8．Treunl portant deux secteurs dentés qui agissent sub－ cessurement sur deux crámanllères parallèles entre lesquelles ss maut l＇axe des eecteurn

Il y a deux chassis quì se meuvent en aens contrayes．Ce disposituf donne heu à dies choce à chaque ohangement de direction，et，par autite क des ruptures．
＊Crémauliere mmple，mue alternativement par deus sec－ teure dentas，montes sur los arbrea de denz roued d＇engre－ teura dentfa，montés suy les arbrea de denz roued d＇engre－
nage 6 gales．

10 Mouvement de va－et－vient d＇un chêssis produrt par une crémaillère qui passe au－dessus et au－dessous d＇une lanterne à chevilles par l＇effet d＇un ressort
L＇arbre dela lanterne est condurt par une vis sans fin
11．Engrenage intéreux，dit de Lahre，treansmettant uaz mouvement rectigne alternatif le long d＇um plan mochae． 12 Manivelle double condursant deux tiges de piston par une brelle à fourche
Les thges traversent des gurdes fixés au mur Les mans－ velles sont placées d＇équerre，ce quu ne convient qu＇aux pompes à double effet
13 Manvelle triples，dont les boutons sont écartes d＇un tiers de curconférence．
Cotte disposition convient aux pompes ì double et à sumple effet，

Les tiges sont gudées par une bride articulée
14．Excontrique onculame employe pour transmettre＇un mouvement rectilgne alternain aux trours des machunes it vapeur et autres pièces légères ，－＊A． 6,52 ．

Ce duspositaf ne oonvient que quand la résistanice de ia prèce ì conduire est très－fanble，sutrement，il donne heu à une perte de traval considérable due au frottement．

15 Excentrique a came dite en cour，pour transmettre $\frac{4}{4}$ une tige un monvement rectiligne alternatif dont les cqurses soient proportioneles aux arcs décrita par l＇excentrique．－ ＊A．e 53
Il donne lueu 台 une perte de travail cononderable par le frottement，et à des ebranlements à chaque changement de durection
16 Excentríque trangulaure monts en dehors de son arbre，pour transmettre à un tirolr de machune a vapeur un mouvement rectilgne alternatif avec repos 一＊A．e． 54

Il a l＇meonvéruent d＇exager l＇interruption de l＇arbre
17 Excentrique criculaire aved＇sa bielle，analogue è celle des locomotives，pour condure les tinoirs．
18 Mouvement de rotation continu transformé en mouve－ ment de үanet－pient très－lent．
19．Mamvelles quadruples transmettant le mouvement altermatuf à quatre tringlee pavalleleas par Molard．
La bonne exécution des manivelles quadruples presente de grandes dufficultés
20．Appareil de Camère pour tracer des courbes représen－ tatives des lois du mouvement dans les tranmuissions pir Cetriques et autres．
Cet apparerl est accompagné d＇une bielle et de dix ex－ centriques qua peuvent，être substitués les uns aux autres
21．Appareil régulateurs à aónes，pou presses hydrau－ uques，de M．Moulis．
22．Tranamission de mouvement par croisillon，par M 22.
C_{23}
23

23 Tranamasion de mouvement à retour rapide，de MM． Ducommun et Dubred，par M．Clarr．
24．Transmifsion de mouvement à retour rapide，de M． Whitworth，par M．Clars．
25 Engrenage ovale＇de M．Burdet，condussant une tige， donné par lun．
f．Transformatson du mowvement curculaure alternatyf en mouvement rectsigge alternaty ot intermaftent．
1 Levier de La Gerouste articulé，egissant sur une cre－ maillère à chevilles，pour mouvour un fardeau sur un plan

Le lever de La Garouste eat décrit dans les Machones de Académe de 1702.
2．Enchquetage a frottement de M，Saladin．
In produit le mouvement oontrint d＇une toge on d＇un plateau au moyen du mouvement de zotation，alternataf d＇un levier．Le lever à bague supéneur soutient la tgge pendant la reprise du grand levier et du levier à bague in－ enneur En soulevant les deux leviers a bague on rend la tuge libre，et elle redescend．
3．Denux systèmes de parallélogrammes araculés，connus en Angleterre sous le nom de Lazy Tongs．
Ces aystえmes ont éte appliqués dans la construction de cartames échelles à incendic．

4．Mécanisme destmé à imprimer，au moyen d＇une mani－ velle alternatrve，un mouvement de va－ct－vient à une cremaillers．
6．Modele de moulinet ou pendule conique，à debrayage； régulateur de vanue et do soupepe．－＊A．e． 104.
Lea bonles，en s＇fcartant plus ou moins selon la vitesse de rotation de l＇arbre qui les porte，détermunent le mouve－ ment du manchon d＇embrayage a droite ou a ganche，et par suite ho mouvement do rotatron de la vis sans fin dans un sens ou dans l＇autre；d＇où résulte le mouvement d＇ascerision
on d'abarssement d'une vanne on d'une vaive. Pour que cet apparenl sort sensible, il ne doit evorr à produre qu'un embraysge offrant pen de rénstance. On a même aubstitué su manchon d'embrayege trons poulies, dont une folle st manchon a embrayage tross poniles, dont une folle placée entre les deux autres, qui entrainent les roues d'angle la courroie d'une poulie à lautre.
6. Levier è roue dentée, de La Gazougte.
7. Levier multiple.

Parallelogramme de Watt
Ce modele rend apparente la marche sensiblement ree tuligne de la tuge du pistor.
9. Modele de chevrette, a double levier de La Garouste, par M Antoine.
g. Transformation du mouvement evrculaire contunu en mowvement rectaligne mitermittent.

- L. Plons de poudrente mus par des cames disposées en helive sur un arbre anmé d'un mouvement de notation contanu, par M. Clayr,-Vor T 45 .

2. Pílons et bocard -Vour D. d. 21

Même dispositff que I. g 1 , avec cette difference que les cannes ont le profil d'une développante de cercle. (Voyez D d. 21)

* 3. Rouleau de tension destné à établir ou à interrompre la commancation du mouvement entre deux axes paralleles Tre-sac des moulun - Vorr T c. B.

4. Modèle de machine à mortaiser, à retour rapide, exécuté et donné par MM. Ducommun et Dubied, de Mul, house
5. Appareil pour lobservation graphque de la loi du mouvement a retour rapide, de MM Ducommun et Dubied.
h. Transformation du movernent rectilugne ou exrculare alternaty en an motusement circuluire contuntu.
6. Pédale du rémoulour, transformant un mouvement orcularre aiternatif en un mouvement curculaise contanu
7. Transformation da mouvement curculare alternatif d'un levier en mouvement cisculaire altematnf d'un volant
8. Conversion d'un mouvement de bascule en un mouvement de rotation continu, par Molard.
9. Transmisaion par manivelle à un arbre vertical, donnee par la Société d'encotragement.

- Transformation du nouvement orrculaire contrnu en moviveif stent circularre alternatif ou sutermsttent.

1. Engrenage produsant un mouvement curculaire alternatif
Un pignon, fixe a l'extrémuté d'un arbre, qui peut se déplacer un peu horzontsiement, conduit un plateau circulare garni de ohevilles amillantes sur une partie plus ou moins grande de sa crrconférence. Quand le plgnon, en egissant à l'mórreur de cette circonférence, a fait passer toutes lea chevilles dans un sens, il tourne autour de la dermère, passe de l'autre cotté, et agit alors a l'extérieur de is circonférence.
Comme il tourne toujours dans le même sens, il produt le mouvement curculare alternatif du plateau.

Ce drspositaf, employe dans la filature, ne convient que pour des pieces legeres, marchant lentement Dans les sutres cas il donne heu à des choes et à des ruptures.
${ }_{2}$ Combinaians de vis cans fin et de roues d'engrenage.
3. Modele di parallelogramme de Watt, et de sa roue planétaure ou mouche.
Le dispositf dont il s'agit icn eat celui que Watt employs d'abord pour tranformer le mouvement circulave alternatif du balancier en un mouvenent carculare contha Il le nomma systeme Planetarre. La roue ou planete, fixéa a la du volant, lui fart fare un tour entier par oscilation simple du balanmer, tandis que, par l'emploi de la manivelle, l'arbe du volant ne fait un tour que pour une oscilation double da balancuer.

Les chocs qui se prodursaient dans l'engrenage ont fart abandonner be systeme, que Wate n'avait d'ailleurs adopté et cree que parce qu'rine patente l'empêchat d'employer la bielle et ls mampelle. (Voyer A)
4. Transformation d'un monvement de rotation continu en un mouvement de rotation alternatif, par M. Schroeder. 5 Transmisaon de monvement par croix de Malte, par M. Schroeder.
k. Transformation du mowvement curculatre alternatyf en toouvement curculatre intermattent.

- 1. Treuil a leviers articulés agıs̊ant sur des tetea armées de chevilles-Vorr K 19.

Les levers se dégagent alternatuvement des chevilles ef s'engagent à volonté

2 Treul manobuvie par deux leviery de La Garouste nodufiés.
La rove à munutas on a rochet est fixée aur y'arbre du treul. Le levier est terminé par un anneau qui embrasse une portée cyhndnque fixée aussu sur l'arbre; et, en rétrogradant, il emporte le pied de biche qu'un reesort nppuie sans cesse sur lee dents de la roue. Au contraira, dans son mouvement d'abattage, il force le pred de brche à agresur len dents de in roue à minutes, et produrt ams le mouvernent du treul.
Ce dispositif eumple et commode eat fort en usage pour les treule employées à serrer ou à empaquetar les ballota et pour faire mouvoir dea vis, des verins, ete.
3 Treul manceuvé pas deax leviers de La Garousto modifiés. Dispositrf analogue ì I. k. 2.
4. Enchqquetage à pred de brehe. Lever de La Garousta.

L'écartement dea chevilles détermine le nombre de dentis que frazchat le pred de biche dans son mouvement de retour et, par surte, l'amplatude du mouvement de rotation. Un oliquet s'oppose au mouvement en sens contrase.
5. Levier à enolıquetage. Petit levier de Is Garouste modufié.
Il se fire à volonté, sur l'arbre à mouvoir, par une portés carréo.
6. Encliguetage à effet instantané at a mouvement circularre, par M. Salsdin.
Le mouvement alternatuf du levier est trangms à la roue par la bride à anneau qu'il entrains. Quand le lever as relève, la bride inténeure à annear s'oppose au mouvement rettrograde de la roue Quand ou veut ramener la roue en aens contraire, on soulève les deux brides à la man.
7. Encliquetages de Dobo.

La rate ou plateau eat à frottement dour sur l'arbre, et a $_{\text {a }}$ Inntérieur sont des espèces de cames qui toument aveo cet arbre, mas qua sont arthoulées sur un axe particulier. Ces cames touchent le rebord mórreur du plateau. Ia Ces cames touchent le rebord interreur du plateau. La et celle qui réunt cet axe à celuu de l'arbe forment un angle et celle qui reunit cet axe a celuu de larbe forment un angle ongle se ferme par le mouvement des camenestatour de leur exe, et le mouvement de rotation de l'arbre n'est pas trankmis an platenu Lorsque, ant contraire, on tourne l'arbre de drorte à gauche, l'sagle tend a s'ourcix, et les cames, arc-boutees contre le rebord mténeur du plateau, forcent celur-ch a toukner. Il en resulte un mons an plateau pat mottent, mais dans le meme sens, transmis au pateai par de pression assez roide appuae sans cesse lea cames contre le rebord du plateau, pour qu'il n'y ant pas de temps perchu dans la transmusanon.
8 Fren à coilher, farsant fonction de cief lorsqu'on fart mourour un arbre cylndinque autour d'un axe.
9. Double fren à coller.

1. Transformation du mouvement rectnlugne alternatyf
en mowement curculave alternaty.

* 1. Archet de tour avec treuil de tension.-Voir G. d. 124.
m. Trangformation das movvement curoulavre contins en moutement csrculatre contuns, les awer etant dans le prolongement l'un de l'coutre, ou a peu pres.
1 Joint brise universel, destine à tranamettre le mouvement entre denx uxes qui ne sont pas dans le prolongement l'un de l'antre.
Il ne dort trre employe que lorsque les durections sont peu differentes.
Ce diapositif est attribut en Angleterre au docteur Robert Hooke (1676), et en France au philosophe Milenaas JGrome Cardan, né en 1501, mort vers 1575 On a vanement cherché, dans ceux des dix volumea un-folıo de Caxdan que Yon a pu se procurex, ia trace de cette invention; en par treulier, l'ouvrage de Subthitate, où ce savant semble avoir résumé ses travanx de tous genrea, ne renferme pount la deacription du joint brise.

Si l'on voulat asonmiler à cet organe de transmugan de mouverrent le systeme de surpengion des horioge et dee boussoles marines, on le touverant dectut dee ises dans let xy achine del signor G Bran

* 3. Désembrayage motantané-Vorr D. d 18.

En poussant le levier entre les deax plateaux, ils ae eb parent par l'effet du plan inclmé que porte l'un d'eux.
4: Embrayage et de desembrayage a vis potry les Clarr.
5. Embrayage de l'arbre de la meule supérieure d'un moulin, au moyen d'an too à bascule qui rend le pignon soldare avec l'arbre,
On peut srrêter la meule volante, ar elle s'engorge, endégageant le toc sa moyen d'une corde attachée à son extrémite.
6 Manchon de jonction de deux arbres dans le prolongement l'um de l'entre
Dispositnf vicieux. Ie bouton est exposé à de trop grands efforts et peut être coupé; l'arbre est affable par les entailles.
7 Mécanume pour arrêter ou rétablur, à volonté, differrenta mouvements provenant d'un, méme moteur, par Molard.
Embrayage par manchon moblle et à fourches, pour des poulies.
8. Modele de débrayage dynamométrique, par M Morson
9 Manchon d'assemblage à nis, par M Sellers
10. Manchon d'assemblage à filet, par M Sellers.

11 Specmmen de frem d'embrayage à genoux elastaques, par M L. Franchot
12 Modèle d'engrenage ovale, zégulamsant là frangmission par jount de Cardan, de M. Normand, donné par l'inventeur.
n. Trangormatron du mowvement creularre contrnts en mouvenent carculatre contmu, dans le cas d'axes paralleles, satuts a petues dastances liun de l'autre.

1. Engrenage composé de quatre roues dentées dans le nême plan.
Un cercle fixe dorte 72 dents à sa curconférencésintérieure. Un pignon de 24 dents, monté sur un aze, porte un bras de evier sur lequel sont montés deux autres roues de 24 dents qui engrenent a la hos avec le grand cercle el avee le pignon
 nrenage de ses roues avec le cercle fire produrt leur moupment de tratisport Ces denx roues recoivent enns un mouvement de rotation sur elleswmême ef un mouvement de tranelation autour de l'ser de rotation du prgnor
e translation autour de l'axe de rotation du pignon.
Quand les 24 dents du pignon central ont engregne avec déplacée de 24 dents sur le cercle fixe, ou de te de la circonférence de celu-cr, et elle a fait un tour sur elle-méme.
2. Engrenage de tross roues, deux d'entré elles étant inarieurs à la tronsieme
Disposituf analogue à I n. 1 , avec cette différence qúsll n'y a qu'une roue intesmédiaure et qu'elle n'est pas líe à pignon pron when ave ce pignon euran an mouvement de Dans une gorge de cette roue intermédiare de cranslatnoa. tromité d'un bras de levier fixe sur l'sxe d'up trouil con centrique an pignon, et qu lui communique un moupement de rotation, dont la yitesse dépend du rapport des nombres de dents du pignon et de la rone intermediere dents du pignon et de la raue intermeniane.
3 Combinason de roues dentés, montrant les rapports ontre les nombres de tours.
3. Ancienne transmission de mouvement
. 5 Engranage double, formés da deux roues apphquéea une contre l'autre et divises de telle sorte que les dents de lune correspondent aux vides de l'autre, at de deux pignons disposes de la meme maniere, pour diminuer les nconvenients de la grandeur da pas et pour rendme le 6. Mement plus continu.
4. Modefes pour le moulage d'une rove droite et do ann pignon, la roue et les dents devant être en fonte.
Voir, pour les vanétés de ces engrenages, ì la Gennétrte 7 esctiptspe
5. Engrenage hélçondal, connu en France sous le nom angrenage de White.
White n'est pas le premer inventeur de ce systeme nggémeux, pour lequel il a pris cependant un brevet en 1808, et qu'la a dérit en 1822 dans son Cestury of snoencordales remonte au moins aux engreanages dea dents heliproposée par le docteur Robert Hooke. Io modale drun proposee par le docteur robert Hooke. Le modele d'un le docteur Hooke la Socíté prepente des cetto annee par était l'un des membres les plus dostongués; et il a cen 1674 publié la description et axposé les advantages de calle forme d'engrenage, p. $70 \mathrm{du} \mathrm{n}^{\circ}$ 2 de ses Cullervas lecturres. " engrenage, p. 70 du $n^{\circ} 2$ de ses Cutlervan lechures.

* ton on matiere jue jal farte, dit-li, je l'appelle la perfec-- premerrement, de faure un engrenase tel, que roue ot pignon, 81 petits quils soient, auront un nombre do dents 96000.-Rep. IV
 "f sort sffarbli et sans que les denta cessent d'être exécu"ctables par bo ouvirer ordinaure Secondement, c'est que "c le monvement se transmette de la roue au pignom sans "qu'll pusse y avory, ar l'ouvrage est bren fart, aucuns " que le poine de force on de vitesse Tronsimement, c'est " que le ponnt de touche sont tougours sur la hagne quit joint ${ }^{4}$ ancone espece de frottonent et qu'll ne soit pas d'une * ancune espece de frottement et qu'll ne sort pas d'une " à cela près que les ouvriers n'en ont pas l'habitude" catalogu pres que les a cers in in ont pas d'engrenage de Hooke, qu'1l porte en Angleterre, le système que l'on appelle a tort en France engrenage de White. Wue on appelle a tort en rance engrenage de white. les hélices en cherrons helnees en cheorons
On dort ajouter qưun engrenage hélicondal fart partio ${ }_{1846}$ collection d'objets Chinoss rapportes de Canton en

8. Engrenage cylındrique hélıçordal de Hooke, dont les dents, dusposées en chevrons, par White, sont destunees à dérrume les composantes que l'on suppose devors agis dans le sens de Yaxe de la rane.
9 Engrenage de deux roues à hélice.
*10. Mécansme pour imprimer, su moyen d'une manivolie, le mouvement de va-et-vient a une cremaillere double. - Vor I. e 7

11 Apparenl analogue à I n. 10 et a L. c. 3

* 12 Engrenage d'une roue droite et de son' pignon Your I. 04
' 13 Transmíssion par courroie entre deux arbres parallelea et très-rapproches, par M J Schfoeder
14 Transmission par cadre, garme de dents d'engrenage, par M J Schroeder

15. Transmission par courbe en cceury, garnie de dents 'engrenage, par M J Schroeder.
16. Transmiseion par courbe en carus, garme de dents d'engrenage, par M.J Schroeder
17 Modèle orignal de l'engrenage de White, donné par l'Académe des Sciences.

18 . Engrenage heligoldal intérieur, pal $\mathrm{M}_{\text {, }}$ Weston
19 Transmassion de mouvements ì rapport variable, de M. Sellers, par M Clar

- Transformation du mouvement curculaife contunu en mouvement curculawe contintr, dans les cas où les axes se renn contrent

1. Double engrenage conque pour transmettre le mouvement dans le même sens avec des vitesses dufférentes. 3. Modeles pour le moulage d'une roue d'angle ot de son pignon.
' Vour, pour les variétés de ces engrenages, aux collections de la Geometrie descraptuve
2. Engrenage d'une roue droite avec un pignon, et d'une roue d'angle avec son pignon en fonte, formant un apparel de transmassion de mouvemen
b Roues d'angle, heliçordales, de White, données par PAcadémie des Sciences
p. Transformation du moupent i
p. Transformation du moupement orrculaure contznus en mowvement curculaure continus, dans le cas d'aces paralleles
'sntues a de grandes dustances l'un de l'autre.
1 Modèles de transmissions' de mouvement par courrores, appliquées à un tour, a une machine à aléser, a une machine a raboter, et à une machne à taradier, indiquant en outre le mode de débrayage.

* 2 Modele de tire-sac, montrant l'emplor dea rouleaux de tension pour établur ou interrompre au besoin la soladanté du mouvement de deux treuls parallèles au moyen de courroies - Vorr T. c. 8.
3 Pouke ̀̀ expansion à sux segments, employée pour régulariser ls mouvement transmus par des courroies par
M. Clarr. M. Clair.

La carconférence de la poulie est partagée en sox segments, portés chacun par un axe durige dans le sens du rayon; sur chaque axe est un prgnon conique dont le moyeu forme l'ecrou d'une ons filetee aur l'axe. Ced six plgnons engrenent entre eux de facon que, quand tha
tourne l'un, les autres recoivent le meme mouvement, mais alternatuvament en sens contraures meme mouvement, mais la partie qui traverse les poron les uns it frotes in sutres à gauche, de manuére qu'ils tournent donse, les le meme sens en floignant ou en troprochant du centre e mexue semen elgasit on en \quad pprocisan du centre volonte. Ce dispositif et d'autres ane
es machunes à papuer continu.
4. Modale de la transmission par courroies da moulin de Sant-Maur, donné par M. Darblay, jeune.
5. Boacle pour counirie de tranilminsion

6 Modele de debrayage de courroie, bytème Herland, Par M E. Pihet
7 Deur modèles d'assemblage de courroies par des vis, Gar M. Scellos
8. Transmission de mouvement par tambour et corde.
q. Trandformation du mowement crroulase oontine en moubement ctrculasre contmu, dans le cas daaces qua the sit rencontrent pas

1. Raxe à dents heligordales condursant une vis sans fin svec volifit à aulettes.
Dans ce cal les filets de la vis et les dents dorvent byoir sur lewr axe une incinasoon beaucoup plus grande que rangle de frottemont Ce dispositif s le defaut de consom mer beauconp de travail par le frottement, et ne dort Atrs volants, régulateurs Il eat en usage dans I'horlogere
2 Combinaison de vis sans fin et de nervare en spital pour transformer le mouvement circcularre contina en mouvement circularre continu itres-lent, eppliqué aux
compteurs de tours
2. Vis sans fin condursant une roue à dents héliçordales.

Ce dispositff donne leu đ̀ une perte de travail considérable par le frottement; mans il permet de transmettre de grands efforts. /ill est employe avec avantage pour lea mancenvrea des vannes.

4 Engrenage à vis sans fin.
b. Transformation d'un mouvement de rotation en un autre mouvement de potation, la distance des axes étant variable, par M. J. Schroeder
6 Transmasion de mouvement entre deux bxer non paralleles par M J Schroeder.
7. Transmission par courroie entre deux axes non paralleles, par M. J. Schroeder.
5. Movernent de rotation continu transforme en mouvement de transport et en mouvement de rotation simultanes.
1 Engrenage de trois roues (deax d'entre elles inte neurea à la tronameme), applqqué à ume carde
Meme dispositaf que tith. 2, la roue centrale est mue par undalajesuer avec brelle et manvells
㪈 Mouvement de Yotation vané, et mouvement de ve-et-nent, produts par un mouvement de rotation unforme.
*

8. Mowvements dafferentrels

1. Engrenage différentrel helnçoıdal

Mouveraent dufférentrel attribué à Winte.
3. Modele de mouvement dufférentiel, de trois roues d'angle, par M Piat
Quand la rove de champa a fart une revolution autour de l'arbre et un tour sur elle-même, la roue supéreure so fart deux toura
54 Mourement différentrel, par èngrenage d'angle, dana e rapport de 1 a 4 , par M Clarr
5 Mouvement différentiel, dans le rapport de 1 ì 1200, par M. Clair.
*
Dynamometres
a. Dynamomètres,-1 Appareils d'observation pour Ihydrauhique, la pneumatique et les machnes in vapeur. -c. Apparelle comptears

a. Dynamometres.

1 Dynamomètre à styles et fusee compensatrice, avec moteur chronométrique, destoné aur expériences à farre gur les bateaux, Ies charrues, avee aa transmisemon de mourvement pour les véhrules a roues, par M A Morn. ment pour les vehcules a roues, par M A Morin ann renvor de mouvement, par M A Morn.
3. Dynamométre ì styles et fusée compensatrice, à quatre lames, avee motelir chronométrique, par M. A. Monn.
4il Dynamomètre a compteur totalisatear pour charruen, \& ${ }^{\text {Hec ou sans avant-trann, par M A. Morn. }}$
5. Dynamometre à comptear totahsateur, par M. A.

6 Dynamomètre de rotation à trovs posilies, è styles et fusé compensatrice, par M A. Momi.
73 Dynamomètre a rotation à trous poules et à compteur totalisabeur, par M A. Morm.
8 Frean dynamométrique, par de Prony (1826)
9. Manrvelle dynamométrique à styles et fusée compensatrice, par M. A. Morn.
10. Dynamomètre de Régmer
11. Dynamomètre à compteur charrue à avant-traan.
12. Machunt des purssances, ayant pour objet d'estimer les forces comperatives da piusteun tovula conduits par un mêne moteur, par G. Webeln, de Leipag, en 1741.
13. Poulve en fonte, diniete en deur partres, pour frem de Prony, par M Clarr. Pessar Dynamometre do Bentall, aveo mon avant-train, pour Pessay des charrues.
15. Dynamometre de White, par John Eloe.
16. Grand dynamometre de rotation, de $\mathrm{O}^{\text {ma }} .80$ de dia-
métre de poulie, de M A. Momn par mètre de poulie, de M A. Momn, par M. Claur.
par M. Clam \quad meme de traction a aix lames, de M. A. Morn par M. Clair
18 Manvelle dynamométrique avec débrayage, de MA
Monn, par M Claur 19. Dar M Clay
19. Dynamomètre de traction, à style, aveo moteur chro nométnque, de M A Morn, par M Clair
Sigi, de Vienne frein differentiel de Naple, donné par M Sigl, de Vienne.
frottement, par M Charr. Monn pour déterminer les love du frottement, psr M Clarr
22. Appareal pour mesurser le frottement, par Valtjez.
d'arr on d'sau, ponstruts marer le frottement, aveo mjection d arr ou deau, construit par la Socréte Genevorse.
de . Ressort atmospherique, do la force de 10 kul et $\mathrm{o}^{\mathrm{m}} .40$
25 Ressort atmosphérique; force $8 \mathrm{krl}, \mathrm{s}$ aure 0 m .40 par Audenelle.

b. Apparesls d'observation pour ithydrauhque, ha pneumatrque

 et les machtaes à vapeur.1. Indicatexu de la pression dens les cylindies dea machunes à vapeur, de Galy-Cazalat, par Saulmer,-A 33.

2 Indicateur dynamométrique de la pression dano les
machunes à vapeur, de Mac.Naught.-_A A mashunes à vapenr, de Mac-Naught. - **A e, 34
3 Indicatenr totalasateur du travail des machirea a vapeurs
de Laponnte, par Paul Garmerna e. 35
4. Dynamomètre indicateur pour machunes à vapeur, de

Raymondon.-*A e 36
5 Indıcateur dynamométrique des pressions de vapeur, de Laponte, par Paul Garmer.-A. e 37 .
6 Indicateur de le preseron, de Lapointe, par Clair *A. e. 37.
9. Module Milanas pour le jaugeage de la quantite d'ean que s'écoule dans un temps đonné,-"Q. g 29 .
10 Tube en fonte pour le jaugeage dea cours d'ean, de Lapbinte, par M Clair.
If Pent compteur avec son moulinet, dans le tabs precédent.
12 Compteur hydraulqque pour le debnt de l'eanu*
13. Mouhnet de Woltmann pour la nitesse de l'ean
14. Tube de Pitot, en cuive, pour mesurer la vitesse des
14. Tube
cours d'eau.
15. Hydromètre de M. Michand, is flotteur et a cadran pour indiquer ha hauteur des eavis.
16. Anemometre de Breguet, aresort pour mearela
16. Anemometre de Breguet, a ressort, pour mesurer la ntesse des courants d'ar.
17. Anémomètre de M Combes, a aulettes, ponr menurer la vitesse des conmante d'ari de petite nitesse.
18. Anemometre de M. Combee, à alettes fortes, pour
mesurer la nnterse des courantsen
19. Anémométre de Régmers, a plan et à reasort
20. Anémométre de Regmer, a plan et à ressort
21. Anemometre à ponntage, par M. Bianchse par M. Branchi.
22. Anemomètre à pontage, par M. Branchs.
23. Compteur à gaz de Crosiey, à engrengages, mavguant les nombres sur troie cadrans - Ni, h. 32.
2伤 25. Indicateups de pression, pouvant tracer dem conrbes contonuse on fermées, par M. Clair.
26 Comptenr à gaz porur expénences, de MM. Scholefield, donné par l'anteur - $* N$ ox 46
27. Manomètre ì cloche, pour le gaz, donno parr MM. Scholefield.
28 Trous boules en bous pour l'observation do ls vitesse des courants.
29, Anémomètre de M. Combes, ì dimenaiona nednutem et à débrayage, par M, Neumann.
30. Anémomètre z̀ pointage, svec compteru juequ'z 50,000 tours, par M. B. Branchir
31. Compteur à can, par M. Donnet.
32. Anémomètre totahasatenr de M. le génénal Morm, avec compterri jusqu'a nu milhard de towarn, par M. B. Branchu.
33 Pompe pour détermmer l'état hygrométrque de la vapeur d'eas, de M Tresca, par M. B Bianche.
34. Appareil de Yaubrain, duspoae jpar M. Tresca pont determmer l'état hygrométinque de la vapeur d'ean, par M. B. Basnchi.
35. Anémomètre à pountage et compteurs jupqu'à 10,000 tours, par M B Bianchi
36. Anemomètre a porntage et compteur jusqu'à 10,000 tours, par M B Branch
orer demometre a compteur difterentrel, pouvant sem38 Anamer touties sens, par M A. Clas
Monn, par M. Hardy des cours d'eau donné par lur.
41 Anémomètre à contact électinque de M Dersohsu, domé par lun.
42. Compteur électrique pour les anémométres profédenta.
43 Enregistrear élechnque pour les anémomètres precedents.
44 Anémomètrè à axe horzontal et à contact électrique, par M. Hardiy
45. Compteur à deux flectoomants, pour anemometrie, de M le genéral Morn, par M Hardy.
46 Enregistreur pour l'anémomètre de M. lo genéral Morn, par M Hardy
17. Anémomètre, 日ystème Combes, à manche, pouvant être digposé honzontalement et verticalement, pari M. Hardy

48 Anemomètre à compteur dufférentrel, à moulinet hellcodal en alumunum, par M. Clarr.
49 Compteur à eau de Stemens, donnépar la Sociéte d'Encouragement.

50, Indrcateur de pressipn, 应stème, Ruchard, par MM.
Elliot, freres *A. e, 97
51. Loch perpétuel, par. Gould.
52 In
Indicateur de pression, avece piece mobules en alumimum et enveloppe de vapeur, de M Tresca, par M Claur.
The Conservitome blams to exercise of most important mfluence upon the application of science to mdastry, by the followngryeans ($-($ () By its colliectionsof models, machunes, and products (2') By instruchon given whinn its wails on
the appleation of scence to mdustry and to the arts (3) By the vanouous methods of experimentation whrch are at the service of the nation and of mnduriduals free offetharge. (4) By its library, which congsts of between 20,000 and 30,000 volumes of works dealing wrth sctence and industry (5) By its almost unequalled portfolios of designs, whroh are open to the public, and may be freely copied (6) By ats elementary school, which probably will some day be transformed into a special and higher school of arts applhed to midustry
The Great Amphitheatre of the Conservatoire can hold 700 persons, and the small one 360 . These are often full to overflowng Iv the Great Amphatheatre two lectures are grven every week-day might one at 730 ; the other at 845 . I think I have already stated that more than a quarter of a million of persons, sernous students, ,availed themselves of the instruction here gratuutously given durng the course of last year.
I'append a Programme of the Course for the Session 1873-74, and the Budget fors the Conservatore and wts Subsidrary Schools.

Ces Cours s'ouvriront, le Lundı 3 Novembre 1873; au Conservatoire des Arts et Métrers.

Geombtris appliquem auy Arts.

Les Mercreds et Samedug, à sept heures et demie du
M. Laussamat, Professeur, ouvrira son Cours le Merceredi 5 Novembre.
Objet deareqzigoner--Théone des principales courbes employées dans le tracé et la construction des machmes. Etude géométruque des organes qui servent à la transformation den mouvements Engrenages; cames, excentriques. Articulations. Echappements Encliquetagess Compteurs. Instruments enregistreurs *

Geometrie Descriptive.

Less Mercreds et Samedis, a hurt heures et demie du soir. 1
M Da la Gourneris, Professeur, 'oupmra son Cours le Mercredi 5 Novembre
Objet dea Legons.-Applicetion de la Géométrie descriptive a la coupe des pierres et à la coupe des bois Appareals des voates le plus ordmamrement employees, des oscaliers, des grandes arches biaises. Combles et escaliers on charpente

Mgeantque appliquée aux Artb.
Lea Mards of Vendredrs, a sept heures et demie du sor
M Trasca, Professeur, ouvrira aon Cours le Mardh 4 Novembre.
CHict des Legons.- Examen général des progrès des arta mécanıques \& l'exposition unverselle de Vienne. Qualtess et emplors des maténsux. Résisttrnce ot essans de matérasur. Machines motrices. Machines hydraulqques Machines soufflantes Machines-outils

Constructions Cryther

Les Mercredis et Samedis, a sept heores et demie du nor
M E.Trellat, Professeur, ouviza son Cours le Samedr 15 Novembre
Oujat dme Liçone.-Soutiens rextcaux. Southens horizontaux Combles. Couvertures. Revetements. Théorie et spphcationi remarquablee dea éémente divers que le constructeur emploie dans lees édufices.

Phybige applicuta aut Arta.

Les Mardis et Vendredis, à huit houres trons quarts du * sorr.
M. E Becequerelo, Professeur, ouvira son Coura lo Vendrod 7 Novembre.
Objer ars Lepons.- Pruncipes fondamentaux do la plysaque Applications diverses de la chaleur; formstionchaleur et de frond; chauffage, ventalation Production ot propagation des cons Sources de tumieres; melarrages analyse spectrale. Construction des instruments d'pptique.

Chimiz Génerala dans bes Rappobts avec L'InDUETRIB,
Les Lunds et Jeudis-a huit heures trons quarts du soir. M. E. Paligot, Professeur, „ópurrus son Cours le Jeudr 6 Novembre,
Objet des Leqons.-Premère partie du Cours: Phénomènes geñéraxx de combinasson et de Aécomposition Nomenclature et fotatron chimique Historè détallée des corps amples non métalliques et de leurs prupcibales sornbunasons. Aux atmosphérque. Eau* Acides"mnerauay
Ammouaque.

Cbimim Industriblie.
Les Mercredis et Samedis, à huruty heures trois quarts du
M A. Graard, Pofessour ourtra son Cours le Mercredr 5 Novembre.
Obixt des Legons-TFames' et pannication; pâtes almentaures, amidons et fécules Sucre de betteraves, de. cannes, ete : glucoses et dextrune Ving, bieres of alocools. Huiles et grayses ; bougies et savons.
Chmite appliavita aex indubtrise de la Teinture,
di- dx la Cbramigut mp de la Vxrrerfa.
Les Landis et Jeadis, 1 esept heures ot demue diz sorx
M. Dim Luynke, Professeur, ouvira aon Cours le Lundi 3 Novembere.
Oajet dess Ligcons,-De verres. Matières premueras employés Trempe, recut Dévitufication Fours Fabrcation des potenes. Préparation et travall desp patees céramiques' Faience: Porcelane. Gres Couleurs vitri-
flablos. Emaux. Décoration des verress et des poteriess
Chimin Agricole $x t$ Analysk Chimzui
Les Mercredss, ì huit heures et demue du sour, et les Dimanches, a dix heures et demre
M Bousingasult, Professeur, ouvnisa son Cours le ,
Bn cas d'emptchement M. Boussingault sera remplsoé par. un in M. Sonleksing
Objet dirs Leģons - Phénomènes généraux de la végétation. Géologie agrioole. Organe et constitution de Is terre vegetale Fumier, ongrass aurilharres Stathque des cultures. Eudrométrer ; applications ì l'étude do l'atmos spherre. Démonstration des procedés de l'analyse minérale. Lutere. Decons de olvimue agricole suront hea lea Mercredis; les d́́monatrations de l'analyse, len Dmanches, à dxa heures et deme du matan

Les Mard Apricolturb

M. Mo et Vendredis, à sept heures et demne du" sor
, M. MoLl, Profeaseur, ouprure son Cours le Mardi
Denex mas Lusons - Eléements constatuants de l'entroprise - agncala: PExplortant; connsuesances et apthtude necossares. La Terre; faculté productave; compo-
sítion du domaine ; ;régre," fennullye, métayage. Le Capital foncerer et mobiher; consommation et reproduction. L'Engras ; prix de revient; engrais commerchaux. Le Traval de l'homme, des anumaux, dea moteurs.

Travaux Agricolrs be Genie rural.
Les Mercredis eth Samedis, à sept heures et deruye du sory. M R. Mangon, Profeseeur, ournira son cours le Mécreadr $\$$ Novembre.
Objet des Laçons - Moteurs employés en agnoultare
Travari mécanque et alumentation des moteura samés.
Traviux d'exterreur, labourages, semailles; cultures; recoltes. De l'eau én agriculture, umgations; dessécho ments , dramage.

Filature eqt Tissagr.
Les, Lundss et Jeudis, à huat heures trois quarts du soir.
M. Alcan, Profeasear, ouvrira son Conrs le Lundı 3 Novembre.
Obiet des Legons - Aperçu genéral sur lea arts textales, orgines, caracteres, proprietes, épuration et prepara thon des matieres premieres, Filature, retordage et apprete des fils de coton, hn, achanvire, jute, chun-grasa, laine, poul de chevre, alpaga, sore, bourres et decheta, caoutchoue, etc.

Tableat des Jotré et Hhurbs des Cours.

-	Dmanche.	${ }^{}$ Iunal.	Marcte.		Mererecod.		Joud.	\checkmark ondredi.	Samed	
Petitit	M M M. hearras	M.M. hemrean	M. .j.	hourse		$\begin{aligned} & \text { heares } \\ & 0=7+8 \\ & -84 \mathrm{e} \end{aligned}$	M K. neures.	m.M. heures		$\begin{aligned} & \text { henroa: } \\ & =7+1 \\ & 124 \\ & .810 \end{aligned}$
Ancmen	$\underset{\text { Eault }}{\substack{\text { Bousgiv- }}}$		${ }_{\text {Burat }}^{\text {Mol }}$	-7\% ${ }^{\text {\% }}$	$\begin{gathered} \text { Mangon } \\ \text { Bougsin } \\ \text { geault } \end{gathered}$	$\begin{aligned} & -7 \$ 0 \\ & -8 \$ 0 \end{aligned}$			Mangon 1	74.
Grand			$\underset{ }{\text { Tresea }}$	-74:	$\underset{T}{\text { Tr }}$ Gratab	-7tys.	$\begin{array}{\|l\|} \hline \text { Woloswla : } 718 \\ \text { Pelligot } \end{array}$		Trulat	-78:

Budget for the Consbevatorre et Ecoles d'Arts et Métiers for 1873.

-	Chalons.	Angers.	Als.
	144,000 fr	$7^{185,000 ~ f r .}$	180,000f.
Matrbixa :			
	-96,500	95,000 82,000	110,500
Masse de pett équpement, chaussare	11,100	18,000	11,300
Chauffage et ceclarage -', -ilo - -	15,800	15,500	15,700
Dépenses admunustratives, mobiliex, blanchissages, chapelio, bublothèque, fournatures de bureau, fras d'6tades, mé \qquad		14,600	
	22,000	14,600	18,6000
Matériel, mam-d'ouvre, wehat de matures premueres	47,680	46,570	24,700
Totaux	374,03\%	369,670	358,900

2. Dépenses communes aux trons Ecoles.

LONDON

Printed by Geores E Efraz and Whiliny Bpotyiswoodz,
Printers to the Queen's most Excellent Majesty.
Printers to the Queen's most Excelleat Mise.

- FFor Her Majeaty's Stationery Offer

$3 v^{2}$

FLFTH REPORT

OF the

ROYAL COMMISSION

on

SCIENTIFIC INSTRUCTION AND THE

 ADVANCEMENT OF SCLENCE.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILLIAM SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCEWLENT MANESTY. FOR HER MAJESTY'S STATIONERI OPRICE.
1874.
[C.-1087.] Price 6d.

ROYAL COMMISSION ON SCIENTIFIC INSTRUCTION, AND THE ADVANCEMENT OF SCIENCE.

VICTORIA R.

Victobia, by the Grace of God of the United Kingdom of Great Britain and [reland Queen, Defender of the Faith, To Our Right Trusty and Right Entirely Beloved Cousin William Duke of Devonshire, Knight of Our Most Noble Order of the Garter,Our Right Trusty and Entirely Beloved Cousin Henry' Charles Keith Marquess of Lansdowne,-Our 'Trusty and Wellbeloved Sir John Lubbock, Baronet,-Our Trusty and Wellbeloved Sir James Phillips Kay-Shuttleworth, Baronet,-Our Trusty and Wellbeloved Bernhard Samuelson, Esquire, Ofur Trusty and Wellbeloved William Sharpey, Esquire, Doctor of Medicine,-Our Trusty and Wellbeloved Thomas Henry Huxley, Esquire, Professor of Natural History in the Royal School of Mines,-Our Trusty and Wellbeloved William Allen Millex, Esquire, Doctor of Medicine, Professor of Chemistry in Kings College, London,-and Our Trusty and Wellbeloved George Gabriel Stokes, Esquire, Master of Arts, Lucasian Professor of Mathematics in the University of Cambridge, Greeting:

Whereas We have deemed it expedient for divers good causes and considerations that a Commission should forthwith issue to make Inquiry with regard to Scientific Instruction and the Advancement of Science and to Inquire what aid thereto is derived from Grants voted by Parliament or from Endowments belonging to the several Universities in Great Britain and Ireland and the Colleges thereof and whether such aid could be rendered in a manner more effectual for the purpose.
Now Know Ye that We reposing great Trust and Confidence in your Ability and Discretion have nominated constituted and appointed and do by these Presents aominate constitute and appoint you the said William, Duke of Devonshire-Henry Tharles Keith, Marquess of Lansdowne-Sir John Lubbock-Sir James Phillips Kay-Shuttleworth-Bernhard ${ }^{\text {© }}$ Samuelson-William Sharpey-Thomas Henry HuxleyWilliam Allen Miller-and George Gabriel Stokes-to be Our Commissioners for the purposes of the said Inquiry.

And for the better enabling you to carry Our Royal Intentions into effect We do by these Presents authorize and empower you or any three or more of you to call before you or any three or more of you such persons as you may judge necessary by whom you may be the better informed of the matters herein submitted for your consideration and also to call for and examine all such Books Documents Papers or Records as you shall judge likely to afford you the fullest information on the subject of this Our Commission and to Inquire of and concerning the Premises by all other lawful ways and means whatsoever.
And Our further Will and Pleasure is that you or any three or more of you do Report to Us under your Hands and Seals (with as little delay as may be consistent with a due discharge of the Duties hereby imposed upon you) your opinion on the several matters herein submitted for your consideration, with power to certify unto Us from time to time your several proceedings in respect of any of the matters aforesaid, if it may seem expedient for you so to do.

And We do further Will and Command and by these Presents ordain that this Our Commission shall continue in full force and virtue and that you Our said Commissioners or any three or more of you shall and may from time to time proceed in the 64606.-ERTR. V_{1}
execution thereof and of every matter and thing therein contained although the same be not continued from time to time by adjournment.

And for your assistance in the execution of these Presents We do hereby authorize and empower you to appoint a Secretary to this Our Commission to attend you whose services and assistance we require you to use from time to time as occasion may require.

Given at Our Court at Saint James's, the Eighteenth day of May 1870, in the Thirty-third year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE

ROYAL COMMISSION ON SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

VICTORLA R.

Victoria, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen, Defender of the Faith, To Our Trusty and Well-beloved Henry John Stephen Smith, Esquire, Master of Arts, Savilian Professor of Geometry in Our University of Oxford, Greeting :

Whereas We did by Warrant, under Our Royal Sign Manual, bearing date the Eighteenth Day of May, One Thousand Eight Hundred and Seventy, appoint Our Right. Trusty and Right Entirely Beloved Cousin, William, Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty and Entirely Beloved Cousin, Henry Charles Keith, Marquess of Lansdowne, together with the several Gentlemen therein named, to be Our Commissioners to make Inquiry with regard to Scientific Instruction and the Advancement of Science, and to inquire what aid thereto is derived from Grants voted by Parliament, or from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such aid could be rendered in a manner more effectual for the purpose: And whereas since the issue of the said Warrant William 'Allen Miller, Doctor of Medicine, one of the Commissioners thereby appointed, hath deceased :

Now Know Ye, that $\mathbf{W e}$, reposing great Trust and Confidence in Your Zeal, Disoretion, and Integrity, have authorized and appointed, and do by these Presents authorize and appoint you the said Henry John Stephen Smith to be a Commissioner for the purpose aforesaid, in addition to, and together with, the Commissioners now acting under the above-mentioned Royal Warrant.

Given at Our Court at Saint James's the First Day of December 1870, in the Thirty-Fourth Year of Our Reign.

By Her Majesty's Command,

H. A. BRUCE

Professor Henry John Stephen Smith, M.A.,
To be a Commissioner for inquiring into
Scientific Instruction and the Adrancement of Science.

FIFTH REPORT.

TO THE QUEEN'S MOST EXCELLENT MAJESTY.

May it please Your Majesty,
Wz, the Commissioners appointed by Your Majesty to maké Inquiry with regard to Scientific Instruction and the Advancement of Science, humbly beg leave to present to Your Majesty, in continuation of our former Reports, the following Report on certain Institutions of recent voluntary origin and mainly dependent on voluntary support, which have made arrangements for Advanced Instruction in Science.
: The Institutions of this' description to which our' attention has' been directed, and with regard to which we have taken Evidence, are the following :-
I. The Two Metropolitan Colleges, viz $:=$

University College.
King's College.
II. The Owens College, Manchester.
III. The College of Physical Science, Newcastle-upon-Tyne.
IV. The Catholic University of Ireland,

I.-THE TWO METROPOLITAN COLLEGES.

Universtry College, London.

1. The history of this Institution, 'as briefly, stated in its "Calendar, is äs follows:It was founded in the year 1826, and opened on the 1st of October 1828, under the See Appri. title of The University of London. 'It was incorporated as University College, London, by a Royal Cherter dated the 28th' of November 1836, which 'was annulled by an Act of Parliament passed on the 24th of June 1869, whereby the College was re-incorporated with additional powers and divested' of its proprietary character. The purpose of the College, as expressed in the Act, is "to afford, at a moderate expense, the means of " education in Literature, Science, and the Fine Arts, and in the knowledge required for " admission to the Medical and Legal Professions, and in particular for so affording the " means of obtaining the education required for the purpose of taking the degrees now " or hereafter granted by the University of London."
2. The College was in the first instance constituted as a joint stock company, and the original deed of settlement provided for a dividend not exceeding 4 per cent. on the share capital. But, as a matter of fact, no dividend was ever paid, the expenditure of the College baving from the very first absorbed the whole of the receipts from that portion of the fees paid by the students which was applicable to the purposes of a dividend. The title of "The University of London," which was' at first assumed by the Institution, did not carry with it any of the privileges of an University, or the power bf granting degrees. On the 26th of March 1835 the House of Commons adopted by a large majority an address to the Crown, praying that a Charter of Incorporation might be granted to "the University of London," containing the power of conferring degrees, other than degrees in Medicine and Divinity. Instead of 'giving this power, the Government determined to found a new Institution, the present University of London, and it was proposed to the College, or University of London, as it was then called, that it should give up its title in favour of the new Institution then about to be founded, and should take instead the title of "University College, London." This proposal the Council recommended the proprietors to accept, and it was accordingly accepted by them. It was one of the conditions of the agreement between the College and the Government, when the origonal title was given up, that the Institution should be incorporated by a Royal Chater. It would seem that it was intended that this Charter Qu. 2133. should extinguish the pecunary rights of the proprietois. These rights were, however, not formally cancelled, and provision was made for the transference of the shares; although all reference to any pecuniary advantage to be derived from the possession of the shares was left out of the Charter. At a subsequent period doubts were entertained as to whether the Charter had so effectually extinguished the proprietary' rights as to prevent them from becoming inconvenient at some future time; and the College, with the
unanimous approval of the proprietors ata General Meeting, determined to apply, and did successfully apply, for a private Act of Parliament to settle the question. The main object of the University College Act of 1869 was to secure, the extinction of the proprietary rights, but at the same time the powers of the Institution were enlarged in several directions. It then obtained the power, which it had not before, of instructing women as well as men in the College, and also of giving instruction in the Fine Arts. The Act also gives the College a heence of mortmain up to a rackrent value of 10,000 . per annum, exclusive of its freehold site in London.
3. By the provisions of the University College Act the government of the College is intrusted to a Council elected by a General. Meeting of its nembers. The Members of the College consist, first of the Governors, secondly of the Fellows, and thirdly of the Life Governors., The Governors represent the registered proprietors of the shares in the College, as it was constituted under the Royal Charter; and, although all their pecunary rights have been abolished, the right of proprietorship is still so far preserved that every Governor has the privilege of nominating by writing under his hand some person, subject to the appropal of the Council, to replace him in his, lifelime, or to succeed him after his death as Governor. Nó such power of transmission is given to the Fellows or to the Life Governors. The Fellows are former or actual 'Students of the College, nominated by the Council, and admitted by a General Meeting of the Members. The Life Governors are similarly nominated, either by the Councl, or by twenty, members of the College, and are admitted by a general meeting. 'They are not, hówever, necessarily former students of the College, but must 'be, persons having special claims to the distinction, which special clams the Council, or the nominators, are required to state in writing at the time when the nomination is made. The Council consists of a President, Vice-President, Treasurer, and not more than twenty-one or less than sizteen other
 of the members of the Council retire every year, but are re-eligible.
4. The powers of the Council are yery, wide; it has "the sole and entire management is and superintendence of the College, as well relating to the income and funds thereof as * to the teaching of the various branches of literature, science, and art thereip, and the "r' appointment, suspension, and dismissal, of professors, lecturers, and teachers, and all "cr other the affairs and concerns thereof." The Council also has the government of the Hospital, which has been established in connexion with the College, and the control of its funds. The power of making ${ }_{7}$ byelaws, however, rests with the General Meeting of the Members.
5. The byelaws at present in force provide that no professor or holder of any other place of emolument in the College or Hospital shall hold the office of President, Vice-President, Treasurer, member of the Councll, of Auditor, without vacating his professorship or other place of emolument. The effect of this byelaw is to exclude, the professors, individually as well as collectively, from any direct share in the government of the College; , but at the same time by another byelaw the professorial body is constituted into a Senate, which possesses no powers under the Act of Parliament, and which occupies with regard to the Council the position of a purely cossultative body. The Senate is, empowered to make suggestions to the Council with regard to the general management of the College, and especially of the libraries and the museum. , Further, whenever a professorshup or, lectureship is vacant, the, Council is required by the byelaws to communicate to the Senate the names of all the candidates, with their testimonials; or, if an advertisement has been dispensed with, the name and testimonials, if any, of any person whose appointment is under consideration. The Senate report their opinion with their reasons, to the Council, and no appointment to a permanent professorship is to be made by the Council until either a report has been made to the Councll, or until the time appointed for making it has expired. Similarly, the powers of the Council in removing any professor, lecturer, or teacher, are limited by the requirement that the Council should previously send to the Senate a written statement of the grounds on which his removal is proposed, and should request the opinion of the Senate thereupon. This scheme of government possesses several obvious advantages, and has beep found in practice to work very well. The Council naturally attaches great weight to the opinion of the Senate on any academic question; and the Professors thus exercise a very substantial, though indirect, control over the management of the College as a place of education, while at the same time they, are releyred from the duty of attending to the details of its financial business.

 capital ' of the College, and out' of the ${ }^{\dagger}$ sums that have tbeen 'either given or bequeathed to it for general purposes from time to tume "A portion of these expenses, viz., the items of $18,393 l$. for expenditure beyond the College share of fees, and 10,1801 : paid to professors in augmentation rof fees, and, for, annuityes and pensions, were , not properly chargeable against the capital of the "College, as ,they , represent , ordinary expenditure, which ought to have been defrayed out of the annual revenue; but the Council considered themselves 'justified, and nol doubt were justified, in trenching upon the capital of the College for the purpose of maintaining its efficiency. 'In addition to the capital dum which has been expended as shown above, there are endowments ansing' out of various bequests' which produced,' $\mathrm{in}{ }^{\prime \prime} 1870$, an annual income of $2,978 \%$ ' Of this income' ∇ ol. 1 2,276l. is appropriated to special purposes. Nó assistance hasfevet been received from App. XIIT, sny Government grant m $_{s}$
6. A school into which boys are admitted at any age between seven and fifteen hast been established in connexron with Unversity College. I It: formss a distinct branch of the College, and its pupilstare entirely separated from ithe istudents d $_{2}$ I The Head, Master is appointed and!is iremtovable in the same' manner! mall, respects as a Professor of, the, College, and is subject to the control and regulations of che Counclut the numbers of, the school during the last few years have rapidly augmented, and the instruction in Mathematics rand in some branches of Natural IScrence bas received a very, considerable development. The connexion, with'the School is "of unquestionable advantage tof the College,- hs ia large and mereasing proportion of -well-prepared pupils' pass, from the former to the lattes. The establishment of the School must originally hape iovolved a large outlay; but during the last few years the College, in a financial point of view, has not been a loser but a gainer' to' a, slight extent "by the maintenance of the School. 'We'are informed that the finantial' relations between 'the two branches 'of' Appendix I. the. Institution have, "recently been coarefully, investigated 'by, the School, Committee " of the "Council, land it has thus been ascertained that for, the last, five years, " -the most prosperous in the history of the School-the net amount received from the, "School by the College for its general purposes has been only an average of $982 l$, 6s, $8 d_{\alpha}$ " per annum. Buti even this us subject to : large deduction for rent, which, may be" moderately estimated at 750 L a yead for the south wing, and of 150l, for the portion "" of the main buildıng still óccupied by the School." Thus the) actual profit, derived ©f from the School is reduced tol about 100 a a year. ${ }^{\text {in }}$...
7. There are three Faculties in University College:-(1) of Arts and Laws, (2) of Science, (3) of Medicine. There is also a Department of Civil and Mechanıcal Engine ering!
8. The number of Professorshps in the first 'two Faculties is thirty-one. Of these the scientific chairs are the eleven following:-- (1) a' Professorrship of Mathematics, (2) of Applied Mathematics and Mechanics, "(3) and (4) of 'Chemstry and 'Applied Chemistry (these two chairs being at present held by the same professor), (5) of Physics, (6) of Engineering, (7) of Zoology, (8) of Botany, (9) of Geology and Mineralogyt; (10) of Physiolggy, (11) of Practical Physiology, and Histology." There, is, 'besides, a Professorship of 'Architecture and Construction. "Of these eleven professorships, one only is' endowed, Mr. T. J. Phillips Jodrell having lately presented to the College the sum of 7,500l. for a permanent endowment of the Chair of Physiology. Mr. Jodrell's object in founding this endowment, as stated in the deed of foundation, was to "promote, " the study of Human Pbysiology in University College, London, and especially to, " encourage original research in combination with professorial teaching, ${ }^{2 /}$ and " to ensure "' such a provision for the professorship as shall induce men of epainence and ability, who'. "may be willing to cultivate soience for its own sake, to Jorega more lucrative sources" " of emolument, and to undertake the office on the condition of devoting to original "research, either in conpexion with, this professonship ore, any other york of a kindred "nature which shall be essential and auxiliary to such research, all" the time that" can be
" spared from the work of a lecture room." The report of the Council on February the 25th, 1874;' states that Mr. Jodrell has signified his intention of presenting the College with a further sum of 500%. to be applied, under the direction of the Jodrell Professor of Human Physiology, in the purcbase exclusively of such additional apparatus as may be required for the effectual prosecution of original research, and that this sum will be pard over to the College as soon as provision has been made for the reception of the apparatus, arrangements for making which provision are now in progress. With the exception of this recent benefaction, the College can hardly be said to possess any endowment whatever the revenue of which is properly applicable to the support of its Scientific Faculty. The Professor of Geology, however, receives 31L. per annum from the Goldsmid Fund.
9. The courses of study, as indicated in the programmes of the professorial lectures, appear to be carefully arranged with a view to the requirements both of elementary and of advanced students. Great importance is attached to the laboratory instruction in Physics, Chemistry, and Physiology.
10. The College bas but few Scholarships or Exhibitions, and' of these none are appropriated exclusively to scientific subjects.
11. The College possesses a valuable Library, consisting of upwards of 68,000 volumes and 16,000 pamphlets, a great part of which has been derived from gifts and bequesta. Within the dast few years the libraries of Mr, James Morris and of Mr. J. T. Graves, the latter containing a splendid collection of works on Mathematics, Physics, and Astronomy, have been bequeathed to the College.
12. The Report of the Council already referred to states that during the Session of 1873-74 the number of pupils was 1542; of these 893 were Students in the College, and 649 Pupils in the School. Of the Students, 322 belonged to the Faculty of Medicine. In the Faculties of Arts and Laws and of Science there were 571. The fees received, exclusive of those for clinical instruction, amounted to 24,266l. 10s. 6 d ., this sum consisting of the following items:-

13. The total' payments out of these fees to the professors, teachers, and masters amounted to 16,904 I. $8 s .6 d$., leaving $7,362 l$. 2 s. for the College share of fees.
14. In addition to the above-stated amount of fees, the sum of $2,010 \mathrm{l}$. 78. 0 d . was received for clinical instruction in the Hospital, but these fees, as has always been the practice in this hospital, were devoted to the support of the hospital. The preamble of the University College Act recites that in the year 1832 the College appropriated " a certain portion of its land for the erection thereon of a Hospital in connexion with " the Medical School of the College, and the Council obtained subscriptions from the "" proprietors of the College and others, whereby the North London or University " College Hospital was erected on the said land, and the said hospital has since been " supported by annual subscriptions, and by donations and bequests, and also by means " of the fees of students of the College attending the hospital, which fees have for that " purpose been relinquished by the medical officers of the hospital apponted by the "C Council; and the government of the hospital and of its funds since its foundation has "been in the hands of the Council, who have from time to time made and altered the - rules for the management thereof; and the College is now possessed of considerable "investments for the benefit of the hospital." It may be added that in 1838 the College gave 500l. as a contribution towards building one of the wings of the Hospital. As to the present financial relations of the Hospital to the College, the Secretary, Mr. Robson, states that-
"The College duscharges gratuitously all the dutase of Trustee for the hospital; it manages the investments of the hospital funds, conducta the correspondence connected therewith; acts as the guardian of the legal rights of the chanty, and in varions other ways carnes on what may be called ite external affairs, defraying ont of its own funds the expenses incudental to its connexion with the hospital. Beaides thus, it pays defraying ont of its own funds the expenses incidental to its connexion whin he hospital Beaides this, it pays each of the two Holme Professors, one of Clinical Medicine, the other of Clinucal Surgery, a stipend of $100 l$ per annum, out of the income of the Holme Fond, which was bequathed to the College 'for the purposes
of its Medical Department:' The dutues of these Profeseors are discharged wholly within the hospita,, which derives an mportant part of its income from the fees paid by the stadeate for hoapital practice and cluncal instractuon."
15. The evidence which has been laid before us clearly shows that the usefulness of
the College is greatly restricted by the insufficiency of its funds. The difficulty is felt in two respects principally; first, m providing adequate payment for the professors and their assistants, and, secondly, in providng laboratory accommodation upon a sufficien t scale, together with the proper appliances for instruction and research.
16. The following are schedules of the payments received by the Professors in the session of 1872-73, and of the lectures and other instruction given by them in, each academical year:

Schedule of Payments.

Schedule of Lectures.

Subjects.	Lectures per Week	Lectures per Session,	Remarks
		(about)	
1. Pure \{ Leetures	9	- is 300	
Mathematios Exererse Classes	6	200	
2. Appled Mathematice -	9	300	
- Lectares -	6	200	
3. Physies $\left\{\begin{array}{l}\text { Exerase Clabses } \\ \text { Laboratory - }\end{array} \quad-\right.$	$4, ~ 1,130$		The Piofossor is more or less occupied daily in superintendung the students, but no estimate of the time thus occapied can be given,
(${ }_{\text {a }}$	$\begin{gathered} 5 \\ (6 \text { months }) . \\ 8 \end{gathered}$	240	
4. Chemistry $\left\{\begin{array}{l}\text { Exercise Classes = } \\ \text { Laboratory Work }\end{array}\right.$, Daily from 10 to 4.]		The Professor is nsaally engaged at the College the whole day. The above remark as to the Physical Laboratory apphes to this Laboratory also.
5. Geology and Mineralogy	$\underset{\text { (7 month9). }}{\stackrel{2}{2}}$	60	The Professor is also occupied in the Museum of Geology, and in excursions with the stadents.
6. Botany - -	5 (3 months).	60	
7. Comparative Anatomy and Zoology.	(9 months).	200	
8. Phyiology * -		150	
$\text { 9. Practical Phy- } \begin{gathered} \text { Rectures } \\ \text { Bistology } \end{gathered}$	Daily from 9 to	180 hroughout Session.	The Professor is more or leas occupred dauly in superintending the stndents.
* 10. Enguneering whth Engineering Drawing.	13	420	

 pne exception; are pery inadequately pemunerated. v
' 20 . The" emoluments of the Professars, excepting, as shown in the first schedule, are derived from a share of the gross fees pald by the students, which are divided between the College and the Professors according to a sliding scale, so arranged that in the case of the latger'classes the College receives one' third of the fees. In the opinion of the Secretary, "the large deductions from the fees which the "College is obliged to make in ordet to provide for the current expenses of the "" institution, have a twofold injurious effect. They materially diminish the remuneration " of the professors, and so far tend to deprive the College of the services of able men, " and by rendering it necessary to charge fees higher than might otherwise be requisite, "s they must have the indirect effect of keeping down the number of our students. "The result, is that our Professors as a rule are very inadequately paid." The naturad consequence of the inadequacy of the professorial stipends is, that in many cases the College has found it impossible to retan the services of some of its most distinguished
Qu:7136. Professors Some striking instances of very recent occurrence, which show the disadvantage at which the College is placed in this respect, are mentioned in the evidence.
Qu. 7134. , 21. With regard to the second point, it is stated that the nesources of the College have beert quite inadequate to provide suitable and sufficient laboratories, apparatus, and assistance for the practical departments of experimental science. The laboratories have recently been_extended and mproved; but in order to provide for all the requirements of the professons, they would need to be much larger than they now are, and to be bettor supplied with fittings and apparatus. With especial reference to the Physical Laboratory, it is stated by_Mr. Robson that, "when the present Professor of Physics was elected he
Qu. 7134.
"" pointed out to the Coundul the importance of having the means of giving practical " instruction in the various subjects which he had to teach, and the Councll complied " with his suggestions as far las they had the means of doing so. Those means were so " limited that they were sufficient merely to fit up one of the ordinary rooms as a physical " laboratory, and to add a considerable e_{7} quantity of modern apparatus to the stock " which we previously had. The professor 'went dver that stock very carefully, and "drew up a long catalogue of the apparatus which he considered indispensable for " carrying on his work, and the Council gave him what he sard was absolutely necessary "at once, but were compelled to withhold a large portion of what he wanted and " which he said would be extremely useful." The Professor himself considers that his departarent is still to a great extent in want of apparatus, as well as of more suitable rooms.
22. The Chemical Laboratory, which is known by the name of the Birkbeck Laboratory, was not provided wholly out of the funds of the College.' About a third part of the sum which, was expended on it was obtained from subscriptions raised by a number of Mechanics' Institutions in various parts of the country in honour of the man' who first suggested their foundation. With regard to this laboratory, Profegsor Willamson states: The pubhe laboratory which ts attended by the students is "suppled by the College with the stock apparatus, which is kept up partally by a
" moderate sum which is spent every year in renewing and repairing the apparatus. The

* Council are very considerate in the matter. I believe they have never refused any ${ }^{*}$
"thing in'that way which I have 'asked for; but I conceive that that is only due to
" the fact that my requests' have been exceedingly moderate, because I knew that I "s should very soon get to the limit of their power of supplying them. I do not
"remember a case of their declning to give me anything I'asked for As to
*/ the extent of the laboratories, there are important wants for operations of greater " nicety, but the general accommodation is not unsatisfactory." The important wants referred to are rooms "for gas analyses, and for operations requiring high temperatures and requring furnaces ; the accommodation for such purposes being at present scanty."
Qu. 7165. Professor Willamson adds: "The first thing I should wish to do, if I had had the "command of more money for the purpose, would be to get better illustrations for $\because \mathrm{my}$ lectures and better apparatus for the laboratory. I should also use available "s money for apparatus and materials, and for assistants in original research, and that " is the bigger item of the two." The working space in the Birkbeck Laboratory is stated to be only sufficient to accommodate twenty-four students, and this number is accommodated only by allowing less space to each student than in laboratories of more recent foundation, such as that at Bonn, for example.
\rightarrow 23. Proposaly for the extension of the College buildings appear at various times to have come ander the consideration of the Conncil, but to definite action had beet taken with regard to them. - Mr. Robson believes :-
- I' 'That if the Council had the necessary funds at their disposal, they wauld take steps to complete the two App. p. 1. 'wngs, already partly erected; and thas carry out the orignail design of the College, so fart as'its bxtent is con'carned. Judging from eatimates made at' various tumee by our architecti', II conclade, that the cost of the carned. Judging from estimaves in question would be apwards of $40,0004_{4}$,
"A Among the wouses to which the additional buildings conld advantageously be-pat, I may mention, in the firat place, laboratornes for Practical Physice, and for original physical research; uext workshops attached to the Class of Engineering's accommodation of this kind has' been greaty needed for geverral year' past, and the want of it, there' is good reason to 'believe, has beeni $\%$ seriotis obstacle to the full development of both the departments of the College affected by it.
"Grester epace could be beneficually devoted to providing more extensave and complete accommodation for the teachers and the students engaged in the classes of Chemistry and of Practicat Physiology.
"Laboratories for orignall ohemical ressarsh, ead for the praetical apphcations of ghemstryy wrould aliso require much space as well as expensive fittings and apparatus.
"The whole of the south wing, when completed, would probably be required for the use of the 'Schoot, 美 as there is ${ }^{3}$ every reason to expect, the number of xts puphls should go on increasing for the next few years, as it has contunuously for the past six or seven years. "A large' portion of the wing last 'fuilt, whach was finshed in September 1873, haviing been asssigned to the classes of Practical Chemstry and of Physics, to which subjects great attention is paid in the school, it is found that less accomimodation than had been anticipated is available for ordunsry clasees, so that the school is already, again cramped for space"
'King's Coíseae, Londonve,

24. King's College was founded by, Royal Charter in the year 1828, "for the teaching See App II.
" of varıous pranches of Literature and Science, and also the doctrunes and duties of
"Christianty as the same are, inculcated by the United, Church of England and Ireland."
The College was erected, on a site granted by the Crown, with money raised partly, by shares and partly by donations, there being no grant whatever from the Government towards the 'erection of' the bullding. 'It is stated in a' document' issued by the 'Council of" King's College' in 1871, that "a number of 7 ts' original promoters'; both đonors and s" shareholders, withdrew their suppoit at the last moment in 'consequence of' certand
" political differences with which the' College itself was entirely unconnected, leaving
" 12,000l, of shares forfeited, besides promised donations, of which the amount 'cannot "' now be ascertained, but it is believed to bave been at"least 3,000l,"The debt thüs " involved in the building of the 'College has been' in regular course 'of liquidation " by a sinking fund which is tigorously kept up. On'the other hand, new buildings " have been needed, and consequent debt has from time ta, time been. incurred in order " to meet the requirements of efficient, teaching, and especially, the increased demands " of Physical Science, far which more accommodation is still urgently needed.".
25. The proprietary rights of the briginal shareholders and of doviors have never been The proentirely extinguished, although they appear to be limited in point of fact to the right prietors. of nominating 'pupils to the School or to the College at a slightly reduced fee, and even this right is but seldom exercised. The proprietors are precluded by a provision in the Charter from receiving more than four per cent. per annum upon the amount of their shares; but as there has never been any divisible surplas they have received no dividend whatever.
26. The official title of the Corporation is "The Governors and Proprietors of King's "College, London." Its gopernment is vested in a Council, which reports annually to the Court of Governors and Proprietors. The Council consists altogether of fortytwo members, nine of whom are the official Governors; one is the Treasurer ; eight are life Governors; and the other twenty-four," of whom six go out every year, are elected by the Court of Proprietors from a list prepared by the Governors, and containing twice as many names as there are vacancies. The Official Governors are the Lord Chancellor, the Archbishop of York, the Bishop of London, the Chief Justice of England, the Secretary of State for the Home Department, the Speaker of the House of Commons, the Lord Mayor of London, and the Deans of St. Paul's and Westminster. The Life Governors are appointed, as vacancies occur, by the. Archbishop of Canterbury, who is the Visitor of the College. The elected members of the Council must be members of the Corporation; and it is further provided in the Charter that " no person who is not a * member of the United Church of England and Ireland, as by law established, shall be * competent to act as Governor by virtue of his office, or to be nominated or act as Life * Governor, of be eligible as a member of the Council, or to fill any office in the ${ }^{4}$ College, except'only the Professorships of Oriental Literature and Modern Languages." The Council has "full power, from tume to time, to appoint, and, as they shall see
" occasion, to remove, as well the Principal, or other head, the Professors, Tutors, " and Masters, as also the Secretary and all afficers, agents, and servants of the said "College." It has also the entire management of and superintendence over the affairs, concerns, and property of the College, and in all cases not provided for by the Charter, it is empowered to act in such manner as it may deem best calculated to promote the welfare of the College. It may further make, and vary any byelaws and regulations, touching the government of the College, the appointment and removal, number and rank, powers and duties, stipends and emoluments, of the several persons employed, and the terms and conditions upon which students shall be admitted. The appointment, or dismissal, of the Principal and of the Head Master must be confirmed by the Governors; and their consent is also requisite for the validity of any "fundamental regulation" affecting the discipline and course of education in the College.
27. The following is a statement of the expenditure of the Capital funds of the College from its foundation to the present time:

28. The College possesses no Endowment applicable to General Purposes (other than the buildings, \&c., upon which its capital has been expended) There are, however, endowments amounting in all to about $21,500 \mathrm{l}$., and producing an annual income of about 880l., which are specially appropriated to certain prizes, scholarships, and professorships, none of which are scientific. In fact the whole of the expenditure required for the ordinary every-day work of the College has to be defrayed out of the fees paid by the students.
29. The general education of the College is carried on in six distinct Departments, (1) the Theological Department; (2) the Department of General Literature and Science (of this there are three divisions, the Classical, the Modern Division, and the Oriental; (3) the Department of the Applied Sciences; (4) the Medical Department; (5) the Evening Classes; and (6) the School. The whole of the arrangements of the College are under the supervision of a Principal, for whom a house is provided in the College bulding The management of the School is left to a great extent in the hands of the Head Master, subject to consultation with the Principal.

30 The Students are divided into two classes, the Matriculated and the Occasional students The Matriculated Students are those admitted to the regular and full prescribed course of study. The Occasional Students are those who, being unable to attend the whole course, are desirous of pursuing any particular subject. The Matriculated Students are expected to attend the daily service in chapel, unless specially exernpted by the Principal. An exemption is allowed in all cases of conscientious objection. As, however, no register is kept of the attendances, the exemptions are not often applied for. Divinity Lectures form a part of the, regular course in all the Departments, but exemptions from attendance at these lectures are likewise readily granted. As has been stated above, the Charter requires that the Professors should be members of the Church of England. No very stringent test, however, is appled in practice. In reply to the question, "What is the nature of the declaration of conformity ?" the Principal states that the candidate does not sign any declaration whatever, but simply says, 1 am a member of the Church of England.
31. The Scientfic Professorships in the Department of General Literature and Science are (1) a Professorshup of Mathematics, the Professor having the assistance of three lecturers; (2) of Natural Phlosophy; (3) of Chemistry; (4) of Mineralogy; (5) of Geology (the Professor of Geology has also the assistance of a lecturer); in addition to these there are in the Department of A.pplied Science, Professorships (6) of the Arts of Construction; (7) of Manufacturing Art and Machinery; (8) of Surveying and Levelling; (9) of Drawing (Geometrical, Engineering, and Freeband); and, in the Medical Department, Professorships (10) of Botany; (11) of Comparative Anatomy; (12) and (13) of Physiology and Practical Physiology, the last two being held by the same Professor. The Professor of Natural Philosophy has one Demonstrator, and the Professor of Chemistry two ; there is also a Lecturer in Photography. A schedule is annesed of the stipends received by the Scientific Teaching Staff, not including the payments for the Evening Classes (which, however, are very small in amount) in the year 1873:-

This schedule shows that, as in the case of University College, the teaching staff is very inadequately paid.
32. Great attention is paid at King's College to the Department of Applied Science, which is intended chiefly, but not exclusively, for engineernng students, and students of manufacturing art. This Department appears to have met with a considerable amount of success, and there is evidence that the instruction given in it is highly esteemed by professional men. The following statement, laid before us by Professor W. G. Adams, describes the arrangements of this Department:-
' "At King's College the course is dunded into three sessions, with three terms in each session, affording Qu. 6885. about 11 weeks' actual tution in each term, and includes the following subjects :-

'Library and Matriculation fees, \&c, 5l. 17s. 6d, to be pard on entrance.

[^7]" vided for the education of engineers, except the practical engineering itself, and for " that it would be necessary that our students should go to a practical engineer to finish " acquiring a knowledge of the profession, but we have everything preparatory to that " in our present course at King's College; the course is complete for civl or for mecha" nical engineering." For some years past the number of students in this department has ranged from 75 to 95 .
33. The evening classes at King's College have been èminently successful, and pró vide a farrly complete course of scientific instruction, for persons who are unable to attend the day classes. They were attended in 1873 by as many as 550 atudents, the majority of whom attended more than one class; about 300 of the 550 attending Science Classes. The students at the evening classes are usually clerks, either in the. Civil Service, or in mercantile, architects', or engineers' offices.
34. The School appears to be in a flounshing condtion, and its numbers are rapidly increasing; they amounted in the year 1872-3 to 456, and in the year 1873-4 to 521, the highest point that they have yet reached. The financial relations of the School to the College are substantially the same as at University College.
35. As in the case of University College, it is stated that in King's College the chief impediment to its further fuiccess is "f that it is so extremely poor." The Secretary, Mr. Cunniagham, says, "Our original subscriptions were 15,000 . short of the sum that was "s actually wanted for the building, end although the Council has for many years insisted " on putting' by 500l, a year to pay off the debt, yet the increase of new wants has "been so great that the orignal debt remains wery much the same now as it did
" originally." "Science in all its departments" is said to have been "the chief source of " permanent outlay of late years. In the first,place, the Coupel, only a few years ago, " spent 5,000 . in building a new Hospital, with the simple object, as far as they were " concerned, of providing Clinical Teaching for their Medical Students. Within the last "st five 'years they have spent '2,000l. on a new Museum, and 2,0007: on Chemical and "Physical Laboratories. And now, at the present moment, they have a further demand " of, I suppose, 1,500\%. more for the new subject of Practical Physiology." The Scientific' Departments as a matter of profit and loss do not add to the resources of the College. The Department of Applied Sciences may be said almost to pay its own way, but the Medical Department bas always been worked at à very heavy loss. The evening classes, for which very moderate fees are charged, and for which the Professors are very poorly remunerated, contribute little or nothing to the support of the College. The Theological and Literary Departments are, financially, more successful; and may be said to keep the College afioat. The teaching staff 18 'paid upon the principle of dividing amongst the Professors and Lecturers in each Department three fourths of the fees paid by the students of that Department, the College reserving to itself the remaining fourth part, out of which it has to pay the whole expenses of, the buildings, the interest on the debt, and the salaries of the Principal, the Secretary, and the clerks. But the Professors do not always get their three-fou ths. "The Council have for the last 10 or " 12 years insisted on there being 500l. clear profit made every year, and if that "" clear profit is not made, the professors bave to make good the deficiency ont of their " next fees. This time last year the Council had to charge 3 per cent. upon " the whole staff to cover the deficiency of 1869, and this year they have had to "c charge one and a half per cent. for the expenses of 1870 ." The Council has frequently to refuse applications for increased grants from the various Departments.
36. Great efforts have been made and are still bemg made by the Council to raise an endowment fund of $30,000 \%$., between $11,000 l$. and $12,000 \%$. of which has now been subscribed. It is proposed to apply this fund partly in liquidation of the existing debt of 15,0001 ., and partly in extending and improving the educational appliances of the College.

General Remarks on thr two Metropolitan Colleges.

37. We infer from the evidence laid before us that a strong feeling exists on the part of the persons interested in University and King's Colleges, that these Institutions have to contend upon very unequal terms against the competition of highly endowed Colleges and Schools, and especially of Institutions supported wholly or in part by Government. There does not appear to be any ground for believing that in the Government Institutions Scientific Instruction is provided at a lower rate than in these Colleges. It is rather with regard to the competition for professors, than' with regard to the competition for
students, that the disadvantage is alleged to exist, it being obviously difficult to maintain an unendowed and self-supporting system of instruction at the same level of efficiency as one assisted by public-funds, or endowments:" We have already referred to the'complaint on the part of University College, that "able professors are drawn away from it by "opportunities of obtaining better remunerated posts," and that in this way it suffers directly from an unequal competition with the' State.' To the same 'effect the Principal of King's College observes, "It is clear that the Government comes into the field with " the advantage of the public puise, and can pay their teaching staff very far better "than we can pretend to do ; the effect ought to be that, they should draw the best "t teachers to their College by being able to remunerate them most largely. If they get c the best men, their tuition ought to be the best, and if their tuition is the best, of "course they will gann the greatest amount of success. I say it ought to be so, " because other than pecuniary influences come in." It must, however, be admitted that the Schedules of the "Professorial" stipends at the Royal School of Mines, and at App. VI., Cooper's Hill College, which will be found in the Appendrx to this Report, do not p. 38. altogether justify the apprehensions which have been expressed to ta by the witnesses from University and King's Colleges.
${ }^{4} 38$. These witnesses further agree 'in entertaining the' apprehension that there may be a tendency in the distribution of Government patronage to prefer students educated at Government Instrtutions to students educated at independent Colleges. At the time of the first establishment by the Government of the Engineering College at Cooper's Hill, it was in contemplation that appointments in, the Indian Engineering. Service should be confined to the students trained in that College. As the Council of King's College felt that this restriction was likely to exercise a most depressing infuence on their own Engneering School, they addressed a Memorial to the India Offce on the subject; and a similar Memorial was also presented by the Council and Senate of , University College. The cause of complaint was, however, in great measure removed by the determination at which the Government ultimately arrived in accordance with a resolution of the House of Commons, to allow students from other Colleges to compete, under certan conditions, for admission to the Engineering Service of India. This after action of the Government nany be taken as a sufficient proof that the independent Colleges are in a position to assert successfully the claims of their own students to a fair share in the distribution of Government patronage. We have, however, thought it-our duty to refer to the matter, as our attention has been called to 1 it-in the evidence, and as some importance has been attached to it by the workng staff of the two Colleges.
38. The question of applying to Government for pecuniary assistance appears to have come under the notice of the authorties both of University and King's Colleges; but no formal step with this object has been taken by the Councll of either Body. Speaking on behalf 'of University' College, Mr. Robson says," "r The 'question has been discussed
"several times in the Senate or body of Professors, but the Council hitherto have never
" discussed it in a formal mannel. I speak with some amount of hesitation and reserve,
"s but I believe that the general feeling in the Council,' at all events until very recently,

* was that if they could maintain the Institution without making any appeal to the
"G Government or to Parliament, they would very much prefer doing so. I think it
" may be truly said that every effort has been tried to accomplish that end. The
" financial statement which I have read shows that the Council have gone on from the
" first with a determination to carry on the Institution without appealing to the public,
" if possible; and probably if it had not been for the recent very great extension of
"scientific teaching in every department all over the country, they might have con-
"s tinued to pursue the same policy ; but it is quite clear, I think, that our means and
"appliances, although they might have been sufficient 20 or 30 years ago; are not
"s sufficient now; and undoubtedly the resources of the Institution have not increased
" of late."

40. The witnesses from King's College speak with more definiteness. Mr, Cun, ningham states that, the history of the College, has, in his judgment, established its 4 claim to public support, and bases that claim mainly on the following grounds: "First
"" of all, the very large, educational work on which we are engaged.,
"'Secondly, the immense diffculty of carrying it on with such very small funds as we
" possess. Thirdly, the new wants every day coming up which we really cannot meet.
" Lastly, the very large number of honours gamed at the Universities by the atudents
" of King's College."

Recommendations with reference to the two Metropolitan Colleges.

41. After carefully reviewing the evidence laid before us with regard to University and King's Colleges, and especially taking into account the great public services which have been rendered by these two Institutions to Scientiffc Education in the Metropolis, we are of opinion that, subject to the reservations which we shall make hereafter, they have established a claim to the aid of Government which ought to be admitted. We think that such Government aid should be afforded, both in the form of a capital sum to enable the Colleges to extend their buildings where requisite, and to provide the additional appliances for teaching which the advance of scientufic education has now rendered absolutely necessary; and also in the form of an annual grant in aid of the ordıaary working expenses of the Colleges.
42. With regard to the grant of a capital sum we are of opinion that it should be appropriated to definite objects such as those above referred to; and we further think that the amount of such grants should be dependent upon the amounts raised by subscription.
43. With regard to the aunual grants in aid of the income of the Colleges, we think that they also should be approprated to definite purposes, such, for instance, as the augmentation of the stipends of certain professorships, the payment of demonstrators and assistants, or payments in aid of the laboratory and establishment expenses. An account of the yearly expenditure of each Institution receiving such assistance should be reported to Government. As the suspension or withdrawal of the annual grant would always remain in the power of Parliament, we do not think that it would be necessary or desmable to give the Crown a voice in the appointment of the professors, or any control over the management of the Colleges, other than such visitatorial jurisdiction as would be implied by an annual presentation of the accounts.
44. As we do not consider that a day school in the metropolis ought to receive pecuniary assistance from an Instrtution which is itself in receipt of such assistance from Goverument, our recommendation of Government aid to University College is subject to the reservation that its financial arrangements shall be such as, while enabling the College to do full justice to the School, may prevent the School from becoming a charge upon the funds of the College on an average of years. Our recommendation is also subject to the reservation that the finances of the Hospital, and of the purely Medical Departments, shall be kept distinct from those of the College generally. Our inquiry has not extended to Medical Schools, and it is not within our province to make any recommendation with respect to Government aid to such Schools, whether associated with Scientific Colleges or not. In the case of Unversity College, where sucb an association exists, we think it expedient that the annual outlay on the purely Medical Department should be kept distmet, in order to enable the Government to consider separately the question of aid to the Scientific Department. At the same time, we do not think that there is any reason why the boys' School and the Hospital should not continue, as at present, under the management and control of the Council of the College.
45. The same reservations apply to our recommendations with regard to King's College Indeed, so far as King's College Hospital, and the Medical School connected with it, are concerned, the need of such a reservation is more obvious, because it is admitted that these institutions are a heavy burden upon the resources of the College.
46. With regard to King's College, we would further suggest that the College should apply for a new Charter, or for an Act of Parlament, with the view of cancelling the proprietary rughts of its shareholders, and of abolishng all Religious Restrictions (so far as any such exist) on the Selection of Professors of Science, and on the Privileges extended to Students of Science. We consider that any grant of public money which may be made to King's College should be conditional on such a reconstitution of the College as should effect these cbjects. And we suggest that advantage might be taken of the opportunity this afforded to introduce into the government of the College such other modifications as the experience of the persons concerned in its management may have shown to be desirable.

II. THE OWENS COLLEGE, MANCHESTER.

47. This College owes its origin to the bequest of a merchant of Manchester, Mr. See AppenJohn Owens, who in 1846 bequeathed the principal part of his property to Trustees, dix IIL. whom he appointed in his will, to found withn the limits of the Parluamentary Borough of Manchester, or within two miles of its boundary, "An institution for providing or " aiding the means of instructing or impıoving young persons of the male sex-and "being of an age not less than fourteen years-in such branches of learning and science " being of an age not less than fourteen years-in such branches of learning and science Statement B original Trustees were either personal representatives of Mr. Owens or officially desig- College Exnated; and the government of the College was for many years in the hands of fourteen tension, Trustees appointed under the will of the Founder; the work of instruction, the main- p 481 .' tenance of discipline, and the ordinary executive, subject to the general control of the Trustees, having been during this period entrusted to the Principal and Professors, at fist six and afterwards nine in number.
48. Before proceeding to open the College the Trustees made very extensive inquiries as to the course which they ought to pulsue and as to the subjects of study, consequently the College was not opened until 1851. They had no power to spend any portion of the original endowment in the purchase of land or erection of buildings, but having first hired a house and land in Quay Street, they were relieved from immediate difficulty by Mr. George Faulkner, who purchased these premises for $4,500 \mathrm{l}$, and presented them to the College. This building in the progress of the College was found to be quite inadequate and inconvenient, though "an auxiliary fund" had been raised, a portion of which, amounting to about $4,300 l$, had been expended in the erection and fitting up of a chemical laboratory, and in building and fitting up class rooms.
; 49. It may be convenient to state what were the original resources derived from the bequest of Mr. Owens, and what have been the subsequent accumulations; though, in doing so, the history of the College in its scholastic relations will necessarily be somewhat anticipated.
49. The endowment of the founder consisted of $91,325 l .3 s .4 d$. , and the gross Vol I , income arising from it amounted in 1871 to $3,197 l$. 1 s . 5 d . In the history of the p .477 . College since its opening in 1851 numerous •proofs have been giveu of the interest taken by the inhabitants of Manchester and the neighbourhood in its success, as will appear Vol. I, from the following list of benefactions:-
The Auxilary Fund, consisting of donations from 118 merchants and others, made about the jear 1852, for the erection of a chemical laboratory, the formation of a library, and generally in aid of Mr . Owens' bequest

The Dalton Memorial Fund for Scholarships in Mathematice, Chemistry, and Natural History

The Shakespeare Memorial Fund for a Scholarship in the Englsh Language and Literature
The Cobden Memorial Fund for the further endowment of the chair of

Recently a further sum of $10,000 \mathrm{l}$. was bequeathed by Mr. Langworthy ${ }_{2}$ and will soon be ayailable.
51. In 1867 an important movement originated for the extension of the College. The classes had become more numerous; the number of the students had increased; the College had been affiliated to the University of London, and 130 of its students had

Minutes,
Vol. I.
p. 482 . matriculated in that University, one half of whom had proceeded to the higher examinations for degrees. Probably no mstitution of the kind at that time conducted the instruction of its students in so confined a space. It was apprebended that unless ampler and more appropriate accommodation could be provided, the prosperity of the College would suffer a decline as steady as its growth had been till that time; it was therefore determined to rase a fund for the erection of new buildings. The promoters organised themselves into an Extension Fund Committee, with the view of furnishing "the " highest general education leading to degrees in Arts and Science, and the special " traning required for professional and mercantile life." 'They proposed to found various new professorships, and to provide them "with all the apparatus for "complete and successfill study; to set aside considerable sums for the extension " and regular maintenance of the Library and of the Physical and Natural History " Department; and, above all, to place the Chemical Department in a position of " efficiency worthy of the present state of the science, and of its importance in rela-
"tion to the interests of this district." The consequences of this movement were not confined to the amount of the contributions obtanned for the general fund. It was accompanied by subscriptions towards special objects, such as the establishment of a fund to endow a chair of Civil and Mechanical Engineering, and the building of a Chemical Laboratory; and by the gravitation to the College of the buldings and collections of the Natural History and Geological Societies; and, more recently by the absorption of the Manchester Medical School into the scheme of the College.

52. The amounts subscribed may be classified as follows :-

A. For Land and Buildings.

General fund			-	- £83,000
Subscriptions, Laboratory	$\cdots+$	*		3,500
Subscriptions - Medical	School - including	one-half	of Miss	
Brakenbury's gift	- - -	- .	- -	10,300
Realised value of old buil	dings in Quay Street	-	- -	13,000

$$
109,800
$$

Part of estimated value of building and site transferred by the
Natural History Society, available for contemplated Museum only $\quad 5,000$
$\boldsymbol{E} 114,800$

B. For Endowment.

General and specific endowments including Mr. Langworthy's bequest 27,000
Endowment for Char of Civil and Mechanical Engineering - 13,500
Residue of value of the Natural History Society's property (for

8,000
5,000
£168,300
53. The Land and Building Fand has been in part expended in the following manner. A site of about four acres bas been acquired at a cost of $31,000 \mathrm{l}$, and a part of the College buildings has been erected, upon plans prepared by Mr. Waterhouse, at a cost of 54,0000 , to which mist be added an estimated outlay of $15,000 l$. for internal fittings. These buldngs, now completed, contain (1) lecture rooms of various sizes for the Classical, Mathematical, Engish, and other Arts Departments; (2) lecture rooms, laboratory, workshops, drawing room, and museum, for the Natural Phlosophy and Engineering Departments; (3) lecture rooms for the Natural History and Geological Departments, and temporary accommodation for the Natural History Museum; and (4) temporary library, room for examinations, Governors' council room, private rooms for the Principal and Professers, Registrar's room, Students' common room, and Offices. The new College Buildings also include a large and complete Chemical Laboratory, contanning provision for upwards of 100 students, together with a Lecture Theatre capable of holding 400 persons, which will be generally appropriated to the Chemical Classess:

- 54. The buildings for the Medical School are also in course of erection, at an estimated cost, including internal fittings, of $15,000 \mathrm{~L}$

55. The whole immediate outlay ${ }_{\rho}$ already incurred or under contract, for buldings App. III. and land is estimated at 131,934l. Towards this outlay the Extension Fund Committee report that (including the realised value of the old site and buildings, and the Brakenbury bequest) they have available the sum of 109,885 l., leaving an immediate deficit of 22,0491 .
56. Other buildings comprised in Mr. Waterhouse's plans, and required for the Museum, Library, and Hall, but not yet erected, the Committee estimate will cause a further expenditure, within a few years, of 60,0002 , towards, which outlay there is in hand 5,000l.g derived from the Natural History Society's 'building fund.. There is therefore on these proposed future extensions a deficit of $55,000 l$.; so that, in order to carry out the intentions of the Court and Councl of the College, a further sum of $60,200 l$. will be required for bulding.
57. In the original organization of the College, the Trustees felt themselves under Qu. 7253. an obligation to introduce at once into the curriculum all the subjects of a liberal education, "that is to say, Classics and Mathematics pure and apphed, Logic and "Mental and Moral Philosophy, History, English iand Modern Languages;" but whereas Natural Philosophy was at that trme treated as a branch of Mathematics, and Chemistry was regarded in the light of a Charr of the second and not of the first rank, in the course of about 10 years a great change had to be made in order to give to the practical departments of Experimental Science, and especially to Chemistry, their proper position in the eurriculum. The Chairs which Principal Greenwood, who is also Professor of Greek, reports to have been established (3Ist March 1871), and the fixed salaries pard to the Principal, the Professors, and Assistant Lecturers are shown in the following table. Although our inquiry only extends to Owens College regarded as a Scientific Instutution we give the statistical facts relating to the Classical and Literary Professorships, because in the case of this College these professorships are partly remunerated by fixed stipends, and we desire to show the total charge upon the income of the College.

> Principal - - -

The following Table contains the proportion of fees paid to the Professors and Lecturers in addition to the above fixed stipends.

Share of Fees paid to Professors and Lecturers, 1872-3.

58. In addition to the Professorships enumerated in the first Table, the Chairs of Practical Physiology and Systematic Physiology in the School of Medicine have since become avallable to the Students of the College.
59. The following are the sources of income out of which the College defrays its general expenditure and the fixed stipends and other emoluments of the several Professors and Lecturers (not including the Medical Department):-

Original endowment		-	- £3,182		
New general endowment fund			550	0	0
Transient rentals, temporary endowments, and other					
cellaneous sources			1,640	0	0
Cobden Fund	-		60	0	0
Ashbury Fund-Engineering	-	-	188	0	0
Engineering Professorship Fund	-	-	388	0	0
Geological Professorship Fund	-	-	105	0	0
Law' Professorship Fund -	-	-	63	0	0
			£6,176		0
Fees received from Students, 1872-3	-	-	- 5,289	0	0
	Total	-	£11,465	0	

This income (1872-3) was expended in the followng manner, viz. :-
The fixed salaries of Professors and Lecturers

Share of fees appropriated to Professors and Lecturers | $-£ 4,940^{\circ}$ | 0 | 0 | |
| :--- | :--- | :--- | :--- |
| | 3,767 | 0 | 0 |

Departmental expenses, including Library - - $\quad 1,24800$
Establishment expenses, including rates, taxes, water, gas, wages, \&c.
. It will be seen from the above financial statements that some of the professorships are madequately paid. Thus, though the Chair of Latin has been separated from that of Greek, it has not been found posssble to provide a full stipend for the new Chair. And though the Natural History Chair has been divided, its Piofessor being now charged with lecturing on Animal Physiology and Botany, the Char of Geology has been assigned, not to a professor, but to a Lecturer with a very inadequate stipend. The Lecturer in Mineralogy, though a well-trained and skilful Mneralogist, receives practically neither stıpend nor fees.

The financial statement also shows that with the present resources of the College, it is impossible, however much the Governors may desire it, to provide a more adequate remuneration for the Charrs in question.
61. It is also certan that the new buildings will involve a very considerable increase in the establishment expenses, and that some of the temporary sources of income enumerated in paragraph 59 will fanl. The annual deficit which may thus arise is estimated at about 1,500 l.
62. With the prospect of this deficiency the Governors of the College cannot at present undertake the establishment of any new Chairs. If, however, they had adequate resources, it has been stated that they would probably proceed to divide the Professorship of English and History, and to found new Chairs of Mixed Mathematics, of Applied Geology and Mining, of Astronomy and Meteorology, and of Architecture.
63. We have already stated that the estimated cost of the buildings of the Medical - School, which are now in course of erection, and which will probably be completed in October next, amounts to 15,000 ., towards which, as we have shown, a special fund of $10,300 l$. has been given. It is intended that after the completion of the buildings, the expenses of the Medical School shall bet covered by separate endowment, so that the union of the School to the College will not entail any burthen on the latter.
64. The following table shows the number of students attending the various Day Classes:-

The number of students in the Medical School is 140،" These have not been included in the above table:
65. The ages of the students attending the day classes are shown' in the following
able, which, with the former, has been furnished to us by Principal Grean table, which, with the former, has been furnished to us by Principal Greenwood :-

66. The evening classes, which were originally established in 1852-3, form an interesting feature of the College. In the first two years instruction was given in Classics and Mathematics only, the classes being then intended for the use of schoolmasters alone ; and these subjects beng the most desirable for them. Only 28 students attended in the first year; but, after a few years, the classes were thrown open to all applicants, by the absorption of an institution called the "Working Men's College," conducted by the Professors of Owens College and other gentlemen in Manchester. The range of subjects taught has been gradually enlarged so as to include the whole of those comprehended in the day classes; and the fees lave been reduced so as to bring the instruction within the means of a larger number. In order to provide some additional remuneration for the teachers of each class, 500l. an year is contributed by two, friends of the College, Mr. Henry B. Jackson and Mr. Samuel Watts. This subscription secures $10 l$. per annum to the lecturer an each class, as well as the offer of an exhibition of $2 l .10 \mathrm{~s}$. Od , to the most successful student, in each class, and of other exhibitions ranging from $2 l$. 10 s. 0 d, to 102 . 08 . 0 d., on graduation in the London Unveraty, according to the rauk taken by the candidate... These arrangements have, been followed by remarkable success. The number of students entering during the last two years, and the opverage number of entries in each class, are shown, in the following table ;-

67. We have had evidence from the Principal of Owens College, who is also the Professor of Greek, and from Dr. Roscoe, the Professor of Chemistry, on the beneficial reciprocal influence of literary and scientific studies in the courses pursued by the students. Thus Princtpal Greenwood says :-"Our regular courses are drrectly fashioned to meet " the requirements of the London University degrees; and as the London University " demands of all those who seek its degrees, whether in Arts or in Science, or in Law, or " even in Medicine, that they must first of all matriculate, every holder of a degree in " the University of London must needs at one stage of his preparation for the degree " have gone through a prelminary culture both in Science and Literature. Thus a " Bachelor of Science must have shown himself possessed of the minimum of Classics, " and a Bachelor of Arts or Laws of the minimum of Science. Therefore in this way " our own conclusions are materially aided by the line taken by the London University."
68. These conclusions are expressed in the following terms by Principal Greenwood:-
"Not only do men of science' undergo a useful influence from the co-existence in " the same College of language-studies, but for another reason they should desire this
". combinations" "The influence of the introduction of, experimental science finto our ", regular curriculum, not merely on those students whe are going inta some scientific " profession, but also on the ordmary students, has been of the most beneficial kind."
69. The course adopted by the Science students is thus described 'by Professor' Vol. I., Roscoe": "We lay down a distnct course of study in Science adapted iespecially for p. 497 . " the Science degrees of the London University, with 'which,' as"' has been stated, we Qu. 7364. "*ork. In the first year the course in Science and Literatuee is identical', beng the "preparation for the London University Matriculation. In the second year the Science "course consists of Mathematics, Natural Philosophy, Mechanics and" Physics, the " junior class of Chemistry and laboratory practice two days a week, Anatomy a and "Physiology, together with French or German. 'I have all along' ansisted very strongly "on the necessity of introducing the study of these two modern languages in connexion
" with our Science course. In the thrrd year the Scrence students take the following' " subjects: Logic, Mental and Moral Philosophy,' Mathematics', Mathematical, Natural "Philosophy, the senior clase in Chemistry, laboratory practice two days a week, "Geology, and Botany." 'The prescribed courses in Science and in Engineering (as in Arts) are not obligatory; and a majorty of students in all departments! except Engineering, take courses varyng more or less' from those laid down., In the present session the number' of students following these courses is in Scien'ce 27, and in Engmeering. 22: Thus of a total of nearly 200 students :whe may collectively be described rather as students in Science tham in Arts; 6 nly 49, br abouti one in four, are following the pre ${ }^{2}$ scribed course. The least' departure, however, from the curriculum causes them to be classed as occasional' and not as regular students; but a majority of them are really as thorough students as the' 49 .
${ }^{2} 70$. In the Science'Course, the fees forl the firste year are 15 guineás, ánd for the second and third years 22 guineas each.' We take thé following comparison between the cost of Science and Art students from Principal Greentrood's eudence :- "Fach Science student costa the " endowment 27l. 15s. and each Arts student, or non-science student, costs the endowment " $11 l$. 13 s ., and that although, from the nature of the case, the fees paid by the Sciepce "" men are much heavier than those' paid by the non-science men. Every 'Science student on " the average pays 171.10 .', and every Arts student pays $91.7 \$$. ; so that whle the 'Sclence " men pay on the average twice as much as the non-science men, they yet cause a net expen" diture to the endowment of 27 l . 15 s ., against a net expenditure of $11 l .13 \mathrm{~s}$, in the other "case: 'Of course the addition of the two sums will give about 45k as the gross cost of " each Science man, against, in the ocher case, about, 20l."
71. As the course of instruction is intended to meet the tequirements of the London University, it is interesting to ascertain how many students' have récently matriculated in each year, and how many of these have proceeded to take degrees in that University. We have therefore procured the following return from the Principal;-

	$\left\lvert\, \begin{aligned} & \text { Matricular } \\ & \text { tron } \end{aligned}\right.$	$\left\{\begin{array}{c} \text { 1st B A } \\ \text { (nit held } \\ \text { till 1859) } \end{array}\right.$	$\left\|\begin{array}{c}\text { 2nd B.A. } \\ \text { (neludung } \\ \text { B.A. . } \\ \text { to 1859) }\end{array}\right\|$		lat B So. meladng Prely soa (M.B) (mostratered	$\int_{\text {2nd B } S c}^{1} 8$		$\left\|\begin{array}{c}\vdots \\ \left.\begin{array}{c}\text { 1ot XID B } \\ \text { (mshatuted } \\ \text { in 1866) }\end{array} \right\rvert\,\end{array}\right\|$	zad ${ }_{\text {a }}^{\text {L }}$	LD.
$1851 \text { to }$		26	${ }^{1} 42$	$5 \cdot$	" 25	7	3: 12	- <	; 8	$\begin{aligned} & 1 \\ & 1 \\ & \\ & 1 \end{aligned}$
1868 -	. 10 '	1	$\cdots{ }^{4}$	-	$5^{\prime \prime}$, 2' ${ }^{\prime}$	$\frac{-1}{i}$	H' ${ }^{\prime}$	1-w	
$1869{ }^{\circ}$	${ }_{\text {, }} 7$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	2:		$\because, 8$	$\therefore \begin{aligned} & i \\ & i \end{aligned}$,	- . 4 \%	+ +-'	
1870,	1, 6	$1 .$	$\left\|\begin{array}{ll} 1 & 4 \end{array}\right\|$	4	1	$\left.\right\|^{\prime \prime} 1$	$\mathbf{3}$	$\left\|\begin{array}{ll} +1 \\ & 2 \\ 1 \end{array}\right\|$	- -	(
1871 * -	21	2	1	1^{\prime}		$\because \div$,	$\int_{1+1}^{\text {H: }}$	- ¢ , -	
1872*	201	9	6	π	$120:$	\mathbf{a}	- 管•	2x	-6,	
1878	3^{34}	7.				5		- $\frac{1}{1}$	-	"-
1874, Jam	181					$\xrightarrow{14} \rightarrow$		dind	$\begin{aligned} & 46 \\ & n \\ & 4 \end{aligned}$	
Totals -	226	47	65	9	62	18	4	2	3	1

72. This summary of the principal characteristics and of the history of O wens College would be incomplete without an account of the arrangements made for incorporating the results of the efforts of the Extension Fund Committee with the institution founded by the original Trustees. This Committee was instructed to proceed, in conjunction with Mr. Owens' Trustees, to make application to Parliament for an Act or Acts for the incorporation of the Governors under the extension scheme, so as to enable the Trustees of the Owens College to unite that Foundation with the Institutions which might result from the exertions of the new body. The requisite Acts of Parliament have since been passed, and in virtue of them the College received a new Constitution on the 1st of September 1871.
73. The Constitution thus conferred may be briefly described as follows:-The essential conditions of Mr. Owens' will are embodied in the Acts; but the age below which the College is not bound to admit students is raised from 14 to 15 years; "and " the restriction of Mr. Owens' will as to the sex of students may, subject to certain "qualifications, be set aside at the discretion of the Governors." In lieu of a body of Trustees renewable by private co-optation, the Act provides for the appointment of a body of 42 Governors, 24 to be selected from gentlemen residing within 50 miles of Manchester, and 15 to be nominated, so as to secure a definite and characteristic but a somewhat wider rerepresentation of public interests. It is provided that three shall be nomınated by the President of the College, three by the Lord President of Her Majesty's Privy Councll, or other Minister of Education, and three by the Governors themselves from amongst the Members of Parliament for the counties and boroughs of Lancashire, Cheshure, Yorkshire, and Derbyshire ; two by the Council of the city of Manchester, and one by that of the borough of Salford. With the object of introducing into the Governing Body distinguished alumni of the Institution, the nomination of three Governors is intrusted to the Associutes of the College. The Principal of the College and two Professors, to be elected by the body of Professors, complete the number.

The 42 Governors elect a President, and with him form, as the Court, the supreme Governing Body.
The Court appoint out of the Governors a Treasurer and 10 members of Council, who, with the Principal and two Professors, form the Council, or the Executive Committee of the College. The Principal and Professors form the Senate of the College.
The Council, subject to the control of the Court, conducts the whole of the ondmary, so to speak, secular business, and the external relations of the institution; and the Senate, subject to the control of the Council, the whole of its internal or academic business. The President is the Official Head of the Court, the Treasurer of the Council, and the Principal of the Senate.
74. The Owens College has now been twenty-three years in operation, and we have briefly traced the principal stages of its development. It has acquired considerable reputation, and has a staff of twelve Professors, without including those of the Medical School, many of them distinguished in Arts or Science. The income from endowments and fees is about $11,500 l$. a year. Its lectures are attended by more than 350 students, exclusive of the Medical School, and of the evening classes which are attended by neally 900 persons. The whole capital accumulated in its foundation, including the original bequest of Mr. Owens, exceeds a quarter of a million sterling, and is of purely local origun, being derived from public subscriptions, from benefactions, and from the amalgamation of local anstitutions owing their orgin solely to priyate contributions. Its government has the character of a public trust; and the large capital embarked in it, together with the Acts of Parliament by which its constitution is defined, affords sufficient guarantee for the maintenance of the principle of its foundation, and of the character of its administration. It is placed in the midst of a population already possessing many secondary schools, some of which are in a state of growing efficiency, and capable, therefore, of supplying students prepared to pursue the courses of education which it provides. These advantages are offered to the entire population without distinction of class, and without any religious disqualfication. The entire scheme of the College has not yet been carried nnto effect. The Extension Fund Committee report that a further sum of 60,2002 . 18 required for the completion of the buildings. It is also estimated that 3,0001 . a year in addation to the present income is needed for the support of the Chairs now existing or imperatively requred.

Recommendation.

75. Considering the strenuous and persevering efforts made by the great commercial community by which the Owens College is surrounded, and the cordial sympathy which these efforts have evoked, and which has nunufested itself in the incorporation of othen Socreties and Schools with the College, and in the subscriptions and benefactions for special objects by which the exertions of the Governing Body have been seconded; We are of opinion that this Institution has established a claim to aid from the National Funds. We, therefore, recommend, in accordance with the views which we have expressed with regard to the two Metropolitan Colleges, that the Owens College should receive assistance from Government, both in the form of a capital sum, to be regarded as a contribution towards its Building Fund, and also in the form of an Annual Grant, in aid of its workng expenses, with the especial view of enabling it to complete the curriculum of studies by the establishment of New Chairs.

III.-THE COLLEGE OF PHYSICAI SCIENCE, NEWCASTLE-UPON-TYNE.

See Appendix IV.
76. The Unversity of Durham is provided with Professorships of Mathematics and Astronomy, and with a Readership in Natual Philosophy. It also possesses a Museum of Natural History, and an Astronomeal Observatory. It is in intimate connexion with the Medical School at Newcastle-on-Tyne, and is thus in a position to give a complete system of instruction in Medicine, and to grant degrees in that Faculty. The Unversity further confers a certain arademical status on Mining or Civil Engineers who reside for thrce Teims, and pass two Public Examinations. But as this University cannot be sa:d to have any complete Scientific Faculty, or to offer any complete System of Instruction, or of Examinations in Science, we have not thought it our duty to take any evidence with regard to the older foundations connected with, it, but have confined our attention to the efforts which it has recently made to advance Scientific Instruction by assisting in the establishment of a College of Science at Newcastle-upon-Tyne.
77. This College was founded in 1871 for the teaching of Physical Science, particularly in its practical applacation to Engineering, Mning, Manufactures, and Agriculture. The funds necessary for its endowment were provided in part by the Unversity of Durham, which gave in the first instance 1,000l. a year in perpetuity, which has since been increased; and, in part, by a subscription raised in the north of England.
78. The circumstances which led to the foundation of the College are stated in the
evidence of the Dean of Durham. It appears to have been felt that the instruction afforded by the University of Durbam did not completely meet the educational wants of the north, and that the chief reason which had originally led to the Foundation of that University, namely, the expectation that it would attract a large number of students from among the people of the north country, had almost entirely ceased to exist. Under these circumstances, it was thought that to render the University more generally useful the best step that could be taken would be to establish a School of Physical Scrence in connexion with it. The question then arose, what would be the proper place at which to found this school. Opinions were to a certain degree divided as to whether it should be placed at Durham itself, or at Newcastle; but it was found that almost all the eminent employers of labour were strongly in favour of Newcastle upon a vanety of grounds.
79. We have also received the following statement from the Dean of Durham as to the amounts contributed from local sources (in addition to the endowment given by the University of Durham), and as to the arrangements which are now in contemplation for amalgamating with the College the other Scientific Institutions in Newcastle :-
" 1. Sums equivalent to 30,000 l. have been paid or guaranteed to the College of - Science.
" 2. A subscription has lately been raised to found a Memorial to the late Mr. Albany Hancock, and the sum promised amounts to $17,000 \mathrm{l}$. It is proposed to devote this sum to a buildng for a Museum to form part of a larger building for a College of Physical Science.
"The sum thus subscribed would, if added to that already subscribed to the College of Scence, amount to about $50,000 l$. ; and at may be proper also to mention that the value of the Museum itself and of its permanent building amounts to at least $10,000 l$.
"In addrtion to this the Medical College of Newcastle is desirous to join in the erection of a Joint College, and will subscribe the sum of 10,000 l. for the purpose."
80. The amount originally subscribed was of course insufficient to provide buildings for the new institution, and the College has at present to pay rent for the premses which it occupies. It is the opinion of the witnesses that it is extremely desirable that the College should be provided with buldings of its own. Mr. Lowthian Bell says, that "the
Qu. 9193. "s buildings are very good, but they are deficient in laboratory accommodation. I should " greatly prefer a building expressly erected for the purpose of the College." Sir William Armstrong ádds: "We consider the present accommodation as a makeshift, but without "Government assistance it would be scarcely possible to undertake" to provide separate buildings appropriated solely to the College.
81. The College is under the government of a Body consisting of 47 members, of whom nine are ex-0fficio, and the remaining 38 are elected for a term of four years by various representative bodres. These Governors elect out of their own number a

Council consisting of 15 members, in whose hands the ordinary' administration of the College is placed. It was proposed in' the first instance to provide four Professorships, viz., of Pure and Applied Mathematics, of Chemistry, of Experimental Physics, and of Geology. To these Professorships lectureships have been added in literary subjects, in Greek and Latin, in Englsh History and Literature, in French, and in German, besides a lectureship in Mechancal Drawing. It is thought very desirable by the Founders of the College that other Professorships of Science should be added to those, already founded. ' Mr. Lowthan Bell, speaking immediately before the foundation of the College, expresses the opivion of its promoters, "We are quite unanmous" upon the" branches of " knowledge which we ought in the first instance to undertake Pure and Applied " Mathematics, Chemistry, Geology, Mineralogy, and Physics. We an quite unanimous " upon these as a commencement; and we are also unanimous, I 'think, that as soon'as " the College has the means, we' should have other chairs; for example, a" chair of " Biology, and a chair of Mining, and Civil Engineering. I have no doubs that these " will follow." Of these we observe that the Professorship of Biology hăs already bèen' established and is on the point of being filled up. :
82. The number of students in the year 1873-4 was 78. An'account of the number of students attending the various classes durring this session will 'be'found in the Appendix. The course of study for regular students is 'one of two years, 'and there Appendix are "two examinations, one'at' the end of each year, besides a Matriculation Examination' IV. at entrance, for which, however, any examination recognised as $\mathbf{a}^{\text {t }}$ quadification for registration as a Student of Medicine, is accepted as a substitute. The candidates who pass the Final Examination in Physical Science at the end of the second year receive the title of Associate in Science of the University of Durham; but not the B.A. degree. The fees paid by the students are five guineas a year for each course of lectures, the fee for admission to the College being one guinea, and a separate charge being made for the use of the laboratory. Four Exhbbitions of 15l. a year, tenable for two years by Students at the College, are offered for public competition every year.
83. There appears to be every reason to think that the Newcastle College of Science is serving a most useful purpose in its own neighbourhood. The experiment of introducing an engineering course into the curriculum of the University of Durham has been tried, and must be considered to have failed. The reason given for this failure by the Dean of Durham is that a great number of young men who would wish to attend that course live in Newcastle, or near Newcastle, and have to come some distance to Durbam, and that consequently very few of them do come. And there can be no doubt that local Colleges in the great centres of manufacturing industry are in a position to meet local requirements which Central Institutions in London, or the National "Universities are unable to do Sir William Armstrong says," II thunk what we want is " local Colleges. London is far too distant. We want a College to be established in " the locality, so that young men can attend it without going from their homes I do Qu. 9220 . " not think that a College in London would have any practical effect in realizing the "object that we have in view." "If local Colleges were as efficient as central ones, Qub 9222. " there is no question that they would be preferred by all classes."
84. According to the same witness, the character of the instruction should be mainly, or almost entirely, of a purely scientific character, because at present there is nc difficulty Qu. 9223. as regards practical knowledge, while on the other hand there is no means of acquiring scientufic knowledge. Sir William Armstrong does not think that practical instruction should be combined with scientific instruction in the College itself, because "practical knowledge is better acquired in the workshop and in offices, in actual business in fact." He woull not attach any worksbop to the College, believing that what the College can give is "the facility of acquiring theoretical information, such as can be " applied to practice in actual husiness."
85. The claims which the promoters of the College consider themselves to have upon the Government for assistance are founded upon the National usefulness of the Institution, and on the amount of local support which it has recelved. Sir William Armstrong's view is that the promoters "have a very sound claim upon the Government, "considering how liberally the scheme has been supported locally. I think it would " be a very fair thing if the Goverament, consudering how much the nation benefits " from the establishment of such Colleges, in every case were to contribute a sum " proportional to what has been raised in the locality towards the attainment of
"the object." And Mr. Lowthian Bell states that, in his opinion, "It is essential Qu. 9152.
" for the progress of the industry of this country, looking at the footing upon which
" it is placed now, that those to whom is entrusted the management of large concerns
"" should have generally a higher class of education than that which they possess " at the present time. At the same time, I am bound to say that very great progress
" has been made by many in spite of their want of instruction upon those questious
Qu. 9157. "which, in my opinion, are of vital importance." "Personally, I entertain a very
" very strong opinion in favour of receiving aid from the Government. I cannot belp
" feeling, when I come to London, and I go to Jermyn Street, to Kensington, or " elsewhere, and I find Government money applied, I do not say otherwise than very "properly applied, for the purposes of instruction, that London is not the best
"place for teaching many of those sciences. You have no means of seeing their
" application
Mr. Bell would not "desire, that such schools should be entirely supported by the
Qu. 9159. "Government." He considers that "the best guarantee which a community like that
" of Newcastle can give to the Government, of the necessity of establinhments of this
" kind, is by doing something themselves, and asking the Government to assist to a
"certain extent."
86. We concur to a considerable extent in the opinions expressed by these witnesses. The degree of success which has attended the College of Physical Science at Newcastle-upon-Tyne, both in the collection of local subscriptions and in the organization of its system of instruction, leads us to expless with confidence the hope that by further efforts of the same kind it will before long be placed in a position to establish its claim to assistance from the State.

IV.-THE CATHOLIC UNIVERSITY OF IRELAND.

87. The following, account of the establishment, of this Institution is given in its, See App. V. Calendar for the year 1869:-
"The fourdation of a Catholic University in Treland, upon the model of the Calholic Unuversty of Louvain ${ }_{x}$ had been strongly recommended by Pope Pins the Ninth, in the Rescripts by which he condemned the Queen's Colleges, and was formally resolved upon by the National Synod of Thurles in 1850. In order to canry out thas intention, a committee was appointed, consstung of the four Archbishops, four Suffragan Bushops,

 with the objects of the Unversity and the means necessary for securng ats establishment, to collect funds, to
arrange the details, and take ail the other necessary steps for'the ectual opeang of the University. The first public collection was held on St. Patrick's Day, 17 th March 185\%.
"At length, in May 1854, the hahops, assembled wn synodal meetrng' in Dublin, canonicelly orected the Unversity. The first Reetor, the Very Rev. J. HI Newman, D.D., was mnstalled on Whutsunday, 4th June, followng. In the autumn of the same year several Professors were appointed, and the Schools of the University were formally opened on the feast of St Malachi, 3d November 1854 The Pope was agan pleased to express his approval of the work by a specal brief, in which he bestowed on the new lastitution all the oanoucal rights and provileges held by other Uaiversities, and gave to the Rector the faculty of conferring degrees."
88. By the Statutes of the University, as approved, by, the Episcopal Board in 1869, its government is vested in the hands of a Rector, assisted by a Rectorial Council, consisting " of the Vice-Rector, the Dean of Faculties, one, of the Heads of Colleges or Collegiate "Houses (to be elected annually by the others), and six additional members to be " chosen annually by their respective' Faculties, viz., two, representatives from that of "Philosophy and Letters (one from each of its divisions), and one representative from " each of the others." ' There is besides a Senate, If composed of the Vice-Rector and "Secretary, the Professors, permanent Lecturers, and the Heads and Tutors of Col" leges or Collegiate Houses." With regard to the Senate, it, is further provided that, " those who, hereafter, being of at least seven years' standing, shall have taken the "' degree of Master, Doctor, or other of the higher degrees, in the University, nay " be admitted Members of the Senate, on such conditions as the Senate itself shall fix." All the authorities of the University are subject to the control of the Episcopal Board, consisting of the Roman Catholic Prelates, of Ireland. The Rector, Vice-Rector, and Bursar are appointed by this Board, with power of revocation, "pro nutu et arbitrio." The definitive appointment of the Professors also rests with the Bishops, but " whenever " a Piofessorship is to be filled up, it is the duty of the Rector, having consulted the " Faculty in which the vacancy occurs, to present to the Bishops the names of (at " least) three candidates." All the officials of the University," though subject to " removal by the same power that appointed them, are secure of the permanence of their " appointments till they forfeit them by some offence against relggion or morals, by insub" ordinate conduct, contentiousness, incapacity, or other obvous disqualification, accordıng " to the judgment of the Cœtus Episcoporum, or the Episcopal Board of the University."
89. The intentions of the founders of the University were that it should be organised upon a very complete scale. Accordingly, the original plan embraced five Faculties : Theology, Law, Medıcine, Philosophy and Letters, and Science. The Faculty of Theology, although provided with professors, and grantmg theological degrees, is not in operation as a teaching Faculty. The Faculty of Law has also been constituted, and Professors have been appointed; but we da not learn from the evidence that any AppenduxV., system of instruction has as yet been commenced in this Faculty. The Faculty p. $\mathbf{8 6}$. of Medicine, however, has had a faur measure of success, and in the academical year 1873-4, which has just come to a close, had 86 students. The number of resident students in Science and Aits wass in the same year, 30.
90. The Professorships which it was intended to establish in the Faculty of Science were as follows: (1.) Mathematics, (2.) Physics, or Natural Philosophy, (3.) Chemistry, (4.) Geology, and Mineralogy, (5.) Botany, (6.) Zoology, and (7.) Physiology, to which (8.) a Protessorship of Astronomy was to have been added. The Charrs that have been actually established are those of Mathematics, Natural Philosophy, Chemistry, and Physiology. There are, however, Lecturers on Botany and Zoology, and on Geology.
91. The resources of the University have always been very limited. At the time of its foundation a fund was subscribed, which in the year 1855 amounted to $58,070 l$. 1 s . $5 d$. Of this sum 27,6161 . had been collected in Ireland, 16,000b. in the United States, 4,166l. in England and Scotland, and the balance in different Roman Catholic countries. The University since that time has been supported by voluntary contributions, obtained chiefly by an annual collection in the Roman Catholic churches of Ireland. The whole sum contributed up to the present time, including the original fund and a recent Appendix V, bequest of 2,0001 ., amounts to about $187,000 l$. Of this sum, $10,000 l$. was raised in the p .36 . year 1873-4.
92.

Qu. 13,370 and 13,378.
92. A comparatively small part of these funds remains unexpended. About 18,500l. was invested in the purchase, of buildings; about 2,500k. was expended on laboratory fittings, apparatus, and specimens (exclusive of those in the mineralogical cabinet.) ; and about $5 ; 0000$. Was lost in the course' of the proceedings in connexion with the Clonliffe estate. But by far the larger part of the money contributed has been treated as income, and has been applied year by year to the maintenance of the Institution, and to the payment of the stipends of the Professors, Dr. Lyons saye:
Appendix V. "The annual axpenditure for mantenance and Professorial stipends has been about $6,000 \%$ par year, and has been this year wereased to abons 7,0001 , Of thes sum over $\mathrm{b}_{\mathrm{j}} 000 \mathrm{l}$, are absorbed in the salanos of Professors and officers.
"Not lese than $10,000 l$, a year would, however, be requared to maintan the Institution in a moderate degree of efficient work, and at least twice that sum annually if, it 18 to be developed to meot the full requiremente of the Cathoho population of the:country."
App. \mathbf{V}. and
App. V. and
Qu. 13, 461.
The amount required for the Professorial stipends is explained by the statement that " the fees paid by University students in the Faculty of Science are little more than "s nominal, and are paid into the University chest." The stipends of the Professors in the Faculty of Science are estimated at about 300b. per annum.
93.: At one time it was in contemplation, to erect very large University buildings. In accordance with the suggestions contained in a Report land before the Episcopal Board by the Professors of the Scientifie Faculty, the Clonliffe estate, a piece of ground of the extent of 34 acres, 'upon the' north, 'side of Dublin, was puichased at a considerable cost; plans were obtained, and the foundation "stone was laid on the 20th of July 1862, it being hoped that no less a sum than $200,000 l$. might altimately be provided. The University, however, became involved in litigation with a' ruilway company, and was ultimately obliged to abandon its purehase Lt has also failed, owing to legal diffioulties; in 'an attempt to extend its original site in St Stephen's Green, which it still occupies; and which has a frontage of ' 270 feet and 260 of depth. It appears, however, that, if funds were' forthcoming, there' would be no difficulty at the present time in obtaning addrtional ground. Thé present buildings are stated to possess considerable commercial value, but not'to be very, well suited for the purposes to which they are applied, although there are sóne tooms of considerable size. The Mnseums and Laboratones are described as having been, adequate to the wants of the time when the University was first founded, but we infer'from 'the' evidence' that they would require very considerable extension to meet the more recent'requirements of Scientific teaching. 1
94. 'It Has' been, already stated that the University grants degrees in Theology, 'In point of law, it does not possess the right to grant degrees in that, or any other Faculty; and, as a matter, of fact, it has never granted any other degrees than Theological ones, not desiring to raise any question which might bring it into collision with the authority of the Crown. Nevertheless, examinations for the degree of Bachelor of Arts and Bachelor of Science are advertized in the Calendar referred to above; and the degrees of Bachelor and Master of Arts are recognized in the Statutes. As is well known, it has been a standing subject of complaint by persons interested in the Catholic University that the privilege of conferring degrees has never been conceded to it. They state that " the "c fact of attanning' a degree in an University is one of the most potent incentives to ${ }^{6}$ students to flock to the University, and no matter. what inducements in the way of ψ_{s} scientific teaching are held out, ${ }^{1}$ where a degree cannot be got in the end to cap 2 "student's labour, and so present' to the public a proof that he followed an University "career, it adds enormously and incalculably to the difficulties which any teaching body " so circumstanced has to contend against. ${ }^{1}$; 1 ' ' We have "constantly addressed successive Governments on the gubject, and as it is a matter of "public history and notoriety, you are aware "inax tue subjeci nas deen in oue way or st another before the public now for many years, and some tentative efforts towards its "solution' have been essayed by more than one Government." The University has adopted the title of Scholar for those stadents who, having reached the middle of their
Qu. 13,391. eourse, have attained a certain degree of proficiency; but it has been found that this comparable to that which is attributed to, the old degrees.,
Qu. 13,372.
b 95. There is a considerable number of Scholarships and Exhibitions in the Catholic University; and as much as 700h per annum is expended m this manner. The regulations, however, vary from year to years Only a small proportion of the scholarshipa is devoted to scrence. There are three Limerack Exhibitions for Mathematics, of the value of 40 l .' 30 l ., and 20 l . respectively , two Conolly Exhibitions for, Mathematics of $20 l$. ${ }^{j}$ each; and two for Experimental Science of the eame valuest viz, one for Chemistry, and the bther for general Phyeico:- These exhibitions ares all given, away yearly, and are tenable for a year.
96. The courses of decientific, study;';as described an the Calendar s sppeaft to the organ *u. 13,488 nized with a as great an' approachsto completeness, as the limited numbers vof ther pror and Appen. fessorial staffi allow.s. We are mot mformed that there is any laboratory instruction in, dx $\overline{\mathrm{V}}$. Physics; although the cabinet of physical apparatus is, desceribed ;as having been, fainly; complete at the time when it wasiformed, and although the lately-appointed Professory of Natural Philosophy has given a sum of 7.501 . to supplement, the stock of apparatus with, instruments required for efficient teaching.t oThe practucel instruction in Chemastry; hasi been very successful and acquired a very coonsidedrable developfnent funder, the , management of Professor Sullivan, who, till lately, held the Professorship, iof ${ }_{1}$ Ohemistry, The Chemical Laboratory belongs both to the Faculty of. Medicines and to the, Faculty, of Science; and it is' stated by Professor Sullivian that it was the first daboratory, in Ireland in which medical students received, regular practical unstrucgtion in Chemistry.
" 97 . The Students are divided into two classes, the Resident andr the Non \rightarrow Resident or Affiliated Students, the latter being those who yeceive their education , not in immediate connection with the University itself, Ibutyin "Colleges, ma, the , country, which are affiliated to. it, and which aremisted and inspected by, at. is The Resident Students arth dither Interns or Externs. I The, Intern Students sare those whopreapde in the Collegest or Collegiate Houses, in Dublin (three such, Houses. are mentioned ${ }^{\prime}$ in , the' Cglendar); the Exterr Students are those who sither live with theiry frlends, in Dublin or its neigh bourbood, or who reside in lodging houses licensed bey the Rector for the reception of students. Both these classes of students are, by the Statutes, dand by the regulations published in the Calendar of the University, placed under very, strict geligious discipline, even the Externs, beng 'required to attend. Mass and General, Commanion, on certaip; days in the year, and heing required on Sundaysiand other days of obligation toj assemble in cap and gown before Mass, to answer to their'names, and then, proceed, in an body to the church. But it is provied in the Statutes that, 6 , with, the permssion of the " Rector, and on payment of the propey fees, any person may attend the schools, of " the 'Unıversity or any particular course.of Lectures. Such persons are called Auditors. "E Except in the lecture-room, they have no connection, with the Universitys, which is in "if no wise responsible for their, conduct or their success, in studes. if to become formally, Students, und consequently Members of the Unuversity, entitled "to all its provileges, the candidates for admission must pass, the matriculation examina" tion and place themselves under the guidance apd disciplme of the University." And it appears from the evidence that, non-Catholic, Auditors hape been constantly, admitted to the lectures; and even, to compete for and, to hold exhibitions, although this last privilege is not secured to, theu, by, the Statutes. ${ }_{v}$, But , whatever may, be the pruvileges of non-Catholic Pupis, it must be taken as certain that no, dissident from the Roman Catholic relgion could be admitted as a professor or teacher in'the Unitersity. The Statutes require that each "Professor shall make the Profession"of Faith", according "to the form prescribed by Pope Pius IV, in the presence of the Rector. Tite Rector, who must always be in Priest's, orders, has to make" thd same' "Professlon, an 'additiod to the following promise :-"Ego N., nominatus Rector Unversitatis Catholicex, 'fidelis et w obediens ero coatui Episcopotam' Hiberniæ et pro wribus̆ juxita illorum mentem curabo "honorem et prosperitatem dictz Universitatis," :The 'principle : of the restrictions imposed by the Statutes' is stated with' great clearness' by the "present. Rector'; the Very Rev. Canon Woodlock; "who says,' in hisk address at "the limaugaration of the Session of 1867-8, "Our Faculty of Medicine does not exclude Protestant Students "f from its lectures, buty neither, do qur other, Faculties, nowe, recommend on prescribe, "" as the case may be, religious observances to the Catholic Medical Students under our "care, as well as ta our, Students in, Letters or in Science; but our rules on this subject " do not comprise those whp decline to accept the teachang of the Church But there " is one point on which we stand frrm, and which equally regards our Faculty of Medicine ", and fhe qther Departinents of this University; we will have Cathole Students taught "' by no Professors save those whose principles we know to be in accordance with the "teaching of the Catholic Church in farth and morals." It is stated in the evidence that there has never been any dificulty in findıng Catholics qualified to fill the Professorial Chairs; but, on the other, hand, in the Report of the Professors of the Scientific Faculty, to which we have already adverted, great importance is attached to the desirability of selectiong for the Scientific Chairs persons who have been educated on the continent of Europe, owing to the impediments which up to that time presvented the cultivation of the Natural Sciences by the Catholics in Ireland. It is remarkable that the first Rector, Dr. Newman, at the time of the Foundation of the Uniyersity, was prepared to admit non-catholics to the Professorships; or the ground of the importance of mantaning a high standard of excellence in teaching.
98. It is contended, on behalf of the Catholic University, that it might; if it could obtain a more complete development ${ }_{2}$ be in a position to render great services to education an University education as distinct from a school education should be; that it is of great importance for them that they should have a Resident and Teaching University as opposed to a merely Examining University; and that neither of the two Teaching Univer-sities-the Queen's University and the University of Dublin-commands the confidence of the large masses of the people. The comparative want of success which has attended the Catholic University is attributed, first, to its inability to grant degrees; secondly, to its want of funds, which has prevented the appliances for mstruction and the courses of instruction from being made so complete as they ought to be; and, lastly, to the general poverty of the country; which precludes the existence of any large class of students able to support themselves for a sufficient time at the Univerrsity.
99. Our attention has been also called to the relations between the Catholic University and the Catholic Schools in Ireland. Most of these schools are under the control of Roman Catholic Clergymen, and are greatly in need of Scientific Teachers. It is urged that it would be much more easy for scientific teachers educated in the Catholic University, and stamped, as it were, by its approval, to obtain appointments in such schools, and thus to spread a knowledge of Science in them, than it would be for teachers who had been brought up in a non-Catholic University. It is etated that the University has already in this way exercised a very beneficial influence upon the schools; there being but few of them that do not now attempt to teach a little Chemistry and some of the elements of Physics. The remarks of Professor Sullivan upon the present condition of the Irish Schools are certainly deserving of attention. He thinks's, "that not more than 5 per cent. " of the Catholics of "the higher and middle classes go to any other schools than clerical "c schools. There are about 50 of them in the country, and those schools will not, and * as a matter of fact do not, come in contact with any otber educational institution in the "country; they have no confidence in the present University of Dublin, and I may say "s they are in open hostlity with the Queen's Colleges and the Queen's University, and, "therefore, they have no source from which to get any inspration in Science, no channel " of communication with the scientific world, except through the Catholic University."

100 On a review of this evidence we are satisfied that the establishment of the Scientific Faculty of the Catholic University has not been without advantage to the instruction of the Irish people, an advantage which might be considerably increased if this Faculty could be more completely organized, and its Professors increased in number and supplied with adequate means for practical teaching. 'And we have not falled to observe that at the present time fresh efforts are being made by the persons interested in this Institution, to improve and to render more widely available the Instruction afforded by it.
101. It is also indsputable that the Catholic University has received, and still continues to receive, a large amount of pecuniary support. The permanency, however, of this support, which proceeds, to a large extent at all events, from annual subscrptions levied by clerical agency, cannot be predicted with any certainty.
102. The peculiar organization of this Institution; the religious restrictions imposed upon the selection of its Sclentific Professors and Lecturers-restrictions the removal of which it would be idle to anticipate; the incompleteness of a large portion of its arrangen ments for the teaching of Science, and the uncertainty of its income; preclude us from recommending that it should receive a grant from public funds.

In conclusion, we humbly beg leave to submit this Report for Your Majesty's Gracious Consideration.

Sign ed)

DEVONSHIRE
LaNSDOWNE
JOHN LUBBOCK.
J. P. KAY-SHUTTLEWORTH.
B. SAMUELSON.
W. SHARPEY.
T. H. HUXLEY.
G. G.STOKES.
HENEY J. S. SMITH.

J. Norman Lockyer, Secretary,

August 4th, 1874.

APPENDIX TO FIFTH REPORT.

APPENDIX I.

University College, London.

Secretary.'
University College, London:
Dear Str, cientufio Instruct been informed that the Commissioners on matters in reference to this College, I beg leave to request you to submit to them the following statements s-a
(I) The projeoted Eatension of the College Busldangs,

I must premese that what I am about to say on this subject is founded upon inferences from vamous sources of Councal Councl has not yet had the subject before them in an I believe, howerer, that un the Council had the n funds at then duspqsal, they would take steps to complete the two wings, already partly erected, and thus carry out the two winga, already partiy erected, and thus carry out the original design of the College, so far as its eatent is
concerned. Judging from estimates made at various times by our architect, I conclude that the cost of the work in question would be upwards of 40,0001
Among the uses to which the additional buildngs could dvantageously be put, I may mention, in the first place laboratomes for Practical Physics, and for original phyaical seearoh; next workshops attached to the Class of Enghneering, accommodation of this kund has been greatiy needed for neveral years past, and the want of it, chere is good reanon to believe, has been a sernous obstacle to the ful development of both the departments of the College affected by it.
Greater space could be beneficially devoted to providing more extensive and complete accommodation for the teachers and the students engaged in the classes of Chemstry and of Practical Physiology As an allustration of the shifts to which we are at present driven to resort, I may mention that when Professor Sanderson recently represented to the Council his need of an additional laboratory for purposes of oried only by dislodeng the museum of Materu Mo tes, into an upper and less convemient room
Laburatores for onminal ohemical
Labsal applications of chemistry would also send for the practical applications of chemistry, would also require much
The whole of the south wng whon comple
Tho every resson to expect, the number of its pupils should oo on increasing for the next few years, as it has conthuoualy for the past anx or seven yeard A large portion of this wing last built, which was finshed in September 1873, having been ssaigned to the classes of Practical Chemistry and of Phyaics, to which subjects great attention is paid in the school, it is found that less acoommodation than had been antricipated is available for ordinary classes, to that the school as already agan cramped for space.

(II) The Finomeval Relations between the School and the College.

Thas aubject has recently been carafully unvestigated by the School Committoe of the Councol, and it has thus been ascertanned that for the last five yearm-the moat prosperous in the history of the school-the net amount recesped from the sohool by the College for its general purposea has been
only an average of 982l. 6s 8 d per annum. But even this is subject to a large deduction for rent, which may be moderately estrmated at $750 l$ a year for the south wing and of $150 l$ for the portion of the man building' atill occupied by the achool. Thus the actual profit derved from the school is reduced to ahout 1007 a year, or les than 1 per cent of the gross income of the school

(III) The Financial and other Relations easting between

 the College and the HospatalFor information on this subject, I beg leave first to refer the Commussioners to the preamble of the College Act of incorporation, in pp 4, b of the copy herewith sent to you As to finance, I may state that the College duscharge gratuatously all the duties of Trustee for the Hospitail; it manages the investments of the hospital funds, conduct the correapondence connected therewith, acts as the guardian of the legal nughts, of the charity, and in various other ways carries on what may be called its eaternal affarrs, defraying out of tts own funds the expenses modental to its connexion with the hospital Besides this, it pays each of the two Home Frofessors, one of Cluncal Medncine, the other of Clmical Surgery, a stipend of 1001 . per annum, out to the College " for the purposes of its Medical Depar ment" Che for the purposes of 1is Medical Depart wholly within the hosptal, whob darues an importan part of its incom for the ford by the part or ista Should the Commorioners desure
me to attend them personally, I shall he happy to do so
(Signed) Johan Robson,

P S.-Since the above was written, I have recelved your letter of the 29 th inst. I will obtam and send to you the desired information in a day or two.
The accompanying table, showing the proportion of who have obtanned the degrees of the Uniersity of London, may be of some intereat in connexion with the investigation conducted by the Commissioners *

- University of London Degreen,	Total No of Degrees conferred to end of 1873.	No gasned ${ }^{\circ}$ by students of University College	$\begin{aligned} & \text { Per-centage } \\ & \text { of } \mathbf{U} \mathbf{C} \\ & \text { Degrees } \end{aligned}$
IL.D.	27	11	4074
M.D -	281	108	8848
MS.	9		3338
D Sc.	20	6	30
DLat. -	1	1	100
M, A., Branch I -	58	19	$85 \cdot 85$
" II -	85	22	6285 ,
* III	186	46	3882^{\prime}
LLB -	101	64	935
M B.	274	74	27
B ${ }^{\text {S }}$	28	14	6087
BSe.	118	29	24.58
B.A.	1,497	485	2906
Totals	2,665	888	38-08

E N.B Thus table is based upan the Lists of Graduates pub-
Hished in the Unversity Calendar for 1874, and it differs, therefore, in some respects from the general table printed in $p 154$ of chat Calendar, espenally is omitting to take acoonite of Graduates who have anbsequently taken the hugher degrease

Incours of the under-mentroned Professors in Unverenty College, London, in Seasion 1872-73.

Subject.	Share of Fees	Endowmentr	Total.	-
1. Phymology	$\begin{gathered} 8 \\ 468 \\ 1,484 \end{gathered}$		($\begin{gathered}\text { ¢ } \\ 4.68 \\ 1,484\end{gathered}$	Thus is sabjeat
2. Chemistry -				Thus is sabjeot to a deduc hond of between 4001 . and 500l for payment of assistantsand
12	' 1'	* 1		$\begin{aligned} & \text { other: } \\ & \text { perisen. } \end{aligned}$
s. Comparativa	104	100	204	pam.
- Anatomyand				
4. Practical Phybiology	868	-	868	The professor has to pay for an assistant
6. Botany ${ }_{4}$, 384	-	184.	
6 Hygrene -	10		10	
7 Mathematics	370	-'	370	The Profeasor
	,1	1		pays : about
				asalstant
8. Applied Ma-	128	${ }_{2}^{200}$	828	-
thematics.		guaranteed for 5 years		1
1		only by the		
\cdots *		of the Col-		
- í				
9 Physies -		-	252	
10 Geologyand Mineralogy	55	1, ${ }^{181}$	0	-
11. Engtueering	108	-	102	, -
12. Arohutecture	182	-	B2	

University Collegr, London,
Regulations made by the Council and the Sesate, or by the Counchl, affecting Professors and other Teachers.
1 Every Professof or other teacher 18 requared to attend at the thme apponated for the delivery of the first three spectus of the Faculty; but anicas' at least four students
shall heve entered to hir claes by the date of the fourth lecture, the course may be discontinued for the seasion 2. Except with the permiamon of the Senate and of the Commuttee of Management, no Professor or other teaphea shall fall to oommence his course at his appoznted thme, or shall discontmue it before the spponted tume
3 Any Profeseor or other teacher having oceanion to ormit or postpone any lecture or leason, shail, if poasible give notice to his class at a preceding meeting of hif internnom to do so, and shal aiso, ar carly posible, give a mular notice to the Secretary
4. A Profesaor or other teacher, by leave of the Senate conffrmed by the Council, may in alternate yeara omit givig his course of leotures.
provided weadie of each Faculty and of the Hospital is provided with a book entitied "Reguster of Omulted Leo or attendance 18 omitted, to bring the book to the Profeser or other teacher, physician, of surgeon, at bis next bitend ance, in order that the omiemion may be registered with hia algnature. The books are laid on the table of the Com mittee of Management at erery meeting, and the Come mitiee of Management at every meeting, and the Commituee desirable to do 8o:
6. No class in the College in to meet at any other ames than those announced for its meethige in the prospectus of the session, unless by exprese permission of the Senate and the Comminttee of Mamagements But this regulation is not to prevent a Professor or other teachar from holding an extra mostang of his elams on an emergency, at an hour convernent to ali the studente of hus claws

- 7. Each Proessor or other teacher shall examme hu own clase ; but the Faculity may, of they think fit, apponnt one or more addrional persons to examme any clasa Copies of the questions propased at the clabs-ezaminatrions shall be deposited in the libraries
8 The 2lat part of the gross amount of fees (representing the difference between pounds sterhing and gumeas pand un a segaion for the class or classea of any Profeasor or other teacher 18 arst deducted and retaned by the College When, after such deduction, the fees so paid do not exceed 125l, mine-tenths of the amount are to be pand to the Pro fessor or other teacher; when they are above that sum, but not more than 300l, the Profeasor or other telache ghall recerve 1001 and one-half of the remander; when they are above 3001 , two-thirds of the amount whall be pasd to the Professor or other teacher
9 The sons of members of the Senste, of former mombers of the Senate who lave dred during ther tenure of office, and of the Secretary, are adraitted to all classes of the College wrthout payprent of fees A simular privilege is epjoyed by the daughters of the same persons in respect of September 1871

APPENDIX 12.

Kina's Coliege, London.

Rif. Sir,
6, Old Palace Yard, Londor,
I AM, drected by the Duike of Deronshire the 1874 nas of this Commision, to enclose a statement furnished to the Commission by Unversity College, and I smo to aly that the Commassioners would be glad to have a smilar statement with regand to King's College, bs they are now considermg therr Report with regard to these Colleges.

The Rev. Dr. Barry
have, \&c.
J. Norman hockyer,

King's College, London, W.C

In compluance with your letter of the 19th inst, I
have the henopry to enclose benewth-

1. A setum of the salanes pard in this College in 1873 to the members of the staff engaged in teachong various branches of Science. This Return does not include eather the school or the evening classes.
2 A atakement of the expenduture of the Councit sanca the foundation of thie College on lands, buldings, libranes, and museums I have every reason to beheve that this Returen is accurate, but, withoift more tme thap I have at
my disposal before this Return is wanted, I am not able my disposal before this Return is wanted, 1 am not able
atrictly to verify every lem, but the Return is sufficently strictiy to
accurate.
2. A Return showng the endowments which the College now possesses, and the particular objects to which each now possesses, and wa have no endowinents applicable to general College purposea, except our buildings, which have general College purposes, except our buuldings, which have otherwise wholly dependent on the fees recaved from students.
J. Norman Lockyer, Esq,
6, Old Palace Yard.

I reman, \&c.
Secxetary.

Statementi of Expendiruag.
 by the Crown - \quad - 16,44800 College and School buildings and fittinga $=146,899$, 0 o Fittangs for musenms and laboratories $, 5,738$, of is Cast of books for general, and meducif Cost of nubewn, sind laboratory apparatos
1_{1}^{r}

APPENDIX IIL.

The Owens College, Manchester.

Sirs I AM durected by the Duke of Devonshrre, the Chairman of this Commission, to esk you to be so good as to cause the statements desired in the accompanying memorandum, with regard to Owens College, to be furnished for the information of the Commissioners. I have, \&ze. The Princapal of Owens J. Norman lockyer, College. Secretary, Two statements, șihowng capital and expenditure under two divisions. A. Cr.-All avalable' assets for buldangs and fittungs. And agamst thro- Dr - Money expended under the above head " Luabilities under contracts already entered onto under datto. Liabilities under other engagements, if any, under ditto Frections and fittings m addition to the sbove, forming part of the present plans, under ditto. And deficiency on balance of Dr and Cr B. Cr.-Available assets for endowments. And agamast these- Dr.-The capital gum requred to satusfy existing ercowments. To eatasfy contemplated endowments And deficiency on balance of Dr. and Cr. Note-If any endowments for specific purposes should be in excess of the expenditure thereon, but incapable of being transferred to other endowmenta, state this in each unstance.	

Dear Srry, The Owene College, Manchester,
I sEND by this post answers to the queations received by me on the 13 th inst Our Treasurer, with the and of an accountant, has been busily engaged upon the docu ment which I now trangmit for weveral days during the both clear and well adapted for the purposes of the Com both clear and well adapted for the purposes of the Comit was scarcely practicable to frame these eccounts esactly it was scarcely practicable to frame these eccounta eaactly in accordance with the questaons, but wa believe that mb stantally your maq
clearly answered.
I am desired, however, by my colleagues on the councl to draw sttention to one important particular. The deficrency on our bulding account (Aecount A.), will be seen to be estimated at about 22,0001 , whereas in the otateanent recently supplied by me by way of correction, ap to the present date, of the accounts given by me in March 1871, this deficiency was epoken of as ahout 5,0001 It in necesbary therefore to point out the source of so large a discrepancy The explanation is as follows my corrections of the former figures wrere drawn from a recently prepared annual statement for issue to our subscribera, in which no account was taken of augmentations due to additions to, and moduficatious of, the orgual contracta, whereas in the statement now supplied this source of prospective expenditure has been carefully eatimasted and included. By thic and possbly one or two manor sounces of emor, the differ ence between the two statemente will be found folly sccounted for

Allow me to add that any elucadations, should they be found necessary, will be readily furmshed by us, and belleve that I am

J Norman Lockyer, Esq.
Your fathful wervant,

ACCOUNT A.
Thz Ownns Coulmeg, Manchrstrr.

ACCOUNT B.
Ter Offens Comlege, Manchestrer.
Reiving, as to the Financins of the College, to the Royal Commissioners on Scientific Inatruction, \&c. Dr. Income (Estimated on the 20th June 1874 (for the year endung 3lst July 1874). Expennditure. Cr,

AP'PENDIX No. IV:

College of Pifysical Sciencé, Nkwcasttle-on-Tyne.

6, Old Palace Yard, London, S W.
I AM drectod to ask you to be so good ss to supply
zor themformation of the Commesmoners (10 addition to the information which you bave alrendy been good exough to furmshl respecting the College of Physical Sirence, at Newcastle-on-Tyne), (1), a financial statement, Bhowng the amount recaved towards establishing and endowng the College, and how the amount has been expended or unvested, and (\mathbf{u}), the annual receapts and expenditure, undlcating the salary paid to each professor.
The Secretary, I have, \&ce. \quad J. Norman Locyyryr,
College of Physical Scrence
Newcastle-or-Tyneis
Newcastle-or-Tynei'

Drar Sir, Newcastioupon-Tyne, $\begin{aligned} & \text { July } 11 \text { th, } 1874 .\end{aligned}$
-Ir reply to your mquures of the 6 th inst., I beg to informir you that the total amonnt of donations promused
been collecteď, the paymenta being extended over a term of bexr yeara. In addition to these donations the follwing max yeara. In addition to these donahions the followng of $20 l$, and one of $10 l$
The'Unvernty of Durbani imaked an annual gramt of $1,000 \%$., besides aome additional payments to extra teacherss, ${ }_{3}^{2} \mathrm{C}$ about twore than 1,0002 per annum is receaved fot feee addition to their stipends
About $15,500 \mathrm{l}$ of the donations recelved has been invested in railway and other stock, the balance hanng been spplied in estabishing and partly mantaiming the College which has been nearly three years in existence. The total annual expenditure of the College may be stated at 3,0001 , and the recespta hutherto have nearly equalled that amount, a deficiency of only $250 l$ last yeas haning been drawn from the capital account. It is expected, however, in future that the expenditare will not exceed the recenptso , 1
The Secretary of the Ther Toon Buxirina.
Royal Commmission on
Scentifio Instructaon.

Collbae of Phybical Science, Nwwcabtle-on-
Account of the number of students attending the vartous clasges, Session 1873-74.

that since the time when evidence was given before the Commission by certan members of the College of Phyeical Science at Newchstie, some large subscriptions have been made to the Museum of Natural History, which now proposes to umite rtself more closely with the College of Physical Scrence'

1. Sums equivalent to 30,0001 have been paid or guab ranteed to the College of Science.
2. A aubscription has lately been ransed to found a memoral to the late Mr Albany Hancock, and the sum promssed smounts to $17,000 \mathrm{l}$ It 18 proposed to devote this sum to a building for a museum to form part of a larger bulding for a College of Physical Science.
The sum thus subsenbed would, if added to that already subscribed to the College of Serence, amount to abou 50,0007 , and it may be proper also to mention that the
value of the museum itself and of its permanent buyldugg value of the museum itself
amounts to at least $10,00 \cap l$

In addition to this the Medical 'Callege of Newcastle is desirous to join in the erection of a joint college, and will desirous to joun in the erection of a joint coll

The Council of the College of Physical Science of New-estie-upont Tyne have thought it right to bring' these castie-upon lya bave thought they have had no opportumity of doing this hutherto, and they venture to hope that the Commission may conside that sufficient grounds have been alleged to enable them to recommend that the College may be esssisted by a parhamentary grant

Signed on behalf of the Council, W C. Lake,
J Norman Lockyer, Esq. W C. Lakr, $\begin{aligned} & \text { Dean of Durham }\end{aligned}$

ROYAL COMMISSION ON SCIENTIFIC INSTRUOTION, ETO.

Sir,
8, Merrion Square West, Dublin,
1 have the honour to acknowledge the recept your letter of 20th June 1874, on the part of His Grace the Duke of Devonshure, and other members of the Royal Commingion on Scienthfic Instruction and the Advancement of Scence, is which you ask for further informathon in addition to the evidence given by me on 18th July 1872, with regard to the Catholic Unwersity of Ireland.
In answer, I have the honour to furmush reples, so far as I am able, in the following returns to your various queries, taking tnem in order as set forth in your lettex. I assume that you have coppes of sard queries, and I shall reply to them paragraph by paragraph, as numbered in yours of

I.-Finafcial Statement as to the Catholic University of Irkland.

I find that by a Report of therr Lordships, the Cathohe Archbishops and Bishops of Ireland, addressed to Sir Archbishops and Bishops of Ireland, addressed to Sir heen furmshed up to June 30th, 1865, by voluntary contributions in and of the University a total sum of -
From that period to 1872 - $\quad 45,000$

In the year 1873-74
$\begin{array}{r}\text { - } 4,000 \\ \hline 10,000\end{array}$

This does not include a recent be-

184,000

 quest of - - $\quad 2,000$ Nor a sum devoted to the PhysicalCabinet -
addition to the foregoung amount,
In ada, de anno zr annum, been devoted to considerable sums and prizes of various amounts
(1) Amount eapended on purchase of site, \&c., and on erectron of butbdengs.
The Unuversity has purchased at various times certan mansions and adjacent houses at the south side of Stephen's Green, Jying together, and, as before stated, representing an area of 270 feet by 260 feet These sites were purchased as occasions offered for the following sums-

$$
\begin{aligned}
& \stackrel{2}{2} \\
& \mathbf{4 , 5 0 0} \\
& 3,400 \\
& 1,100
\end{aligned}
$$

Church erected by the late rector, Very Rev Dr Newman, at cost of about 7,000 Of which, however, only 2,4002 came out of the University cheat, the remander having been generously furnshed out of his private funds by Dr. Newman himself.
Medical School - - 1,300 $\overline{18,500}$
It s to be observed that a considersble ground rent, anounting in all to about 2000 ., ts annually payable for great part of the above site, but the premuses are held on long tenures nearly equavalent to perpetuity.
(2) Amounts expended on Museums, Physical Cabrnet, and Laboratorves
"Mineralogncal Cabinet.-Chiefly organused by Profensor Sullavan specmens numerous and valuable, amonnt expended not well ascertamable; collechon beheved to be of considerable value, and has been visited and exammed by many emunent persons
Physical Cabinet,-Amount orignally expended about 500l, for recent additions see snswer to subsequent paragraph.
Chemteal Laboratory, about 8001.
Puthngs, \&e, about 2001
Phystologrcal and Brological Museum, with specimens illustrative of comparative angtomy, abont 2001 .
(3.) Amount expended, year by year, on the masntenance of Instatutwon, and on Stupends of Professors, \&e.
The amnzal expenditure has been about 6,000L. per year, and has been thus year increased to about 7,00gl. Of this sum over 5,000 , ane absorbed in the salaries of professors and officers. Salaries in Faculty of Science, 1501 . to 4001. per annum
per annum
Not less than $10,000 l . ~ a ~ y e a r ~ w o u l d, ~ h o w e r e n, ~ b e ~ r e q u a r e d ~$
to maintan the Instatution in a moderate degree of efflouent work, and at least twice that sum annually if it 10 to bo developed to meet the full requiremente of the Catholis population of the country.
(4) Amotrut lost on Clonluffe Estate, as specticed in Quastron 13,376.
The amount aiready stated, $6,000 l_{1}$, s beheved to represent, as cecurately as can bs stated, the loes suatained in monoy, as it involved complicated legal and other procedurea, rent, \⁣ but the troe movolved was of great consequence to the prospecte of the Unversity. I should add that the loss $2 s$ estamated by Mr. Scratton, Secretary (who is the person most famular with all the facts), at nearer to $10,000 h$ m all.
(5) Amount of Corpus of Fund remasang invested in

A part of the orginal fund remarns in stock, which in spphanble to the general purposes of the University, but is not now very large, having regard to the continuous expenditure on ate, buldings, salaney, materral, de.
(6.)

Bequests have from tume to tume been made to the University, one recently of 2,0001 , as before apeofifed, whach have been apphed to the general purposes of the University. There are no special hmitations or special trusts, except in regard to certan of the prises, burses, \&o

II.-Powze año Constitution of Senata,

I beg leave to enclose the Statutes qoverning the Senate I desire to call attention to the fact that provision is made for the admassion of Graduates of the Unveraity to the Senate, and the carrying out of this large and liberal provision as only mapeded by the want of legal recognition
of the Unversity. of the Umversity.

> III.-Number of Studente.

In the current year 1873-74, which has just come to a the number of students
in Science and Arts, attendma lectures
in the University buidings, Stephen's Graen
to be - $\quad 30$ miners from the解 achork and colleges smbluated with the University, and examine atudents for matriculation and honours.
Furthermore, stadents from vanous parts of the country attend at the Univeraity from time to time for examination and in the current term not leas than 40 thus submitted themselyes for examination.

IV.

The present site is the ormpanal site, and if funds were The present site is the original site, and if fands were
now forthcoming an opportunty exists for acquing a immediate proximity to the Inperety. Anothend in with more ample proronds, has been pointed out by myelp and could 1 beleere be acqured if the uecensery were avalable.
In reply to your further quenes, I beg to aay (1) in reference to Question 13,426, \&s to the Charr of Geology: Ownin to want of funds no permanent appontment has been yet want of funds no permanent appontment has been yet made by the nomination of Professor O'Rellly, of the Royal College of Scence, as lecturer. He has delivered a full and valuable course in the course of thus aession, sbly illustrated by his own hand drawings, which are of great excellence.
(2) In reference to Questions 13,449-13,452, as to emoluments of professora:
The fees pard by Univerenty etudente in the Fsculty of Scuence, are Intile more than mominal, and are pad into the University chest.
(3) In reference to the Rescripts of Pope Fins IX., I beg lesve to enclose copy of the Synodical Address of the Council of Thuries, sppeaded to whek will be tound the texts of the rescripts in question.
(4) In reference to degrees. No degrees other than theological have been granted. So far as I amp awizer, it 18 not comtemplated to confer degrees in the other Faculties, but it 18 noder consuderation to grant certificates tenhfying the result of the examinations.
In conclusion iong leave to say that some moportant
atrength of the University Staff, particularly in the Faculty of Science, since the date of my evidence, as I will now proceed to explam

> Physical Cabinet -Instruments.

In addution to the metruments in regard to which ovkdence has already been given, a sum of 750l, has heen recently furnshed by the present Professor of Natural Philosophy, out of his private means, to supplement the stock with instruments required for the efficient teaching of Physical Science. (Rev. Dr. Molloy, vice Professor Hennessy, FRS)
The Professor is just now engaged in amproving at considerable expense the material arrangements of has Lecture Hall, and fitting up a Physical Laboratory in connexion wath it, for the preparation of his Class Expemments and for the purposes of private research. The actual number in daily attendance on this class 18 now 23 . Annexed will be found an Syllabus of the Lectures delivered in the present term
Besides his systematic Class Lactures, the Professor proposes to grve every year a course of popular public ectures on the most recent discoveries and myentions in Physical Science.
The Professor has also made a proposal, which is now under consideration, of giving from tame to was short courses of syatematic Elementary Leotures, to sa class of select National Schoolmasters, chosen from the varioua schools throughout the country, thus fitting them to teach the elements of Physical science in the pimany schools. These lectures would be at first somewhat on the scale marked out in the Sctenoe Prmers recently published by Macmullan \& Co., and written by Professors Huxley, Bai-four-Stewart, Roscoe, \&c.; but he ultmately contemplates much more enlarged course for thas purpose
The Professor hopes, with the means at his disyosal, to be able to carry out these plans with moderate efficiency, but it is needless to say that to give them full effect on the acale contemplated, very large additions should be made to the resources of the niversity It 18 beleved that the Catholis University command. reater facilities for reaching the masses or the people in notition in Treland Heremith is sent a sylabus of nstitution in Ireland, Ferewnth is sent a syllabus of the lectures delivered in irs, deparis in wont current "in ; also col matated has cone through two editions in this country, and has heen , ispubished and stereotyped in Ameries and a translation of it into French is now in course of publication in Parzs.

Hegher Mathematics and Mathematreal Physses.
Dr Casey has been appointed to this Chair It 18 unnecessary to refer to his accentific position and attainments, or his qualification as an able and orginal teacher and investigator
see anter aluu hxs paper on Cychdes and Sphero-quartics, \&o. (Phu. Trans).
1 Dr Casey has introduced in the course of Matherecent Mathematics

2 He bas already some preparations made, and intends immedrately to commence the publication of a sernes of Manuals for the use of the University, and for the affiliated schools and colleges. In these he intends to bring the subjects up to the present state of information on the dufferent branches of Mathematics of whuch they treat 3. He also intends to propose to the Board of the Catholic Unaversity to bring the Mathematreal masters of the affliated schools and colleges to Dubln annually for exarnunation, to divide them into three classes correspond-4, College, Dublim, with a surtable salary to each class He College, Dublin, with s suutable salary to each cjass tha wil come 1 a masters in these affihated colleges and schools.

Other Appointments

Dr Campbell has been appomted to the Chair of Chemistry in the Faculty of Science, and also un the Faculty of Meducine
Professon O'Relly has been nommated Lecturer on Geology, and has delivered in the current term an mportant and interesting courge
Dr, Sigerson has been appointed Lecturas on Botany and Zoology, and has delrvered several courses well illustrated and largely attended (See Prospectus enolosed.)
The Faculty of Law has also been constituted and Professors appointed.

1/11

'Presknt Position' of they University.

The position of the University an relation to the country since the date of my evidence is practically well illustrated by its increased efforts for the advancemerit of knowledge, and the mportant aecessions to its teaching staff above referred to, while the, large voluntary collection of the current year 1873-74 reaching 10,000 ., shows how these exerthons have been appreciated, and how generously they have
been met and supported by the Catholic people of Ireland
In prizes and, burses fully, $1,000 \ell$, a year is now gaver by competition
Wathin the last year'durect affilation' has been effected With numerous Colleges and Higher Schools throughout the country, and the University is now in a position, if upplense and an endumng infuence on the higher scientefic education of the people of Ireland Through no other existing educational machinery cen the varous strate of me Irigh people be reached and if ad for Scientific teach ing be whtheld from the Cathohe Unuversity, the cause of ng be withheld rom the Cathono Uaveraty, tho cause butucanon in the Phyacal and Natural sciences cam who but hitule, if any, progress amongst the cathoucs, who constitute the great majority of the mish people
I append a paper containing facts and arguments to show she educational wants and the intellectual resources
of Ireland (Herewith, "Intellectual Resources of Ireland. "Supply and Demand for an enlarged system of Insh "Univeraty Education," by Dr Lyons).

I have, \&e
Robert D. Lyons.

APPENDIX VI.

Statement of the Salarifs of the Profegsors in the Royal School of Mines, and in the Indian Cifil Eingineering College.

Indian Cifil Enginbraing Collegr, Coople's

Lieturan of the Salaries and Lectiors Fers paid to the Professors of the Royal School of Mines.			
Nama.	Profestor of	$\left\lvert\, \begin{gathered} \text { Salary } \\ \text { par } \\ \text { Ansum } \end{gathered}\right.$	Avarage of Share of Lecture Feea durng Five Years
Edwd. Frankland Thos \mathbf{H} Hinxley John $\mathrm{P}_{\text {eres }}$	Chemustry - Natural History - Metallurgy	8 200 \vdots	$\begin{array}{ccc} \ell & 8 & d \\ 183 & 8 & 8 \\ 104 & 19 & 0 \\ 79 & 1 & 6 \end{array}$
$\underset{\substack{\text { Wanngton } \\ \text { Smyth }}}{\text { W. }}\{$	$\left.\left\lvert\, \begin{array}{lll} \text { Mimung } & \text { and } \\ \text { Mineralogy } & -1 \end{array}\right.\right\}$	"	$\begin{aligned} & 74140 \\ & 781188 \end{aligned}$
Andrew C.Rambay Thos. M. Goodeve Bredenck GathneJ. H. Edgar	Geology - Appled Mechanues Physics - Mechanceal Drawng	3100	$\begin{array}{rrl} 148 & 5 & 6 \\ 94 & 18 & 6 \\ 66 & 2 & 8 \\ 107 & 8 & 1 \end{array},$

[^8]
SIXTH REPORT

of the

ROYAL COMMISSION

ON

- SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILIMAM SPOTTISWOODE, printers to the quekn's most excellent majesty. FOR HER MAJESTYS STATIONERY ORHCEE.

CONTENTS.

COMMISSIONS	-	-	-	-	-	Prge iii
REPORT -	-	-	-	-	-	1
APPENDICES	-	-	-	-	-	11

ROYAL COMMISSION ON SCIENTIFIO INSTRUCTION AND THE ADVANCEMENT OF SCIENCE:

VICTORIA R.
Victoria, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen, Defender of the Faith, To Our Right Trusty and Right Entirely Beloved Cousin William Duke of Devonshire, Knight of Our Most Noble Order of the Garter,Our Right Trusty and Entirely Beloved Cousin Henry Charles Keith Marquess of Lansdowne,-Our Trusty and Wellbeloved Sir John Lubbock, Baronet,-Our Trusty and Wellbeloved Sir James Phillips Kay-Shuttleworth, Baronet,-Our Trusty and Wellbeloved Bernhard Samuelson, Esquire,-Our Trusty and Wellbeloved William Sharpey, Esquire, Doctor of Medicine,-Our Trusty and Wellbeloved Thomas Henry Huxley, Esquire, Professor of Natural History in the Royal School of Mines,-Our Trusty and Wellbeloved William Allen Miller, Esquire, Doctor of Medicine, Professor of Chemistry in Kings College, London,-and Our Trusty and Wellbeloved George Gabriel Stokes, Esquire, Master of Arts, Lucasian Professor of Mathematics in the University of Cambridge, Greeting :

Whereas We have deemed it expedient for divers good causes and considerations that a Commission should forthwith issue to make Inquiry with regard to Scientific Instruction and the Advancement of Science and to Inquire what aid thereto is derived from Grants voted by Parliament or from Endowments belonging to the several Universities in Great Britain and Ireland and the Colleges thereof and whether such aid could be rendered in a manner more effectual for the purpose.

Now Know Ye that We reposing great Trust and Confidence in your Ability and Discretion have nominated constituted and appointed and do by these Presents nominate constitute and appoint you the said William, Duke of Devonshire-Henry Charles Keith, Marquess of Lansdowne-Sir John Lubbock-Sir James Phillips Kay-Shuttleworth-Bernhard Samuelson-William Sharpey-Thomas Henry HuxleyWilliam Allen Miller-and George Gabriel Stokes-to be Our Commissioners tor the purposes of the said Inquiry.
And for the better enabling you to carry Our Royal Intentions into effect We do by these Presents authorize and empower you or any three or more of you to call before you or any three or more of you such persons as you may judge necessary by whom you may be the better informed of the matters herein submitted for your consideration and also to call for and examine all such Books Documents Papers or Records as you shall judge likely to afford you the fullest information on the subject of this Our Commission and to Inquire of and concerning the Premises by all other lawful ways and means whatsoever.

And Our further Will and Pleasure is that you or any three or more of you do Report to Us under your Hands and Seals (with as little delay as may be consistent with a due discharge of the Duties hereby imposed upon you) your opinion on the several matters herein submitted for your consideration, with power to certify unto Us from time to time your several proceedings in respect of any of the matters aforesald, if it may seem expedient for you so to do.

And We do further Will and Command and by these Presents ordain that this Our Commission shall continue in full force and virtue and that you Our said Commissioners or any three or more of you shall and may from time to time proceed in the 34734
execution thereof and of every matter and thing therein contained although the same be not continued from time to time by adjournment.

And for your assistance in the execution of these Presents We do hereby authorize and empower you to appoint a Secretary to this Our Commission to attend you whose serviees and assistance we require you to use from time to time as occasion may require.

Given at Our Court at Saint James's, the Eighteenth day of May 1870, in the Thirty-third year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE.

ROYAI COMMISSION ON SCTENTIFIC INSTRUOTION AND TEE ADVANCEMENT OF SOIENOE.

FICTORLA R.

Viotoria, by the Grace of God of the United Kingdom of Great Britain and Treland Queen. Defender of the Faith, To Our Trusty and Well-beloved Heary John Stephen Smith, Esquire, Master of Arts, Savilian Professor of Geometry in Our University of Oxford, Greeting :

Whereas We did by Warrant, under Our Royal Sign Manual, bearing date the Eighteenth Day of May, One Thousand Eight Hundred and Seventy, appoint Our Right Trusty and Right Entirely Beloved Cousin, William, Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty and Entirely Beloved Cousin, Henry Charles Keith, Marquess of Lansdowne, together with the several Gentlemen therein named, to be Our Commissioners to make Inquiry with regard to Scientific Instruction and the Advancement of Science, and to inquire what aid thereto is derived from Grants' voted by Parliament, or from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such aid could be rendered in a manner more effectual for the purpose: And whereas since the issue of the said Warrant William Allen Miller, Doctor of Medicine, one of the Commissioners thereby appointed, hath deceased :

Now Know Ye, that We, reposing great Trust and Confidence in Your Zeal, Disoretion, and Integrity, have authorized and appointed, and do by these Presents authorize and appoint you the said Henry John Stephen Smith to be a Commissioner for the purpose aforesaid, in addition to, and together with, the Commissioners now acting under the above-mentioned Royal Warrant.

Given at Our Court at Saint James's the First Day of December 1870, in the Thirty.Fourth Year of Our Reign.

By Her Majesty's Command,

H. A. BRUCE.

Professor Henry John Stephen Smith, M.A.,
To be a Oommissioner for inquiring into
Scientrfic Instruction and the Advancement of Science.

surs.

SIXTH REPORT.

TO THE QUEEN'S MOST EXCELLENT MAJESTY.

May it please Your Majesty,

We, the Commissioners appointed by Your Majesty to make Inquiry with regard to Scientific Instruction and the Advancement of Science, humbly beg leave to present to Your Majeaty, in continuation of our former Reports, the following Report on the Teaching of Science in Public and Endowed Schools.

I. Preliminary Remarks.

1. In dealing with that branch of the Inquiry entrusted to us which has reference to the Scientific Instruction given in the various Secondary Schools throughout the country, we have been induced by the circumstances of the case to deviate from the mode of obtaining information which we had hitherto adopted. The number of Secondary Schools is so considerable that any attempt to obtan the facts by examination of Witnesses would have necessitated the attendance of a very large number, while, by adopting a different method of procurng information we were enabled not only to economise time, but to obtain a comparative survey of the various Systems and Appliances of Instraction enployed in the dufferent Schools.
2. With this view our Secretary, Mr. Lockyer, was appointed Assistant Commissioner with reference to this branch of the lnquiry, and by means of personal visits, and by the circulation of varrous forms of questions agreed upon between bim and the Commissoners, much information has been obtaned, which will be found in an Appendix' to the present Report.
3. The following are the Public and Endowed Schools to which attention was specially directed:-
Eton College, Rugby School, St. Peter's College Westminster, Harrow School, Winchester College, Charterhouse School, Marlborough College, Dulwich College, City of London School, University College School, King's College School, Taunton College School, Wellnggton College, Rossall School, Clifton College, Cheltenham College, Christ's Hospital, and the Manchester Grammar School.
4. Information was also sought from the Head Masters of the 202 Schools which appear in the Report of the Schools Inquiry Commission as possessung Endowments of over 200l. per annum, and from 128 of these Schools replies have been received.
5. The Evidence thus placed before us conclusvely proves that in our Public and Endowed Schools, Science is as yet very far from recerving the attention to which, in our opinion, it is entitled.' For instance, the Returns furnished to us show that, even where Science is taught, from one to two hours' work per week may be regarded, with very few exceptions, as the usual time given to it in such Classes as lecerve Scientific Instruction at all. Moreover, the Instruction in Sclence is generally confined to certan classes of the School
6. Among the 128 Endowed Schools from which we have received returns, Science is taught in only 63, and of these only 13 have a Laboratory, and only 18 Apparatus, often very scanty. Out of the 128 Schools, definite information has been received from 87. Of these 30 allot no regular time whatever to scientrif study; 7 only one hour a week; 16 only two hours; while our of the whole number only 18 devote as much as four hours to it. The neglect with which it is treated is also clearly shown by that portion of the Assistant Commissioner's Report in which the weight attached to Science in the School Examinations is stated, whence it appears that among the higher grade Schools from which information has been received, only two attach a weight to Science in the Examinations equal to that of Classics or Mathematics; whlle in the case of the 128 Endowed Schools from which information has been received, only 13 give any weight at all to Science in the Examinations.
7. Languages and Mathematics are by universal consent regarded as indispensable parts of a System of Education, but any System from which Science is excluded must, in our opmion, be incomplete and unsatisfactory.
8. We feel it the more incumbent upon us to insist on the Introduction of Scientific Training as an integral part of School Education, because in our Third Report we have s4734.
recommended that Students at the Universities should, at an early period, if not from the
Thurd commencement of their Academical Course, be left free to choose for themselves among
Report, p. x. the principal lines of study, and should not be hampered by being compelled to pass Examinations in subjects having no direct bearing on their subsequent career. But we made this Recommendation conditionally; that is, upon the understapding that the Student should be well grounded in the principal branches of Knowledge before his entrance into the University; for, while asserting that Literary Cultivation, up to a certain point, is indispensable for the Scientific Student, we expressed the opinion that, "in like
Third " manner, evidence of corresponding Scientific Culture should be required from the
Report, p. x. " Student of Classical Literatuse or of Theology ;" and we consider that no one should recelve a Degree who has not proved himself to be well grounded in Science as well as in Languages and Mathematics.

II. Opinions in favour of the Teaching of Science in Public and Endowed Schools.

9 Our opinion on the importance of introducing Science as an integral part of our Public School Instruction is in general accordance with the Recommendations of two previous Royal Commissions-the Royal Connmssion appointed in 1861 to Inquire into the Revenues and Management of certain Colleges and Schools (shortly styled the Public Schools Commission), and the Royal Schools Inquiry Commission appointed in 1864. The same view has been also adopted by the Special Commissioners appointed for the Purposes of the Public Schools Act of 1868, and the Commissioners apponted for the purposes of the Endowed Schools Act of 1869.
10. The Royal Commissioners appointed in 1861 say :-

Zeport, p. 32
"Natural science, with such slight exceptions as have been noticed above, $3 s$ pracheally excluded from the education of the higher classes in England. Education with us is, in this respect, narrower than it was three centuries ago, whilst science has prodigionsly extended her empire, has explored immense tracts, divaded them into proninces, introduced into them order and method, and made them accessible to all. This exclusion is, in onr view, a plain defect and a great practucal evil. It narrows unduly and injuriously the mental training of the young, and the knowledge, inter ests, and purguits of men in maturer life. Of the large number of men who hare litile aplitude or taste for literature, there are many who have an aptitude for scrence, eapeonily for science which deals, not with abstractions, but with external and sensible objects; how many such there are can never be known, as long as the only education given at schools is purely literary ; but that auch cases are not rare or exceptional can hardly be doubted by any one who has observed either boys or men. Nor would it be an answer, were it true, to say, that euch persons are sure to find their vocation, eooner or later. But this is not true. We beleve that many pass through life without useful mental employment, and without the wholesome interest of a favourite study, for want of an early introduction to one for which they are really fit. It is not, however, for such cases only, that an early introduction to patural seience is desirable. It is desurable, surely, though not necessary, for all educated men. Sir Charles Lyell has remarked on the advantage which the men of hiterature in Germany enjoy over our own, in the general mequantance which the former possess with what is passing in the scientific world, an advantage due to the fact that natural serience to a greater or less extent is tanght in all the German schools To clergymen and others who pass most of their Ives in the country, or who, in country or town, are brought much into contact with the middle and lower classes, an elementary knowledge of the subject, early ganed, has its particular uses; and we beheve that its value, as a means of opening the mind and disciplining the faculties, is recognized by all who have taken the trouble to acquire it, whether men of busuess or of leisure. It quickens and cultivates directly the faculty of observation, which in very many persons lies almost dormant through life, the power of accurate and rapid generglization, and the mental habit of method and arrangement; it accustoms young persons to trace the equence of cause and effect; at famuliarises them with a kind of reasoning which intereste them, and which they can promptly comprehend, and it is perhaps the beat corrective for that indolence which is the vice of half-wakened muds, and which shrinks from any exertion that is not, like an effort of memory, merely mechsnical. With sucere respect for the opinions of the eminent Schoolmagtern who differ from us in this matter, we are convinced that the introduction of the elements of natural scrence into the regular course of study 18 desirable, end we see no sufficient reason to doubt that it is practicable,"
We shall hereafter refer to the Recommendations relating to Scientific Instruction made by this Commission.
11. The Schools Inquiry Commission in their Report remark, as the result of their

Report,
vol. 1., pp.
32, 33. Inquiries, that the importance of Natural Science as a branch of General Education, " has received a large anount of sanction of the highest kind." "Of the Witnesses," they say, " whom we ourselves examined on this point, almost all who were not School" masters, desired the adoption in schools of some branch of Natural Science, though, as "a rule, they did not aim at the deposition of any existing subject."
And they continue, "We cannot consider any Scheme of Education complete which
"We think it established that the study of Natural Science developes better than any " other studies the observing faculties, disciplines the intellect by teaching induction as well " as deduction; supplies an useful balance to the Studies of Language and Mathematics,
" and provides much instruction of great value for the occupations of after life."
12. The Regulatiots relating to Natural Science issued by the Special Commissioners appointed for the Purposes of the Public Schools Act of 1868 are referred to in a subsequent part of this Report.
13. The intention of the Endowed Schools Commissioners is thus. expressed in the following extract from a letter addressed by ther Chairman to the Chairman of this Commission on the 25th March 1871 :-
" In all these Schools whthout exception, whether for boys or girls, we propose require as a substantal Appendix I., and andspensable part of therr course of Instruction, at least oue branch of Physical Science ; and in a few, p. 13. intended for the more special encouragement of what may be called modern subjects, we suggest, without absolutely requiring, more extensive teaching of Scjence,"

In accordance with this intention, the Endowed Schools Commissioners have taken steps to render obligatory the teaching of one or more branches of Natural Scrence in many of the Schemes which they have issued for the future management of the Grammar Schools of -King Edward the Sixth, and of other Royal or Private Foundations.: When the Trustees of such Endowments, or the Governors appointed under the new Schemes, have desired to build Laboratories for the Practical Instruction of the Pupils of such Schools in Chemistry or in some branches of Experimental Physics, the Endowed Schools Commissioners have, in some cases, sanctioned the appropriation to these objects of funds raised from the corpus of the trust estate,
14. Not only has the importance of introducing Science into our School System, as an integral and important part of Education, been urged by the four Commissions, to which reference bas been made, but the good effects which have attended its partial introduction have been fully acknowledged by many. Schoolmasters of great experience. Mr. Wilson, one of the Assistant Masters at Rugby School, in a paper "On Teaching Geology and Botany as part of a Liberal Education," strongly supports this view :-
"I am quite sure that this is the first business of our profession as schoolmasters, to hold this truth strongly Secretary's aganst all comers, that 'humanity,' and nothing else, is to be our object We must make our teaching bear Report : on this, give our best care to the selection of subjects, and the method of teaching, in order to make this Appended teaching more effective. And when I urge the introduetion of the scrences at the head of this paper into our Paper, No, 1 , course of education, I wish to make it plan that thas as what they ought to be montroduced into, and to this they p. 63. ought to be made to contribute very effectively."

To this end Mr. Wilson proposes that the Elements of certain parts of Science, to which he gives the general name of "Natural History," should be taught to young boys as part of what he aptly terms the " common ground for all," and he has so well described the nature of this common ground that we quote the main parts of his sketch.
" An orrery and globe, and a lattle astronomy, form the natural beginning. Let the boys make the effort lbid., p. 65 involved in realizing the plan of our solar system, and our earth in space with ats atmosphere mantling round it; its kinshup to the planets, its relations to sun and moon. These, and some of the common phenomena-day and nught, summer and winter, echpses, and the changes of the moon-form the natural and the old wellestablished introduction to science. They are still subjects of surpassing interest to evpry successive generation. They take boys on all their sideo-memory, imagination, and reason. They show, as nothing else shows, the connexion of cause and consequence. And there is a genume and deep satisfaction, of real pleasure of the intellect, which boys attan when they first understand the causes of these common great phenomena. They stand thenceforward on a higher platform. The universe presents to them not a mere wonderland but a reign of law. These are the hiterar divina written in the universe by the finger of God."
"Then we pass to the great earth itself, and all its activities, the effects of its still remaning internal heat, ita volcanoes and earthquakes, the slow oscillations of lavel, and the great changes slowly taking place in the famuliar outline of the continents and islands, and the proofs stall visible of past changes. These thinge must be. Well thought out by the class, and llinstrated and brought home to them by pictures and specimens The effect of the attraction of the sun and moon in making tudes, and ther geological and cosmical action, is a matter that can be to some extent grasped, though so difficult in its complete theory; and is far too important and sommon a phenomenon to pass in whthout notice. And then come the complicated consequences of solar heat and light. It is with peculiar interest and pleasure that a boy learns the causes of winds and currents, of trade winds and cyclones, of eveporation and ram, and its distribution on the earth. There is a sense of power obtaned by finding out that these great and famuliar phenomena are subject to laws, and are not primary facts. And all these are matters, towards which it is onily necessary to gunde the thonghts of the boys, and they can, with very little help, think them out for themselves. I find $1 t$ rarely necessary to give a regular explanation of anythung, except as a kind of résumé of the suggestions thrown out by the class, and successively criticised. Fresh information as to fact mast of course be givon, when it is seen to be wanted, and not before. And this incidentally gives them a much higher respect for knowledge and the value of facts than they had before. The labours of observers, and mathematicians, and collectors are seen by the class in their rue light, as contributing to the store of eccurate knowledge in regions mone or less maccessible to themselves"
"The consequences of these activities must then be traced out. And these constitute the principles of Geology. To teach tham is not hard; a large stock of picturas, photographs, \&c., will be fonnd very useful. We take the work of ram and rivers; theur eolvent and transporting powers, and straightway the ravine and the waterfall, the rich plann, and the whole river valley, with its wondrous system of dramage, are seen to be the consequences of the famliar forces at work all round us. The work of the sea is easily understood, and behold the map of England is looked at with new eyes; there must be a cause for every bay and headland. The formation of marine deposits, the growth of coral, and Darwin's explanations of the form of eoral
islands: the coze of the Atlantic, the work of frost and snow, the glacier and iceberg, the grographicel distribution of plants and animals, all are intelligible, and all, if I may so call it, excikigg; they excite to furthar reading and a good deal of thought ; they show, moreover, the regions of knowledge; the necessity of chemistry, and meteorology, and astronomy, and zoology is really felt, without being stated in so many words."

After some further illustrations of his method of teaching Grology, Mr. Wilson continues:--
" It may seem to some that the amount of positive knowledge ganned is too hittle; and andeed it is not much, not as much as would be gmined by half the time spent in learning and being examined on somebody's advanceai text-book. Rut from the oue system the boy emerges hungry for more knowledge, and his own reading will supply his wants; he emerges with a clear understanding how ccieuce grows, and what it is, and has a framework in which he can fit all knowledge he subsequently acquires; while from the other he comes out-perhaps some of my hearers know how be comes out."
"I know of no single book which contans all these subjects. The teacher, nt any rate, must draw his hnowledge from many books, and from real, personal knowledge of his subject. Methods of teaching are very mportant, but the teacher is of far more importance; and no teaclung of these or any other subject is likely to be worth much unless the teacher 18 thoroughly master of his work, has made it his own by viewing it ta various lights, and is independent of any text-book, or any order of vewing nature. He cannot be too discursive in his reading or varred in his attanmeuts, and it he is further able to be prosecuting sume original wark, however humble, in which his pupils can assast hum, they will learn more of the true scientific apirit by contagion than they will gather from the most eloquent lectures."
" I do not see any reason for doubting that these subjects are the best for early education, asy from the agea of twelve to fourteen. At such an age, chemistry or physies cannot be understood, except in the rarest cases. I know that Faraday expressed an opposite opinion. But Faraday loved the children, and never examined them. These subjects, especially the geological course, as I have explanned it, give a solid foundation of familuar frets, which form the bassis of subsequent scientific knowledge. And they attiact the strongest and finest munds, which 18 not found to be the case with all branches of science."
"It may be urged that this tesching cannot be thorough,-that boys will be brought in contact with chemistry, physics, mechanies, mathematics, at an age when they cannot understand them; and the reault will be, to turn them out capable of talking about a great many thags, and knowing theorres about a great many thinge, but without the rigorous traumg necessary to enable them to judge of these theories,"
"This 18 , of course, partly true. But it is no objection. The logical order of ideas is not the educational order. A boy learns to read, sid make out the meanng of a storybook before he learns grammar, which might be eard to precede logically; he reasons before he can learn logic; and so he has to learn a thousand thinge by experience and observation and reading and conversation, which form the material out of which science grows. The teaching is thorough so far as at goes, and $2 t$ is delusive to suppose that the teaching of mechanics or physics can be made exhaustively thorough to a boy. He apprehends only by comparison of one thing with another; and where experiment takes him out of the range of his experience, there his conclusions are not his own, but his teacher's. These subjects, which may be put aside as mere scieutific information, have a double value, stimulative and intellectual, that no one who has not tried them can well estimate. They would planily be incomplete by themselves, they do not admut, taught in this manner, of the careful study of desal, the minate and painstaking work and drudgery, that makes every science so valuable as an instrument of education. But these subjects clamm to enter into the sechemes of literary and scientific education; to form a common ground between them ; to be selence to the men of interature and hiterature to the men of scrence."
15. Whether the topics of Elementary Scientific Instruction should be taken in the precise order indıcated by Mr. Wilson, or in some other, is a point on which we do not express an opinion; but we desire to draw attention to the fact, that it is the opinion of some able and experienced Schoolmasters, and that of previous Commissions, as well as our own, that such Instruction in Elementary Science ought to be given, and that there is no real obstacle to its being given, in the early years of school hfe.

III. Discussion of the Difficulties attending the Introduction of the Teaching of Science into Public and Endowed Schools.

16. In spite of this concurrence of authority in favour of the Introduction of Science into Schools, it appears that not one half of the 128 Endowed Schools from which returns have been received have even made an attempt to introduce it; and, of these, as we bave already stated, only 13 have a Laboratory, and only 10 give as much as four hours a week to these subjects.
17. The veglect of Recommendations of so weighty and authoritative a character should imply the existence of strong grounds of excuse. The chief of those given for the omission of the Teaching of Science in Schools are-(1.) the Absence of Funds; (2.) the Uncertainty as to the Educational Value of Science, particularly in the case of young Pupils; (3.) the Difficulty of finding Time for a New Study in an already overcrowded Curriculum.
18. The absence of funds, no doubt, places very serious difficulties in the way of some

Secretary's
Report :
Appendux,
p. 73. of the smaller Foundations; but experience shows that satisfactory results in Science Teaching may be produced at a very small expense. On this subject we may refer to Mr. Tuckwell's account of the limited means with which it was commenced and carried on with success at Taunton.
19. We think that this account conclusively proves that the apparatus requiste for Elementary Science Teaching can be provided at a comparatively trifling cost; and that, where there is a good Teacher, the makeshift character of the apphances need not prevent efficient Teaching. On the other hand, it is important to remember that the introduction of new subjects of study implies the mtroduction of Teachers qualfied to take charge of them; and that in many of the smaller and more pooriy endowed schools to which we are now referring, there is great difficulty in obtaining the funds requisite for the payment of additional or increased salaries. At the same time, it must be regarded us certain that no school which is forced to plead its poverty as an excuse for the neglect of Natural Science, can pretend to complete efficiency, or can adequately meet the Educational Requirements even of its own locality.
20. When the income of a School is small it may not be possible to provide an adequate stipend for an Assistant Master employed only in Scientific Instruction. Moreover, the number of pupils may not be so great as to justify such an appontment. It is, therefore, important that at least one Master should combine, with the qualifications necessary for his success in teaching Literature, such knowledge and skill as may enable him to give Practical Instruction in Natural Sclence. No doubt this combination of Literary and Scientrfic Knowedge with Practical Skill in conducting the Instruction of Classes is at present rare, and it 1 s very desirable that a Systematic Preparation for such Teachers should, if possible, be provided.
21. With reference to the wealthier Foundations, and the great Proprietary Schools, the want of funds cannot be properly alleged as a reason for not providing appliances proper for the Teaching of Natural Science. Indeed, there is already considerable evidence of improvement in this respect. Laboratories have been built, or are in the course of construction, at Eton, Harrow, and Rugby; and there is reason to hope that the example will be generally followed, as the Special Commssioners appointed for the Purposes of the Public Schools Act of 1868 have included in ther Regulations a Clause requirng the Goveraing Bodies of the nine Public Schools to which their powers extended to provide and manntain Laboratories and Collections of Apparatus and of Specimens. We desine to record our opinion that School Laboratories should be constructed so as to supply accommodation for Practical Work in Physics, as well as in Chemistry. It will be seen from the Secretary's Report that many persons of experience in education have arrived at the conclusion that Chemistry is not so well fitted for the practical instruction of young pupils as Physics. Without attempting to decide this disputed question, we would express our conviction that neither of these forms of practical work ought to be neglected in School Teaching,
22. It is generally admitted that a sound knowledge of the Sciences of Observation and Experiment cannot be acquired from the study of Text Books alone; and that oral teaching, accompanied by appropriate illustrations and experiments, is indispensably necessary. But even such oral teaching has been found by itself to be insufficient; and, in our judgment, no System of. Scientific Instruction can be regarded as satisfactory which does not familiarise the learner with the methods of observation and experiment, by making him practise them himself, whether in the field or in the Laboratory.
23. As the organization in a large School of Practical Instruction in Physics has appeared to offer some difficulties, we would refer to the Secretary's Report for an account of the advantages attendant upon the arrangement adopted by Professor Pickering at the Massachusetts Institute of Technology in Boston.
24. We regret to observe that in many of the Larger Schools the number of Science Masters is totally inadequate. The Special Conmissioners have found it necessary to insist that there should be at least one Scieuce Master for every 200 boys; a provision which appears to point to a still greater deficiency at present. Until this state of things is remedied, no considerable improvement can be expected in the Standard of Scientific Education at present prevailing in English Schools. We fear that the fewness of the Science Masters in the great Public Schools, and the slowness with which their number is allowed to increase must, to a certan extent, be attributed to an inadequate appreciation, on the part of the Authorities of those Institutions, of the importance of the place which Science ought to occupy, and which the country desires it should occupy, in School Education. But we are also disposed to believe that the difficulty of disturbing existing arrangements, and the increased expense entailed by additions to the staff of Masters, are among the principal causes of the delay in remedying an evil of such magnitude. It might seem, at first sight, that the provision of an adequate number of Science Masters ought not to involve any heary charge upon the income of a
large school; because, in proportion as the time of the pupils is occupied with Natural Science, fewer teachers of other subjects would be required. It has, however, been found in practice that whenever the subjects of instruction in a school become more varied, the whole number of persons employed in teaching has to be increased. But as there is a weil-founded impression that the large Enghsh Schools have suffered from being insufficiently supplied with Assistant Masters, we cannot regard it as any disadvantage that a more general introduction of Natural Science Teaching would call for an increase in the number of such Assistants.
25. We have alluded to the difficulty of providing for schools, which have slender incomes, Assistant Masters who have both adequate Literary and Scientific Knowledge, and the requisite skill in Class Teaching and Practical Instruction. Even for the great Public Schools much difficulty is experienced in obtaining the services of Science Masters fitted to form part of their staff. The Head Masters naturally look to the Universities to supply them with Assistant Masters ; but the number of University Students of Science is still so limited that the supply falls short even of such demand as exists at present. These several considerations support the suggestions recently made by the Head Masters of Public Schools at their Annual Conferences, that means should exist-and, if possible, withn the Universities-enabling young men, who intend to devote themselves to the Scholastic Profession, to pass through a Course of special preparation for it, and to obtain a Certificate of the nature and extent of their qualifications. By such means adequate knowledge and practical skill, both in class teaching and in manipulation, would be ensured. .
26. With regard to the second objection, it is obvious that all branches of Science do not possess an educational value of the same kind; and we are not prepared to assert that the mere communication to the mind of the pupil of the facts of Science would contribute very materially to the training of his intellectual powers, although it may supply him with much valuable information, and may render him the still more important service of awakening his desire for further knowledge. But the true teaching of Science consists, not merely in imparting the facts of Science, but in habituating the pupil to observe for humself, to reason for himself on what he observes, and to check the conclusions at which he arrives by further observation or experiment. And it may well be doubted whether, in this point of view, any other educational study offers the same advantages for developing and training the mental faculties by means of a great variety of appropriate exercises. In the Lower Forms of our Public Schools, the youth of the scholars must of course be taken into consideration in the nature of the instruction given, but we nevertheless think it of great importance that the introduction of Science into' Education should take place at a very early stage. Elementary Science is certanly not more difficult, and to most young persons is more interesting, than Arithmetic or Grammar, and the most eminent men of Science, as well as some most successful Teachers, are of opinion that there is no reason to apprehend any difficulty in this respect. The Evidence which we have received on this point is very strong; and its force is not diminished by the fact that much of it relates to Primary Schools.
27. Sir W. Thomson, Professor of Natural Pbilosophy in the University of Glasgow, on being asked :-
"At what age do you thinis it dearable that the teaching of elementary science' in our primery achoois should be commenced, in fact, how young do you think a child could, with any profit, commence unstruction in elementary science? "-

Replied,

 involving geological knowledge might be instilled into them."
"Would you do that by means of the and of specimens and plans, and the luke, and not merely books iNot merely books, but by the ard of specimens and by the generally better educated state of the whole of the public. It maght be part of a household education, quite nirespective of the teaching in schools, if scientific education in the country were placed on a proper footing."

29. Dr. Rolleston, Linacre Professor of Physiology in the University of Oxford,

 says:-"I would certainly cause a boy to began acquaintance with scientific matters much earker than that [the age of 16], for the faculty of observation, the power of observing, is in all its vigoar long before 16. Long before the faculties of reflection and ratiocuation ate in anything like ripeness the faculties of observation are well developed. A boy, I should say, at 11, or certanly 12, might be put through certan of the classificatory sciences, or one at least, viz botany, and he mught have a traung in phyacs and a training in chemistry, and all boye alike should have some traning in these before 16."
30. Canon Cromwell, Principal of St. Mark's College,'Chelsea, insists on the importance of introducing the Elements of Physical Geography and other parts of Natural Science into Primary Schools:-
"Understanding by prumary schools those in which boys are generally under 13 years of age and above Qu. 7982. seven, I know by experience that the elements of physical geography can be very well taught almost throughout the school The first step in geography should be made in physical geography, and one advantage possessed by this subject from an educational point of view is this, that almost everything in it can be presented to a child in a concrete form. He may learn something dbout the prxnciples of heat, about air and water, about natural history, and the action of the elements upon the surface of the globe He can have illustrations of those things pointed out to him in his own neighbourhood almost, wherever he is. It seems to me that it is the best introduction to any knowledge of physics that might be hereafter requred. Wherever the teacher had a special bent for chemistry he might illustrate what he had to say about the laws of physical geography by his knowledge of chemistry. If, again, he were a man who took great interest mon natural hastory on botany, he would dwell more upon those portions of the subject. Physical geography connects itsolf with almost the whole circle of what are called the physical sceences. I know that children and young men also take great interest $i n$ the subject, and what they take great interest m, they learn quickly." * * * **
"You think also that a certain amount of information in natural science could be given in elementary schools ? -A certain amount of an elementary character, rememberug that it must always be given in ac concrete shape with plenty of ullustrations. For example, experments can be exhibrted to chuldren illustratung the propertios of heat, by taking a common bladder and putting it before the fire, and showing how the bladder fills and bursts, or by taking a bar of iron and putting it into the fire and heating it. Such common experiments are things which boys can easily comprehend. In the same manner, I thank, they should be famular with some of the axmple machunes and unstruments, which could be explamed to them by ordinary models, and they should know something abont the common properties of matter, something about the different forms of attraction-chemical attraction, eapilary attraction, and so forth. All this would be useful to boys of almost all classes, whether in town or country.'
31. Mr. Jarmain, Teacher of Science at the Mechanics' Institute, Huddersfield, answered several questions bearing on the subject:-
"If I remember right, in the evidence which you gave before Mr. Samuelson's Committee in the House of Commons, with reference to elementary schools, you expressed an opinion as to its bergg perfectly possible to teach a certann amount of elementary science in the elementary schools of the country ? - Yes, to the upper classes of the school. I tried'the plan during the time that I had a school, and I found it to answer very well."
"From the age of 11 to 13 ?-Y ${ }^{\circ}$ "
"That is a point which you feel no doubt upon whatever ?-I feel no doubt upon it whatever."
"Did you try it in chemistry ?-Yes."
Qu. 8923.
"But, I presume, you would consider that there would be no more dafficulty in applyng it to botany or physiology than in the case of chemistry?-No, I do not"
" Do you think that the teaching of one or two such subjects would in any way interfere with the mastruction of children in the elementary subjects of reading, writug, and arithmetio?-No, I do not think it would. I think that the pupls would like it very much. As a rule, boys very mulch like scientifie matruction."
"It would give them, would it not, a greater interest in therr school education, as a whole? Yes, I think so"
"And, in that way, would have a decidedly favourable mfluence upon' their reading and writing ?-In two classes that I have at the Huddersfield College, and the Huddersfield Collegate Institution, the boya who are in the chemistry class I find to be the best boys in the sehool in other sabjects."
32. Mr. Shore, Organizing Master of the East Lancashire Union of Evening Schools, expresses a similar opinion :-
"I think that all the great princuples of physical geography might undoubtedly be taught to boys in the Qu" 2276. day school at 10 jears of age."
33. The Evidence laid before the Public Schools Commıssion by Dr. Carpenter, Professor Faraday, and Dr. Hooker, is so entirely in harmony with these views that we quote it in part here
34. Dr. Carpenter speaks strongly on the importance of introducing into Education at an early period subjects of a less abstract character than Grammar and Mathematucs.
"65. Do you think that the mind, ordimarily speaking, is as apt for the exercise of its faculties upon the Minutes of subjects of natural seience as upon grammar and mathennatical subjects, at the early period of life ?-I should Evidence. asy more so; that it 18 more easy to fix a chuld's attention upon somethung wheh it sees, than upon an taken by abstraction."

Schools
486. Do you think that in that point of vew, in fact, it is so far a sabjeat better calculated to call out a healthy action of the reasoning powers than the more abstract subjects of grammar and mathemation ?-1 thunk it 18, at the early period. I think that a lad of from 10 to 12 ypars of age is bettar fitted to be lod to observe and resson upon what he observes in objective phenomens, than the is to reason upon abstrachons. I think that from say 12 years of age, the powers may be healthfully exercised npon abstractions ; but as far as I can judge, a child in learning a language learus by rote puroly or almost purely up to say 12 years of age, but after that he begins, if he is well taught, to understand the rationale (so to speak) of the rulea, but it is a mere matter of memory with hum up to that tume."

35. Professor Faraday thus refers to his own experience :-

Minutes of desirable to introduce the physical sciences ?-I think one can hardly tell that until after experience for some few years"
" 47. Or whether you would introduce it at au early age concurrently with classical instruction P-I would not undertake to say. All I can eay is this, that at my Juvenile lectures at Christmas tmes I have never found a child too young to understand intelligently what I told hum; they came to me afterwards with questions which proved therr capability."
" 50 . If you take a little boy of ordmany intelligence, 11 years old, at Eton, and, say, half has time is dovoted to classics and the other half to any branch of physical science, what would you teach him ?-I would teach him all those thungs that come before classics in the programme of the London University-mechanics, hydrostatics, hydraulics, pneumatics, acoustics, and optics. They are very simple, and easily understood when they are looked at with attention by both man and boy. With a candle, a lamp, and a lens or two, an intelligent instructor might teach optics in a very short tume, and so with chemistry. I should desire all these. There might be a door by which you could leave out those for which they were mapt."
" 51 . You would not be frightened by the hard words i-I do object very much to the too frequent use of hard words or technical phrases etther in chemastry or in other subjects. The hard words are not the things. But the result will depend more on the men who are the teachers than on the wording itself. Edacation should not be stopped by that."
36. The same Commission received from Dr. Hooker an interesting account of the successful attempt made by Professor Hensilow to introduce the study of Botany into a village school. Professor Henslow thought that-"It was the most important " agent that could be employed for cultivating their faculties of observation and for ${ }^{6}$ strengthening their reasoning powers. ${ }^{*} * * *$ It was also the opinion of some " of the Inspectors of Schools who came to visit him, that such children were in general " more intelligent than those of other parishes, and they attributed the difference to * their observant and reasoning faculties being thus developed."

The ages of the children varied from 8 to 14 ; the class, which was a voluntary one, mostly consisted of girls; and the children are said to have learnt the subject readily, and to have beeu exceedingly fond of it.

- 37. This Evidence leaves no doubt upon our minds that Elementary Scientific Instruc. tion might be given wrth great advantage fiom the commencement of the school career.

38. The third of the difficulties most frequently urged is want of Time. While we cannot deny the reality of this difficulty, it seems to us to offer no justification whatever for the total or almost total exclusion from Education of any great branch of Human Knowledge. The difficulty is one which can only be met by carefully economizing time, by employing the best methods of teaching, and by discarding superfluous subjects of study. To meet it by making education one-sided and incomplete, cannot be for the interest of the pupil. Nor does it appear to us impossible to make a fair adjustment between the claims of the different branches of Instruction. The number of hours of study in our Public Schools may be taken at not less than 35 per week, including in the estimate the number of hours on an average employed in preparation. Now, if six hours per week be devoted to Science, and if we suppose six hours also to be given to Mathematics, there would still remain at least 23 hours a week for the study of Language and other subjects.
39. We are not prepared to admit that the classical Scholarship of the Pupil would, by the close of his school career, have suffered in consequence of the subtraction of the 12 hours which we have assigned to Mathematics and Science : since we believe that the influence of Instruction in Natural Science on the development of his intellectual powers might be such as to promote his success in Classical Learning. Be this as it may, it is quite certain that his Education, if confined to one class of subjects, would be an unbalanced one, that his intellectual tastes and powers would have been developed in one direction only, and that so far be would be the worse prepared, whether for the continuance of study, or for the active business of life. We have already expressed the opinion that the Student who has given evidence that he possesses a fair amount of both Literary and Scientific Culture, may with advantage be allowed to choose for himself among the main lines of study pursued at an University. But, while he is still at school, and before he can have given such evidence, we do not think that the same liberty of choice ought to be conceded.

IV. Recommendations of the Royal Commission of 1861.

40. The Royal Commissioners of 1861 , while advocating Science Teaching, recommend that "Arrangements should be made for allowing boys, after arriving at a certain place Recommen" in the school, and upon the request of their parents or guardians, to drop some portion dationXIII. " of their classical work (for example, Latin Verse and Greek Composition), in order to Report, p 53 " devote more time to Mathematics, Modern Languages, or Natural Science ; or, on the " other hand, to discontinue wholly or in part Natural Science, Modern Languages, or
" Mathematics, in order to give more time to Classics or some other study."
41. We confess that, in our opinion, such options should be exceptional and confined to the very highest divisions of the schools, as we regard Science, Language, and Matheímatics as cssential subjects of education up to the age at which hoys leave school.
42. The same Commissioners also say :-
"We think it essential that every non-classical subject (except music and drawing), in Report, p.35. every part of the school in which it is compulsory, should affect the promotion from one classical form to another, and the place given to each boy in such promotion, as andeed in certan instances is already the case with respect to Mathematics and some other subjects. Thus, if Natural Science is compulsory on all boys in the fourth and fifth (Classical) Forms of a School, each boy's proficiency in Natural Scrence should contribute, sccording to a certain scale of marks, to the rise from the fourth form to the fifth, and from the fifth to the form next above it, and should also help to determine the place assigned him, on each promotion, in his new form."
"A scale of marks for this purpose should be settled by the Governing Body, or by the Head Master with the approbation of the Governing Body, and amended, if necessary, from time to time."
"It is essential that the scale should be such as to give stubstantial weight and encouragement to the non-classical studies."
"The following approximation to a scale is suggested as indicating the relative weight, which, in our opinion, may farly be assigned to the various subjects." ${ }^{*}$
"Classics, with History dnd Divinity, not less than $\frac{4}{8}$ nor more than $\frac{5}{8}$, Mathematics, not less thail $\frac{1}{8}$ nor more than $\frac{2}{8}$; Modern Languages, not less than $\frac{7}{8}$ nor more than $\frac{2}{8}$; Natural Science, $\frac{1}{8}-\frac{2}{8}$; the three non-classical subjects combined $\frac{4}{8}$."

V. Regulations issued by the Special Commissioners.

43. The Special Commissioners appointed for the Purposes of the Public Schools Act of 1868 have recently issued Regulations for all the Scfools to which that Act applies.
44. The Regulations for Eton, so far as they relate to Mathematics and Natural Science, are as follows:-
*3. In any examunation determining the position of a boy (not being one of the semior boys) in the Schooi, or in any report of a general exammation, the proportion of the marks to be assigned to Mathomatics shall be not less than one-eighth, nor more than one-fourth, as the Governing Body shall think fit.
".4. In any examiuation determining the position of a boy (not being one of the senor boys) in the School, or in any report of a general exammation, the proportion of the marks to be assigned to Natural Sclence shall be not less than one-tenth, nor more than one-fourth, ss the Goverming Body shall think fit.
" 5 . In any examination of senior boys, the proportion of marks to be ass!gned to the several subjects of study shall be determmed by the Head Master, with the approval of the Governing Body.
"6. The Govarning Body shall from time to time determine the point in the College hist above which the boys ahall be reckoned as semior boys for the purposes of these Regralations.
"7. Thore shall be one Mathematical Master, at the least, for every 100 boys in the school, and there shall be one Science Master, at the least, for every 200 boys leaning Natural Science in the School, All such Masters shall rank as Assistant Masters of the School.
" 8. Every boy shall learn Natural Science continuously from his entrance into the Remove until he become one of the semor boys in the School, unless his parent or gualdan express in writing a desire for his exemption from this Regulation.
"9. The Head Master shall give faciunes so far as he shall thank piacticable to any senıor boy, at the request of his parent or guardian, to pursue any particular subject or aubjects of study os may be deemed most expedient for hum, and to duscontinue any other subject or subjects of study for that purpose.
" 10. The Governing Body shall, as soon as possible, provide and mantain out of the income of the property of the Sohool, or out of any other means at their disposal for the ellucational parposes of the School, laboratorres, and collections of apparatus, and of specimens.
45. Any boy entering the School above the age of 12 shall have the opportumity of showing acquantance with Botany, Physical Geography, or some other branch of Natural Science, sid with Arithmetic, or Mathematics, in the entrance examination for the School.
"18. Any boy in the School abore the age of 12 who may eviucean aptitude for Natural Selence, shall have facilitues for that study."
" In this. . . . scale of marks 1t 18 assumed that all the branches of the course are being pursued together. Some variation would be necessary in applying the scale to parts of a school m which this was not done."
46. The Regulations for the other Schools to which the Powers of the Special Commissioners exteaded are of a similar character, and, as will be seen, the Teaching of Science is left open as regards the more juvenile part of the School, not being compulsory until boys reach a part of the School which they usually attain at about the age of 13.

Conclusions and Recommendations.

46. On a review of the present state of the Public and Endowed Schools, it appeara to us that though some progress has no doubt been achieved, and though there are some exceptional cases of great improvement, still no adequate effort has been made to supply the deficiency of Scientific Instruction, pointed out by the Commissioners of 1861 and 1864. We are compelled, therefore, to record our opinion that the Present State of Scientific Instruction in our Schools is extremely unsatisfactory. The omission from a Liberal Education of a great branch of Intellectual Culture is of itself a matter for serious regret; and, considering the increasing importance of Science to the Material Interests of the Country, we cannot but regard its almost total exclusion from the training of the upper and middle classes as little less than a national misfortune.
47. While appreciating the reasons which may have induced the Special Commissioners not to insist, in Regulations which have the force of a Statute, on the introduction of Science in the junior parts of the Schools, we desire to express our own opinion that Scientific Instruction ought to commence from the beginning of the school career.
48. Moreover, while we are sensible that much discretion must be left to the Governing Bódies of Schools, and are, therefore, not surprised at the latitude allowed by the Special Commissioners, we think that the Governing Bodies would do well to adopt not the minimum of one-tenth of the marks, but a larger proportion, say one-sixth.
49. We, therefore, Recommend,
50. That in all Public and Endowed Schools, a substantial portion of the time allotted to study, should, throughout the School Course (but subject to the exceptional options to which we have before referred), be devoted to Natural Science; and we are of opinion that not less than six hours a week on the average should be appropiated for the purpose.
51. That in all General School Examuations not less than one-sixth of the marks be allotted to Natural Science.
52. That in any Leaving Examination, the same proportion should be maintained.

All of which we humbly beg leave to submit for Your Majesty's gracious consideration.

(Signed)	DEVONSHIRE.
	LANSDOWNE.
	JOHN LUBBOCK.
	JAMES P. KAYSHUTTLEWORTH.
	BERNEARD SAMUELSON.
	W. SHARPEY.
	THOMAS H. HUXLEX.
	HENRY J. S. SMITH

In signing this Report, I feel compelled to say that I regard the first Recommendation as too inelastic. While fully admitting that Natural Science ought to form a substantial part of a liberal education, 1 am not prepared to recommend that in all Schools the study of Natural Science should be carried on throughout the School course, but wish a wider discretion to be left to the Governing Bcdies, or Head Masters, as to the degree to which what has been called the "stratification" of studies should be carried out.
G. G. STOKES.

J. Nobman Lockyer,

 Secretary.June 18th, 1875.

APPENDICES.

LIST OF APPENDICES.

APPENDIX I.

Letter from the Endowed Schools Commission
Pagr

APPENDIX II.
Secretary's Report on the Teaching of Science in certain Publuc and First Grade
Schools; together with Appended Statements
APPENDIX III.
Reples to Secretary's Letters, dated July 22nd, 1870, and September 27th, 1872, with regard to the Teaching of Science in Schools

APPENDIX IV.

Honours gamned at tide Univeraties by Science Students from the various Colleges and Schools

APPENDIX V.

Returns from the Head Masters of certain Endowed Schools in England and Wales for Secondary Education -

APPENDIX TO SIXTH REPORT.

APPENDIX I.

Leftier from the Endowed Schoons Commission.

- 2, Yictora Street, S W

${ }^{6}$ My Lord DuKe, 25 th March 1871 - I Your Grace may, perhaps, think it convenuent that the gubstance of what passed at the interview which we had the honour to hold with your Grace and some of your Colleagues on the 6 th inst., should be recorded for further use and rbierence: and i, therefore, proceed to make a bnef preparing achemes for the better management and apphicapreparing schemes for the botter management and appicanstruction is concerned.
"2. Our schemes may broadly be divaded into those which regulate sohools giving elementary instruction only, and those for sehools givng higher instruetion.
"I speak first of this latter clase. It contans many sohools of very vanous character, varying from what are ittle above the slementary schools, to others which are just ubordinate to the Universities. In all these schools, with out exception, whether for boys or giris, we propose to requirs, as a substantial and mdispensable part of the course of instruction, at least one branch of physical science, and in a few, intended for the more special encouragement f what may be called modern subjents, we suggest, whthout absolutely requiring, more extensive teaching of science We are prepared, also, in particular cases, to recommend the establishment of schools of a more specrfically scientific or echnical character, provided that either the endowments to bo apphed to this purpose are not restricted by their present trusts to particular localities, or such a achool appears kely to be regrided by the logely ne of more general matruction.
3. Our achames always pronde for the payment of school fees by the majority of the scholars, and the grant free, or haif iree, places to a certain percentage, selecte compention eirner
"Wherever the ondowment 14 aufficient, we think that turther help to boys of merrt and abluty should be provided furthar halp to boys of marst and abluty should be provide in the shape of exhibitions, tenable at some higher school professional study In schools mmediately above the primary sohools, and especially in populous places, we very primary sonools, and especially in populous places, we very the free placus to scholars from the promary schools of the district, and in these cases, particularly, we endeavour to provids for further assintance being given to meritoroue cholars, so es to enable boys of humble means to continue longer at school than could otherwnse be expected.
" 4 We do not as a general rule go further into parhoulars in the soheme. It appears to us whsest to consth tute the best governing bodies that we can, and then trust to therr inteligence and conscientiousness to carry th soheme into effect, subject to the ordinary tribunals. It 18 , no doubt, competent to us to apportion the exhibitions and other prizes whioh the endownent will bear between the several subjects of atudy, and to speafy the precise weight which shall be assigned to science, or any other subject, in stimating the result of a competition, and where the number of exhibitions or free places to be provided by an endowment are considerabie, we may very probably some nmes adopt this course. But, in the man, we think it maser to put no fetters on the govermag body which maj prevent heir maro stances, so as to work the varying energies of the sohool
b. Wer under serious consideration whether, considering the great benefit which has been monsed of freaning colleges for min of con enalogeve unstitutron for those who are to be teechere in semondary schools. If we should eventually decide upan such a course wh inould probebly find instruation in searoe toaching to be one of the most promising, ss it 1 one of the most nemlected subjects of special preparation "4 6. I murn now to the coseots of special preparaino unstruation. Endowments for such purposes are uncluded withun our jurnsdoction, just as much as endowments for
higher mstruction, or attached to higher schools, with the exception of such as belong to schools which, at the date of exception of such as belong to schools which, at the date of the passing of the Endowed Schools Act (2nd of August 1869h, were in receipt of an annual Parhamentary Grant. elemertary sehools so powerfully and so beneficially, and elemertary sehools so powerfully and so beneficially, and is so hkely to attract nearly all schools of the class within
its range, that we think it clear that we must deal with its range, that we think it clear that we must deal with
endowments applicable to such schools on somewhat dufferent principles from those on which 'we proceed in the rent principles from those on which 'we proceed in the
case of others The Department takes minute cognivance of these schools, mepects them regularly, virtually prescribes therr course of study, and the character and quali fication of therr teachers. We cannot, therefore, wisely prescribe in these schools the teaching of any particular subject, as, for mstance, science, but we may, after full consideration of the new code lately isued by the Education Department, see our way to securng a beneacial application of endowments, enther by establishing a higher department in the elementary school, in which science should be taugh or by providing teachers of soience in common for severa schools in a district, or by science exhibitions or prizes, of by giving funds for the supply of proper instruments and apparatus It certanly seems that no fitter use can be now found, whether for endowments which have through the actaon of the Legaslature ceased to be needed for ordinary elementary teaching, or for non-educational endowments converted under section 30 of the Endowed Schools' Act to educational purposes, than the better promotion of all such knowledge as bears directly upon the industrial occupations of the people, but is not adequately encouraged by other means
" 7 . have
purpose have spoken above of the large discretion which we purpose giving to the governing bodnes created by our it is one of the most important perts of our work , as It charseter of the school which is to be admumatesed gend the character or to the The constitution of the goverming body is framed with reference to the character of the school, and we then leave the duty of selecting the governors to varnous constrtuencies withouit restricting ther discration', so as to securs ang special representative of science, or of any other branch of matruction The detalls of the instruction we leave to the control of the head master
"8 Your Grace will see from the above account that our schemes, broadly speaking, do little more than decide who shall apply the endowments, and what objects shall be kep in view in their application. But the future ancoess of the schemes will depend on the manner in whach they are worked. And when new subjeets are being introduced moto the sehool course, it is especianly desirable that accurate mformation should be easly obtamable as to the bes methods and appirances for working them This informs tron is desirabie, not only for the governors, that they may adopt and provide them, but also for us, that we may give the governors the requisite powers It will gave us much greater confidence in prescribing the teaching of science and give us much greater hopes of concliating general support to our proposals, if the proposals are supported, and the best means of execunng them defined and explemed by the high authority of your Grace's Commussion.
" 9 I venture briefly to specify some of the points which seem to us especially to requre ullustration, and which it may, parhaps, be withm the scope of your Grace's Commis sence both to the several grades of schools, vie., those in which the soholars are intended to complete therr, those in by the age of 15 those on which they are untended to con by the age of in, those on which they are mintended those io which they do not complete then educston bere the sge of 19 , ther education before the age of 19, or thereabouts; and, also, in some cases, to the varying
country. These pointa are :-

* (a.) The relatuve educational value of the different branches of achence
" (b.) The age at which chuldren are best fitted to begin suoh studies,
* (c.) The amount of tome which, on a faur vew of the mone at the disposal of the several schools, may be harly claumed or physus the school conrese mioht ect for the new studies. The Commissioners are of opmion that the subyect which in many schools purht give wer whth least disadiventage is Greek but the matter is one emomently desarving attentiva oonsideration
" (d) The best methods of teachung science, and the apphances neceasary for its effectual development, phances necessary for che size and cost of laboratones, instruments, models, books, mops, and the hke, suitable for larger and more expensive, as well os for rural and poor sehools
" (e.) The present, and probable future sources of supply and cost of well-qualified teachers; and the expediency of establishing institutions to train such teachers, whether separate or as branches of gene-
ral training collegex for tetchers ahove thase of elementary schools; or, apain, as appendages to large ach of which scienee is taugh
((f) The need of encouragement, subsequent to school life, for the study of acience, ether by way of bave exsmuations, of acholango through the Indian and Home Cinl and Mutar Service Examinations.
* (g) The need of special mstitutions, suoh as Techuical Colleges, corresponding to Theological Coileges for the clergy, or Waolwnch and Sandhurat for army, for the prosecution of solentafio studies after achool.
"I have the honour to be, "My Lord Duke,
" Your Grace'a obedient servant,
" His Grace the Duke of Devonghare.
"\&c. Sco. \&ce"

APPENDIX II.

Sroretary's Report on the Teaceing of Science in certain Public and Firbt-Grade Schools; together with Appended Papers.

CONTENTS.

INTRODUCIION.

My Lond Duee,
In eubmitting to your Grace the Report on Science Teaching in Schools, which I have prepared in accordance with the anstructions of the Commisinon, I beg lesve, in the first place, to state the manner sa which the mformation required has bsen obtamed
It will be whthin the recollection of the Commissioners that prior to the date on whuch I was ustructed to make my mqury, a letter had been sent to the Head Masters of certain of the Schools, askang them to fiumish a statement inowng to what extent seisainic lostrubtion had heem selves of it and with whes effect in each year eince it introduction. Altbough s considerable amount of valuable information wie received in reply to that carcular letter the informanion was received in reply to that cricular lettex, the School; and it struck me as quite possible that if I lumited School; and it struck ime as quite possible that if 1 harited
myself to a mere inspection of the Schools, without sny commyself to a mere inspection of the Schools, without sny com-merely-nisitang the Schools magith be as unequal as that curnshed by the replea to the statement in questaon.

In order, therefore, to obviate this possible objection, 1 prepared a hist of queries dealing with the queetiona which 1 magined the Commassloners might conmder to be of the greatest importance, having in view the letter frome the 25 th of March 1871; and before wetuag apon thore querres, I forified my purion by consultmg Professor Huxley, ons 1 fortified my opauion by consuileng Mr Pitch, one of the of Her Majestys commussonesh, andorm \&ichooln' CoxiAsBritant Comanissioners of tho engh not only to approve mity mode of action, but to add largely to the querres. If was ultumately decided that these queres sbould be sen to the Schools alrendy named with a covernig letter. append a copy of the coverng letter and of the quenes.

[^9]sioners are extremoly anxiouts to obtain the fullest informa tron respecting Science teaching in the public and first-grade schools, and the Commissioners will, therefore, feel greatly obliged 1f, in addition to the ufformation whach you have already been good enough to furnish, you will kindly favour them by answering, as far as you may be able, the several questrons in the accompanying Schedule
I Im to add, thet as the Commitsioners are desirous of obtaining information from schools differing in organisainon the quertions in the accompanying Sohedule are designed therefer work of a good many schools it is not, questions but those which masy happen to apply to your question
"I am furthar to say that I have been requested by Hrs Grice to confer whth you personally, to explam the precise objects the Commissioners have in niew, and the kind of information which will be most valuable to them, if you information which whil be most valuable to them, if you obliged of you will inform me on what day it will be mos convenient to you that I should visit your sehool
"I have the honour to be, Sir,
"Your obedient servant,
"J. Norman Lockyer,
"Schedule of Particulars on whech Information is deared by the Royal Commassion on Scientific Instrue tion and the Advancement of Science
"Name of School or College,

"General Arrangements.

"I How is the school olasofied?
"II. Is Scence a necessary part of the school course, or is it taught only in spectal forms or departments?
"IIl. Copy of time table
"IV Summary of hours per week given in each closs to different subjects. (If playtime ss utilized for preparation or practical work, this should be shown sepsrately)
"V. Summary of the number and average age of boye learoing each of the various subjects in the Natural Science alasses.
"VI Amount of knowledge requared before the study of Sorence is commenced.
" VII Is any alternatnve or choice of subjects offered?
"What departmente of Science are preferred? "(a) Br parents?
u VIII What branch of Science recerves most attention In the school, or 18 found by experience to have the greatest educational value?
" IX. What weight is assugned to scientufic attainments in determining a boy's position in the sohool?

"Methods of Teachung

" \mathbf{X}. What proportions of the lessons take the form re spectively of-
" (a) Oral teaching and demonstration?
(b) Book work?
*XI. Whioh form of lesson as found to be most effeo tive?
" XII. How are taxt-books used? e g., is hook-work supplementary or preparatory to the oral lesson?
" XIII. Is the use of note-books encouraged (a) dumng or (b) after the lesson, and to what extent?
" XIV. How far are boys requred to prepare therr own apparatus or experiments, or to collect specimens during epparatus or experiments, or
the intarvals between leasons?

* XV Describe any methad of texching some special branch of Scuence which has been found suecessful in your sohool

"Irstruments of Teaching.

"XVI. What apecial provision (e.g, laboratory, lecture room, observatory, museum, botanio garden, \&re.) 28 made for seientific instruetson, and how is it used
" (Plans and descriptions of these, with statements of therf cost and annual expense, ahould, if possuble, acoompany thus return.)
${ }^{\kappa}$ XVII. Number of assistants and curators, and annual cost.
"XVIII' What apparatus, diagrams, and special fittongs are in use? what was ther cost? and what sum is allowed yearly for new instruments, and to replace materials used,
"XIX. Is there a workshop? and if so, how, and fo what partucular purpose is it used?
"XX. What text-books are in use? diatinguishing betwreen those for the junior and semur classes?
"XXI To what books of reference, other than ordnary school books, have the scholars access?
" XXII Is there any Scientific Somety or Club in connexion with the School? and if so, who compose it, how is it worked, and what is its influence on the boys?

Teste of Progress.

XXIII How often is the work tested?
" XXIV In what way ? e g, by examination o note-books, or by oral of written questions :
"XXV By whom? by the teachers of the subjects, or by an independent exammer?

Teachers.

" XXVI. Is theve any difficulty in procuring competent Scrence Masters ?
"XXVII Where are the beat obtanned? have they been spectally tranned for the"work, and, if so, in what does such specially tramned
" XXVIII. What evidence of screntific qualufication tendered by candudates is found to be of most value?
"XXIX. Can you state any results of Science teaching in the sohool? Such an
" (a.) Success, professional or otherwise of individual scholars?
" (b) Influence upon the general studies and intellectual life of the school?
"s XXX Are' any apecial rewards or encouragements (eg exhubitions, scholarghps, or pries) open to successful Students of Science min the School?
" XXXI What mprovements, do you think, could be effected in the teaching of Science in your own School?
" XXXII What are the prinerpal obstacles to the teach ing of Science in your own School?
"EXXIII How could the Unversaties best assost Scmence teachung in Schools?
"XXXIV Can you suggest any way in which Govern ment could assist science teaching in Schools, as, for example, by mspection?
" XXXV. Have you any other information to give, or suggestion to make, Likely to be helpful to the Commussuggestio
soners?
"Date
"Head Master."

In many oases the enswers were not given until I had visted the school parsotally and stated verbally to the Head Master and the Science Master, in greater detail than was possible in. the querres, the precise information requred by the Commusioners and the object for which that information was sought.
In the various sections which follow, I have brought together, for the convemence of the Commssioners, the mionmation thus obtained, that is, obtained both by inspecaon and by the phnted rephes to the questrions I have introduced my own epis make no ato place the available information only effor Commiasion in the most suthentic and conveniant form Commassion in however, referred at greater length to some of the I haves, however, referred at greater length to some of the pounts rasse, and in order to strengtien the yrews which I certam documenta which support thern.
J. Norman Loceybr.

§ 1.-ON THE GENERAL ARRANGEMENTS OF THE SCHOOLS.

Ir 18 umportant, for a clear understanding of what followa, to give, at the outset an idea of the organmastion adopted 1or teaching purposes in the various schools Thus is not only necessary in order to analyse exactiy the various time armenlum but I thint it orll be finteresting to the Come murrening to se the vanous also, that some light may thus be thrown on the questaon of " Mode, that some Sight
The echools may be arranged in the following groups,
I. Sohools with only one maan lane, and that classical
II. Schoos with only one man lme, in which general
fithess determines place
III Schools with a

> I Sciools with only onk Main Link, and That Classical.
> Eton College

The nommal Forms are the VIth (the higheat), the Vth, the Remove, the IVth, and the IIIrd; but these Forms are, in some cases, very large, eg the Vth contanis about 480 boys The VIth and Vth Forms together are, therefore, split up into 14 divisions, euch under a different clasiceal master These divisions ane anranged in groups, called A. \boldsymbol{B} © \mathbf{D}.

For mathematics and scrence (and in some cases for French), the different groups are divied afresh, on a different principle, among the mathematical stafif (or the French staff) A whole group, eg B. or C, goes to mathematics together, and the mathematical masters arrange them, scoording to theur mathematical proficiency, in different classes. ten mathematical classes can go on monultaneously.
A simular redistribution, but not so complete, $x s$ made for science-teschang
The Romove and IVth form are simularly arranged, but they have no scrence-teaching.
Science is a necessary part of the achool course from division 4 to 9 melusive.
It is an aiternative subject with Modern Languages, Modern History, Extra Clasaics, or Extra Mathematics, in divisions 1, 2, 3.

Rugby School.
At Rugby, the whole school is divided into-
Sixth Form and Upper School.
Mddle Schaol
Lower School
This is a classeal divnsion, and a boy's position in the school, therefore, depends upon classics.
Each of these man divisions has its own separate classification into sets for Mathematics, Modern languages, and Natural Science, except the lower school, in which Natural saence is not, taught
There are three Natural Science sets in the 6th Form and Upper School, and seven in the Middle School.
Natural Science forme 8 necessary part of the course in the Middle School; in the Sixth Form and Upper School, the choice is allowed between Science and German.

St. Peter's College, Westmurrster.
At Weatmanster the school is classufied, according to the attanments of the boys m classual and general learnigg, into the following forms

		Broys,
Vith Form	-	- 20
Shell	-	- 25
Vth Form, Upper	$=$	- 25
Under	-	- 25
Remove -	-	- 25
IVth Form, Upper	-	- 23
Under	-	- 25
Under School	-	- 20

For mathematics it 15 again classed into six divisions, cocordng to proficiency in that stndy; for French or Gerroan into groups of about 50 boys each, anbduvided afresh into four ar three classes sccording to proficiency ; and for natural science the boys of the three highest dyrisuons of the school, about 70 un number, and some 30

Science is necessary, under the new regulations, for all boye old enough to profit by it and eapable of followng the teaching There 18 a powrer of exemption in opecial exemptions enzurilly to the Governing Bary exemptrons amaually to the Governing Body.

Charterhouse School.
At Charterhouse we find-
\(\left.\begin{array}{l}Und- 6th

Upper 5th

Under 5th

Uppar 4th

Under 4th

Upper Shell

Under Shell

Upper 3rd

Under 3rd

2nd

1st\end{array}\right\}\)| |
| ---: |

Sclence forms a part of the obligatory achool course from the auxth form to the under thurd incluaive.
II.-Schoolg with only one Main Ling, in
which general yitnebs detarmines plack,

Cuy of Lrondon School.
The general arrangements of the City of London Sohool are os follows -
The school is divided for general purposea into Forms and Classes, and theseare grouped into divienons for Science purposea

6th form 5th ditto	- J Jot division.
4th class	
Latin class	
3 rd class	
2nd class	
lat class	
Grammar class	- 4 trin div
lat junior class	$\cdots 5$
2nd junior class	
3rd junior class	${ }^{-}$\}6th divis10
4th junior class	$-\int^{6}$ an divion

Scuence is a necessary part of the achool course.
Duhprch College.
The achool is divided into three Sections (the Jumor Sed Ton, the Semor Section, and the Surth Form), writhin each of whoh an independent clasanfication wis made for each of whioh an independent clasancathon whect or groap of subjects in whuch instruction is given.
subject ar group of subjects in whuch instruction is given.
Under this System all boys alike receive instruction in
hose subjects wheh are regarded as essential to a hiberal educanon, whule the opportunity is given of studyng, under a distinct classification, such additional zpecial mubjectas as may be thought deasrable, in each cane, with a view to the boy's intended profession or pureut Every boy is classed in each enbject in which he recenves inatruction strictly in accordance whth his actual proficiency 10 that subject
The subjects of nostruction are grouped as follows . -
In the Junior Section-

1. Form work, meluding Eagluth, Latin, and French.

2 Anthmetze.
3 Draming.
In the Senior Section and Sixth Form-
1 Form work, nincluding Englush, Latin, and French. Mathematica.
3. Greek

German
Physical ecience
6. Drawing

Instruction in Scrence is open to all boys in the Senuor Section and in the Suxth form, bot ib not compuleory except so far that all boys not hearning Greek and the hygher Clasics are requared to take up eather Phyaces or Geology The Chermostry Clasases are beld at such trmes as to be open to all boys m the Suxth Form and the Semor Section of the School, whether they belong to the classee for Phynce or Gealogy, or not.

Uniterthey College School,
A boy's general tanding in this school in defined by Pormos, the "Form" or mean postion of each boy if Formes, the brom or mean posinon of each boy classes.

The work is done in "Clesses," which rank from Uppor Suxth, Sixth, and Lower Suxth, to Uppar First, First, and Lower First.
Boys are examined at entry and classified, with a view to botr requirements, in each subject separately according to individual proficuency Thus, the same boy may be in a high olass in one aubject and in a low one in another.
Each boy, in fact, has his own programme of work, which is not necessarily dentical whth that of any other boy
The revision of all classes, and, therefore, of form position, by promotion or degradation at the end of the session is untversal. Each step, however, must be earned, that 18, a boy must aatisfy his master that he can and whll follow the work of the cank of the class to which he is advanced
Individual cases of promotion and degradation are of almost daily oceurrence throughout the year, except during the least month of each term, but this as the only limitation to the practice of ab labtium revision.
Under this syatem it is clanmed that a boy is not, an in many public schools, kept for long home in any class which is either too high or too low for him, but may, at any time, be removed from a elass which experrence has shown is not suitable for hum to one adapted as closely as possible to his actual requirements In this way the opposite evils of disheartening a boy or of mekung him carelesp are équally avoided, and his interest in every part of his work is constantly maintauned.

Taunton College Schoou.
In Taunton College Schoel we have also an example of a school arranged into upper, maddle, and lower (each compariment beng subdivided), the principle of classiflcation being uniform, that is, each boy is placed according taught, general fitness, and his marks, in all the subjech in hus form, further, there is no dufferent arrangement of clusses for dufferent subjects
Scrence is necessary for all boys in the Upper and Middle Schools.

III -Schools with a Modern Side
At Harrow, Clifton, Marlborough, Wellington, Chelten , ham, Rossall, and Chrsst's Hospital, we find a well-defined and so styled "Modern Side"
But in the manner in which this Modern Side 18 regulated we find wide differences
An important dastinction may be drawn between those schools in which a hoy, by studying the modern subjects, can mese to the 6th Form, or a 6th Form, and those in which he cannot.

Harrow School.
At Harrow the school consists of two ardes. (I.) The Classical ande, and the Modern Side, established in September 1869 The Forms are as follows :

Seienos 18 taught to all boys on the Modern Side, and to boys in the Vhi Forms and Upper Remove on the Classical Side

Walhngton College.

At Wellington College, we have two schools side by side, as shown in the mecompanying scheme, the "Classical School," and the "Mathematical "or "Modern School " These are quite parallel and equal in position and status. third of the whole school, or nearly two-fifths, excluding in third Lower School

	Mathematscal
Clusmeal School.	or Modern School
Sixth Form	Suxth Form
Upper School	Upper School.
Middle Sohool	Middle School.

Science is necessary on the Classioal Side in the sirth (unless Drawing bo preferred); on the Modern Side in all corms but the lowest (unless Greek be preferred) There a also a voluntary class in Practical Cbemistry.

Rossall School.

At Rossall, also, we find a Modern Sohool ande by ande with a Classical one, and almosts if not quite, on an equal

It will be observed that there is a suxth form on each side, and the Prefects of the schools may he indufferently in each school. Boys are not allowed to enter the Modern School unless they are distinctly qualified to do so The masters are judges as to this. Boys may be transferxed from one school to the other at any point of eather school; and thas, I am assured by the Head Master, is frequently done, so that there 1s, so to speak, a complate intermuxture of the two divisions. Those whose classical work 18 ther future (or who portant to their future (or who will, eg, make classics end their work at school with' a mathematical traming frequently enter the Mathematical Sehool from the suxth' or tifth Conversely, good acholars in the Modern School have some clossical lessons mith the clasical surth For modern inguages winth For modern languages, mathematics, and science, the
forms are rearranged noto sets as under:-

Mathemahical or Modern.
Suxth and Upper Sahool $\left\{\begin{array}{l}4 \text { mathematical } \\ 3 \\ \text { science - }\end{array}\right.$ sets,
 (3 forms)
[Modern languages being the basus of form division, but promotions made by all subpects conjomitly]
footing with it, a severe competition exiating between the schools in the results of the teaching of the subuects common to both, the same subject being dealt whth by different teacharg. The difference betwreen the two schools consists in repiacisg Greek anc, drawhg in the Classical school by in the Modern one.

Scuence 18 a necessary part of the school course in the Modern Department, but is open to volunteers from the Claasical Side

Winchester College

At Winchester College the mann dinanon is into fou: Blocks, called-
(A) Suxth Book

of 60 (in round numbers)		
of 110	\%	"
of 150	"	"
of 60		

Beardea theser there is a Modern Classa, ranking with B
There have been for some tume one or two Prefects at a tome, belonging to the Modern Class, some of whom have taken part with the other Suxth Baok boys in their lessons in the subjects which they did in common.
The blocks eire subdivided for the several aribjects of study, as follows, into the following number of clasees:-

\cdots	Claman	Mathematica	Scrence.	Modern Languages.
Block A mito -		6	1	
Block A	4	7	4	4
C	5	10	-	6
D.		4	-.	2

Senence 18 taught to hoys in the Upper Sixth Book who have ennced special capacity for it , ir who deare it themselves, or whose parents wish $x t$, and to all boys in the Lower Sixth Book, in Senior Part V,s and in the Modern Class.

King's College School
The school is classified into-
A. Classical Department.
. P
C. Preparatory or Lower School.

The following is the distribution of the classes :-

Moders Sude.
Upper Suxth

* Lower Suxth
* Upper Fufth.
* Madde Fifth.
* Senior Matnculation

Class

* Junior Matriculation Class.
Lowrer Fift
* Removes
* Lower Fufth
* Upper Fourth.
* Lower Fourth.
* Upper Remove * Lower Remove. Science Cláss.
Coramercial Cluss
Lrower School
*Third
Upper Second
Lower Second
* Upper Firat.

Lower Furs
The classes marked * attend lectires on scanance and take up class hooks on serence.
+Noto-" Sinco the date of the Report, King's Oollene schoi," the
 - theaching of science has beens stall frot her exthided and

Screnne is a netembary part of the school courso-
(a) In the matriculation, fourth, and remove classes of
(2) In the whole of
) the commeriel and adern Department, excepting
(3) In the Thurd and Upper Ciracaen
school.
(a)
by the Fourth and Ramove is attended by the Fourth and Remove (A), tho Upper and Lower Fourth, Upper and
Lower Remove (B), the Thurd and Upper First (C).
(b) The Chemical Clasa wa attended by the Matrioulathon Class (A), and Upper and Midale Mashematical Clasaes (B), and Chemastry boys who join for the Practical
(c) The Advance
by the Furst, Fifth, Upper and Lower Fourth Matriculation Clagses (B) Clifion College.
At Clifton, also, there is a well-developed Modern Stde, the divieions of which sre arranged sccording to proficiency in Scrence:-

Scrence is taught as an aiternative for German in the Suxth and Fifth, that is, the four highert forme of the Classical Slde. In the remaining forms of the Clasencal ode, and throughout the Modern sude, as aleo in the two highest forms of the Junior School, it is taught as a matter of course to all boys whthout exception. In the lowest three forms of the Jumior School, consistang of boys between 10 and 12 years of age, Serence is not taught. In the Sixth and Pifth forms, both Classicsl and Modern, boys who show special taste for Screace, or who are hikely to requure it for professional purposes, or for some competitive exatmunation, are aliso tsught in special classess wo arranged as to form alternatives for zome other parts of the school routine. There are also voluntary classe dong practical work in the Chemacal Laboratory, Botany, Geology, Phymical Geography, Zoology, and Physiolomy

It is specially to be remarked that the divinone of the Upper Forma on the Classtoal Sude represent proficmencs in
Thas curnous fact, perhaps, arises from the other one in thus school Therse are special Science Classes for the She whole school ; which, in the case of Chemetry, arg taken more adivantage of br the Clagescal boge than fy thote on the Modern Side. An idee of the arrangement of these Voluntany Classes mog be arthered from the follown Voluract from the Report, be gathered from the followng
" (e.) Voluntary Clasess:
(1) Boyd working in the chemical laboratory are abliged to attend not less than three houra every week, many go much more than thet. The hours of laboratory work are generally taken from what in our termy nology is called "out-of-school hours," desvgnated in the question an playtime.
"(2.) The remannug voluntary elasses mentioned under quertion 2 generalil meat once a week. In the case of Botany and Geology, the lessons are atapplemented by excixaione from turie to thme on half-holrdays, In all the varnous classes the boys are expected to keep note-books, and to gave some trme to the stady out of achool, esther as preparation for the leweon or in the way of reading afterwaris It should also be sdded, thas of Volurtary Boksay, Geology, and Physacal;'Geography Classea, it coldom happens that more than troo are gonag on dunng the same term; that the Moology and Paybill of the eevior bonined to a mane number of the senior boys, and that aone of these volucary clanaes involve any chermeal laborstory.

Marlborough Qollege:

The arrangements at Mariborough are as follows :There are three divisions of the school, the Uppar, the Lower, and the Modern School. The lower school contaims all those juntor boye whose attamments do nou enable them to win a place in the upper school The modern school is manly composed of boys intended for the army and nary, for Woolwich, for the Engmeerng College, for the Indian Civil Service, and for busmess

These are arranged as follows:-	
Classical	Modern.
Suxth,	
Upper Fifth.	
Maddle and Lower Fifth	Upper Division.
Upper Shell.	Middle Division A.
Upper Fourth	Middle Division B,
Middle and Lower Fourth	Lower Division

> Lower School. Upper Thind Lower Shell. Lower Thurd Upper Second

There are two voluntary Science forms from the Classical sade, consisting of boys from the Middle and two Lower Fifths, and from the Upper Shell and the two Upper Fourths
Two hours a week of solence work forms a necessary part Two hours \& week of solence work forms a necessary part of the school work of the apper and two madae davsions of the modern achool (about of boys), and one hour a week 16 necessary in the case of the uppar shell, upper fourth A,
and upper fourth B. (ebout 75 boys un all). Otherwise, and upper fourth B. (ebout 75 boys in all). Otherwise, certain forme are grouped toyether for scrence purposes : thus, about 10 boys from enoh of the three fitthes (lower fifth A and B, and middle fifth), with five from the upper finth, and four from the sixth form for the upper voluntary
science form of 43 boys. Agsin, mbout 10 boys from'eroh
of the upper shell, uppor fourth A form, and upper fourth B form, form the lower voluntary science form of 31 boys. Each of those forms are voluntary; there are three alternatwe subjects

Cheltenham College

At Cheltenham College there are three departments, viza, the classical, the mulatary and crvl, and the jumior (boys under is years of age
In the Classical Depsriment science 18 taught as'an altexnairve with German to boys in the faur highest of the nine classes; and to select boys on first class a second screntific subject is also treinght as alternative with Freich Boys in the Latin class (no Greek) also are taught science Total number learning science, 86 .
In the Military and Civil Department, science is a necepsary part of the school courge for all boys in the four hyhest of the mue classes Total number learning science,
Thers 18 perfect equality between- the Classical and Military Departmente. The Prefects are taken from each Department equally, i,e, every boy in any davision of the irst or highest class of eith if he is in the highest divison of the First Cose, for work in smences as for opartmark, and Prometion is or wor the scotal of
There is e Natural History Socety whth erening meetzo 14 winter, and excursions (chiefly botamical) an summer

Chrat's Hosputal

The classification adopted at Christ's Hospital is somewhat' pecaliar
In the "Grammar School" or language department, every boy (with'the exceptron of the 50 Naval Boys) passes at least half hus school hours, besides this, there are the Mathematical and Commercial Schools and a Naval School The accompanyng duagram will show the arrangement adopted in the Grammar'School, and it will be seen that part of it 18 , in effect, a Modern School.

The horzontal lines denote the several classes. 'The classes 8, 9, are under three parallel mastera 10 in compoapd of baokward boys, who are older than the avarage age on coming from Hertford
Boys pass from 8, 9, into 1-4 as soon as they ame fit but ope who reach the ager of 13 b before thay are gualified for 4, are draughted from 8,9 , into 7 , as ave also all boys from 10 on resching the age of 131
The classes I-4 are intended to fit boys for professional fe, 5-7 for commarcial hfe
Classes 1, 2, spend 9 hours a week, and 3, 5 , an average of 6t hours in the Mathematical School
Classes 3, 5, give an average of 5 hours a week, and 4-10 half their ephool hours, munus a short tome given to drawing, is the Commercial Sehool (for arithmetic, writing, reading, geography, \&o.)
In the Naval Sohool nome 50 boys are prepared for ${ }^{86}$ S.
Clecences 18 n necessary part of the school course for Classes 1, 8, 3, and 5, and very elementary lessons m Natural Phulosophy are gaven to the boys of Class 10, with the visw of stomulating theur powers of observation.

IV,-Other Schoons
Manchester Grammar School
The arrangements adopted at the Manchester Grammar School wnil be gathened from the followng scheme, in whick the Forms are numbered from the 6th downwards $\rightarrow \rightarrow$

Cisasomit	Scienco.	Mathematios.	Modern Iapguagen
6th Trangtus	6th Transtus	6th	RemoveFrenchOrd
Upper 5 th			
Lower 5th	5thBemove		
" 4th			
Bemove			
* 4th			
" 8rd			\% 2nd
3 2nd			" \mathbf{M}
Upper lat Lower lat			* M.
dower lat			"

6.-SUMMARY OF THE NUMBER AND AVERAGE AGE OF BOYS LEARNING EACH OF THE VARIOUS SUBJECTS IN THE NATURAL SCIENCE CLASSES

	ETON Collegis.			
Namber of boys	-	5	64	22
Average age -	-	$17-18$	$15-18$	16

['The above refers to Mr Medar'a present classes.]
Divisions I.-III - $-\left\{\begin{array}{l}3 \text { classes } 10 \text { Chemstry } \\ 1\end{array}\right.$
At |Harrow the boys on the Modern Side have been
taught in two divisons, each consisting of about 26 la future they will be divided into three divisionis. The boys each consisting of about 32 boyent taught in four divisions, each consisting of about 32 boys.

Rdery School.
At Rugby School the number of boys and average age in each set are given below, --

Clifton College,

Marlborough Colmeg
At Marlborough College, the age of those boys who study science yaries between 13 and 19, the average age beng, perhaps, 16 The actasl number of boys who do benng, perhapps, 16 ise actual number of boys who do sclence 18 at thite trme 202 , of these 47 do only one subject a wreek (l hour chemistry), 155 do two subjects a
weex il hour cheroustry, and i hour electricity) while the Woolwneh class, numbenng 17, do three subjecta a week

Winchebter Colfeas.

1. Mechamics and hydrostatues, sixth book. No., 12 2. Geology No, 30. Age, 17.
$\left.\begin{array}{l}3 . \\ 4\end{array}\right\}$ Phyancal geography. $\begin{cases}\text { No., 40. } & \text { Age, } 16 . \\ \text { Nor, 40. } & \text { Age, } 16 .\end{cases}$ St Perfe's College, Wemtminatig.
62 Nstural Scrence-Hydroatatics, A. 3 classen-avernge
age, seniors, 17 ; juntors, 16 or lens
27 Nabural Scrence-Physical Geography, B. 2 clansen-- average ages 16,15 , or less.

Chrltranam College.

Hours per Week gaven to Serence in the several Colleges and Schools-continued.

College or School.	Cless Work in School Hours.	Practical Work	Preparatiom.
Mardrobigen Collikge ment.	Upper Diezaon (Modern School) one hour to chemstry, and one hour to electriaty Upper Fourth A., and Upper Fourth B., one hour to chemastry. Opper Foluntary Form, chiefly from the middle and two lower fifths, one hour to electricity, and one hour to chenustry Wooluouch Class, one hour to Heat.	1	
Winchemer Cow	Suxth Book and Sentor Part $\nabla_{\text {., two }}$ hours to Natural Scrence Mfodern Clous, two hours.	$\cdots \quad-$	The work for science out of mahool consubts of this : - Note-bonks are kept by the boys, and looked over carefully by the Mastar once a week; and the boyw have some book (in most subjects), also, which they are requested to study out of achool.
St Peter's Conhmas, Weathangibe.	Sentor clast, two hours; Junor class, one horr.	Seren hours to cha	At least two hours a day of additional work in preparation in given by induatrions boys, and one hour enforced from all.
$\underset{\substack{\text { hibgrimian }}}{\text { Chal }}$	Classual Department, Class I. A B. Two hours and a quarter to botany, and the amen to chemustry, one hour and three quatters to electricity Class II A. One hour and threequartera to chemistry Class II. B.: One hour to chemistry. Class III. One hour and threequarters to botany, one hour and threequarters to chemistry Mritary and Curul Department, Class I A. Four hours and three-quarters to Natural Science Class I B, and Class IC Two haurs to Natural Science Class II A. Two hours to Natural Scence. Class II B. One hour and three-quarters to Natural Scuence, Class III A., and Clasg III B One hour and three-quarters to Natural Science Class IV A and B Two hours and a quarter to Nataral Scrence	Seven hours to chemalkry. Sux boys in the classical department are taken, 4 wo at is time, three eveninga weekly, two hours each tume In Botany, great stress is land on acetual disaection and classification - Miletry Depart ment About half the trime with the lughest olasses is g lower classes, about subject allows, to ex	In all departinents of the colloge much tame is given out of school hours to preparation of work of overy kind, All boys are m sehool 28 hours a week Inrd workug boyg in the upper classon Would give is to 30 hours a -week to preparation out of achool. The idiegt boarder in the loweat class must give 18 houns a week, in the evenungs, to preparation under supervition in larga room Elder boys work in their own stady without supervision ven to practical work, With the half the tume 18 given, when the perimental demonstration.
$\underset{\substack{\text { Lragr } \\ \text { Whington }}}{\text { CoL }}$	Classucal Skxth One honr to science, or two houre by those who do not learn drawing Mathematucal Surfh science (or Greek) Uppes hours (or Greek). Muddle Sehool (two of the three forms), one hour	Abont two-thrids of the firatdinalon two hours to Electrical Meraurements (the subject at present), for five or six consecutive weeks in the year four boya are taken together, In the voluntary chemical class, 10 boys in twa eeta. Fach set Trorks one hour and a half in the laborstory	In Modern School, two hours to tho reprodaction of lectares, or the workug of exampley In Clansival School, one hour to the same.
Rossals Schoot -		Tive or aix boys work at practical chomistry in the laboratory, two hours and hale.	No time is devoted to preparation out of echool.
Chartamyotian Seroor.	Two hours		
Crmibts Hosprias =	Chussucal School, Clasy III, Opper Galf two hours to chemistry, Class III, Lower Half, one how to Natural Phrlow sophy Modern School, Clasa V., Upper Half Two hours to chematry, Lower Half one hour to Nataral Philosophy The tume given to Natural Scrence is outade the regular school hours as a matter of fact, every boy in the semor part of the achool has to give one or two hours a week more than the generai school hours to some subject or other All jonor boys have about 26 hours a week mischool; sill semuor boys from 27 to 29 bours	Sometimes replaces class work See Prof Russell'a Report, ill APPENDIX VI.	
Crys or Lomon Scirol.	Furst, second, thard and fourth dhastons, a lecture, of an hour'e duration, once a week $F_{y} / 2 h$ and sarth dovewons, a lecture, lastung an hour and a quarter, once a week. An occassonal lesson, of one hour's duratron, 18 given in the Lower School.	Practueal chemxatry, two hours The luaf holmay is utilused for the practical work.	A few boyw in each drowion swail themelves of the half hoors (18) to 12.30 and 3 to 8.80), for trymg some of the expermentie shown at the lectares. Boys ars aloo helped (dunng play tme) to prepare for the vanons हeience extminationars at South Kenangton, sce. The science exercuses have to be prepared some tome drovig the week.

Hours per Week given to Science in the several Colleges and Schools-oontenuerh.

College or School	Class Work in School Hours.	Practical Work.	Preparation
$\underset{\substack{\text { Taviron } \\ \text { School }}}{\text { Cominas }}$	In the Upper School, three hours to chemse try, and two hours to botany In the Mudie School, two houra to chemistry, and two hours to mechanics	Two thirds of the time devoted to elass work $\mathbf{1}$ devoted to practical chemastry. the tume is given to dissectrons, sobedule wring, and classification.	
$\underset{\substack{\text { Knso's } \\ \text { Schoos }}}{ }$ Colleaz	One lectare to each class-one hour and a quarter for the hagher classes, threequarters of an hour for the elementary classes In the Chemstry, Class, lecture and demonstration, one hour.	Twenty boys do practheal Chenustry two hours One special boy does considerably more A. few boye go into the physical laboratory	
Úniverbery Collbax	Lowor fifth form, one hour and a half to chemistry and physcics Upper fifth form, ote hour and a half to ohemistry, and one hour and a half to ckemical physics Upper anth form, one howr and a hali to chemisty	Dppor axxth form, one practroal chemustry. tory, Noys can corafor a longer thas than this ; some are workng for more than six hours.	
$\begin{gathered} \text { Manombitibr Gram- } \\ \text { MLAB Sohool } \end{gathered}$	In the Mathematical VIth, forr hours and a half to phyaries. In the Scences VIth, five hours and a quarter to physics, and sex hours and three quarters to chemustry In the Scence Transtus, one hour and d hali to phymices, and six hours and three quarters to chemistry. In the Scrence Vth, three hours and a half to physics, and five hours and a quarter to chemustry In the Science Remove, four hours and a half to phyics, and three hours to ohemistry	The Scrence VIth, and Scrence Transitus in prastioal chemustry four hours per ween, exclusive of the usaal sehool hours	
Dunwiu Colubgis -	Sixth Form sctence atüdents•durigg school, four hours. Addhtonal branch of scrence, four hours. Senzor section durmg school, three hours and a half Additional branch of science, two hours	One hour, for advanced pupils, two hours	The more advanced pupils, two hours for chemstry, and one hour and a half for physica

§4.-SUBJECTS TAUGFT TO JUNIOR AND SENIOR STUDENTS.

At Eton, the subjeota are Chemstry, Heat, and Physical Goography Mr Madan pointa out that Heat, treated 2n a very simple way, s very attraotive to the younger boys
For the semor boys the subjects are Chemistry and Physical Goography; for the jumiors, Phyancal Geography, Astronomy, Mechanics, Hydrostatics, and Heat
At Harrow, Expenmental Physios is the only subject whith has been taught in sohool. A ferv boys receive instruction in Comparative Anstomy and Physiology during the half hohdays, and other tomea which they can arrange with the teacher.
At Rugby, in the Middle School, and, tharefore, with younger boys, the tesching of physies has been found to be less antiffactory than in the Upper School. The subjects that have been tried are hydrostatices and pheunatices, with the elements of heak, bat, artaougi most or has have shown considerable interest in the facts and appersmental Illusth atoons, the power of graspung the pritictples and applying their knowledge to easy phems has been acquired comparatively by few At present the greater number of boys or elementary physics In the Sixth Form and Upper School chemementary physics in the sixth Form and upper Sehool, chemistry and physics are the only subjects taught, with
the axception of a short course of physiology Under physics is at present inchuded heat, magnetism and elecphysics is at present uctuded beat, magnetism and electryctry, and geometrical optics treated experimentally The
experience of the masters goes to show that phyices ean be oxporience of the masters goes to show that physiles can be
tanght suocessfully to a larger proportion of boys than chematry. Indeed, it would soem that a boy requires an almost specual turn of mind to grapple suocessfully with the ideas involved in chemical affinities and reactions. It is hoped by the masters that, in tume, bettor arrangements
may be made for carrying on the instruction in the Natural History ande of Science after as boy has reached the Upper School.
At Clifton College the younger boys aro taught elementary physics, physical geography, or botany, the try end phys. The Head Mester seys "So chema "ry and physics. The Head Mastor sayy, "So far as "conader thas to be the best armanement of oubjun, - a purely educatonal pont of mew, provided the 1 " aupplemented, as with us, by an elastio wyted of it is " tary olasses, to feclitate the development of undrindual " tastes I consider that every branch of eciention teach " ing which we have tried has been farly succestinl quit " as much so as eould have been expected nin the case of " new atudies. More particularly, I should speak of * new stadies. More partuculariy, I should speak of " chemstry and physics as hayngg proved a valuable " parts of the school, whist the aame may be and of ic botany, physical geography, and elementary physics c among the younger boys, and of geology as taught to a " voluntary class."
At Dulwich College e onntrnuaus onurse of mstruction is given in chemustry. Instruction is given in each Term in two or more addutanal branchea of Scence hest electricty, magnetsm, geology The younger boyg geno rally begin their Science Studnes with Physica bat gene siderable proportion of them joun at the samene thme conElementary Chemistry Class The Master of the College says, "I am deadedly of opinion that chemustry possesses "the greatest educational value."

e For boys in and above the fifths
Mechanics, electricity, magnetism, heat, chemistry. tementary astronomy
"Serres of lectures have from time to tume been given by dufferent masters on geology, aminal physiology, botany, \&e, whth satisfactory results in macreasing the stock of knowledge possessed by a good many boys, and giving a marked atmulus to a few"

At Winchester Coliege the subject which recesves most nttention is the surface of the earth, there being always a class in geology, in summer there are several classes in botany Other branches of physics are taken in a cycle. The Head Master dues " not thunk there is any special "c educational value in the lessona different from what is " denved from lessons in other subjects given in the same way The geological and botanical courses, which cause actual acquantance with specimens, are the only ones "t that seem special Physical Geography has been suc "" cessfully taught. The Experimental Courses in Physics "Interest a good many boys, and give them new ideas,
"Electricity seems to be the best subject; Chemustry, as
"taught in courses of lectures, does not seem to answer.'
At St Peter's College, Westminster, apphed physics the only branch which has as yet been attempted. "A course of lectures on Heat seemed to answer best for the " clasteresting to a few of the best pupis "
At Cheltenham College the suljects chosen are proctacall determuned by the examinations for which the boys are determuned by the examsnations for which the boys are preparing, eg in the Classucal Department for scholarshyps the Mylitary Department the boys are first taught the chief the Military Departmant tire boys are first tanght the chief facts and principles of physical serence Chemastry it not stugied theoretically and practically In this class, che mistry and heat are alternative anbjects, with magnetism and electricity, or with geology and physical geography.
From a purely educational ponnt of view, "the Princapai considers "Physical Geography, from its aptitude for "warted and familiar llustration from History-and Botany, "s from its power of developing observation in the country
"walks of every day-the best subjects for young boys
"Afterwards, severer and more strictly scientific subjects"
At Wellington College, in the Classscal Sarth, an elementary course, lasting about two years and a half, comprising Mechanies, Astronomy, Heat, Steam, the frrat principles of lower classes, Physical Geography, Heat, and Elernenary Chemistry, in the upper classes, chuefly Elechncity and Magnetism (for Woolwnch), also, occasionally, Laght and Heat In the hughest Mathemarseal set of the Modern Sohool, Mathematices and Hydrostatics
At Rossall School, chemistry las been always held to be the chief subject in Nataral Science The Head Master states that "as, according to his experience, Natural Scrence ". in schools, as an usstrument of education, can only be useful in developing the observation and not the memory,
"the brancbes that can be best illustrated by specimens

- and expermients must realiy fiave the greatest educa-
* tronal ralue. If scyence is to be taught as an accomplish-
ment, like conversathonal French, for practreal use, then
"probably chemustry and geology are the most impor-
volunteers, has been very furl traght dumng the last quarter by lectures once a week illuatrated by dingrams."
At Charterhouse School, as yet, only botany and chemistry have been atterapted. Botany wat taught in the summer quarter, but it was not 5 populer eubjeot. Theoretreal chemustry, the subject for the winter quarter, is popular with most of the boys. Practical ehemintry cannot be tsught at thas achool till the laboratory is completed.
At Christ's Hospital the classes of chemustry and netural philosophy have bean barely two years at work, and it in very hugh educe to judge with what success at present. A very high educetional vaicte is atteched at this school to the Evaing boy in Classes III,-VI, gives at Classes I. and II. wreek during half elases III.-VI. gives at lesst one hour s week during half a year to Natural Phulosophy (oral lecturan chemapparatus and exparments), 8 an antroduction to the Those who show any apeonal aptitude are allowed to year, thine chemistry, and promoted to the practical colass Further, the boys in III and to the practical class mechanics in the Mathematucal School an acomentary are-qualified by their mathematical knowledge in in Classes I, II. Mathematical scmence (statics, dynamica, hydrostatics, ophes, astronoray), is studied in preparation for the Unverantres, and carmad to a high ponnt. The boys in Class X. give one hour a week to very elernentary Natural Phulosophy (oral lecture with expemments)
At the City of London School most attention 18 given to chemistry in the lower school, and to chemasiry and phyanes in the higher school

At Taunton College Schqol, the most popular aubject are chemastry and botany. The Head Manter says that he believes thus " 18 due to the spectal enthusiasm displayed believes this " 18 due to the special enthusiasm displayed "in teachng these subjects, not to any intereatit mheren " will make his own subject the most popular, or, teachiag " several subjects, the aubject which he lowes best," teachiag

At University College School, the subjects tanght are Physucal Geograplyy; Chemistry, theoretical and pracheal Chemical Physics, Natural Phulosophy; Astronomy Applied Mathematics.

At King's College School chemiatry and natural phulosophy are the subjects which recelve most attention,

At the Grammar School, Manchester, phyascs and chomistry recerve an equal degrea of attention At the school it is tound that beginners appear to derive most profit from acouatica, and the more advanced studenta from optics and chemistry, electricity and heat occupying an intermediate pusition.
That phyaics, rather than chomustry, will be found the best subiect for boys to bepin with, appears to be borne out by the following return (furmished by the Natursl Scienc exammation at Marlborough College. Max $=100$ 施 las

Upper voluntary (from the fifths) - Electrecty - 5914
Upper shëll - - Chemutry - $35 \cdot 55$

Lower voluntary (from three preceding " \quad - 2616
forms) - Electriaty - 4203 Upper divimion Moderd School - Chemistry - 49.49 Mudde"dinaion $\quad " \quad-\quad$ - Chemistry $=2 e^{\circ} 07$
Lower "divinon " - - Chemistry - 17 90
Wonlwich class $\quad \because \quad$ - Properves of Matter $35 \cdot 05$
Further important evidence in support of this view comes from the Head Master of Chntits Hosputal. He says, ": My experrence is but short, but I have found already "that the plas often adopted of teschnog chemustry as the - first eubjeat, is not satiofactory I attended an admarable "course of lectures given by the late Dr Mathicasen to \& aclass of our hoys, who had had no previaus acmentrfic " mstruction in Nataral Science. It was obvious that c most of it was lost upon them for mant of familianity with Bumple scientufic notions; and we forand it necessary to "instatute the Natural Philosophy clase as an introduction "to the Chemustry class" in thic remark, the Head Master of King's College School fully concurs.
§ 5.-TEXT BOOKS IN USE AT THE SEVERAX COLLEGES AND SCHOOLS.

Cotlege or School.	- 4 conatica	Astronomy.	Fotany	Chemustry	-Geology	Heat.	Hydrostatica
Eton College - *	$\cdots{ }^{-}$	Lockyer's Astronomy (b)		WIson's Chemistry (b), Chambers's Course (b.), Harcourt and Madan's Practical Chemsatry (b), Fownes' Chemistry (a), Fresemas's Qualitative Analysis (a.)	Lyell's Elements and Principles, in the small select class.	Tyndall on Heat, in the mmall select class.	-
Harrow School , -	$\begin{aligned} & \text { Tyudall on Sound } \\ & \text { (Modern Side). } \end{aligned}$	Lockger's Astronomy (Modern Side)	- - -	- - . -	- - -	$\begin{aligned} & \text { Maswell on } \\ & \text { (Modern Side) } \end{aligned}$	-
Ragby School -	- - -	Lock yeris Aatronomy (6)	Ohver's Elementary Botany (b); Asa Gray's Class Book of Botany, Flora (a).	Roscoe's Chemistry (a); Harcourt and Madan's Practical Chemistry, and Fresenus's Qualitative Analyse (c)	Jukes' ${ }^{\text {Sth }}$ choot Manual of Geology (b)	$\begin{aligned} & \text { Deschanel's Natural } \\ & \text { Phlosophy (a) } \end{aligned}$.
Clifton College -	- - -	-.	Oliver's Botany , Balfour's Outlines	Roscoe is at present the book generally used, bùt this 18 about to be replaced gradually by Maller's Text-book of Inorganic Chemistry Cooke's First Prinecples of Chemical Philosophy, for special classes Miller's Elements of Chomistry, for the Lower Divisions Harcourt and Madan's Practical Chemistry, with MS notes, tables, \&c., supphed by the master	Page's - Small Handbook. Jokes and Gelkie.	-	-
Marlborough College -	- - -	- - -		in the laboratory W. A. Miller's Elementary Chemistry (a) Roscoe's Elementary Chemstry Primer (b).	- -	Tyndall on Heat as as Mode of Motion (d)	-
Winchester College -	- - -	Lockyer's Astronomy.	Oluver's Botany. -	- - .	Page's Geology, Jukes' Geology	Tyndall on Heat. -	-
St $\underset{\text { Weotumanter. }}{\text { Peters }}$ College,	\cdots	- -	- -			$\underset{\substack{\text { Balfour } \\ \text { Heat (a.) }}}{\text { Stewart }}$ on	-
Wellungtor Colloga -	- - -	- -	-	Barfis Chemostry ($a \& b$) -		Orme on Heat (a \& b .), Ganot's Phyencs (a)	Besant's Hydrostatics (a)
						-	

[^10]\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline College or School. \& Sconstice. \& Astronowy \& Botany \& Chemstry \& Geology \& Heat. \& Eydrostatices. \\
\hline Cheitenham College \& \(\cdots-\) \& \& \& Claseical department - Roscoe's Elementary Chenustry (b), Harcourt and Madan's Practical Chemistry (a) Military department.-Roscoe's Lessons in Eiementary Chemistry (b), Fre-
senus's Qualitative Analyas, Liveng's Tabies (a.). \& MiItary department Jukes'School Manual
Geology (b), of Geology (b) Principles (a.) \& Balfonr Stewart on Heat (b), Deschanel's Natural Phiosophy
(a): Ganot's Phyanes (a). \& - \\
\hline Bossall School \& \& - - - \& - - \& Roseoe's Chemustry, Gill's Chemistry for Schoola \& Page's Geology \& - \& - \\
\hline Charterhouse School - \& - - - \& \& Oliver's First Lessona in Elementary Botany (\(a \& b\)). \& Roscoe's Chemistry (a), Barfis Introduction (b) \& -- \& Mrell \({ }^{\text {Heat }}\) (a) \& Bener Hedretere \\
\hline Chrst's Hospital School \& Tyndall on Sound (a) \& Godfrey's Astronomy (\({ }^{\text {a }}\), \& \& Barfis Mannsl of Chemistry (b), (Rosooe
and Gall occasionally) (b) \& \& \[
\begin{gathered}
\text { Maxwell on Heat (a), } \\
\text { Tyndall on Heat (a) }
\end{gathered}
\] \& Besant's Hydrostatics (a), Hamblin Smith's Hydrostaties (b),
Galbrath and Haughton's Hydrostatues and Mechanics (b) \\
\hline Clity of London School \& Lee's Aconstices \& - - - \& Olver's Botany (a). - \& Jarman's Quahtative Analysis (a), Fownes' Chemistry (a), Muler's Chemistry (\(a\)) ; Hall's Chemistry (\(b\)) Buckmaster's Chemistry (Inorganic)(b) \& Lyell's Geology (a) - \& Tate's Heat, \& sc (a), Lee's Light and Heat. \& \\
\hline Dalwich College \& - - - \& \& - - - \& \begin{tabular}{l}
1st Class -Muller's Inorganic Chemistry (a), Gill's Chemistry for Schools (a), Harcourt and Madan's Practicn Chemistry (a),
Analysis (a.) \\
2nd Class - Roscoe's Chemustry("Science Primer") (b)
\end{tabular} \& 1st Class - Jukea" Student's Manual of Geology (a) troductory Text Book (b), Jukes' School
Manualof Geology (b) \& -

- \& Besant's Hydrostatics.

\hline Taunton College School \& \& + - \& Olver's Botany (a), Lumdey's Deecriptive Botany (a). \& Roscoe's Chemistry (a.) - \& \& \&

\hline Hing's College School- \& \& - - - \& \& Miller's Introductory Text Booz. Roscoe's Chemistry Class Book. \& \& \& Besant's Hydrostatics.

\hline $$
\begin{gathered}
\text { Universtty } \\
\text { Bchool. }
\end{gathered} \text { College }
$$ \& - - - \& - - - \& - - - \& Gull's Chemistry for Schools (a.). \& - \& Orme's Sctence of Eeat (a). \& (None)

\hline Manchester Gramimar Behool. \& | Tyndall on Sound (a); Lee's Acoustice, se |
| :--- |
| (b) | \& - - \& - \& Roseoe's Chemistry (a. \& b); Bloxam's Metallargy (a), Fownes' Chemustry (a) \& - \& Balfour Stewart’s'Trentase on Heat (${ }^{(\alpha)}$). \& -

\hline
\end{tabular}

§6-WEIGHT ASSIGNED TO SCLENTIFIC ATTAINMENTS IN DETERMNING A BOY'S POSITION IN THE SCHOOL,

At St Peter's College, Weatminster, the weight asaigned

 is very smallAt Christ's Hospital, the Head Master states, "the high" est position in the achool, which bringe the most sub" stantial rewards, is that of Grecian. A boy who, in © Classes 2 and 3, shows a marked aptitude for acience, is " encouraged to pursue $1 \mathbf{t}$, and if his progress continues "A satisfactory, is made Grecian, even though he may make " little progress in clasencs, Two boys have thus been " reoently elected at Cooper's Hill College, who had been " kept till 18 as Grecians by reason of their aptatude fo " science and mathematics : one boy has just been elected " had as if gadmost exturely by reason of his proficiency in science. " It most enturely by reason Ma , prontrues, "that we " shall have a moceamon of sumplar cases, so that it 18 not " " 4 screntaic attornments in determing aboy's position in " "the sehool is practically nul")

At Charterhouse School it is considered that fhe amount of acqurement would not at present justify any weight being essigned to scientific attanments for determining the posithon in the school, but as advance is made, this, it is stated, will be remedied.
At King's College School no wreight is assigned in determuning a boy's position in the school, but his marks for science are added to his class marks to obtain a prize.

At the City of London School, the weight assigned to colentaic attainments in determining promotion and in awarding scholarships is one third of that assigned to Mathematics or to Classtos.
At Rugby School, the proportion of , the marks for different subjects, both for terma' work and examination, is given below.

	Upper School Terms' mark.	Exam, mark.
Classics and English	- 39	- 33
Mathematics -	- 6	6
German or Natural	crence - 3	3
French	- 2	2
Middle School.		
Classies and Englush	- - 36	- 33
Mathematies -	- 6	- 5
Natural Science	- 4	2
French and German	- 4	3

In the higher part of the school, a boy who shows ability may bo allowed to drop verses, together with a certan amount of general classical work, and devote the extra time to mathematics or Natural Science The mportant fact 18 , that sy so doing he does not lower his position in the recerves a full equralent of marks for actual wrork
At Eton, in the "trials" for school promotion into the Middle division of the 6th Form, and into the Upper Middle division of the oth Form, and into the Upper
division, one Science paper is set. The papers are 12 in all.

At Harrow, the same_ welght is assigned as to other subjects, the propornons being, detexmined by the tume given to the several subjects.
At Cifton College, marks are assigned for each hour of scientafic work just as for any other knd of work, and on the same scale the pmociple being to award a fixed number of marks for every hour's work, whatever the subject
At Wellington College, in the Classical Sixth, the senence-lessons are 1-15th of the clasaical leasons in hours;
but have $1-10 t h$ of the marks of the classies. have l-10th of the marks of the classies.

In Mathematical School-

Mathematics	400 (lower forms 300)
Modern languages	- 300
Latm	- 150
Scrence	100

At Winchester College, about one tenth of the whole marks in class werk and examinations,
At Rossall School, in the Modern Side shont 10 pe At Rossall School, in the Modern Side, about 10 per allowed to the Natural Sclence lessons.
At Marlborough College, there are marka assigned to each boy who doea Science in some Forms in his weekly work, and in others in quarterly exammations These marks are added into the total to assign his final place. The exact proportion observed in edding the Scrence marks to those attanned in other subjects probably varies to a certain extent in dafferent Forms; but in every Form a boy would gam very considerably by havng really distingunshed humelf in the sclence work
At Dulwich College, the olassification for science 18 entirely independent Prizes are awarded in each class at the annual examination. In the award of exhubitions 200 marks are assigned to science as agannet 220 to Enghrsh, 220 to Latin, 160 to each modern language, 150 to elementary mathematics, and 300 to the higher mathemstics
At Cheltenham College, in the Classical Department 7 par cent in marks of the half year, in exammation 121 per cent, in the Malitary Department not quite 20 per cent. At the Manchester Grammar School a boy's position ur the Science forms, and his prospects of promotion, depend almost entirely on his sorentric attamments The Science and Mathematical forms are regarded as equal to the hughast classlcal forms

At raunton College School it is the desire to give exactly the same value

In Universis

Seniversity College School, "the foremost place in the a Scrence Classes 18 sought for whth the same interest and " eagerness which attend the struggle for corresponding " subjects of school education " [Appendix III , p. 119].

§ 7.-METHODS OF TEACHING AS REGARDS ORAL DEMONSTRATION, BOOK WORK, AND PRACTICAL WORK.

The Commussioners will gather from the answers to questions 10 and 11, that mare book work in Scuence teaching is practically dead in all those pubho and first grade sahnols from which returns have been rscerved, but 1 think I shall not be wrong in stating that this opinion is to be gathered in a much more definite why from actual uspeation of the sohouls than from the returns.
From Christ's Hospital we are told "there 18 no doulbt that "I . . oral teaching by a good teacher is far more cohools book work s stated to be only "ugby and many othe a lesson, at Rossall it is " cubsiduary," at Clifton the boys a lesson, at Rossall it as "mubsidiary," at Clifton the boye ary "generslly expected to rasd oertan portions of the Winchestar the book is aholished altorgether forson, lower Winchestar the book 14 atolished altogether for the lower
classes; at Wellington College books are not used more than twice or thres tumes in a term ; and at Marlhorough the possession and use of text-books is not oompulsory,

except in the middle dinesons A and B of the Modern School.

This being so, we come to oral demonstration and practical work. In schools where there is no opportunty for practical work, I find the lecture system thought a grest deal of; but, at the same time, I thiak there is evidence that where there are opportunities for practical work, the more developed the practical work 18 , and the more perfect the laboratory arrangements, the more as prachical work preferred to oral demonstration, much more tme beng allowed to be given to it, and oral demonstration, in some cases, laboretory aper Althou curcumatances arise to a certain ax aware hast these teaching conditions, still we mast asomme thet they would not be permitted if it were not agreed among the teachere that such proceedings were educatronally sound
The followng table shows the relative proportion of ort demonstration and book work in the leasons, and the subject which are taught practically in the varnous schools:-

	Lessong.		Practical Work.
	Oral Teaching and Demonstration.	Book Work,	
Etoll \sim	All	Subaidhaty and sapplemen tary.	Practical work in the laboratory is done anturaly out of achool, the tame devoted to it being from 8 to $8 \frac{1}{5}$ hours in each week The trme spent in regular school lemana is abont one half of this
Rugly	All -	Sapplementary * -	Botany in lessons, chomistry in taboratory
chition -	All, when not catechetical, ar oconpied with workmg out examples and propositions	Preparatory or sapplemertary.	Botany in lessons, botanical and geom logical expeditions, chemistry.
Marlborongh -	All - - -	Preparatory - -	Various branches of Natamal Eistory.
Winchester -." - $\{$	All in lower classes Part in apper classea	$\left.\begin{array}{ll}\text { NiI - } \\ \text { Part in npper clabaes } & - \\ \text { - }\end{array}\right\}$	NiL.
Westrounster -	All - - -	Freparatory and supple. mentary.	Nus.
Cheltenham - ${ }^{\text {a }}$	Erom one fourth to one half -	Farring wnth, subject and with master"	Botany, electricity, chemistry in lessons
Wellungtor =	Two thurid	Supplementary -	Electrical measarements in loasons, chemistry m laboratory (voluntary).
Robsail	Lecturen followed by oral and Fritter examunations.	Subsiduary to lecturab	Chemetry in the laboratory
Charterhouse.	All - - -	Supplementary - -	Nil.
Christ's Hosprual	Chemistry, one half, natural philo sophy, three fourths, elementary mechrucs, and examples are set to be worked from books.	Chemustry, one half; ne tural phiosophy, ane fourth , supplementary and to supply problems and examplea	Chemustry m laboratory.
Crty of London School	All - - . -	Preparatory at home	Chemistry in laboratory. Also, wrth a select few, Experimental Physice, Physnology, and Botany
Tuunton CollegeSchooi	Of physoology, all, of botany, one half; of chemustry, for the Upper Sohool, one third ; for the Middie School, all; of znechames, all.	Ont of echool as an asenstance to notes taken at the lectures.	Botany, half of each lesson employed in dissections, schednie wring and classification; chemustry in laboratory
Dutwnch College	Each of the classes recenven two lessons per week of mu hour or an hour and a quarter each. A conrse of evening lectures (genterally four or five lectures) on some branch of scrence if also given in each term. Attendance at these lectares is voluntary They are open to all boys, whether papils many of the science classes or uot.	Book work is got up dartigg the "preparation time," which, for the more advanced pupils, amoants to aboat two hours for chemistry and one hour and a half for physics.	Chamstry in laboratory, one hour a wreek for gdvanced pupils, two hours; out of ordinary school hours. Physues in laboratory, during the school tume asaggred to the Soience lesson.
Onversity School College	In chermstry and chemeal physics, the subjects are explamed solely by meazs of oral teaching and demonatration, zo portion of any lesson bemg ever devoted to booik work Thus oral teaching includes the explanation of those portions of serence phich the boys are expected by the Unwvermines to know, but whrch are not capsble of expermental proof in the class rooms of a echool. All the subjects in" physics and mechanics are explamed by means of oral keachugg and damonstration, no bookB beng neez, The leasons are alternately devoted to expermental demonstrations of general principles and to the workmig of inastatsve exercises and problems on, or dednetions from, these principles.	Preparatory at home	Chennstry m laboratory, aceompanued by oral teaching ; add oceasionally there in added such further domonatration as 18 consydered the. cessary to supplement the experments made by the boys themselves [A laboratory for phymics has been recently constructed in the new braildng $]$
King's College School Manchester Granmar School.	Physical classes, one half - All, with very few exceptions	One half Preparatary, excepting winen nged in the sbseace of large dragramus.	Chemustry in labomatory; phytice in laboratory. Chencistry in Laboratory. Optical, heat, and electrical expernmenta

§8.-TESTS OF PROGRESS

Intermednate Examnations.
The tests of progress adopted at the several schools may be classed under the following heads, viz :-

1 An oral exammation after each lesson or lecture. 2 A written examination after sach lesson or lecture 3 An examination of note books.
4 Intermediate exammations.
At the Manchester Grammar School the first method is adopted.
At the City of London School and King's College School the first snd thurd methods are adopted, wath th addition of the followng tests in the case of the City of London School. -For "home work" the boys have to write anawers to certain questions on the subjects treated of in the lecture These answers are brought on the next lesson day. In the Lower School the boys have to brmp drawings of the apparatus and experiments shown at the lecture. Boys who take an interest in the subject are encouraged to remain after the lesson to receive extre instruction, and to try the expenments for themselves

At Christ's Hospital the second and thurd methods ar adopted, the latter for the chemistry class.
en the first and thurd methods are edopted, together with monthly intermediate examma thons

At Eton, a part of each lesson 18 spent in putting of lessons are looked over lesson Note books or abstract in three or four weeks there is a mitten exsmungton thre in times a orear we paper on the work of the achool , thre

At Clifton College and Wellington College there examination of note books and thare are also intermediat examinatrons ayery three weats or 80 At St Peter's College, We or BO examinations

At Marlborough College, questions are put, and when boy answers badly, his note book, 15 examined, and, if in sufficient, is filled up out of sohool, or re-written Exami nations are held at the end of the Term

At Cheltenham College and Taunton College School the examinations are monthly

At Rugby School, Winchester College, and Charterhouse Sohool there are frequent exammations during the term.
At Hanrow, the note books are examined once a week, of
At Dulwioh College there are written examunations two or three times each rerm, by the Teacher, who looks over and corrects the boys' note-books from time to tume
I append some of the intermediate examination papers handed to me at Chifton (where this method of testing is oamed out in a most complete manner), together with some of the terminal exammation papers,

These examinations are held once in three weeks the teacher sets and looks over the papers on his own subjects This is considered necessary as a means of showing hup whers has teaching is successful, and where and how it wis through these papers whth the marks and reports all pes looked over by the Master, before being given back to the boys.

Termusal Emammations
These examinations, which take plaoe at the end of term or half yearly, are generally conducted by independent examiners
At Eton, a general yeary exammation ("triala") is held for docidung places $i n$ the school, and a paper on th screntafic work of the school for that year is set.

At Harrow, the terminal examinations in Holence are conducted by the teacher, but, once a year, there is an examination in the work of the year for two prizes given by the Head Master This as conduoted by an andependen exarminer (generally from Oxford or Cambindge)

At Dulwich College Terminal Examinations are held at the ond of the First and Third Terms. There is also an Annual Exammation, conducted by an Independent Exa miner The Order of Ment and tha award of Prizes are determined by a combination, in equal proportions, of the marka assigned by the Examiner, and those gained by sohool-work in the previous half-year
It in stated that at Rossall a wintten examination uaually conducted by an outaider, is generally sccompanued by "unsatasfactory results."."
At Clifton, at the end of the summer term, which completes the school year, the work 18 axamined by an examuner other two therme unversitien At the end of each of the osoh other'e work, it being eramine and report upon avoided, no one eramine bis own work, 16 can be

Spicimens of Intermediate and Thbminal Examination Papers

Clifton Collegr

Intermadiate Examination.-Febriary 13th, 1871.

Borany

III. a, and III. β To be wertten on separate paper

1. What is the "receptacle" ξ Sketch and describe ite form in the geranium and strawberry.
2 Give the meanings of these words: pernanth, polysepalous, aestrvation, strgma, distractsle connective.
3 Describe the structure of the stamen, and show how its parts correspond with those of the ordinary green leaf 4 In what way are the floral leaves of the sweet peas
arranged in the bud 5 What
dansy, and forms of the calyx are found in the dandelion dansy, and gooseberry?

6 Sketch and name some of the chief vanetres of the regular gamopetalous corolla.

Intermediatim Examination.-February 27th, 1871.

$$
\text { Botany; III. } \alpha_{1} \text { and } \beta \text {. }
$$

Half of the tume allotted for the examination re expected to be given to thas paper.

1 Give a munute account of the vamous parts of a tamen and refer each one to ats corresponding portion in the ordinary green leaf
 flower, dead nettle, sweet pea?
3. What do these terms mean. Monadelphous, dradelphous, polyadelphous? Give examples
applied to the anther in the
(a.)
(a*) Filament adhering along the whole length of the
(β) Flament extending only to the base of the lobes.
(r.) Apex of filsment attached to a single point only.

5 How does the pollen escape from the anthor?
6 Describe the structure of the prstil in the pea Dis-
tingulsh clearly between its two autures, and compare it wnth a foluage leaf

Terminal Examnamion-Easter, 1871.
Botany IIIa \& β-Junior School, IVa \& $\beta_{\text {., III }}$. Ewamsner, Rev. G. Macloskie, IL.D.

1. What is meant by the word "superior," with reference to the calyx and ovary? Give examples of a superior and an infernor ovary
2. Describe the petals, the stamens, and the fruit in a Cruafegors plant
3 Give, very briefy, the meanings of these words:-

Epicalyx	Introrse	Pome
Papihonaceous	Syncarpous Polyadelphous	Achene Dehiscence

Polyadelphous - Dehiscence Cone
4 What is remarkable about the calyx, corolle, and anthers in the dandelion or thistle?

5 Show how these three fruits differ : Strawberry, black berry, and mulberry
6 Describe the frust called a "legume." Show how $1 t$ resembles an ordinary leaf, and contrast it with the
follele."
7 Name the principal forms of cells and vessals.
8 Distunguash between the exogenous, endogenous, and aorogenous stem Give examples.

9 What action have plants upon the atmosphere? Candidates are not expeoted to write upon mose than SI yuestions, and a few good answers will receive more mark than a larger quantity of inferior ones.

Intermediate Examination,-October 20th, 1873

Chemistay

$V 1, V_{2}$ and First Set below V.

1 How would you make nutrno acd? Calculate the weight of nitrie serd ehtainsble from 20 onnces of nitre. $K=391$
9 Give the formalse for nitrio snhydnde and nitreus anhydmde, and show the action of water apon them.
3 Grve equations showing the action of heat on ammonum nitrite and ammonumen nitrate.
4. Desenbe the properties of nitric oxnde, and the process by which it is usually made.

First Set, Modern,

1. Describe, as fully as you can, the process for estimatung the carbon and hydrogen in benzone acid, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{8}$,
2. One hundred parts of an organie compound contam carbon 63 15, hydrogen 3 17, oxygen 33.68. Find the formuls, assuming its molecular weight $=190$
3. Explan the processes both of experment and reasoning by which you would establish the formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ for acetie acid.

> Second Set Classecal, and Second Set Modern.

1 Describe fully, with equations, the preparation and propertses of hydrogen mitrate (nitric and
2 Complete the following equations, adding the name to each formula.-
$\mathrm{Zn}+2 \mathrm{HCl}=$
$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4}=$
$3 \mathrm{Cu}^{2}+6 \mathrm{HNO}_{3}+2 \mathrm{HNO}_{3}=$
$\mathrm{Cu}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}=$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ heated $=$
3. Give the names and formule of all the oxndes of nitrogen, and describe the properines of one of them.

Third Set, below Fifth Classical

1. Composition of the air, and the action of anmals and plants upon it.
2 Give thuree mays of preparing oxygen gas.
2. Describe the action of sodimm upon water.
3. Put info worde:-

$$
\mathrm{K}, \mathrm{Ns}, \mathrm{P}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{SO}_{2}
$$

Therd Set, Modern

1. Describe the preparation and propertres of aitne aad. $2 \mathrm{Sa}^{3}+8 \mathrm{HNO}_{3}=3 \mathrm{Cu}\left(\mathrm{NO}_{8}\right)_{2}+4 \mathrm{H}_{3} \mathrm{O}+2 \mathrm{NO}$. Read
this, give molecular wrorghts of each substance, and the this, give molecular
2. How much NO will loolbs Ca give?
3. Name the following substances:- $\mathrm{HCl}, \mathrm{ZnSO}_{4}$, $\mathrm{KHSO}_{4}, \mathrm{KHO}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{~N}_{2} \mathrm{O}_{2}$.

Fourth Set, Modern.

1 When phosphorus is burned in a bell-jar standing on s vessel of water, what happens, and why?
2. What is the composition of the ary, and what is the action of plants and animala on $1 t$?
3. If sulphuric seid (hydrogen sulphate) $2 s$ put into a flask contanning zme and water, what gas is formed and what are the properties of this gas?
4. Putinte words :-
$\mathrm{Zn}, \mathrm{P}, \mathrm{K}, \mathrm{Na}_{4}, \overrightarrow{\mathrm{H}}_{8} \mathrm{O}, \mathrm{P}_{8} \mathrm{O}_{8}, \mathrm{MnO}_{g}, \mathrm{H}_{8} \mathrm{SO}_{4}$,

Prysics

$$
\begin{aligned}
& \text { VI., V, and lot Set IVthe. } \\
& \text { I and II Mooderns. } \\
& \text { 2nd Set IVths. }
\end{aligned}
$$

1. What is meant by the co-efflosent of linear expanaion p Given the linear, find the superficial and cubical ooefficuents
2. Give some mstances where the expangon of metals by heat bas to be allowed for
3. Etxplann how the fixed points are determined for a thermometer. Find a formula for changing temperatures reckoned on the centigrade scale to the corresponding temperatures on the Fahreahent scale. Find what temperature on centigrade scale is equal to 68 on Fahreaheit.

4 What corrections and precautions mast be apphed to get the true temperature from the readings of a thermometer
5. Distmgurgh between conduction and convectaon of heat Describe some means of determining the relatave
conductivity of metals method for deternaming the absolute dulatation of mercory.

Thurd Set, helow 5th. Clusacal.

1. Prove the expansion of liquids, solids, and gases by heat

2 Explain the difference between Fahrenhert, Centagrade, manimum, and mumpoum thermometers

3 When a bar of inon and copper are niveted together and then beated, what happens, and why 7
4. Describe any applucations of the nnequal expansion of
metaly by heat.

Modern Sude, Thard Set.

1. Define the term force-gives has of the phnoupal forea, sand deacribe an experment to ulfurtrete the mutual convertiblity of several of them.

Hustrate inertion
Explann what is meant by the resultant of two or more forces; and give a daspram showing the magnitude and direction of twa farces of 4 libs and 7 lbs . acting on a pount at ught angles to ench other.

Fowrth Set, Modern.

1. Explain what is meant by "gravitation" and "co-

2 How do solds, liquids, and gases differ from each other?
3 Water finds its own level. Explain this.
4 What is meant by specific granty? How do you find specific gravity of liquida?

Intrbmbdiatm Examination,-November 10th, 1879.
You are requested to divide your trme as evenily os possible betwreen the two subjects of exsimustion.

Chrmigtry

First Modern set

1. Deacribe the preparation and properties of marsh gat, and give its graptic formula

2 Describe the preparation of common alcohol, and gave equations showng the action of potassum, sulphume acid, and acetic acid upon it.

Name the compound $\mathrm{CHCl}_{8}, \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{H}_{4}$
sad describe any one of them.
VI., V, first set below V, and Second Set, Modern.

1 How much smanis by weight and volume would ba obtained from 20 grams of ammonum chlorde? $\mathrm{N}=14$, $\mathrm{Cl}=355$
2. Naxae and classufy the following compounda :-KHO, $\mathrm{H}_{3} \mathrm{SO}_{4}, \mathrm{NaCl}_{3} \mathrm{ZnSO}_{4}, \mathrm{FeCl}_{5}, \mathrm{HCl}_{\mathrm{H}} \mathrm{HNO}_{3}, \mathrm{NaHO}$, $\mathrm{NH}_{4} \mathrm{HO}$, and give a general equation showng the action of a metallic oxide on an aord.
3. Explann fully why solution of ammonia is tuppoted to contsin the hydrate of ammonuam
Second Set Classical, Nos, 2 and 3 of the foregoing, and
4. How 'is ammonie made P Give the equation whth werghts to formulx ($\mathrm{Ca}=40$).

Thurd Set below Fifth.
First two questions same as Modern Fourth Eet 3. Put into words $-\mathrm{H}_{3} \mathrm{CO}_{3}, \mathrm{CaCl}_{9}, \mathrm{CaO}, \mathrm{HCl}, \mathrm{CaCO}_{3}$ $\mathrm{C}+\mathrm{O}_{\mathrm{g}}=\mathrm{CO}_{2}$
4. Give the symbole of-calcsum, sodium carbonate, potastrum putrate (saltpetre), nitric acid, sulphuutio acid.

> Third Sel Modern.

1. Define the termas acrd, salt, base, Writs down an equation ahowng ther mutual relation.
2 Classfy $\mathrm{SO}_{3,}, \mathrm{NH}_{4} \mathrm{Cl}_{2} \mathrm{H}_{8} \mathrm{PO}_{4}, \mathrm{KHO}$.
3 The preparation and properties of chlonde.
4 Read and give molectiar and whole weighte of $2\left(\mathrm{NH}_{4}\right) \mathrm{Cl}+\mathrm{CaO}_{\mathrm{Cl}}=\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{2}$
2. How much NH; will 160.5 lbs. $\mathrm{NH}_{4} \mathrm{Cl}$ give? $\mathrm{H}=1$, $\mathrm{N}=14, \mathrm{Cl}=35 \cdot 5, \mathrm{Ca}=40$.

Fourth Madern' Set

1. How is carbon droxnde (carbonic acnd) prepared?

2 How is carbon dooxde dustingushed from hydrogen oxypen, and ntrogen?
HNO ${ }_{8}, \mathrm{CaO}, \mathrm{NH}, \mathrm{Cl},-\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CaCl}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
4. Put uto chemical formule-sodrum, wodicm chlonde, sodrum carbonate, potaserima nitaste (aaltpetre), ammo num.

Perseces.
$\begin{aligned} & \text { VI., Y', and 1st Set Vihe. }\} \text { 2, 3, and ang fupo others. } \\ & \text { I. and II. Moderns }\end{aligned}$
I. and II. bloderns $4,5,6$, and ant other

1. State the laws of Boyle and Gay Luwse. Are they structly true in all emoes?
2. 20 litres of aur are measured off at zero and under a pressure of 760 mm of mercury, find the volume of the arr (l) when the pressure is reduced to b/ in mo of mercury, (2) when the temperature is rassed to 91°. The co-efficient of expansion for aur may be taken as $\frac{1}{2 / 3}$ or -00366
${ }_{3} 5$ When 18 a vapour said to be at its maximum tension? Describe some arrangementa for determingg the maximum tension of aqueous vapour at different temperatures
4 Describe the dufferent ways in whach a body may be changed into a papour. Show that heat draappears when he change takes place.
b What crrcumstances affect the boing point of a uquad?

Guve some of the laws of évaporation.

Fourth Modern Set.

1. Give proops of the pressurs of the arr

2 Describe the common barometer, and state how and why it can be used to measure the height of mountanas.
3. What is the construction of the common pump? On what does its action depend 3 What 18 the greatest length from the lowest valve to the surface of the water in the well, and why? What would the length be if you were pumping mercury?

Thurd Set below Fifth

1. How is heat propagated in solds, lqquids, and gases? 2. Describe experimente to prove that some bodies conduct heat better than others.
2. Prove that radiant heat 18 given out equally from all sndes of a body, that it travela in stragght lines, and is not affected by the aur it passes through

III Set, Modern

1. A stone dropped 1 nto a well takes 4 seconds falling; 1. Asep is the well, and with what velocity does the stone howrike the water?
2. How ${ }^{16}$ work measured? Define horse-power Of how many horse-power is an engue whach lifts $90,000 \mathrm{lbs}$ to a height of 66 feet in 15 mimutes ?
3 Desoribe and draw the three knds of levers, gaving a famulhar example of each kind.
4 (a) In the list kund of lever, if the power is 15 lbs , power arm 8 m , weight arm 3 in , find the weagh
(b) If the lever 181 ft 4 in long, the power 4 lbs , and weight 12 lbs , where must the fulcrum be placed?

Intrimidiate Examination - December 1st, 1873.

Chemietray. -

First Modern Any four questoons.

1. C is tetratomic. Show that no compound of C and H can contan more H than is represented by the formula $\mathrm{C}_{\mathrm{a}} \mathrm{H}_{2 n}+$.

2 Let $\mathrm{C}_{2} \mathrm{H}_{2 \mathrm{~B}}^{*}+{ }_{2} \mathrm{O}$ be the formule of a primary aloohol Write the formula of the corresponding aldehyd and aend. 3. Complete these equations, with name to each for-mula:-
(.)
4. Describe the preparation and properthes of acenco acid with equation.

How is ethylene obtanned? How may it be converted intalico Bends.

> VI.—V., and First Set belorv V.

Second Set Modern.

1. How many pounds of chlonne can be obtained from 50 lbs of common salt? $\mathrm{Na}=8$
2. Write down the weights and volumes represented by these formulpe :- $\mathrm{Cl}_{1} \mathrm{Cl}_{4}, \mathrm{HCl}, \mathrm{H}_{3} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{O}$, assumung that H stando for 1 litre of hydrogen, weighing, 1 arith
(3. Wram .).

> Second Set below Ffth

1. How is ohlorine mande? To what usee is it apphed? ${ }_{9}$ Complete these equations, with weighta and names to each formula. ($\mathrm{Mn}=55$.)

$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{3}=$

$2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{2}=$
$8 \mathrm{NaCl}+2 \mathrm{SO}_{3}+\mathrm{MnO}_{2}=$
$\mathrm{MnO}_{4}+4 \mathrm{HCl}_{2}=$

Fourth Set Modern and Thurd Set belowi Fifth.
1 What takes place when sulphur is heated till it boils?
2 What are the properties of solphurdi-oside?
3 Put into words $-\mathrm{Na}_{8} \mathrm{SO}_{4}, \mathrm{NaCl}, \mathrm{FeS}, \mathrm{FeSO}_{4}, \mathrm{SO}_{2}$, $\mathrm{S}+\mathrm{O}_{2} \doteq \mathrm{SO}_{2}, \mathrm{KI}+\mathrm{Cl}=\mathrm{KCl}+\mathrm{I}$
4 Give symbols of chlorne, bromine, sodine, fluorine; and formula of copper sulphide, calcum sulphate, silver. chlonde, potesssum oxide.

III. Modern.

1 Preparation and properthes of hydrochlome acrd 2. $\mathrm{CaF}_{8}+\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{CaSO}_{4}+2 \mathrm{HF}$. Read and give werghts and classify
3 How much CaFs will give 100 lbs HF ?
4 From what sources are bromine and iodine obtamed?
Give properthes of lodine
5. Name $\mathrm{HClO}, \mathrm{HClO}_{\mathrm{g}}, \mathrm{HClO}_{3}, \mathrm{HClO}_{4}$

Physics.
VI., V., First Set IVth. $\}$ any four of first sue

Second Set IVth ,7,8, and any two others

1. Describe Dannell's hygrometer, 'and the method of using it. What are its defecta, and how have they been emedied?
2 Give an account of the spheroidal state
3 Guve the laws of fasion Why does a mixture of salt and pounded ice produce cold? ${ }^{4} 100$ are mixed wpechich heat of a aubstanco- 6 lbs of boron the boron mised whth 1 ll of water at 10 , the specific heat of the boron $18 \frac{1}{2}$, what will be the termperature of the musture?
5 Descrabe' Bunsen's zce calormeter.
6 Descrfbe some expermment to show that the specific heat of dufferent bodees vames.
2. Mention soms good and some bad conductors of heati What are the uses of bad conductors ?
3. How may you tell whach of two bars of metal is the better conductor? What is as safety lamp?

Fourth Modern, and Thard Set below V.'
Any three questoons (but not more)

1. Two tin vessels-one of which has the outande dull and black and the other polshed and bright-are filled with cold water, and exposed to the same amount of heat in which will the water sagner become hot, and why?
2 What effect has pressure on the boling-point of uquid? How and why can the henght of a mountan be found from the bolung-pont of water?
2. Prove that heat oan be reflected
3. What is meant by the spheroidal state of liquids? Guye nstances.
b. What are the sources of heat-mechanceal, chemical and physical?
4. Describe how heat can be converted into work.

Thurd Set, Modern.

1. Describe the three syatems of pulleys, and find the woight supported by a power of lo ibs when thare are three pulieys of which the welght is neglected
2. Explain the principle of the screw Guve the relation of power to weight. If the curcumference of the curcle described by the power 185 ft., and the power is 3 lbs , and the distance between the threads is 1 in, find the pressure or weight.
3 The herght of an inclined plane 183 mehes, its length 18 unches, the welght 1524 lbs . find the power acting along the plane.
3. Explan the action of the penduium. Mestion the principal laws What 18 the length of the pendulum which vibrates once in 3 seconds?

Treminal Examination.-Christmas, 1873.
 Chimiatey.

First Set Modern.
1 Describe the process for the determination of the amount of carbon and hydrogen in an organco compound free from nutrogen. What precaution must he taken if nitrogen is also present ?
2. A volatile organic compound contaurn-

C 78.94 . 10.53
$\left.\begin{array}{ll}\mathrm{H} & 10 \cdot 53 \\ \mathrm{O} & 10 \cdot 53\end{array}\right\}$
Find the amplest formula, and explan how you would correct this by referring to the apeafic gravity of the vapour.
3. What ere homologous sersee? Give one or more xamples.
4. Distingush between metamerre and polymenc compounds, and grve an unstance of each.
5. Give the formule of common alcohol, aldehyd, and acetric acad, and descrabe the production of one of them
6. Give the formulse of ethylamine and acetamide, and
desenbe the properties of the former.
7 Deserxbe starch, sad give it formale and chemioal re-achions

Sucth and Fifth and First Set of Fourths. Second Set Moders, also Woohweh Set.
1 Describe the method of preparang nitruc acma, and give equation
2 What is the result of acting upon sulpharic acid with (1) zinc, (2) copper oxude 3 Give equatione
and ammonum nitrite and ammominm sutrate. Give equations

4 The preparation and propertise of chlorine gae
Why does chlonne bleach?
5. How much ammonium chlonde (NH, Cl) will furmah

What ammona (NH_{3})?
I litre of hydroge
6. Write out in words and give molecular weughts of :-

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{8}=3 \mathrm{Cu}\left(\mathrm{NO}_{5}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

How znuch $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ could be obtamed from 254 gram of Cu, by the above equation ($\mathrm{Ca}=635$).
7 How do yau classify the oxides F
Classify $\mathrm{H}_{3} \mathrm{O}, \mathrm{MnO}_{9}, \mathrm{Ca}(\mathrm{HO})_{8}, \mathrm{KHSO}_{4}, \mathrm{CaCl}_{g}$, $\mathrm{NH}_{4} \mathrm{HO}, \mathrm{N}_{2} \mathrm{O}_{3}$.
Write down three anhydmdes and the corresponding sends.
8. Name and give the formulæ of the ammomum, sodium, and calcium salts of $\mathrm{HCO}_{3}, \mathrm{HNO}_{4}, \mathrm{H}_{3} \mathrm{SO}_{4}$.

Second Set Fourths.

1. How many compounds does oxygen form with atrogen? Give them respective dames and formulis 2 from which of these oxides may nitrous acld and atric and be prepared?
a. Give an account of the preparation of nitric acid from odium nitrate Equation.
4 Complete the followng equations:-
$\mathrm{CuO}+2 \mathrm{HNO}_{3}=$
$\mathrm{Zn}+\mathrm{H}_{8} \mathrm{SO}_{4}=$
ZnO
H
H
$3 \mathrm{Cu}+6 \mathrm{HNO}_{8}+2 \mathrm{HNO}_{8}=$
$\mathrm{MnO}_{2}+4 \mathrm{HCl}^{8}=$
5 Gave the formule of ammoms and ammonium. How is ammons made? Equation.
2. How may chlorme be obtained fram common salt? Why can it not be collected over mercury or water?
${ }_{7}$ Give the process for the preparation of hydrochlone acnd from common salt, with equstion.

Thard Set Modern.

Answer questions 1, 2, 4, and 6 of thase grven above to Second Set Modern' also the follownirg.
A State some of the reasons for saying that the characters of bromune ars untermednate between those of chlorme and iodine.
B Give the formule and composition, both by weight and B Gave the formule and composition, both by we
volume, of hydrochloric and hydroflione acids.
C Complete the following equations, with name to each substance - -
$\mathrm{CaO}+2 \mathrm{HCl}=$
$\mathrm{NaHO}+\mathrm{HCl}=$
$2 \mathrm{KI}+\mathrm{Cl}_{5}=$
$9 \mathrm{KHO}+\mathrm{Cl}_{2}=$
$6 \mathrm{KHO}+3 \mathrm{Cl}_{5}=$

Thsrd Set Classueal and Fowth Eet Modern

1. Name the two chief constituents of the arr and the proportion in which they are muxed How is that proporan aminal?
2. Deacribe the preumatice trongh and its uses Why may oxygen and hydrogen-but not ehlorwe-be collected in the preumatic trongh ?
3. Give the symbols and atomuc' weights of carbon, nitrogen, oxygen, and sulphint, and name these bodiea . $\mathrm{SH}_{3} \mathbf{O}$ $\mathrm{O}_{4}, \mathrm{NH}_{4}, \mathrm{HNO}_{3} \mathrm{H}_{8} \mathrm{SO}_{4}$.
. Define an acid, and give an examople
4. Describe the gas wiveh an exaraple of in thin reaco tion:-
$2 \mathrm{NH}_{2} \mathrm{Cl}+\mathrm{C}_{4} \mathrm{O}=2 \mathrm{NH}_{4}+\mathrm{CaCl}_{3}+\mathrm{H}_{2} \mathrm{O}$.
5. Chasafy thems oxiden:- $\mathrm{CO}_{n}, \mathrm{FB}_{2} \mathrm{O}_{3}, \mathrm{MnO}_{n}, \mathrm{SO}$, $\mathrm{Na}_{2} \mathrm{O}, \mathrm{OaO}$.

7 Deacribe chiorine.
8 How may carbon doxnde be prepared? What terte
may be used for a oarbonate?

Paysics.

FI., F., Furat Set of Fourthe.
First and Second Sets Modern.

1. Describe what accurs when water at $0^{\circ} \mathrm{C}$ is gredually heated to shout $8^{\circ} \mathrm{C}$.
2 What precautnons must be taken in uaing a thermometer for netermping the bollang point of a hquad?
G. Amongst solid bodies which are the best conductors? Give come nastances ahowing that gemes are almost destrtute of condacting power.
2. 100 cubus inches of air are measured at 0° and 760 m m pressure. What would be the volume at $15^{\circ} \mathrm{C}$ and $749 \mathrm{~m} . \mathrm{m}$?
3. Describe mone good way of ventilating a room
4. Equal weights of mercury and water are expoted over the same asuree of heat. Which of the two will have the higher temperature at the end of, way, ten minutes, and why?
1 State the law of Dulong and Petit What curcume stances influence the resulto in detormanig the speenflo hest of a serves of solide?
8 Under whas circumstances is a vaporre at ite maxt mum tension? How may the tension of a vapour be determmed?
5. Desanbe soms form of calonmeter, and the method of , using it

Secord Set below Wifth

1 How is a mexournal thermometer made and gram duated?
2. Express $4^{\circ} \mathrm{C}$. on Fabrenhett's scale, and 100° F. on the centugrade scale
3. Describe somas form of compensating pendulum.

4 What sort of bodies are the beat conductors of heat? Give three examples each of good and bad couductors 5 wish bodros
ands Wat is meant by "convection 3" Explann the trado6
6 Why is mencury better suted for filling a thermometer than eitber alcohol or wster?
7. What is meant by latent heat? when ether as dropped upon the buib of s thermometer the mercury sinks. Why? Explan this fully.

III Set below V Clasncal

1. How do you know that heats is not matter ? What do you beheve it to be?

How would you fill a thermometer with mercury?
3. How do you know that a bar of metal expands? Mention mstances where the expansion has to be allowed for.
4. Bxplain the meaning of the terns specific heat. What subatance has a great specific heat?
5. What us latent heat? What would happenin if the latent heat of water was very cmall?
6. Prove that bouling point of water depends on the preseure What would you do if you were at the top of a ugh mountan, and wanted watex at $100^{\circ} \mathrm{C} .3$
Oistinguish between conduction and convection, giving s periments to show what yot mean by each.
9 Wll coffee keep bot longer in a bright or blockened pot? Give reasons for your answer
10 Describe the different ways in which hest can be produced.
IV. Clasmical 1 Kxplan what you mesn by maot, motion, velocnty,
What do you twean by the velocity st any given moment of What do you trean by the v ?
thran corming to s stataon?
2. Define force, and use your defiontion to prove that force is exerted, \sim
(1) When a ancketer plays a bail.
(ii.) When a boy falle down.
(in) When a goal is tried for
3 Give an account of the force of cohesion, and point out how it difters from the force of gravity.
4. How can yon find the centre of gravity of a sheet of non p Wheme would ute cg be at it were (1) ronnd, (2) square?
5. Define solids, liquads, and gaven.
6. Prove that water preares in all directions, and draw and fully describe Bramah's press.
7. What loss of werght does a solid suffer when waighed in a hquid?
cyindes of wood, 1 yoot long, of sp g 75, floste upright in water How many inches will be out of the water?
8. What do you understand by the phrases porosity, impenetrablity of matter ?

III Modern

1. Deflue velocity, momentum, force. In what two ways an forces be measured
2. Explain the phrase impenetrablity of matter. How is it that mercury can be forced through a prece of cane.
3 What three thanga must be given to tell you all about a force? Show that forces may be represented by straight lines
3. Two forces of 6 and 8 lbs act upon a particle at right angles to each other Find the position and magaitude of their resultant.
4. What space will a body falling from rest have travelled over in four seconds? What will be its velocity at the end of the fourth second?
5. How is work measured? Is any work done by a heavy body moving wnth uniform velocity over a perfectly mooth and fiat table. What is the use of machines?

7 Draw and describe the foree honds of levers, and give practical instances of each of them
8 A nut can resist a force of 4 lbs . only, and I compress with a force of 3 lbs the ends of a paur of nyt crackers 6 inches long. What distance from my hand must the nut be placed so as just to crack?
9 Draw the three systems of pullies you have seen If in the first system there are 3 palles, what weaght yrill be supported by a power of 3 lbs .?
10. What is the law of attraction discovered by Newton?

Fourth Set. Modern.
1 "Laquids find therr level." Explain this. 2. Explan the fact that when a body is plunged nnto a hquid it loses weight How much weight does it lose?
3r A small bottle 18 capable of holding 120 grams of water; another of exactly the same size will hold 1,620 grams of mercury. Find the specinic gravity of the mergrains
cury
4 made of the mere as wide in the bore would that alter the height of the mercury differently when heated Is thas true of all bodnes?

What is meant by convection?
7 If a red hot ball is supported on an mon tripod, mention the different ways in wheh it may lose its heats

§9.-MOST EFFECTIVE FORM OF LESSON.

As to the form of lesson which is found to be most effective, the Flead Masters of Taunton College School and Rossall School oonsider prachical work unquestionably to be so The former says, for senar boys, "We aim at exten-
"ding it in all subjectis as our means and our teaching power "uncrease, but for junior boys, oral teaching and demon"stration, accompamed by frequent emamuations, are for "some time almost exclusively necessary" Sumularly, the Head Master of Rossall writes that, next to practical work, "the oral teaching, when accompanied by, and based upon, "conatant repetition and examinalion "is the most valuable
At Univarsity College School, experience proves that pracheal lessons are "the best form, the only true form; "t though much lese ground is got ovar by this method, ", yet the knowledge thus acquired is at once more velu"Jet the knowledge thus acquired is more lasting." "The best-andeed only " thoroughly satisfactory-results axe found to follow in the " case of those boys who have not depended on books at
" all, but solely on the oral lessons and demonstrations.
"Oral teaching and demonatration are, indeed, fer more "effective than unaided practical work, hence therr fusion "[nt this school] in the class of practical chemustry" "Book-work has been tried as an experment but-with "sugnal farlure, it would undouhtedly be the most effective "form of lesson, if extarnal examiners were employed, "unless, perhaps, the exammations were carried on vivd " voce before the Science masters."
The Teacher of Physics at the Manchester Grammar Sohool asys, "I find the 'Socratio" form of lesson the " most efficient. In this form of lesson the information " required to be taught is either educed or built up by series cof logical questions ayitematically put to the boys, not " on what they have acquured verbally from the book or " the teacher, but put to them on the apparatus, the - experments, or the phenomens, or problems as they are "actually before them. In thas way the observing and
" reasoning processes, and those of selentific and hiterary
" exporition, are eultivated samultaneously"
The Science Master at Harrow says, "As far as it has
" been attempted, a lasson in whioh the boya are made to
"repeat experments which they have seem performed by

* the teacher at a prevous lesson, or other sumple
" expernmenta, is found to be by far the most effective. ${ }^{3}$
Mr Madan, Aserstant Master at Eton, says, "It is not "quite ensy to oompare the oral mstruction wnth the "p practucal work. The lattar 18 estrictly supplementary to " the former, and aerves to fix in the mind what has been an prevously shown. It is doubtful whether practical work at by itself is sufficient. Without previous oral teaching, a * boy is apt to do an experiment mechamically, wrthout tr realising ite foll meaning, Durng laboratory work, the " hoys wre advised to consult theur text-books and note st ahown in locture."
In the opmion of the Head Master of Rugby the best form 18 a combination of entechetical lecture and lesson the boys themselves being often enconreged to ask questions upon any pountr not clearly understood. And the Head

Master of Marlborough College considers lectures to be most effective, so long as they are of such interest that the attention of the boys is well mantamed upon the aubject which is being taught
The Master of Dulwich College says, "No one of them " can be dispensed with, wnthout amparing the efficiency of
" the enture system of instruction."
The Head Master of Clifton Callege remarks that " in
" teachngy boys of ordmary ability who possess but hittle
" knowledge, it is necessary, in the first place, to lecture a "good dear an to impress mportant facss prinerples, and " isents Without ureh help owing to the orest exper of " ic uacianion, many c. ther andig or catechoral lessons would be extrem " confused and indistinct, beandes that geod lectares of greatiy facilitate the progress even of those boys On " the other hand hoprog is is at lenst equally necen " to guard against the passive attitude of the learner who * is merely or chaefly a hastaner to lactures Thus, a good a lecturer will always take great pands to keep his class a lecturer will aiways take great pains to keep has class "Written notes, or such other method as may on well"Written notes, or such other method as may be most " mistruction which has hitherto been given un scliools has " failed, comparatively, as a means of educational traming, "s smply from the fact of the teacher or lecturer having " allowed the boys to be too exclusively passive and "receptive"
The Head Master of Cheltenham Coilege writes',"Speaking " generally, the combination of oral teaching and demon"stration whth book-work and practical work is more "effectave than either oral teaching and demonstration "o or book-work, or practical work alone; but much depends of on the naturs of the subject and the character or genius "Of the teachers; and when diverse forms are used as c supplementary to each other, it is impossible to contrest " their efficlency "
The Head Master of the City of London School says "I am of the opinion that a combination of oral teaching " Whth demonatration, book-work, and practical work will be "found the most effective form of lesson, but I am unable π to form a comparison, as in no division of thes schoo of is the teaching exclussvely confined to any one form "The class for practical chemistry, of course, shows to * the grestest advantage, as it is composed of the most * advanced boys from each of the upper divisions ?

The Head Master of King's College School considers the best form to be "where the oral teaching of the lecturer is it followed by the use of the text-book.
The Head Mastar of Wellington College is of opinon that oral teaching accompanied by experiments will be the best mode, at least as compared with book-work.
And the Head Master of Christ's Hospital says, "There of ts po doubt that in all cases oral teaching by a good "teacher is far mone effectave than sary book can be."

Use of Note Books
It onll be seen from the replies to question 13, that although note books are generallyemployed for oral demonetrations, the way in which they are used (se durngg or after the lecture), examined, and marked, varnes considerably. In almost all the schools I have visited I have inspected some note books taken at random, and it has not been difficult to aee that the best teaching and the beat sept note books were closely assoctated There 18 abundant evidence that a boy of average ability can, if he chooses, expand his rough notes into a tolerably conneeted and methodical aecount of the lecture he has just heard, illustrate it whth copies of some of the more important diaprams, and accurate descriptions of experumenta or objects which have been placed before him I have seer such expanded notes made by boys of 10 , who were learming botany, notes which were models of method and clearness, whule each flower placed before them had been drawn and coloured wonderfully well, and all its parts named on the margin of the notes. .Thes
is almost an education 10 rtaelf: a babit of mental tidiness fowe from at as reachly se a habit of general tadinens flowt from good laboratory work ; and although auch carefully expended potes entail much labour on the teacher, it will doubtless become, in trme, to be considered as among the raost importast work, and yood notes will be encouraged by higher marking than they always receive at present
A strong argument against full notea berng taken Juring the lecture is thas atsted by the Teacher of Plyyives in the Manchester Grammar School. He eaya
My own expenence has shown me that, in sciantafio teaching, Where mere memory is the least important sctive coculty, but where the activity of the obsarving, reasoning, constructave, and lavestigating powera in contituously required, the mental condition essential to the takime which should be made during the coure scientific progreas which should be made during the course of any really wollmade after the lesson made after the lesson connot, however, be too fall or

810.-ALTERNATIVE SUBJECTS.

The subjects are fixed at Fton College, Winchester College, Cheltenham College, Tauntōn College School, Charterhouse School, Kıng's College School (except in very repearal cases), and the City of Londor School. At the Manchester Grammar School, though in the scientific forms the scientuic subjects are fixed, there are voluntary classes for chemstry, mechanics, and physical geography, any or sll of which a boy masy attend at his pleasure.
At Rugby as much elasticity as passible 15 given to the whole system of Natural Ncience work in the school, so as to enable a boy to take the subject he has the greatest desire to learn, as, for example, in the gelectron of chernstry, heat, or electricity, in the upper school. At Clifton College the rule is to make all boys in any pertscular part of the achool do the subject prescribed for that divirion; though it has happened, in a few cases, that boys have been ellowed to take up physuology anstead of physics, or, when preparing for s government exammation, to confine ther attention for a lattie whale to the subjects requared.

It us most mportant to add here that in the higher part of the school, a boy who shows ability is allowed to drop Ferses, together with a certain amount of general ciasaical Work, and Devoue line he does not lower his position in the Scrence By so dong he does no lower ins posinon in the recelves a full equivalent of marks for actual work.

At Mariborough College, in the fifth forme, a boy may
choose between vernes, history, and accuence, and in the upper shell and upper fourth (A and B) forms, a bay may choose between verses, hastory, and Freach, and a second non-compulsory hour of science work
At Wellington College, the boys in the clanacal school may learn drawning ungtead of melence; only 4 out of 29 do so, the other 25 choose science, though much harder work and involving great trouble in writung out notes. In the Mathematical School at thus College thers is a chovee between Greek and acience, and acience is chosen in ahorst ave ctases out of bix. No choice as allowed between different At Chnst's Hosputal
At Chinst's Hospital boys who are preparing for s apecial career or exammation are often allowed to drop a large part branches of mathematics or science; thus, at present, two boys, who ars preparing for Coopers Hill Collare, have given up Latin and Greek componition, and study hight, hent, ke
At Dulwich College, the serence subjects are grouped as follows :-
I Chemistry, with laboratory work
II. Physics (at present elec- q alternative subjecta taught Cricity and magnetism) - at the same time by difIII Physical geography.
Boys have the opportunity of recenving instruction in ons or more of these groups.

§11. CHEMICAL AND PHYSICAL LABORATORIES. RUGBY.

The accompanying ground plan will give a generel idea Natural Science Schoole being only part of an extenave of the arrangernents adopted in the Chernaal Laboratory at Rugby (there is no Physical Laboratory), and of its conblock of new buulding contaiming several clasacal and other schools. nesion with the Chemical and Physical Class Roome, the

As will be seen from the plan, the laboratory is 35 ft . by 22 , and can accommodate therty boys It wras formerly the only Natural Science lecture-room, but it has been entarely refitted, in order to convert it into a laboratory, to replace B , which was the room formerly used for thrs purpose.
The following acount of the detailed arrangemeats have been derved from mformation which the Rev. T. N. Hutchanson has been good enough to supply.

The working tablea Be divided into compartmente, seven on esch sude of the centre table, and ten and anx in those along the sudea of the room Each compartment com prises a cupboard and two drawers, two ahelves for bottlew conkaning the ordinary reagents used to analyens, two gam tsps, wiste basin with water supply, and a workwg space of 3 ft 6 mm . by 1 ft .9 in As there are ofter between 40 and 50 boys using the laboratory in a term, the anme compartanent is frequently sosigued to two boys who share the
drawers and cupboard, \&sc., between them, it being arranged hat the boys shall not have ther laboratory leasons at the same hour Each cupboard contains I retort stand with wire gauze and sand bath, 1 flask, 2 fumnels and fiunnel tand, 2 evaporating basins, nest of small beakers, test subes and rack, wash bottle, and, two blocks of wood for supports
In the drawers are a blow' pipe, mron tongs, 2 watch glasses, test tube holder, glass rods, and tubes
All other apparatuas, such as retorts, deflagrating jars and spoons, gas bottles, scc, is used in common, and is given basing in the central table are placed so st to serve for boys porking on ether ande sid thus much apace is geined The water taps have a mall onfice and are ganed adapted for filling test tubes. A water pipe is also corried slong the highest shelf, and there'are taps at intervals for flling tall vestels, for working with Luebig's condenser \&
The ank, with arrangements for washing and drying bottles, 2 s seen near the door in the drawnigg
At one end of the room is an open fireplace, whth shelves and nests of drawers on eithor side The drawers oontan the varous articies that are in general use in the haboratory, such os corks, cork-borers, elastic
The lower shelves above the drawers contain all the dry

Chemistry" (the book chiefly used in the laboratory), together with the more costly reagents, and others thit are in less frequent use Each boy, as before stated, has a complete set of all the ordinary saids and test solutions on the shelves of his compartment
The contents of the drawers and shelves on either side of the fireplace are arranged in dupicate-a, complete set on each sude in thus way all chance of confusion and crowding is avoided, as no boy can have occasion to cross over from the side of the room on which he is working to the opposite sade, everything being ready to his hand.
A common balance with aets of gramme weights is placed on the table above each nest of drawers Here also ore kept the various measurng flasks and cyinnders At the other end of the room is an ordinary sux-feet katcher furnace It has sand-bath, holew and drymg-oven On one side of the furnace is or cupboand to contan a stock of glass and porcelann apparatus (On the other aide are two spacious evaporating closets with sliding glass doors. These are supphed with hoods and jets for creating a powerful draught The draught can be still further increased, when necessary, by lighting a large ring of jets in the flue communicating with the closets
A small cuphoard for tools and a glass blower's table complete the furniture of the laboratory

- Generai' Vien of Labpilatorf

The room marked B, in the ground plan, was formerly the only laboratory for the use of the sehool, It was built some yeara ago, at the same tume as the Natural Scuence lecture-room, snd, though small, was exceedingly well arranged It as now converted into a pravats baboratory for the use of the chemical lecturer It contans as large avaporating closet, also a sand-bath and distiuling apschool laboratory by mesns of oppropriate dampers Here also is the flue for obtaning a down-draught at the lecture-table in the adjoming chemical lecture theatre. As seversl pipes open into this flue, it was found necessary to place the large mig of gasyets for oreating the draught at is considerable elevanion above the floor. To light this Mig an artulice was employed that it may be worth while to mentron A supplementary gas-pipe was carned alongalue of the supply-pipe arom a few feet soqure the fioor to the ring of jets Ttus was prerced with small jets st short intarralis all the way to the top. A geparate tap turas on the gas in this prpe, and upon applyng a light to the lowest jet the flame runs rapidly up the prpe and lights the ring at the top The gas is then turned off trom the upplamentary pupe and the nigg alone left burnugg.
$\$ 4734$

From the private laboratory a door opens moto the chempcal kenture-room. THus is provded with seats for 50 boys, the forms and desks risung ther above ther, so that experiraught at the lecture teble already atluded to is mown iseful x reme then userul Experiments with ardly sny smell becaping
The theatre us weil supphed with shelves, cupboards, apparatus cases, diagram-sareens, snd black-board There us also a capital cellar for atock chemicals, batteries, and empty cases.
The laboratory metruction is given by the semior Natural Sclence Master and a qualified assnstant As the boys are allowed to come to the laboratory at such thmes as fall in best with therr other work, there are few hours in the day when there are not atr lenst two or three there; occasionally as many as 14 or 15 are at work at the same tume; but as boys requre much individual attention, a larger number than this as not thought deaurable.
Under ordinary curcurnstancea each boy has two lessons week, of rathex over an hour's duration.

The laboratory 18 used by three classes of boys *-
(l.) By those whose parenta wish them to oblam a knowledge of practical chermstry in addition to all their other work These boys become the private pupils of the sentor Natural Scrence Mester, and pay an extra 10 guineas per annum The number is at present himited to 30
(2) By boys who have been so long in the school that they have gone through all the ordinary Natural Scrence courses of lessons. Such boys, instead of recommencing a eubject, are allowed, if they wish, would otherwise be at o Netural Scopesen In some cases, to through one of the courses a second trme often go through one of the courses a second trme, often
(3) By boys who have been allowed

By boys who have been allowed to join the laborrw
tory as a reward for specral mduster and succes in one of the regular Natural Science courges
The pian of practical wort pursued 18 as followe - A b at first begins with Harcourt and Maden's Practseal Chemes try He performs all the experiments humself, construction and building up his own apparatus with such assistance es he may require. After the ordinary elementary manipniation with gases, distilling, \&rc, he studies the properties of the different classes of selts, metais, and acid radicles, and 80 if prepared for the converse process, in actual snalyazs, of determinng a substance from observing the properifes which he finds it to posseas. Then, sfter working out Which he finds it to possess. Then, siter working out analyais, he proceeds to muxtures more or lebs comphcated, anaiyas, Fresenius or Gadloway.
Very few boys at Rugby have gone beyond this and attempted quantitative analysis In every case a boy is required to write out a complete account of every step be has taken in each anculysis

Lately the system bas been introduced of allowing quite young boys from the Middle School, who have expressed a strong deave to learn practical chemstry, and have a real taste for the subject, to work in the laboratory. Probably their answers, if pressed too closely as to the precuse nature of the chemical changes poing on in their
experments, might not be wery satnsfactory. But, for all this, the senior Natural Science Msater us olearly of opinion that they are begunnsing whe rught way He states, "They are gethang acqusunted with facts and real things, they " see with their own eyes the effects of different clasese of " bodies upon each other, and acide, bases, and salts, " beoome with them somethung more than mere terms. "Such boys, when, later on, they join a chemical 'set" "in the Upper School, gezerally take the lead, snd prove, " by the greater readiness with which they follow the " lecturer in his theoretical oxplanations, the advantage "they have gained by commencing chemustry from the practical side
In eddition to the laboratories (A and B) there is a chemacal lecture theatre (C), a physical science theatse (D) and an spparatus room (E).

ETON.

The arrangement of the Chamical Laboratory at Eton is shown in the accompenying ground plan

As at Rugby, there 18 no Physieal Lahoratory
re two rooms on the upper f
(1.) A pnvate Iaboratory
(2) A sitting room.
The laboratory 15 mosit efficiently arra
ccommodation for sots of 28 students The wells of the buideng stacents
Bath stone dressings ; the roofs are cocal red brick, whth coloured Staffordahire the roofs, those of the leborstory and lecture-room beng open-timbered. Special attention has been pasd to the arrangement and general detasl of the fittangs, in order to make them as sutable and eonvenient es possible
The bulding is heated by a boler apparatus in the vaull, and hot-water pipes in connexion, the ventilation of both laboratory and lecture-room has been well provided for, and provsion 18 also made, by meana of pipes, scted upon by gas jets, for effectually carrying off the nosious fumes and gases.

The cost of the building, uncluaive of the fittings, has been about 4,000l

HARROW.
The erection of Chemical and Physiosl Laboratores and Class Rooms at Harrow is of quite recent date. The proposed srangezonts are shown in the accompanying plan.

Below the Chemical Lecture Room there will be a room of the same stze ($35 \times 25 \mathrm{ft}$. ; height, 12 ft), whach will be used as a room for holding Physrological and Natural History Specimens
Below the Chemical Laboratory, there will be two small rooms, which will be used, it is hoped, as Work Rooms for Physiology, ke
The rooms below the Physical Deparis aent will be only 10 feet high -one of these will be used as a Balance Room; another as a small workshop, a thurd, as the room for supplying hot air to all the buildinge, the remamier as
there rooms
The shell of the buildings will cost about 4,8001

DULWICH

At Dulwich there are two Laboratones-the Lower (or Chemical) Laboratory (A), and the Upper or Small Leabribed in a Statement furnished by the Master
excribed 1π a Statement furnished by ine Mast
A. The Lower Laboratory is 36 feet long by 21 feet wide and 16 feet high At one end 15 a platiorm ransed 1 foot 7 mehse above the fioor of the room On this is placed the with a aink and a leaden cistern (which serves as a pneumatic with a ank and a leaden cistern (which serves as a pneumatic
trough), wath several Bunsen burners and the various aptrough), wath several Bunsen burners and the various ap-
plances necessary for Chemeal Demonstrations On the phances necessary for Chemical Demonstrations On the
wall behind is a large shiding blackboard, so placed es to be in view of all the pupils at the working tables Thres steps at either end of the platform bring the teacher to the floor of the room to inspect the work of the pupils from table to table
The working tables are arranged parallel to each other, and are so placed that all the pupils face the teacher Each tablensadapted for six pupis There are a sink and a watertap between each two, and a Bunseen burner for each separately In front 18 a shelf for bottles containing the re-agents ordinarily in use, \&e
In the spuses helow the tables-which are divided into compartments, but not closed with doors-each boy keeps the various pleces of his apparatus, retort stands, filter stands, fec ; and also a box with divisions to hold his store of test tubes, elastre tubing, glass rods, \&c.
These last are provided at his own expense, and axe kept by him under lock and key Except for apparatus of thus kind, which is neceasarily treated as personal property, there is no additional expense nourred by as boy joining the Scoence Classes The re-agents (as well as the use of all the more expensive apparatus required) are supphed by the College wntiout speciai fee or extra charge.
chere are, at present, in the Chemeal Laboratory three Working tables, as above described, supplying accommodamon for 18 boys Two more pupnls are similarly accomplatform, Additional accommodation for 18 boys cane at platiorm, Additional accommodation for time be provided by the erection of three more can at These were, in fact, meluded in the original design (as undcated in the plan and marked with a x), and ras, water, and drain ppes are already land for them It is doubtful, however, whether more than 20 boys can be effioently taught at one time 'The existing acoommodation 1s, at any rate, found sufficient at present, if used by different clesses in succession.
The Laboratory 19 lghted by five large mindows on the left of the pupla, and warmed by hot-water pipes, At the further end of the room is an aperture in the wall connected with a flus, and supplied with a powerful Bunsen burner, to carry off noxious vapours and assist in ventilating the rooks.

B The Upper Laboratory, 21 feat long by 18 feet wide, $1 s$ fitted with cases and cupboards for keeping the-apparatus for physics and chemustry It is also used as a Physical Laboratory, and occasionally as a Science Class Room for special unstruction It is provided with a working-table for chamical purposes sumilarly fitted to those in the Large Laboratory, and giving accommodation to fort pupils, and has, in one corner, a large glazed closet for woighing
D The small room marked D is at present ocoupied by the boys school hbrary, but is mintended to be used, when required, as a room apparalus, and, probably, at the Mame thm Masters.
E. The covered shed or lobby, bualt out into the open yard, is fitted with a slate slab and sank for the galvanic in the theatres and to the Science Master's table in the Lower Laboratory Below the Uabory
Below the Upper Laboratory and the adjoining corridor is a Basement Laboratory fitted with a furnace for the atudy Inetallurgy, \&c.
and metal turning is also a workshop whth a lathe for wood engineer and mechanist skilled artizan (who bets also as engorketh and mechanist in the Callege) is in charge of this of the less dehcate apparatus used in the Scrence Depart ment
A separate room, not included in the plans, is used as a class room for mstruction in Geology (or Botany) It 18
one of the ordmary cless rooms of the College, well hgghted and ventilated, and with ample well space for diagramg It wall contain from 30 to 36 boys
C The Lecture Theatre 1843 feet wide by 35 feet deep It is intted with 10 parallel rowa of seats, and is capable of accommodating 250 or 260 people There gre namrow desks to each row of seats, adapted for the purpose of taking notes. These desks will accommodate about 220 students They are supported by strong ron rods, dropping inta eockets, and can, therefore, be easily removed when not required
The Lecturer's table is well supphed with gas burners of various shapes and apertures It has a sink and ar large sunken clstern to serve as a pneumatice trough Immediately behnd the table as a glazed closet, with gliding sash to carry off noxious and offensive gases
The thestre 18 lighted by a "sunlight" burner, which also serves to assist in ventilation, and it is warmed by hotwater pipes A glass cupboard is provided for the atoring of apparatus, and the space beneath the lecture table is occupied by drawers for the various necessaries of a lecture 00m
The theatre 15 used (1) for oral instruction and demon stration to the Science classes, and (2) for courses of evening lectures, on Suence or Art, given in each term generally by cvening lectures are open to sill hoys in the College shese mambers of the Scrence Classes or not, but atse, members of the science

UNIVERSITY COLLEGE SCHOOL

At this School there is a good Chemical Laboratory recently construoted on a plan suggested by Mr Temple Orme, who has furnished the following account of it. sketch. It will be seen that it is at once a Laboratory and a Clasa Rookn

1. Benches and Desks --There are three concentric srrangemente of benohes and desks withn the herncycle. Brasdth 1 foot between 9 mes, of deske 12 neches A space of about 1 foot betwean each desk and neat intarior bench, each
bench being rased at least 1 foot above the next internor bench.
9 Lecture Table (brde Sketch) - 8 fset long parallel to the dameter of the semecurcio, with two setranas of 2 feet
ach, at an angle of 150° with the man body of the table Breadth of table 2 feet 3 inches, height 2 feet 8 inches The top of the table projects about an unch over the face of the cupboards benesth, but there 18 also a groove along
the surface all the wry round, $\frac{1}{3}$ an mech from the plope; this groove 18 about y^{3} an unch broad and about $\frac{1}{8}$ of an meh deep.
a Drawers.-In the centre of the table (\mathbf{P} and P) at

BACK.
Plan of Table, half an unch to a foot.
D Trough, whth waste-pupe. P, P^{\prime} Position of drawers
Sis. Sink
H Taps for water.

P, \mathbf{P}^{\prime} Postion of drawery
Q. $Q^{\prime \prime \prime}$ Capboarda
 C ©specmen table.
least four drawers; if possible, two rows of three each Each drawer to be ebout 2 feet long, 1 foot broad, and 3 anches deep.
23 Cupboards-($\mathrm{Q}, \mathrm{Q}^{*}, \& \mathrm{E}$) These occupy the remamder of the space arrallable for that purpose They axe provided with one shelf shout 1 foot above bottom of cupand and comng to within $\frac{1}{2}$ an meh of door: also whth wo sliding trays, 4 and 8 anches respectively from the top of the cupboard.
2a Trough (D)-In the might-hand return, and at the front of the table, a pneumatic trough constructed of slate, dumensions, 1 foot broad, 1 foot and a half long, 1 foot deep the interior is quite plam, except that there 1 a hole whin plug at the bottom connected with waste-pupe s gratang just below the piug to prevent stoppage, should be joint wrathing ersy reach.
The top edge of the trough (which will be about l moh thick) should be a hittle below the level of the table, and a wooden hd should be provided, which, when placed over the trouth, will complately cover to and be flush with thè table

Tap (H) for water supply.
2 . Sunk (E) of glazsd stonewars, 1 foot in diameter, placed behind the trough

Tap (H) for water supply
$2 e$ Down-draughts (A, A) of glazed stoneware, coming out at mght hand of firnace, where, on a level with the floor, a small ar-inght door is provided, whthin which is a ring of gas jets; thence passing into the fine of furnace
and three pairs along the central portion All these being es close es possable to the back edge of the table
3 Specimen Table (C.)-Placed in front of lecture table Length 6 feet, breadth 1 foot, height 2 feet The upper surfice will be used solely for the display of specimens
4 Blow-ptpe Table, plased near the back wall on the left of the stin ($q v$).
5. Slate, on casel
6. Work Tables (26 in number), 3 feet long, 1 foot 9 mehes broad, 3 feet high Upper surface of wood, quite plain, neither pannted, paraffined, nor stamed, \&c ; groove as Nuth lecture table, and projectung 3 incles over the cupcontuguous desks, sunce the sinks will be quite sufficient to indicate the limits of each
6a. Cupboards - Beneath each fable, a cupboard sumular to 2 b , except that there 15 only one sindng tray 4 mehes from top, sud there are two shelyem, one of which is 1 foot from bottom and the other mudway between thas and the tray, both coming to writin an inch of the door.
opes of same, with plug benesth glazed stonewrave, whate prpes of asme, with plug, beneath which is grating, joints Gc Tap, for water supply, one for each sunk.

Gd. Gas Prpea -One pupo dividung into two amaller ones (one for each table), placed aiternately with the sunks. Also near each sink one fish-tail burner for lighting purw poses.
Ge. Shelves,-Four in number above each table; strangly 1 font shove table, the others are 6 minches apart The shelves of one table are continuous with those of the adjacent tables, but separated from them by a narrow upnght placed aganst the wall; thase uprights may, but need not, come to the front
7. Gank at N , on the left-hand ade, with tap and arrangements for washing and drying tottles, \&o
8 Teacher's Wark Table at M, on the righthand side, 5 feet long, l foot 9 inchen broad, and 3 feet bigh; cupbosads bencath with revolong doors and two dravers about 4 mehee deep Deak arooved. Separate sunk, tap, and gas supply (two gas pupes in madde, close to the wall) Shelves above, the same as wath the other tables This table will be used for the preparation of class expenments
9 Shelves for large apparatus, \&xc Aganst, the wall and extendung, as far as the structure whll permat, all round the room (except over the desics at B and E), there are two firmly fixed shelves The lower one is about I foot above the top shelf of the work-tables, and the other not less than 1 foot 3 inches hagher Depth sboust 8 inches.

10 Cuphoards for apecmens, with glass doors, fixed against the wall at a convenient height over the deaks at B and E These cupboseds should be very broad, and neither too high nor too deep, to that as many specimens as possible within them may be visible from outade
11 Furnace, with plate and sand bath in the centre of the back wall Facing the fumace, there in, on the myit of it, the flue from the down draught of the lecture kable. Still further on the nght-
12. Draught-ctopboard as long as poserhles. 2 ft deep and 3 fi bugh Gaij jet m flue The fire opens ultumately into the furnace flae from the lecture table
13 Stall, on separate fire, placed on the left of the furnses
14 Gas burners or chandeluer for supplying light dunag lectures on forgy days.
15. Exercuse chest. A small woodes chent, sumular to that in the mathemstioal theatre of the College, but with a shindog door, whuch ean be altogether removed at pleature, and contaning about 200 pastitions, is placed at the back of the class leanches Each partitnon is about 25 neches broad, 4 mehes deep, and $\frac{7}{}$ of an men high

MANCHESTER

There are, in the Manchester Grammar School, two distimet Chemacal Laboratones - the old one, in whach the Laboratory and Lecture Room are conjomed; and the new
one, in which they are separated Both these Laboratories are comprised in one large building, occupying the site of the onginal Grammar School, built by Hugh Oldham. The arrangements of the two Laboratories are thus described by Mr Francs Jones.

I -The old Laboratory and Lecture Room
This Laboratory was fitted up in 1868, and wes prevously one of the ordinany echoolrooms. Its arrangements are shown in the accompanymg plan, from which it will be

Ground Plan of the Old Laboratory at the Manchester Grammar School,
seen that the lecture table separates the Laboratory from and others fixed to the wall, and not shown in the ground plan, contain the apparatus used durng lectures, as well as plan, contain the apparatus used during lectures, as well as the solutions and solid substaness given to the boys for analysis above the lecture table, as glass cupboard, connected with a good draught, serves to contain any apparatus
evolvmg unpleasant or poisonous odours The remainng evolving unpleasant or poisonous odours The remainng
portion of the room is fitted up as a laboratory It as arpanged to accommodate 30 boya, each of whom is provided with a cupboard for apparatus, and with a set of reagents, whoh are placed on shelves fixed to the top of the table Gss and water taps are fixed at convenent distances along the cables The smail circles marked on the plan denote the positions of the smiks for waste water A draugh cupboard for genersl use is placed at the end of the double table in the middle of the room, and behnd it is a stove which as used for warming the room os well as for heating cruerbles, \&c Ventilation is provided for by means of amall windows, and alao by a flue above the large gas burners used for lighting the room The cost of the Laboratory and Lecture Room was 3501

IIn-The New Laboratory and Leoture Room
When the increasing size of the Grammar School required the erection of new buildings the old School (a building 93 feet long by 28 broad) was converted into the present Lsboratory; the alterations were completed in 1871 The accompanying sketch ahows the ground plan and elevation of the four rooms of which the laborstory consusta These are -

A -The Lecture Room
B.-The Laboratory.
C.-The Balance Room

A.-The Lecture Room.

This room ys 92 feet long by 24 feet broad, and has seats and deake constructed for 76 boys but capable has seats modating 90 without inconvenience These seats rise her above tior so os to command a good view of the expermente perforzued at tho table. The lecture table is well supplied with gas and water taps, and has Jikewrse bunding screws fired in it, connected with wiree which pass along the thoor to the galvanio battery, which is placed in the draught cupboard behind the table. By thes means apace

18 saved on the table and the fumes arising from the battery are kept out of the room. The draught cupboard, which is well seen from the seats, is constructed as far as possible of Wlass, and is used for all experiments which give rise to unglass, and 18 used for all experuments which give rise to un-
pleasant odours The apparatus used for the lectures is pleassant odours The apparatus used for the lectures is on the plan) are close to the lecture table, and the remaining five are in the gallery (E E) The wndows are all provided with slding shutters which can be very rapidly closed, they are made of blackened wood and excluae daylight completely By this means the room can be perfectily darkened in one minute for the performance of experiments which requre the absence of daglight.

B -The Laboratory

The Laboratory is 48 feet long by 24 feet broad, and is provided with four woring tablew, the centre one bein double These tables are provided with 84 cupboards and drawers, which contain the apparatus belonging to the boys Ihe drawer is ao connected with the cupboard that one key suffises to lock both.
The common reagents are placed in ahelves at the back of each table, and special reagents are placed in surtable parts of the Laboratory for general use. The small curcles marked on the tables in the general plan, denote the positrons of the water-taps and basins, and , near them, at convement distances, ars the gas taps, of which there are 40. The cupboards at the end of the Laborstory contain the of reagents for filling the smaller boustis, sind also the stock dranght cuphoard sumilar to the botwes on the shelves A placed beside the rearent are five more cupboardf containing varnous chemicals and apparatus
apparatus
Although the laboratory contans cupboards for 84 boys the number working at one tume never exceeda 40 , asch of whom re provided at one nume neva arceda whom is pronded with a Bunsen limp, a retort stand, and
set of chemieal reagents With these exceptons, each boy provides his own apparatus.

C -The Balance Room

The balances are contanned in a amall well-lyghted room st the end of the Laboratory, ss shown on the plan. It one for less erant peretings The I sophical Sooity connected wnth the School, in also keption this room

D.-The Sulphuretted Hydrogen Room.

The corresponding room to the Balance Room, on the opposite side of the Laboratory, is fitted up with three large draught cupboards for the use of the boys In thas reom all experiments whth sulphuretted hydrogen, chlorke, and ther injurious gases, are performed
The Laboratory is used chuefly by the three Scrence Forms, the highest two of when work in it sax hour Weekly, and attend, besides, two lectures on Chemistry The boys of the Lowest Science Form attend one lecture weekiy, and work in the Laboratory for two hours The ona hour wrekly at Practical Chemustary and twoo of the Modern Langruage Forms devote three hours weskiy to Modern Language Forms devote three hours wbekiy to and laboratory work.
The cost of the two Leboratories, with the fittuggs, has The cost
been 990 .

CLIFTON.

Plans are given of Chemical and Physical Laboratories and Lecture Rooms proposed to be erected at Chifton College, to replace the amaliar ones which have been in use up to the present turae.

Grnmral Remares on Laboratokieg por Scimnce Schools.

The Commesioners will observe from the reples recerved that, whereas chemistry is practically taught in many schools, the boys willingy giving up much of theur play tume to lahoratory work in this subject, with the exception of University College School and King's College School, there is no school physical lebporatory.

There is also an opinion among the Head Masters that on the whole, it is better to begin with the elementary facts of physics than with chemustry.
There are many indications that the teaching of even the elementary parts of physics to young boys is bert accomphashed by assocrating the teaching with experiments, and by allowng the boys to do the latter for themselves, as far as posaxble

It as clear that for this jumor teaching much spparatus and a specially prepared room are not necessary, for the higher teaching apecial arrangements are as necessary as they are nuyersally considered to be in the case of chemustry

There are now in Ametica neveral such laboratories, in which large classes of atudents perform varous expenmenta instead of, or in addition to, attending lectures.
One of the first institutions to aftempt this metinod wes the Massachusetts Institute of Technology in Boston. In thus system, obviousily, the great difficulty $2 s$ to enable twenty or thirty students to perform the same expernment of inpury to dehcete instruments The plan adonted at the Institute on puesion has thus been descmbed by Professor Pickering :-
*Two large rooms (one Ilearly a hundred feet in length) are fitted up with tables, supplied with gas and water, somewhat lize a chemical laboratory. On each 18 placed the apparatus prepared for a amgle experiment, when always it in moving. A full written description 15 also given of it in monig. sond error or breakage Near the door is an indicator or board containing the names of the experments, and or board contannug the names of the experments, and opposite each is pisced a card bearing the name of the to the indioator, and each member notices what experito the rndroator, and each member notices what experiment is opponite his name, he then goes to the proper
table, reads the descrption, and performs it. He next table, reads the descmption, and performs it. He nent reporte his resuits to the instructor in charge, and if they
are correct his card 18 moved to some woocupaed place, and he proceeds as before Care is taken that the number of experments shall exceed that of students, and there is therefore no delay The instructor in the meantime is ensibled to press from student to student, and to see that no errors are committed. As quanitative work is far more valuable than qualitative, most of our experments are of the former knd, and the student learns to measure physical constants, and to verrfy laws numerically For example, in one experiment a steel bir is supported on kmfe edges, and a weight is applued at the centre. The fiexure is then measured by a macrometer screw, the exsct point of contact beng determined by incinding the screw
and bar in the curcuit of a batbery and galvanometer Aftor making e number of experiments whith various wenghts, the student constructs a curve, in which ordinstes represent deflechon, and absctsse weighte spplaed. The law of elasticity shown that thas curve should be a stranght line, and the close agreament is convincing proof to the ztudent of it correctness. In the same way the law of the conjugate focl of lenses is tested, and the observed curve compared With that deduced from theory. Some expenmenta wa introduced to necustom the student to general methods of research, suen sa the computation of probaina crror by least squarea, van ous forns of interpolation, ke. The graphical method rs largely used, as is at bis same lime glance white the instructor con constantly tell how one glance, objects are selected to thow certain renerel method of using the instrument one requing a diphers macond oblique illumination and so on Agapn the tra dent news by polarised ingt such ofecte as uthennesled glass, crystale, derigus in selonit end etudres the effoct produced by various angencies. By thus handling the in produced by various agencles, orruments, he acquires a factity in waing them, and com prehension of taen conserruction which he could never by many of the stadents led to the hope that valuable resulta might be obtained hy assigning to different students the experiments in s researoh, taking care that each thould be repeated eeveral tanees by different indsviduals. These resulte, if concordant, would be much more conclusive than those obtained by a enagle expernmore concluase than those obtaned by a aragle expers-
menter, ince thay would be frea from all personal biss. In this way some interesting results have been attained on the foc of lemses placed obliquely, the flow of aur through straight and curved tubes, and other similar subjects. Photometry and electrical messurement seem eape cally suited to this purpose, and the application of the latter subject to submanne cables would be both interestring and instructave to the atudent. During the winter tirac of 1869 and 1870 ebout anxty students worked in one labora tory, wo that the experiment was tried ou a sufficuently large scale to enable us to speak with confidence of it success We found the system described above worked well, the students were interested in the subjeot, and pbtamed resulta of consuderable accuracy The losa fy breakage was exceedingly emall, and the current expeases mangnificant compared with a chemical laboratory ance there is but little consumption of the material employed "

The followng anggestions as to the amount of space re quasite and the arrangements for chemical laboratories have been made by the Scrence and Art Department, and pobnittee of Schools who propose to erect building or to convert existing buildinge to school use. It $2 s$ expressly stated that they are to be considered merely an meationa, and not as absolute rules to be tollowed implicitly under all crecumb stances; still, as suggestions merely, they are ao valuable that I append them and the acooropanying plans

1. Laboratpry for 20 Etudents.

"A room about $35^{\prime} \times 19,16$ high to cenling (or colla: beame, lighted by wrindows on both aldes and, $1 f$ pos sible, a skylight, and fitted up with workmg benchea The method of arranging these beaches mnst depend upon the special crrenmetances of the case, but, whe possible, a very convensent way is to arrange them in groups of four along the side walls Each working space should be $3^{\prime} 6^{\prime \prime} \times 2^{\prime} 6^{\prime \prime}$, which would make each grout $7^{\prime} \times 5^{\prime}$, and in a room of the above dimensions a passage of 5^{\prime} (whuch might, however, be reduced to 4^{\prime}) would be left down the middie of the room between the ends of the benches, and abonts 6^{\prime} would be left in the clens between the benches Five groups of benches would accommodste the 20 studento. Three groups thurd beon ane side of the rooma, and the benches of tue hard groud might bee made a litile longer to give the room would be vaucad strad of two groups of benches, and opposize the thind otem apparatua, gas furneces, \&rc.
"In each wall space between the benches should be a closet about $16^{\prime \prime} \times 9^{\prime}$ and 2^{\prime} high for sulphtrretted hydrogen. The closet should have a flue which mas be made of $2^{\prime \prime}$ dratn
 it by a sarsil ges jet, or in there be a good upesat ahaftiro
furnsers in the bacment these fines may be led into it.
"Another way of arranging these closets, which has been found to answer where there is a good upcast shaft, is to construct them of wood and put one on each working bench . Wo. woden tube carred along the top of the bench to the Wall, and thence along the wall formang the flue from it to the shatt In thas case it would probably be found bette to arrange the benches together, and have the passage down one gide of the room insteed of the centre
"Each worker should have gas lard on to has space, one sink and water tap betwean two 18 sufficient, or one sink with two tapes, in the centre of each group of benches, ex cept for the adill tom

* to pron $14 \times 19^{\prime}$ bould bo
vided for balances and other delicate apparatus Thas might also serve as an ofice The pould dou

There would, doultiess, in the same school be other clasees, in which case a lecture theatre would be provded for general use In close proximity to this should be a preparation room fitted with working table, gas furnaces, preparation room fitted with working table, gas furnaces,
steam apparatus, \&ec, to enable the professor to prepare for steam apparatus, \&c, to enable the professor to prepare fore noxious gases, \&c, and it might aerve also for the lecture noxious
"The laboratory would be best placed either under a separate roof from the other class rooms, or in the top storey of a bulding, of which the ground floor would give space for the other class rooms, and the basement would contan the heating apparatus, washing and cloak rooms, metallurgical furnaces, and space for any other work which from its nature could not be carried on in the general laboratory"

2. Laboratory for 50 Students

*A laboratory about $50 \% \times 19^{\prime}$ should be provided for 30 elementary strudents This should be fitted with working benches, fe, as the laboratory described above.
"A second laboratory about $36^{\prime} \times 2246^{\prime \prime}$, or $43 \prime \times 196$ should be provided for 20 advanced students
"Each advanced student should have a space $4^{\prime} 6^{\prime \prime} \times 2$ 2 6 " with a sink, double water tap, two gas jets, and if possible s sulphuretied hydrogen chasat to himself
.There should be a steam closet, sand bath, gas fumaces, \&ec, as in the other laboratory
to the admaned laboratild be provided an close proxmity to the advanced laboratory
"An operation room should be provided. Thas may be with the furnaces, \&o, in the besement
"In a school of this size it would probably be found advisable to provide a pnvate laboratory for the professor A room about $12^{\prime} \times 16^{\prime}$ would be sufficient It should be fitted with working table, steam closet, gas furnaces, sce
" A themcal hbrary would also be very desurable This might be kept in the same room as the balances structed sabove the one of these laboratories might be conover a laboratory, $\theta 0$ that there may be akyinghts and ample meang of olearing out noxious gases."
" Plan of Laboratory for 20 Students

"a Group of four beaches for aivanced students.
" Groups of four benches for elementary stadents.
" c Sunks, each with two water tape.

"Scale, 10 feet to an meh."

Up to the present time, a Telescope, to say nothing of an Observatory, has been by no mesns considered as a necessary instrument for Scientific Teaching in Schools Nevertheleas, both at Rugby and Eton Observatories have been arected, to which attention must be drawn.
The Temple Chservatory at Rugby, which as now playing as umportant part in the acience education at that school a wooden buiding of unpretanding appearance, both aside and out; it is in fact bult entirely for work. The will pender the plan and drawng, taken from a photograph
 and round the walls ane sialves rend tarlos for hivan Clark \&c. In the small monem adioining are kept bpectroscopes and other unstrument when not in use on the telescope - Sprangel aur pump, and vacuum tubes, batteries, and colls
for examanation of the spectra of gases, are also in this room; a hehostat above reflecting sunlight down for comparison At the end of this room is placed a reflector, 12 in aperture, by With, the whole of the mounting for whuch has been made in the town of Rugby, aecording to the plant and with the assistance of Mr Seabroke, and is good and substantial throughout, althougin without polish The spectroscope made on the return princsple 18 also of local manufacture, costing, we believe, about $10 l$ only Whthout the prisms, five in number, each used twice. The Searratory and aner whe ther hr nught, when one or both or them are there every fin observe; generally there are three or four preat aThe work consents of mesourng posions and distances of double atars, in which the boys joun, them readings being
valued according to thex expersence, those who are not actually observing, receiving instruction till ther turn comes round In the daytime, when the sun is pisible. Mr. Seabroke notes the postions and heighte of the solar prominences, in which he is sometimes assisted by the boys, Who shiso make drawiags of the prombenca and spots. culatang the orbits of binaries Itie methods followed are

Ground Plan of the Rugby Observatory.

View of Temporary Observatory for Reflector.

The Telescope at Eton, recently given to the school by seen from the drawng, mounted equatonally on the Germun

The Telescope at Eton, recently given the the gchool is the eaergy and biberailys of 59 unches clear 'aperture refractor, whth objet glass os made by Messrs Cooke and
and 88 inchés focus, and was mater Sone, of York, who also supplied thie observatory and superntended the erection of the telescope It 13 , as will be
systam, whth declingtion circle reading to $10^{t \prime}$ of arc, and hour eircle reading to $2^{\prime \prime}$ of tuae The mechanical details do not, wrth one exception, deviate matenally from the pattern usually adopted by Messirs Cooke
The telescope is furnished with a sufficient battery of

the myon rquatorlat
oye-pieces, of powers ranging from 30 to 400 , and also with The floor of the observitory un supported quite undebiffilar micrometar The position cirela 18 permanently attached to the lower end of the man tube. The observar cory is erected on the roof of the western tower of the New Schools. It is square, and surmounted by a revolving dome. It is obwioua that an instrument esected on a towar cannot be wholly free from vibration; but the lattere is reduced to a minmum by supporing the telessope on two masare trussed inon gurders stretching across the tower pendently
Besides these large Observatories at Rugby and Eton there is a smaller one at Rossall, which is aubstantially built, and furmished with revolving dome. It contanna a $4 \frac{1}{2}$-inoh refractor, equatonally mounted by Slugg, of Manchester. It has not been used recently
I am informed that a telescope of considerable powe has been purchased for use at Clifton College, but the Observatory is not yet boult

§ 13.-MOSECMS AND BOTANIC GARDENS.

Clifton Colleas

The Museum and Botanio Gardens at Clifton College ware first projected in 1870, when a fund was begun to defray the cost of therr formation and malatenance. A sum of more than 3701 has now been rased, and though the expensea have been neoessarly heary, both the garden the erpensea have been neoessanly heayy, both
The Head Master of Clifton College (the Rev Prebendary Perraval), erected at his own expense and presented to the calloga the extensave buildugg untanded for a hbrary
and museam. It is a well-hghted apartment in the early Englush atyle, 60 feet by 23 feet, and situated on the first floor. It comprases five hays, the lower ons beng st Atted in between the wndows, so sa to form ane cases aro receases annered to the vindows of the morm. A series of in each for study. The librarg is alreads, will atabl in each for study. The library 18 already well stocked worka of atandard authors The archrtectiare of the library and museum is in character with the rest of the

The mugevm of ohifton odlleae

The museum must be considered es still m its infancy, bat though there are many gaps in the collectiong, some of them are remarkably good An umportant rule was "be essentially a Britzsh one, and shall museum shall " nastural history and antiquities of our land by good specr"mens syistematically arranged, under the departments of " zoology, botany, geology, muneralogy, and archæology. "In addrtion to this, there will be a collection of rare and "curious abjects, which may be considered useful for the "purposes of screntsic teaching, and s large typical serjes to "be used at the lectures and demonstrations given mo the "college on comparative anatomy and other branches of natural history. The committee of management will only "socept of such specimens as cara beclassed nnder some one "of these heads" This rule has been hitherto absolutely adhered to and there is irtile doubt that ite adoption will nasure the reas utility of the museum, and whil make the collections much more perfect than could otherwise be expected.

The late Professor Sedgwnck sent one of the best typical collections of mesozorc fossils, consisting of 440 eppectes and 1,100 opecimens. The gift is in every way mest valuable, and it is one of the moat useful that the musenm has yet recenved. The palzoozone fossils were very inperfectily represented tull lately, when a large case was received frome the Dreactor-General of the Irseh Geological Survey. The specmans are mostly typical, and are all named.
Iarge collections of freat rerity.
Sampel Woilen per also been recenved from Samuel Worsley, Eseq , of Clfton, and many other consributors. The local series of forsals is considered of the sble supernitandence of J. G Greanfell, Feq under already attamed considerable dmensiong The expeditions of the geological section of the Clifton College Scientafic Somety have been the means of procuring lage sccessions
to this collection, and among udividual donors, mention should eapecally be made of \mathbf{J} Rosatter, Eaq, and $\mathbf{S} G$ Perceval, Esq

The rock specimens are at present few and unimportant, but Professor Phillips, of Oxford, has promused to gnve shortly s number of duplicates from his aplendid collection m the museum of the University of Oxford The kind mess of a Clifton lady (Miss Wills), has lately furnished the museum whth s complete senes of poisned cubes (iol Cufton They are ary ning in in Chifton They are arranged (in stratigraphical order) in one of the glass cases, and ased for the use of students.
The minersls in the maseum comprise not lesa than 1,000 different kinds, masy being very valuable The greater portron of them was lately acquired in the followng manner - -W Sanders, Esqus F \& S., wishing to dispose of a large moneral collection which he had formed, kndly offered it to the museum atis cum very much under the real vakue he fortiner ofered to give one-turd of the amount as a donatnon from humeel. The hev Heyworth, Charman oing ing offer, f ell contribur the spaall conlribu and excellent set of munershe has been unared A catalogue of the collection is in prepartson. and will shortly be usmed.
There is a large collection of sheils, arranged in three There is a large collection of sheils, arranged in three Berres, s,e., 1. Britsh land and freen water ohells; 2. Woodward's Manulal of the Mollueca hase been used min Woodward's Manmal of the Molluced has been used m A. Crutwoll, Esq., O C, was ono of the largent contminnA. Cruttwell, Esq., to thus department, but valuable grits have been musde to it by many others There are a great imay duplicata, which sre offered for exchange.

A report on the Lepidopters of the museum has been drawn up by the Hev, J. Greens.
The Coleoptera are represented by a great number of specimeas, and Mr Barton, an experienced coleoptenst, has very kindly undertaken the re-arranging and labeling of them. Professor Westwood, of Oxford, is the contributor of one-half of these insects, and he has given so much time and trouble to the selection and namugg of them, that the warmest thanks of the society are due to him. J. F. M. H. Stone 15 also the donor of a large pro-
portion of the whole collection In other departments of portion of the whole collection In oth
entomology there are very few examples.

The eggs of British burds are numerous and well arrine eggs of Brish British birds, lists of which have been drawn up manly by J. F M. H. Stone and P. A Ogivie.

The curstor of the museum and botame gardens has lately begun the formation of a zoological series, intended to illustrate typically the leading horme of somai ine, sad mg portions of the museum, though the limited apace at command will prevent it from becoming very extensive
An Oateological collection has also been undertaken
An Oateologieal collection has also been undertaken, fine elephant'e skull, procured for the college museam in Indua by General Mcheod Both the osteological and the zoological series will be of very preat use in instruction, and the curator is anzious to receive additions to them.
The coms form a large collection, and many of them are rare and valuable W. Barlis and J Pxasep have fot some tame been occupied in arranging them, but there is much need of a good anbmet, for the purchase of which funde are needed. R Bamford, W Hill, and A Paul, Esq , OC., have contributed largely to this department of the museum,
A good museum is of little use whthout a good scientific library, and a greal many atandard works of reference, mostly illustrated, have been purchased for the use of the atudents. A welcome addition to this scientific library has Iately been made by Thomas Proctor, Esq, whose donations to the Museum and Botame Garden have been most munlficent The naming of fossils had hitherto been a difficult task, from the want of good drawngs for comparison and vefarence, but this want Mr Proctor has now supplied, by presenting to the library an entire set of the publications of the Palxontographiosl Sooiety. F F. Tuckett, Esq, has also presented many useful scientifio works to the library

The Herbarium is at present placed in the Museum, suitable drawrers having been provided for it It is now of considerable extent, and most of the plants are uniformly mounted on stif paper, and labsiled The nuclens of the by the late Miss Mills, and contributed by her nephere The Rev. James Heyworth has lately presented a pery large number of specimens, collected by hrmself (especially moh in ferns and; seaweeds), together with another semes made by Mr Thweates, of Ceylon It is proposed to make a. local herbarium

It romains to say something of the Botanio Garden It may be gathered from the announcements of donations made at the Sementific Society's meetings, the gifts to rt have been very numerous, The following lostititions and private individuais have given the most sealous help in the formation of this garden the Royal Botance Gardens, Edinburgh (Professor Halfour); Trinity College, Dublin (Professor Perouval Wright); Royal Botanio Gardens, Regent's Park, London (W Sowerby, Esq), Royal Botance Gardens, Glesnevin (Dr. Moore) ; Botanic Gardens, Hull (J. C. Niven, Esq); Rev H. N. Ellacombe, Bitton, J. Saunders, Esq, Chfton; George Maw, Esq, Broseley, J. Backhouse, Esq, Yórk ; T Proctor, Esq, Clifton, Further donations are promaed by Dr Hooker, Kew; Professor Lawson, Oxford; Professor Babungton, Cambrige, and J. Ruchardson, Esq, Liverpool.
The formation of the garden was a work of considerable dufficulty, the place assigned to it being exceedingly barren and unpromang. The garden is divided by a path into two portions, each with a neat iron fence Tho hedges are formed of the followng shrubs . Berberns Darwowes, Spartum jumcenm, Ulem ewropea flore-pleno, Cerasws Lanuro-Cerasus, var. Colchuca, Rose rndica (monthly rose), lngwstrum japohucum, and Aucuba japonica At intervals along the hedges are placed examples of the trees and shrubs undgonous to or commoniy grown in England. This arboretum (presented by Mr Proctor) 18 intended to familarise specumens which they are likels to meance of the common and shrub has a toney are havely to meet wrth. Every tree the Enghah and Latin name the natrural order, bearing native country of the apecimen. There in ans
rockery on the terrace in the garden, now completely stocked with Alpine plants, and a number of rare Pyrenean plants, obtained by purchase from Chevalier Bordere in November 1871 The collection of Sarifrages is good and flourshing The herbaceous plants are disposed in the plots of ground, and they are grown in narrow parallel beds, with athips of grass border between. They are, of course, arranged accordng to the natural bystern, a large label indicating the limats of each order, while a maller one is piaced beside every piant. Aquatic plants are grown in large pots fied wher for in sond in the ground s sorry substitute, howevor, for a pond, and it either be adequate or pell grown thll some pools are formed for the special reception of this important pools are of plants Thare are ot present ehout 1000 or 1200 apecies of flowering plants, but some of the geners (and even orders) are poorly repressented, whule of others there are too many But, when it is remernbered that the garden is of recent formation, the progress made may be considered satisfactory The curator has had great assisconsidered in the determination of the different species of planta from his friend, Mr. G C Churchull, and both here and in the Museum he has never found lack of ready help among the boys of the college, for whose especial benefit both mstitutions have been formed
When the various collections are a luttile better developed, the curator hopes to rasue descroptrive catalogues, which he thinks will make their utility much greater The first of the semes $2 s$ to form a guide to the Botanic Garden, and it will be shortly followed by others on the munerals, shells, and insects in the Museazin.
The eurator thus conciudes his report "-"It remans that I should say how urgentizy we require further con"t tributions, not only of monoy, but of specuméns It will cige ine great pleasure to communicate with intending "donors, and all gifts will be duly acknowledged at the " Scientifio Society's meetings. The following is taken " from a cricular recently xasued. It will give a general idea " of our requrements :-
"Clipton Collerge Mubevm -Lrst of Desuderata. Britush Fosslds, with name (and, if possible, Iocality):Those from the Palæozorc formationg, and local specmens specially desired
Britush Rocks Named -Any good typical specimens.
${ }^{4}$ British Minerals.-A few good ones only, the collection contanang already nearly 1,000 specimens The sub curator (J G Greenfell, Esq, Clifton College), wll be glad to furnish mineralogists with the names of those most needed
"Britush Shells,-Only the zare ones now wanted
"Bratush Crustacea and Eehnodermata.-Any, We have very few
" Brutwsh Leprdoptera --The nub-curator (Rev J Greerre, Apsley Road, Clifton) still requres a considerable number of specimens, but the commoner ones have nearly all been supplied
"Britsh Coleoptera.-We have a large collection already, which has not been as yet fully arranged.
"Bratsh Dypterd and Orthoptera, \& c-Any
Bratish Eggs - Information can be had of the subcurator, D. Pearce, Clifton College. Many more egga are aseded
and Bruth Burds.-The nesta of Bntish burds are desurable, and a considerable numher of stuffed burds
"Briksh Mammaha -Skins or atuffed specumens of any ound wild in Britain
"Bratsh Plants -The herbarnum now contanns more than a thousand species, but good specmens of rave or local plants would be bughly acceptable
18th Bretish Cows - Any pronncial tokens of the 17 th and 18th centumes are also needed
Britush Antrquitres.-Celtic, Roman, or early Enghsh remains. Many persons would probably be able to nssist in the
amall
"Zoolognad Seriet-Forengn apeamens are heme ad missible, but, as types only of the principal natural divisions are required, it is desirable that the curator should be consulted before any such speomens are forwarded.
"Osteology.-The skeletonn of the perch, frog (or toed), snake, plecon, echidns (Ornithorhynchus), cat, rat, mole, bat, monkey, skulls of the pike, crocodile, tortoise, turtle, hasard, any large brrds, any marsupialo, sloth, armadillo; anteater, dolphin, byrax, hon, tiger, bear, seal, walrus, monkeys Separate vertebrae and other bones of fish, crocodile, any large birds, carnuvors, sc.
"Scuentyfic Books.-These are much required, especually
such illustrated works on Natural History, Grology, and Botany, as would be useful for reference"

Rugey School.

At Rugby there is also a Museum contanung a very fine conection of gealogeal specmenens, a large portion of then a good collection of minerais and numerous rock 日pecimens The followng descrption of this Museum has been urnished by Mr. Wuson:-
History -The orignn of the muselum was a oollection of the school by the boys at Dr. Aruold's request. These wer placed in cases, in many instanoes without names, or loceLities, or arrangement. Subsequently, two of the assistan masters, the Roverend C.T. Arnold, and the Reverend H. Highton, arranged and catalogued such of these as could be adentrifed, and added to the collection some specmmena of rocks and fossuls obtamed by purchase
Rooms.-The rooms st present available for collections to ullustrate Natural History are a part of the Arnold library, and a manall room belonging to the Natural Hustory Somety.
Gealogical Museum-In the Armold Lubrary are placed the geological colleotzons. These consust of (l) a local collection of Ynas fossls and Drift stones, which has grae
dually accumulated under its present Curator, Mr. Wilion, dually escumulatated under its present Curator, Mr. Wilion, parthy from the gifts of collections made by the boys. A hast of thirs collection has been puhlished in the R S. N. H. Society's Reparts
There zs also (2) a general oollectoon of fossls arranged stratigraphically in a senes of glass cuses, with drawers underneath, whioh 18 sufficiently complete as regards characteristic fossils, for elementary geological teaching. It contains, however, but feow fine speemmens, being the result not of purchase but of amateur work in vanous parts of England Among donors to this collection, besndes the present Curator, may be narned Mr. J R. Allen, Reverend T. G. Bonney, $\mathrm{Mr}_{\text {Preston, }}$ R. Deverend C. Mr S. G Perceval, Reverend T. A. Preston, Reverend C. S. Taylor, Mr G H. West
There 18 (3) a colleatson of rooks formed by the present Curator, partily by purchase Thas has been lately arranged by Mr. .C Hougaton, in a serres of ehelpes bebind glass, sccor farg to we arrangenent of Colta Lany gaequate or he elementury tewhag of Geology from varrous sources, which has been arranged by the from varrous sources, which has been arrange oy the mucal besgs. The collection, though very mcormplete, must be regarded as adequate to its present use an teachung
A collection of photographs, sketches, and diagrams h boen made by Mr. Wison, and is found of the greatest wee in geological teaching Some merophotographs have been in geological teaching
presented by Reverend H Her Microphotographs have been
A model of the neghbourhood, on a scale of 6 inches to
the mule, is in process of formation. a scale of 6 izohes to Botany. 1 In Boctany the school
Bratany.-In Botany the school possesses a herbarium of British plants, coliected by Mr, Kutchener. There is also a special local collection of plants- It bemg found that a herbanum in ats usual form is of hardiy any use to a school, freely for reference, the local collection is in course of trangference into large note books, where they will be securely fastened, and repinced from time to tome of ingured
Various collections have been alko preseated. Britush fernis by Mrs Gray; Canadaan and other plante by Mr Moberly; Britash plants by Mrs. Phullpotts (many plants mathus collection were collected and named by the late Mise Warren) Bnteh Rubr and Salices by Reverend A Blozam; New Zealand plante by Mr Rend of Otago The school also possebsea the sexes of drawnugs snd specumens Mlustrative of the natural orders prepared by Mr. Olveer of Kew, and a considerable number of other diagrames on botany.
Zoology.-In Zoology we have a valuable seres of dissections 3 llustratang the comparative anatomy of the anmmal
kng dom, and specially adapted to Dr Rolleston's "Forme kugdom, and specrally adapted to Dr Rolleston's "Forma of Anmai Lufe., The preparations were arranged by Mr. C Robertson, Demonstrator of Anstomy in the Oxford Museum, and are dupheates of the origmal Oxford series They were presented by Mr. G. H Morrell, late Assestant emonstrator at Oxford
A anad collection of skulls and skeletons of local mamemaka, and a collection of hirds' eggs have been commenced by the Natural Hiatory Soclety The
of shels of land and marne molluaca
The Insect Collections. There is at Rughy a collection in process of formation of all the Brists Leppdoptera. Three smailer collections mande 12 Dasin 0 us parts of England, and presented to the schook, were anited together and cresced from tume to tume by borl who collect for it beade presents firom those who have left end who still keep up the
study In the cabinet all thone species which are found at Rugby (none but well euthenticated oaptrres bang ro corced) ary tnarked with a letter un red ink, to that the local species may be dustinguashed at a giance. It is hoped that in thme this may be nuade a farly comaplete collsoction for purposes of atudy. Any remarkable vanetrea are oupecrally preserved and placed close to the ordinary speoumesa of the species
From time to thme presenta are made to the museum of cases of Poreagn insecta, but not hitherto on a large enough scose, nor gonerally mo a sufficmently satisfictory state of preservation, to make it worth whe to attempt onythung ake an European collicction even of a lumsted proup or number of families. For purposes of study, that tis, epeask. ung more precisely, for the obsarvation of the genaral characterstics of groupg, and the shades of difference by Which they gradually divarge, the most instructive method
would be to forma an lection of lection of one or more amall groups, as, for instancos, cestann Well represented and wdely distributed familes of butterfies. and it is hoped that something of this kund may in
future be attermpted atuare be ettempted
No atterupt han yet been made to study any groupe of masects except the Lepridopters. The chiof aause of this deficlency 18 the absence of soy cheap or accesenble text Lepidaptera cabmnet la filled, it would oertonan on, and the topextend the collection to the other orders, at least to the Coleoptera and Hymenoptera.
The whole of the work min this department has been done by the Natural History Society, entrively apart from say school work.
Destdercta.-The teaching of all branohes of Natural History at Rugby has been much influenced by the fact and parthal collectoons as no sathefactory tenching of zoology 10 ; wothout a zoological collection Whinn these of geology, a higher place no school educntion, and are taughets tare who have themselves had the advantare of the by men museums, the present state of thungs will not be tolerated. Among our desiderata must be mentioned, in the firat place, a proper room for a museum. This it is hoped may pe found ultimately in the Armold Library When the Temple reading toom is buit, the Armold Librey will arallable for a museum and library of books on apeanal subjects, such as the natural aciencest and aniquities it is large enough for both these subjects, an any rate for some years to come, and is a room suutable for a muserm but unouitable for a reading room or hbrary. But the establishment of such a museum of geology and zoology as would be of real use in echool teachung involves considerable expenditure on specimene, on diagrams and printing, and on propar caseb for the apecinens. And moreover, no museum would be of mach use nuless there whe a curator in constant attendarice, and this coste more money The masters have far too much to do to attend properly to the ecaseless work that the care of a museura involves; and a museum only acceasible to boys when a master can afford trine to be present would be in practics almost useless. Nor can a museam at sohool be thrown open to all, without the presence of a curator. Accodente are sure to happen, and the result 18 endless annocyance.
It is probable thast the true functions of a museum af
school have yet to be discovered, bat it cannot be doubted school have yet to be discovered, but it cannot be doubted
that in Classical Annquities and in Natural History is that in Classical Antaquities and no Nataral History :
mungeum ss esseathal if the boya are to know thunga at frst
 follow it in not vecessary that it ahould be large, but it Ls necesssary that it should be well selected. The ordinary museum of the present or past day, consistzng of two or rdols se not instructere and un not the deal to be uned as Rigorous exclusion of mere muicellaneous cunomilies nuast be the law of the museum.
A larger room as wanted for the use of a Natural History A larger room is wanted for the ate of a Natural History it will not be difficult to eupply thin went.
Aroong other desidersta mant be mentioned a botanceal garden, in which the local plants may be arranged in thenr ordera. It is possible that when the new obserrsstory 18 bmilt, and it is only a question of site that manang deley,
some part of the gronnd surrounding at may be made some part
The present writer cannot help expressang his hope that a maseam mill not long remasin a desideratam. A col lection sufficient for all school nees conld probably be
 some one is not found who will by such a gift perpetante
his name as an enlightened lover both of science and of the school

At Cheltenham College there 18 is Museum, partly screntific in contents and arrangement, and there is a botamical garden of half an acre. The museum is barely three yeard old, the botancal garden just 12 months.

At Taunton College School there is a Typical Museum and a Botame Garden.
At Marlborough School there $1 s$ a Museum and a Botamie Garden.
At Dulwich College the formation of a Museuma of Natural History has been lately commenced
for the use of boye who collect obzects of Natural Mumand

§ 14.-SCHOOL SCIENTIFIC SOCIETIES.

At all the Sohools I nsited in connection with which Natural History Socleties have been established, I was ao fully assured of the value of these organizations in developing a sprit of mquiry and observation among the boys, that I have brought together here the Rules of several of the Socienes which are already at work

Ruaby Schook.

The Rugby Sohool Natural History Society was founded in 1867 , and at the present time (October 1872) consiats of nine honorary members (chyeffy masters of the school), 39 corresponding members (chiefly old pupils), 15 members
(present scholara, who hape been elected full members for (present done), and 62 associatea (present scholara not yet promoted to full membershup). The society at present comprises nearly one fifth of the echool It is worked by public meetungs (held once a fortnght), at whech objects of interest are exhibited, and papers (by masters or boys) are read, by sectional meetangs of boys havng Bimilar tastes, as, for mastance, the botanustio, the geologits, the mioroscopists, next, for work or diseussion, by occasional (though riecessarily rare) excurssions from Rugby, the places vinited durng the year $18{ }^{2} 2$ being Charnwood Forest and sieveral factories at Birmungham, and by the use of a special room to which the members of the society alone have aocess. In thus room are kept collections of msects, piants, \&o, dusseations and skeletons arranged for study, and a library of books on natural science 18 being formed Por reference A report of the proceedings of the socusty 1s published sanualy at Rugby have an tuaence for god on the thera. Me merally from 70 to 100 presut that pot retting the boys themselves to take part in the meeturg gethag the boys themselves to take par or the discugiong hence it is belleved that greater real good ts done by the smaller sectional meetings The nociety is found to be yery valusble in bringing forward any boy who has a specialuty walusble in bringing forward any boy who has a speciality which, in the hurry of schood work, might have escaped nuced by hus freends or by askung questions, and the president then introduces him to the other boys in the school who have kundred tastes, and brigs hum under the notice of the master who has charge of his favourite aubject It is found that the boys are delighted to be of any use, and will undertake any scientific drudgery that may be suggeated to them, provided they are assured that it will do sothe good Some good work is done in recording meteorological observationa and foral dates, and in making aketches of striking or interesting geologioal sections, \&o.
The rules of thes saciety are as follow:-

1. That thas socaety be called "The Rugby School Natural History Socrety."
2. That the socsety consist of honorary members, corresponding members, members, and associates
3 That reasters, and others connected with the sohool, be oligible as honorary, and old Rugbetans as corresponding members, that present Rugbeans (havang attended as a vistur three of the socienes meetungs) be eligitle-1f in the upprer sohool or sixth, as members, if in the middle or lower school, as assocites.

of Offiers.

4. That the socaety's officera conast of a prendent, secretary, and troasures, and of the keepers of the several abums, and that these do form the committee of management, three ta be a quorum.

That and elected annually
seommand a wember are it pacunts the committee do
president) an honorary member, for electaon by the mexbers of the socrety, and that the election be by scrutiny 7. That the preandent take the chair at all meetings, but have no voke except in cases of equality
8 That the secretary keep the minutes of the scerety's proceedugs, keep a hist of all persons present at each meethigy keep a hist of the existing society, with the names and addresses, as far as possible, of all corresponding members, and a list of all benefactors of the society :
9. That the pressdent and treasurer form a sub-committee for managing the finances and keeping the property of the society.
10. That the duty of the esveral album keepera be tarecerve all notices connected whth therr several sections, to enter all: occurrences of unterest in therr slbum, and at the end of each year to furnish a report of what has been done in his section during the year.
11. That in the absenes of say officer the commutte appomen a deputy.

Of Honorary and Correspondang Members.

12. That honorary members be elected by open vote of the society, pay an entrance fee of 10 s , but no subscription unless specrally called upon; and have all the privleges of members, except that of voting

13 That corresponding merabers be elected by open vote of the socrety, without entrance fee, and have all the privileges of members, except that of voting, but be required to pay for the socrety's reports, for a aupply of which they may pay a composition of $10 s$ for six years
ant menbers or associates, on leaning the sobool become corresponding members wnthout election.

Of Members and Assochates

15. That members and associates be proposed by a mem ber or honorary member and elected by the committee ber or honorary member and elected by the commattee
16 That there never be more than 20 members, or mors than 20 associates
than 20 associates
2s $6 d$. That members and associates pay a subscription of shall, at the beginming of any terxa, be reported by the shal, at the beginning of any tarm, be reported by the treasurer as not having paid his subscription for the last two terma be struck off the hat of the society *
18 That members may speak at all meetings of the moclety; may read papers with the leave of the president, recerve a copy of the society's report \uparrow
XIX That associates have the same privileges as members, except the right of voting at private meetings of the Aocrevt
XX That associates, on reaching the upper school, do not become members without electan by the comanttee XXI That any member or assocuate may be suspended or expelled from the society by a vote of two-thurds of the members present, if he, from any misdemeanour or, want of energy, appear to deserve such suspenston or expulaion

Of Meetrags.

XYII That ordnary meenngs be held once a fortnight but that the secretary be empowered to call extraordinary meenngs when necessary.
XXIII. That visutors may speak and read pepers at all pubho meetungs, with the leave of the preasdent.

[^11]Of Reports.
XXIV That a report be pmited once a year, or oftener of the committee think fit.
XXV. That an editng committee, of two members and ons honorary member, he appomted by the president for each report.

Of New Rules.

XXVI That without notree given at the preceding meeting no change can be voted in thess rules, or any name be submitted to the committee for membership oil association, or any vote of suspenaion or expuision passed.
roposed by a member or honorary member and carried by the votes of two-thurds of the members present.

Clifion College.

The Clifton College Screntufic Socrety, wheh was founded on the 25th of June 1869, 2 m managed by the boys themselves and one or two of the Science Masters. "This "c society holds fortnightly meetings, at whych secentafic "p papers are read and ciscussed, objects llustristive of " natural hinstory are exhbited and explamed, and so forth. af A record of its proceedings is kept by the secretanies, the
as The number of boys who can belong to it is limited to 70
if and the interest excited by in the satiol 18 so conerder,
" able, that there are regulariy a number of boys waltung
" their tharm for alection."
The Science masters and the students are at present engrged in the formation of maneum, wheh they are making of a atrictly educational character, i.e., admicting nothing but what contributes durectily to its educational vaiue; they are also stocking a moderate-sized botanimil materally help the study of botany, and they are about materaally help the study or botany, and they are abo
to set up an apparatus ior meteorological observamons.
the chief agents, only advised, drected, and assisted by the Scrence Masters, and one or two screntufic neighbours who take a warm interest in these matters.
Thus the Natural History Master is President of the Sclentfic Society, and curator of the museum and botanical garden, but for everything connected with their menagement he has associated with hime committees of the boys, made up of those most promment in these subjecta "
A new feature in the constitution of the socuety deserves especial notice "In February 1871 it was proposed to "found 'sechons' for the study of certain scrences, and as * the plan met whth a ready acceptance at the hands of the * accuety, seven of these sectrons have been formed, and are " now in full working order They are as follow, botary, "geology, zoology, entomology, chematry, physica, and "archzology A 'director' of each section is nominated * by the soclety, and some one is appornted by him to "Keep, the records, \&ec, with the tatle of "sectional secre"f tary, Not more than 10 raembers are admitted unto "f each of these companies, and although it is not abso" lutely forbidden to join more than one section, it is at "t the same time discouraged, for the commattee beheve " that the best members of sections will be those who do "r not distribute their energy over many varied subjects. "The preandent and secretary of the society are emofficso " members of every section, and may attend the meetings "when they please In this way the sections are bronght " pnto close relation with the governing body of the society
 "bers rogether at such thanea as may suit general con"s venuence, and, mosed, he is allowed to manage the

contral of the General Comantus In most sections
"f there are both evebing meetngge and excursions.
or Scaentufic journsis are taken in and carcuisted, sectional
ac have already begin to malse a collection of local fossils
"Chave already begun to madse a collection of local fossis
"found by themselves So far the scheme works admi-
"found by themselves So far the scheme works admi-

* Transactions is assued a favourable report will be grven " from each one of the seven sections."
"I have dwelt," the Hesd Master observes, "upon this a voluntary and extraneons part of our ecentific work, as a dustanct from our sohool teaching, becsuse it would a otherwise have been impossible to give a correct ides of wt the infuence of acience in the school; and, moreover, attach great importapice to thus volantary work, and
"chould wish to see it encouraged and fostered in all
" echools."
The socuety "t has exercised a valuable influence by
"stimulating the taste and intellect, and giving much
onjoyment to many boys who would otherwise have lived
a very obscure and dull life in " algo been of use in helping to genoo, whist is ha " mitellectual tange to the ordinary interenure and of an "sataon of the boys Such intitutrons prevent the "athletic ande of wohool hife from beooming too excluavely "predomanant."

The rules are es follow:

1. That this aociety be called the "Chiton Collegs Screntific Society."

Constatution.

2. That the saciety consist of ordinary, oorresponding, and honorary members.

Officers.

3. That the officers of the society consust of a president, aecretary, treasurer, and three members of committee, to be elected from snd by members of the society, with the exception of the secretary, who thall be chosen by the committee from their own number. All offoers, excepting the presudent, to be alected termunalily.

Management.

4. That the affarg of the society shail be conducted by the atove officers.

Secretary.

5. That the duties of the secretary be, to keep a liet of all the members of the society, and of all former members and benefactors, who may wish to receave the trabsactions of the society; to give notice of meetnigs, and to keep a dor tailed report of the proceedinge as well as lista of members secretary, the president may appoint any raember of the eacretary, the president may appoint any mate

Treasurer.

6. That the duties of the treasures be, to collect all sums of money due to the somety, to receive all donations of monay, and to disburse all sums of money psyable by the society ont of the funds entrusted to him
That the treasurar furnish half yearly a datailed account of the recespts and disbursernents, to be audited by the committee,

Members.

7. That the number, of members be 70 , of whom 10 thall be elected from the junuor school
That ordinary and correspondung members ahall be proposed and seconded at a meeting of the society, and elected at the meeting next following Less than three fourths of That honorary members shall be elected by the committee.
That a subscmption be payable terminally (the amount to he fixed by the committee), bat on no tase to exceed $2 \varepsilon 6 d$ for the upper and 2 e for the junior school.
That all mubscriptions must be pard between the firat and second meetangs of the term, and that any member retiring from the socisty be required to pay all subscnptions retarin
due
Th
That, under penalty of expulsion from the socuety, all members be required to atfend two thurds of the ordmary by the prestlent. Attendance at extratorduary meetings to be optional
That a cartan number of nckets for sdmission to ordinary meetings shall be masued by the president for collegiass who are not members of the socety, but that on application beng made to him, any member may introduce other visitore.

Sectrone
8. That sections be formed for the more accurate stady of the different branches of semence, man that the durectorn of these sectionay be chosen by the socrety.
That the sections shall hold meetings an often as may seemin fit to theur respectrve direators, at whuch any members of the college, with the sanctron of the durector, may sitand.

Meetange.

9. That ordinary meetinge of the cocrety be held once a cortnight, but that the presudent be expowered to call ertraordrasy meetongs at his discretion.

New Rules.

10 That any member of the society have power to propose say new rule, or sny alteration in an old one, proraded the motion be seconded by another member, and that notica of at least one week be given to the aecretary.

Marlbordove Collegr.

A. Naturat History Socrety in connexion wrth Marlborough College (the earliest, it is believed, that was founded at any publice school) was established in April 864, when two or three members of the achool, who had a taste Yor natura elecing their rressdent, and agreemg to meek ou cer no thockiy, but consultation, At Arst dime the firm support of the Rev. enentific energy, added by the firm support of the Rev. G, G. Bradley the late Head Master), ind a half after its these. The society grew, and a year and a half athar its
formation published its first report. The carcer of the still formall but thrivng society brightened more and more. About the maddie of 1866 the College provided a room as a mout the

From that hims to this no cloud of any umportance has appeared on the socnety's honzon. It now publishes Its reporta half-yearly, numbers more than 50 members, and its collections have outgrown its museum. One of the masters, as already mentioned, is preadent; other masters frequently attend and read papers. There are forturghtly meetings, at which papers are read, very often by the boys themelves There are various sections (geological, botanical, entomological, archæological, \&c.), each of whuch is presided over by one of the members, and which furmsh quasterly or more frequent seports. There are one or two feld-days every term, on these days the boys go to explore nev districta beyond the reach of an ordinary walk.
The papers read at the meanngs of the socrety are publiehed half-yearly with the Report, and in addition, a Flora of Marlborough, two portions of which have appeured. This is a second edition of the Flora by the Rev T A Preston, which first sppeared in 1863, differng, however, very materially from it, prineipally in contammg
hort descriptions of the different species
One result of the formation of thiss soclety has been the production by a Marlbuman (Everard E. Im Thum) of a work on the Burds of Marlborough, in the preface to which "f forced to render an account of the work which I have "r undertaken and have now completed, that I feel its many ur defictencies I have, howevar, one consolation. I feel that
" defickencles I have, however, one consolation ' I feel that
"I have done my best to render a tenbute of grannude to
"t the the Natural History Socrety of that school, to which,
"i sud to which alone, I owe the formation of tastes which
"r now prove a continual and endless source of pleasure
"now prove a continual
The present Head Master statea that "the mfluence of "this somety on the boys is in all respects most valuable,
"and the extent of practicad woris which it has effected
" may be judged by the long sernes of published reports,
" as well as by the Flora of the districts and full accounts
" of its entomology, geology, ornithology, \&ce, it has
"produeed."

The rules are as follow.

1 That this society be called the Marlborough College Natural Hıstory Society,
2. That it be managed by a committee of five membars, and that the vacancies in the committee be filled up by arsions elected from and by members of the society.
3. That, in the sbsence of the President, one of the committee take the chaur at the meetunga
4 That the election of new mambers rest with the ommittee.
6. That any one may be elected a member of the soonety, ho have attended as many meetings, and have shown as ounch interest in the proceedings as the commattee shall tunk fit; and that the names of suah new members be read out at the next meeting after the election.
6. That each member be allowed to bring one friend to the meetings of the socrety, and that has frend be ollowed and requested to entar into any discussion, or ohow any objeot of untersest, but be not allowed to vote on any questuon.
7 That each member be responsible for the behennour of hus tread.
8 That the meetugg of the somety be held once a ortnight
9. That the committoe be empowered to eject or suspend any member if; without good roenon, he absent humself
awice in succession from the meetings of the society, or be judged gulty of sny serious misdemeanor at such meetangs
10 That any person present may exhibst objecta calcixlated to interest the society at ther meetrings
11. That it be left to the committee to determue the subjects for lecture or discussion, and that any person may deliver a lecture before the socrety with the samchori of the commitfee.
12 That in case of an equality of votes, the casting vote lie whth the President, and that he have no vote except in rach a case.
13 That a report of the proceedings of the society be entered in a book, to be kept for that purpose by the secretary
14 That the secretary be chosen out of the committee by the members of the society, and that he hold office for one half year, but may offer himself for re-election at the commencement of the next.
15 That any member of the society have power to bnng forward a motion for the alteration of any rule, provided his motion be seconded by another member; and that the making of new rules ahall he with the committee, who shall not have power to alter them without the consent of the majority of the society.

Wincrastea College.

A Natural History Society has been started in the school, to encourage boys to collect specimens, and to communs-cate-with one another about them it is lumited to 50 boys, who adopt the members. It meets once in three weeks, and two of the masters help to manage it. The boys have shown that they are interested in the objecte of the society; they have read papers, and have made creditable collections of plants, shells, insects, fossis, snd minerals. Prizes have been given at different times for such collections by the Head Master and one of the assistan masters, but the Head Master considers that the boys collect as well for themselves without prizes Gradually a museum and library are being formed (one of the class rooms being given up for the purpose), and sets of appa ratus are being procured; but these are works of thme, and are not yet far advanced
Thas society has, in the opinron of the Head Master, given a number of boys an interest which has been quite real and Mr Grifith, one a. considerable geological interest amongst some, of the boys
The Head Master looks forward to the tume when a laboratory can be established (there being at pressnt no means of teachung chemustry except by lectures), and also a botance garden.

Whllington College.

A Natural History Socrety in connexion with thas College was founded early in 1868, through "the efforts of one or " two of the masters, and any success which rasy have " attended it during the first year of its existence is due "in a great measure to them" The meetings, which aro held onee a fortnight, have been numerously sttended; the members, numbering ahout 20 boys, have the power of introducing others to the lectures The average attendance at the meetings 2830 or 40 (often the number 18 larger), and various miaresting papers, contributed by tha boys themaelves, have been read, on mosses, hawks, photography fortufication, electricity, snakes, manufacture of alnm, and the natural history of man. The botanical, entomological, and zoological departments have met with a faur success; but Wellington College is very nufortumately situated in a geological point of yew, few fossils sand objects of geoloKingsley and Professor Rupert Jones have taken Kungsley and Professor Rupert Jones have taken great interest in the society, and, as well as other mends and
 about 18 month and recounts of the meetnge apar bout 18 months, and accounts of the meetinge appear in be School Magazine.
The rules of the Society are as follow:-

1. That this society be called the "Wallington College Natural Hustory Society."
2. That the soclety consist of honorary membera, corresponding members, 15 members, and 20 associstas.
-2. That all membera of the school having attended three meetmgs of the sooutty be eligible as associates, and that members be chosen from among the associates.
3. That the soctety's officers consist of a preandent, sectefary, and treasurer, and of the keepers of the albums of the fowr departmentar.

5 That the officera do form a committee of managernent, and that the committee he empowered to anvite not more than two honorary inembers to joun them in their meetings. In meetings of the committee, four to be a quorum,

6 That all officers be elected annually-the preadent from among the honorary members, the others from the members
7 That the preadent take the chaur at all the meetrngs, but have no vote exroept in cases of equality,
8. That the secretary keep the minutea of the society's proceedinge, a list of all persons present at each meeting; as ist, of the existing society, with the names and addresses, as far as possible, of all honorary and corresponding members, gind a list of all benefactors of the society
society, collect subserer look after the property of the society, collect subscriptions, and pay debts, producing hus
10. That the duty of the
10. That the duty of the several sumam seepers be to
take cars of the collections; to anter all occurrences' of interest in the collections; to enter all occurrences of furnish in report of what has been done in therr jeerions durng the year
II. That, in th
appoint a deputy.
by a oote of thery and corresponding members be elected by a tote of the socrety, and have all the privnleges of membera except that of voting
hut pay no honorary members pay an entrance fee of 10 .
14 pay no subscriptions uniess specisily called upon.
become honorary members woclates, on leaving the school, a supply of the somety's reports.
16. That members and associates be proposed by a member or honorary member, and elected by the com-
16. That mambers pay a subscmption of 1s. 6d, and associates of $1 s$ per term
17 That members may speak at all meetings of the socrety; may read papers with the leave of the president may introduce one viantor at all public meatings, or if on the committee, two; and recerve a copy of the socrety's report.
18 That associates may speak at all public meetangs, and read papers with the leave of the president, and recerve a copy of the socrety's report, but not have the privilege of untroducing vistiors
39. That members provide with tickets the visitors whom they introduce at any meening, and that no viaitors except those introduced by honorary members, be admitted to any meeting of the society without auch a ticket, but that in special cases the commuttee be empowered to rosue axtra tackets *
20 That any mamber or associate may be suspended or expelled from the society by a vote of fwo-thurds of the members present, if he, from any misdemeanor or want of energy, appear to deserve anch suspension or expulsion.
21 That orduary meetrage be held once a fortanght, but that the secretary be empowered to call extraordinary
meatings when necessary
22 That pisitors may speak and read papers at all public
23 Ineethyt with the leave of the president
23 That without notice given at the preceding meetng, no change can be voted in these rules, or any name be or any member or assocsate be suspended or expelled.
24 That no change be made in these rules nuless proposed by m nember or honorary member, and carried by a majonity of the votes of the membets present.

Chmltrnifay Collegz

At this College there as a Natural Fistory Society, consssting of 10 of the mastera (of whom three are working members), and 40 boys The secretary is a boy. The meetinge are held weekly or fortnightly during the winter ax months; and in summer there are fortnughtly excurThe influence is found to be good deudedly; but it does not act on a large number of the boys.

Bron Collegr.
At Eton there is a Literary and Scuentific Socuety, manaxed by the boys, and the members elected by them. The members read papers, and a discussion takes place, Eton, by invitation of the Society.

Thase whan not ans of the conginal rulas

Harmow School.

Of the Harrow Sohool Serentific Society, meetmpa aro held sbout once fortmght. Papers are read by th members, or, occasionally, by strangers. It is almost ime possible to estimate ita infiuence on the boys generally. the members themselved andoubtedly recesve beneft from the papers, and the discusmona which follow. The socnety aiso exeresses good influence on thoss who make botanical 1. That the Hons. The rules of the society are sppended. 1. That the Harrow School Scuentric Socusty consiat of members, honorary members, sud associates, who take suf-
ficient interest in scienticic pursuits to ficuent interest in scientric pursuits to guarantoe then 2. That the honorary mgore of the wor the eoclety those masters who express a desire to join the point those masters who express a desire to joun the society, and 3 'That may be elected by the society
form in the school, be elected by ballot, aftar havig fith form in the school, be elected by ballot, after hanng been duly proposed and seconded at the prevous ordinary moet ung; one adverse vote in three to exclurde
turn, or when required by the humself to contribute in hie turn, or when required by the commattee, a paper on mome subjeot connected whit sorende.
6. That each member, or resident honorary member be sllowed, with the consent of the committee, to nominate, as an assocuate, any one boy not below the remove: and any member of the committee, two such associstes
6. That the presudent be allowed to nominste many associates as he shall think fit, from any part of the school he may think desirable.
7 That such nomanations only continue in force for one school-term; but that any boy, after three successiva no minations, becomes, puo facto, an ordinary momber.
8 That asaciates shall not be liable to read paper before the soclety, and shall have no vote on queations of admumstration, but shail be allowed to attend any of the ordmary meetiags
9. That each readent honorary member, ordinary member, and assocrate, pay an entrance fee of le.; and that the subscription for each term be $2 s$ 6d. for each nuember and resident honorary member, and $2 s$ for sach associate, Which is to be paid to the treasurer at the first meeting of the soesety in each terca, at which meeting the treanurar shall lay before the society an account of all expenses incurred
10 That the affaxs of the society be conducted by a president, vice-preandent, secretary, and treasurer ; and by a committes consisting of these officers, the ex-president, and
six ordinary members of the socnety, four members of the six ordinary members of the society, four members of the comronttee, of whom one at least ahall be an officer, to form a quorum
by the committee, annually, vee-president be appointed by the committee, annually, at the end of the summer permod, from among the masters who shall be honorary pemod, from among
12. That it be the duty of the committee to propose at the last meetring but one of the summer team, membere to fill the offices of secretary and treasurer, and the other vacancies in the committee for the followng year, and that it be competent for any member at the manne meeting to it be competent for any member at the mamae mbeting to shail be submitted to the society, togetier with those of the nommees of the committee, foz electuon by ballot as the. next meeting
13. Thas any vacancy in the committee, or in the office of Bearetary or treasurer, occurring at any other time than as the end of the aummer term, be filled np in like manner by momuation at the ordinary meening neit following euch vacsancy, and byelection at the next aucceeding ordmary meeting.
14 That the committee be compeient to fix the tumen of ordinary meetings, and the papers to be read at each, and to anthonve the expenditure of funds; but that all rules effecting the constatution of she society must be parmed by majority of those present at an ordinary meeting.
15. That any member, on giving notace to the eecretary, be permatted to mitroduce s firend
16. That any member or assocrate of the society who sbsents humself from two consecutrve meetings, without gring some reason to the president, shall pay a fine of 1 s .
17 That every member on joming the socuety, ergin tho ollowing decharation -
"I hereby promase to conform to the rulen, and to give my beat assistance m carrying oat the objecte of the Lisar. row School Screntific Sochety, so long as I contanne a member of the вame.?
18. That the members and associates endeavour to oxmint, as each meetung of the society, some objert of merientific meterest.

Carpenters

19 That the objects of the sochety be. To record scientufic observations, to promote the formation of a Harrow School museum of natural history; and to encourage, by offering prizes or otherwise, the pursuat of science in the school

Manchestier Grammar School

The Manchester Grammar School Phlosophical Society
was estrablished in 1869. It is composed of the boys of the suxth and other science forms, its officers are elected from among its members loy ballot, it neeets every Friday, after school, for the reading and discussion of serentific papers, written by its members, the subscription is $2 s$ entrance fee, and $2 s 6 d$ per term There are three terms per annum. The society is considered to be decidedly useful in promoting scentific reading and thought among the members

§ 15.-WORKSHOPS.

There are workshops in full operation at King's College School, Clifton College, and Rossall School at Marlborough, Rugby, and Taunton, where, up to the present time, there are no sohool workshopss, it 18 stated that buildings will shortiy be erected or atilized for that purpose. At Taunton it is contemplated to provide for turning, casting, and modeingg, and for maroscopical mouning A Mariborough there a worksop-close to the college, fitted up by a tradesman in the town, and boys are enconraged to learn turning, \&c, under his chester Grammar Sohool (where its absence is much felt), chester Grammar Soho
there is no workshop.
Of the three first-named workshops that at King's College,' for the joint use of students at the college and sohool, is the most oxtensive, being furnished with steam engine and planing machine, and it is worked on the most
migorous system The buiding consista of two floors, the minorous system boys are first put through a course of wood work, after completng which they conmence ron work, and construct lathes and amall steam-engues and boilers and models of machmery of various kinds The followng more detaled statament, taken from the report, will give a better idea of What is actually done

1 Stadenta or boys of the first year, on joinmg the department, are made acquamted with the different tools, and thar practical appheation to the purposes of car penters and joiners' work, by going through the processes of preparing the wood, setting out and forming, from figured drawings prepared by themselves, the various joints used in constructions of rood, after which they are employed in making models, in which the preceding joints are oombmed, so as to form trusses for roofs, bridges, girders, and other framing, requured for buldings and other purposes
2. Studepts are then anabled, in therr thurd term, to proceed with the construction of models of vanous sorts, in illustration of the different apparatus used in practical mechanios, manuractures, and philosophical experiments, they wood hard wood, lyory and other eubstances and also in the mode of preparing and fixing the work in aiso lathe; the formation of opclondal, epicyolordal, and in volute teeth, for wheels, pimions, racks \&c. They are in instructed in the method of working in shest metals and soldering
3. Second year's students commence matal work, the operations of which consast of the vanous processes of chipping, filing, fitting, turning, borng, screw-outing and planng, the construction of foundry patterns in wood or metal and core-boxes.
Thene students are also unstructed in forging wrought mon and steel, and in Easter term a moulder attends who gives practical matruction in the art of moulding
4. With proper attention to the foregoing routime 0 procedure, the stadents become auminentiy pronoient to be onabled to make for themselves lathes, and the apparatus consected with them, tools of various sorts, working model of steam-engines, boilers, and other machinery, in the construction of whoh either metal or wood, or the two combined, are employed
The third year's atudents contmue the second year's subject, and, in addition, they are encouraged to make ex periments on the strenyth of arches, beanss, and girders are oonstrueted from working drawngs made by the students hemselves.
. At the termination of the year a prise 18 given in each year, for proficsency in the execution of some piece of mechavism, the sulject of which is given out during the Ient or fisster tarm.
thurd jear, the student is required to send in with has
model or machine a finushed form, dry pattern, with coreboxea, sse, of at least one of the castngss used im such machinery or models, which pattern he shall humself have made, accompamed by working dramings of such machunery, also made by himsel
At the present tume 39 boys attend The regulated time for work 15 on Wednesday and Saturday afternoons, ther hours prithout mitted into the worksnops at any the Department as well se that of the Superntendent this sanction being only given on condition that the applicent is not therebr norlecting other duties in the college apphin is not thereby neglecting other duties in the college
of the simplest tools requisite for prarking in wood and of the simplest tools requisise for warkanc mn wood and much as possible, the student may purchase them at the college, and upon his leaving they will be repurchased college, and upon his leaving they will be repurchased
from hum at a xeductaon depending on the condrnon in which they are returned No student is allowed to obtain which they are returned No student $1 s$ allowed to obtann
tools or materals in the workshop to a greater amount than $4 l \mathrm{in}$ any one term, without the consent in writing of has parent or guaxdian
The boys are provided with a dress for use in the workshop, and thas tends greatly, not only to increase the business-like, real look of the place, but, I believe, to make the work itself more real and earnest
At Chiton College the present workshop is 40 ft by 20 ft
 four large carpenters benches to accommodate 16 boys (2) elghtrices, whin steel chisels and other requisites for fitting, \&e, (3) a forge, whth the necessary appliances, (4) thres turning lathes, with one slide rest, for the turoing of hoth wood and rron, but it is found maufficent, and a new one, of which a plan is given, consisting of one large room 60ft by $28 \mathrm{ft}, 18$ ahout to be built
The object of the workshop is described in the report as benge' (1) to teach boys the use of all the common mechanical tools, (2) to ghve them some knowledge of different kinds of material, as wood, iron, \&c, (3) to teach them practical carpentering, fitting, trarning, forging, \&c.
workshop at Clifton, working in it at auch houge of the can epare durnt ont-f-chgol tore, can spare during out-of-school time, each boy paying a fee superintendence, instruction, and material
Joining the porkshop is quite aterial
any boy can take home anything ahuch he matestter, and any boy can take home anything which he makes there the fittings, tools, \&e, was something under 2501 one, and
, fittings, tools, \&e, was somethung under 250
The cost of material used, whth wear and tear of tools, has been estumated at about 15s, per week
At Rassall there is a workshop which wa popular and well attended. There is only bench accommodation for sux at a refine; but boys, some of high moldlectual power and great carpentry The boya are taught by the resident clerk of the works. The study of practical engmeering, under the chief engmeer, is also s matter of considerable interest to cheys
The
effece evidence both frem Clifton and Rossall is to the effect that any school will find a workshop to involve very little expenditure, as the supenntendent will be able at such trmes as he is not occupled with the boys to effect a considerable saring, by attending to repars, the making of deaks, forms, \&c
At Eton there is a workshop connected with the labora tory, containing two lathes, work-bench, forge, and a farr supply of tools. It as cheefy used for preparing apparatus for lectures, but boys are encouraged to come there, and taught to make things for themselves. There are, besiden this, two or three turners' shops in the town, to which many boys go
At Harrow large workshops will be erected dunng the
course of 1873 .

§ 16.-KNOWLEDGE NECESSARY BEFORE SCIENCE IS TAUGETT

At Eton boys are expected to have a sufficient knowledge of classics and mathematics to get noto the Lower Fifth Form. Thus may be done by average boys of 13 or 14 years of age.
The examination for admission to the 5 th Form includes translation from such books as Homer, Virgu, Xenophon, Cessar, Latin (prose and verse) oomposition, anclent hastory French In mathematies-Arithmetic, ell, except the higher rules, e g., dascoant, profit and loss, stocks Algebra to simultaneous equatione (melusive). Euchd, first 12 propositione
At Harrow no boy 1 s at present allowed to joun the Modern Side unless he has been one year in school, and 18 at least in the Lower Shell
At Kugby it is considered that a boy "cannot begin physics unless he is farry high in matherratics," and that a cartan amount of arntmencal knowledge is abso lutely required, before a boy can enter the Maddie Nchool. At Wrachester 6 is considered that bey advanced in classices and mathematics In the Military and Cryi Department at Cheltenham college, a certasn amount the Mathernancal School at Wellington College, bovs are the Mathemancal School at Wellngton CQllege, boys are requrred to have learnt from two to three books of Eucind, and algebra to sumple equations, At St. Peter's College, Weatminster, the jumiors are required to know the first book of Eucidd and anthmetre to decumals, and boys in
the upper dryinon, two books of Euclid, algebra to the upper drvision, two books of Euclid, algebra to quadratic equations, and a farr knowledge of arithmetic. vulgar and decmai fractions, and of algebra, inoluding
sumple equations, and of elementary geometry, is neceseary. At Chrst's Hospital it 18 generally expected that a boy will only have learnt anthmetro before he enters the natural phulosophy class; that he will have learnt a book or two of Euclid and some algebrs before he raachea the chemastry class ; and that he will have read alx books of Euchd, alge bra as far as quedratic equations, and some elamentary trigonometry, before he begins mechanica At Dulwnoh College, instructaon in scrence is open to all boyis in tho Semor Section and in the Surth Form Bays entemng the Benor Section ere presumed to have fayr elementary knowledge of Enghish, Franch, Latin, and anthmatio At Tarunton College School a knowledige of anthmetio to decimal fractions, and of sigebra to simple equation expected to have learnt decmals at King' College expected to have learnt decimais, At Kug's Collegg School boys entaring the Chemustry Clase must have
 as zar as bimple equations; whils those who enter the Hooks of Eucind ciass must have done the first three st the Monchester Grammar Sohool boys who and st the Manchester Grammar Sohool boys who show an spinence Forms, but none woald be permitted to antar Scence Forms, but none would be permitted to anter reached the Fourth Form On the other hand, at Clifton College, Marlborough College, and the City of London School, the amount of knowledge required is that whioh will enable boys to take thexr posinon in the mann divianone of the school ; and at Ressall School no definte rule has been ladd down at present.

§ 17.-REWARDS OR ENCOURAGEMENTS TO SUCCESSFUL STUDENTS OF SCIENCE.

Exhbbitsons and Scholarshups.

At Clifton College a full share of all the scholarshups if awarded for proficiency in Natural Science.
At Wellington College thare is an annual exhubition of 201. a year for two years, tenable at school, at Woolwheh, or at an unverenty, towards which proficiency in senence counts.

Henceforward, at Charterhouse School, an exhibition 1 to be gaven andually for proficiency in Natural Scnence. It will be of the value of 801 . for four years, and may be held at an university, or anywhere else, pronded that the holder aatisfies the Governiag Body of the School that he 18 engeged in preparation for some career in life which meets their approval.
At Christ's Hospital a considerable share of the exhibltions to the unversuties has always been assigned to good mathematicians, and hutherto no spectal reward has been given to Natural Scaence. The head master of the school states, however, that he is at present trynug the followne experiment, which may be a precedent a Grecian, who showed a marked maluation for Natural science, has beal excused the greater part of his clasican and mathemance, Hok, al South Kensington, and the Royal College of hospita, South Kensingha amustisy If he shonld Surgeons, on physiology, chemistry, erc if he should satisfy the masters that his aptatude and progreas are studying classics and mathematics, the head master. orll studying bim to the Governors for an exhibition at Oxford or Cambrigge.

At the City of London School there is one exhubinon of the value of 142.10 s , tensble for ons year, and scrence counts in the regular Scholarshupe of the school.
At the Manchester Grammar School two Science Exhrhitions have been lately founded by Miss Brackenbary, of the valne of about 451 a year each, and tenable for three years at the Univeranty of Oxford; hence, there is a Sclence Exhibition awnarded two years out of three.

Prues.

At Eton a prize of 101 and another of $5 l$ are given upon the results of the manusl examination, which is held dunng the summer half, and conducted by independent examiners. At Harrow two prisea are given annually by the Head Master.

At Rugby School namerous prizes are offered for success in the following branches of Science.-
$\left.\begin{array}{lllll}\text { Physics } & - & \text { - One prize of } \mathbf{3} \text { guneas. } \\ \text { Chemistry } & - & - & " & 2\end{array}\right)$

Prizes are also given for the best collections of wild flowers, butterfles end motha, and fossils, made during the summer vacation
At Clifton College a full share of all the prues gaven is awrarded to proficiency in Natural Science.
At Marlborough College, though there are, as yet, no Natural Science Scholarahips, prize are freely given to reward success or effort in the acquasion of acientific knowledge.
At Winchester College prizes are given by Lord Saye and Sele for each of the classes in Natural Scrence.
At St. Peter's College, Weatminster, markes ganned for
 marks, and przee are given separetely for Natrual Actences. At
At Cheltenham College prizes are given after the Christ ioss examanatzon in both departments; there have aluo been special prizes for herbaria of boys' own collection, Cheltonian Society" gives a opecras praxe for proficiency in physicat serence.
At Wellungton College there is the Governors' prize annualify for an exammation in a portion of a text-book manualy for an examamaion mas and for practical work (prepared without aculatance), and Tor practicai work to find in solution six mperified metals] Prues are aiso grven tonce a year, for term work and examination in gcience, to the head boys til this subject in the classical and mathemstical sehools. Two Governorg' prives for botany, viz, (1) for collectang - 40 plants only of at leant 10 different orders, to be carefully dried, with demarporivo schedule of each, (2) for preparing fixed portion of textbook and describing on schedule plants presented' to them.

At Rossall School prives are gaven.

At Christ's Hospital the chemistry and natural philosophy classes get their share of the ordunary prizes. At the City of London School, one glver medal and 24 prizes (the total value being $10 l$) are given
Ar Taunton College School the head master takes care that at least one of the school prizes is gives annually for proficiency in some braneh of actence, bub there is no special encouragement beyond this
At University College School, book prizes are given in each of the Scrence Classes.
At King's College School the followng prizes are given "-

A Termanal pryzes.
(a) One to the best boy in each of the upper classes, ranlt being determined by the term's work and examinations.
(b.) Three to the best boys in the large elementary class, one being selected from each of the three divigions, A, B, and C.
B Anmual prizes
One for Natural Philosophy.
One for Chemustry.
At the Manchester Grammar School the Scence Forms take ther full share of the general prizes of the achool

§ 18.-EVIDENCE AFFORDED AS TO THE EFFECT OF SCIENCE TEACHING UPON THE

 INTELLECTUAL LIFE OF THE SCHOOL,Mr. Madan, the Scrence Master at Eton, says --
"Selence work has, no doubt, brought out some (but not many) boys who have previously shown no interest in, or power over, their school studies, Generaily speaking, however, the best boys in Classics are the best also in Netural Scrence"

The Rev. Edward Hale, an Assistant Master at Eton, considera that .-
"The time ance which Science has been taught is too short to admit of any professional success, but of three candidates in 1872 for the medale of the Royal Geographica didates in 1872 for the medale of the Royad Geographical
Socrety, two of the four medals were ganed by them, snd the other boy recerved honourable mention
" Intellectual activity is promoted, and habits of thought and observation are gained. Proofs of this are, that boys not remarkable for proficiency or the interest they take in then usual studies, are sometimes full of interest in learmng sorence, and in rarar instances enthusiastic."
And the Rev Thomas Dalton, also an Assistant Master at Eton, writes thus :-
"The subject has hardly been introduced long enough to produce success at the Univernities I think it has had at benefinal result upon the sohool, both generally, and in the case of individuals Almost all boys have had a certain amount of interest excited in them for this branch of knowledge; in several cases boys who have shown no aptitude for Classios or Mathematios have done extremely weil m, and really worked at, Physical Scienoe, but, as a rule, boys who are good in Classics or Mathematics, ars good also in Science:
Mr Wilson, who had had long experience an teaching soience at Rugby, in 1866 thus stated his opmion as to the soience at Rugby, in 1866 thus stated his opinion as, to the an addition to the paper read by the Rev F. W. Farrar before the Britieh Association and quoted by the Rev. T. N. Hutchinson in "Sorence Work at Rugby," $p 18$ -
"The opinion of the body of masters m brief is th
The school as a whole is the better for it and the scholarship 18 not worse. The number of boys whose industry and attention is not caught by any school study is markedly less, there is more respect for work and for ablithes in the different fields now open to a boy, and though pursued often with great nigour and sometimes with grest success by boys distinguished in classics, it is not found to interfere with them proficuency in classica, nor are thare any symptoms of overwork in the sohool Thas is the testumony of classical mastars by no means specially favourable to soienoe, who are in B position which enables them to judge. To many who would have left Rugby with but little knowledge, and little love of knowledge, to show as the result of two or three years' work in our Middile School, the introduction of science into our course has been the greatest possuble gam, and others who have left from the upper part of the school, without hope of distinguishing thernselvea in clasaras or mathematica, have sdopted scrence as thear atudy at the Universities It 18 belioved that no master in Rugby school would wish to give up natural science and recur to the old curriculum."
The Commisanoners will observe that important evidence in the same direction is given in the replies receuved from Clifton, Wellungton, and Mancheater.

The Rev. J. Percuval wates :-

* I consider that the mtroduction of scrence has not m any way interfered with the successful pursuut of the old studues, whilst many of our boys who bave gamed distinction in classics or mathematios have thus acquured sound elementary knowledge of two or three branches of science, and many others have had all ther powers stimulated by thus finding out that slowness m learning langusges does not necessarily mean general stupidity Thus, the number of boys who do nothing well, and have no intellectual interests, has been materially duminshed, and the general, tome of the school lufe has been rassed in proportion."

The Head Master of Winchester College alays:-
"I think there has been an interest created in botany and geplogy, which has altered the feeling of contempt for such geplogy, which has aitered the feeling of contempt foffects the othar studies of the school etther way The principal result is a more general spread of sensible estimstes of the value of such knowledge I do not expect to find individuals do more than eg, Messra F Buckland and P Sclater, who were at the school when no regular teaching was given in science."

The Head Master of Wellington College remarks:
"The good, effect on the school is undemable, but for individual distinchive science tearhing we must look onward for some little time
"I introduced it into the classical sixth solely with the niew of mareasing the boys' interest in life (there is not enough to produce results in external examinations), and of enough to produce results in external examinations), and of
improving theur literary work by widening theur interests 1 think it succeeds in both respects"

It 18 also stated by the Hugh Master of the Manchester Grammar Sohool that .-
"Since the mbroduction of the science teachung and the connected ohsnges in our system, the number of our boys has largely mareased By the side of the old classical forms, which remain at least as strong as before, there have grown up science and mathematical forms, traming, for a Ife of study and an University career, boys who earlier would whth cufficulty have found a place for theur special South Kensugton shows that an and certhcates from South Kensington shows that an influence for good has
been at work upon the younger boys, sad to name the been at work upon the younger boys, sad to name the important of all, the number of utterly listless boys betwean 15 and 18 , who seam masapable of belng roused to take an intereat in anything, hasapabie of biseng rouse

Although the Rev F W Farrar cannot trace any mfluence which soience teaching has exercraed on the genersal studies or on the minellectual life of the boys at Marlborough
College, he goes on to atate College, he goes on to atate
"There sre, however, trio good results which it is produeng now, and will produce more and more 1 It enlarges the range of knowledge and intelligent interests for a large number of boys. 2 It has succoeded in stimulating and evoling the powers of a few boys who had fanled oompletely in other studes These results alone are smply sufficent to justify its imtroduction, sid encourage us to
persevere."

§ 19.-SCGGESTED IMPROVEMENTS IN TEE TEACHING OF SCIENCE IN SCHOOLS

Mr Madan, the Scrence Master at Eton, eays, with regard to ecrence work at Eton, "It would seem better to re-arrange the divisions for science work mora com"pletely then 18 now done. At present the boys (below "the first hundred) are arranged mainly according to their "f classical or mathematical work; and there 15 some diffi"S culty u organizing a consecutive course of instruction for " ${ }^{5}$ the boys A large room for a museum 24 also much
"Fanted. There 出 a good nucleus for a geological col" lection, but no means of displaying it properly."
And the Rev. Edward Hale, one of the Assiatant Masters at Eton, makes the following suggestrons :-" By a systematio dinision of andjects, alothng a certain course for certam school periods, and by naking the course pro ghould be tanght Erd-kunde, in some such copurse as the following :-
(1) The Earth's position in the Solar system
(u.) The Atmosphere, Solar Heat (Kam, Snow, \&c)
(in) Very elementary Geology
(1v.) Changes in the physical features of the Earth's Surface caused by Ram, Rivers, Ice, Snow, \&e
(v.) The Sea, Thdes, Winds, Climate
(vi.) Varnous divisions of animals and planta on the earth's surface, and their dustribution.
"After each boy has gone through a course of thes, he should choose one of three duvisions

Div (a) Astronomy, Mechames, Hydrostatics, sic, and a boy ohoosing this diviston should give extres time to mathernatics.
Div (B) Chemistry, Heat, Electricity, \&e
Div (r) Geology, Zoology, Botany, \&e

The Science Master at Harrow states.

"At present all the teaching of Natural Scrence 18 carried on in a room which is used dumng cartain hours of the day by one of the classical masters ha soon as will be much are finshed, it No practical work worthy the name more effective. No practical work, worthy of the name, 18 trical work no real progress seems to be possible, except in the case of boys of unusual ability "

Mr. Wulson, the Mathemancal Master of Rugby School, makes the followng statement :-
${ }^{*}$ We whant, in the first place, more Natural Scrence Masters. Then we should be able to classify boys better, ters. Then we should be able to classity boys better, according to thear knowledge and capscity for progress The difference between the top and boith of ourt practical work in too great Then, too, we might teach pracheal work in physiology and physics, whoh, under existing arrangements, is impossible Moreover, we should tre able to give
special attention to advanced atudents, who are now left apechar too muoh to themselves, or at any rate, pught be ao, as our system makes no provision for teaching them. It sometimes occurs to me that thus want maght be met by the appontment of ensting. masters for specialities in science ($e g$, dissection, microscopic work, \&c), men who would come, as a drawing master does, for so many hours o week. ${ }^{6}$ In the second place, we Want our Lower School in creased and our Middle School dmminshed thes would mprove our classificstaon; for, at the bottom of the Middle School are large numbers of boys too far below the standard of the Upper Middles to be eassly brought wito the same syatem wnth them
"In the third place, it would be an advantage to hatse our Upper School earamaned in Setence at the Midsummer Examination by the Universnty Exammer who takes the scrence in the 6th Form. Lower down than the Upper School. outside Examuners would do us harm, as they would 14 evitably make masters and boys am too much at mmediate
results; in fact, make them crann But mo the Upper School results; in fact, make themerama But on the Uppen
occasional external Examoner would be of use cience teachung in schools, the Head Master of Cufton College says:
"I hope to umprove it by geting the mastars to enforce their methods, by developing more fully the bystern of classofication according to ability and proficiency, by giving more time to the etudy of particular pemods of a boy's echool hife, thus produciag the acceleration of progress which comes of concentration. Thns, and in many othtr Ways, I hope to make the teachung considerably more effective than it has been hytherto, though I am well satho-
fied with our results, considening all the obstacies that fied with our resulta, considering
beset wy branch of new learnug.

The Head Marter of Marlhorough College states

"We are annous to build a laboratory an soon an our means allow us to do so, and we wish to have our own workshops Further than this, nothing can be at present effected consistently with the character and avowed aima of the school. My experience here has been that the demand for sinentifle teaching is entirely, or almost enturely, limited by the actual practical requirements of the boys. It seeme to be imposaible at an ordinary puble sehool to furnish any but a very small number of boys with anything that could be farrly called s thorough education m acience. In all the vamous competituve examinations for which the majorty of them ara being trased, the part occupied by aomence is very subordinate to that clamed by literature Now and them we find a boy with marked scientific aptitude, and it would be our object to stmulate and help him to the utmost of out power, but the practical need of most hoys, as well a the express whshes of their parenta, vender it umpousible for us at present to extend the science teaching without injuring the achool

The Head Master of Wincheater College agy:
. We are at present in auch an elementary condition in regard to acience teaching that the improvement possible in at, uf it is settled that this is a school whers it should be made a mann branch of study, are endess. They would eg involve the entise convitruction of a syatem of practical teaching and work. For the purpose of communicatin the outhnes of general knowledge of some branches o Natural Science in a popular way, and of starting intares and acquaintance whth soientric ideas, our courses answer ther purpose,"
The Head Mester of Cheitenham College considera ampler spparatus in some respects necessary. He adds :
"No other improvement seems possible, except by giving more time : but that could only be given at the cont osher subjects. More showy resulte might of course bo produced by selecting three or four boys, tumning them away from other work, and concentrating ail shenr othe scholarship, but ther education would be one-sided, and the sehool organizatson would suffer"

The Head Master of Wellugton College thus writes
" What we umediately want is (1) a larger laboratory with (2) more honrs of attendance from the teacher of chemustry, and (3) a laboratory assistant. A monor necessity 18, that un the mathematical school we want one more grade and one more class room. Each master teachugg science loses time unless he has a separate class room, but he cas
periecty well use suca class room for drueront subjects.
The Head Master of Rossall School shinks it umportan to direct the study more in the durection of observation : to direct the study more in the durection of observation : weight the difference between the 'Arley' and the 'W Wgan weight the difference between the 'Arley" and the 'Wigan "New Red,' 'Arsenic and Salt' All the theones of com bination, number of elementary pubjects, doctnnes of molecules and atoms of gases, may be reaerved tall the sapants themselves are agreed about them."

The Head Master of Christ's Hospital states •
"I intend proposing to the Governore that we showla bave, each spring, a course of lectures on Botany (ulustrated by specmens given to each boy in the class) (thoul one hour a week of cral instruction m some elementary physical subject, treated so as to atmmatate therr powers of observation and analyas."
The Head Master of the City of London 8chool ruggest the followng alterations -
(1) "Chemucal proficiency to count in clase promotion. 2.) An hour's oral teaching with demonstration, followed by an hour's book work, and supplemented by
(3) More time to be devoted to the study of Natural Science; and
(5) More valuable exhibitions and prizes to be given for proficuency in Nataral Scrence."
The Head Master of Taunton College School states the following "-
"First, and by far the most mportant, the estabhahment of a scrence mpater. The subject suffers by being put into commigsion, however good masy be the teachers who whare it, It has been taken brtherto by the mathematacal master and myelif; and we have leannt from ons expe
fience that of ali possible topics of education, science most urgently requires a single representative professoy, whataver and he may receive from others
"Secondly Specially constructed rooms and much enlarged apparatus. Our laboratory is of the roughest, our museum cases, which are rapidly mereasing, have no special home, we have outgrown our botanceal garden, and we bave no workshops
"The Goverming Body of the School is keenly alive to our wants and eager to supply them; but the nomease expease of new buldings has left them for the present whout means, and though they wnll probably feel justnfied in hortly granting us a science master, I see no mmmediate prospect of the other smprovements I have stated"
The Head Master of King's College School beheves that improvements could be effected in the followng manner *-.
" By the eppointment of separate sclence masters for the School, independently of the College
By the establishment of an mdependent laboratory, so that all who attend lectures a
3. By the appominment of independent examiners to test the work.
4. By requiring of the lecturer in chemistry that he, should also take the classes in their book work," Experience at University College School shows that,"A smaller quantity should be taught, but more perfectly: It should be more general in character, and should take in more of the every-day life of a boy, so as to make bim think or science despite humen atal exclusion of theories out entrrely expermental, to the total exclasion of theories grasp, and these only sparingly and at long intervala. Far more stress should be laid on the practicel work Boys should be taught some scientific facts much earlier than they are at present, certamily before 13 years of age. As the matter stands now, boys are allowed to acquire unclentific habits of thought before they begn to learn crence, and when they do begin, the master has not to teach them scrence, but to eradicate the evil effects of past neglect-to undo, not to do ${ }^{3 n}$
The High Master of the Manchester Grammar School, if I beleve an observatory, a physical laboratory, and a hoy's workshop would be of great servee, but what we most need is an increase in the teaching atafi"

§ 20.-ON THE EXPENSES NECESSARILY ATTENDANT UPON SCIENCE TEACHING.

There is a very midely prevalent xdea that smence teaching, independently of the teacher, is very expensive, and there is very hittle doubt that this idea has sufficed to keep science out of a good many schools in which it other
would have been at the present moment in full work.
The idea has arisen, it may be imapined, from the conmere book, first, that, in aclence, unlike other aubjecta, the and expensive apparatus wrere, therefore, of the first necesasisy, and, thardly, that, thus beng 80 , a apecial teacher, who, as a speciaist, would require a higher rate of remuneration than the teacher of the more commonly taught subjects, was also essential

Let us first consider the question of buldings and apparatus While it 15 perfectly true that a great sum of money may be sunk in stones, bricks, and mortar, in building a magnificent laboratory or observatory, and also true that, if the money is forthcoming, there is no reason why socence should not be as well cared for architecturally as the other departments of a first-class school, it is equally true that serence teaching of a high order may go on quite mdependently of such outlay or adornment
The cost of the laboratory buildings at Eton, melusive of apparatus and fittings, was about 4,0003 The sum expended on the aheil of the buldings at Harrow (consisting of chemacal lecture room and laboratory, physical Tecture room and laboratory, balance room, rooms for physiological 4,8001 The buildings specislly deroted to serence at Rugh (copmeng a mpparatus room, a private laboratory, a museum and an opsarvatory) exclusire of apparatus, cost about 20001 On the buildings at Taunton College School (which include a laboratory, a museum, and scientific class room) a sum of more than 1,0001 was expended The cost of the ohemeal lecture room and laboratory, with an matrument room and store room attached, at Cifton College, exclusive of chemical apparatua and material, was 6001; that of the physical lecture room and laboratory, with a small class room and store room, exclusive of apparatus and material was 2004 At Manobester Grammar School there are two checrasel laboratories and lecture rooms, with balance room and aulphuretted hydrogen room, which, with the fittinge, oost 9901 , and the apparatus 28918 s. $6 d$ The cost of the matarnals to start the laboratory (a room not specially erected for the purpose) at Wellington College, was abou $50 l$; but a smaller sum, it is sand, would have sufficed
The average annual cost of lectures at Clifton College has been about 15!
At University College School these expenses are met by - fee from each boy sttending lectures on Theoretical Chemistry with experiments, varying from 3 s to 5 s . for sech tarm of three months.
At Rugby School the expenses of the laboratory are met partly by an annual allowance of $100 t$, and partly by the payment of 15 s. a term by each boy in the Ish
At Tumenemeals and the uae of apparatus.
At Taunton College School the cost of solutions and apparatus is under 5 s per annum to each papul.
At Clutron College the cost is mbout 30 s a year for each
student in the chemical laboratory, and the average annual
cost of the physical Iaboratory is 30l
At Dulwich College there us no fixed sum for the purpose, in 1871 a sum of $75 l$ was expended on the purchase of apparatus, and about 30 l m 1872
At Manchester the annual cogt of the laboracory is about 1002
At Univeraity College School, for Prachesl Chemistry (which is taught in a class averaging 25) the fee for each boy 18 about las a term of three montios, but this does not include gas and water, and each boy has to pay for any apparatus waich he breaka, unless the breakage is a necessary part of the experiment
At Marlborough College the annual expense of mamtaining the lecture room, museum, and botanic garden does not exceed 301 or 404

On this point the Rev W Tuckwell, in a paper* read before the Britash Association in 1871, says, "It ought to " be more widely known for how very small a sum "c sufficient apparatus can be obtained to teach natural "c history and expermmental secence. A laboratory can be " fitted up for 20 boys at a cost of hittle more than $20 L_{n}$ " whule each boy's private stock of plass and test solu" tions need not cost him mors than os per annum. " Botanical flower-trays, containing 18 bottiles, may be " bought for half-a-crown, electrometers, telescopes, polar1" acopes, models of pumps, and pulleys, can be made, after is in their construction far bays themselves, who will learm « in therr constran " by the chorcest produce of the shops"

From what I have seen of various schools, 1 am able to state that thas represents the actual facts of the case At state that thys represents the actual facts of the case At Manchester Grammar School, to saike one mstance, I osaw
several polariscopes constructed at home by day-boys of 13 sevaral polariscopes constructed at home by day-boys of framework One boy had melted up an old teapot for materials

From Clifton the endence is to the same effect
Thus, for continuous courses of Elementary Chemistry and Physics, in which the text books used are Roscoe's Prumer and Stetvart's Primer, the lecturer adding a good deal to what is contained in these books as he goes along. a lecture table has been fitted up with oupboard, the gas and water lad on, \&c, in an ordinary class room, large onough to seat from 50 to 60 boys, at an expense of from about 81 to 101

The master at the outset expended for chemicals and apparstua, such as a pneumatic trough, large retort stand ges jars, flasks, \&ze, the sum of 71 Ds.
Some things which he only requires, occasionally, such as ar punps, models of pumps, \&ce, he has hitherto borrowed from the Physical room

Hut it is stated, that with a grant of from $3 l$ to $5 l$ a year, he can keep up and add to his stock of material and apperatua, so as to be able, in the course of about two years, to do all he requires wnthout borrowng anything.

The report then atates. "Our experience in connexien
-The Obstandes to Serence Temahing in Schools. [See p aci]

It is stated in the Science Directory that the set complete can be obtanned in a box for $2 l$ from Mesirs J J Grifin and Son, Garinck Street, London, W.C.; Meßbrs. Townson and Mercers (lake Messrs. Jackson and Townaon), 89, Bishopsgate Street Withm, London, E C ; Ms. M. Jackson, 65, Barbican, London, EC ; Measra Zummermanu, 6, Fen Court, London, E C.; Mesary. Harvey, Reynolds, \&' Co, Leeds; or Messrs. Mottershead \& Co, Market Place, and St Mary's Gate, Manchester; but schools are not requured to purchase the apparatus of these manufacturers.

There is great divergence of opinion as to whether it is difficult or not to obtam qualified teachers of acience There is mauch evidence, however, to show that there is a real difficulty in obtaining "down-right good men," except in the case of the nchest sehools, In fact, on the case of many schools, whespread feeling among the Head Mesters of the old Moundion schoo Forn Masters, like the Form Masters, should be University men Nor is this all. the Head Master of Rugby states -
"I do not think 1 could mprove upon the teaehers who moght be selected from Oxford and Cambridge They have been specially trained as students As teachers their proficiency has been attanned by pracince As stadents, the University currieula with professorial guidance, and the competion for the vanious dastinctions open to here observe that a mere chemust, geologist, or naturalust, hers observe that a mere chemsit, geol dist, or nemtaralult hardly be able to take bus place among a body of masters composed of University men, without some njurious effect upon the position which science ought to occupy in the achool. I would add that it seems to me luighly important that a school teacher of these subjects shonld be thoroughly practical in his knowledge, aklfin in experimenting, and ready in devisung simple and mexpensive lecture xilus trations In preferring the two older Unversities, I do so only by reason of ther stronger general sympatheen with public school teaching I am aware that, if I merely wanted a highly scientnic man m any branch, I maght find him equally at Dublin, London, or a Scotch University ${ }^{23}$
The Head Master of Chifton refers to the "want of pre" vious traming or experrence on the part of the masteres,
"ceach one having to a great extent to diacover hrs method "by experment"; and he farther atates that he 18 of opimon that Oxford turns out the best teachers for such school as his than any other single place. He adds.-
But they cannot be said to be in any way traned for their work, having in fact to leara ther busaness when very come us; and the Oxird system has at best thas apt to take away with them vary worpare rimned in it bre the apparatus jecessary for teaching gaince in a hoots They tight with advatage he mede a ceat deal capable of helping themselves."
capable of helpng themselves." and in practical work of the masters in the art of teachmg and in practical work 1 often referred to, and forms the The Master of Cheltenhsin
strongly opposed to Gradustea of eather Oxford of Chings bridge undertaking the duhes of Science Master at a school, that:-
The Universines offer now-a-days so attractive a home for men of ectence, whether manried or unmarried spleadid collectionatages of ample leasure, farr emolument, and observation, that even large public sehools, in pleasant posinons, find it hard to attract first-rate teschers of acence, except the man hmaelf has a genune love for boyw"
The Head Master of Winchester alludes to "ithe diff. "culty of findrag teachers possessing sctual knowledge of "practical and experimental kuds, who are alao able to "manage a class of boys."
The Head Master of Chnist's Hospital states that "the "teachers of the ensting staff are mostly macquainted " with Natural Science, at any rate in such a mesagure as

§ 22.-ON THE OBSTACLES TO SCIENCE TEACHING IN SCHOOLS.

In those Schools which I visited, I was very careful to inquire into the opinoons of the Masters with regard to the various obstacles which exist to the introduction of Scrence into schools Some of these obstacles are very real, some, I into achools ave, are more or less umaginary In the anawers to question 32 will be found very mportant ensdence conquestion 32 will be found very mportant endence conreal obstacles go, the opinion which I have formed from my vieits to the various schools, induces me to place this statement in the strongest posaible form.
Furst of all, I thank, really comes the very grave obstacle, that if Science is intended to be introduced into a school at the present day, a crowded curinculum $2 s$ to be met The curriculum in most schools is siready so large that it is taken for granted that it cannot be extended It therefore becomes a question of eliminating something before Scrence can be properly mtroduced The next questron 1s, what should be eluminated? And thes question is one extromely difficult to be answered, or at all events it is answered onth difficulty; although if a school were merely considered as a place of tranning, and not a place where useful knowledge is imparted, the difficulty would really be seen to be a lighter one than it is supposed to bo.
It is stated at Mariborough that the boys' tume as already absorbed by studies which have of late years been largely multaphed, and which in most cases they know to be essenthal to their future prospects in life, seang that most of them will have to be examined in all those subjects. It is not merely a quesinon of the tme taken up by the other subjects; the boys are absolutely distracted by them, and cunbiect es Science, subjote necessary if any adrance is to be made in The Head Master of the Manchester Gramer sch states, "The bore in the olageical Forme are full tased I states, "The boys in the classical Forms are fully tasked, I "f existing conditions they cannot be taught Susence with "f any good results; many bors, howevar, are detained by " any good results; many boys, however, are detanned by " profit far more in a Science Form, but this generelly is " profit far more in a Ncience Form, but this generaily is "done for the sufficient reason that a hterary train
of vital mpportance to the boy' ${ }^{\text {n }}$ prospects in life."
I do not find that this difficulty of introduoing Science has been at all regarded in connexion with the fact of the new kind of training altogether which comes from dealing whth the sciences of experment and observation, and 1 beleve that it is extremely mportant that thus point of view should be developed in order to introduce Scrence into Schools where at present it is not taught, and to extend the teaching of Science in those schools where it has already obtained a footing
But the want of tome, after all, in only one of the difflculties. "In the old achools the tone of the school 15 distinctly agamst Science, not so much on the part of the Masters as on the part of the parents, and, to a great extent, on the part of the boys themselves; and I believe it is from thas point of view (and I express my opinion with much diffidence) that the introduction of Science into the modern andes marely of schools, whether of this claes or of any other class, will evectually be a matter extremely unfavourable to Science. Not only will Science be looked upon as on sufferance, but its traming power will be antryely disregarded
Mr. Madan's idea of the obstades at Eton is as follows
"t The natural unvillingness of parents and tutors to allow
" boys to give up muoh tume to Serence which has not
"r sohool, and which does not often serve as an untroduction
cc to any reoognized carear of profession-this unwilling
"to any reoognised career or profession- this unwilling-
" whole tone of the chool has until latels been so ab " solutely classical, that Science had to start with a oestain "c amount of prejudice agrinnst it. This, I thunk, it has
"o amount of prejudioe against it, Tais, I thank, it has
" the subjent has done good work for the boys."
There sis ample evidence to sbow that where Saence has been bost taught its effect upon the boys is most acknowledged Thus at Eton, as already seen, it is aaknowledged that the subject has done good work for the boys. At Wellugton it is acknowledged that the past feeling of infamority to other aubjects is perhaps hardiy just, and I am oure thast the Head Mester of Clifton College is quite Wilhng to acknowledge the importance of a Sorentifio trainug, although he stateo that a prejudice agamst Scance, as a new study, to eome artent lungers in the munds of both men and boys.

Another real obstadie is connected with the Sciance

Masters It is stated in evidence that in the great schools
the Science Masters, as a rule, are not sufficient in number, the science Masters, as a rule, sure not suffient in number, introduced into as school, it has been introduced very much as any other subject would be-any other subject, I mean, as siny other subject would be-any other subject, mean,
of quite an mferior kund, and one, hise mosi of the old of quite an unfarior kind, and one, hife mosit The science Master has faced his work, lectured to his classes, prepared his experiments, revised his note-books, prepared his exammation papers, and has then erther broken down, or has appealed for more help, which he has not been able to obtan. Thus we read in the mformation placed at my disposal by Mr. Walson of Rugby, that the greatest obstacle is the want of time on the part of the Masters He remarks, "They have thme to do their regular work, prepare lectures, " look over books, \&c, but not time to give to madividuel " boys the help and encouragement that they need Boys os are not unprlling to work, but they requre absolute durec"s thon what to do They will often undertake very " laborious work, if it is absolutely defined, but to durect " accentific work takes muoh zume.
I have referred in another section to the evidence concerming the traming of the Masters, which goes to show that although the present staff of Science Masters us altogether madequate, more might be done by the existung etaft, if, as a. rule, they were more conversant with the methods of caching and expermentation
A host of obstacles in the vanous schools depends upon the orgamsations of those schools, and I say this, because it is not a general complaint, the complanat only exists in the case of certain orgeansetions Thus at Kings College lectures to the arrangements of the College is pointed out lectures to the arrange
At Eton it is acknowledged that an obstacle exists in the fact that the dinsions of the school are made with reference to classical work only
Again the Master of Clifton College acknowledgea a dufficulty in classifyng boys according to profiolency, and arranging the teaching so that the boys may be kept as active as possable, and not remain simply passive listeners lies in the He then goes on to add, that another obstanle hes in the fact of the dificully in the way of a progressive arrangement of classes, at least in a large school, to get
over which it is necessary to teach several classes smulover which it is necessary to teach several Classeg simul-
taneously This, of course zs met by havng more Science Masters At Clifton three or four: sets are thus taught Mimultaneously
From King's College School comes the statement of an obstacle which it is perfectly simple to overcome This obstacle consssts in the late age and the backward state in which boys join the school, especially the Modern Department, and we may add to thus, the rapidity with which boys pass through that Department I believe that when the mportance of Science teachung comes to be generally acknowledged, such an obstacle as this must cease to exist, and it is noteworthy that the obstacle is in the man urged in connexion with the Modern Depariment
Another drawback is one which, it is to be hoped, is also easy of correction The requirements of the Universities, and espeovally the University of London, have a most objectionable influence upon the achools We learn from Unversity College School that "The Universities requare " more than can be properly learnt by a boy of 16 ; they "cequure that knowledge to be very special in character, "c and not by any means to have sny connexion whth the "c darly life of the boy, he is asked about chemical sub" stances, which he may never see or hear of agan for the " restical his hife, they seem to liny more stress on theocc cherr than on expermentai knowledge, judging from of deed the or purpose of preparng for the examination last for the of requure an mordmate amone of kouled Lasiy, they of ecientic mubrets 00 that a boy cannot well begu S "s before 14 yeare of an Another obatacle which
be more umeal than is is urged, and which I belleve to be zoore unreal than is generally magined, is the cost of needed, no doubt a special class room is desurable, but in many schools these requirements have been met whthout any additional expenditure, but when once the locale is found I belneve that Scuence can be utroduced at one tenth of the cost which is usually supposed to be that which is absolutely casential.
Butt to come back to the real obstacles, we find what I have had to rafor to in other sections of my report, vis, the
utter absence of an essured carees for any student of scuence. At Eton it is stated that the rewards for success in Classics are so great, that a boy must hesitate about endangering his progress in thems, and it 38 dufficult to reward hum adequately for success in Scrence Another Eton Master also refers to the belnef amongat parents and Masters, that Science does not pay.
At Mariborough it 18 acknowledged that the demand for Science teaching amangat parents if very small The Senerad opinion seems to be that an ordinary knowledge of and a and position by following the studies which form the main
At Wellington the
At Wellington the feeling that Smence does not pay
as well as other subjecta do is also distunctly referred to.

Again let un take the case of Chmst's Hospital. Most of the boys laspe that school before 16, and at present thare are hardly 30 boya in the school over that age. These are all Head Master that to these hitharto Clisis atated by the Head Master thas to these hitherto Classics and Mathematies have been found the only, of et least, the resdert, avenue.
The Head Master at Rossall not only pointa to the greater inducements held out by the Unwergities for the etudy of Classics and-Mathematics, but he refers to the unsettled tuite of opinion as to what 18 the real mim of ecieatific study; and the matinctive feeling of the boy that, as at present taught, Sclence is not equal to Latin and Greek, or
Mathematics, for educational purposes.

§ 23.-HOW THE UNIVERSITIES CAN BEST AID SCIENCE TEACHING.

The Commissioners will gather from the replies to Q. 33, that there is an almost unamunous opimion among those connected with the great Schools, that the Uniyersities can best help the cause of Scrence by offerng more Scholarshups and Exhibitions for that subject, so as to duminish the disparity in the rewards held out for the various studues, a digparity so great at preaent that many
Head Masters feel that in recommending the atudy of Head Masters feel that in recommending the
Science they are mupring the prospects of boys

* More Fellowships are also suggested, but the opinion is that Scholarships are more important than Fellowships for the immediate purposes of the Schools
It is also felt that the Science-teaching'at the Universities might be more adapted than it is to turning out Masters; those at the Scrence Schoois at South Kensington) and on the construction and wise of anerpensive apparatus, being the construction and use of snexpensive apparaturs, bemg it the Universines master of Christ's Hospital suggesis that " traned Scinas To apply the deaciency on hygh"S Sub-Prosers "Science in the schools of en aren distrect by lectura "examinations, and imspection and by therr advice and "suggestions to the teachers of the several schools with " regard to subjects and method of teaching, chotce of "s apparatus, 8ev" The Head Master of Rugby points out apparstus, dec The Head Master of Kugby points out how Science Teaching in achools would be arded by the Unversities manntaining a high standard of teachnng and possible teachers and examiners I have already referred to phis question of Teachers in $\$ 21$
Some Head Masters suggest moduficanons in the University curriculum The Head Master of Winchester would make it incumbent on the Universines that thetr best men should know some rational amount of Natural Science. The Head Master of Harrow suggeats making some branch of expermental physics or chemustry a necessary part of the first exammstion that is passed by every undergraduste. The Rey J Percival proposes the instrtution of "examina tions such as those asked for by the Head Masters' Con * ference, and the modification of the general curnculum,
"放 as to offer a farr field for these new studres" The " Head Master of Taunton College School considera that Science Teaching would be auded "most materally by "makmg a certain amount of Science compplsory in the rmatriculation and litile-go examunations Cambridge
"c mught also melude Science in the lust of subjects on which
"c the Syndicate offer to examune schools; and Oxford "c might rescind the mischievous rule which limita juinior "candidates in the locsi exammations to five optiona

The High Master of the Manchester Grammar School and the Head Master of the City of London Sichool make substantially the same proposal that the Comannanoners have already embodied in their Thrd Report - " Much addiis thonal good would be done of the Universitiea instituted "a general matriculation, or leaving examination, compris-"ing-l, Mathematies; 2, Science, 3, Language and Li"terature, and allowing excellence in one subject to com"pensate for defecto in another"
The Head Master of Christ's Hospital adds that, "If " Une schemie of organised examinations of schools by the " Unareasaties (suggested by the Conference of Head " Mastera), should be adopted, Natural Scrence would find " its place in such examinations"
The Head Master of Winchester also suggests that the Univergities should frame "some definite courses of "Natural Science teaching: (a) Of a standard fitted for "a boy's main atudy; (b) Of a popular kind, fitted to be " an unversal study for all boys, subordmate in position, " but sufficient to gave some real knowledge."
The enormous anfluence for good or evil of University exammations upon school teaching may be gathered from the evidence from University Coliege School -" Every um" provement the Universities introduce into their examina " tuons must be attended with improvement m our "teaching, e g, if the examonations of the University of "London became practical in all departmenta of Sclence " as they are, for instance, at Umversity College, in the " case of botany, classes under instruction would be stimu"f lated to much greater interast in, and attention to, the "detalis of arrangement and manpulation of spparatus "and the substritution of practical instruction for teaching " by the exhbibition of experimenta only, must soon follow,' Mr. Wilson, the Mathematical Master of Rugby School, is of opinion that the Universities could best assist " by "teachung Science well themselves, and sending out good "teachers, men of yeal culture nipd educstion Boys, he contmuses, "soon find out the man of one idea. they use a hum, and get knowledge from him sa they would from "a laboratory assustant They ought to turn out men who "F will show that Scaence is a branch of cultrure as well as a " deparkment of knowledge
"By gradually, as the competition meresses, gremg mare ot acholarshaps for Scuence, and making their examinations * more nniform.
a" Most of all, by making themselves famqus as schoole of " Science, and having the most distingushed Professort; " that boys may aspire to be students under Stokes of " Rolleston, as they used to aspire to read Greek with

§ 24.-HOW THE GOVERNMENT CAN AID SCIENCE TEACHING.

It is acknowledged that Senence is nenther recograzed nor pald nor rewarded by the state as it ought to be; that mannly owing to this, there is no carear for Science, and chat parents and masters are justified in avoiding it
The Head Master of Rogby states, "A scmentific career, a as such, opened to the aspurations of candidates such as a I believe exists in eome countries, maght probably " anfuence for good both puppls and teachers by grivag a " definte object wnith tangible results"

Mr Wiloon, the Mathematheal Master at the aame achool, writes, "The mann infineace of Government is un" durect; if they honour science, and value at, and make at "stady a national object, they do more to encorurage "Science in schools than by any durect interference"
I have found the Hesd Masters of the Nehools I have. Fisited fully mpressed with the ulea that the Government can, if at chooses, bring a greas mfuence for good to bear
upon Scuence Teaching in Schools.

One of the means most frequently pointed out 19 the introduction of Sctence mon all examumations for the Go vernment service.: The Head Master of Marborough would make some branch of Scrence compulsort in all such exammations The Head Master of Christ's Hospital thinke that the Government should requure Natural Science in its competituve examinations. The Head Master of Rosaall remarks - "One way in which Government " might help, would be to offer us commingions or civi ser" nice or colonial appointrnents for excellence in Science "s atudies anythung, in short, to balance the overwheltaing " attractions of classical and mathematical proficiency as a

With regard to mapection by on officer of the Government, though the opinion on this point is not unanmous, there $\frac{18}{}$ a balance of eprdence in itse favours. From Eton comes the suggestion that the Inspector should be aiso a lectures, so

developec

The late Hoad Master of Wellington College, though in favour of inspection, is of opinion that the inspection should be general -"It us umportant that all the " subjects of a school education should be pressed forward " thin an even hand, and the relative values affixed to " they may be carefully remodelled The mapection of any " one single branch of work would destroy undesignedly, " " but 'steadly, the balanoe of studies The examanung
" power (whatever it is, Government or Unversity) should
"subjects" Here I would venture to remark that $1 t$ is not a question of destroying but of creatrig a proper balance
This view 15 exactly that of the Head Master of "c T'aunton College School,", who gtates. -"For some years "to come, untul Sevence ts thoroughly establushed, I thunk an " annual Government mspection, with grants or prizes of " moderate value or a reward for attendance, ;would work es"" ceedingly well. But I hope ulkmately to see the day when "all boys at all sohools shall undergo a compulsory pubhic "" examination in Science, as in every other subject taught, "at leastionce a year"

- The opimion of the High Master of the Manchester Grammer School on this point ss thus stated - "Nothing, "I mn my judgment, would be so beneficial to endowed "c sohoolo as systematic mispection and subordanation to " some central authority Whataver-assistance scientrific " be freat, Classios, Mathematics, and Modern Languages " be qreatd recerve hardly less "
The Head Master of the Crity of Condon School is of opinion that Government maspection (af not carred to excess) by one experienced in teaching, would be extremely useful.
I next come to the and whioh can be so readly afforded
by Government, and by no one else, in the master of museuman, mastruments, \&
The Head Master of Winchester considers that important add may be rendered "by carryng into other hraschess what " has been done for botany by the preparation of sets of "plates, se by organsmg a system for supplyng sets of "typical specimens of zoology, geology, \&co. Nothung", ke adds, "but a central orgamsation can mssure schools, which
" have no special opportuanthes, the possibinty of obtaining " have no special opportuanthe
Ane neceasary collections.
"And the Head Master of Marilborough -"By setting
" aside a buldrng at South Kensington, or elsewhere, in
" which the tinest modern physical apparatus could be " seen, such ss the collection of the Conservatoure des Arts " By the grant of moneys for the purchase of apparatus and " disgrams or the moneys for the purchase of apparatus and " msation of the sale of such apparatus at cost price, and by " misation of the sale"
Mr Madan, of Eton, suggests " grants or loans of appars
rutus, dagrams, \&c., as 18 done in the case of Art Schools"
"Scrence Department under Goyernge thunks that "the
"service by cheapening still more the supply of booke,
"dragrams, appaxatus, 奴"
The Head Master of Kng', College School dearres that and should be zendered by "donations of scientrfic books "t to form a school library of Science, and somentric apect" mens and mnstruments of various kands"
The Head Master of Chmst's Hosprtal would wish Government and in the formation of School Museums and Collections.
As to how Government could assast Serence teaching in schools, Mr Wuson, the Mathemanical Master of Rugby School, makes the following observations:-" Help might be "g given towards the formatoon of museums by free grants of "d duplrcate specimens, dzagrams and photographs might " bo publhshed by the Geological Survey that would greetily
"f facirtate the teachung of Geology A Traunng Collegefor
"S Suence Teachers for Second-Grade Schools is, I believe,
" Mr. Grifith, the Sclence Master of Harrow, says -"If " 'Leaving Examunations' were establuhhed, meressed at" tontion would necessarily be given to Naturad Serence at "f schools, if soma branch of the subject were made com" pulsory in these exammations, whether conducted by the Government or by the Univeratites
The Heed Master of the City of London School considera that and maght be rendered by awardung prizes, and he suggests "that the pupils of auch schools should be allowed to " take the pnzes sud medalsawarded by the Science and Art " Department (South Kensington), but at present limited "that the list of successful candidates be pubhshod."

MEMORANDUM ON THE MODERN DEPARTMENT.

In the ohapter dealing with the Organisation of Schools, I have pointed out that the sohools may be arranged into four Groupa - Schoola with only one mann limes, and that Claseical, Sohools with only one main hne, but in which general fitness daterrunes the place, Sohools whth a Modern Side, and, finally, those Schools which, in oonsequencs of some peouliarity, do not conveniently fall within either one or the other of these dirisions.
It is not necessary that I should remind the Commessoners that the "Modern Side" is a recentintroduction, and that not only have we now many schools with Modern sides, but even Modern Sohools aitogethar, and a gradualy yacreasusg Although thio incie exista, I have not beard it alearly exprased whether it is the intention of those educs clearly expressed whether if is the intention of those educathese Seoondery Schools should be feeding round for the Universities ; but I wish to point out that, if it is intended that they should be feeding grounds for the Univeraities, then a condition of things will be brought about diametrically opposed to the spint of the Commessionerse Report on the Universines of Uxford and Cambridge. In that Report it in proposed that in the case of every student who proposes to carry on his education at the University, thare ahould be an Examination ${ }_{3}$ preferably on leaving school, whuch "mught serve to mark the lomit between School studes and University studies, so that the atudent whose performance in the Examunation had come up to a certam standard, might be supposed to beve acquired such an amount of genemal culture and somentric knowledge as to v entitio ham, thencteforward, to be left as iree as possibio v to choose for hunself among the great lames of hterary or
8434.
" scuentric study" In fact, the Commuseron hes proposed that in the case of all those students whose education may be expected to culminate at the Univeraity, the bufurcation between the vanous lines of study, Classical, Mathematical, and Screntrific, should take place at the entrance to the University, and not before With the introduction, however, of Modern Sides to existing Clasaical Schools, and With the intarpolation of Modern Schools into our general educational system, we have a bufurcation coming at a much earher date, and under the present disorgansed syatem wo mber of epochs in a bog's life reations going on at any number of epochs in a boy's life
the arrange it 18 impossible to speak too highly of some of have inspected, I am not asping too much when I mach I have inspected, I am not asying too much when I state of the achools that I hive vested, that a Modern Side is a of the schools that I have visited, that a Modern Side is a modarn mistake. In some schools I am informed that, in the case of boys of the Modern Side, thare is an absence of that high tone which is one of the crowning glories of our Eagingh schools, thas being no doubt to a certain extent He finds, 12 too many ceses, boys of his own age, firiends of his own, on the Classical Side, goung up to the highest places in the School, whereas it is absolutely mpossible for hum to achieve that posation by any amount of dijugence m his own studies. In fact, my opinion with regard to Modern Sides is axactly the opinion which was arrived at by Mr Fitch when he inspected the Schools in the West Ruding of Yorkshure, and whoss Report I have become acquainted with quite recently. He remarka -

It wall be observed inat in both these cases tho Modern

Department is regarded as of infernor rank to the Classical, is under-officered, and derives little advantape or strength from its copnexion with the Gramsinar School. It is rather exn excreacence than an organic part of the school. exisis rather by sufferance than with strong approval. To that some of the teaching power of the L ccess, 18 is necessary he avaljable for the Modern Departe Larger school ahould regarded as a sepiraste school it should io that if it be on that footrig and heve suitable plasificatronganaed dequate staff of teschers for uts spemal port
"But of the ordingry coures of inotron
But if the ordinary course of matruction in the Grammore antellagent, the need for a Modern Depsenemente and separate institutoon would be greatiy diminished A course of instruction might nurely be devieed which, while equally good for the purpose of those who contemplate an Univer sity carcer, would be more serviceable to that large number whose education termunates eariner. If in the Lower Forms of a School Englash Grammar wers tanght pariporen mith Latin, if more attention were paid to reading, to Enghish componition, and to the cultivation of a boy's general intellogence ; if smithmetnc were taught in its principles, so that as far as it was worked it was understood; and if more panis were taken with the fimig of all whitten exercisen, there would be little need to separate the two classes of pupils. Suph a course, even if frustrated at the age of 14 or 15 , would have an muty and a value of 1ts own. More oral weaching. more frequent appeals to the intelhgence and teste of the pupils, in connexion with elementary work, the eariuer introduction of History, and Elementary Science, and the postponement of Latin verafication, and of Greek, to a hater stage of a learners course, would meet the requirements of 80 , per cent of the scholars far more effec tually than the present course. And at is dufficult to beheve that the moterents of the remaining 20 would be sacrificed to such an arrangement. On the contrayy, I beheve that some unaxpected advantages would accrue, and that the delay monasternig sorne technical detals would be more than compensated by the intelingence and consequent rapidity with which they could be acqured,
Now phth regard to the Higher Clasacal Schoole, such as Eton, Harrow, and the like, it 18 quate poserble that Mr. Fitch would consider that the remedy which he here proposes would be sufficent, hut it would be met by the objection to which I have alluded in another section, that the number of subjects alresdy taught on the Classical Side is too large, and the detall in which they are strudied is so great that modern subjects could not be properly introduced to the extent which, perhaps, would follow from Mr Fitch's auggestaon. But there is evidence to ahow, from the admirable way in which Science has been mincduced End taught at Echools hle Rugby and Eton, that, wo far as Scuence at ail events is concerned, a Modern side is not the Modern Sides in Schools is the crushing weight of com the Modern Sides in Schools in the crushing weight of compentrive examinations, which seem every year more and
 fact, places whick should be educationai into tare ing in tomes of knowled ghe more or less nseful I more reposipoint ont that if the Commerssoners' Flety of the general culture necessary, as a rale, for enterng the Univerentrera generally accepted, Modern Sides and Modern Schools will Gealrnost nunecessary, and that no bifurcation will be be almost unnecessary, and that no bufurcation will be
needed if an 2nitial simplification of subjects be accepted If, for imstance, the parent of a boy, when he sends him to one of the Hugher Secondary Schools, were to be assured that that boys career in life would not be myunously affected by his scientufic strudies, whule, at the asme tume, he would wish bim to undertake those studies, what easuer nethod would there be than, by the postiponement of Greek, to allow that
boy's stadies to commance mide by side whth the menersil cultare, meluding the form work of the school from the disy of entrange untal the day he left that echool 1 Of conrse this would assume not only this mmplification of studise to whech I have referred, and for whach Mr Whion so eloquently pleads, but it would aecessitate that a boy's place in the school ahould depend upon has general fitasas. Thus, for instance, we mught imagine a echool on the scasle of Eton, in whioh the boys would all of them, from the Fery commencement to the very termumation, undergo a general training in Clasence, Mathematics, and Science, end that without any strain; whulst in addetion to this general training he might at the same tims be preparing humsalf either of the three honouxs, or for a subsequent carser in enther of the three great brancher of culture. That this is perrectly feasible 28 shown by the fact that st the pressnt moment even in the Suxth Form at Rughy, a boy mallowed to drop cortain of the higher Classical mubjecti and to Claplace tham by Science, which is equally marked with the Claselogil subjecta, so that he we no loaer by the change.
It muat be perfeotly understood that, so far as 1 have gone, I am considering the case of boys who propose to terminate therr carear at the Universities In the case of those, however, who, from vanous causes, do not propose to enter the Universitisa, I belceve that at the present moment there 18 a whde gap in our educotional syntem; and that the suggestion of the Head Master of Marlborough, that there should be a school in which Science elone is trught, would be a suggestaon of the very higheat value; provided, aiwaya, that into thas school shall oome boys who have undergone a certain amount of general traming in some Secondary School. I presume that the Commasionere would on no account endorse the raggestion, if it were atended that ruch a sohool should replece the present secondary instruction, instsad of bemg supplementary to it, in the case of certain boys who do not go to the Uni-
vergities
There is another point in connemon with the Modern Schonle, and it is this: it is not too muoh to say thast it is quite possible that the intioduction of Modern Schools, and the introduction of Science into the Modern Sides of Classical Schools, whll, in the long run, instead of facilitating, 2s it is thought, the mintroduction of Science into the Classical Sudes, prevent any Sclence bemp tanght there: so that after Modern Sides and Modern Sohools have been in operatnon many years, the culture will be more one-anded than ever, and such a Leaving Exammation, as the Commissioners hape proposed, will become year by year more and more mposerble. I belheve that at the present noments In the sbsence of Modern Schools, the Masters are perfectly prepsred to add Screace to their curriculum, and to teach It well, if they can be only told how this is to be done; if some general consensus can be annved at with regard to can be grven to thentip, 17 some general instructions Endowed Schools' Commigesoners, and of s guppled by the Endowed Schools Commisenoners, and if a supply of properly targitt Sozence Masters can bi procured it in my belief, from what 1 have seen, that uf the Commof senence commensurate with the carears opened to the older studien, and, rf, at the samue trme, Greek is given up older sinudies, and, uf, at the same otme, Greek is given up as a compaisory fubject at the older Universitien, as it ham dready been at the Univeranty of London, all the other duncuites Which harass the motzoduction of Science wof
Schools will gradually disappear The establishment of a career, both at the Universaty and in the national hfe, will at once relieve parents from the grave and very proper objections whuch they have at present aganot ther chuldren forsakang the old limes which bave alwhyl been wo well rewanded. With thas will come-seeng that more will be tanght Sciance-mors people competent to teach it,

MEMORANDUM ON SCIENCE PROGRAMMES.

I have ofter heard the opmion expressed that mach good would follow if Her Majesty's Commissioners would frame programines, showing, however roughly, the ordier in which, in their opinion, the vanovers subjects should be taken up, and the course of stady to be adopted in each. I sms certann, myself, from what I have seen, that such a course of actaon would be largely beneficial, not because mech programmes would be, or should be, absolntely followed in
each case, but because such an suthoritative exprosesmots of opinion would be of the hughest value to teachers who, to the begronung of their careers, have nesesmanly small acguanitance whth the best methods of teaching. 1 append, as models of what I conceave sach programmes could most usefully be, the Sketches of Ingtruction m Chemustry and un Physice drawn up by Profenor Prakkland and Professors Gcodeve and Gathrie. [See pp. 55-93]

ATPENDIX TO BIXTH REPORT.

APPENDED STATEMBANTS.

I.-VARLOUS PAPERS BY MESSRS. WILSON', TUCKWELL, FOSTER, AND HALE ON
 SCIENCE TEACHING.

See Introduction.

1^{\prime}
On Teaching Groxogy and Botany as a part of a Liberal Education.* By J. M. Wilson, M.A., F R.G.S., late Fellow of St. John's College, Cambridge, and Assistant Master at Rugby School. [Extructed from the "Educational Times" for April 1872.]
In sccepting the honour of delivering before you a lecture on some branch of eduoation, I was much more mifluenced by the desse to state, in as distanct a shape as I can, what evems to me the present difficult problem respecting the make auggestions towards its solution, than by the hope that any remarks of mine, on the methods of teaching the that any remarks of mines, on the mects of geology and botana, will be found valuable to toechers For these subjeerta, are not particularry difflicult to teach, but therr ngght position 18 rather difficult to assagn And this position, and the whole question mvolved un it, is of more mportance at the present moment than the method of teaching For we are in real danger of drifting into a new syatem of education, which losea more, when comparen with the old, by tos shallowness, than it gasise in width. And, therefore, it is necessary that all persons who have in eny way influence over educational tendencies in England should consider the whole questron, and have, if possible, some definte and coherent amms. And, therofore, on the present occasion, ampiy to press the clemms of one subject, mithout shoming its relations to otherb, would be to mislead you as to my own news, and would be to avoid the most interestung aspect of the question
Further, I am bound to confess at once that, except principelily with this new, i have no nght to make any remarks on the teaching of erther geology or botany Viewed on therr strectly professional and scerentric ade, I should be totally unfit, from sheer ugnorance, to teach either of them. I am not a professed botanast or geolognst, and can only dare to offor any suggesthone ss to teachurg these subjects by premising that it ss only so far as they seem to me legirmately to enter into a course of liberal education, that I have had oxperrence in teachung them, and in searng them taught by others. I have very often to deplore my want of knowledge in these very subjects, but as it in certain that
they will be taught by many who are not professed naturahey will be tauk liata, my experinnce masy be of some use to such tachers, learning for themselves.
What, then, is the proper position of these subjects in a ourse of education
We must first get some clear notions in common es to the nature of the problem before us schoolmasters juet at present. We have to adjust and reconcle contending clanks. The subjecte that press for adminsion noto our sohools, and co to fivo heal k. They an dassice, and useful knowledge.
Under the head of Classics I melude all the intere humamores; that 18, all that bnigs man in contact with man, snd that dovelopes his ntwellectual capsecties on tha side on which Mato aod Anstotho loved to contompher hum a beat done by teaching his tatin and Greek, and anothar to recognise that thes is the highest obyent of eduration. It is quige tue that we are is contact with nature commonts so called and arternal inanumate obscots from the moment we are bomp but 80 also me we mith one another and ant training that ames at fitting man for his socisl and politeal relations is sssuredly the bighest un its aum \dagger
Mathematreal trammg is quite indispenaable, at leest to a certain estent. There is nothung so effective no giving quckness and soludity as anthmetic, st 18 better than gram connpensasto a boy for beung ill taught anthmetro as a chuld. Gcometry also spes ftbre and muscles and is perticularty fiesurable in \& literary eduontion. But it is perbaps warth saping hare that the edvantages of prolongeng mathematical tranning beyond a certan very moderate amnunt seem to me

* Dehivered at the Honse of the Society of Arts (by per15 of concel of the Somety), on the 92d Jenuary 1872. seport, vol in., p. S19
somewhat doubtfal It is a good employment; gives babits of concentration and acmuracy, and gives a certan egulantey of thought, it makes tho mind a somewhat better regulane, but does not do much, as ar as my own observstancm goes, to strengthen or open the mind, or to give avsilable knowledge of tools except in the case of a few who svailable knowledge of tools except in the case of a few who
possess special mathematical abilty. On the contrary, I think a good deal of time is wasted on mathematics by older boys, who often show distunct abulity on other sides, but make extremely slow progress in mathematics, while it commands such a small fraction of ther attentron

Scsence does much more then tbis, it very mach widons boy's horizon, giving hm all sorts of vdeas and interests and points of view, which he could not attan from has other atudies, it knales the maganation and gives it material, and some branches of it afford an excellent sabject for school teaching Still experience seems to show very deensively that beyond a certan point, exther speenfic talent or almost erclusive devotion of trme, are requasite for the study of natrural scence It seems to me, and I doubt not it $1 s$ equally plan to others, that many boys do not gann any fresh power from the contsnuance of a moderate study of st, such as is umphed in the two or three hours a week that can be devoted to it at achool Just when the scrence begnins to be special and techmical and professional. then it seems to elude ther gnap altogether. They are bewnidered it is often no liness of iness of mind; haey coula do it very well they had no so many other rons m the fre I am sure that thas type of
mud is very ramism
Aarm, hut it would be foreg to our present object to duscuss then But it oresgare pre the Iesure and to some extent adds to the dretraction of our leisure, a tudents
Useful knowledge 18 always knocking at our doors It presents itself in the forms of French and German, and physiology, and the laws of sommerce and geopraphy, and the use of tools, ace. And in some of these we must adrante it French and geography, at any rate, are practically innumber of subjects 0 gh they injuriously mareass ino thing of training and culture to
Now, of these five classes of subjects, commeranal educa. tion preases the last Its object is to give a certam quaninty of avalable knowledge and skill, and in giviag it to give as much traming snd eulture as it can But the produoible results are the first amm And from its mestang on accuracy, and even drudgery to procure it, it possesses one of the elements of a good education.

And liberal education presses the first For the only educsion which clams the thtie has butherto been given along with, if not by, the study of literature. Very indirectly, indeed, is it the result of a moderate knowledge of the Latin and Greek languages. It is the outcome of very many influences that have co-operated with durect ingtraction in these languages, and therr hastory sud literature. The most cultivated ranks of society have been almost exalusively, for many generations, educated on these languages, the schoals and unversines, where culture finds a horas, hape only lately begon to recognise other branches of knowledge And so it comes to pass that it cannot be sald that the expenment has ever been farly tried among us, whether or not a good hiterary and humane educahnon and culture ann be given whthout a study of classical hiterature.
achool, forgot what the soy that they learned very little at school, forgot what they learned, and have never felt the considerably benefted by the undurect culture obtamed from the constant associstion whth culturated minds. Few reails sat consate themselves with the cuterary spmen, hat these few do very mack to refine others.

I ara quate sure that this is the first business of owr profession as bchoolmasters, to hold this truth strongly against all comers, that "humanity, and nothing else.as to be our
objeot. We must make our teachmy bear on thus, give our best care to the selection of subjects, and the method of teachnag, in order to maks this teaching more effectare And when I urge the introduction of the sciences at the head of this paper into onr course of Education, I wish to make it piain that thas is what they onght to be introduced into, and to thus they ought to be made to contribute very effectivaly.
But the problem is not a very easy one, becange st seams
to involve the enormous evil of multaplying the subjects of nastruction, and so fritering away a boy a tume with endless distractions. To learn the Latin and Greek languages alone takes a good many hours a week; if the study of a language is to be of any use, it must be panstaking, exact, and laborious, snd $1 t$ prould be a very bad classecal educahou if it did not meolve hastory aleo, and various kunds of omposition, and a good deal also of Enghah literature. For it seems that to acquire giterary tastes from Latin and Greek modele 18 too difficult for a vast number of boys. It 18 not only the unfaminar language, but the unfamiliax thought-the effort of mannantion that 18 requred before they can place themselves in contect with the great minds of classical hterature; this 2 se the real difficulty which can. not be got over unless there exssts a certain nuascepthbility and potentahity of culture It 18 just the same with ancient history, it 18 too far off, and many wholly fall to project themselves into it, to be durectly benefited by the study of either literature or history. And this renders English heorature so useful, as supplying to many what hey woal otherwise not get at all, and as forming a kand or brige But the Beading fresh subjecto of thought worm, reading, fresh subjects of thought, and much cnticism, and for it mophes more distraction.
For let ue see what we have come to If classical educatron 19 neceisary for all boys, with the literature and history thon 18 neceessary 10 ail boya, wial that it impless, in the Lamn, Greek, and Englugh languag art, and French, and German, and Geortaphy - we aro arle mad Freach, and German, and Geography, -we are 1 , surable than all these, viz, faculty. We are in dangerand to a considerable extent the danger has been realued on fact-of weakening the intellectual fibre of our boys by distraction We must admat that we fand if boys leave us without fire, or strength, or solddity, or faculty, call it by what metaphor we will And the theory of education that we are drifting into has an undoubted tendency, in the case of the majority, to weaken the little strength they have, to burn out nll therr fire in a number of litile jets, to make the material too sont to bear the finer carving toois; in a word, to sacnfice faculty
Such an education levels up, unquestionably It furnushes mental pabulum for a large percentage of boye, who would otherwise be nearly starved, but it also levels down and tends to elimunste the close stady of detall, and the drudgery that is essential in all goqd work I cannot too carnestly express to you my conviction of this fact It does not do justice to the best twenty per cent of our schools They know more when they leave ua, but they have less power of acquing knowledge
We are, in fact, trying to hold fast to two theones at once, the old theory of promise, and the new theory of performance The old theory was to teach withua a limited area of knowledge, with a vew of giving faculty in $20-1$ quinng any other branch of knowledge. But the public now are not content whth thrs. They urge that schools may farl, and ofteb do, to give even faculty, and then ther sons get nothing They say that at any rate the faculty masy be tested, and more usefully employed And so we hasr now of Universaty exsaniners for all the higher schools, who are to see was the resulfe are; and apply us the same test We mut understand the meaning of this lower graus and the charge in the staple of edrcation roovernent, and the change in the taple of edo thon we theory of giving facultr, unless faculty 18 given equally by theory of givage faculty, uniess facuiby me given equaly by for producible results
If I did not thunk this matter one of the very highest mportance to us, 1 should not venture to occupy so much of your time with it And I have not even yet quate done. I printed a letter on thus anbject three years ago, addressed to the prosent Bishop of Exeter, at that tume head master Reetngs sethool, for discusion at one of ouf rinely interesting and valuable kmd, and to whech I am madebted for some of the remarks made above. Persaps I may be pardoned for quotung a passage from it.
"The levelling down 15 due to the distraction cansed by multaplicity of subjects enforced by means of an sertiful hme-table, which secures to every one its due tumamum. I wish it to be dastanetly borne m mand that there are masny hoya $3 n$ the school who are learning Latin, Greek, French, German, and Enghsh, and doing composition m three or four of these languages; who are learning arithmeite, algebra, and geometry; anceent or Euglash History, and he history of the Bible; aud that they are learning some one of tharee or
trice to be lasd ande m fayour of another; and that this 13 very nearly, though not quite, the case all through the in en, and that in general they receive one or more lessome eann of these subjects every week. If boye wore but
it am uresistably reminded of the French method lop fattening domestic fowls. The birds, I understand, arg brought in auccession before a akilful operstor, many tumes in a day, who, with a tube, squirta a amall quantity of prenously masticated food down therr throata. The brods, it is adued, seem to like this meatment, and to thrive on it; and they are ready to be kulled in a few weeke.
ule * have tried thas ornuthopach ynapandera : and it has falled * Yet to go back 18 mpossible. We cannot say that We will not teach any of the so-ablled modern subjecta. Equally mposeable nit it to give them leas time The day is getting longer, the estronomers tell ,us, but you ate aware that it 18 a lengthenng quite inadequste to meet our mmedate requareonents
"I shall propose as a remedy for this distraction to sdopt, to some extent, the ruccessive instead of the ssmui taneous method of rastruction, Granted that all these najects must be taught, whll it not be begt to ormit some in equaly broed the school? Our education will have an equaly brood bana. Abiutiea of all kinds wnll not be lese recogion and fore end I balope Ane mall gaja in concen school coure mil be in more aso hat weventy in th at prebent.
our edrachtion sae dificult in the actisal working to stratif our education sathsfactorly; and I confess I an extremely Anxious to aee the sittempt made while you are still with ue Abst omen But I can commend to you no greater work,
In thre stratification of stadies we began to make sorne progress in the few months that still remained to Rughy iks great head-master And thus is still the problem before our profesanon, and proved by our expenenve to beror urgent than ever. My own beinef, however os that porblem can only be solved satnefactorily bythe exdusion of many subjects from the early course, and offurcation in the higher In the carly course, as an ulustration of my meaning I should wnsh to see arthmetac and Fremeh and Latin, to be followed by practical geometry and scrence in the form of lec tures in natural history, and perhaps a little practical work in physica, and that then the bifarcation shall commence the one branch leading to Greek and verse composition, and 2 mainly interary education, the other to scenence and mathe mathes, with Latin and French and Englioh as the Itterar elements Neither branch would be encyclopedec; both would be hberal and humane; and between them they would surt the requrements of the great majority of minds The reformers in education have no programme at present their spostle has not appeared, but at any rate they ought not to be content thll they have got from the Unuverstine an entire recognation of thas second branch as a liberal educa non The Unversitios give the crown to all education, and as long so they demand Greek they tre our hand, and condemn us either to exclude sceences or to dwayf and cmpple it, and to sponl the educatoon of the masa by teachung them too many thangs it 28 only thus that the two courses can level at the Unverstinea, and ars taught at the echools by men of equal cultuvation.
1 have now made telear what Ion have now made itclear what position in a hiteral caucea: tion concelve ought to be occupted by naturaal hastory, It before bifurcation hrse began, and so taught as to ascertan, develope, and train any scentufic powers they may bave These qubjects at such a stage cannot be made to give a complete sceentific trainng, it would be pedmatic to teach them in strictly scientific order; they must be so taught as to stimulate the thirst for knowledge, to fire the imagination, to open the eyes to the ofjects and interests of serence, and to give a solid body of information which the resulta of later stady mayy crystalleze round. Incidentally, they give the means of teaching the class the orderly arrangement of a subject on their notes, and acrupulous sccuracy and clearuess of expresaion.
The range of the subject will depend largely on the teacher ; the man is of more anportance cisan has tools But it will be selected from what the Germans call "Endkunde," a terrn with which Haxiey has famulaznzed us. I do not know that these is a better Engluh equivalent for it than natural hustory, in the widest sense of the worls Bpt st

- Failed, 1 explamed elsewhere, to produce remalts com nensmate with the minnetry of the boys, the perfection of the the Unveratiem were not ducreditable at that trme.
may be well to aketch the contents of these early lessons on screnice
An orrery and globe, and a littie astronomy, form the natural beginming, Let the boys make the effort involved mn realizing the plan of our solar system, and our earth in space with its atmosphere mantling round it, its kinship to the planets, its relations to sunand moon. These, and some of the common phemomena-day and night, summer and winter, eclpoes, and the changes introduction to serence Tatral and They are sthll subjects of surpossing interest to every successive generation They take hoys on all their sidesmemory, magination, and reason iney show, as nothmg there is a genune and deep astisfaction, a real pleasure of the intellect, which boys attain when they first understand the causes of these common great phenomena They stand thenceforward on a higher platform. The universe presentis to them not a mere wonderland but a reign of law; These are the hterae dsoma wintten in the unverse by the finger of God
Then we pass to the great earth itself, and all its activities ; the effects of its still remaining internal heat, its volcanoes and earthquakes, the slow oscullations of level, and the great ohanges slowly tiking place in the famular outline of the continents and islands, and the proofs stall visible of past ohanged These things muat be well thought out by tae clasa, and ullustrated and brought home to them by pictures and syecmens The effect of the attrection of the sun and moor in making tides, and ther geological and cosmical action, is a matter that can be to some extent grasped, though so difflcult in 1 iss complete theory, and as far too mportant and common a phenomenon to pass by without notice. And then come the complicated consequenoes of solar heat and light It in with pecuivar interest and pleasure that a boy learns the causes of winds and currents, of trade winds and cyclones, of evaporation and rain, and lts distmbunon on the earth, There is a sense of power obtained by finding out that these great and famary punomens are to puide the thoughts of the boys, and they can, woth very lutile help, think them out for themselves I find to rarely hutie help, to enve a necessary to gise a regular axplations thrown out by the lass, and successively ormcised Fresh information as to fast must of course te given when it 18 seen to be winted and not before And this meidentally gives them a much higher respect for knowledge and the value of facts than they had before. The labours of observers, and mathematicians, and collectors are seen by the class in their true ught, as contributing to the store of accurate knowledge in regions more or less accessible to themselves.
The consequences of these activities must then be traced out. And these constitute the principles of Geology To teach them 18 not bard, a large stock of pictures, photographs, \&c, wll be found very useful. We take the work of rain and mivers, therr solvent and transporting powers, and atraightway the ravine and the waterfall, the ach pionn, and the whole miver valiey, with its wondrous ystem of dramage, are seen to be the consequences of the famuinar forces at work all round as. The work of the ses is eaaly unaerstood, and behold the map of England is looked at with new eyes, there must be a cause for every bay and headland. The formation of marine deposits, the rowth of coral, and Darwn's explanations of the form of corel ialands the ooze of the Atlantue, the work of frost and snow, the glecier and leeberg, the geographical dustribution of plants and anmals, all are inteligible, and all, If I may so call it, excitong; they excite to further reading and a good deal of thought, they show, moreover, the regrons of knowledge, the necessity of chemustry, sind
meteorology, and astronomy, and zoology is really felt, meteorology, and astronomy, and zo

A bing
And then begus geology proper, a somewhat harder beyin to take the lead Up to this time indostrys, btten toon and literary power genemal intelligence, in fuct have oan the pmocipal qualties requred and encouraged but now there ss something more.
One of mp former prologe
One of ny former feological pupils made me a water* colour drawng of the Newbold Lias Lume Works in our 30 feet hugh, end 200 feet long, a section of the lower has The stratia are bent into a curve, though the surface of the ground is level, and there is a small fault rummag through them. Red eand, contruming oue or two large syeminc boulders, caps the quarry ; the strata themselves are alternations of hmestone and the finest laminated shale.
This diagram lasts me for three or four lectures. We
the curve, another the stratification, another the sand, while a fourth is much mors impressed with the men and their trucks than by the geological features of the sketch it takes some time before the class really sees all that 18 put piluty the allereation, the fault, the boulders and it akes the recent druo said, able soundly to reason out and satisfy themselves as to the successive depositions, the upheavals and sinkiogs, the changes of climate, in a word, the proofs of the prolonged workmg of the forces ther had prevously stridied But hurry here is fatal This is the grand lesson of gealogy, it took the world some thousands of years to learn, it may well take our classes a fortnight
Of course, a fluent lecturer could point out all this and more in ten, or possibly in five minutes, and would proceed, perhaps, to the subdivisions of the has and its ammonite zones But to do so 18 , I believe, contrasy to the very proscples of teaching Few subjects so well admit of the application of Jacotot's prnciples, which have been brought before you in this place by Mr Payne, and in few subjects ts teaching by these principles so amply repard I think it would be dufficult for any member of my class to distinguash between what he had found out, and what he had been told in the stady of this section of the lias, he proceeds with a confidence in his powers of comprehension-sometimes destined to a disappointment-which is given by solnd knowledge of his own building up This quarry is the foundation of all our geology in need scarcely say that pery many of the class visit the spot, and severely criticuse the drawing, which, from the progress of the quarry, is a little out of date They bring specimens of all kinds, shale, and fossils, and nodules, and stones from the drift, and your real professional geologist, always a collector, begins to show humself
This formas the nucleus of knowledge, raund which everything has to crystalluze The next step is to discuss the section of our Artessan well We express publicly our gratitude to our enterpnsing Board of Heaith, who bored hrough 1,145 fee of lias and new red manls, and found salt water at the bottom, that rises to about 200 feet from the only useful result of the bormg. From thas and the ordnence map re slowiy make out the dip of the atrata the ond the etrange-looking gological map of England ys now and the strange-looking geological map of England is now no longer a mystery These bands of colour are the edges of
singhtly inchned stratnfied systems The study of the Warwickshire mostratnied systems The study of the us another capital study The drawng of sections throngh various parta of England is an excellent exercise and is the various parta of England is an excelle
only way to learn the geological map
We then take to rock specrmens and fossils; and here it $2 s$ advisable to mtroduce a little of the history of geology; and to tell the class something of Wulliam Smith and Cuvier, and thenr respective discoveries And whatever tume remains is spent in going through the strata in chronological order, with the aid of \& museum

It may seem to some that the amount of positive knowledge gained is too hittle, and indeed it is not much, not as much as would be gavned by half the thme spent in learning and being exammed on somebody's advanced text-book But from the one system the boy emerges hungry for more knowledge, and his own reading will supply hus wants; he emerges with a clear understanding how science grows, and What it 28, and has a framework in wheh he can fit all knowledge he subsequently acquires; while from the other he comes out-perhaps some of my hearexs know how he comes out
I know of no single book which contans all these subjects The teacher, at any rate, must draw his knowledge from maniy books, and from real, personal knowledge of his subject Methods of teaching are very important, but the teacher is of far more importance, and no teaching of these or any other subject is lukely to be worth much unless the escher is choroughly master of his work, has made it his wn by vewing it in various lights, and is independent of any text-book, or any order of viewing nature. He canno* and if he is further able to be prosecuting attainmentes, work, however humble, in which hrosecuing some orginas they, howll learn more of the true sarens pupils can assist hum, thay they will gather from the most eloquent by contagion I have wil gather from the most eloquent lectures.
to say anything about botany. I have, in fact nothing to to say anythung about botany. I have, in fact, nothng to
say about it that I have not said in one of the Essays on a Liberal Education that appeared some years aro. I will only repeat one request to all who wish to see how Botany ought to be taught; order Ie Maout's "Lecons Elémentarres de Botanique, fondées sur Panalyse de 50 Plantes Vulgarres." (16 francs.) And I am glad to be able to announce that an Enghsh work on amilar primeples, adapted to Enghah
flowers, is forthooming in the "Monthly Packet," begnoming with the number for next July

I do not ase any reason for doubtang that these subjects are the best for early education, eay from the ages of twolve to foorteen At anch an age, chemstry or phyance cannot be underatood, except in the rarest cases i know that Faraday expressed an opposite opinion. But Faraday loved the chilren, and especially the geological course, as 1 have explanned it, give a colv round anon subsequen a finet atrongest and mat 18 not It may be urged that thu teat
may mil be thorotgh,that boys will be brought in contact with chemistry, phyeics, mechames, mathematice, at an aye when they cannot underof talking about a preat many things, and knowng theortes about a great many things, but whthout the ryorous trainiog abecessary to enable them to judge of theae theories Thes is of course, partly true But it is po ob
Thas is, of course, partly true But it is no objection The logical order of ideas is not the educational order A book before he learns grammar, which might be sand to precede logically; he reasons before he can learn logio; and precede logicaily; he reasons before he can learn logio; and so he bas to learn a thousand things by experrence and observation and reading and conversation, which form the
material out of which science grows The teaching is material out of which science grows The teaching is
thonough so far as at goes, and it is delusive to aupposs that the teaching of mechames or physies can be made exhaustavely thorough to a boy. He apprehends only by comparison of one thing with another; and where experi ment takes hum out of the range of his experience, there his conclusions are not his own, but his teacher's. These subjects, which may be put aside as mere scientific mformas thon, have a double value, stimulative and intellectual, that no one who has not tried them can well estmate. They would planaly be incomplete by themselves, they do not admit, taught in this manner, of the careful study of detall, the munute and panstaking work and dradgery, that makes every science so valuable as an mistrument of education But these subjects clamm to enter into the sehemes of literary and scientific education, to form a common ground between them, to be sclence to the men of luterature, and interature to the men of science
The amost important question that arrses out of the suggestions I have made is this is education in science-by which, of course, I mean a real trauning in chematry and physies-uncompatible with the existing classical education As far as my expenence goes, it is in the later years of school life There are always some boys of sufficient general ability to do pretty well, even to the end of their school course, in all the subjects, and it might be sad that these, at any rate, gan from the extension of theur education But I have good grounds for thinking that many of them lose strength, as I have explained before, and go up to the University rather wearied, and with a cessation of growth, at what has been called an tngenstituum, or wit-stand There are many more who can do one or the other well, but from trying to do both well, fail in both 1 thank it will large gainers, finding in science the stumulus and intal are largo ganere, hading in science the stimulus and nutallectual food they need, and even making progress in classins far more satisfactornly than they would if they devoted themselves to classics If our augby expenence is worth anything, it proportion the after the age of airteen or there proportion of boys who, after the age of sixteen or therescience than they do from language In literature and science than they do from language In hiterature and
hustory they can hold their own against the best scholara, hastory they can hold their own against the best scholari, ther classical work, but most of ther work in language is, therr classical work, but most of their work un language is,
unproductave It is equally undenable, on the other ande, unproductave it 18 equally undenable, on the other ande, that there are some boys whose forte is language, and whose
mund seem hermetacally sealed agamst scientific ideas. After a tume, 1 thnk they ought to be left to cultavate thear own genius on the side on which it exists We must respect facts
The problem, then, of bufurcation, not only in schools but in universities, is distnnctily unvolved in the subject before as If the unversinies do not admit on an enturs equality the one branch and the other, the modern or actentufic sudes of our schools will consust of boys not gomg to the unversines, and will be a sort of refuge for fallures, or for boys whose education is to stop at an carly age. Nor, on the other hand, will it be enough for the universines to admit students of both classes, unlessour great schools do the same. It may be nrged, let some schools admit one and some the other class, and let boys go to one school or to the other, accordring to therr taste. But the taste is zot of ten ascertaned bill a boy 1 sasteen, and up to that tame
the education ought to be nearly the same; and every one knows how mposesble it would be, in practice, to turn a boy out of has school at axtaen. I know that our Rughy boys would rather live on the bread and water of grammar than leave at such an age.
Further, the leaping examinationa muat be orgamsed with a view to bifurcation and not encyclopedsm. Thus is a mafter of immediate umportance
Such, then, is the problem before reformers in education, -to modify our existing schemes and institutions till they admit of boys obtauming a groundwork of edacation, fiting them for progress equally in litersture and science, sind in rtself, so far aa it gaes, sound, stamulating, and refining, till they admat of boys contenuing the atudy of hterature and hustory simultaneously, while some of them are concenthating of science; and the thendy of language, and others on classer beurg ; andly welcome at all or bays of hoth these classea beng equally welcome at all our univermines.
2.

The Obbtacles to Scrence Thaching in Sgeools.A Paper read before the Bringh Association at Edinhurgh, Tuesday, August 8th, 1871. By the Rev. W Tuck weic. M.A., late Fellow of New College, Oxford, and Head Master of the Taunton College School.
Seven years have passed ance the firat Public School Commission revealed to us the fect, that from the higher Enghash educasion natural science was practically excluded, that while in the preceding generations scnence had extended her empre, explored and annered new provinces, and made them accesable to all men, education had beoome narrower than it was three ventures ago. A atatement so starthing, and made on such authonty, could not but bear frust The schoolmasters felt the reproach; the pross urged reform, full discussion whe facilitated by this asiocuation, and a most valuable report was made public with its suthority, till, in 1868, a second School Cominision felt itself able to declare that the majonty of the teachers whom it had examined had accepted natural science as part of therr school work. But this announcement became less cheernng when the avidence supporting it was mastered. It was found that in the opmon of many head mastery the needs of the new subject were fally met by the visita of an occasional lecturer, and by the optional attendance of the boys, or that it was delegated to some asisistant of no great mark, who. in addition to the subjecta which he professed to know, was expected to get up and to teach without thoroughness or aptitude some one branch of natural. scrence which it plessed hum to select; that chemustry was taught without a laboratory; mechanes without models or apparaturs; physiology without a skeleton, a acalpel, or a mieroscope Where thus commenced, school science has naturally langushed; hesstation and miogiving have marked from the first the itterances of the masters who intraduced ith In some cases it has been condemned and dropped, in masy orners it hame the first-class English echools whet teach to fairly and oystematically whuch homorr it mith teach it farry and aystematically, which honour it with separate masters and wita due apphanes, tome and worthy rank in relation to other to it its proper tome and wortiny rani in relation to other I do not think that we cal bestow much blame on the head masters They have inherited, we must remember, an head masters iney have inherited, we murt remember, an minute nubroken venersble traditions, looked upon for manute nabt as the supreme unstrument and test of intellectual power, whole and complete an itself, supported by mmense power, whole and complete in itself, aupported by immense
experience, worked by tried machanery Into the madat of therr well-mapped, well-proved oystern is thrust a strange and forengn aubject, compraning many branches and demanding multifold appliances, whose value as a mental weapon they have had no means of testing they are called upon to surrender to this a portion of the time which already seems too short for other work, and to mangurate a department of achool labour over whuch they can exercise no sort of eupervision or control. They ask for gudance in the new arrangementa which they are called upon to form, whether any one departiment is educationally fundamental to the rest; whether sciences of expermuent should precede or follow those of observation; what pmtions of the old course are to be abandoned; how far the Unvernitien, which in many cases stamp the practical value of theur work, will recogmee such abandonment. They look round for accrednted teschers and approved text-books, for eninghteument as to the amonnt of apparatus and ith cort,
for detals of teaching and of testang, and they look in vain.

They must fall back upon their moral consciousness, for no help is tendered to them from without I place this helplessness of head-masters first on the list of obatacies which we have to chronicle, and I plead, for the moment, in their behalf almost more than in behalf of errence For thenr attitude 18 frank and cordial, they are prepared, as a body, to meet all their mught. If those who are pressing modern with all their mught. If those who are pressag mod them to understand ther difficulties, they prll prove the best auxaunderstand ther dificulues, they fill prove the best auxnew department of their work the same energy and wasdom, the same self-sacruficing impartal zeal, which have already won for them the deserved esteem of the community, but of wo fall to work in harmony with them, ther want of sympathy and interest will be simply fatal to our achemes
The fact that our head-masters, mamly appounted to them posts because of excellence in other subjects, cannot themselves teach scaence, brings into promunence the next great difficulty with which we have to deal, namely, the traming and appointment of science masters In Germany, the candidate for a school-teachershup, already brating with sertificates and testimonials, passes a struct exammation in his general culture, in his chosen subject, above all in has practical power of imparting knowledge and in managing large classes of boys, nor, however successful under thas ordeal, can he be appointed to any mastership, high or low, until he has spent a "trial-year" in the practice of teaching and of governing at some large sohool under able superintendence In England, an unversity degree is the sole and angle teat, and though a distnguished position in the honour list is undoabled endence of high ntelligence and extensive knowledge, yet that without which these will be useless in his profession, the power of infusing intelligence and communicating knowledge, clearness of delivery, voice, manner, dexterity of manual lusiraino, abily to atract and to sustannaly but is in no way pronded for or ansured only not attested, but is in no that of the few University and whom the present sught demand for mesters has men whom the presioh in science, with a wew to sabo astic life a mall proportion only $1 s$ qualified to meke it lestic life, a tranis and fourish in the olass-room
Further, were the supply of science masters unlimited and unexceptionable, their coat is another heavy atem for our consideration They involve in every case entrely fresh outlay, no modification of the existing staff is posesble, outlay, no modication of tro existing stan or haster on be detached from other no master can be detached from other work, or have science tacked on to his $\mathbf{o w n}$, whtiout sore and mannest injusince other tegehing, 1a, obviously, the teacher He must be a man thorough un his special knowledge, and, if his special knowledge is to stick, of the widest general culture. He must not spend all his time in teaching, but must have leisure to prepare his subjects and experiments He must possess or he must acquirs the delicate art of handing zany pupila, the force of manner which attrects them, the enthusiasm which puts and keeps them en rapport wnth him ; the insight whoh reads thew minds, the tact which can preserve disciphne without checking inquiry; the art of adjusting exparment to information, of glancing at that which is obvious, of dwelling on that which is difficult and, possessing all this and more, he must be well and lughly paxd It 15 fortunate that we should have the opportunity to urge thas point at a moment when all the achool endowments in the country are moling in the arueible of a schod commuaro lat corange things into the witches in Maobeth, have thrown strange things into Heoate and, har aisters, bring to burth a hae of kings
"Whin two-told balls and doublo ecoptres carry."
teachers who shall rule in years to come over the empre of hungs as well as words, over the operstions and the phenomens of nature as wan over the hustory and the workuge of the human mind
Ithe coost of the teacher can be got over, the remaining unavoidable expense is trifing. It ought to be more widely known for how very smal a aum sufficient apparatus can ber lator 20 bors at sclence. A laboratory can be fitted up for 20 boys at a of glass and test solutions need not cost hum more than 8e, per annum Betamial fowerntrays, contaming 18 botties, per annum Botanical fower-wrays, contaning 18 botties, may be bought for haif-i-crown, electrometers, telescopes, polariscopes, models of pumps, and puleys, can be made,
efter a little mstruction, by the boys themselves, who will siter a ittle instraction, by the boys themselves, who whil
learn in ther construction far more of the principles which they involve than could ever be unstilled into their munds by the ohoresst produce of the shops And this leads to one word upon the ummense value of workshops in a school, not only as bearing upom practical scrence, but as dustinctly fosterng mental growth. The class-room is not the only figld of culture; nor need boduly achasty ragn undispated
ver the many hours of leisure. Excessive athlethersm is one amongst many causes which are threatening to paralyse Uniersity life, and during the months when cricket is impos ible, or the hours in which it is superfluous, the forge, th furming-lathe, the sculpture-room, the photographe shed ome m not only as preventatives aganst listlessnebs and mell as muscles, as umperceptible development of taste and the exercise of unlaborious discipline. And what is true of workshops apples also to those other charming accessories of scrence teaching, museume, botante gardens, natural history societies Let it only be remembered that in all these things the hand of the master must gude and not supplant the labour of the boys themselves, that their growth must be organic, springing naturally from scientific work to meet the wants that work suggests, that thor creation and their sustenance by the workars is at once a condition of there vitality, and an elevation of their character from playthings into educators.'
The action of the Unversities upon science teaching is a. question of the deepest moment for good or evil ther watluence in many schools is paramount Possessing sum preme educational prestige, and dispensing enormous educational rewards, thenr power is absolute to detarmine the grooves in which school work shall run. How their influence has been exerted in the past no one requures to be told; those least familar with ther politncs cannot but be aware how great a change has passed over them of late. We may not venture to assume, but we shall all rejoice to learn, that in their future legislation, more especially in the umportant change to which they have been of late invited by the Commuttee of Head Masters, they will accept suggestions and even invite assistance from those whom science may depute to watch her interests and to urge her clams
I pass to a grave item in our catalogue of difficulties. I pass that geientifio teaching is eseantal to a prest Granting that aronava queston inserted in the curriculum of an established sohool P We re told that to meet the demands of Unieraty compets re told that to meesture demands of Unversity competabrains of bors and that of four houra s weel are to be brains of boys, and thum di fond of acience, classical accepted affer And in order to solve this problem, some well-known echools hape instututed a system of bufurention, eparating their senior boys into two departments, whereof one learns classics only, the other learns modern subjecta, as they are called, quite or almost exclusively Of course such a separative process does not really help ns If luch a separative process does not realy help us if lingustio training is bad without the rationalising and of
scientific study, no less we sclentific study, no less 18 exclusive science bad, when
divorced from the refining society of literature and phildivorced from the reiming society of literature and phil particular faculties is oddly followed by a device which causes each to work unchecked The difficulty must be met farrly, and on premises which scholare as wrell as savang can understand It must be met by asking whether, in purely classical schools, no time is wasted, why it is that in the lower forms a boy takes years to master what a clever tutor teaches in a few months at home. why the weapon of analysis, which opens every other chamber of human knowledge, should be discarded in the case of scholarship alone, whether unattractiveness is an mherent vice in Greek and Latin only, or whether, if judicious method Wakens pleasure and keeps alive attention, that of itself is not economy of tume, whether, lastly, the day has not arrived whan Greek and Latn verse-making has not, like many other sweet and graceful thungs, passed from vitality to survivalism, and may not be allowed to disappear Shail I shock the taste of any whom I address, if, after having written rome thousand Greek or Latin verses in my own school days, I pronounce them waste of time, and protest against them altogetiner ; hey do not cultrivate the taste, ior reverent enjoyment of the beauty of an author's thoughrs his excluded tion the lab has diction They do noi hran the intellect, for all chance of analyang lifelesa block into the forme of a Herameta or Iambio verse Frcept in the case of those in whom the sacred faculty us innate and whose convs would find fhe scope in exploning the poetical resource of thar own Interature and language, they constitute o mere mechanical process, exereising hardly more effect on taste, nefinement imagination, than the complation of a Chinese puzzle, Their elmmation from our school systems will be clear gain in itself, and will set free at once a much larger time han is demanded for the prosecution of natural smence.
What that time ahould be I have already ventured from ny own experrence to hint The question may continus open till it ahall finally settle itself in the gradual adjustment of scmence to other subjects, but we shall probably all feel that we cannot demand for it at atartung less than four hours of week Of course, also, if it is to be faurly started, it must be compulsory on all the boys; it must invalve no
extra charge beyond the actual waste of materials in ita experrmental branches, it must take rank not as subordinate or alternative to what are called the marn subjecta of a school, but as being atself one of those main subjects, effecting in due proportion the school marks of the halfyear, liberated from all those slight but telling angns of inienomty which prescripion is skilful to intict. Nor must the teacher forget that the victory of science over preposiession, and so its rapid estabingumaent es a settied branch of teachug wine fature, depends a a great meaon apurn on a prrore grounda; accordingly as it is borne in mund vation and reasonimg, not memory and magmation, are ita field of work-it will approve italf expermentally, and field of work-it wh
stand by $1 t s$ results

The character of those results I cannot for a moment doubt. Its practical value, ats endless resources, its culthvation of those faculties which no other discipline can vation of those facuities which no other discipline can
reach, will assert for it at once its place as an essential reach, wil assert for it at once its piace as an essential
branch of youthful culture Rooted and floariahing in the schools, it will overfiow into their surrounding neighbourschools, it will overfiow into their surrounding neughbour-
liood. It will give birth to local museums, provincial lectures, science classes. It will lay hold of the tradesmen of our town and counteract the tendency which thesr life exerts to the exclusive worship of material prospentif. It Will light up the minds of our women, too often doomed to pass through the years of so-called education with accomphashments exclusively mechanical, and whth antellects phammenta exciusively mechanical, and 'with antellects clergy, hostile to its conclusions through ignorance, not through conviction, and will teach them how to brige, by sympathetic knowledge and by common intellectual interests, the gulf whoh widens day by day between themselves and the community; far from dulating their religious feeling or undermining therr religious ferth, it will place on broader grounds and sink in deeper foundations thenr knowledge and ther love of God
I have detamed you long enough, and yet I have but scratched the surface of this great subject But the summary of what I have to say is this. that our schools, in their readiness to establish science, must be arded from without All questions of funds, of apparatus, of teachers, of selected text books, of co-ordinated subjects, of University infuence, of united action, come to the same point at last We must have central leadership, at once commanding and intelligent, if the mintroduction of sclence into our schools is to be smaultaneous and effective The question has passed out of the realm of general discussion, it 15 mpe, if ever queation was, for detaled and practical settlement. There must be within this association, there must be within this room, men qualified in all respects to appreciate the nature of our difficulties, to formalate rules for our guidence, to press our pecunuary needs on those who are for a tarne the bursars of our educational endowments, to watch and insuence the action of the Un "rsines, as on other points, so especiall n the projected leavig an confidently appeal. I appeal on behalf of countiess schools, which, ready to admit reform, are kelpless to minate xt t, and one endearouring corrageously and honestly but whth little of naeful concert, wnth mith of whed force to Frork it out I to it once be announced to the edrcational commonty that a committee of dietngroshed men havin commanity that a committee of distingrashed men, having Universities and schools, has been armed by this association to counsel, to essist, to recommend and to accredit, to harmonise and to combine, to become, is short, the recor nused representatives and controllers of scientific education and they will not lack grateful chents or attann nadequate results. If scrence is to flonrish in the land, preliminary knowledge and training, bestowed with care upon our boy hood, must leave our manhood free for orginal research. If our Enghah education is to be abreast of contanental teaching, one half of our mental faculties must no longer be suffered to lie dormant. To have removed this great reproach; and to have helped this great reform, will be an achevement worthy to take high rank even amungst those splendid services to acience and to the community which give glory to the British Association.

3.

On the Teacming of Physics. By Professor G. (1. Fosteat, FR.S. [Extracted from the "Educathonal Thmes," Feb. 1, 1372.]
I do not suppose that it is needful for me to take upany part of your time thus eveming in trying to prove how desirable it is that the study of Physics should be introduced rughtly understood the task that has been entrusted to me
by the Council, it us not that I should advocate the towching of Physics in schools, but that I should point out, ms fir si 1 may be able, how it can best be taught But although probably it may be safely taken for granted that all here are agreed that the earence of Physios is an umportant and valuable subject of atudy, and one which may wnth advantage occupy some considerable share of the attention of young people durng their school coturse, it will nevertheless, 1 thmi, be useful, before attempting to discuss the way in which the subject may be most succossfully tsught, to give a few momenta to the consideration of what the precise advantages are which may reasonably be looked for, as resulting from the etudy of it; for it is plean that the first step towards deciding what is the best course to sdopt in order to attan any object, is to get a clear idea of what it is we want to attam Morsover, if my judgment with respect to the reasons sohy Physics as deserving of general
atudy should unfortunately differ from that of any of study should unfortunately differ from that of any of my audience, the statement of my own opinions on the point regard to the mode of studgung it is juatifiable from any with point of view point of view
useful results ithink it may be asserted that whatever useral resuits proceed from sh early stady of Phyancs, are for the successful prosecution of the studs than needn value, for practical prosposes, of the facts stored up in the value, for practical purposes, of the facts stored up in the
memory. Indeed, even in the case of the comparatively small number whose special occupation in efter life consists in the practroal application of phymical princaples, it a cert tain-so far as the two thinge can exist independently, and can be estumated separately-that a scientific habit of mind is of far more value than a knowledge of serentifio facts un proof of which it is sufficient to call to mund that escertanned facts can nearly always be found recorded in bookn of reference, while only a traued intellect can interpret the lessons conveyed by any nery combination of them
Nevertheless, when we are considenng the way in which Physics should be taught, it is essential to remember that the nostrument of intellectual djacipline, which this atudy affords, consists in processes of reasoning whose only hasis 1s our knowledge of individual concrete facts, and henos that the teaching of facts must form a great part of our occupation, even when our principal amm 1s, not to atook the memory with them, but to train the mund by the atady of the methods by which they have been demonstrated, and of the inferences that can be drawn from them
But the relation which it 18 desirable to maintan between the two essentral parts of the teaching of Phyaica--that is to say, the relatave promunence that should be given to what we may roughly call the teaching of fact, , and the teaching of theorien-will probably become more apparent If we next inquire ss to the precise nature of the mental traming upon which the educational value of the study of acience 12 general, and more particularly of Phybics, depends Here, however, notwithstanding the importance of the subject, I fear I shall not succeed in being very systematic, or be able to do more than exprese very um-
perfectly the adeas which have struck me as being chefly perfectly the adeas which have struck me as being chnefly wo one of great difficulty and complenty - Hore quesino to whe of great dinicuity and complexity-one in relation clearly marked results. We do not, for example find as matter of fact, that serentific men, as example, And, as a matter of fact, that scientific men, as a clam, posseas one lectual differences between them-even when we eompare together those who culavate the same branch of scienceconsists in the varying degrea in which they possesian any consists in the varying degree in which they possese any
special habit of mind. But yet it is numistakably true that there is a considerable difference between the habitual mental atitrude of men of science, and that of thove who do not utually occupy themselves with merentific pursuits. although is is much easies to recognise the existence of this dufference than to lay with precision wherein it comansts. An addithoaal difficulty, moreover, attending sny attempt to estrmate the educational value of scmentafic studiea anses from the fact, that the effect of a aystematic and long-continued course of traming in sny wecentific subject, except pure mathematice, has never hutherto boen tried in this country, so that our acientific men exhbit the results of mdindual predilections, and what we must call scendental cureumstances, rather than the effectes of a apecial system of education An "educated" man, in the techmical sense, has been hitherto, of necessity, a man educated enther by means of the so-called "classical" stadies, or of pure
mathemasacs. Hence, in trying to put into ss definits mathematacs. Hence, in tryng to put into as definite tages denvable from the stady of Physucs, i shall be tages denvable from the shady of Phyazce, 1 shall be probable a priors in new of the nature of the semd to belf Proceeding in the wry, and onthout oitempting to treat the matter exhanatively, I venture to draw your attention to the following pants.

One most important effect, which this study can hardy aul to promote, $1 s$ the habit of taking general and more less abstract views of whatever subject is under discuspion, whereby 1 do not at ail mean the habit of being conten whth vague notions, or of beng inattentive to detalis, but ather the contrary habst of taking account of the general condition which results from the co-existence of all the partial conditions of a phenomenon, instead of concen trating the attention upon one or more of them to the exclusion of the rest The habit of mind that I am referring to may perhaps be described as the generahzation and universal ppplacation of the sohon of a resuliant, a notion whob, a arst purely geometncal ad conined to direction and velocty, acgur and over m in dynames, arever was to deal with the superposition of actions offects This habit appued to questions of politios of socisl aconomy leads men, anstead of whing to see herr own news at ones trumphant over those of the opponents, to inquire what part of the truth it 19 which apponense, plaindr to others es to obscure what 1850 enden to themselves, but unfortanately, while in Physics th aest of experment can in general be readily appised, to ghow whether we have naghtiy estamated the jesultant teadency, it 18 far less easy to check our conclusions by xmular appeal in the case of the more complex problems of cocial existencs.
Another closoly allied mental habrt, namely, that of disngulshing among the netails, which a particular nomenon may present, those which are essential to it asture, from those which are merely the acondents of peesal case, can hardly tail to be developed by the frequen xercisa which tie study of Physies afiords in tracing th peration of a general law throughout a moltitude of dif erent phenomens, many of which at first sight do no seem to present any common element. The same effect 18 no doubt produced, in a greater or less degrae, by the atady of any acrence, bat none tends to produce it to the game extent as the study of Physics, since in no othe department of knowledge do we meet with ascertanned aws at once as definite and as various as those of Physics
The atrict quantitative character of the principal physical Laws, moreover, renders the study of Physics a very Valuable discipline in the struct and careful use of language. rack, it woudd be dumcult to concelve anything which
 in the deacipion and axplamion a physical phenomena or in the solution of well-chosen of phyancal phenomens, overy word used loosely or ambiguously is almost sure to lead, before long to manifest confusion or contradiction Arain, the babit-quate as much moral as intellectual-o taking care not only that our language shall agree accusately with our meaning, but also that our meaning ahal correspond, as elosely as we can make it, with the truth of nature-or, in other words, that our records of observation shall be strictly fathful accounts of what has been wit nessed-1 alsolutely essential for the successful prosecuton of original unveatigetions not only in Physucs, but in all departments of scrence; and a satisfactory merhod of teaching will make this necessity as apparent to the student of the elements of Physics as to the origunal inquirer.
The only other point of which I want to speak specially, in connexion whth the educational efrecta of the study of Physica, 18 its value when considered as a means of educating the gudgment, or the faculty of drawing true conclusions from the direot observations of our senses. Probably the habit of muking minute and ancurate observations is hikely to be cultivated to even a greater degree by the study of some branches of brological sonence than by that of Physics, but probsbly no soence affords so good a disciplime as Physics in the right interpretation of our observations, or in other words, in judgung of the true nature of therrobject. ron na otis or to conclusions,

it is in this.

atudy fry to inolude all that has been sard reapecting under a form as the following - This study tends specially to develop the power of thanking defistacty tend serrectly siall to tha general statement is perhaps hetrar adapted to serve at a guide in the discussion of the method of teaching Physics than the individual illustrations of it that I have tried to give prepously A word or two upon the relataon between scionce and ntaer tudies, considered se instruments o mental educstion, may, however, stall be useful
The powpr of thuking in general, or mere mental activty, is, hice bodily achnty, probably more a matter of constitu mon than of eduoution, and any pursut whech furmshes the mund with idens sepms as likely to stumulate is as any 54784
other. The function of education, it seems to me, is not so much to excite moreased mental activity as to disciplin that which exists, and direct it to the attamment of profit able ends And the means available for this purpose may be broadly distinguashed as two first, the power of thanking nghtily may be cultivated by the study of the greatest and best thoughts of other men, which is the classical or literary method of education; or, secondly, it may be cul tivated by actual practice in cases where the truth or false hood of our thoughts can be unerringly tested, and this 1 s ue screntac on of educaton. Wher, or to what extont, or n, pre questreferabl The orer, questions not now berore u
axing, then, as our fundamental principle, that Physies in thinking comectly itis clen thet the implies thex it ons bo so tanght es to make the leamers thank about physical questions, and from this it further follows that the first object of the teacher must be to impart elear phracal ideas, which can be made the subject of thought This, however can only be done by making the pupis get at any rate some part of their knowledge of physical facts through their own personal observation of phenotnena Not only is the know ledge which a boy gets from what he does and sees for himself, far more distnnctly impressed upon hus mecoory than that derived from what is told or shown himbly another, but at is altogether of a more mamate and persona kind, he feels hmmself on terms of familarity with it, so that he can turn it about and epply it to any use that sug gests itself, instead of being, as is often the case wnth what he knows only on the authority of others, afraid to meddle whitait lest he shoud spon it, or get it wrong side up and be unable to putit right again In fuct, personal observation and experrence naturally produce inving ideas, whereas our attempts to communicate enowledge by mere statement and descriptions often result in a form of words being committed to memory quite apart from the acquisstion of any corresponding ideas by the mind Moreover, the mare fact of the appheation of the mind in making observations and experments ensures its being actively directed to the matter in hand, while histening to authoritative statements is apt to produce a merely passive and receptrve state of mind that is by no means favourable to mdependent thought
Ir these wrews are correct, it follows that a teacher of Physics should not endeavour chiefly to make his pupils recerve and remember his atably con to mite themat he sho furt try, ss har as he possibly can, to make onem learn mence And it also endent that the fect to expe attention ahould be durected are not bhat may the cumostres of seience about whith intlle mose cailed known than theur mere existence, but the fact as have been of most mportance as serving for the foundotion of other knowledge, and whose relation to other facts therefore most fully known. And here it may be noted that facts which cali be brought into relation with what 18 familarly known only by processes of mathematical reasonang that are beyond the reagh of begmners, are, for the parposes of elementary instruction, to be classed among the currosities, the value of physical knowledge for such purposes depends entirely upon the completeness with which it can be understood. We should therefore make the smallest possible demands upon the farth of our papis, and shun as much as , osssole all neeessity for using such phrases as, "It can be shown," "It may be proved," \&c Our object should be, not to bry to convince them of the truth of physical principles, but to help them to convinee themselves by reasoning upon the facts they have themselves observed. Hence, in choosing practically the particular subjects to be included in the conrse of instruction, the two following considerations must be kept in mind first, the greater or lass extent to which the fundsmental facts of the several departments of Physice can be demonatrated by such expariments as can be performed by the pupile themselves; and secondly, the extent to which the pupils art able to follow the processes of mathematical reasoning first of these considerations expermental resuits. The amount of time and money that can be deroted to the study of Physics ; and the second can be devoted to the a question of tome for when wen afford to go extent enough, it is poserble, oven for pupils rhose to go slowly mathematncal technucalities us very small, to make very coninderable progress.

It remains for me to attempt the most difficult part of my task-namely, to contribute something towards the application, in the setusl practice of teschung Physics, of the principles which the general consideration of the matter But I do so with great diffidence ; for never haring hed experience in teaching Phystes under exactly the conditions
which obtaun in achools, I cannot but feal that many of my audience would be able to speak upon this part of my subject wath greater authonty than I can claum 1 must, therefore, ask that what 1 may say upon it may be considered in the hight of suggestions merely, and as hable to correction from those who have a fullar knowledge of the condrtions of the problem.
Probably the first question which a echoolmaster, who wishes to introduce the teaching of Physics unto his school, asks humself, 18, zu most cases, how much and what kind of apparatus will be wanted? And this question, semous enough when it is only mintended that the master should show expenments to the boys, becomes much more important, if the method I have advoctited, of letting the boys
make most of the experments for themselves, is to be make most of the experwents for themselves, is to be adopted.
If a whole class of boys are to performn the same experiments at the same tmme, it is of coorse necessary to have a sufficient stock of apparatus to be atle to give to every two, or to every three boye at most, the things needed for bably in most cases , sable only by cestrateng yonthin very narow or would be posof work gyen to theboys $0 n$ the other hand by range of work given to the boys On the other hand, by adoptung lat aystem prachsed, 1 ther min paratus of the asme kind Upon thus plan, the boys working at the same tume are eponed upon defferent axperments, and, therefore ure engaged upou different experments, and, therefore, use place is supphed with the apparatus wanted for some par:place is supptied with the apparathis wanted for some parroom, are toid which place they are to go to for that lesson foom, are toid which place they are to go to for that eason, from lesson to lesson, thll all the boys have made all the from lesson to lesson, thl all the boys have made ail the expermments provided These may then be replaced by e
new set, which again will remain permanent until ail the new eet, which again will remain permanent until all the boys have gone through them. The adrantage of mat
the boys crreulate matead of the spparatus 18 obvious
It is clear that, hy this method of workning, ag geen outlay on apparatus will suffice for a much greater varnety of experimenta than $1 t$ would provide for upon the girst-
mentoned method, according to which all the puple sinultaneously make the same experment On the other hand, it greatly noreases the labour of teachng a given number of boys, for it excludes the possibility of collective class unstruction in the detais of each expermment To make it practicesbe at all, when one master has to deal with any considerable number of puppls, titwould probably be needful to give to each group minute written or printed instruehons as to the precautions and manupulatory details requured for makong the expenments assigned to them. Broadly stated, the difference between these two methods of unstruction may be sald to be, that the first moolves the greater exponditure on apparatus, and the second on teachsng poser The choice between them must be decided according to the special crecumstances of indivdual schools

Distanee from					Sire of Image		$\begin{aligned} \mathbf{P}=\mathbf{B}_{2} \\ \frac{\mathbf{n}_{1}+\mathbf{B}_{2}}{} \end{aligned}$		$\begin{gathered} \mathbf{P}=\overline{\mathrm{P}} \\ \substack{\mathrm{P}+\mathrm{Q} \\ \hline} \\ \hline \end{gathered}$	$\xrightarrow{\frac{1}{1}}$	P4
Lamp toscrexy			$\begin{array}{r} \text { Iamp to } \\ =\mathrm{A}_{\text {, }} \end{array}$	$\int_{=\mathbf{B}_{4}}^{\text {Lemen to }}$	I_{2}	1.					
						-				:	

The first column of thas table would be filled up beforehand with the distances to be employed, and the actual measurements would be entered in the next six columns, headed respectavely $A_{2}, B_{1}, A_{2}, B_{2}, I_{1}, I_{3}$ The other headed respectively $A_{1}, B_{3}, A_{2}, B_{3}, I_{1}, 1_{3}$ The other
columns would be filled up by calculation frout the expericolumns would be filed up by calcuation from the experrtop, and the degree of accuracy obtanned would be indicated by the greater or less constancy of the values deduced for the principal focal length of the lens, entered un the column headed F, and by the amount of agreemant between the numbers in the last two columns As a general role, it ahould be requured that all the measuremente should be fimshed hefore the calculations are begun
Although it appears to me to be sumost, if not quite, a matter of necessity that some annount of practical work, of which the above may serve as an example, should form part of the course of instruction in Physics, it does not seem to me possible to say, with any approach to precision, how much work of thas kno -s essentral; ; all that can be saad apon this pount is, the more of such work the better, for there is no lukelhoood of what is found to be the practicable maximumi being ever as much as as dessrable on the other hand, I think it of the utmost importance that the attempt

But whatovar arrangements may bo adopted for the actual work of the bogs, it will be found to be a very ubeful rale, with regard to the expenditure for apparatan, to conine 1 lt almost exclusively to the purchase of what may such as balances, toois, that 1s, spparatuators, galvanro oells, galvanometera, \&ce., as dups, trued to ehow only special experments, like most of the thungs that figure in instrument makers' catalogues For it should be remembered that, when a result is to be witnessed only by two or three observers close at hand, there 18 no need for producing it upon a large scale, and the expensive contravances of the unstrument maker may generaily be replaced by less elegant but equally serviceable substatutes put together from such thunge as are uaunlly acceasible. And this leade me to remark parenthetically, that a mastar who wnshes to teach expernmental phyacs With auccess muset not be ahove learning how to solder, to use a file, to drill holes and cut acrevva, snd to use joinars oois whin such skil ns he can acquire, nor must he negiect the empler arts of borng corks and bending and sealing
glase tubess Some kind of workshop, however modeat, it glase tubes Some kind of workshop, how
necessary adjunct of a physscal laboratory
Even the is that of the expermen a when they are bought With regard to tha point when they are bought with regard to this point, my own ments are of hatte vea mo practical monts are of attle use in practical mastruction; thay do and are, therefore, opt to degenerate into play. Sitmio physical measurements, on the contrary, give plenty to do physical measurements, on the contrary, give pienty to dos told to form an umage of a flame upo a screen by means of a convex lens, he will have finighed the experiment in less than two minutes, and want to know what he 18 to do next, but of he 18 told to measure the distancess between flame and lens, and between lens and screen, at which sharp images can be formed, for half a dozen prencribed posituons of the scrreen, and also to meesaure the size of the image in each case, he has got work enough to teesp him attentively occupped for a full hour, and at the end of it he has acquired data from which, with a littlo guidence, he cannot help deduong the procipal laws of the action of lenses
With a little thought there can be no difficulty in flinding abundance of easy and instructive measurements of this kind in connexion with each of the main departments of Physes But in order to make sure that the pupis know clearly what they are intended to do, and also to train them in methodical habite of working, it will probably be found useful to give then, with each exercise that is set them, with each exercise that 18 set them, a blank sobeme or schedule, to be filled up wnth the results of thelr measurementa, and with whatever further results it is intended that they should deduce by calculation from these For example, in the case of the experment referred to above, the schedule to be filled up might be as follows :--*
to mintroduce practical teachnig should not be given up in despare on account of the difflculty or mpossitnlity of introducing It^{2}, otherorise than on \& very lumbed geale For boys who have gone carefully and systematicaily throngh even only one or two sets of expenmienta, are far betcen able than they were before to underataind and proit by of whinents which they see performed by then tescher, have ase they merely read or hear descruptions. have, as 1 t were, become intrmately acquanted with one the rest are entirely strangers to them

But even with the most complete equpment in the way of apparatus, it does not feem to me to be practicable to teach Physics properiy by means of laboratory experiment only A great deal of additonal instruction is needful in order to point out the full meaming of each expernment and the bearing of different experiments on each other, as well as to ehow what the gencral lawa of physical phenomena are, and how they can be estabished Thas is, in fact, the most important part of physical teachng, and it is rather for the sake of gaving reality to it, than for its own sake, that practical work appears to me to he of such very great value Io not see any way of giving it satisfactorly exoept the method of experimental lestures, or the reading of a text-book, accompanied by the exhibxion of the most important experiments referred to, and by very copious oral comments there should be os little formality es possible the able that there should be as lutwe formality as possible, the all for hom to aim ail is to get his pupile to think for themselves about what he $2 s$ teling them, and in this case he selves about what he $2 s$ teling them, and in this case he
wnll welcome all senous quastions and interruptions as his Whil welcome all serious quastions and mierruptions as has
best helps. Dogmatism should give place entirely to debest helps. Dogmatism should give place entirely to de-
monstration The relation of the teacher to his class monstration. The relation of the teacher to his class
should resemble that of a gude, who knows better than should resemble that of a gulde, who knows better than that of a traveller, who comes back to show to an admurng audience the wonderful things he has brought from pleces that they have never seen The way in which he will best enable his pupils to accompany hum will be suggested to him by the recollection of the difficulties which chiefly impeded his own progress in the early stages of hie career. Much may no doubt also be learned as to methods of teaching by stodying those employed by teachers of expenence and of acknowledged succeas, but no course of previous training can supply the place of actual experience in teaching, without this a man can never know the immense dufficulty of mparing to others a clear sdea of What is perfectly plain to humself Nor can he become aware of the difficulties which his own mode of presenting a subject tends to produce in the minds of his pupils. But although I am, therefore, strongly of opinion that anyone who tries to teach according to prescribed rules, mstead of being guded by his own experience of success or failure, will never be a thoroughly good teacher, I still venture to ask your attention to a few points, the importance of whuch -rein-evident as fratitred to teach Physics as it has now myself
(1) The most essential of all the conditions for suecessful teaching is that the teacher humself should have an absolutely clear adea of what is to be taught It 18 far from being enough for him to have "got up" the subject carefully from books, and to know exactly what they say about it, he oughi to have such a thorough understanding of it as will make hum mdependent of the manner m Which it has been presented by others, and will enable him to place his pupis at whatever point of view shows most plaunly the connexion between the new subject and therr provigus knowledge. If the teacher's own knowledge is of the merely "adhesive" kind that exeroises the memory apart from the reasomng powers, he cannot expect that minds of his pupis, or be of any uss for the purpose of traning them to think
(2) In teadhing a subject which depends so completely as Physics upon expermental demonstrations, it is needful to be on our guard, against letting experiments ocoupy the place of the principles they are employed to estabish, and letting the mechanical detals of apparatus obscure the peroeption of the experiments that are made whth them. The kind of fault I refer to is far too common in most of the olamontry text-books For mstance, a treanses on elocincity, we almost alwaya fad an an lar atruction and action struchon and achon or in whop vary and elaborataly descrbed, but in whe vary often einctrical determine its amount in any apecial case. whel we often meet woth desmiptions of comparatively oomplex spparatus-such for instance as the induction coll, in which the mechanical detals of construation sure upon at auch length so almost to provent the reader from recognusing the usually emmple primaples on which the action depends. If is of course needful that the con-
struction of apparatus should be explaned so fully that pupils may know what the things that are shown to them really are, and what it is that is done with them when they are used for making experiments, but time spent in discussing mechamcal arrangements, which mught equally well be modified in a score of dufferent ways, is worse than wasted-lt not only hunders, it prevents the comprehension of more important matters
(3) In teaching a subject in connexion with which so many $2 d e a s$ and phenomena are mat with that do not occur in every day life, and, therefors, are not provided for in every day language, as is the case nin Physce, the erequent use or techmcal terms cannot be avoided, but we ought always to not to explann such terms, but that the use of the terms is to facilitates the stady In beginning termas is to faciltate the stady in beginning out of sight all the techmical terms relationg to it and should explain in common language, even at the mask of considerable crrcumlocution, the idens that these words are intended to express. For instance, we should not begin by talking shout specific heat, or electromotive force, or indwes of spefractuch, and then proceed to explain what the refractidn, and then proceed to explan what the
term means, but we should first demonstrate the exnstence of the property in question, and then, after the idea has been grasped, we should give a name to it In this wey, when the word follows the ades, it 18 understood at once and felt as a help by the learner, motead of berng regarded, as it often is when the opposite order is adopted, as something even more dufficuit to underssand then the idea, which it ought to convey
In conclusion, I cannot help saying how fully conscious I am that my lecture has been to a great extent wanting in the practical character which I wrs wishful to give to it While aroidung details, which it did not seem possible to Whise aroidngy details, which it did not seem possible to I fear that my generalities may have degenerated into vagueness, and that I shall not have aucceeded in sug gesting anything likely to be practically useful to those who have really to do what I have been talking about. However, I have striven to be true to the principles I have adyocated, il have tried to give good reasona for whatever opinions L have ventured to express; and, by presenting the problem before us in the clearest way I could, I have endeavoured to make it show the way to its own solution. And if what I have said should lead to a discussion of the methods of teaching Physics among those actually ongaged in the work, useful resulte camnot fand to follow'

4.

On ther Place of Glograpity in Education.*By the Rev. E. Hale, M.A., F.R.G S., Assistant Master at Eton.
" I am a schoolmaster--aeeking ratherfor information than able to give it-hoping to awaken such interest in others who are skalled in acientific learming, that they will give the benefit of their adeas and move ampartal judgment to its professional teachers, who are the obscure proneers of what is probably a great educational movement
Every man from his burth is brought into contact with bis fellow-men and with Nature. Nature and Man should be, and are intended by the Creator to be, in harmony with each other. The great amm of education should be to teach the ralations in whoch each man stands to Man and Nature, fitted toach each man in such a way that he should be best and to fulfil has social duties, best fitted to understand Nature
"Since the days of thé Greek phulosóphers until quite recantly, all those who have taught, have (some perhaps unconscrously) had in view the idea of teaching the pupile their duties as citicens by means of a classical education, a system of education which, including not merely the languages, but also bustory and human philosophy, was, indeed, a liberal education, although a one-sided one. Thus
was the ongrial am, but baving to commence by teachung

Latan and Greek before the great fathers of philosophy could be stuled, inex educaton degenerated into a mere teaching of two languages, a teachngg, too, not carried on in a screntuic or origias mamaer, but by enforcung arbirary and oftion atyle ot comportion ande where education is confined to it) I contend (at any lated to dwarf the mind and mpar the reasoning faculty For the young are naturally inquisitive and eager for knowledge. In our intercourse with our own little ehildren knowledge. In our intereourse with our own inthe childrem we see that daily. Now, this teaching of grammar-riksome to the majority of teachers, arksome to the majonty of learners, preventing freedom of thought or play of intellect 40 Years ago Here and there mathematics were added, but modern languages and science were entriely ignored.
"Recurring again to the alm of education to teach the young their relations to Man and Nature, or rather so to tran them that they mayy be able to learn them for themselves, we nee as system of education dividing 1 tself 10 to two branches-Human and Natural Philosophy ;-the one taught by, Literature and History, the other by Mathematios and Physics sad Science Whether latin and Greek are the best means for teaching the former of these is not my
business now to discuss But we must bear in mind that busmess now to discuse But we must bear in mind that school educanon can be but rudumentary, but must be sound. Boys (and garls, too) should not be turned into supericial scioista, but should have a good solid foundsw Cion given them on whieh to boudd their future knowledge. they should be sble, branching one way or the other as their facultses or inclinations lead them, to devote themselves to their own peculiar study.
"And these ruduments should be-a Language, either ancient or modern, besades therr own, a certain amount of Mathematics, pricipaly Anithmetic and elemeatary Geometry, or rather, perhaps, Geometrical Drawing- the ArthDrawning to teach form and shape, and Geography, Polatical and Physical, the former being absolutely necessary to the and Physical,-the of the Hastory of Man, the latter-Phyncal Geography study of the Hastory of Man, the latter-Phymeal Geography (Erdkunde, as the Germans and Professor Huxiey cal $1 t_{1}$
Natural History as Mr Wilson names it) - bemg nothing less Nataral History as Mr Wilson names it) - being nothing less
than the History of Nature, the term by which I, with all duan deferenes, would prefer it to be deargnated
"With this groundwork a pupil should afterwards be able to devote his attention more particularly to his own specisa study But these things should be taught thoroughly It is impossible to expect a boy of average abilities to dearn well many things-it is injurious to him mentally and connot too prominently bming before you the fact that in vany very nanil schools where other atudues-it has been pushed in forcibly-and often in a most perfunctory manner One term a boy has a course snd so on I hold that this is a great evl, mojurous to ali concarned pupils as well as teachers. I wish to maintarn that concarned, pupus as well as teachers. I wish to mayntann that a good sond, common foundation-some such a one as I there should be two great divisions in a school, -the one Literary, the other Scientufic and Mathematical
"I hold, then, the first object of achool education should be to ground the young thoroughly, not superficially, in those elementary studies which may best fit the pupils and the Laws which govern, Man and Nature. And I con and Geopraphy in its broad sense Political as well as Phy snder Geography in ats broad sense, Politncal as well as Physacal, to be one of these elementary studiea, absolutely essen The upholders of the old system of education admitted this partly For they made a point of teaching the political partly For they made a point of teaching the pointical divisions of the morld in the days of the supremacy of
Greece and Rome, and they were glad if, in the nursery or Greece and Rome, and they were glad if, un the nursery or of the world at the present tume, and the names of their chief cities. But hawiag myeelf for many yeara been a teacher of Modern History, I foupd boys absolutely ignoram of the commonest geographical facts, unable therefore to understand the political mportance of treaties altering the boundaries of courtries, or of the exchange of colonies, in fact, so badiy grounded that they were unable to use with any advantage Hustonical atirges, such as that of Spruner Obvously a knowledge of Politucal Geography must pre. cede the stady of History.
"But that Physical Geography should be the groundwork of science teaching is not so obvious to all teachers I ought, perhaps to have sand before, that in all matters of
self personally tried. I apoke before of the inquigivenness of chuldren, every parent knows it well, and must have observed also how, after school lufe begins, this inquiantiveness seems to vaniah. My own opimion is, that it isgenerally atifled by the evil genur 'Latan and Greek Grammar' He that as it may, I know that thus disappearance of mquisitiveness does not prove that it in dead. "With warmth "and gentle rains it aprouts efresh.' This stimulating power is afforded by Physical Geography. The first thunga the teacher will teach are the first principles of Astronomy, -the earth, ita position in the solar system, the phenomena of day and maght, summer and winter, echpses and the changes of the moon. Boys generally becomes utarested at reve, the and are being satusfied. At the cenc ohildhood agasn lecture boys will remann behind, asking for further vintorme first lecture boys will remain behind, asking for further andormaples of Astronomy, the teacher will proceed to this priolples of Astronomy, the teacher whll proceed to the first principles of Heat, to the effect of solar heat on the earth, he will proceed to the firet principles of Geolors Thence he wil proceed to the firat priacples of Geology, -to the loe and volcanoes, to the formation of ohalk, and corsal to the distribution of plants and animala And if at first the inquasitiveness of the learners is exorted, at the end they first feel their antellectual powers. They see how, from the knowledge of certain facts, the grest lawn of nature are deduced,-the spint of the mequirer, of the discoverer, 4roused in them,-tharr reasoning faculties are now exoited and strengthened.
"Of course, generally speaking, boys who are the best in Classics sud Mathematies are beat also in Physical Geography, because they are boys whose natural abilitnes sre above the average. But there are many exceptions Boys whose carly tranuing has been deficient, or who from nome intellectual cause are unable to appreciate the refinement of grammar, suddenly awake, as it were, when first asught the pranciples causing the phenomena of Nature. And a great moral good $1 s$ effected in them. I am one of those who hold that sports-athletics-are of use a m meany of moral an well as of bodily training, that manys thel-headed, ofronglimbed boy, by hus excellence in aports is enabled to recover or maintain the self-respect he may have lost, or be m, danger of losmg ; so, in luke manner, the boy finds in the study of Nature, and in the fact that he may hold hus own in this study, a means of preserving his selfeesleern An objection strikes me may be made againat the study of Phyoncal Geography, that it is too discurave I have inasted on a boy's traming being thorough, and at the aame twane have prassed the study of Phynical Geography as being inreally contry to eo many scrences. But there 16 nothung really contradictory in this. The want of thoroughness is
seen when boys are successively put through couses of seen when boys are succespively put through coursen of
Astronomy, Chematry, Mechanics, \&c. Anything like a Astronomy, Chemistry, Mechamics, \&c. Anything like a thorough knowledge of these cannonces, or of any one of therr, cannof be anparted to a boy, Aatronomy and Marge knowledge of Mathematics,-much larger than that a large knowledge of Mathematics,-much larger than that posof those serences necessary to the thudy of Nirst principles As those sciences trecessary to the study of Natrare, ench as Astronomy, Heat, Geology, 2oology, may be thoroughly taught, and can be perfectiy understood by a bay of fair
intelligence Again, discuraiveness is not opposed to thoroughness, and the discursiveness of Physical Geography is a positive advantage to the teacher One of the greas benefits which a large school affords to boys, is that they are brought into contact with so many different minds, they are subjected to the nifuences of so many different teachers So the science teacher who is matracting hus boys in Physical Geography will naturally dweli at sreater length on his own spectalite, will bring mach peculiar knowledge to bear in illustratsog all those natural phenomens which relate more particularly to bus own branch of science And on this I found another reacon for making Geography or the Hustory of Nature the foundation of all scuence teaching in schools.
"I will brieffy mention the method I employ in teachung Physical Geograply, promismg that I by no means inssot on It bs the beat method. I have had good resulte from it, but doubtless a better method would have produced atill better resulta At the same tume, I mast clam this andulgence for science teachers from adverse criticimi Clansical teachers hase the expersence of centamed to guade them. The method of acrence teaching in achools must be regarded as tentative;
present day 1 betore gald, the teachers of the presich will eventually, I believe, overcome the ignorempe of 'conmon things' displayed so unvernally, and put to fight the host of Philistines who reyoree that therr phit to intellects are kept in the same state of bondage ase ther own.
"My class consists of about 30 boys, I give them no teat book, and on thus, I may gay, I place great umportance Each boy has one of Keith Johnston's School Atlases of Physical Geography, price 10 s 6d The teacher, I presume to be conversent with Humboldt, Herschel, Tyndall, Murchison, and Reclus, and to know Sir C'Lyell's ' Princuples' thoroughly 'My references are prncpally to these authors, and my 'stock-1n-trede' consists of wall maps, photographs, and a meroscope in my study for the more eager pupils I ought to have also a good geological museum This is it present in course of formation, and when the sohool authonties whil grant a surtable room, whil be speeduly in workmg order 1 require each boy to bring in a large note-book, wnth each page folded in the middle I commence my lecture by stating first what is the more ummedhate subject of my lecture, then I dictate from my own notes an abstract of the iirst division of my lecturethis abstract each boy writes on oue half of the fold page It then eniarge and ulustrate by facts, puting a the same tume frequent queshontion as other haif of the page each boy kakes as many or as few nows what peas than three quaters of an hoor I refer the pupis to authore and the chapters of ther boaks which pupat more at length of the subject. Only the more 10 . dustrious boys refer to these If possible, I show a photodustrious boys refer to these if possible, 1 show a photograph or puchure serve to illustrate the lecture After my two lectures (two lectures are given weekly) I require each boy to bring an abstract of the lectures, not copied verbathm from his note-book I give marks for these, and also ndditional marks for good diagrams. After every elght or ten lectures an examination paper is set, and I give a prize to the boy whose aggregate marks for abstracts and papers are highest.

I feel that a most valuable addition to my lectures would be some kind of field mestruction-such as iope to hear mentioned by the preadent-whic should include the teaching practically the rise of instruments-and also should admut of those excursions, geological, botanical, or zoological, no common in German schools.
"Now, 1 belueve, that independently of the knowledge acqured by the boys, the mental traning is by no means despicabie, which shows them, first, how to znalyse a lecture or a book, as the abstract dictated to them does; and secondly teaches them, as their orygnal absstract does, how to reproduce in therr own linguage the lectures they henr And this is part of the thoroughness of teschung which $12 n s i s t$ on

One othar objection I have heard urged aganast Géopraphy, that it is a subbeot basily ' crammed up,' I may doubtlese to encourege seytom of cmmering If a Pupl not intended for a competitive examination if hold thap method is the farthest peenble removed from cramming but if a pupi be montended for a compet ron thammag, arises will he be able to pass well I have farth that he would, and the only two compeetitive examinations pupils of mine have gone in for they have done satisfactorily. But I hold that Geography, if the eramination papers are get with the amme discrimenation as those set in the Royal Geographioal Society's examinations, cannot be erammed up. There are two grent denderata in an examination puper- first, to give problems; secondly, to give full marks for a certain portion of tie papar suswered well, ie, to encourage a thorough knowledge of some parts of a subject. Fortunately, then, Geography is so discursive and fortunately problems can be set-Given certamn conditions, what will reault?-Given certan facts, what laws would you deduce? But my own experrence teaches me this-that Mathematics admit of more 'eramming' than uny other study; and yet who would refrain from examinung in Mathematres, because they aiknit of being crammed I trust the time is not far distant when every boy in those schools profesang to lay the foundations of a liberal education will be at lanst as conversant with Geography, both Polltioal and Physioal, -the one the necessary introduction to the History of Man, wa the other 18 to the history of Nature-Wril, I say, be as conversant whth Geography, a
they now are supposed to bo with the Latio Grammar:"

Pracitical Remarisa on the Teaceong of Pbysical Screace in Schools. By the Rev. W. Tuckwall, M A., Head Master of the College School, Taunton, and late Fellow of New College, Oxford; with Letters from Charles Daubeny, M.D., F R S., late Professor of Botany, and late Professor of Ohemstry in the Unuversity of Oxford, Heary W. Acland, MD, FR.S., Regius Professor of Mederiee ; and John Pbillps, M A., F R.S., late Professor of Geology

Ought Physical Scrence to be taught in schools? and if o, under what conditions, as regards the age of the papals tangint, the proportion of thme assugned, the apparatus and sccessones required 2
The clams of science to be regarded as a necessary element of education have ieen urged by every scientific man of empence in the kingdom The one-sidedness of existing culture, and the manifold defects which thus one-sidedness involves, the myury inflicted by it on those many minds which dreplay peculiar aptitude for physical sclence rather than for languages and mathematrics, and its neglect of those facultues of all minds which only physical science can call forth, the peculiar excellence of solence as cultrivating in a way attanesble by no other means the habit of observetron, of reasonng on external phenomens, of classification, arrangement, method, judgment; its power of exercising the memory at the same mme that minterest is excited and knowledge ganed, its practreal value as a preparative for professiomal or general life; to the medical man, the engneer, and the agriculturist, as bearing durectly in one or another of its branches, on their daily work; to the solder as creating in him the power to appreciate and to record the phenomens which beset ham in the distan countries which, at one tme or another, he us sure to traverse, to the clergyman, 解 dmminshing that dangerou clasies which is due chiefly to the absence the working classes ground of eeling, the values, to all man, of whatever rank or occupation, as falues, to all men, of whatever rank or occupation, as lughting un the ditt on which they tread, the weeds and the msects of thar walks, the deily phenomena of the sk and air, with a beauty, a history, a suggestaveness, which educstes, refines, and purnfies ss-much as it refreshes snd delights. All these points are pressed upon as eagerly by the leaders of education and of thought, while the opposing arguments of errice unacquannted with the subjects which they denounce, appear calculated to cause amazomen rather than to enforce assent.
But whule all whose opinion is valuable are agreed upon the educational worth of science, and lament the inpury unficted on the country by its omiserion from the curriculum of our schools, no one, so far as I sin sware, has come for ward to furmah information ss to those questions of detal whose aettlement is of necessity prelimunary to eny prac tucal effort at amendment. At what age, for instance, ought the study to be commenceds in what sequence should its various branches be taken up? How much time in each week must be allobted to it? What apparatus is nesessary for its prosecution? It 18 with unfeigned diffidence that I offer auggetions on these several points My acquanatance with school teaching, and my studies of physical sclence, have been long enough to teach me amongst other thangs, my own exceeding ignorance, bu having for some years included physical actence m my course of teaching, and being about to introduce it syste matically into my present school, I offer to all whom it may concern the resulta of personal experience
As regards the age suitable for commencing scientific studzea, I cam affirm that I never met a schoolboy too young to derive enjoytaent and bemenit from them The faculty of observation is perhaps the earhest faculty developed, the habit of inquiry concerning things observed the earless pull a flower to pleces and tell the names of its component parts, and who prononnces unhesitatiogly the titles of the parts, and who prononnces unhesitanngly the tities of the present thembelves in her daily walks We have heard of present themseives in her dauly walks We have heard of Suffolk parish, where boys and gurls of humble hife, from eaght to twelve years old, gamed under has unstruction, readily and voluntarily, a respectable knowledge of botany and many persons must have witnessed the intense delight perceptrble in quite young children, whule the common objects of a country walk have been judicionsly explane and illustrated by a well-educated governess or friend.
can sey Fithout hestration that a boy's Bcientufic stadxes may begin from the time when he 18 first sent to school The order in which scienthic aubjects are to be taken, and the tume to be assugned to them, may be discussed together. It is generally considered that these thrse subjects, Natural Phulosophy, Chemnstry, and Physiology, are educationally fundamental to all organic sciences The first of theae may be considered to include the propertues of bodres, mechanice, hydrostatices, hydraulics, and pneumatics, optics, and acoustics I have never found the slightest difficulty in teachng these subjects, treated not mathemetracally but experrmentally, to boys of twelve yeara old, and I have known many boyse of eleven quite capable of understanding and remembering my lectures For boys, then, younger than eleven, 1 would form a junnor clasa, which should devote one hour 1 n the week to some such book as the well - known "Gulde to Knowledge," or to some "Cat-chasm of Conumon Things ${ }^{*}$, The text book chosen 18 of no great maportanoe, if the teacher can be trusted to expand and hase of receary of verbal explananon, or by the assistance, if necessary, of a microscope and arr-pump, or other moteresting ustrument

Wrth a considerable-knowledge of facts, and a keen appetite for miormaion and experment of agher kind, a Phusophy clase Phulosophy class, spending on this new topic two hoora in oach weak, and compleng in the next two years the couns years he would be mpe for the chemistry class He would yoars he wes and perform experments in tha laboratow und would stordy the lowe of hest of the non metalic elementes of the atmoephere, and of weter. By sttendance durit of the aturusphere, and, with opportunites of repeating or venfong experiments out of school hours under the master' eye, he would in the course of a year have completed hus course of morganic chemstry, and be prepared at fourteen or fifteen to enter the Physiology class. He would here be first tanght the physiology of man and of the hugher orst tangat the phystology of man and of the lagher and therr functions, would atart from the lowest point of amumal lfe, and ascend by a course of comparative anatomy once more to the hughest.
He will by this time be 16 or 17 years old, a pernod at wheh many boys leave sechool Should he stay till 18 he wh have an opportunity of studyng ether geology, muneralogy, vegetable physiology, or botany, or of entering upon organce chemustry; but even of he leaves achool at the age of 16 , he will have acqured in five years, at a cost of less than two hours a week, a body of mformation and a practheal farnulianty wnth the fandiamental lawp of sorence whroh will have furmshed him wrik lifelong resoarces, and developed, as I believe, to an amazang degree his mental powers. And ande by side with his severer atudes the less laboniou plessures of accence will have been presented to him. In many a country walk or half-holdday excursion he will have learnt the delights wheh wait upon the enthuenstic naturahst; and as years go on, the crowded shelves and cases of the school museum, the well-stored botance garden and herbanom, the carrefully-compiled and pablighed Fauna nnd Flora of the district, will bear whiness to the judgment that has won to mnocent and refined enjoyment the restless naturas whach, if left unguded, mught have been wasted and lounged away un the blliard-room or stable-yard.
For the effective teaching of these various subjects an extensive apparatus is essentrul; wnthout models, nstruments, and specimens, nothing whatever can be done. bought in the shops the cost of these accessories is alammmig, but with the help of a dextcrous carpenter and plasian she great majortyy of them can be manufactured at a triniag cost. fin the walle will be lined witb-deal cases between seren and the
 copal meamer, phlospheal motruments, and model logicai spectumens, phosophscal mslruments, and modela A woret and damers for nisects and mollusen, will be sided cabiat, laboratory, while half an acre of ground has been lasd out abs a botanic garden so as to hold about ax hundred plantes. 1 calculato that the necessany coast incurred at starting, for cagea and shelves, for instruments and models; and for thr laying out and lahelling the garden, will be covered by 601 a sum which I have luttle doubt that the kund libersility of the neighbourhood wili principaliy furnish. The pleasure of collecting plants and specaneens, of monntang prepara toons and preserving objecte, will be reserved for the boys and masters, and by therr help snd by the assnstance of our frends, 1 have no doubt that we shall possess ma a few yeara' time a collection numeropis enough to be completely typical, but whose limuted extent will enable the indirnduad specamens to exhibut extraordmart excellence and beanty

Amongst the firat and kandeat contaluhions to our scheme ane the interesting letters from distunguished Oxford teschers which I am permitted to append to this short paper. The tume to coms mill show whether the predictions whech they utter, and the hopes which I have bult upon my own experrence, are founded well or uld Without their warm support I should not hava vaztured to come forward, and I kave the astisfaction of feeling that those who find my own remarke unintereating will thank me for elicitang therra.
I wll presume, in conclusion, to expreas a hope that the anscent study of playelcal acience in our achopla may be fostered by the labours and the recommendations of the. present Educsinonal Commision. The results of those labours are awated by a very dufferent class from that whioh owned an meterest in the Public Schools Commanion, and will be critacised in a very different temper The Procrustenn aystem of our publio schools is newed writh languid disapproval at the most by thone who entrust their sons to them in order that certain tangible prizes may be won, or by that far larger class who reckon extravagance, exclueiveness, and idleness not hard conditions towards the attannment of gentlemanlike mannert snd the acquisition of fashionable acquaintance. But thousands of hard-working ancrous parents, who know, the woalth of knowledge nnd of mental tranang, and whose worldiy and profesional expernence has led them deeply to distruat a plan of teachunpractical, will congerly expeot and partial, uneiautic, and unprachica, wh eagerly expeot and noughtrully peruse tho ghall be deluvered by those to whom the regenerato oft shail be delivered, by those to whom the regener great mass of English education is commetted.

Letter from De. Daubenk.

My dear Sir, April 15th, 1865.

I An glad to learn that you are deaigning to intro duce the study of physical scerence and of natural history 10 to the school under your superintendence.
I am persuaded that a certann acquantance wnth these gubjects moght be moparted generally to boye, withont interferng with those classical acquirements which had heretofore constrtuted the staple of an Englash education Different heads of study are to the mund what different kunds of excecise are to the body, and by brngang monto ples untellectual occupation of ánother sorrt, even when wearred and diagusted with the ordmary routine of school-boy employmenta.
Besides, sonce the great object of classical study, ats an element of general education, is to develope the faculties it must be apparent that simular effects will be produced by the acquasition of a knowledge of the lawe and phenomens of the external world, especially in quackening the sources of observation, unduceng habits of method and arrangement, exercising the power of induction, \&cc.

Moreover, as it must be admutted that only a certain proportaon of any number of youthe are capable of apprecusting the niceties of scholarship and the higher beautiee of the classical writere, it will be well that an opportunity should be afforded them of acquinng other hinds of know ledge, which may take the place of that for which they possess nether the genius nar the nchastion.
It is, therefore, not without reason that phyacal scrence has of Iate been allowed a place in the courriculum of our universthes, and that scholarships as well sa fellowalupt have been mstituted for its encorragement.
Coll froun own College at Magdalen, I should pronounce that the experriuent has hisherto pro
At any rake, hiere can be hen for for proiseacy nin these sure ertended and more generally aciences will become more ertended and more generally capprectated hitherta
The encouragement given to these branches of learnung at our unversities has mdeed aiready begun to act upon the pabluc schools; and many private academues and coltage to themoselves and to thenr pupuls, with groduced theme branches of knowledge into thetr coursees of study. And as only a part of the boys theren edncated commonly rewort to the ninversities, it ${ }^{18}$ evident that acquaremente which admit of so manay nuportant applications to the purposes of Iffe must be well worthy of being calthvated, by all at lenot who profese any natural bus or sptitude for them.
I am persuaded that if physical science and natoral hattory were introdaced more generally mito achools, ade by unde with the clasach, we should hear much fewer complants an to the number of dunces sent moto the woild aftiar the completion of the ordinary years of study.

Botany expectally seems adapted for as school recreation, for one does not see why boys should not exercise tha quickness of sight and observation which is characteristic of their age, ma the dhscovery and discrimination of the flowers that present themalives to their new, as well ss in the ordunary sports in which they indulge

On every account, therefore, I wish you all success m your proposed acheme, conaldering it conducave both to the generul interests of education and to the credit and prosperity of the achool itself, both as a preparative for the universities and for other walks of life.

I remann, dear sir,
To the Rev W. Tuckwell
Cery truly yours,

Lerter from Dr. Acland

Dear Me. Tucewrll,
Oxford, April 94th, 1865
I have great pleasure in sending a small donation towards your projected collection of apparatus for teaching the elementa of natural science in the Tsunton School
No one conversant whth the state of culture in Europe can doubt, I think, that the youth who have in early hife onne sound hranung in the drection of ecience are placed The chief difficulty appears to be in deciding what they should learn at school, and who shall teach them

Both these questions are no doubt in some cases (and as yet in country schools in England in the majority of cases) yot in conntry schools in Then In you the school has a master himself accurately matructed in some departments of natural knowledge, and, therefore not,only capable of selecting what shall be taught, but of teaching himgelf, and judgrag of teachers.
My general feeling on the whole question as you are kind enough to ask it) is that the matter tanght is very secondary in importance to the manner The essence of science lies in ohservation, oomparison, and clessification; th precision of datsrand precision of argument.

These several quaintres can beg more or leas elicited from every department of matural science by a competent person umbued whth the acrentific spirit many branch.
For boys, of course, the simpler subjects are the best. The ordinary laws of Physics come first no doubt in order of study, then Chemistry, then the several departments of Biology Some boys would prefer chemical subjects and experiments, some botany or British zoology, with the physuology of plants and anmala. Indeed, if I were to venture to suggest a course for any school, it would be to have on hand ons of the morganic and one of the organse class of subjeats at dufferent tumes of the year, and to let the boys choose thear class. It is probable they would choose both

I hope you whll be successful in obtaning the "plant" you consuder to be necessary for starting, and 1 shall hear a any the with gratuication of your progreab.

I ma, dear Mr. Tuckwell
To the Rev. W. Tuckwell. Ever yours fauthfuily

Letter from Prophssor Phillipa

My dear Str, Oxford, May lat, 1865
Thoses who knew and profited by your sealous cultivation of natural science in Oxford, will hear without any surpras, but with great pleasure, that your thoughts have the comrse of instruction in your grammar school Even if you were not moved by considering the actual inducements now held out by your unversity and several colleges for the edvencement of physical science, the singular local advantages of your beautiful district-the garden of Englandwould surely lead you to indulge your own love of botany and soology and palmentology, and to fill the minde of your pupuls with the delightful mages of natural beauty and divine wisdom and goodness which these branches of study call up. Remembermy how marked an influence on my own life a few words addressed, a small microscope given to me at school, really exarcised, i resume with pleasure niy old status of a student, and will try to explain how, according to ray expanence, schoolboys may acquire with least pressure, With most plessure, and with the greatest profit, that kind of knowledge of natural science which wrll be of great value In after hife, and, if they coms to the university, will give them a place mong thear novala from whuch to sprag to hygher graden,
The knowledge to which I refer is the knowledge of thangs, not a stows of reading about plants and anumis,
or chemioal wonders, or astronomical vicusotudes, but
recognition of animal and vegetable forms ; some idea of the peculuar adaptations of teeth and bones to the diet and movements of animals; expernmenta fried with the sur pump, minute objects seen by the microscope; planets and stars and san and moon exammed with the telescope In short, that which is the most important for the efflo rescent mind is the opportunnty of observation

- "Give hun to ece, the schoolboy asks no monel"

But to furmsh this opportunnty, so that the boya mas have frequently before them the objects most worth observing, youl must have is museum. Yea, a museum Not such a collection as many busyt towns and many dule gantiemen possess-. spolis from every land, trifis from every ses "-but a-small, well-arranged selection of natural objectg-munerals. rocks, fossuls, skeletons, skulls, insects, \&cc, all preserved whin respecturul care from mischief, decay, and dust More than thus, a very small laboratory -that is to say, s work table and a couple of drawers for tools and chemicals, and a few instruments for experments auch as thermometer, ar-pump, electrical machme. I would hmit these treasures to as sungle room, and would give in that room not anything hike a lecture, but easy and famuliar explanations in answar to questions, or as a neces sary accompanment of experiments How nuch more us learned of plants by gathering them with a botanist at hand, tban by hearng dissertatuons on "botany "from the ploressonal char 1 How much hitter for a boy is the guinea and fancor experment than the theory of gravidioptice and catoptres $\%$ the burning of yron in oxis than the "atomuc theory 1 " These laws and theories they may fully master in after pears, and all the mone eanis,
 while the oyea aro bmeht an the doons of memory to new to Yes. You must
bands an must have a museum, and it will be m you hands an instrument of power, a means of permanent good as well as an ever-renewed pleasure to your papis You
ought not to refuse ald un filling it, for your purpose is of more than local or personal interest I heg permisaion to offer you three hitile contributions: a fossul, typical of natural history, a thermometer, representative of expern mentsl science, and a soverelga, which may help to glase your drawers or cabinets
And now I resume cap and gown, and go to teach my own class, amongst whom in future years, perhaps, I may count one or two of your papls

> Ever yours most truly,

The Rev W. Tuckwell, M A.,
College School, Taunton.
The Method of Teaching Physical. Science in Scerools.-A Paper read before the British Assoctation at Exeter, August 21st, 1869. By the Rev. W Tucsweac. M.A., late Fellow of New College, Oxford, and Head Master of the Taunton College School.
The claums of Physscal Science, on à proort grounds, to a far place in the course of sohool work, have been abundantly and details of its teaching the bonks and apparatus mhod and details of its teaching, the books and epparatus which it requires, and the amount of time which must be given to it, are points which can be decided only by expenment, and have not yet bean decided at all. I cannot premase too
distanctly that the am of this paper is prachical Of the distanctily that the amm of this paper 18 pracheal Of the
necessity for teachung science to thair boys many good schoolmasters are convinced, es regards the machinery by which it is to be taught, they mostly oonfess their igno rance, and cry aloud for gudance In my own echool it hae been tanght systemstically for the hast five years, snd 1 offer the fruit of this exparience, very humbly, to all who are interested in education
The subjects to be taight, the tame to be epent upon them, the books and apparatus necessary, and the mode of obtaining beachers, we the pronts on which moromation seems to be required. I will take them morder.
The subjects which naturally euggest themselves as most essential are Expenmentai Mechamics, Chemistry, and Phyaolagy. But it has been urged by high anthorty, familar to the members of this Association, that between Chemistry and Physsology, Systemstac Botany should be anterposed, as well because of the charm thus science lends to danly infe, as from its cultuvating pecuharly the habit of observation, and llustratang a class of natrural objecta which are tronched indirectly or not at all by the other scrences named. Whe period to these four subjects can be taught depends upon the period to which school education as protracted; but, at
any rates, let these, and none but thess, emplop the hours
assugned especially to Physical Science, in the scheme of actual work in school. Abundant opportuarty wrill remain for less durect instruction in many other branches of scrence. The geographacal lectures, if properly treated, will include the formation of the earth's crust, with the classification and dastribution of its inhabitants, both animal and vegetable, both extmet and reeent The possession of meteorological instruments, whose obaervations are regularly taken, and their computations worked by the boys, will almost insensibly teach the principles of stmospheric phenomena, while such books as "Maury's Pbysical Gen graphy of the Sea," "Arry's Popular Astrononyy" and Herschel's Meteorology," may be gaven as apecial matter for annual scienticic prizes The laws of light and heat will bs taught as prefatory to chemistry Electricity attracts boys so readily that with very little help they will make great progress in at by themselvea The mathematical satisfied tull he has obfained well advanced, will not be mural curcle And the wise teacher living in the cound a mural curcie And the wise teacher, linng in the country, history. He will know that it is not only ancillary to severer scientific study, but in itself a priceless and inexseverer screntific study, but un utself a priceless and inex-
haustrble, resource By country walks, by well-chosen holiday tasks, by frequent exhbitions of has microscopes, he will not only, add to the intellectual atock of his boys, but will not only add to the intellectual stock of his boys, buid Wial build up safeguards to theut such encouragement, boys who are traned thoroughly in eertann scrences wull of therr own accord seek to become acquanied with other and coliateral ones. Cases class have taken up electricity, pupls of a geography class mineralogy, pupils of a physiology class meroscopy, and I need hardly sey that boys make nothing their own so thoroughly as that which they select themselves.

The tume to be gaven to science should not be less than three hours a week. At this rate two yeara may be gaven to mechanics, fwo years to chemistry, one year to botany; while the rest, if any reman, will be free for physiology We need not be afraxd of beginning early a boy of 11 years old, fresh from $8 n$ 2ntelligent home, where his love of observation has been fostered, and his inquirles have been carefully answered, is far more fit to appreciate natural haws than a much oider boy, round whose intellect, at an oldfashioned school, the shades of the prson house have steadily begun to close Most schools are now divided minto lower, middle, and upper I would commence the study of mechanies with the jumor clase in the middle achool. For the first year the teachmg may be wod roce, with easy problems and abundant experment, care being taken that each week's lectures shall be reproduced on paper, and great attention being paid to correct drawing In the second year the teachnng will be more minnte and more extended, and a good book will be mastered At the end of this time the class 18 fit to peas creditably the Oxford Local Examination for juniors, and has done whth rachanics for the present. The third and fourth years will be given to morganic chenanetry the thurd year will malude only lectures in the class room, a text book being used, experiment dine by the bors The forth year's work will he beng ane on lobertory each bor manipuconducted entirely in the laboratory, each boy mampulaing with has owis unstruments at his own table At tite expiration of these fwo years the clase will be quainied for Matriculation The fifth year if given to botany If a Matriculation The fifth year if given to botany If a
good book is used, if each boy works for himelf with lens good book is used, if each boy works for himself whth lens them, are regularly filled up, ahove all, if plates are not made to do the work of living plants, the pupils will at the made to do the work of living plants, the pupis will at the year's end thoroughly understand tie princpples of clasg-
fication, will-know the charactenstics of at least all the Britrsh orders, and will be able with the heip of Bentham or Babington to make out almost any English flower. The boys who have completed this course will be from 16 to 17 years old. Some of them will now be learng school; those who will remain will give the rest of thear tame to physlology They will begin with human and will pase to comparafive phyerology, using in the first Professor Huxley's valusble hittie book; dependent for the second, of which no sechool manusl exists, on the skill and method of thear teacher. But whether at the earher or the later age, they will pass out uto the world immeasurably superior to theur contemporaries who kzow not seence, with doors of knowledge opened which can never again be closed, with a fund of resource establuahed which can never be exhausted, whth minds on which are cultivated, as nothing else can cultrvate them, the priceless habith of observethon, of reasoning on external phenomena, of classaficstron, arrangement, method, judgment.

The subfect of books and apparatus, invoiving as it does
the question of expense, is of the highest practical umportance. Apparatus need not cont much, but it may, and, if possible, it should cost a great deal. Whule poor and strugging achoold may begin cheaply and proceed gradually, instrtutions which can epend money on racket courta and gymnasiums ought not to grudge it on museums and botanic gardens. We have taught mechanica efflcently, that is to say, we have passed our clesses for the last three years in the Oxford Local, with a good air pump, a aet of pulleys, modele of the force pump, and the common pump, with Kerth Johnston's scientific maps, and with the diligent use, durigg the second year, of "Newth's Natural Philow sophy" But we have lost no opportunity of making the boys acquannted with machunery, from the crane and the water-mill of our dally walka, to the steam engine and the spinming jenny of the manufectory; for he who has not examined enganes at work will neyer understand them clearly, or describe them correctily For teaching chemistry a laboratory is absolutely essential; no matter how rough or shabby a room, so that it be well ventilated, have gaa hold in my hand the model of a cheap laboran 20 boy 1 hold in my hand the madel of a cheap laborntory table, on the scale of two inches to a foot. It is sbout 9 feet by 8 , and contains eight compartmenta, each 2 feet by 16 inches, It costa about $4 l$; if made for twice the number of thoys it It costa about 4l; if made for twice the number of boya, it stock, maluding a still, parboy, or furmace, gas joratory stock, maluding e still, a stove, or furnace, gas jara, a pneumatie trough, a proper stock of retorts, crucibles, $12 l$ Each pair of pupils must have also betwean them ar get of test tuhes, a vapiabottle, a apint lamp, a waste bamn beneath their table, end 24 bottlics of test solutions, while each hoy has his own blow-pipe, tippod and stand, peatle and mortar, and three beakers. Theac will cost each boy about 8s He will replace everything that he breaks, and will recave the value of his stock from hus successor when he guts the olass The text book used should be Rascoe's or Williamson's, and a large black board is quite indispensable In botany the book for the boys use in Professor OLiver's Lessons; but the teacher will find great advantage from Le Maout's Leçons de Botante. Ans excellent modification of Hensiow's Schedule us published by Professor Bahington for the 'use of his Cambndge classes, and Lindley's Descriptrve Botany, price ls.s 2 a a mostuseftul help Every boy should be furmished with a mmall deal board, a leob, and a sharp knife. The botancal microscope which 1 exbibit, includung al lens flxed or moveable, a black glass atage, two dissecting needles and a forceps, is made by Mr. Highley, of Green-street, Lencester-gquare. If they are ordered by the dozen, he will furnish thum at 6 s , each. Flower trays, such as I hold in my hand, should be kept conatantly in use, the boys being encouraged to brum in wild flowers, and to place them in their appropriate miches. Theur cost per tray, holdung 18 bottles, $2 s$ under 2e. Fitch's aragrams, debigned for the Committee of Counci on Edication, which cost $2 l 95$ the set, are a valusbie heip to the firends, Dr Auzour's models of plants end plant orgen inlends, Dr Auzours models of planes and plant organs, ranging in price from 20 to 100 rrancs, and to mines the which only those can sppreciate who have worn out ther eyesight and their temper ovar a composte floret or the clume of s manall grass, The sams ercellent moilalist, whose catalogue is on the table, provides every organ necest sary for the study of comparative and hriman phynology; and his prices ought not to be beyond the reach of any prosperons sehool In any case e akeleton will be necessary, and will coat about $5 l$.; and if the Commattee of Council were to authorize the reproduction of such typeal physiological cases as, from the skilful hands of Mr. Charles Lobertson of the Oxford Museum, drew mo many admurers m the Exhibition of 1862, these would find immediate pruschasers un many of our schools At present teachere want the skall or the leusure to make their own preparations, and they cannot buy them. A good set of meteorological unstruments coats from 161 to $20 L$, but these, with astionomical apparatues, are a contly luxury, and may be left out of the list of unduspensable necessities. I cannot think that any school, professing to teach scrence aystematucally, will be long satisfied without a typical muserm. As acientific work proceeds, specmans of all kunds, some purchased for lecture work, others given by friends or collected by the boys, whil gather and increase, tull the clase-room cupboardia and shelvee are Home zill be arranged, in one place meke voted to them. Here will be enranged, wh one place nock and fossia, in another trays of minerals, in a thuxd zoological specmuena, in a courth phyaclogical preparations. To s small library of smentific reference on tre promie of the futare. Eiverything not typical will be nigorounly
excluded, every case will be so carefully arranged and so planiy labelled es to tell the history of its contents to the eye of the least nasmucted observer and it will be hard if some corner of the playground cannot be laid out as a botanic garden In the crowded school premises which we are happily leaving I have found room for nearly 400 plants, and at the new school to which we are about to mgrate I shall mot in two acres of garden ground, with a pond for water plants and a sheltered rockery for ferns
It remains only to examine the mode of obtaining teachung power ; a point which presses heavily on many head masters who have themselves no knowledge of sceence. fost all head masters should have such knowiedge, is a fact which, if science is to be taught aill, trustee and governing bodies masy come to rece is traning skiled teachers for a not distant generation is training skuled teachens ro hig salary as to command a London bachelor of scence or a first-clase Oxford or Cambridge man will find no more difficulty than attends the choice of all mesters. Where this is not the ceses it 18 sometimes possible, by combining mathematics with phyascal soience, to tempt a superior man with a sufficient income; soience, to tempt s aperior man witi a sufficient income; and if only a small ealary can be given, the ordinary pass
B.A of the London University will sometimes make farly good teacher. But one point has strack me forably in my own experience, namely, the unexpected value of general culture in teeching special subjects. The man who knows scrence admurably, but knows nothing else, prepares boys well for an examination, but his teaching does not stick. The man of wnde culture and refinement brangs fewer pupils up to a given mark within a given tume, but what back I am not sure that I understand the phenomenon, but I have noted it repeatedly

I cannot end this paper whthout a word as to the educahonal results which our five years experyence has revealed. The aystem has brought about thrs reault first of all, that there are no dunces in the school In a purely classical school, for every promising scholar, there are probably two Whomake indufferent progress and one who makes no progress at all, and a certan proportion of the school, habitually disheartened, loses the greatest boon which school can give, hamely, the habit and the desire of intellectual umprovement By giving unportance to abstract and physical sceence we at once redress the bakance Every boy progresses im his own subject, some progress nall, no one is depressea, no scrence makes school work pleasant The bor ing of crencent the scientric iesson rouses the emulation of other masters. They discover that the teschmy of languages mave become as interesting as the teaching of gcience. They realise- pout not often telised the maxim of Socrates, that no real instruction can be bestowed on learners " rapà roî̀ $\mu ो$ dotquoytas, by a teacher who on learners ${ }^{\text {daps not give them pleasure " Lastly, the effect on the }}$ boy's character is beyond all dispute It landles some minds which nothing else could reach at all It awakes m all minds faculties which would otherwise have continued dormant. It changes, to an extent which we cannot overestumate, the whole force and chargetar of school life both to the learner and the teacher. It estabiushes as matter of expernence what has long been urged in theory, that the Whdest culture is the noblest culture, that universality and thoroughness may go together, that the system which confines itself to a single branch of knowledge, does not gan, but loses incomparably, by its exclusiveness, that observation, magination, and reasoming may all be trained alike, that we may, and so we must, teach many things, and teach them well.
II.-CATALOGUE OF APPARATUS FOR THE TEACHING OF PHYSICS AND OF INORGANIC CHEMISTRY, WITH PRICES ATTACHED.
(See 820.)
PHYSICS.
SOUND.
Apparatup

Apparatup				
np	$\begin{array}{ll} \boldsymbol{E} & 8 \\ 2 & 0 \end{array}$	$\begin{aligned} & d_{0} \\ & 0 \text { to } \end{aligned}$		
4 recelvers, of winch				
1 open at top, ground flat 1 shallow		0	215	0
Δ trus brass plate for recelvar of airpump, with stranght adjustable rod through it				
1 musical box, masll size	10		11	0
A double square case, padded, 1 ft. \times				
12 solitaire balls				
1 groovod bosrd for do.				
A tuning fork on resanance box. Prongs				
Box of musueal glasses	0			
12 varutshed pith balls	0	0	02	${ }^{6}$
1 tu funnel with side tube. 1 prat	0		8	6
Somnding box, is $\mathrm{ft}_{\text {c }} \mathrm{x}$. ft				0
s barn of equal leugthy f glass, brass,? and woods, anch is ft long and if in dram , vist :-				
8 glass 1 mahogany 9 bruss. 11 larah. 1 1 deal 1 oak.		0,	20	0
in three preces, to fit one another				
A whirling table, with serew clampa to farten on table				
Harmome toothed wheels to fit on whr				
Brass collar to fit ou whrlung table (clamp perforated aardboand dakss)				
2 wooden lathe, 6 ft . -	- 0.2			0
1 rentangular steel wres, ift long, it in square				
a forks for amnoatuos with scratchers - 016				
6 selected forks on resonance boxes	5		10	0
1 cet of Whentstone's rods and bent rod 1.50 \# 110				
Barrett's compound spring				
1 kaleddophrove .* -				
4 Lassajua's forks with oompensator - 10 10 0				
keyed wind bax	510	0 \% 10	0	0

[^12]ROYAL COMMIBSION ON SCLENTHFLC INETRUOTION, ETC.:

Parafin lamp with chumney and dua-
phragms
Tabe camera with perced daaphragm
Adjustable slit with serew movement 2 tnn trays, 4 inches deep, one $4 \mathrm{~m} \times 4$ in , the other $16 \mathrm{~m} . \times 16 \mathrm{~m}$.
A platinum wrie (spral), $\frac{1}{3}$ in long, to
be incandescible, whit 4 Groves ; with
connecting wires and binding scrows -
connecting wires and binding scrows -
2 ground-giags globes with necks, one
2 ground-giass globes with necks, one
4 m., the other 9 in drameter
A wre frame to alow diminution of
A wire frame to ahow dimuntion of
A. black, wood tube, rectanguilar, 4 in ${ }^{-}$ A. black, wood tube, rectanguiar, 4 in
$\times 4$ in, 1 foot long, with moveable $x 4 \mathrm{in}, 1$ foot long, with moveable
end of ground glass, to be get at any
incluation to ax 18 A Wheatstone's photometar
A. Wheatstone's photometar - Bunsen's photometer (a blatk listh 2 A. Bunsen's photometer (a blaok lath 2
metres long, graduatad from each end metres long, graduated from each end
and numbered. A moveable frame for holdung paper screen)
A atrip of compond reflector, B in \times 4 in , lower half electro-sulver mirror, upper half plate glass, ground and blackened at back
Box for repeated reflexion, 2 ft long, $8 \mathrm{~m}_{1}$ high, 5 ma . whde, the slides black 2 glase ; Open at both ends of silvered. 2 plane murrorg, huged on long edges,
with fluah edges, formung a to book with fluah edges, formang a "book:
mirror," each $6 \mathrm{~m}, \times 6 \mathrm{in}$ -

1 concave bilvered glass murror, ${ }^{\circ} \mathrm{in}$. diametar, on heavy stand, with adJuotmenta for height and inclination Good alvered glass plane murror on stand (thin glass). Double move(2) to turn on horizontal axis, 6 in \times 6 in . -
A semiarcular black in tray, 2 ft dasmeter, 4 in . deep, glass window in centre; moveable radial arm below tray and outtende it, gas lamp and shade, with altt to stand on arm ; moveable graduated sune arm
A thick slab of glass with polished faces, to ahow late
4 wedge (narrow prism) of glass, to 4. wegge (narrow promm) of glass, to
show literal displacement mith small cliromatism - - 0 - 018 . 180

2 rectangular soseles (f square) prisms,
all nurfaes polished
Hypotheause
y m, length $2 \mathrm{~m}, \quad-\quad-\quad 0100,1100$

$\begin{array}{lllllll}0 & 5 & 0 & 0 & 0 & 15 & 0 \\ 0 & 15 & 0 & 3 & 1 & 10 & 0\end{array}$

1 hollow glass lens for holding bisulphide of carbon, 9 m . dameter Adaxis 1 sat of vanonsily excentrne diaphragms for lenses (annular, circumferential, central) Anatomical model of A drisk with one sht, rotating in front of a dask with several alits ${ }^{-}$ A reflectung stereoscope with selectac sludes including geometrical figuren
refracting stereoscope with selected
shdes
A psendoscope- -
3 hollow optrical prisme for brsulphide of
$\begin{array}{lllll}013 & 1, & 0 & 15 & 0\end{array}$
A rotatimg board with prismatically coloured segments, with multiplying A rotating to disk of priamatically coloured glasses, to be used with lamp 12 square, $9 \mathrm{~m} \times 9$ in., coloured glass plates
2 medıam blue 2 medinm bl 2 deep red 1 deep crunso
1 deep vio
1 deep violet
4 glass cells on wooden stands for solutrons, $6 \mathrm{~m} \times 4$ in \times 2 $^{\prime} \mathrm{m}$
A $\frac{1}{2}$-pint metal spirit-lamp with large An achromatic lens. The lenses separate in screw frame, 8 in . diam.
A day telescope
A might telescope
1 Hamgon's eye-prece
1 Haygen's eye-pace
1 opere glass model to illustrate the reading mi-
1 plascope and 1 convex glass, with pressure
1 plane and convex glass, with pressure Strained haur with telesoope for diffrae. tron -
Frame and polansing glasses, with graduated circle
Board with pivoted frame, for analysing
plates (polarisation) plates (polarisation) -
4-alded pyramud of black glass, on white" berean and stand \quad giass, on white 2 tourmalnes in pincers 2 -
2 tourmalines on caps for lamp -
1 Nicol prism on cap for lamp -
4 specumens of I celand spar, out, not
mounted, $2 \mathrm{in} \times 2 \mathrm{~mm} \times 2 \mathrm{mon}$. -
Prism of Iceland spar for single and
double refraction double refraction ${ }^{*}$. ${ }^{-}{ }^{-}$ Ehomb of Iceiand epar, with ends of
optacal axis ground perpendicularly
 Polarising microscope, to fit lamp
2 pressare frames for strain on glass.
(1) Compression (2) Distornin. $\begin{array}{ll}\text { (1) Compression } & \text { (2) Distortion. } \\ \text { (Polarzation) } & \text { - }\end{array}$ $\begin{aligned} & \text { Unanneealed plates of glass } \\ & \text { Bar of glasa for vbration, } \\ & \text { 6ft }\end{aligned} \times 4 \mathrm{~m}$. Bar of glass for viration, $6 \mathrm{ft} \times 4 \mathrm{~m}$.
$\times+\mathrm{m}$ $x+$ in
i polarising saceharimeter

A spectroscope, \begin{tabular}{lllllllll}
1

prisms \& 4 \& 0 \& 0 \& 21 \& 16 \& 0

\hline

 I square glass cell diagonally divided -

0 \& 12 \& 0 \& $\#$ \& 20 \& 18 \& 0

\hline
\end{tabular}

1 magnestam lamp

Matersals.

INORGANIC CHEMISTRY

Elgmbntary Stage.
1 Bunsen Bumer, with Rose - For burning a maxture of coal-gas and arr, the latter beang admutted through the small holes at foot. The rose is used for gently heating a glass or porcelain veasel, as in Exps 55 \& 91 ; without the able for ignition, as in Exp. L, but not for direct application to glass or porceiain vessels. From 2s. 1d. to 78, 6d.

2 A Dozen Test Thbes -(Exps. 2, 35, 36, 39, 45.)-For exposing varrous substances to a moderate degree of heat
$8 d$, to $2 s$ per doz. 8d. to 2s per doz.
3. Three Tess Glasses on Feet-(Exps 7, 8, 23, 34, 47, 48, $65,73,74,78,80,81,82,103,109$.-For showing the effect of mixing varions solutions. $6 d$ to $3 s$. each.
4 Two Small Strong Cylsnders, $6 \mathrm{~m} \times$ 妥 $\mathrm{in}-$ Fir showng the formation of hydrochionc acid (Exp 6) One te I 'led whth hydrogen, the other with chlorine, both being med wath glass dusks; they are then placed month to itablth, chlorine uppermost, the discs withidrawn, the gases aldushod to mix perfectly, and the jars separated, when the appuration of a flame to the mouth of each cylusder causes an elpiosion, with produgtion of hydrochloric act. 3d. to 2s, each.
5. Thoo Cylunders on Fleet, $12 \mathrm{~min} \times 1 \mathrm{~m}$-(Exps. 2, 12,
$15,16,17,19,24,49,52,53,54,57,58,62,67,70,77,85$, $89,94,95,96,99,101,102,106$)-For demonetsating the properties of gases. 15 . to 2 s . each.
6. Two Cyinnders on Feet, $15 \mathrm{~mm} \times 2 \mathrm{mn}$--(Expa 21, 27, 49,69 --For tunalar purposes. 15, 6d, to 5s. each.
7. A Cylnader on Foot, 30 in $\times 3 \mathrm{~m}$-(Exps 25, 69, 84) -For demonstrat 2 the solubility of certain gases in witer. The cylunde - nust be filled wrth dry gas and closed whith a stout glass y te, grast xi frmly, and the poouth dippred into water, the plate ber $\frac{g}{}$ sled off ac as to allow: very amall jet of water to enter 站heylender as the absorption proceeds. 50, to 325 .
8. Two-necked Woulfys Bortle, fitted woth Thathe Purned and Delivery Tube-For the preparation of gasea not requang the applicstion of heat, as bydrogen, carbonio enhydride, mitric oxide, and sulphuretted hydrogen. (Kxpt $13,34,50,54,68,92$.$) The tube of the funnel must tup into$ the hqued in the bottle. Is. 9 d. to 48.
9. Two-necked Woulf"s Bottley filted up as Wash-batiles for washing Gases - For freeng gases from traces of the acids used th their preparatuon, by pasaing them through water or akeliae colutions. 2 he injet tube mhould just at beneath the surfoce of the liquid. By placing strong tulpassed through will be freed from moisture. (Exps. 26,34 $50,54,68,92$) $184 d$. to 3 s .
10. Three-necked Woulff's Bottles fitted up an Washbottles, with Thurd Tube as Safety Tube.-(Exps 18, 22, 26 $41,55,61,98,100,106$)-For emularly washing very soluble gases, as hydrochlorio acid and ammonas The inle and safety tubse should just dap beneath the surface of the washing liquid. The eafety tube parmits of the entrance of aur, in case of eny running back of water through Bbsorption of gas, and
pressure. $18, ~ 9 d$. to 48.
11. Large Flasks fitted wsth Cork, Thustle Funnel, and Dehvery Thabe-For the preparation of gasen from hiquids by the and of heas. Flame should not be sllowed to come in contsot with the glass, a prece of pron-wre gause or a sand-bath beang interposed between the flank and tho souros of heat (Expm. 18, 22, 26, 41, 65, 56, 61, 98, 100, 105i) $18,3 d$ to $3 s^{2}$
12. Smaller Flasks, fitted up as No. 11, and used for sumilar purposes. (Exps. 14, 107.) 10d. to ls. 6d.
13 Small Flask fitted woth Cork and Dehpery Tube (Exps. 60, 72, 76, 104)-For heatning subatanoes, generally soinds, and collecting products of decompontion. Withou the tube this rasy be used me a recenver to condense mitric scid, in Exp 76. 7d. to 1s. 6d.
14. Large Flasks with Wide Necks,-For burning phas phorua in oxygen, \&c. (Exps 28, 66, 71.) 1s, to 4s.
15 Three Florence Flasks with Corks and Dehnvery Tubes. -(Exps 26, 65, 79, 83, 86)-For use when the naked fame must be applued to a glass vessel Benig cheap, the
fracture of thess flasks is of slught consequence. $4 d$, to $1 z$ fracture of thess flasks is of slight consequence. $4 d$. to 10 . esch.
16 Fhask with Cork and Thoo Tubes, weed for washing Gases-(Exps. 26, 41)-For purposes similar to those deseribed in No 9 Specially, as in Exp 26, for passing s gas through hot water, so fs to mix it whth team. 1s. to 2 s .
17^{\prime} Large Beaker.-(Exps. 42, 43, 90, 108)-Yor use when hot solutions are requared in open vessels, or when aubstances are muxed which by their action evolve heat To be heated upon gauze or a samd-bath. 10d. to 2 k .
18 Retorts, one large, one omaller,-(Exps 76,90.)-For use in dastyllation, as of mitric acad. 9 d . to 3 s .
19. Large Flask, 1-2 Gallons, with Cork and Fwe Tubas pasang anto at, one reachsing junt through the Cork, the remasnder to the Centre of the Flask-To illustrate the mennfacture of sulphuric aced exygen or ans, nutric oxide aulphurous anhyuride, and steam being admitted through the longer tubes, and ant asprator attached to the shorten one, to maintain a constant current. (Exp 107) 2s, 6id to 68 .

20 Two-necked Bottle fitted as Wash-battle, but anth vonde onlet; tube.-(Exp. 61)-For decomposing smmonas would choke a narrow inlet tube. 1s. $9 d$, to 4ρ.
21. Voltameter to decompose Water and collect the Gases separately.-(Exps. 11, 20.)-May be used aliso to electrospese aqueovs hydrochlonc mead and anmona, The bye aqueous hydrocilone sead and ammonia, To The
22 Bell-jar wuth Stop-cock, and Glass Weasel for Bell jar to float in.-(Exp. 30)-To be filled with tmuxture of two volumes of hydrogen sod one of oxygen. The gas can he tranafarred by downward presure of the jas and opening the stop-cock unto a bladdes or collodion balloon,
7 s to 60 s
23. Stoppered Cyinder on Foot-(Exp. 33)-Mor the preparation of czone, by leaving a prece of fremhly cut phoophoras for 30 or 40 munutes un a shallow layer of wates pt the base of the cyluder. The phorphoras ahonld nse nibove the water, so no to be partly in contact with the ast
enclosed in the cylunder. 25 to 10 .

24 Long Thatie Funnel Tube.-(Exp. 40.)-For conveying sulphutre aed to the bottom of a glass of water, so as to procure the combustron of phosphorus in contact non-tubulated retorts whout wetting the insides of the necks. $2 d$ to 1 s .9 d
25. Glass Tube and Sulk Rubber.-(Exp 4.)-For producing blectricity, 1 s to 7 s 6d
26. Large Tubulated Bell-par - (Exp. 59)-The jar being closely stoppered is placed over a capsule, floating on water, containing ugnited phosphorus. When the phosphorus ceases to bura, the jar is depressed, so as to equalise the level of the water wrom and writhout The stopper being then removed, the residual 8
27. Tubulated Aquarumm - (Exp 51)-To be filled with carbonic anhydride through the zubulure at bottom, unta the ges overfows. Soap bubbles, filled whth arr will fioat when they are allowed to fail mot the glass vessel. 4s 6 d to 58 .
28. Shallow Glass Dhsh-(Exp 46)-Fow exposing a large surface of hme-water to the arr of the room wherein a lesson is being given, to prove the presence of carbonic auhydride therein. $1 s$ to $2 s 6 d$.
29. Semes of Thoo-necked Bottles -For pasang SH through various solutions of netallic compounds to produce sulphades. (Exp 97) The bottles should contann aqueous acetate tartar emetre, manganous chionde, and zincic sul phate. $2 s$ $6 d$ to $10 g$

30, A Tube with Stopoock at 'Bend surrounded by Glass Vessel to contann Freezing Mucture --(Exp 100)-For th Inquefaction of sulphurous anhydride by a muxture of tee and sait 48 to $12 s$
31 Combustron Tube contannıng Spongy Platunum -(Exp 105)-Through the heated tube is passed a mixture of two volumes of sulphurous anhydnde and one volume of oxpgen. They combine to form oulphuric anhydride, oxygen. They combine to form sulphuric sanydride tube into moist aur, $1 s .6 d$ to $11 s$ ld
32 Globe with Two Platonum Wires for passing a Stream of Electrso Sparks through Asr -(Exp. 63.)-Under the of thulus of the mtense hest of the spark, the constatrents of the an in the globe ombe to timus ape Ia 6 d to 17 a . litmus paper. 1s. $6 d$ to $178,6 d$
33 Clook Glass -(Exp. 44)-To contan an alcohoho solution of bore acxd, which, on whininon, burns with a characteristic green-edged flame $4 d$ to l_{s}
34 Tuba for Heatng Mercural Oxide -To show its de composinou into marcury and oxygen (Exps 10,26)-Th mercury condenses in the bend, the ges passing onwards to a pnoumatio trough $6 d$ to $1 s$.
35 Jel from whsch to Burn Hydrogen -(Exps 21, 31)To be attached by a flexible tube to a hydrogen apparatu (No 8), and, the gas being lighted, lowered into g jar of chlorme or oxygen $4 d$ to 1 a
36. Gasholder-(Exps 29, 105, 107) -For storing pae for fome tume, or supplying it in considerable quantity when requred for experment May be used also as an ospurator (Exp. 19) $16 \mathrm{~s} .6 d$ to 80 s .
37 Porcelain Capsule -(Exp 59)-For use whth the bell-jar, No. 26, in the preparation of nutrogen from atmoaphenc ar. Md. to 18
38. Platenum Foul and Wire - (Kixp 88) -The foil arves to show the fixedness or volatility of substances hen ax beade mth metalio oredee and fured borex oloud
39. Two Deflagrating Spoens -(Exps 28, 66, 71)-For howing the combustion of sulphur, phosphorus, soduum \&o, in oxygen and chlorme $9 d$ to $2 s$
40. Pestle and Mortar -For pulvarising various subtances -ls to 5 S $9 d$
41. Broad Camel-hoar Brush. - (Exps 37, 38)-For brushing a solution of hydraxyl over discolosired white puint, so as to restore its original whiteness 6d to 1 s , fd . 42. Irom Trapod Stameds. - For supporting flasks, \&o over limps id. to 5 s
43 Two Retort Stands - For a amular purpose. 2s. to 16s $6 d$
4t Indio-rubber Twbng, assorted - For makng connections between the tubes of various pleoed of apparatus, win Exp 54, where Nos. 8, 9, 45, and 10 are used It may be out into lengtlis of two or three mohes for thus purpose. 6d. to $2 s$ per yard

45 Clay Furnace for Burnumg Coke, with Irom Tube to pass through -(Exps 26, 54, 86)-For exposmg a gas to a red heat 10s. to 40 s
46, Blowpipe Jet-(Exp 29.)-Fitted to the gas-holder No 36 , a powerful blast of oxygen may be obtamed, and used to show the burnung of a bundle of steel wires, by lamp $1 \mathrm{s.6} .6$ to $7 \mathrm{s}$..6 d .
47 Pneumatuc Trough -1s to I5s.
48 Porcelan Tube to pass through Furrace-(Exp 26.) -For use instead of the ron tube in No 45 m cases where. as wnth chlorine; the use of uron is inadmissible In heating a maxture of steam and chlorne the tabe should bs packed with broken porcelain or pieces of pumice, 80 es to afford as large a surface as possible 4d. to $6 s$
49 Fivencell Grove's Battery - (Exps. 11, 20)-For elec. brolysing water, hydrochloric acad, and ammona. The full power is needed for thas work When used whth an induction conl, the number of cells shonid be adapted to the saze of the coll 30 s to 90 s
50 Induction Coal-(Exps 63.)-For effecting the drect combination of nitrogen and oxygen by the intense heat of the electric spark Also for decomposing ammonia gas exbibited will work well with five cells of the battery No 49 $21 s$ to $25 l$.

Apparatus for Special Important Illugtrations.
1 Apparatus to decompose Steam by Stream of Electruc Sparks - Conssisting of a five-cell Grove's battery, a Auhmkory coll, a globe fited whth platinum wires for tae passage of the spark, and a leading bube for gas, mounted filled win war druen slowly through the globe led into the preumatro trough, and condensed When the aris completely dis placed from all parta of the momor, the platrum wres ar connected with the coil, which is then set in action. A portion of the roam passing through the globe is thu decomposed and the mixed oxygen and hydrogen pases can be collected over the pneumatic trough. $4 l \mathrm{l} 2 \mathrm{~s}$. to $13 l$.

2 Apparatus for Gas Analysis - Intended to submat a mixture of gases to the successive action of absorbenti, and oo to determine its composition volumetrically The morim gas to be analysed is placed over mercury in the reservor I then drawn by the descent of a column of mercury into the zeensurin tube C phere its volume is determed B returned into the reservoir I into which an sboarbing agen
 brought back to the tube C and measured apann, and this process is repeated until the composinon of the mixtore is ascertained An equable temperature is of antamed in the ascertained An equable temperature ws a dintained in the which can be gigtated, if necessary ${ }^{-}$- The pressure 18 Which can be agitated, if necessary lowered as may bs necessary, and it is measured by the column of mercury in the tube A. $5 l$ 5s

Instructsons for wising the Apparatus

Let the gas to be analysed be common aus, or the gae evolved by ebullition from natural waters, consisting nsually of earbonio anhydride oxygen, and nitrogen. First, the gas 18 carafully transferred without loss to the jar I, and thence drawn by lowerng the mercury reservorr and opening the brought to poinade onth wher wher of the mercury sif brought to conacide with any graduation mark Suppose
the folloming observations to be made:-

$\begin{array}{ll}\text { Temperature of watar in } \mathrm{H} \quad * \quad=16.4^{\circ} \mathrm{C} \\ \text { Heught of barometer }\end{array} \quad-\quad=763.1 \mathrm{~mm}$
From these data the pressure upon the gas is calculated Hollows :-

Heught of barometar - - 763.1 mm

Deduct hetght of mercury col in A
from height in C , vie., $250-\mathrm{L}$. $\} 119 \cdot 6$
1304 -
Plas tension of aqueous vaponr
(the interior of C being moist) $\} 13.9$
$\left.\begin{array}{l}\text { (the interior of } \mathrm{C} \text { being moist) } \\ \text { at } 16^{\circ} 4^{\circ} \mathrm{C} \text {. }\end{array}\right\} 13.9$
at $16^{\circ} 4^{\circ} \mathrm{C}=-\int$ 1335
Pressure on dry gas
-
6996
Henca we have 19°.cce. of dry gas at $164^{\circ} \mathrm{C}$ and
$629 \cdot 6 \mathrm{~mm}$ pressure.

Absorption of Carbonvo Anhydride.-Thus is effeoted by presing up tato the jar I , by means of a small preatte, two or three drops of a concentrated bolution of caustic potash, The gas is driven from the mensuring tube \mathbf{C} moto contact writh the patash molution by rasamg the mercury reservory and opening the stop-cocks A few munutes exposure secures the absorption of the carbonno anhydrnde, and the residual gas, a muxture of oxygen and mitrogen, is drawn
back into C and ureasured as before.

Absorption of Cxygen -A few drops of a concentrated solution of prrogaline agnd are added to the solution of causthc notash in the jar I, and the gas driven from Cas beofre The alkaine potasme pyrogallate mmmednately absorbs oxygen, becoming of a deep blood-red colour. By careful manipulation, the jar I may be alghtily agitated, so as to promote the absorption, which 18 known to be complete when the dark-coloured liguid thus thrown upon the stdes of the glass runs off again without leaving a dark blood-red stain.
The remanning operation is to determine in \mathbf{C} the volume of the residual pitrogen, and the analysis is finshed.

Three uncorrected gaseous volumes are thus obtaned, ruz.
$A=$ volume of three mixed gases
$\mathrm{B}=$ volume of mixed oxygen and nitrogen ;
$\mathrm{C}=$ volume of nitrogen.
Bythe formula given below these volumes may be reduced to $0^{\circ} \mathrm{C}$ and 760 mm pressure, and then from the corrected volumes $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C , so obtauned, the guantity of each ges in the muxture may be deduced
$\mathrm{A}^{\prime}-\mathrm{B}^{\prime}=$ volurne of carbonce anhydride.
$\mathbf{B}^{\prime}-C^{\prime}=$ volume of oxygen.
$\mathbf{C}^{-}=$volume of nutrogen.
The centesmal composition of the muxture as then very easily calculated
The followng formula may be used to bring the observed volumes to standard temperature and pressure :-

$(\overline{1+003665 t) 760}$

$\mathbf{V}=$ observed volume of gas in cabne centumetres.
$\mathrm{P}=$ pressure upon the dry gas
$t=$ temperature at the time the volume was measured For further detais, see Chemeal Socrety's Journal, vol. xx 1 p .109
3 Apparatus for the Determanation of Vapour Denstzes by Gay-Lussac's Process, and by Dumas' Process
Gay Lnssac's Process -The principle of thas method $\mathbf{1 s}$ to convert a known weight of a substance, confined over mercury, mto vapoux, the volume of which beng measured at known temperature and pressure, can be readily reduced by calculation to that at standard temperature and pressure. 11 l 10 s to 11 ll 10 s 5 d .
Dumas' Process is the reverse of the precedrag Aknown volume of a vapour 18 first measured, and zte weight then ascertanned; from these data the papour-densty under standard conditions is calculated
Further detasls may be found in Miller's Chemicul Physcs
4 Apparatus for showong that Hydrogen and Chlorine do not contract when they unite to form Hydrochlore Acul.This consists of a glass tube haviog a stop-cock at each end, and filled with a muxture of hydrogen and chlonne in equal volumes By opening one end of this tube under mercury it is proved to be complately full of gas. Then, either by the light of burning magneslum wire, or by an electric spark pessed between two platanum wnres fused into the tube, the gases are caused to combine. On openung the tube a second tume under mercury, after cooling, the volume of the contarned gas 28 shown to be the same as before combination, and solution of the bydrochloric achd gas in blue htmus-water proves that no hydrogen or chlorine is left (See Hofmann's Moderni'Chemastry,
Lective mi) 5 . $5 d$ to 105 fid Lecture wi) 58. 5d to 10s 6d
5 Apparatus for the Decompasiton of Ammonna by Electrre Sparks, and for the subsequent Combustion of the luberated Hydrogen by Cupree Ozzde--A certain volume of dry ammoma gas as confined in the closed hmb of the tubee, and the heught of the mercury therenn, after equahsation of pressure m both lumbs, caxefully marked. Electric sparks are then passed for some monutes between the two platunum wrees; the high temperature of the spark decomposes the gas, which expands to exactly donble its orignal volume, Then the voltasc current from five or eix cells of a Grove's battery is paseed through the spural of platinum mre, so as to ygate some included precea of cupre sitrogen alone to left to the amount of one haff ul bulk
of the ammomas originally taken, Hence it is proved that two volumes of ammonua gan are compoed of one volume of nitrogen and three valumes of hydrogen In noting the volumes, the level of the meroury must be equalised in both humbs of the tube. 7e.6d. to 20s.
6. Apparatus for the Decomposition of Marsh-gas A convenient volume of marsh-gas is introduced into the closed end of the trabe, and, ater equalising the presaure, its bulk is marked it is then decomposed by aparks from an induction coll, with an occasional reversal of the current Carbon 18 deposited upon the platinum terminale, and the gas, after decomposition, occupies double ita onginal volume. Thus product of decomposituon can be shown to be hydrogen by igniting it at the jat, when it buras with a flame, which 18 , however, more or less lumsous, on account of the formation of a mall quantity
of acetrylene durng the process of decomposition. 6 a 6d of acetyle
7. Apparatus for showng that when Carbon or Su phur burns un Ozygen no Alteration of Volume takea place. -Tapable of being closed with with s bulb biown un one lmmb, capable of belng clowed With a atopper, through which are passed copper wrres sustaming a deflagrating ladle of Igne-barth the contain charcoal or sulphur, which may bo fine platenum The bulb heing filled the dr oxyen, and the terel of the merer bed wiad axygen, and coolung of the gas it will be cherved thet no chen of coling of the gas it wul be observed that no shange of volume has occurred buiphurous anhydrade.
8. Ozone Apparatus. - Thus 25 intended to ozonive oxygen by induction. It consigte of a glasa tube coated uned with tinfoul or silvered is placead a narrower tube cositugg sre connected sith the two ends of the mecondery wro of an unduction conl, and while a "allent diacharge is made to pass between the two tubes, a current of dry oxygen us slowly dryven through fromi a gasholder. A porthon of the oxygen la converted into ozone, which can be detected by means of rodised starch paper at the exit end of the tube. It 13 mpportant that the oxygen ahould be perfectly dry, otherwne the quantity of ozone formed will e very small. 5s. to $25 s$.
9. Galpanometer.-The action of thus instrument depends upon the fact that a magnetic needle, freely suspended at it centre, and placed in the neighbourhood of a wrre or other conductor along which a current of electricity is passing tends to place itrelf at might angles to the lune of the current. In practice two parallel needlea are mounted the one above the oflier upon che same provit, with their poles in contrary directions, so that the action of the earth's magnetism upon them shall be reduced to a minmum The lower needle is then adjusted within a cool of sulk-covered copper wire, and the upper one above a oardboard disk on which is marked an arc gradusted mito degrees. On current of electrcity traversiag thelooil of wire, even though it be the feeble current produced by a slight variation of temperature on the face of a thermopile, the motion of the apper heede nt once indicates hie enistence, and to som exten.
10. Thermopsle -An instrument for producing feeble currents of electracity by warmang at their points of junca tion bars of bismath and anthmony boldered together A so that half the jorita may be on one aide and haif on the other. The alightest mariation of temperatore hatif on the two sets of joints is enough to exchto a current of electricity two seta of jomte is enough to excerta current or electrictry whseh may, by means of wires attached to the rertinulial bars, be conducted to a gavivanometer, and the by the human body at a dustance of 10 yarde $2 s$ sufficient to affect a delicate instrument $10 s$ bd to 5410 s.
11, Danuell's Hygrometer -This we in instrument for determining the "dew-point," or the temperatare at which the aqueous vapour contained in the air begins to be condensed It consista of a glans syphon connectang two bulbs. One of the bulbs us biackened, and contanns ether, mito which dips a small thermormeter for the determunation of the temperature of the hquid The matroment is mounted on a stand bearing another chermometer to take the temperature of the surrounding asr. The empty hillb is covered whth muslun tied tightly roand it, To use the hygrometer, 3 Ittile ether is porved upon the musin, and the cold produced by its rapud evaporation condentes the ether vapour inside the emply buib as fant as it is formed in the blackened bulb. By thys action the teriperature in the blackened bulb is lowered. As soon as the dew-ponnt is reached, Yio

12. Euchometer to estrmate Oaygen wn Atr-Thrs instrument $1 s$ first filled whth water The arr to be examined wis then introduced, and the level of the water adjusted to the zero of the acale marked on the tube A few drops of water berng now removed from the open end of the eudiometer by a tube, therr place is auppired by an equal quantrity of solution of potassic pyrogallate, or, what is the same thing, solutions of caustic potash and pyrogalice aerd are separately used to refill the open end. The nnstrument is now closed with the thumb and nolently shaken to pro mote absorption, and then opened under water so that the hquad may mise and its level be ascertauned All measuremente must be taken after the eudnometer has been immersed ta a giass cyinder contanang water, so as t counteract the expansion caused by the warnuth on tio hand, and whire the water 18 standugg at the sa
13. Duffusion Tube -This is a tube closed at one end by a porous plug of plaster of Paris, and open at the other In uang it the plug must on no account be wetted Hydrogen is the gas usually employed in diffusion experiments, owngg to its greater rapidity of motion The tube may be owng to its greater rapicity or moth whith hydrogen by displacement, first closmg the top of the tube by a cork os o that no gas may escape through
of the plug On then placing the open end of the tube in the plug On then placing the open end of the tube in
coloured water, the rise of the liquid on removing the cork stows that the hydrogen escapes through the porous plug more rapully than the aur enters the tabe in the opposite direchon. Or the open end of the tube may be dipped into water, and a cylunder of hydrogen lowered over the plugged end. The ditfusion of hydrogen into the tube 18 no much in excess of the diffusion of ar out of it , that bubbles are forced through the water as if they were volently blown out of the tube $1 s$ to $2 s$
14. Oxyhydrogen Blourppe and Gas Bags - The use of these is sufficently underatood The chaef precaution to be observed is, that the hydrogen must always be ggated before the oxygen is turned on, and an excess of oxygen is to be carofully avoded Twice os much hydrogen os oxygen (by measure) should be burned.
81
10 10s
10d.
6d. $81{ }^{10}{ }_{8}$
15. Cavendssh's Eudrometer.-This is used for demonstrating the production of water by the explosion of a mix ture of oxygen and hydrogen. It is filled by first exhaust-
ing it of aur at the arr-pump, turning off the stop-cock, and then connecting it with a recelver standing over water and contanning a muxture of hydrogen and oxygen in the proportions requsite to form water The atop-coek being first opened and then closed, the mixture 38 exploded by the electrre spark After the explosion, the interior will be porceptrbly moistened by munute drops of water. 35 s to 508
16. Spparatus to prepare Acetylene from Hydrogen and Carbon -This is a globe, desugned to contaun hydrogen, whth two carbon electrodes mearry meeting in the centre. A Grove's battery of 20 cells is to be connected with these electrodes, which must first be pushed together and afterwards separated so as to produce the voltanc arc Under the influence of the heat thus generated, combunation ensues between the carbon and hydrogen, and acetylene in small quantity is formed $5 s$ to $15 s$.
17. Twenty Cells of Grove's Battery.-To be used whth the precedimg $5 l$ to $16 l .16 s$.
18. Apparatusfor preparsng Acetylene from Coal-gas by a Stream of Electrvo Sparks.- This much resembles No. 16, a current of coal-gas bergg substituted for one of hydrogen, and the sparks obtaned from the coll No. 1. $3 s$ to 12 s .
19 Model Apparatus for Coal-gas - Intended to $11 l u s-$ trate the manufacture of coal-ges The copper retort is to be charged with coal and heated to redness in a charcoal furnace. The Woulff's bottle 18 intended to artest tarry matter, the gas $1 s$ then conducted through slaked hme or ferric hydrate to remove sulphuretted hydrogen, and 18 afterwards collected in jare of in a gasholder, from which It may be burnt at a jet. Care must be taken that all the ar 15 expelled from the apparatus before the gas is collected. $15 s$ to $2 l 2 s$
20 Apparatus for exposing equal Volumes of Hydrogen and Marsh-gas to varvous Temperatures and Pressures.Equal volumes of two gases sre placed in the two limbs of the U -shaped tube. The preseure may be mereased by addition of mercury in the open tube, or dumunshed by runnugg off mercury from the pinohoock at the bend. A glass cylunder surroundung the U-tube contannng the gases forms a steam jacket, and affords the means of rapidly rassing the temperature of the enclosed gases to $100^{\circ} \mathrm{C}$
14 s to $35 s$.

III.-SKETCH OF EXPERIMENTS IN PHYSICS AND IN INORGANIC CHEMISTRY.

See Memorandum on Science Programmes (page 62).

Skbtof of Expmmenents in Sound, Heat, Laget, Electhocty, andMaonetism. By Professors Frrde. Guthrie and Mh. Goodevs.

Sermeh of Expmriments.

Sound.
A body in a state of vibration produces sound.
A glass goblet set in vibration in contact with pith balls,
A tuning fork set in vibraion in contact with pith balls.
vibrations. Alaru
pump. ${ }^{\text {The end of a long wooden rod saratohed by a pin. }}$
The end of a long wooden rod saratohed by a pin.
One prong of a tuning fork is srmed with a cork
which is plunged in watar contauned in a tube, one end of
which is fastened to $\&$ sounding board
All bodies are compressible.
Bending of solids Elasticity of air in syringe. Boyle's Lew.
Propagation of fonce through a row of solitare bells.
A tin funad covered with a membrane is inserted into a tube filled with smoke, and struck.
Baden Powell's apparatua for trangverse vibrations.
A thin vulcamixed india-rubber tube 30 feet long, stretched (best vertscally), shows transvarse pulse and its refexion, aso the amultancous existence of several pulses. A than tubo as above, loaded with sand, and marked and their reftewion the passage of longitudinal nbrations, and wher reurerion.
he same exparments with moseesed tension.
S4784.

Baden Powell's apparatus employed to show that sepa
rate particles are in different phoses.
Speakuag tubes.
Speakiag tubes.
Thekng of watch heard through a long tube.
The same assisted by reflector behind the watch
Rafraction of sound through a collodion balloon filled Refraction
with carbonio aced

N B.-The reflesson and refraction of sound may be

N B.-The refleasion and refract
made menfest by a senstive flame.
A hand bell ceases to be sonorous when heated over a 3 mperfects Bunsen burner
A glass goblet or funnel ceases to be sonorous when it ind meanan* pencil when a noto Dotted hne formed on slate by pencil when a note is Notes produced.

The same with brass tubing scraped with a knufe.
Trevelyan's rockar.
Electrie syren.
Toothed wheels on whirling table with card
Porforated disk of cardboard on whiring table produces Preliminary experiments to the holes.
organ pipe by colncidence whth nots of syren (onk and synen oirgan P

A whatile connected whth an inflated indra-rubber bladder Rate of 18 fastened to the whirling table The note is graver maund in aur during approach than durnig recession.
Vaty length of very long rod swinging transversely in Transverse Fice, and obtan law of vibration according to length. Transverse and focussed on screen). Effect of loading the rod.

A-Lissajou's figures

$\begin{array}{llll}1,1 & 2,2 & 3,3 & 4,8 c \\ \text {. }\end{array}$
Graphac analysis of ybrations exhibited by moving lamp-blackened starfaces across points fastened to selected
forts
Tran forss
vibrations of Vary length of stretched wwe
" thickness " "
" matenal "" $"$
and deduce law of vibration
Examune acetnal motion of a vibrating string by means of
a bright bead fastened to it
Nodes on long elastic rod held in the haud
Nodes in struck her ribrating transversely
Musical glasses and sonorous lbars
Harmonies on tunng fork when the trow is drawn near
the root exhbited by strewn sand
Chiadni's figures on round and square plates, exhbrted hy sand and lyocopolium

Nodes ou bell, exlubited by suspended pith balls and water in inverted bell-glass

Multiple nodes in stretched mdian-rubber tubing, one end beng held im the hand
Nodes formed in elastic ring on compressing and extendng opposite sides

Silk eord stretched across the mouth of a bell jar or bell exhubnts nodes

Silk cord stretched between vibratung forks shows nodes. A. - Large fork (not sonorous) worked by electrne "make and break, ${ }^{3}$, and fastened to a stretched silk cord, developes modes
Production of nodes by damping various points of a trectched steel wire Test for nodes by riders
Experrments with spiral steel wre stretehed spring, sueh as
(1) Vibration when upper end is fastened and lower end is loaded Compare with elastic rod fastened at one end
(2) Fasten at hoth ends and vibrate longitudnally and transversely
3) Fasten as (2). Damp the centre and obtan the same nodes for transverse and longitudmal vibrations.
(4) Increase number of nodes

Longitudinal vibrations in a brass bar clarnped in its centre exhubited upon a suspended nory ball touching its end

Longifudinal vibrations in a bar of wood
Longitudinal prbrations in a ron of glass, exhborted by
Compound longitudinal nodes on a strip of glass or uxetal
Air nodes in wide glass tube with moveahle piston set
lyeopodium)
lycopodium)
Compare above with single resonant cylinder
Resnnance of closed cylindrical tubes with selectel furks Closed tubes of lengths $1,3,5, \& \mathrm{sc}$, resound to the same fork, say C
Closed tubes of langths $2,6,10, \& \mathrm{c}$, resound to lower octave of C
Open tube of length l vibrates to fork C

" \quad " $41 \quad$ " \quad " Cand C, \&ce, \&c
N B -For closed twhes, glass cy7mdens tuned with
uater may be used Numerous telescopre tubes of eardboard both closed and apen should be comstructed
Compare notes of open and closed tubes of equal length Examuse nodes and segments om an organ plpe with a paper tray
A - Examine nodes in organ pupe by extinguishing gas jets in side chamber for fundamental note and octave.
Cardboard disks are londed and hung up by double wires of various lengths Another card giving rythmical puffis of air set, one or other of the hung cards in osellation

Alteration of law of resonamee by spreading cavithes
Jowel spheres and forks
Jews' harp
Indaarrubber model of laryax
Aeed, waith and without pupe
Trumpet stop- μ pe.
Trumpet
Wills's " maana tube"
Compare closed pipe with a longitudinals wibate
spring with one end fixed
Length of closed yupe 18 one quar
Know or detcrmane the number of vibratoons of a fork
resounding to a closed jar Measure depth of jar, and so
educa the veloonty of sound in aur
Moke the same detcrmination by means of an open
tube, the length of an open tube being one half the wave ength
Show how the closed tube must be altered in length when filled with hydrugen or carlenicic acal in order to resannd to a glven fork
Bara of lrass, glass, and wood of equal length, when in longtudinal vibration, require resonant aur columns of dufferent lengths hence deduce sound rate in these soldds Compare notes by transverse and longitudinal vibrations in brass and ron wires
ympathethe vibrations of forks in arr.
Sympathy of tuned strings on monochord exhibited by
inders on segments and nodes
niders on segments and nodes
Sand or drum with
A hand or drum whith orgen pipe
A bar held vertically is fastened to two blackened brass cirenar disks, upon which sand 18 strewn, the bar 18 rubbed thin tesned leather. The arrangemeat of the sand exhbitits the transformation of longitudmal into transyerse nbrations
The above apparatus is held above a drum strewn with sand,
fork sounding board is attached to a stretched string on oxk,
The murienl hor is plared in the double felt case A wooden rod with sounding board is intraduced
Sympathetre ribrations in a prano, violm, oo
Bencord of forks
Beats of forks on boxes and above a resonant cylunder. Londing of forke
Beals with organ pipes
Beats between organ pipe and syren
beats bewwen funing fork and syrem
Detimser second of the vilra-
tuons of severail tunng forks by uneais of the elmamation of beats
A.-Btats by derible syren.

Dissonant forks
Lissajou's forks, parallel and vertical, to show interference
by crnunsities on sereen by consonant, harmomic, and dis
sonant förks
Turn fork over resonant jar to detect lines of extinction at councrs
Interference in organ pipes illustrated by membranes, gas jots, and vilirating mirror
Yancus sensitive flames affected by different vowels, and
by hissing, rustling, \&
Analyze singing flame in tube by means of a murror
Set up vibration in flanie by an organ pipe or turing
Sympathy between two pres when tuned by a moveahle casyng
Balanced card disk attracted by tuning fork
Cotton wrol sttracted by tuning fork
Balance card attranted by disks on rod in longitudinal
nobration fosks (2 oz), provided with narmow tubes, are heated
Anr in a flask is expanded by heat, and a portion is ex
pelled throngh a tube and collected over water
A wide-mouthed balloon is held over a gas flame till it pisps
An arr-tight, somewhat shmvelled bladder, beoomes tense on heating
The oir thermometer and differential air themometer constructed and explaned.
A compound band of copper and mon mivetted shows Inequali
by its eurvature when heated the supenor expansion of ardequa
of expan
coper.

Hydrogen in collodion balloon repelled by tuning fork

Heat

Lengthen a stretched platinum wire loy heating it by a sim alvane current
Fergusson's pyrometer, uxel with various metals through fived range
Water, zlowhol, mercury, onl, \&o, completely filling cqual

A jet of hydrogen, when lighted beneath a glass tube, gives a resonant pop
A rusting flame is converted into a soncrous one by a selected resonant tube
Examine noise of embouchure with and without organ prpe

Blow acmoss open end of closed tube or jar with conwacted neck or phal

Sonorous goblet wita resonant tube
Metal bell wath resonant box, closed and open
Series of forks with resonant cylmders
Use of sounding boxes with forlss

A -Complete galvanic curcuit by the expansion of brass before the same 18 effected by iron
Compound metal nbbons, as of sliver and platinum, curl when heated.
Equal flasky of water, alcohol, oil, mercury, \&c , full and furnished whth narrow tubes, are equally heated. The liquids are found to expand unequally.
Equal flasks of air, nitrogen, oxygen, hydrogen, carbonic acid, \&c., are equally heated by hot water, and the volumes of the gases expelled through narrow tubes and collected over mercury are the same.
of tron.
Rupert's drops
Break flasks of water quite full by expansion
fixed ponnts
Damens pyrometer.
A -Make and use a model of Stemens' pyrometer
test the tore Allow a full fiask of ce-cold water
and and inserted thermometer to become warm
Wooden balla are stuck with soft war at equal intervals along two bars of ron and copper piaced end to end, heated copper canses the balls on it to fall off eoonest.
copper causes
Equally long cylinders of
vory, glass, clay, and vanous woods and metals are placed on flat top of arr thermometer, and recerve heat from above
The same arrangement, substhtuting thermo-ple for ant thermometer.
Apparent passage of cold by the above arrangements.
Boll water at top of teat-tube held in the hand
Boll water in test-tube over loaded ice.
Surround bulb of air thermometer with a cup contaming the cold
Examine conductivity of metcury, waber, ofl, oil of turpentine, tetrachlonde of cerbon, \&e'; by Guthrie's liquid conductivity cones
The hand, covered with asbestos, supports a red-hot ball.
Quenching of red-hot spiral of platinum by hydrogen.
Put out flame of candle by thick copper conl of wre Burn gas above wre gauze.
Davy's lamp.

Teat sensation of oold on planging the hand into various
hquide of the same semperapure, as mercury, water, oll, \&ce.
Compound oylinder of brass and wood with serpentine
division to soorch paper.
Melt a apherreat leaden
Bran or shreds of paper in round-hottomed flask heated over gas flame, show conveotion currents.
Streaks of water produced by descending currenta of cold water from 108.
Streaks of ascending currents in water from heated platinum spural (heated by galvanie current)

Show by two flaska and connecting tubing hot water orreulation.
Vontilation exbibited by candle burning in a bell jar oarrying a ohimney divided by a diaphragm. The ar ourrent teated by smoke.

Heat platanum wne by current and ahow the ascendeng
sir on sarsen (fore-shorten).
Project on soreen the hot currents from a candle and gas jet.

Projeot on soreen the currents from a hot poker, \&o Compare the cappoities of three glase cylunders of different darmeters for water. Show how the withdrawal or addition of equal quantities of water affeota the level.

Cylundrical slabs of metals of equal weight heated to the
same temperature, melt different quantaties of ice or wax.
same temperature, mest, diferent qua,
Balls of the above metsis of equal saze hested in oil beth
to $130^{\circ} \mathrm{C}$. penetrate a oske of wax to different degree A ball or cube of eppper heated to different degrees hents
a given weight of oold water (Siemens' oopper cube pyro-
meter) meter)
Intit of hoat. Burn gunpowder mared whth sand in a copper vegeel under water, and show that rearly the same amount of deat an water one degree as in hsating one weight two degrees.
'ruotilio houk.
cold watar of avan weight end the apeonfic plunged mto cold watar of grven weights and the apeonfic heats of the
metals deduced Known weigh
above waghta of vamona hot metals are treated as Known weighte of cold metals are plunged unto known weughty of hot water to obtann confirmatory resulta. Model of calornuetar foe soluds.

Max 1 lb . of rece cold mereury'with $1 \mathrm{Ib}^{2}$, of water at $100^{\circ} \mathrm{C}$
$M_{10} 1 \mathrm{llb}$ of ico cold water with 1 lb of mexcury at $100^{\circ} \mathrm{C}$.
Perform the same sxperments substituting oll of turpentune for mercury
Vary the quantines, temperature, and nature of the substances, and deduce ther specric heats
Weigh a penny and a half-crown, boll them in wrater, place them in a cavity of ice covered with an ice slab, and weigls by means of bloting paper the quantines of iee they melt, and so deduce ther specific heats
Determine the latent heat of water by pouring a pound of boilng water on a pound of dry powdered ice, and letermung the temperature of the mixture
Vary the temperature of the water pand the quantity of the ice and water
Weigh a cake of wax or-paraffin just beginning to melt in hot water, melt a part of it by a knowa weight of boilng water, and determine ats latent heat from the resultang temperature.
Pass low pressure steam into a known weight of ice cold water till the latter is at 100°, from the macrease in werght of the water, deduce the latent heat of the steam

- Substatute boiling oll of turpentine for bouling water in the above, and deduce latent heat of vapour of ol of tuppentine
Vary, the quantity, temperature, and nature both of the condenang substances and the vapours to determine the latent heats of the latter.
Suxround bulbs of differential ar-thermometer with cups
of water, and dissolve various salts in one cup. .
A - Place shallow platnum crucible lid with water on
thermo-pile, and dissolve vanous salts in the water Show
thermo current by galvanometer
Water, alcohol, ether, \&ce, placed ón bulb of arr thermometer or diferentugl ar-thermometar absorb heat by theu evaporatinon

Cold produced by effervescence of muxed hquids.
Gases liquifying evolve heat, eg., ammonis and hydnochlome acyd in water.
Liquids solldifying evolve heat, e g, q supes-saturated solution of sulphate of soda poured upon the bulb of an aur thermometer
The same upon a protected thermo-pule
Slake hme and hydrate anhydrous sulphate of copper, and so ovolve heat by soldufyng water
Fuse varous solids by heating them.
Sohdify
Sohdify $"$ luquads "s cooling
Vappousize
Vapousze " luquids ", heating "
Condense
A.-Vexious experiments with solid carbome acld, eg
A.- Vaxious experiments With solid carbome acid, eg g,
mith ether, freeze mercury, therewith freeze water,
mue with ether, freeze me
freeze sulphurous act, \&c.
freeze sulphurous ach
Freezing mixtures.
Ice produced by evaporation under aur pump
Ice fromaed in cryophorus.
A Ammonia freezing machine.
Still or Luebig's condenser
Aur compressed and cooled in copper vegsel mpunges on
bulb of ar thermometer.
A-Auras above wapinges on thermo-ple (compare also
mechanscal heat") points of varous liquids, $e q$, weter
alcohol, turpentine, \&C
Rectify alcohol
Flask of boilng watar corked and cooled, recommences $\begin{aligned} & \text { Variation of } \\ & \text { bolling point }\end{aligned}$
to boul.
Warm water bolls under the sir pump, also warm wimpare
alcohol.
Bol enther under arr purmp
Introduce a series of liquids into a serres of barometers, Tension af
e g., water, alcohol, ether, basulphide of carbon, \&ce, and so
measure thear vepowr tension
Depress the above into deep copper or glass welt so show condensation.
Surround the above by a glass cylunder of water of various temperatures.

Experimenta with Marcet's boller.
Crush a tin vessal by atmosphemc prassure against ateam
sacuum.
Syphon gauge for steam tension
Adhesnon of bloaks of $10 e$ to one another and to flannel. Regulation.
Cut a block of sce by a losited
Press ice through s wide meshed wire
Prassice through a whde meshed wire ganze
Compress anow minto $2 c$
Watar dropped
 cup. The no

Forse a cork out of a copper flask (silvered internaily) by
Heat a steam cloud and cxamune its shadow.
Show the transparency of steam in the constricted water hammer
(1) Radiant heat reflected

A red not ball throws hest upon a bright tin plate which reflects at on to an eur thermometer or pile
A raudle flame at one end of a long bright tin tube and an arr themometer or thermorpile at the other
(2) Radiant heat absorbed.

Use of a 1 thermometer with blackened bulb
(3) Radiant heat transmitted

Copper ball, thin sheet of glass and an thermometer or thermo-phle

Place bollug water in two similar saucepans, onc crterndly blackened, the wher bught laramine after half an hanu the entperaturcis by diferental thermometer Experiments with Leslies tubes Compare radiation on mur thermometer from lamp black, binght metal, seratehed metal, ismglass, end glass sides of cubes

A-is above, whth thermo-pile
Compare radiation from bare glass and glass surface overed with gold leaf, on an thermometer or thermo-ple Compare temperature of watce piaced when hut in bright metal and glazed earthenware tea-pots
A bright and a harp blackened metal saucepan ore filled wath cold water and placed nt the same distance above a hot metal phate the tempertiture of the water 1 a compared after half an hour by the ar thermometer
The front of a plece of paper is partly covered with gold eas, the back is covered with lodide of mereury a hot ron is held over the paper
A hot ball is placed modway bctween two vertical tin plates, one bluckened, the other bright towards the ball Bars of bismuth are soliered to the onitside of each plate and connected with the gavenometer
Show that silvered glass reflects little heat
Determine dew point by Danell's hygrometer
thermancy of (1) ulass, rock salt, blackened rock salt, (2) water, bisulphude of carbon, hlarkened (bo codine) brulphude of carbon, in glass cells (3) dry ar coel bis ether vapour, moist aur, in a long tube
Examine the distribution of heat in a solar or electric spectrum formed by a rock sult or bisulphide of carbon prism

Heat-focus of burning glass with sun
Heat-focus of bisulphide of carbon lens
The heat of an Argand burner wath marror is sent through ce and then focussed
Electric or solar radation is analysed by passing through busulphide of curbon and rodine, it may then he fornsserd on bulb of ar thermometer, \&e
A - The emergent heam tails to melt ice but fires paper, Ac

Hented bull in fucus of one of two parabohe murrors gun cotton or hlackened bulb of air thermometer in the Theory of

Ice in focus of one of a pair of parabolic mirrors, alr thermometer in the other.
A - Py rhe hometer, use of.
'Test hent produced by stropping a razor, sawing, \&e, by
arr thermometer or thermo-pile
Boll ether, fuse fusible metal by heat of frietion, using whiring table.

Hammer a plece of lead and examme its heat
rop a leaden ballinto a wooden tray from a beight of
-Experiments with Joule's apparatus
syrange with German tindor or bisulphide of carbon. densation of oxygen by spongr plantinum and heatect.
mgy platinum over gas, alcohol, camphor, \&c
onst air in recesver of air pump, show condensation, ingate by gas jets.
,how expansion of cool condensed ar produces cold in thermometer or thermopile.
The pendulum illustrates the conversion of potential into sinetic energy
A - Jllustrations of heat pintential in unstahle equilbrum in consequence of chemical affimty exhibited by calonmeter, eg, sulvhur carbon, ron, de, burnt with nutre under water

Light.

 Fambiar exemples of combustion, eg, wood, wax, pa- Nources ofraffine oil, candle, gas, \&e Test for carhonic acid with lylt raffine oul
Buen sulphur, phosphorus, magnesium, zinc Also in
oxygen.
Burn antimony in chlorine
Laght of resssting platinum wire
Coal gas nuxed with air in blow-arpe flame or Bunsen Compristiv
burner Introduce platinum wire, lime powder, magnessa,
Smica, \&c
Smoky flame is lumnous
Line light
Loaf sugar rubbed in the dark
Quart pebbles as above
Powdered fluorspar thrown upon shot pron plate in thence
dark
Phosphate of lime as above
Sulphates of calcum, barume and strontum an and
flass tubes, exposed to light and brought into the dark
lass tubes, exposed to hight and brought into the dark.
Show by means of modol of carth, sum, lupiter, and its velocity o
satellites the determination of velocity of light by occultation l_{wb}
of Jupiter's satallites
Construct and explam model of Fitzean's wheel
Construct and explan model to show aberration of light
Ontan small inverted image of a candle flame through a heotilinear
pin hole
Show depth of or a doad lath by a and edge dame
Show depth of water when the same quanitity is poured Intensitv
into trwo tin truys of urews 14.
Galvanically incandescent platinum whes in ground glass
globes of different diameters,
Wire frame,
Wire frame, a long square pyramid with wire frame
sechons at $1,2,4$ from the nper
A square frame is placed half way between a flame and a
screen
A square tube blackenerl internally with end of ground gloss molined to axis of tube
Experiment to show that brightness 2 s not dinumshed
by recession
Experments with Wheatstone"s photumeter
Use shadow photometer and show the ose of colourcd ghasses for comparison.
Experiments with Bunsen's phontometer, e g, equal
lights at unequal distances, unequal ligbts at cqual dis-
tances, \&c
Prerce tin foil in front of a candle or lamp till the sup mages coalesce
Show the formatron of a round dieo of heght through an rregular hole
A parallel beam falls at the foot of a slender white rod $\mathrm{L}_{\mathrm{refic}}$
fastened perpendicularly to a small silvered plane muror
A small vertical murror in the centre of a horisonta
graduated semerele carmes in undex and receives a hori-
zontal parallel beam, the index and mirror are revolved
Compare angular motion of reflected beam with tha
of inirror
Explain and use Hadley's sextant
Single and multiple reflexion of small lummous object, Appar
the latter from parallel and incined mirross Use of moveable model of an abject, rods from which are ponts
hinged upon an edge representing a reflecting surface appa
The urrangement to show the position of the mage in the
plane mirror
Inyersion of parti-coloured beam by reflevion from plane retlect mirror

Experment with candle flame and mirror to verify the imafes above.
Write with soap on glass plates, view one side directly,
tie ather by reflexion in a mirror, sec
Compare the hrightness of hight reficcted from sulver, Renee
silvered glass, plain glass, blackened glas
Powdered glass Suap suds Casta beam of light uponsar surface
a plane mrror which throws it on a screen, beathe upon Mixed
the muror where the beam impinges, and observe the dark ima
spot on screen
The shading of an object never reaches its outline
Increased reflexion by obliguty of incidence
Spherical concave murror. Focus of parallel rays nearly Reflex
half way between centre of mirror and centre of curvature $\begin{gathered}\text { from } \\ \text { surfac }\end{gathered}$ Fxact focussung in case of parabolic mirror
Conjugate mirrors with lightim focus of one
Spherical aberration and caustic, the lattcr also from
cylundrical band
(1) Berond centre of supherical murror-
(2) Ats centre cefre of curvature
(3) In principal focus

Tosith
focus
(4.) Within prancipal focus.

Laminows ponts above or below axis of sphencil nirrar-
(1) Beyond oentre of curveture
(2) Near centre of curviture
(3) About prnncupal focus

Real imgge of fame to venfy.
image of illummatod object.
Une of draphragm to dumusish aberration.
Drsparaon whan lummous point is between mirror and primipai focus
Irtual focus and virtual image with concave mirros. Dispersion of parailel beam.
Disperanon of beam from luminous point on axis of mirroer.
Dıspersano of beam from turninous paint above or below ${ }^{2 \times 1 /}$

Images erect, virtual, dimimushed.
Obligue re
ation.
Tranemibr
don and
View ines when the beam us meident oblaquely.
View a bright coon round the edge of a pail of wher.
Displacement of a portion of a straught lme when viewed ghluquely through a flat alab of class, or ehadow of have Displocanent of s parillel heal near hine hae oblqquely Displacement of \& parallel beam townads base of mber posed wredge of glass.
N.B.-The atagle of the wedge should be so acute that uttle ohromatue effoct st produced.
Inequality power

Two equal glabs and wedges of crown and fint gleas, Flosplace line and shadow nnequally
on screen.
Pour hot water throngh a pipette to the bottom of cold Wator, focus shadow on screen.
Extmine vertacal straight line through a cell of water and braulphide of carbon held obluquely.

Mux water with syrup and alcohol.
Erimune ahadow of coni gas, also ignited gas jet.
Eramine shadow of ether vapour, red-hot poker, and red-bot platanom wire (foreshorten on screen).

Semiciroular bath graduated on maside, a window on
dieneter, and a shding sine am, used to prove haw of
reflerion.
Dusappearance of a glass rod or powdered glass then
plunged into a murture of bisalphide of carbon and ether. Transparenty of wared paper
Total
refiar
Total reflemion on surface of water in finger-ghess of a coin in it.
of comparese cuperfical and intaral reflerions by hypothenuse of right-angled prism.

Inversion withonit lideral displecement.
reftanon water prusm whe movenble sudes, showng total Eramine test tabe in reater, enpty and full.
Armme tert tabe y
Dirvanon eurfice between two liquids totnily reflecte
Arison eurice between two hiquids totily relsects
carnes it along by intermil reflerion.
The use of the cermers incula.
Intermectorn of two parallel rays pasing thevogh tero
roctangular prisms of onequal zades put buse to base; to
illustrate the denvathon of plono-cosver ins.
A.-Model of light-house lensos mith primes merteged
for camere.

Focus of point on anm of plano-comber. Thices exarias
of dustance of peant from lemat
Focul of poent oft the atis of planocomer. There aremples of dustance of pocet frou lema.
mimuliantoras foer of two potate and francotion of imgen.
Foci and inages mith doulbe comer lens, ts ahove.

hurtange $2 f$.

berwina

mend muntrit

Real imege in tir viered fivera a dimpore
Formation of virtmol anage by comerer lana, envet and magrafied.
 doable concerve lems

Epherivel
lows.
Use of dapheragma

Biraphe bention min
Corigh ballist mateat the of outer.

Demonstrate anationical model af ege
Image of a lummons body thrown upon a screen (1)
behmen, (2) withun (3) upon the surfice of the eye; by dis
phocrment of obyect and vamataon of jerses. To illustrate ong and short sught and ther remetves.
A double mage of an okject soen tith one eye close tin the object through two pin holea.

Distanct visione mithin the hmits obtained by a pin hole or a lens held close to the eye, wheh therefore mets as at magnifying glass.
Examane net witi of vessels in the eye by a eandle in a

dark noom.

Wheatstone's plootometer.
Rotate an illummated slit above a series of slith.
Durraten of
Rotate an illumimated slit above a series of slith
Apprent supenor orre of whte objects over derk ones
Apparcat supesior sure of whte objects oper dark ones.
Platumum wive heated by a galvanic current and newed through eoloured glames.
Explam reflecteng and refractugg stereoscopes and poendoscope.
Annlysis and recomposition of a fat beam of light by giass prisims.

Rocomposition co anakyed beam by a lens. of the spectrum before its recomposition.

Synthesse by rofitang duses opaque and transpareat
Cast aspectrom can a plane morior and thence on to a screen; canse the mirror to vibrate.

Lena of giass containning basulphode of carbon gives Cliromatic dififerent focil lengths of mages for different colours.
Rermine the change in colour of the shenth of a convel
beath after its rijs eroas one mother.
A frough prism whit drisuons recerves dufferent hiquids,
a Five fat bemen of light falls upon all. Examme (1) positom, (2) leagth of spectram.
Kramine length of apectra by equal pasms of anown and
fint ghous
Shom mhromatic couple of coum and ftint glase prames
Show achromatic combination of anter and encrin giass
prisatis.
Interpose before as source of white light a red glass and a crivery by
sokntion of ammono eulphute of eopper in sucoceseron and
tugether.
Peruanganste of potash in solution in passed along a
spectrim; it teppears opaque in all colours bat its own.
Chromate of potash, as above.
Absorption bands by permangenate of potash solution.
Analyse permangenate enloured bera of boht by
Analyse permagomate colowned heare of light by a
marrow prismin to shor blon, reit, and the prrple where they overtap.
Varsous opaque-colonred objects soes in monochromatic
light an aloohal flame in lomp whowe tick contems ealt
Aloo in red and green firen.
Cwat disks of light on merem through sobutions of permangerate of potach and emmonio enlphate of eopper, and any inchae opaque erreen.
apom it.
Decompase aralate of ifon under Fater by light
Coupe equal valmenco of hydrogen and chlorine to combine
by ligete
Heocimpose iodide of methyi in presence of mereury by
A-Deanapote mitrite of anall by pasing light throagh
 \rightarrow it
Flout Mottine papir in macemion on bine and a solution of nipute of mang expane a portuon of it to the hght

A
 of ciectrie limop
 Anser fine
 vipar

An thone in tive mectrost.
ming over
6ziow evimen of smp inath

$\xrightarrow{\text { Leminat }}$ disminct
isminct

Sterexsocpa
Ampe.
ambsis of
\qquad
Chromatic
duspersoin of dexpersmina

Two narrow slite in seme plane, one at achen ond of a tube, to show diffraction.
Lycopoduum etrewn on glass and a candle flame viewed.
Ordinary hight can be reflected at every angle
Diminution and destruction of this power by previous refiexion
Polarzzing angle for glass
Cast a beam of polarized light upon the apex of a square
pyramid of blackened glasst
Compare polarization of reflected ray by black, tarant
parent, and silvered glass
Gradual and
Gradual and complete polarization by repeated rofraction
blackenmed light through tourmalme by tourmainne and by blackened glass, (1) glass used as polarizer, (2) glass used as anelyser,

Introduce mice plate between polarizer and analyser. Show double umage by Iceland spar.
Teat by tourmadine the plane of polarization an Biot's
$11115 m$
Confirm above by reflectung from blackened glass.
Iceland apar cut perpendicularly to optical axis shows tingle refraction.
A.-Single and double image Iceland spar pram

Construction and use of Nicol's prism
Show the effect on polarized light of selemto, quartz,
stramn, pressure, vibration in glass, heas, Bec.
A - Use of saccharmeter.
Examine image formed on the ground glass of a osmera obscura by a magnifying lens; also examine the real image in the ar by a magnifying glass
Use of Ramsden's eye-prece for newing cross wires and image together, as used in theodolite, \&uc
Huygen's eye-piece for mpsoving the image, ingreasmg the field, and being achromstic

Erecting eye-piece.
Refracting telescope.
Conversion of reflecting telescope into mincosicope.
Conversion object-glasin and eoncave eye glass; give an erect
and magmfied mage. Opera glass.
Construction of a reflecting telescope with concerve muror and eye-plece.
Apphcation of polarized light to meroscope.

Frictronal Electriciry.

Samplo ate-
traction.
Amber rubbed with flannel attracts lath balanced on glass flask, also gold-leaf, bran, feathers, \&e
Brown paper (hot) rubbed with a clothes brush atfracts As above
Forsign post paper rabbed with bottle widnarubber attracts as above, also clings to wall
Silk ribbon rubbed with vulcanzed india-rubber, as
bove
Collodrom rubbed with the fingers, as above.
Glass tube rubbed with electric mmalgan on sulk attracts
os above, also paper roller, egg shells, \&re
Sealing wax rubbed with flannel artiracte as ebove
Stack of sulphur rubbed with flannel attracts as above.
Excited glass attracts every unelectified body, including bar magnet.

Excited sulphur and sealing wax attract as above.
Excited glass and excited wax attract oner another.
Excited glass repels excited glass.
Excited wax repel excited wax
N B -The wace and glass when evosted may be placed
on little wore stirrups and hung from supports by sulk tapes.
Foreign post excited with india-rubber'is cut into staps forming a tassel.
The two haives of the silk ribbon excited wath valeanized indra-rubber repel one another
Electrothe above experiments, employing proof-plane N B Show that the only sure test as to the hned of electructy so the electroscope as the getting umcrsased repulsuon
Ground glacs rubbed with flannel becomes negatuvely
A glass tube held in an alcohol frams becomes negatavely electrified
Conductaon.

Expmanents with mualeted human body.
The electroscope bevng neutral, approach and withdraw Induotion
excited glass and sealing wax.
Entrap +m eleotranty induced in alectrotoope by separan-
tion of oonductor from electroscope while under mavuotion.
Entrap -ve electricty as above, uating wax.
Induce + wo in electroscope by glase rod; connect with
sarth, remove rod and test.
Induce -* in clectroscope as abova by "wax; conneeth $8:{ }^{2}$
Teat the charge at each end of an maulated oylinder under induction

Connect erther end of insulated cylinder under induction whth the earth, and prove that one electricuty only leaves at ; Construct a memphore of pith balle on conductor to prove the same.
Light gas by unducad free olectricity from conduator. Light gas agan by withdrawing inducer.
Induce electricity io to aphares, insulated and in contact
Separate them and test therr electricities.
A lath rotafes by attraotion of sod ; teat the condition of the diatant end
by excited ond illuatrato the attraction of all neutral bodies by excited ones,
Electrify surface of Farnushed glass beaker, and place it over pith balls on metsi plate connected with the earth
Suspend a proof plane and let it vibrate between two oppositely electrified spheres.
Taks -re electricity by means of a proof plane: from the table over which is an exorted glass rod.

Brast plate condeaser; use.
Make a conderraer ouft of two sheats of tin-fonl and a

```
Condense
```

varnished sheet of glass. Connees wnth eleotroscope ;
Make an electivophorus by means of a ame or tho plate,

sheet of vulcemized of suaring was or varnushed glass.
Test the electursel state of the excrted indna-rubber by
unduction on the alectroscope.
Test the free electrity of the enne plate(1) when in contact and (2) when touched and withdrawn.

Employ better form of nustrument; repeat teats an above. experiments whth electrophorus, such as lighting gas,
exploding muxed gases, ac.
Show the difference of tension on parts of long con-
ductor by means of the repulmon of pith balls. Teat also
by proof plane and electroscope
Test by proof plane and electroscope the tensions on dufferent parts of msulated, saucepan, flat metallio dusk, hat, Rze.
Roll up a charged aheet of tin-foil in connexion with the electroscope.
Roll up the game placed on a sheet of varnished glass on the table

Examine the place of the electrioity when a charge insulated ball is clasped between two unvilated metalic hemispheres

Show rotation of electric wheel.
Chase gold leaf with excited rod
Thold leaf knte hovering amond knob of Leyden jar.
The jar preferably uncorvered
Suspended wre with metalic and ordmary paper points
or rotate in opposite durections. to rotate im opposite durections.

Needle on cap of electroscope and prime conductar.
Melted sealing wax at the end of a needle on prime condractor,

Bertech's machine
Cylinder machume
Double plate machne
A body may be charged enther by the addition or tub-
traction of electricity or by both comilnned.
Study the method of charging o prime conductor
mounted with a point by excited glass or sealing was
Examure the electrictizes in the prime conductor and rabber.
Elementary jar made by troo sheets of tmoloul separated Loyden 授 by glass.
Single Leyden jar charged and ducharged
Dissected jas.
Partal discharge of Leyden jar from the glase to the muer coatang

Examune the residusl charge, pmary, mecondary, \&e
A jar cannot be charged nuless its outer contang is in connemon with the earth.
Charge a jar with both poninve and negatave from the same prime condactor
Faraday's experiment to show the gradual charging of a
submamene cable.
Show cascade srrangement.
Measure capracity of jar by unat jar.
Use of puth ball electroscone
\qquad

Charge a jar, insulate it, connect interior with earth, and
test exterior

Attraction of filing by col.
Explain and use astatic needie with feeble currents. Construat smple form of, and explan commutator.
Make zoodels of right and left handed helices and roversible conical helix.
Pass a current across a puece of soft rron.-

	(1) in durection 1 above the rrom							
		"			below			
	(3)				above			
	(4)	${ }_{3}$	3		below			

Test the poles of the soft iron.
Magnetise a bar of soft iron in a heliz by a current: -

Lurge hoop ool, introduce soft uron.
Make horse-shos eleotro-magnet, and show aumple ex:
Conetruct electinc battery.
Deflagrate platnum and Eilver wire
Explode gunpowder, show use of wet strug.
Burst a tube filled with wate
aght ether
Discharge through eggs, sugar, dvory, lemon, \&co
Diacharge through rarefied arr, oxygen ${ }_{2}$ hydrogen, and Progen
Hluminate by a spark a revolving cross or coloured disk.
Modal of Wheatstone's revolving mirror and apparatus
for velocity.
Flame on end of fishing rod connected with the electrocope and zoolated.
Examine electricity m steam jet near and some distance
Explain Thomson's electrometer.
Explain and Illustrate "return" stroke
Repel and discharge cotton wool by pointed conductor.
Luchtenbarg's figures on electrophorus, varnished glass,
Formation of jar by one man standing on insulating stool and grasping another man's hand, a. sheet of Fulcanized inda-rubber intervening
Test for ozone in brash disciarge.
Light gun-cotton by induced aparik from flat coil.
Show the effeot on astatio needle of friction current from prism conduotor
As above, using - ve electricity.
Change the connexcons in both above cases whth astatice needle.
Connect secondary coil 'with "astatic needle, and show reversal.
Expenmonit whth tertnary coll
Tourmaline conneoted wnth Thomson's electrometer.
(1) Heats (2.) Cood.

Volfaic Electricity.
Defleot astatic needle by selected parrs of metals in asilt watar, e g. , pin and needle, copper and uron, zinc and lead, so, sud compare with deflectaon by electricity from prime conductor.
Voltais crown of cups with anno and copper
Electric potential at the opposite poles, tested (1) with condenser and electroscope (2) with Thamson's electro meter.
The copper wire connectang the poles attracts filungs heated

1on of magnetic needle by corrent -
(1) above needle m durection (1)
(2) b"
$\left.\begin{array}{l}9 \\ 4\end{array}\right)$ below
4)

The polarity of the coll is the same as that of the core.
A suspended helix (solenond) sots as a bar magnet.
A hoop helux and a tube haliz are fastaned to a bung and floated on and watar, them termmals are of copper and nume
They turn N and S.
The above are attrected and repelled by the poles of a magnet.
A tan tube sucked into a coal.
A.-Froment's machine.

Increased effect (thermal) by increased number of cells.
Show therease of potentaal by multiplying the cells
oell.

Deposition of hydrogen on platinum shown by flosting e platinum fol
Polarity of hydrogenized platmum is the asme as that bf
anc.
Reuter's pile, nilver and fannel
Devices for the elmmation of hydrogen -
(1) Mechancal, Smee, use of platanzed silver
(2) Damells'; substitution of copper for hydrogen
(3.) Bunsen sind Grove; burning of the hydrogen

Amalgamation of the anc with mercury
Electrolyse water, examine the proportion and nature of Electrolysis
the gases, also their polarnty.
num wre electrodes
Examine the deposition in a drop of solution under the
microscope
Throw focus on screen and shadow of metals during
therr electrolytic deposition.
In electrolysing water it follows the current.
Force water through a porous cell and show current b
platinum poles in the cell and outside
Faraday's voltameter.
Guthrie's voltastst
Tangent yalvanometer -
Explann laws of deftexion for tangent and zuic galvano
meters,
Battery of (n) cells and thin platanum wre
Send a current round a galvanometer and between two platinum spatulae in water :-

> 1) Increased effect by acidification
> (2) ' ' $"$ ' \because ' approach.
> (3) $\# \gg$ deeper immersion

Repeat as above, using platinum spural of thun wre instead of galyanometer.
Introduce into curcuit from battery around galvanometer different metal wres -
(I) Vanation whth substance of wire.
(3) " \quad " \quad length sectional ares of wire

Show: heating effect of current on compound wire of
platinum and silver
AurUse of Wheatatone's rheostat.
Galvanometer with single hoop of thack wire to be used. Ohm's law.
Vary number of cells with no external resistance
Vary number of cells with large external resistance
Vary nternal resistance by-
Vary nternal resiatance by -
(1) varyng size of plates. ${ }^{\circ}$ (2) \quad dustance of platear

1. Curientis misame durection athracts
2. Currentis in same diraction athract:
3. Currents in opposite dreetions repel.
4. Currentat arossing one another tend to become currents
5. Cu
6. Currents at ryght angles tend to elldes
7. Amperes' trough and wire to show that one part of a
traught current repels the other part
8. Sethug up current other part, coondary.
9. Ceasation of current in prumary gives current in same
durection in secondary
10. Approach of primery gwea reverse current in secon-
11. Withdrawal of promary gives samedurection of current in secondary.
Examine the slading of a current-beaning wire around a Ampereas magnet.

Rotation of a discharge in vacuo axound a permanent or electro-magnet.
E flat comper coil galvanometer the corrent produced through

$$
\begin{aligned}
& \text { (1) When placed on north pole of magnet. } \\
& \text { (2) } u \text { south } \\
& \text { (3) Whan taken off north } \\
& \text { (4) } \\
& \text { (4) }
\end{aligned}
$$

Turn the coil over and repest.
Magnetise a bar of soft iron. while in a coil and examune the direction of current Vary poles.
Sumple magneto-electrio machine. Decompose rodide of Masneto-
potassium. Heat platinum wire. Heat between carbon electrinoma-
pomes, 8ec.
Explam model of automatic contact breaker.
Automatic
contact
breaker.
Aubomatio
contact
breacer.

97. Burn a taper in oxygen, and show re-kundling from glowing wnek.
23. Combustion of phosphorus in orygen.
29. Combustan of bundle of steel wire in stream of
oryeren. Explosion of maxture of oxygen and hydrogen
31 Show formation of water from jet of hydrogen burumg in orygen.
32. Show neutral reaction of water.
33. Show formation of ozone by action of most phoophorus upon avr. Show sction of ozomzed arr upon paper mbued with starch and potassac iodide.
34 Preparation of hydroryl by passing a stream of carbome anhydrde through water contaning baric peroxide m tuspension
35 Heat hydroxyl in test tube, and show evolution of oxygen.
36. Add argentac oxide to hydroxyl, and show production of orygen and metailic silver
37. Wash with solution of hydroxyl paper duscoloured with plumbic sulphide
Wolarly discoloured $\begin{aligned} & \text { solution of hydroxyl white oil paint }\end{aligned}$ milarly duscoloured
29. Prepare chlonic peronde ($\mathrm{Cl}_{2} \mathrm{O}_{4}$) in test tube, and explode it with a hot wire
40 Add sulphunce acid to a murture of phosphorus and 41. Prepare inder water.
mercurie oxade and water
42. Transmit current
of lumes add potassic chloriderne through boiling milk
crytallize ont potassic chlorsto filtered product, and then
43 Preparation of boric achd from boraxy and hydrochloric send
44. Flame of a solution of borie acid in alcohol

45 Preparation of charcoal from wood in test tnbe
46 Show crust upon lime water after exposure to air
47 Add hydrochlonc acad to preces of old mottar, and
show that carbonic snhydride 15 evolved
48 Breathe through lume water.
49 Burn candle in glass cylunder filled whth arr, and
show formation of carbonic anhydride by lime water.
50. Prepare and collect carbonic snhydrude from limestone, chalk, or marble, and hydrochlone acid
51 Show that soap bubbles filled with aur flost on carbome sulyydride
55. Pour solution of htmus mto jar of carbonre anhydride.

53 Immarse lighted taper in jar of carbomic anhydride.
54. Pass carbonic anhydnde through an won tube fille with gharcoal, and hested to redness Show the inflam mability of the carbome oxide produced.
55. Prepare and collect carbone ornde from a muxture of 50 1 ar and
carbonic onde from a muxture of sulphuric aced and yellow prussiate of potash.
57. Infiame jar of carbonic oxide, and mmerse lighted taper in the gas.
58. Agitate lme water which carbome onde, and show that no turbidsty is produced, inflame the gas, agitate agan, and demonstrate the production of carbonic anhydride
69. Prepare mitrogen by burning phosphorus in atmospheric air.
60. Prepare and collect gitrogen from ammonic mitrite, or from a murture of potaserc mitnte and ammonic chlorde. 61. Prepare and collect mitrogen by pasaing chlonne into strong solution of ammonis.
62. Immerse a burnmg taper in mitrogen.

63 Pass electric eparks through arr in a small vessel con tannog litmus papes
64. Show neutrality of nitrogen

65 Prepare and collect mitrous oxide from ammons nitrate. Show production of ammonic nitrate from nitric acid and ammonic carbonate
66. Show that feebly burning sulphur is extinguished in nitrous onde, and that aulphur atrongly ignited continues to burn in the gas with augmented brill ncy.
67. Immerae s buraing taper in mitrous oxide
68. Prepare and collect nitre ande from eopper and nitrie send
69. Add nitric oxde to wrr in a jar over water
70. Immerre a burning taper in nitric oride

71 Show that feebly burning phosphorus is extinguished
in mitric oxde, and that strongly ignited phosphoras burne in it brilhantly.
72 Preparation of nitrous anhydirde from nitric scid and arsenious anhydrnde.
73. Show the reducing action of nitrous acid by adding
a solution of potassic permsinganate to an acidified solution of a nitrite.
74. Show the oxadzing action of nitrous acid by adding
a solution of a nitite to acidulated water tunted with
magents
75. Prepare nitric peroxade ($\mathrm{N}_{2} \mathrm{O}_{4}$) by mixing nitexc oxide and oxygen.
76. Prepare mitac acid from potassic nitrate and suiphuric acid
77

77 Prepare nitnic acid by the dract combmation of nitric peroxide and hydroxyl.
78. Pour natric acid upon copper clippings.

80 Delagrate a muture of nitre and charcoal
80 Add strong mitric acid to gold leaf.
81. Add strong hydrochlone acid to gold leaf.

82 Mix the two last-named luquds together and show that the gold leaf then dussolves

83 Prepare gaseous ammonia from a mirture of ammonic chlorde and slacked lume. Collect oves mercary or by displacement.
84. Demonstrate solubility of ammonis in water
85. Immerse a taper in gaseous ammonra.

86 Burn a stream of gaseous ammonia at the end of a hot tube.
87. Show alkalunity of ammonis
88. Demonstrate volatility of ammonic chlonde.
89. Show production of ammonic chloride from gaseons 90 mmonis and bydrochlonc act gas
91. Melt aulphar in test tube and show changes as the lemperature increases.
92. Prepare and wollect sulpharetted hydrogen from ferrous sulphide and dilute sulphume acid.
33. Burn jet of aulphuretted hydrogen, and hold over the flame a glass rod moistened with ammonia.

94 Show acidity of sulphwretted hydrogen.
95 Decompose sulphuretted hydrogen by sulpaurous anhydride.

96 Decompose sulphuretted hydrogen by chlonne.
97 Pass sulphuretted hydrogen gas through an aqueous solution of each of the followng substances --Arsemona acid, cupric sulphate, plumbic acetate, tartar emetac, and ancie sulphate
98. Prepare salphrorons anhydride by the actron of copper upon sulphumic acd. Collect over mercury or by displace99

99 Show sction of sulphurons anhydinde on litmus paper. Condénse sulphurous snhydride in glass tube immersed in a mixture of anow and aalt.

101 Immerse tape in sulphwrous anhydride
102. Demonstrate solubihty of aulphurous anhydnde in water.
103. Bleach infusion of rose leaves by solphurous sad, and then restore the colour by addition of dilute sulpharie sad.
104. Convert sulphnrous acad into sulphanc sead by-
lat. Exposing ats aqueous eolution to the aur
2nd By heating its aqueous solution with nutris acnd.
105. Demonstrate the formation of aulphuric anhydride by pasaing sulphurous anyhyiride and oxygen over igoted ${ }_{106}$ pongy platinum.
106 Show the formation of anlphunc aced by the durect
union of sulphurous anhydride and hydroxyl union of sulphurous anhydride and hydroxyl
dride, oxygen or arr, nitsic peroxide, and sulphurous anhydride, orygen or arr, nitric peraxide, and ateami, in a fask. two volumes of strong syrup of white sugur placed to a two volumes of
109. Demonstrate the spontaneous decomposition of free hyposulphurous acid, by adding dilute sulphus e acid to a solution of sodie hyposulphite.

Edward Franeland.

APPENDIX III.

REPLIES TO SECRETARY'S LETTERS, DATED JULY 22KD, 1870, AND SEPTEMBER. $27 \mathrm{THE}, 1872$.

A. Replibs to Secretaby's Letter of the 22nd of July 1870.

On the 22nd of July 1870, the letter given below was sent to the Hesd Masters of the following Colleges and Schools:-

The following replies were received :-

1. St. Pexer's College, Westmanster.

19, Dean's Yard, Weetmunster, S W.;
Diat Sir, Jaly 22nd.
I raxoret to pay that owing to the very lumited apsce at present availabie at Westmunster, no systernatuc
teaching of natural scrence has been posable. Lectures by Dr Noad (of St George's Hospotal) have, for Lectures by years (except last year, when lus other engagements pre years (except last year, when hus other engagemante preto 50 pupils, of whom not more than enx or erght me each year have really exerted thememelves to profit by the nnetrucyear
tion.

I am, dear Biry
Faithfully yours,
Grardes B, Scomy

2. Cemist's Hospical.

Christ's Howpital, london, E.C July 24, 1870

Sir,

Is answer tó four letter dated July 22nd
In answer to your letter dated July 22nd, I have to say that prevnous to last September the only regular scientific the course of our mathematical department, in which some 50 boys learn nsmgation, and the other subjects requred for the naval examanation, and others resd a great part of Lor the naval examonation, and others resd a great part of Oxford and Cambridge In September last, by aqreement Oxford and Cambindge in September last, by ancreemen Whth the authonines of St Bartholomew's Hospital, a Dremstry class was commenced under the instruction of Dr Matthiessen The lectures and practacal work were held the boyk was perfectly voluntary, and all them work was the boyk was parfectiy voluntary, and all therr work was
done durng play hoars, (I Bhould add that the old perood of the schoal trme wes shortened smultaneously, with the express purpose of favouring thus and enmilar expansions of the educational rystem.) We have every reason to be satisfied with the resulta so far. The semor class, contaming 14 boys, was tested by practical work and by the paper given at the last London Unversity Matrictistron Exammation (on the same day and hour). All were reported as having done enough to pass, whule several would have
been distingurghed. The jumor class, conteming 30 boys,
also eathafied the examiner by their profimency in practical work.
The governors have accordingly resolved to contnnue the class under the asme arrangementh,

This 1s, so far as I know, the only matruction given here in physical science, with the excespaion of a cocurse of lectures delivered in the hall three or four yeare ago by Professor Odhing.

I hesve the honour to be, Sir,

> Your obodent servant,
> G. C. Bexs,
> Haad Master,

3. Sembrabery Scenool.

The School, Shrewsbury
Sir, July 28 th, 1870.
boys attending thut achool are instructed in element all boys attendang thus school are mstructed in elementary they have aittained in arithmetre, that is, algebsa Eneled thigonometry, and come sections. Wha harens, Euelud, kngonometry, and come sections. We have no specis honaurs gamed by Shrewtbury in the report of the Priblus Schools' Commission.

I am, Sry,

$$
\begin{aligned}
& \text { Your obedient mervant. } \\
& \text { H. W. Moss. }
\end{aligned}
$$

J Norman Lockyer, Kig.

4. Cgartrer Housg.

Charter House, 1870.
Sir, In answer to your letter (July 22nd), I have mach pleasure in sending mformation abont the scientific teaching of thas school.

1. For more than 10 yeara prat there hat been a clase for elementary chemistry on the echool. The lewons are given tmice a week. There are annual prizes (generally two) for proficiency. The sverage sttendance bas been 27, the sverage number of boys in the school having been 135. This year I took adrantage of a course of lecturres (abont 20 m number) delvered at the Finsbuy Instatution by

Mr. Bloxam. Four of my boys attended this coorse and derived much benefit from it
ut The anbject of applied mechames has been taken up here, but not hitherto to any great exteńt
It 18 right to add that I have found many dufficultses in the way of carrying out my wish to advance screntific atudy in this achool Very soon after I come here, the removal of the school from its present site was mooted This questron has now been determined some tame, and our new buldings are in progress on a aite near the town of Godalming It 18 obvious that with the prospect of removal before us, 1 could not well have asked the governors to mak Whyimportant addition to our present school accon opinion, is very far from sufficient
Our new site promuses many facilities for scientific teaching, and our new buildings will not be made without reference to it The neighbourhood to which we are going offers admurable opportumities for the practical pursuit of offers admurable opportunities for the practical pursurt o encouragement to the study of these subjecta, as well as to those (1, and u) already adopted, and to any others which may seem suitable for a school course

I am, Sir,
Yours faxthfully,
Wm. Haig-Brown.
J. Norman Lookyer, Esq.

6. Winohester Collegatis

The College, Winchester

Sir, You will, September 3 rd, 1870 , answering your communcation on the subject of physical snswaring your cominumication on the subject of physical
sanence teaching to have bean due to your letter having been sent just as our holddays began.
The course which my predecessor, the Bishop of Salus bury, adopted for teaching physreal science in the school
Wae '-Ta have a succession of leading sorentric men from London and Oxford, to give short courses of lectares on their specral subjects to the whole school collectively
2. Tc give prizes for collections of flowers

I believe considerable miterest was stmmiated by these methods

Subsequently he engaged permanently an able teacher from Oxford to come down once a week throughout the year, to give lectures on dufferent subjects to two classes. When I became Head Master, about four years ago, that teacher made an engagement elseswhere, and I preferred to have a reaident mastar. Since that time there have been always three olasses, having two lectures a week, one taugh geology by one or our masters who is anquasnted with it, the other two having lectures in botany, mechames, and physical geography, and occasional courses in light, heat and electricity, from the natural scrence lecturer, All boys in the second main division of the school attend these leaturen as part of theur regular work. The division consists of about 100 boys altogether A boy stays about two years in it. When he passes from it into the sixth it is optional whather he learns physical science About one fourth of the til they lave in : Prea aline in given the a year for best end porst, and think th. I eeo paper some of the
I have latterly had ankere lese who are never lukely to reach the dimeron in which at is regularly taught, and who form a "Modern Class" (of 18 regularly
about 26).
A "Natural History Somety" has been started in the school, to encourage boys to collect thinge and to commonool, to encourage boya to collect thinge and to communioste with one another about them. They have shown and fossils
Psizes have been given at dufferent tumea by one of our mastars and myself for such collechons, but I thme they colloct as well for themeelves without pries
We are beginning to form gradually a museum, hbrary, and eets of apparatus, but these are works of tume and are ot yet far advanced
I look forward to the tume when a laboratory can be ostablushed. At present we haye no means of teaching chemustry beyond a oertain amount of lectures, bat I hope thes wrll not continue to be the case long

> I have the honour to reman, Sir,
> Your obedient taerrent,
> Gzorgr RibDing, D D,

Head Master of Winohester Collega.
6. Tiex College School, Tadnton.

The College School, Tauniton September 12th, 1870
I AM requested to furnsh September 12 th, 1870 (I) to what extent scenentific unstruction has been introduced at Taunton School, (II) how many pupls have availed themselves of it, and (III) with what effect, in each year since rts introduction.
I The teachng of physical science was introduced into the school in 1865 A house adjornng the old school was bought, a rough laboratory was fitted up, a typical museum was commenced, a small prece of ground was laid out as a botanical garden, and a thermometer stand, whth a complete set of meteorological instrumenta, was erected. I began in that year by terching comparative physiology to the higher clasees, and expermmental mechanies to the junior In 1866 a class was formed um chemustry, and in 1867 I took the semior boys through a course of botany In 1868 the seaching was syster follows.
Classes I. II (consisting of the youngest boys) An amusing lesson in general elementary science, with objects and experments of all kinds One hour a weels.
Class III Elementary mechanics, without a text book. Three hours a week
Class IV. Advanced mechanies, with Newth's Natural Phlosophy as a text book. Three hours a week.
Class V (b) Elementary chemustry Three hours a week. Mechames kept up One hour a week.
Class V. (a.) Advanced chemistry with laboratory work Barf, text book Four hours a week.
Class VI. Botany, Olver, text book. Two hours a week. Chemustry as before Two hours a week.
The few seniors who have completed this course, woric at comparative physiology Three hours a week
Classes V and VI Register the meteorological observathons twnce a day, three boys taking each week, and work the monthly computations for the Regrstrar Generail's Report.
A small class practises whth the theodolite once a week.
A voluntary class of nine boys is at thas moment readin Lockyer's Elementary Astronomy, in view of a prize offered for the subject by a gentleman in the nerghbourhood.
The regular lessons in physical geography nolude a sketch of geology, maneralogy, and zoology, and our mu seum collection in these departments is rapidly nacreasing.
II From the first I have refused to make the serence teaching optional It has been imposed upon all the boys, and has exercised the same influence on marks and pro motion as the other work Boys now at the top of the gahool have gone through the entire courso, and in future all will do so.
III The technical result of our science work, as shown by exnmination, 19 as follows -In 1865 one senior passed in physes, and two jumors in mechanics, in the Oxfor local exsmuation In 1866 three juniors in mechanics In 1868 one semor in physics, and seven juniors in mechanues In 1869 five juniors in mechanics In 1870 three seniors and one junior in chemstry; and min the same year two boys matrinculated at the London Unverssity. I may be allowed to remark, that we are prevented from ussng the Oxford local axamuation as an efficuent tost of our scientufic work by the rule which limits jumior oandidates to five subjects It 18 notonous that both classies and mathematics gain many more marks in this examination than science, and thus many of our boys each year who could pass with ease in mechanies are prevented from taking the eubject in. Passing from the technical to the general results of our five years' achence teaching, I can speak wnth very great hopeful hap It has turned many dunces into promising precision of thought, the habit of scourate reasonung, and an unexhaustable fund of resource. Nor must I let it be supposed that in teaching acience we undervalue the oldfashioned subjects By mproved methods and a carefully arranged tome table we find room for both; and though my senior boys forego the elegant mbecilities of Latin verse composition, they write a good Latin prose, and conatrue Sophocies as well as the semur boya of my own tume at The dier
The defficulty of obtaining teaching power in scientufic subjects is one which will no doubt press atself on the attention of the Commessoners. There are, as yet, very ew men in England whom schools, with ordinary salaries over the difficulty, so far, by persuading a first-clase Oxford
mithermatician, with far , scenentific knowledge, to spend a twelvemouth at King's College. He now takes the mechanics and the chemistry, whule the junior boys, the botany, and the phyerology, fall to me But I beleve that before science ean be taught properly in first-grade schoola, a race of scientric teachers must be called into existence. In the course of the present year we have removed from the confined and uncomfortable premises of the ancien Grammar School to a splendid buldeng outsude Taunton, with every facility for extension and development The architect's plans include a laboratory, museum, and sciea tific class rooms, and of the ground attached to the school two scres have been given to me for a botanic garden The latter will cost 1001 , the formar more than $1,000 l$., m the meantime we are making shaft, not unsatisfactornly, with temporary rooms. One great want at the present moment is a transit instrument, which, with clock and case, 1 know how to obtann for $50 l$ But though in a
stately buidung like that whuch we now mhabit, our wants
are necessarily more or less magniffeent, I may be permitted to lay great strese upon the cheapness with which, under humbler circumstances, efficient systematuc scienoe teachmg can be organsed. 5 , will buy a set of mechanical models, 16 . will fit up a rough laboratory for 16 boys. The cost of solutions and apparatus will be under 58 , per annum to each puphl, and thas is really all that 18 absolutely necessary
I take the liberty of enclosing inth this roport-

1. Two short pamphlets which express my own new 1 and experience more 20 detaul.
2. A set of papers illastrating our botamionl teahing.
3. A prospectus of the school.
${ }_{\mathrm{I}}^{\mathrm{I}} \mathrm{am}, \mathbf{S i r}$,
Your fartbful servant, W Tuekwelb.
To the Secretary of the Comminan on
Scientricic Instruction and the Advancement of Science.
botanlcal teaching at tavntón college school.
Natural Okdrrs.

Class I. Dreotyledones.

SCHEDULE.

BLANK SCHEDULE.

7. Rossall Sghool.

To Her Majesty's Commission on Scientific Inatruction

 and the Adpancement of Science.My Lords
I am honoured with your Lordships' instructions to present a statement showng to what extent scientific instruction has been introduced into Rossall Scinool, and how many pupils bave wvaled themselves of it, and with what effect, in each year smee its introduction.

Natural Serence has been taught at this school wnth varying and uncertified results for some years past. With the commencement of this present year, and upon the appontment of a new Head Master, it has taken a promment position in the generad curriculum. A regniar science position in the generad curriculum. A regniar scmence master wis appointed (s distminguished young Oxford masn, Whitworth (Oxford) Exhibithoner, F R.A.S.), and abont $100 t$ per annum allowed for chemicals, apparatus, \&e. There is a large lecture room, capable of accommodating

50 boys at a turas with ease, and well furmahed with Laboratory, \&o., and all requirements for illustrating leotures on mechanice, heat, magretism, electricty, pneasantics, and onemustry. In lnet Chinstmas Report of the School, it was stated that "Natural Scrence would henceforth be taught "to the whole of the Modern School and to volunteers from "the Classical" (charge one gumea a year). The whole school at present numbers 302; the modern orde, 58 ; and, with the exception of the prepnratory (30), and lower school (35), the classical ande have almost unversally volunteered to study natural seennce The classical side at present only attend one hour per week, and the modern ${ }^{\text {side }}$ two hours. Thas last, however, the head master hopes to see re-arranged to the stull further promotion of the sciences Besidem this general teachng, however, our energetnc natural science master has organized a specmal class to meet the requirements of boys reading the higher subjects and desirous of working experiments. The boys evidently take great nterest in then work, and many of them are makng considerable progreas We have a small observatory winh a good equatorial, and lectures on astronomy are being given to the highest form, classical and modern, and voluteers are of how lost alose the ber is about 12 . In connarion unth Natural Serence and on the duration pointed out by the Whitworth Exibitione (of which one pres put at the dupoeal of the head master) carpenters' wrorkshops have been fitted up, snd benches and tools provided for xe many as seven ot a the (ohase including use of toois, $5 s$ per quarter). In extenson of thes branct of 'education the head master is partcularty envious (when funds admit) to add lathes one pr more and a stone (wolishing machime and forge arrona a stone polishing machme, and a Corga. Arrangements metreorological observations.

Your Lordshipe will perhat
Your Lordshipe will, perhaps, allow me here to express one or two convictions that have become umprinted on iny easentally the age of observation and love of nature. A easentualy the age of observation and love of nature. A boy's quick eye for a bird's nest has always struck me as a
valuable power that ought to be educated. It is the same waith mushrooms, trees likely to supply walking canes, obwnth mushrooms, trees hakely to supply waiking canss, objects of intarest on the soashore, oc, sc. stones, shells,
fossils, skeletons, may be had in any number from the boys at the least sign of encouragement. Firm behever as I am, myself, in Latm and Greek for cultryatng the higher myself, in Latun and Greek for cuinvatng the hagher still ready to admut that to exclude Natural Science as a study, is to leave untrained the thurd in rank, perhaps, but the firstin development, of our powers-observation Lastly in Lancashure Ifind there is a strong demand for comamonsense phulosophy; and I so far sympathuze with the sentiment as to feel that, whether capable of the profundrties of metaphyases and mathematices or not, no one would be the worse for knownig the difference between a "hawk and hazadsaw"

I have the honour to be, my lords,
Your lordshaps faithful servant,
Robert Hrninicer, MA.,
Rossall, 15th September 1870.

8. Tae Ctty of Lonoon Sghool

> Cxty of London School, E C.

16th Septr. 1870
SIR,
1 was requested last July to furursh you whth a eport on the sweinid was asked to atate the anbjects and number of pupis taught, the tumes of stady, and the resilts of the study each year As the request arnyed dunng ow exammations, and just before the conclusion of the term, it was mposssibe to draw up the statement mmedinately. But 1 requested Mr Durham, our lecturer, to complie the requesite unformation with as Littie delay as possible Thu he has done I have unspected bis report, to the general accuracy of which I can certafy, and I now have the plessure of forwarding it to you
${ }^{1}$ I am, Sir,
J. Norman Lockyer, Esq, EDwis Aervant, 6, Old Palace Yard, S W.

City of London School,

Sir,
Sir, In your commuracation of the 23 rd Junty you renested that I would furnish you whin an and duced at the City of London School. (2) How many

Each division has one lectura a week.
Subjegta Taught,

6th Diviston, A.

A
B
B
a Atomio theory
Hydrogen, oxygen, nitrogen, and the compounds
formed by theur union formed by theur union
Physical and chemicel properties of water.
(c.) Thermomaters, baxometeris, air pump, soo.
(d) Ventalation.

Use of aqua fortis as a chemical test (eapecial at-
tentuon to)
bth Dwisron, B.
(a) Subjects mentioned under A. hydrogen rus compourds with oxygen and
B\{ (c) Blowdroge, nsture of flame cond vection of heat
(d.) Davy lamp.

4th Dnveston, C.
$\left\{\begin{array}{l}(a) \\ (b)\end{array}\right.$
Subjects under cap A: \& B.
b Sulphur
 pecial aftention is given to thes

3rd Diveswon, D.
(a.) Subjects given under cap. A. B \& C
(be common metals (especial attention being given to the metallurgical processes for ob taining uron, copper, lead, zinc, silver, mercury tin, and gold)
(c.) Manufacture of stee

Tempering steel.
(d) Manufacture of plgments (common).

2nd Divasion, E.
(a) Subjects quven in A B. C. \& D.
(b) Manufacture of pigmenta
(c) Alkalues and alkaline earths.
(d.) Heat
. Frictional and voltasc $\{$ especial attention to electricity \quad electinc telegrephy.
(f) Magnetism
(g) Outhine of theoretreal chemical analyss
(h) Outline of physical geography (elight).

1at Devieion.

(a.) Organce chemistry (epemal attention is eiven to fermentation, and the manufacture of soaps candles, dyes, ze)
(b) Higher branches of expernmental physics and inorganic chomistry.
In additaon to the lectures, a class was formed (28th October 1868) for the study of practical chemustry (princrpally prelmomary examonatron by the blownpe)- the form to lst jumor class, melusive) are allowed to join thie form th
During the last term, however, 34 looys were permitted to avail themselves of this privilege.
Those who have a decrded taste for the study of ecence ase prepared mall 1 ts branches.
(2) To what extent have the pupils availed themelves, \&ec. 3
Sclentific matruction (eherousky and experimental physica) was first introduced as an optanal study at Easter;
1847. Towards the close of the year 1860 , the study of ecrence was made compulsory.

The number of boys who svaled themselves of it while an optional study is shown by the following table, viz \rightarrow

In July 1847	- 168	In July, 1854	123
" 1848	- 130	1855	- 137
\% 1849	- 176	1856	156
" 1850	- 187	1857	- 182
1851	- 164	1858	- 188
1852	- 161	1859	- 167
1853	- 137	1860	178

And the subjomed hat will give the average number of boyt in the City of London School from 1861-1870 nolu-swe:-

(3.) And with what effect in each year since, \&a ?

To show with what auccess the rostruction in science (prenious to 1860) has been attended, I will name a few of the pupuls who have highly distmgushed themselves, and who left the City of London School previous to thus date, Who., 1860 .
Edward Divers, M D. - (Lecturer on Medical Jursprudence at Middlesex Hospital) (Examiner in Mechameal an
Machine Drawng, R SM.)
Prof Unwin, CE.BSc (Machne Drawng, R S M.) Lecturer on Natural
Cheltenham College.)
Prof Heaton, F.C S. - (Late Charing Colege.) Hospital) Leaturer on Chemistry bud Nar tural Philosophy (Epsom College).
Wm. Hy. Perkns, F R S., FES, Honorary Secretary to the Chemical Society
John Spillers, F C.S: - (Late Assistant Chemrst to War . Dopartment, Woolwich, Honorary Secretary to the Photo'graphio Society
H. Matthews, FCS.

Wm. Spiller, F C.S.
J. A. Aldia, M.A.y \&o.
The first public examuation in chemistry in connexion with South Kensiagton was helds n 1860, and we obtained one lat and two 2nd class prizes
I ram afrand we cannot give you a complets hat of honours for this year (1860), as I am obliged to trust to my memory, for no sccount of scrence auccesses ganned previous to 1861 has been kept by us In thas difficulty, I applied to the secretary, Science and Art Department, who deputed Mr.
MoLraod to state that to inve the information I required Molaod to state that to give the information 1 required Would involve very considerable research, and to exprees tutnng it. If, however, I should learn any further detalls Intung it. If, however, I sh
I will now, as briefly as posiable, give you a hat of the I will now, as briefly as possible, give you a hat of the
honours, distinctions, \&ro, gauned by the Clty of London honours, dusunctions, \&e, gained
In 1861:
The achool obtamed at South Kengngton
1 gold medal for expermental physics
1 bronse
1 m expanmean physics

In 1862 .
At South Konsuggton we obtained7 1st class prizes in experimental physics
3 lat dass 3 chemustry
$\begin{array}{lll}2 \text { 2nd class } & \text { " } & \text { ") } \\ 1 \text { 2nd class } & \text { expermental physics. } \\ 1 \text { 2nd class } & \text { "; } & \text { mechanical physics. } \\ 1 \text { 3rd class } & \text { chemstry. }\end{array}$
And at the Royal School of Mures we obtanned the 2nd prize in lst class in physios, and a lst clasa in chemistry In 1863:

We obtanned at Magdalen College, Oxford, the open Natural Science exhibition, and at the Royal School of Mines we had
2 io lat class in expemmental phymics.
1 m lst class in chemastry, and
At South Kenaington this school obtanned -
2 noyal exhubitions for phyacal scrence; also
1 gold medial for experimental physics.

* s mechentical plysues

In 1864 :
At the University of London-
1 passed in honours, in chemistry and natural phulosophy, in preluminary scientific exammation for M B
1 was placed in honours in chemostry at the matriculation examination.
1 obtaned honours in zoology and the unversty prize at the matriculation examination
1 passed in honours in chemistry at the matriculation examination.

At the Royal School of Mmes-
I obtained 2nd place in Ist class in mineralogy for 2nd year students
1 do for geology in do
4 were placed in list class in chemistry for 1 st year students
1 placed in do. in physics for do
1 do in 2nd class in chemustry for do.
1 do. in 3rd class in phyares for do
And at South Kensungton were gained-
1 sulver medal for acoustics, light, and heat.

In 1865 -
At the Unversity of London-
One passed nn the first B Sc. examination, and at
Univeraty College, London-
We obtaned the gold medal for analytical chemisury, and the suver medal for theoretical chemistry. In the examinapions at the

Royal School of Mines, London-
1 recerved the Royal exhibrtion of 252. (for 2nd year students) for mineralogy and geology
Passed the exammation for the 3rd year, viz : those in naturai history and paimontology in the first class Received the Edward Forbes medal and prize of books to the value of 8 gurneas for natural history and palzontology, being first in a special examination in those subjects, and recerved the title of "Assoclate of the Royal School of Mines"
And in the examination for first year stadents we obtanned the lst year', prize of $15 l$. for proficiency un physics. We had likewise -
2 placed in the list class in physucs.

At South Kensington we ganned-
1 bronze medal for proficiency in geology.
Also 1 silver,\quad appled mechanics
1 bronze
" " organuc chemistry.
And '2 Queen's exhbithons, $50 h$. for 3 years and free instruction at Government School of Sosence, Dublin. Also
3 placed in the lst elass in inorgame chemenstry.

2	"	3		"	organic chemistry
3	"	\%		\%	magnetrim \& electricity,
1	"	"		*	applied mechames.
2	"	"		*	animal physiologr.
6	"	"	2nd	"	morganie chemistry
3	"	\%		\%	magnetiom \& electricity.
1	"	\%		"	theoretrical mechanics
1	,	"		"	animal phyenology.
2	"	"		"	physteal geography.
1	,	\%		"	steam.
1	3	"		"	geology.
10	,	\%	3rd	\%	- morganic chemustry.
2	\%			"	acoustacs, light, and heat
4	"	n		\%	mapnetism and electineity.
1	*	"		3	theoretical mechanics
2	"	"		"	vegetable physiology and economic batany.
1	3	"		"	steam
1	"	"		*	mineralogy
1	"	"		\%	geology.
	*	"		"	mechanical and machine drawing.
1	5	\%		\%	mining
16	"	,	4th	\%	morganic chemistry
3	"	\%		,	acoustres, lhght, and heat
1	"	"		"	theoretucal mechanica
1	"	"		\%	vegetable physiology.
2	"	\%		\%	zoology
1	"	*		\%	steam
1	"	"		*	maechancal and machne drawńng
1	"	3		"	, building construction,

In 1866:

1 of the old pupils was elected a Fellow of the Rojal Socrety, and
were elected Fellows of the Chemical Society.

At the Unversity of London-

1 in the exammation for the degree of B Sc. obtaned 3rd class honours in chemistry and 2nd class honours in geolegy and palæontology, and degree of Bachelor of Scrence, whule
1 in the prelminary scientific examuation for $M B$.
pagsed in the ist class in honours in chemistry and natural philosophy.
At the Oxford Senior Local Exammation-
I passed with 2nd class honours in chemrstry and physics.

At the Royal School of Mines, London-

At the Covernment Shool of Sorenoe, Dublun, wo obtamed the
1st prize in proctical chemstry.
1at prize in prachnal chemstry.
list $\#$ magnetism and electricity.

2nd " theoretucal chemistry
3rd " y geology.
At Kang's College, London (avening elesses), we gained a prize in expermantal physion and a certaicate in zoology.

At South Kensington-
A Royal exhibition of 501 for threa years, with free education at the Royal School of Mines and Royal College of Chemistry; Bliso

acoustics, light and hea
magnethsm and electricity
theoretical mechanica
applied mechames.
zoology.
physical gengraphy
magnetrism and electricity.
vegetable physiology.
playsical qeography. elementary mathematics geology
morganic chemistry. geometry, and
in each of the following subjecta --
Acoushos, light and heat. Physical geography. Theoretical mechanics Elementary mathematios
Appled mechancs.
Applied mechamis.
Animal physiology. Metallurgy.
15 were placed in the 4 th olass in inorganic chemistry

2 " " 2 " 1 was | organce chemistry, |
| :---: |
| and |
| acoustics, light and |
| hent | acoustics, light and heat, magnetians and electricity, and

16 obtaned a 5 th class in morganic chemistry, and

In 1867 :
1 was appointed to be demonstrator of chemistry at King's College, London
1 to be senior assistant chemist to the Rivers Commussmon.

* 1 to be asgistant chermest to the War Department, Woolvich, and
1 was selecked to be educated at the expense of the Government for altimate employment in the higher branches of the Department for the conservation of the forests under Government in Inder
At the University of London-
1 ganed the lat place in M.B exammation whth 2nd class honours in physiology and 3rd class honours in chemstry, also degree of B Se with 1st class honours in zoology and 2nd class honours in botany.
At the Rayal School of Mines -
I was awarded the lst of two scholarshipe of 151 . for 1st year students, and placed 1st un phywica and mathemstical drawng, and lst in chemstry; and we gamed
lat class in geology
1 was placed list in 2nd class in chemistry
1 was placed in the 2nd class in mineralogy.
1 passed in chemistry
" mineralogy \quad mechanical drawng, and
At the Goverrment School of Science, Dublin, Fe obtamed the

prnze	hypics
1st	$20010 \times 5 y$
1st	magnetism, electactys, and galvanimm.
2nd -	acoustacs, light and heat.
ad	mechanies.

At the Pharmaceutical Society-

A jumot Jacob Bell memoral scholarshap, 30l, writh free mstruction in the laboratory of the socucty for 1 year.

South Kensington-
Royal exhbibtions of 50 . per annum for 3 years, with free education at the R.S.M and R.C C London! and
gold medal in theoretical mechanies
i silver " for mechanical physices \quad, magnetrsm and electricty.
1 , " " " morganic chemastry
1 "" " "" acoustics, light and heat.
1 bronze " " applied mechanacs
1 " " " magnetism and electrcity.
" " " anumal physiology.
" " ", "norganic chemisistry, also
6 Ist clase prizes in nnorganic chemistry
organne do
acoustics, inght, and heat. ${ }^{-}$
magnetism and electrictity
animal phyaiology, and
anmal phyanology, and
each of the following theore-
trical mechanies ; apphed me-
chances, zoology, physical geo-
graphy ; elementary mathema
des, prachical, plane, and
escrptipe geomeliry, manera
construction
4 Ind class prizes in morganx chemistry.
${ }_{3}{ }^{\text {2nd class prizes in }}$ organic chemistry
organic chemustry
magnetism and electronty.
2
2 " $"$ magnetism and electrocity. ing, and
m each of the followng,
apphed mechances, animal
physiology, zoology, physical geography, steam, metallurgy, geology, mining buldang construction, and navgation.
4 3rd class prizes in norganic chemistry
$\begin{array}{lll}\text { " } \\ 3 & \text { organic chernistry. } \\ \text { acoustics, light, and beat } \\ \text { vegetable physiology } \\ \text { phymal geography }\end{array}$
in each of the followng :-
Magnetssm and electricty,
theoretical mechanios, prac tical, plane, and deserrptive geometry, metallurgy, min-
mg, building construction, mg, buiding construotion,
navigation, and higher mar navigation,
thematica.
1 4th class in each of the folloming,-Magnetism and electryctry, apphed me chanca, pbysical geography ogy, nautical astronomy.
5th class cerraficater in acoustros, hight, and hea theoretical mechanics. appled mechanics, an applied mechanics, and
nuutical astronomy, geology, magneham, and
electrocty electrictry

In 1868 :
1 wea appointed asastant chemist to the Boyal Inotitution of Great Britsin, and
1 was appointed ohief private assistant to Professor Frankland, F.R.S, of the Royal School of Mine and Royal College of Chemistry.

At the Unversity of London-

1 in the 2nd B.A. exammation passed wnth 3d clase honours in anumal physiology
in the st So examination ohtaned honours in
1 in tho lot B.C, examinatnon obtaned honours in 1 in the 1st
1 chemastry. 15 B.C. examnation obtaned honours in

- natural phulosophy. And spence, value 255 for one year.

At the Royal Schaol of Mines-
1 obtaned title of Royal School of Mines, and ist class in metalnurey : ist class in applied mechanics for 3rd year students.
1 obtamed the Directors' Medal and Prize of Books (251) ; lat class m mechanical drawng, lst geoogy, 2nd mineralogy for 2nd year strudents, and for the lst year students-
1 obtained Royal soholarship of 157.
2 were placed an lst class in chemistry

Al the Government School of Science, Dublin-
The lat prize in practical chemistry
" 2nd \quad " $\quad \begin{aligned} & \text { mannufactures } \\ & \text { comparative anatomy were } \\ & \text { graned. }\end{aligned}$ gamed.
King's College, London (eveming alasses)
To one was awarded the lat prize in zoology, 2nd prize in geology, 2nd prize in chemistry, and adprize in geology, 2nd prize in chemistry, an
mitted Associate of King's College, London

At South Kensington was gamed
A. Royal exhibition $50 l$ per annum for three years, with free education at RSM. and RC.C. London, also one bronze medal for proficiency in organie chemistry.
1 bronze medal for proficienoy in metallurgy, and
3 lst class Quean's pinzes in inorgame chernistry
acoustres, light and' heat, riagnametism and elec tricity, and metallurgy.
4 Ind class Queen's prizes in inorganic chemistry.
2 " \quad, \quad organic chemistry. magnetism and elec macity.
anmal physiology.
in each of the follow
each of the follow-
ing - acoustics, light and heat, zoology systematic botany,
2 3rd class prizes in acoustics, hght and heat.
2 " $>$ vegetable physiology
1 3rd class prizes in each of the following :-morganic chemistry, apphed meehanics, me chanics, zoology, steam, metallurg.
and geology. and geology.
2 4th class in mineralogy; whil
1 5th cloas certricate was obtamed in each of the mechantes, applied me chanios, vegetable physiology, animal physiology steam, and metallurgy

In 1869 :
was appointed honorary secretary to the Chemucal Society.
I was appomted honorary secretary to the Photo graphic Society
1 was apponnted professor of chemistry and natura phulosophy at Epsom College.
I was appointed assayer to the Walaroo Mining Company, South Austreha
1 was appointed Fellow of the Chemical Society
were appointed assistant chemists to the Royal
were appointed assistant chemists to the Roya
College of Chemistry.
was apponted assatant chemust to the Londo
1 waspital.
Ste-John's College, Cambndge :
1 ganned the open soholarghp for natural science
(50l. \& year), and
At the Universty of London-
1 in the lat B.Sc examination and prelmunary M.B. exammation wis placed-
Ist in the list class in botany, and ganed an
lst in the list class in botany, and gauned a
exhibutron of 40l. for two years, and
lat in the lst class in roology, and gauned an exhibition of 401 . for two years.

1 obtained the degnee of M,B.a with
1st class honours in mediones, and 2d " midwfery, also the Degree of B S (Bachelor of Surgery), whth lat place in lst class honours (and gold medal in surgery, with an umversity scholarshup of the 1 year for two years
1 in the 1st B.Se examination gamed honours in chemistry and natural philosophy.
I passed in 2 nd division in lst B.S.s and prelimunary sclentifio M.B
1 obtamed 2 nd class honours in zoology in do. do
At the Soceety of Apothecaries-
1 obtained the Iot
1 obtained the lst place and gold medal in a come petitays examination of zmedical strudents fo prizes in botany, annually given by this societs.
At the Royal School of Mines-
To 1 was awarded the ntile of Assomate of the Royal School of Mines an moning and metallurgical divisions, he having gained a lst class in mining and ditto in epplied mechames for third year Etudents. Another took the Duke of Cornwall's scholarship's 301 for two years, he havnig been placed 2nd in lat class in mining 2nd in list ; geology, and " lst clase mochamical draving for
A thurd obtaned the ist of two Royal exhibitions of $15 l$ for lst year students, and wess planed 1st in lst class in chemistry.
2nd " ", expernmental physics 1st in 2nd class in mechanical drawny
A fourth was placed in the lat class in chemistry for List yeax students.
At King's Collegs, London (evening classes) A speciel certificate in practical chemistry

" $\%$ chemistry
certaficate of honour worensic medicine an
n- clenacal surgery, and the Todd medal and priee meducme.
At South Kensington-
2 obtamed Ist class in honours in magnetism and electrictity. norganue che mistry. acoustacs, hight and heat,
We ganned
1 2nd class in honours in each of the followng:acoustrics, inght and heat, magnetism and electrim city, and elementary mathematics Also
1 int class advanced stage in each of the followng. -Magnetism and electicity, elemantary mathematres, appled mechanica, and organce chemistry. 4 2nd class advanced stage in theorencal mechancs. matres.

In 1870
1 was apponted lecturer on medical jurisprudence at the Middlesex Hospital professional examiner in nieal and machune drawing for the R S.M and S K.
assistant examuner in chemistry to sent year).
2 were appointed ges exammers, 1 under corpora 1 for Daliston dis
1 was apponted chemical supemntendent of the Sohulte Gunpowder Works Hents.

1. 3 assustant to Dr. Thudichuw (Lee curer on Pathological Chemistry St. Thoman's Hospital).
At the University of Cambridge-r
A natural gctence acholarshp at St. John's Coilege
At the Unverenty of London-
1 degyee of $\mathbf{B ~ S a}$. in 2nd dinision
1 m lat B. Sc. in honours examination, lat olase in chemistry snd lst class in natural philosophy.
At the Royal School of Mines-
1 hat gamed the title of Ass. R.S.M., in natural

- history and pelaentology, being

1st in lot cless in natural history, and lst (only one)
in Ist class in palaontology for 3rd year studentit.
In the exammation for 2nd-year students, 1 han
taken the 2nd place in list class in mechanical and
machune drawriag, and
lat don in 2nd class in muneralogy, and

At the Medical College, St. Thomas's Hospital (Winter
We have obtanned the let place in chemistry

have examined the above and oan certafy to its general accuracy.
is.

Eowin A Abrotry M.A
Head Master of the City of London School.
J. Norman Lockyer, Esq.

Clty of London School
Milk Street, Cheapside, E,C.

Sir,
I Am requested bry the Head Master, es rer 1870. to my report to you on the scientific honours and distinctions gamed by pupis of the City of London School, to etate ganed by pupus of the city of London mechan, the science (theoretical division) given by Sir Joseph Whitworth, has thus year been awarded to Wm Garnett, who left this gohool on July 1869 for Cambrige

1 have the honour to be, Sir,
Your obedrent servant,
L.ecturer on Chemistry and Expermental

Physies, 8
J Norman Lockyer, Esq.

9. Chaltraneam Colleger

To the Royal Commission on Sclentific Instruction.
The College, Cheltenham,
Lords and Gentlemen,
October 22nd
Thas collere contains three dipertober 22nd, 1870
The clasmical.
The mulitary and covl.
The junuor
In the yunior department, where no boy remams after 13 there is no mstruction in physical science or in natural phalosophy.

In both of the eenior deparimentre thers is such instructhon, and to show the extent to which it has been carmed out, and in some degree the effect, I beg to submit to you the followng statement :-

Sclentufic instruotion in physicel sorence was uthoduoed, in the year 1854, into the mulitary and crvil department only, and is now given to the nune upper classes of that department, containing about 120 boys.
The subjeots now taught aro-
Geologys
Heat,
Commencing with geology in the lowest class, and following the order above.
In the upper olasses the amount of knowlege acquared as very farr, and in not a few instances conanderable. It may, perhaps, be best understood by reference to the examination paperie in those subjecte given by the sxaminers in the competative testry for admisision to Woolwich
In these, the boyg have obtarned, from 60 to 80 par cent. of the marks assigned to the subject
The uppar classea recerve matruction, by means of lectures, three tomes in the week, and the lowes classes twice e week. Beardes the lectures, the boys have to read up the subjects from text books, and those who are studying chemistry and electricity also work in the laboratory under the supervision of the ecosice master to the mulitary and eivil department.
When physical science was first introduced in 1854, the matruction was limited to the first two clasees, but was gradually extended to 1 te present limits-the firat 9 out f the 19 classes in the deparforent
Physical soience was mintroduced into the classical department in 1869, and the subjects taught sance that date Trem

1 Botany.
Phyacal geography.
Physical soience is taught is the classhcal departznent at the same hours as, and, therefore, as an alternative subject with, German, and in taught twice an week in the first 7 with, German, the
In the three highest classes an aecond physical sarences Is also taught twioe a wreek at the same hours as, and, therefore, as an alternainve subjeot with, French.
Thiteen boys un the three highest classes are now roceiving instruction in botany thmice week, as well as instruction in hest and electineity fwice a week, but boys in the four next elasses recerve ustruction in one physucal subyent only.
For the future it is iatended to teach botany to the three lowest of these soven elasses, to begin heat and electricity
in the forarth class, and for the benefit of the three uppes classes to have two sets of lectures, either or both of which they mayy abtend; one contromag heats and electicity, the other recurring to botany
The namber of boys now learning' physical science in the classiond depariment is 63 , and they attend five different sets of lectures
It is believed that whth the lmouted thme and limited means at our draposal, it is a wise plan to amm at secuming in a classicsh school thorough screntric grownduag in (ati most) two or three physical subjecte only, and it is believed that botany is the best entrance to physical science for: boy whose education is manly linguistic, solid as far as it goes, and not superficial, but dealing manly with the diction and idioms and Interature of Latin, Greek, Enghas, and French
Botapy has certainly been found here a successfal means of cultivating the faculty of observation of nature in clasercal boys
Physical geography was not me success with the lower classes, though to a very few of our best boys the physical explanation of natural phenomena proved very interestana and probably we shall not drop it wholly from our curriculum
Heat and electricity is the most ambitious of the physical subjects hitherto taught in the classical department, and there have always been two or three boys who show aptitude and enthusiasm for the subject, who seem able to lay a rest grasp on the fundamental proncples of the scrence, and to apply them deductively to any given examples
Should any further information be desired by, H M. Conn-
mussioners, it will be a pleasure to me to attempty to give it.

$$
\begin{aligned}
& \text { I am, my lords and gentlemen, } \\
& \text { Your obedrent servant, } \\
& \text { T. W Jex-BEARE, } \\
& \text { Principgd of the College, } \\
& \text {, Cheltenham. }
\end{aligned}
$$

10. Clifyon College.

Dear' Sir, \quad October 23rd, 1870.
Whati AFTER a delay, which I must beg you to exouse, and whinh has been owng to the unexpected pressure of other engagements, I have the honour to send, you, my report of our scientific work here
t hope it maty be in some degree the kind of report which was required, but if not, it will give me great plessure to the subject which I can, or to request any of my scientific the subject which I cam, or to request any of my scientific masters to give more specinc mformation, if that is requared. If have put is proper that it should he presented in the sloape of a If it is proper that it should be presented in the shape of a it so far altered, or I will trust to your courtesy to have the necessary alterations made

The Secretary of th I am your obedient servants
Duke of Devonshure's Commisson.

Memoranium on the Scienifific Traching at Clifton College.

Before the year 1867, Natoral Science wes taught only as an extra subject, and by lectures at which attendance was voluntary But suce the spring of that year, scientific instruction has formed part of the regular routane throughout the whole College, with the exception of the two lowest forms of our Junor School, which consist of boys from 9 to 11 years of age, and the two highest formos on the classical side, un which science is an ophonsal subject. place side by arde wnth the traditional subjects of school instruchon, and has its due influence in helpmg a boy's progress up the achool.
As, however, the trme which can be thus gaven to scienthic study by all boys without distinction is necessarily himited, and merely sufficent to give an elementary knowledge of chemistry and physics, to whuch our attention has ledge of chemistry and physics, to wruch our attenkion been chiefly devoted, with somethung of scientnic traiming and discupline, our method has been to supplement tramis by other teaching, the attendance at which is optionai By means of this a select number of boys obtang a more other subjects, or, in some cases, in addition to the nsual course of classical or other work.
Thus, every boy who has, since the year 1867, risen through the school to the fifth form, has been carefully instructed

of mental powers, and to be at all active in them use, so that some of oun most, valuable educational ands are those Which foster intellectual tastes, and brimg home to boys the sense of an intulectual pleasur
For this end science seems to have great adrantages over every other subject of school mstruction 1 know of nothing else which has so many attractions for ordmaxy boys, or whuch conscquentiy can afect so wide an area of school life
Screntrfic subjects rouse an interest in many munds which other subjects have not touched, and thas 1 atribute in a great degree to the funt that thev appeal to so many lacal lies ant touch upor commonn life at so many points, that they have in them a spemal reality for dull and unmagiantive boys
I believe there is not a master in our suliool, however devoted to the study of languages or litpmature, who world be wiling that any of our scientific work should he discontinued, or who would not be obliged to contess to the evideat advantages which have elready resulted from it Yet our present results can hardly be considered as more than an intimation of what may be expected when the leachung of scicnce has got beyond ats present rudimentary stage, that is, when good text books and apparatus are more accessible, when masters thoroughly traned un ap proved and effective methods of teaching are less pare, and when the relations between science and other subjects have been more clearly settled
Our supply of mesters for the teaching of science has (i) Onen as follows
(1) One master who devotes his whole time to the teachug of chemstry by means of lectures and aboratorv instruchop
(2) Onc who lectures on physics, and also teaches some nathematics
(3) One who teaches botany, physical geography, and zoology, is carator of our musecum and bonea garden, and jresident of the Sole
and alo and

1) And one who bas for some time assisted the chennical ruaster in the libboratory and in exammations

CIfton College
J Percival,
Octabev 19 l th, 1870.
Head Master

11 Rugey Schoos
School House, Rughy
Dear Str,
Octoher $284 h, 1870$
I Bec now to enclose wilh this, m reply to you nquury of July 22nd last, two short primted statemonts on the subject of serentific mstruction in Ragby Sehool, by the wo masters who priacipally teach in that department.
Boys are allowet consaderable latitude of choice in reference to the partieular branch of natural serence, \&c, whech they prefer
All the middle school, 270 mm number, are always engaged with some branch of that subject, and half the mpper sehoo, or thereabouts This upper schuol is 180 strong, Bo that there are 270 mad de sehoo
+90 upper school
or 360 out of the total of the school (which may be put at 500) so engaged
I should add that specind buildings for experments, and lecture theatres with apparatus, \&e, have butu rather elaborately and expensively provided within the last fer years I enclose a list of honours ganed by late pupils
I hope thus mey provo a satisfactory aceomet, and shall be bappy to supplement the information now given 2 required.
I am alwdy
J Norman Lockyer, Esqu obedient servant,
Henry Hayman

Last of Natural Soferce Honours in Rugby Sthool from 1851
185 F Kn
1853 A A Harrigon Do do do Do 1854 J W Worlall 1st Class Nat So -- Trin Coll 1st Class Nat Se - Oxfori Nat Sc Studentsh Ch Ch 1868 G W Fison Burdett Corts, Burdett-Coutts ${ }^{*}$ Geolog1cul Scholarsbip - Ne

 S Lapton Merton College - OM Oxfor 1870 H. II Johnston Whetwarth Exhbition - Oxford 1850 C S Taylor - lat class Nat Sc - - Oxford

The following account was mitten as a contribution to Mr. Farrar's Paper, read before the Bratish Association 1 Septeraber 1866, on Naturai Snence $1 n$ Public Schools. aud is uninted at Dr Butlen's request -
Natural Science Teaching at Rugey School
If will be convenment to arrange niy permanks unde the ollowing heads
(1) A sketch of the system adopted before 1864
(2) The changes proposed by the Cornmissioners
(3) The changes actually adopted, and the present work, gig of the system
(4) Remarks on the results,
(1) Before the summer of 1864, a boy on enterng Rughy might sugnify hy wish to learn cither Modern Languages or Natural science, the lessons were given at the same time and, thercfore, excluded one another If he chose $\mathrm{Na}_{\text {atural }}$ Science he pard an entrance fee of $1 / 1 s$, which went to an apparatus fund, and 575_{8} annually to the lectuser Out of the whole School, numberiny from 450 to 500 , about one tenth gencrally aere in the Natural beance classea.
The recessary consequences of this systicm, and its inherent defects, are pointed out in the Report of the Cominissioners on Pubine Schools, vol i 1 278, to wheh, for the sake of brevity, I refer.
(2) The changes proposed by the Commissioners may bc seen in the same volume, $p 299$, In brief, they are as follows - That it should no longer be an alternative with Modern Lauguages, but that all boys sloould learm some branch of Natural Sccence That there should be two prin cepal branches, one consistrang of Chementry and Physics the other of Pbysiology and Natural History, mumal and vegetahle, and that the ciasses in Natural sclence sbould b enturely independent of the general divisions of the shool, so that bors might be arranged for thas study exclusively according to therr proficiency in $1 t$
(3) It must le understrod that Rugby School is divided for tonching purposes into five parts The linghest consist of the Sixth Form, with about 45 boys The next is the Upper School, contaming four forms, or about l30 boys the next the pper Ma Scor 130 ,
 lastly, he Lowers these tive housions will the averag 381716 ag 14 these 38, $1,16,15,14$, respectwely Thr object of the divisuo. of the Sehool into these paits is to enatil a smal numbe of Mathematc School, and each of these divsions, it will be the woro 18 do , ing the same kind of work at the same understood, s donge the same kind of work at the same trme * So, for example, on the mornings of Monday,
Wednesday, and Friduy, after breaktnist the Upaer School have therr Mathemated, after becaiknost the eppar school have ther Mivision of the School is at Mathematus at that time and thes number of boys about 135 is arraged in six Mathe tins number of boys, about 135, is arranged in six Mathe The necessity of the existence of these dinsion
ions that it is rather surnso the Commisson so ghould have overlooked it, and should have recommonded should have overiooked it, and should hate recommonded it, should be rearranged for Natural Science. Hence this part of their recommendations was set siside
Agan, the subjects rerommended were Physiology, anumal and vegetable, and Chemustry and Physies But there exists at present but one School whuh can he uscd as sn exists at present hut one School whuh can he uacd we sh 15 used exclusvely by the Masters who tedch Natural Science, and it would be impossible to prepare an explerimental lecture in any otber School Restrotions such as these, and others whinhit wonld be tedious to explain in detall, have caused the adoption of the systan I shall proceed to describe, which must be considered as the systeri of the Commissioners in spirit, adapted to meet the pyigencies of the case

In the Lower School no Natural Science is taught at all In the Lower Midde and Upper Middle Schools all do Natural selenee, two hours a week in School, and as much tume for preparation, being given to science, in the Upper Schoul, it is alternative with Gemman, and in the suxth Form itis optional In the Lover Middles there are four sets in Natural Science, in the Upper Middles four sets, in the Upper School two sets, and in the Sixth Form one get This is the existang state of things, and may be from umeto time slightly modified It would be a simple matier to arcange the work if boys entered at one hrue only of the year, and into only one part of the School but the facta ure most inconamient At the beguning of each of the three Teruss, new boys comes into the opper and Lower Middle School, and others are promoted from the Lower to the Upper Middies, from the Upper Didales to the Upper Schaol, and from the Upper Sehool to the Sixth It is not only difficult, but quate mpossible, that all these new and
promoted boys can find sets unto which they can easily be placed, and every plan muat be a compromise. The general arrangement is this, that new boys shall do Botany ther first year, Mechances thear second, Geology thenr thard, and Chemsiny their fourth, and the year begins in January " The new boys of January, and the previous September, are brranged at that tume into as many Botanucal sett as is requisite, generaly one no the Upper Midales, and bwo in the Lower Middles; and contanue at this subject for one Term. At Easter promotions take place; some few of the Botanusts, two or three, perbaps, of the Upper Mrdolen find themselves in the Upper School, and brave to give up Botany, the promoted Botanists of the Lower Mrddles fall naturally into the Botanical set of the Upper Middles; but what is to be done with the new boys, and those promoted from the Lower Minoo, Ta meet thus difficulty the tivo the Lower Middies? to meet thas difficulty the two Botancal acta, arranged in ozd on pre With the subject under one Mester, and the last, with the new boys, begins over agoun. And without increasing the number of the Natural Science Masters, and, therefore, ancreasmg the school wand no plan can ber hit upon wavoh hall avond ore in Och boys who come they in the Upper and Lor er Middies, and do some small byon the pper and woker Middies, and do soms small bygubject for a single Term. such as some branch of Phyaical Geography, and then fall into this regular course in the following danuary. In Janasiry, then, the Botancal sets begin for the newr comers, and the mechanical sets for those Who have been one year in the Sohool, and simulaty the Mechanical and one Physical Geography, and two Botanical Mechanical and one Physical Geography, and two Botanical
sets in the Upper Middles, two Mechaucal, and ona sets, in the Upper Moddled, two mechamica, sind ona Geologread, and one Botantcal, and in the Upper school, no Suxth, one Chemucal eet \dagger

I fear the above will be dufficult to follows but it cannot Ifear the above wil be duncuit to follow, but
be made smple, as the carcumatances, and, therefore, the
arrangements, are inoretor less complicated.s Noxt as to the nature of the teaching.
In Botany, the instruction is given partly by lectures and partly from Oliver's Botany: Flowers are dissected and paxtly from Onver's botany, Fiow every boy, and thew parts yecognised and examined by every boy, and their parts recogmed and terma are gruen tul a farsilianty with the organ to be nerma are or desoribed has given rise to their want. The named or desornbed has given rise to therr want, ane are gradually acquired until the floral schedule, so highly are gradually acquired until the fiorail schedule, so highly recommended by Henslow and Olivers can bee readily
wrorked. Frunt, seed, inflorescence, the forms of leaf, stem, woot, are then treated, the principal facts of vegetable. physiology illustrated, and the princrple of classification physiology illustrated, and the principle of classincainon Bentham's "Handbook of the Brinsh Flowa" in used. Contrary to all previous respectation,' When this aubject' Twas first introduced it became at ance both popular and effective among the boys. The sprit of the teaching is unquestionably denved from the briluant "Leçons Elemerataitas de Botamque fondées sur l'smalyse dee 50 plantes vulgarres, pay M. Emam. le Maouts " 2 model of an elementary work on Natural Scrence. There is no elementary work in Englash on may sceentifio subject which can be coneidered as equal to it If anyone thinks Botany dry manid nomteresting, ind consisting of words alone, lat him get' Le Maouts, and he will bo fascinated by the Aacidity of his style and the intereat he throws round the sulject
The lectures are illustrated by Henslow's mine diagrems, by a large and excellent collection of pantinga and diagrams made by the lectureis and their friends, and by Botancal coliections made for use in lectures The pronclpal lecturer on this subject is Mr. Kitchener When the year's course is over, such boys as show a specied taste are invited to talke Botamical walks with Mr Kitchener, to consult with him the School Herbarrum, and are atmaviated by prizes for advanced knowledge and for dried collections, both local and general
In Mechanucs, the lecturer ns the Rev T W. Hutchinson, MA, FCS, the semor Natural Scrence Master. The lectures include expermental investigations into the Mechancisi powers, with numerous examples worked by the boys; into the elements of Mechanism, conversion of motnon, carns, the steam engime, the equilibrium of roofs, ridges, shengtin or materiala, ac They are ilustrited by large collectron of models, and are very effective and popular lectures

- Sinoe this was Fritton, it has keen thought hetten to mate the course

In Geology, the becturer is Mr. Wilson. Thas bubjeat is only temporanly introduced, on account of the want of anothes Expermental Schools. When thuy 15 bwit, the thurd year's course will be sume part of Expenmental Physica, in which there already exists at Rugbry a farr emount of apparatus. It is very dearable that boys ahould obtark some knowledge of Geology, but it is not so wrell fitted for School taaching as some of the othar mabjeata, on esveral grounds. Perksps a larger proportion of boys are interested in the rubjest than in eny other, bat the subyect presupw poses mons knowledge and experience than most boys possess, and therr work had a tendency to benome erthar upericial or undugested knowlage the lectures include the som sobk! alone. The lectures include the easier part of Lyell's "Principles," s.e, the causes of change now in operation on the asith; nexty an aocount of the phenomena obsaryable and the construction of meps and sectoons and later, the history of the etratafied rocks and of hife ond, lastiy,
 These lecturea are nilustrated by a faur Geologeal colleotion, collection of dragrams and views to ulustrate Geological phenomenan:
In Chemistry, the lecturer is Mr, Hutchnnson. He has an excellent lecture 500 m , and a small but well-fitted laboratory and he takes his classes through the non-metallio and the metailic elemants the lectures are fully lilustated Cy experments Boya, whose parents wioh them to stidy Chemstry stiore completely, can ao chrough a complete course of practical analysis in the laboratory, by beooming
mivate pupis of Mr Hutchinson At present, 18 boys are private pupila of Mix
This being the matter of the teaching, it remanns to asy a feve words on the mancer. This is nesrly the ebme in all the classes, mutates mutandss the lecture is given, unterspersed with questions, illustrations, and experimenta, and the boys take rough notes, which are recast into an intelligible and presentable form in note books. These are sent up about once a fortanght, looked over, corrected, and returned; and they form at once the test of how far the matter has been understood, the test of the induatry, care, and attention of the boy, and an excellent subject for thex Engiah composition.
Exammation papers are given to the seta every thres or four weeks, and to these and to the note booka marks are assigned which have weight in the promotion from Form to Form The marks assigned to each subject are proporFrom The marks assigned to each subject are propor-
tronsi to the number of hours spent in School on thit subject
There are School prizes given annually for profeiency in each of the branches of Natural Science above mentioned.
This leads me, lastly, to speak of the results.
(4.) Furst, a日 to the value of the teaching itself; secondly, as to its effecta on the other branches of stady
There can be no doubt, I thunk, that at Rugby the expemment has been tried under very favourable circumstances The Head Master has been not only favourable to the movement, but has glmost onginated it, and aympathises heartily whth the promotion of education by means or Natural cience; and the Natural Nerea Masters whom he hat and carefully wratch the results of their teschung. I think and carefully watch the resuite of their teachug. I think the experience gamed at hugby pointa to these conclusions. That Botany, structural and classificatory, may be tanght with great effect, and anterest a large number of boys, sind IS the best subject to stait with That its exactness of terminology, the necessity of care in examining the flowerg, and the mpossibility of superficial knowiedge, are ifs first recommandations; and the successive gradations in the principles of a patural clasgification, are of great value to the clever boys The teachung must be based on pernonal examination of flowers, assisted by diagrams, and everything like cram strongly discourazed.
-Mechanios are fomad rarely to be done well by thone who are not also the best Mathemsticians. But it is a suibect whuch in its applucations mintereste many boys, and would be much better donie, and would be correspondingly more proCitable, of the standard of Geometry and Arthmethe wers higher than it is. The ignorance of Antimetec which is exhubited by most of the new boys of 14 or 15 world be very aurprising, if it had not long annce ceased to muppise the duly persons who are acquainted with it; and if forms the-man hudrance to tesching Mechamics Stall, under the curcumstances, the resulke are farrly satusfactory.
The Geological tesching need pot be dracussed at length, as it is temporary, at least in the Maddie Behool. It value us paemeluterary than sumatafie. The boys can bring neither $\frac{10}{20}$

* For tho het tew geare there have bren from 80 to 50 in the Iahore tory-mis M.H, October, 2878.

Mineralogical, nor Chemical, nor Anatomical knowledge nor have they observed enough of rocks to make Geological teaching sound The most that they can acquire, and this of thajonty do acquare, is the general outhe of hist h ass of the earth, and of the agencies by which that history has tremely interesting one. It supplies them with an object rather than with a method.
Of the value of elementary'teaching in Chemistry there can be only one opinion. It is felt to be a new era in a boy s mental progresis when he has realuzed the laws that regulate Chemical combnation, and sees traces of order amud the seemingly endless vanety But the number of boys who get real hold of Chemistry from lectures alone 18 small, as might be expected from the nature of the subject Not more than the non-metallic elements should enter monto the School course

Of the value of experimental teaching in Physics, especially Pneumatics, Heat, Acoustics, Ophes, and Electricity thare can be no doubtur Nothing but impossibilties would prevent the immedaste ntroduction of each of these subjects in turn into the Rugby curriculum."
The decided opinion of those who have given most attenfoon to the subjeot 18, that Expermental Physics ought to form the staple of scientafic teaching at Schools "The Report drawn up by the Committee of the Councl of the Britioh Association will enter fully into this matter

Lastly, what are the general results of the introduction of scientric teaching in the opinon of the body of Masters 3 In bref it is this, that the School as a whole is the better for 1 t, and that the scholarship is not worse. The number of boys whose mastry and attention wor not caught by anv School study is markedly less, there is mors respect for work and for abulnes in the different fields now open to a work and for abilntes in the different fields now open to a boy; and though pursued often with great vigour, and sometines with great success, by boys distinguashed in
Classics, it is not found to interfere with ther profiosency in Classics, nor are there any eymptoms of ovarwork in the School This is the testimony of Classical Masters, by no means specially farourable to Science, who are in an position whech enables thefm to judge To many who would have left Rugby wnth but little knowledge, and little love of knowledge, to show'as the results of their two or three years in our Middle School, the introduction of Science into our course has been the greatest possible gain * and others who have left from the Upper part of the School, without hope of distinguishmg themselves in Classics or Mathematics, have adopted science as their study at the Universities. am confident that no Master in Rugby School would wish to give up Natural Serenes and recur to the old cumculum,
J. M. Wilson.

APPENDIX'- - Áríangrmbnt oritime Jandary 1867

-	Mondsy ${ }^{11}$	Tuesday ${ }^{\prime}$	Weandsday	Thursdsy	Eriday ${ }^{\prime \prime}$	Saturdey:	
Brixir				\% ${ }^{\text {a }} 8.8 \mathrm{Fx}$			Cr Classieal Lesson Om Gomposition ${ }^{\circ}{ }^{\circ}$ Looking pver Versè
Drpaz Solioos -	OMT O	$00^{\text {cmily }}$	OHIOT GN	$00 \frac{\mathrm{DFP}^{\prime \prime}}{\mathrm{EM}}$	C 到C GN	0 F ${ }_{\text {RMI }}^{\text {D }}$	$\frac{1}{\text { M }}$ Matar subject. $\frac{\text { Nathematios. }}{\text { Natural Sajence. }}$
Uprba Midder	COM' 0	$\left\lvert\, \begin{array}{cc} \mathrm{Cm} \\ \mathrm{CN} & \mathrm{Dm} \\ \mathrm{BH} \\ \hline \end{array}\right.$	OTm $\mathrm{ma}^{5} \mathrm{O}$	OMCm ${ }^{\circ}$	$0 T \hat{S}_{1, ~}^{F} 0$	$c^{\operatorname{c}} \mathrm{N} \frac{\mathrm{D}^{\prime}}{\frac{\mathrm{BP}}{\mathrm{M}}}$	
LOFRR MIDDLIS	0070		OTONO	$\text { OROm. } \frac{10}{\text { EMN }}$		$\alpha m \frac{D^{\mathrm{EN}}}{\mathrm{EM}}$	BM Componisory Exira Mathemas treal Lexson. D. Drawing Ierson.

Scifnce Wore in Rugby School.
In September 1866, Mr, Farrar, of Harrow, read s paper before the British Associstion on the subject of Natural Science teachung in Publio Schools, to which my friend and colleague, Mr. Wuson, oontributed a sketch of what we were dongg at Rugby. This was printed separately, and well as to others interested in education.

$$
\begin{aligned}
& \text { Fell as to others interested in education. } \\
& \text { Sinne that time. hower. important }
\end{aligned}
$$

Since that trime, however, important changes have been made un our work, which has undergone extension and modification in rarlous waya.
I have, therefors, at the request of others, drawn up the followng brier acount of our arrangementa for the systemonrmed out
In two or three places I have quoted verbation from Mr Wilson's paper, and, in the closing paragrapha, I have gladly availed myself of his remarks on the rasults of the more extended teeohing of Sosence in our School.
T. N Hutchingon, M.A. F.C.S

Sensor Natural Scwence Master m Rugby School.
Nstural Phulosophy was first introduced into Rugby as a subject of School metruction by Dr. Tart in 1849. The lecturer was a reandent physicianin the town, an F R.S. Helivectures, which included Chemistry and was voluntary. Dr. Goulburn afterwards appointed aucoesenvely two of the Classical Masters who had strong scientufic tastes to carry on the instruction in Nataral Phlosophy. Aftar Dr. Temple became Head Master, the Natural Science work was undertakem by ons of the Mathemsminal Masters, and, in 1859, the Trustees added lecture room and Laboratory to the School buildings, thus giving considerable umpulse to the news studies. Soon aftar this another Matheminnoed Mastar took part in the Natural Science teaching, and Botany was added to the subjects of mustruction, in addrtion to Chemstry, Geology, and Phymos. Durngg this time, however, Natural Scusace was only taught as an alternatuve subjeot. A boy upon enterng the Sohool had to choose between Natural Sorenoe and Modern Languages. Ho could not learn both, ss the lessons were gryen as the Samo tore the whole Sohont avarage: about one tanth of those in the whole School.

In January 1865, in consequence of the recommendations of the Royal Commissioners, a Natural Serence Master Fras sppointed, whose time was to be wholly devoted to Sciense teachung, two of the Mathematreal staf assistumg him. ${ }^{\text {II }}$
"It must be understood that Rugby Sohoolis divided, for teachung purposes, into five parts. The highest consists of the Sixth form, whth nbout 45 boys. The next is the Upper School, contanngg four forms, or shout 135 boye, the next is the Upper Middle School, with about 140 boys, then the Lower Middle School, with about 130 hoys; and, lastly, the Lower School, with about 50 boyn. "The average ares of the boya in these five davisiona will not be far from 18, 17, 16, 15 , isnd 14 , respentively. ${ }^{\text {it }}$
parts is to enable the division of the School nto these Marts is to enable a small number of Mathematrical and each of these divisions it will be understord is dor, and same kind of work at the same haderscond, is doing the the mommgs of Mondsy sand Thnersday, for example, on the momings of Monday and Mharsday, after breakicast, therefore, no other division of the School is at Mathem, and, at that tomer and this number of boys, about 135 , arranged in sux Mathematacal classes or sets, according to therr profionenay
"The necessinty of the existence of these divisions is so obwous that it is rather surpneng that the Commusanoners should have overlooked it, and ahould have recommended that the sohole achool, and not only one of the divisions of it, thould be rearranged for Natural Scrence. Hence this part of their recommendations was set assde."
Forjthe finst half-year of 1865, Natural Scence was taught to every boy in the Middle and Lower School, the Sixth Form and Upper School being allowed to choose betwean Germar and Natural Science After sax months' expenence, however, it was decided to drop the subyeot in the Lowers School, the boys appearng hardly equal to the work .
From that tume to the present, Nataral Scrence has been taught throughont the enture Middle School, while the alternative of Natural Sonence or German is still sllowed to the Sxath and Upper School, the division bemg genemally pretty equally paade: Meanwhile, the staff of Natural Science Masters has been-1ncreased to five, two more of the Mathematical Masters joining m the work; and, withm the last year, a competent Laborator's Assustant has been
engaged, part of whase duties consists in superintending the boys, at certain haurs, when working at Practical Chemistry The new Natural Scrence Schools, whuch have only recentiy been completed, comprise a large working Laboratory capable of accommodating 30 boys, a private Laboratory for the Chemical lecturer, a Chemical lecture theatre with rased seasts for 50, a aumular but still larger thestre for Physical Science and Geology, and an apparatua room with means and appliances for unstrumental work of various kinds.
The regular subjects of instruction have hutherto beea Botany, Physicsl Geography and Astronomy, Geology, Mechanics and Mechanism, Chemistry, and Electricity, including Maynetism Heat, Hydrostatics, and Pneumatice have also occas duall lectures a lece fally illustreted by plants, diecrans specmens, models, are fully ilustaled by plants, dagram, the duration of cach, lecture varies from three-quarters of an hour to an hour. In addion to attendance at the two weekly locture the In adation to atiendance at the two weekly lecturea, the boys are expected either to show up note-baoks rom twe in the room or to make abstracts, or work examples, so as in the room, or to make abstracts, of work examples, so as in very case to give evidence of haviso held from tume to tome and the results are embodied in the monthly characters sent to the parents
to the parents
best for a commencement found, on the whole, to answer best for a commencement is Botany it Deeds no special preparatory studues, and it serves as an exceilent introduepatience, care, and accuracy of observition requrred in patience, care, and accuracy or observation requred in cannot but prove of real value in the antellectual traming' of hoys.
The introduction of elementary astronomy has been rather a matter of convenuence to suithour school arrangements. The acholastic year begins in September, when two new botany "sets" commence. A certain number of new boys, however, enter the school in January, and, as it is umpossible to begin the subject over again at that tume, the new boys in the muddie school form a supplementary set, taking up seleoted portions of astronomy to last two terms. These boys then go to botany in the following September.
The new boys in the middle school at Easter farm a set by themselves for commencing botany, and go on whth the subject as an advanced set in September The class-book used by the botancal lecturers is Oliver's "Lessons," but the system followed in teaching is a modification of that enployed by Le Maout in his fine work, "Leepons Elementaires de Botanuque." In astronomy, Mr. Norman Lackyer's hittle book has been rused. In no case, however, does a teacher confine humelf to a single text book. In geology "the lectures include the easuer parts of Lyell's "\& Prnciples,' s.e, the causes of change now in operation on "c the earth, next, an account of the phenomenaobservable "in the crust of the earth $;$ stratification and its disturb"c ances, and the constructaon of maps and sectiona ; and, "s lastiy, the history of the stratified rocks and of lufe on the "c earth"" The lectures are vllustrated by a very fair School Museum, many of the specimens in which have been obtaned by the boys themselves, and also by a capital collection of dugrams and drawnga exhibitng geological phenomena The subject is one that has been fonnd to interest a large number of boys, and the local Ceology hae been weil and vigorously worked out by past and present members of the geological seto. lintary and the other more artherto bean hwo seta, one elementaxy andecta nacloded in advanced, each lastang \& year. The subjects nacloded in therr varions practical applications, the centre of gravity and different kmons of equulibnum, and the composition and resolution of forces. Models and diagrams are extensively employed, and the boys are required to work a conssively emple number of numerical examples, and to take full notes of each lecture, es no special text book 18 used.* Is the higher aet the lectures comprise -
ist the equibmum of shis
theory of garders, axches, roofs, tubular bridges, buthresses, sc., and here, agann, the boys are taught practically to work out the teasions and thrusts of the different parts in a given roof or piece of frame-work, to find the breakng weight of beams of various kinds, \&ze
2ndly. The elementa of Mechanism, conversson of one knd of motion into another, cams, wheel work,

parallel motions, \&c., the tufferent wrangements being illustrated, as far an possiblo, by actual working models
3rdly. The hustory, theory, and mechamsm of the atearn engine.
The chuef difficulty in teaching Mechanica sabsfactorily has arisen from the iguorance of many boyb un Arithmetio and Geometry Simple ss us the amount of such knowledge required to work examples in Mechanics, it is yet beyond that of a large number of boys who enter a Public School. It is proposed in future not to allow any boy to join a Mechanical set who has not reached a certan stage in the Mathematical work of the School.
The remaming subjects of Chemastry, Electrioity, and Heat are not taught in lectures, except to boys in the Suxth Forma and Upper School Chemistry and Electricity have hitherto been taken in alternate years, each occupying thinee terms. In future, however, the will not be the casse, and eaoh bor in the Suxth or Upper School will be able to go through the three subjects of Chemistry, Electricity, and Heat in successive yearly courses.
Aftar some years expenence, the Chempal teachng, so far as lectures are concerned, has been confined to the nondoes not present the sams ramety that is found in the study of the other elementary brodity that $1 s$ found in the apparent sameness in the preparation and properties of the apparent ammeness in the preparation and propertiss of the a decided taste for Chemistry Roscoe's Text ho have a decided taste for Chemistry Roscoe's Text book in adopted, and a arge number of oxpermmenta are performed
before the boys. At every afth or sixth lesson a paper of before the boys. At every fifth or sixth leason a paper of questions is given on the subjects that have last occupied papers the marks and order for the term are obtanned.
papers the marks and order for the term are obtanned. selected, and here, agam, abundant expermental illustration is combined with witten answers to questions and the working of numerical examples.

Till the new Laboratory was erected it was only possible to allow of a small number of boys studying Practical Chemustry. Such boys as showed a special aptitude for Chomistry might, with theer parents" permiesion, become private pupils of the Chemical lecturer, and work at Analysis with
hum in the amall School Laboratory Since the large Laboratory has been finshed, howevar, the number of bays who have availed themaselves of it has been betwreen 30 and 40 in each term, and matead of being only open to private pupils, there will now always be, in addition to these, a practical Laboratory "set" composed of proked boys who have shown special undustry and intelligence in their prevous
Nanural Scence work. In this way the Laboratory will Natural Scrence work. In this way the laboratory will act as a stamulus and a reward to those who are really in earnest in their work. Each Laboratory pupl has two
lessons in the week of about an hour and a half's duratson. lessons in the week of about an hour and a half's duration.
The books used are Harcourt and Madan's st Practical The books used are Harcourt and Madan's "Practical Chemistry" for begianers, and "Presenius" for those
more advanced The boys commence wrth the preparation more advanced The boys commence with the preparation
of the commoner gases and chemical eubstances, so es to of the commoner gases and chemical eubstances, so as to become practically acquainted wnth thers properties and the
orduary methods of manapulation. They then go on with ordunary methods of manipulation. They then go on whin the exammation of the characteristic properities of these properties in the work of actual analysin.
The Laboratory instruction is given by the semior Naturai Science Master, who 18 also the Chamusal lecturer, and has assistant The ragular Laborstory "set comea at stated hours, twitse so week, the boys mostly working in pairn. best with their other work, and the ruct ts that than fesp hours in the day work, and the reault winat there are in the Lahoratory This plan has the advantage of pre in the Laborstory Thus plan has the advantage of preventang the roota being overcrowded, and the boys get more individusi attention rom thenr teachere
In bree, then, the arrangement of the Natural Scrence work 18 this "-
Botany in twro seta under in the Middie School begin Botanical set consiste of those who entered the School the previous Easter. These three seto controue separate dunng the October and Lent terms; but, after Easter, the three are arrianged accordmg to proficuency and merged mto two sets for the last term's work, and a commencing Botany set is formed, consisting of the new boys
Iwo sets cormmence Geology, nlso under dufferent mathery, consustuag chrefiy of those who have done Botany Thesen two sets are sombined noto one after Carromas, so as to aliow one of the lecturers to take the new boye in Jantuary as an Astronomy set, which is contrmed through two terms.
Those who have done Botsny and Greology form an elementary Mechancal set, and those who have been
through the elementary course form an advanced set for Mechanics and Mechanism, \&e
Lastly, there is a Laboratory set for Practical Chemishry, formed as slready desaribed
In the Sixth Form and Upper School, which are worked ogether, four sets are commenced in September, each lastrig a year One in Chemistry for new boys and such as are promoted from the Middle School, one in Electricity for those who have done Chemstry, one in Heat for those who have done both Chemustry and Electrictity, and a small advanced Botany set for any who have shown a speclal desire to continue that study.
This is the general order of the work, but modividual tastes are consulted as far as possible, and any boy having strong wish to join a particular set has usually little difficulty in dong so Indeed, I beheve it to be a matter of real importance to make the system as elastac as possible.
The new boys, of whom we can know but little, are placed in Botanical sets. But durng their first yeare some will probably have shown that ther taste hes rather in the direction of Physics than Natural History, and in such cases they would be allowed to go on with Mechanics or Physics for the next year instead of Geology, whoh, under follow Botany.
With regard to the encouragements to Natural Science t Rugby I may state-

1. That marks are assugned to the Natural Scrence work in determining the place of each boy at the end of the term, the subject being marked in proportion to the me devoted to it
2. The eubject 18 included in the examingtoon which the Sixth undergo for exhibitions in July
3. The order of each set is published in the School " List" at Christmas and Midsummer.
4. Various przes are given annually, one of three gonneas for General Chemistry; and another of equal value for Practical Analysis. Prizes of the value of two guineas each are given for specsal excellence in Mechamics, Geology, and Botany The boys are also encouraged to make collections of wild flowers, fosesls, or insects, and prizes are gaven to the most deserving
One of the results of the Natural Science work at Rughy has been the eatablushing of a School Natural History

Socuety The Soczety has been in existence now for three yearis, and'is in a flourishug condition Meetings are heid once a fortaight, when papers are read and objects of interest in any branch of Natural History are exhbited and explanned
ceports are published annually contaning the more mportast papera and observations of each year. Thres reports have already appeared.

Such, then, has been the nature of our work and experence at Rugby during the last few years
With regard to the opinion in which that work is held by others most interested in the matter, I cannot do better than quote the words whth which Mr. Wilson's paper ends, especially as I have no reason to belreve that the opinions therem expressed have been altered sunce the time when hose words were written
"Lastly, what are the general resuita of the introductaon of screntanic teachung in the opminon of the body of Masters 3 In brief it is this, that the School, as a whole, is the better or it, and that the scholargind $2 s$ not worse The number soil study is marleady less there is more respect any School study is markedy less, there is more respect or boy, and though pursued often anth great ngour and a boy, and though pursued often with great vigour, and Classics, it is not found to interfere with thew proficiency in Classics, nor are there any symptoms of over-work in the School. This is the testimony of Classical Masters by no means specially favourable to Science, who are in a position which enables them to judge. To many who would have which enables them to judge. To many who would have
left Rugby with but little knowledge, and little love of knowledge, to show as the results of thear two or three knowledge, to show as the results of thear two or three noto our course has been the greatest possible gam, and others who have left from the Upper part of the school, without hope of distuggushing themselves in Classics or Mathematics, have adopted Scrence as their atudy at the universities. It is beleved that no master in Rugby school would wrish to give up Natural Scence and reaur to the old curriculum"

APPENDIX

	Mondes	Tresing	Wednendiay.	Thursiag	Friday	Saturday,	C Classical, History, or Divinity Lassons C" Looking over Composition M Mathematical Lesson. (M) Tnpepared Mathematical Paper M* Lcoking over Mathematical Papers. F Prench G German N Netural Bcience. EF Extra French EM Extra Matheradics. T Tutor
	$\begin{array}{llll} 1 & 2 & 8 & 5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \mathrm{M} & 0 \end{array}$					$\begin{aligned} & 1 \\ & \mathrm{C}_{\mathrm{G}}^{\mathrm{G}} \mathrm{ENM}^{3} \end{aligned}$	
Upphe Middis*	OFTM*	OKO $\frac{E F}{\text { EM }}$	OMFO (M)	0 T O ${ }^{*}$	OMON (M)	c 0 既	
Lowre Middla	00TM*0	ONF EM	0 OCO (M)	0 T 000	CMPN(M)	0 d $\frac{E N}{\text { EM }}$	
Lowne samool*	0000	0000	CFOTC	0000	\%fCTo	000	

 80, and FIfth Losson botween 4.80 and 6
*In the Lower School the Lemoons marked C are at the disposal of the Lower School Master, and need not be all Classical
12. Whllington Collbge.

Wellington College, Wokngham,
Dear Sif,
dave the honour request, a short scoount of the physical ecience teaching which forms part of our course here If young part of our course here great pleasure to afford $1 t$.

I have the honour to remann, dear sur Your very farthful servant E. W. Benson.

J Norman Lockyer, Esq

Wellingtan Coblege,
Physscal Scrence
From the opening of the College in 1859, instruotion in prachial chemustry has been given, in asmai loboratory to a voluntary class in the higher part of the echool. No charge is made for the mastructson The average atteardance, which was lumited by the size of the laboratory, has been 4 loys
In 1865, a monall clase for geology was formed in the Modern Department, consisting of boys not requing plassteal work

34784

In 1867, a further change was made geology was dropped, and it was arranged that chemostry, heat, and The system then adopted to a larger number of boys modifications, continued up to the present teme yodincations, continued up to the present time This year (18,0) a new class room for chemical teaching has been built, whth proper sppliances, and taken inta use.
Dtosion of the School - The modern school 110 boys, about one third of the sachool It is dive contains an upper and nuddle sohool, the line between which is drawn, in respect of age and attainments, ati about the same place as in most public schools Most of these have, in the pirsos as in mostance, passed through the usual traming in elagsice, costhematics, French, \&e, of the lower forms of the classical school, at the age of 13 or 14 , and are not allowed to jom the modern school as a refuge from classical dificultues. Many join from the higher forms Some who have early reached a high position and made considerable progress in classical studues, enter it from the fifth and even the surth forms The latter class almost navarably enter the upper division of the modern school A few come ready to enter the moders achool at ance Hence, st leaving, about half the whole number leave from the modern side.
A man object of the modern school bemg to prepare boys for the higher arny examinations, it is necessary to educate boys on two lunes, those, Niz.. which are contern-
\mathbf{P}
phated in the regulations of the examunations, and in the cale of marks fixed for them
Marks and Prizes - The study of acence is encouraged (1) by marks, both for term work and for examination, and for helping to decide a boy's place in the school; (2), by the publication of the clasaes in the school roll; (3), by marke in the examunation for the modern exhibtion (equal to those given for each modern language, two-sevenths of those for mathematics), (4), by an annual governor's prize for practucal and theoretical chemistry
Frogramme -The programme 18 as followy (ascending), onutting history, divinity, and Enghah lessons:-

In the second class (fourth form from the top) the time is devoted chiefly to experimental lectures, the notes of which are brought, farrly written out, at the followng lesson, and then looked over and returned.

Chemsistry, IHeat, Eflectrtcuty -A daferent subjeot 18 treated each term. for instance, in the Ebster Term, 1870 , elementary heat, in the following term the clements of magnetism and finctional electricity, both of which are com moned higher mp-in the school. Most boys spend two termis in this form, which contams 30 boys.
In the upper school the three classes are under different masters, the highest of which contanns 16 boys, the others 28, leaving boys in the Greek classes. There are three science lessons © week-two of them prepared, the thurd unprepared and devoted chiefly to working numerical examples under supervision of the master in the first'set, the three stubjects, heat, chemsiry, aud elect the second set five terms, f.e, rather less than two years; but all the time no electricity has at prasent bean uaug, but all the mome has been devoted to heat and chemstry, treated an a more into the fist set until he has gone, at least once, through the elements of heat and of chemustry. A boy of fari ability, spending three years in the upper school, whil thus go through heat and ehemistry twice, and through electricity once Ths difference in the mode of treatment of the same subject constatutes the difference between the two sets, and we find that, upon the whole, the gradations of knowledge are as clearly marked and unnecessary repentions as much avorded as m the teaching of classics and mathematics In one pomt we have a distunct advantage, namely, that sll the moderix school give a great deal of tume to mathematics, and that the promotion in science very nearly corresponds, wath that in mathematics. There is, therefore, a marked dufference between the capsinty of the two seta for workng numenceal examples

The work requured to be done out of school consists of fairly written out notes of experiments, of nuwencal examples, and of prepared portions of text books The thme in school is apent questioning upon what has been prepared or written, and in experiments and lliustrations The lessons oscilate in fact between school-iessons, properly so
called, and lectures. Neather system is mgorously adhered called
to.
The text-books in aill are Ganot"s "Physacs," Ferguson's "Electricity," and Barfl's "Chemistry," For the lower boys, Tate's small hand-books are used, though, as above stated the teachung is chtefiy ervd voce.
(H, W, Eve)
Laboratory Class,-in the laboratory class the pupils learn from three to five pages of Fownes' or Roscoe's "Manuals of Chemagtry" in the wrek. Once s wreek they are examined, sud, if found sufficiently acquanted with the portion, are directed in preparing for themeelves such experments as will illustrate the week's work For thus purpose, a laboratory 18 arranged to accommodatia 10 or 12 , as many as one teacher can direct at a time An honir a week is given to practical workung in the laboratory, and a , he semor ciass gear, is enffioently edvanced to make pupis of the third year, is suftiesently advanced to make most of the chemical sonduct g gmple enslyms At the end of each ferm the conduls are examined by pupis are examined by writton questions, and are requred analyens
(J. G. Bampord)

- With an aldernative of hustory amd naodern langnages.

Many of the boys who learn chemistry in the ordinary classes avall themselves of the opportunity of attending the laboratory for two or three terms,
Scrence Classes.-In the experimental acience classen, the lessons ars chuefly by lecturg, atd the boys are requred to in each lesson al the nut they see and hear A ohief feature They are taught, where it is practrable, to teduce all phenomens to figures, and by this means, althourh all of the ycunger hoys have s knowledge of not extending berond the elomentary rules in algebra believe that they are led to take a greater interest in purely thather arel to which it can be apphed.
(Carliton Lamarrt.)
Mechanses - Statics and dynamios are tanght in the first mathematical gets in the modern school The text books are Goodwn's and Todhunter's "Elementary Treatises." Thase subjecty have been treated theoretically, but more opportunity is now about to be given to the boys of searng The time devoted to mathermatios the thest of experiment. houra a week in thool, and work is the first set is nine gours a week in sehool, and work is given whioh ocsuppee of about 16 houra a is devotad to mechamees and hrdroutatics. Thine tenching is by lecturs occastomally, when the aubiect is within th rrasp of the grasp on ther and the average tume during which they continue in the and the average tima
(C, L)
Hydrostatucs, -Those boys in the lat set who have thoroughly mastered mechatucs, so far as to be able to solve simple problems in "energy," and the osellation of cyclordal pendulums, devote their time to hydrostatics, The text book used 18 Besant's " Glementary Treatise," and sttention is chtefly given to problems on ppecific prayity, condition of equilibmum and stablity of floating bodies, and the relations between the pressure, density, and temperature of a gas or vapour, with the application to natural phenomens.
(C. L)

- Optras-Between Christmas and Easter this year, 88 日an experiment, a course of sux voluntary lectures was given by Mr Ary, one of the masters, treating the nubjects elementarily and using only geometncal methods. There Was an ayerage attendance of 22 boys, about half of whom were in the classical school, and, by the numbers who came on the day succeedrag each lecture, by invitation, to ask questions arising out of the lectures, they eppeared to be much interested. Several of them prepared good duagrams. An examination was held, and parts of Anry's work on "Geometrical Optrce" were mariked for private atudy, and a Prize was given at the end of the term for the examination. The result wes satisfactory.
Botary,-Two annual prizes have been always given for the best collection of specrmens of widd flowers
But, for the last four years, it has been attempted to make this collecting more instructive by limiting the number of plants to bs sent m , and requinig deacriptive achedules (Henslow's) to be aent in with each plant. A porton of Oliver's Batany is also prepared, and examined in by papers
For the twi tergas after Christmas 1869, botany was introduced into the highest form of the classical muddle school as an alternative for German. There were two weekly hours in school assigned to the subject But the prospecta of various competitive examunations determined boys and parents, possessing a choice, so mach in favour of German, that although botany was a dectiledly popniar subject With the boys who leant it, it was found better to auspend tesching it until it can be rerurtroduced as a necessary and not optionad subjeot on a larger seale Only a ourth partion the boys undertook it, and
of German appeared nearer.
of German appeared nearer.
"I need Oliver's Leasoms as the text-book, and after the breaking up of the frost, Dr Lindley's Descruptive Botany, to enable boys to fill up sehedules and describe metered, wre parte correctiy. Unti techucal quatwoning, and shots worsed with reading, papers, and unstrated
black board, and dred planta. As spring advenced, I
supphed each boy with a specimen for dussectuon and supphed each boy with a specimen for filled up. After erammation, and ind of first term, the change in the clans promude it apparent that, in order to tesch effectually, two eets made it apparen Boyt who began when flowers were plentful made more rapud progress Mr. Kitchenes; of

Rugby, examined them at Midsummer, and considered that they had very faurly marked the first part of the subject.
(C W. PenNy)

At present the prizes for collectrons and schedules continue as before.

Natural Hastory Socrety - A Natural History Somet was founded early un 1868, and has floumshed The meetings, held once a fortnight, have been numerously attended the members, who number about 20 boys, have the power of introducing others to the lectures Th average attendance at the meetings is 30 or 40 , and is often much more numerous, and vanous interesting papers have been read, contributed by the boys themselves. Professor Kingsley and Professor Rupert Jones have takeri grea interest in the society, and, as well as other friends and masters, have frequently delivered lectures and addresses to them

The Report for 1869 as enclosed
(Signed) E W. Benson, D D,
haster

13. University Colizge Scaool

Report on Scefnce Teaching in Univmrsity Collegr School, Londor, Dec. 1870.

i Introduction.

Unwersity College School, as at present constituted, was founded in January 1832, under the joint Headmastership of Professor Key and Professor Malden.
At the end of session 1841-2, Professor Malden resigned his share in the Headmastership, continumg, however, to àct as Supervising Examuner down to August 1868, and making, in that capacity, an Annual Report on certann classe selected by hum, as tume and carcumatances allowed, from year to year.
Extracts are given from the following sources of mforma mon'
(1.) The MS Reports of the Headmester to the Council of the Collage.
(2) The MS. Reports of the Supervising Examiner, Professor Malden
(3.) The Reports of the Councl to the Members of the College
(4.) The communications of the Masters engaged in science terohung
(5.) The Report furnshed in 1866-7 to the Schools In-
quary Commassion. [Vol x p 223]
.) Headmaster's endence given berore the same

(7.) The Report of the French Commissioners, MM Demoreot and Montucer, on Secondary and Superior Education in England and Scotland, Vol u. Paria, 1870
The Statistical Tables are compled from the punted prize hasts of the school
Appended are:
(1.) A copy (in proof) of the programmes of work in the science
clages
(2.) A copy of Mr. Orme's syllabus of lectures on ohemustry, printed for the use of the school, but not publushed.
(3.) Specimen copien of examination questions in the science classes, 1865-9
(4.) Specimen copies of the school prize lists for 1840 , $1855,1857,1867,1869,1870$.

REPORT.-PART I.

Account of the Science Classes and arrangemente for Sovence teaehung on Unapersuny College School, from ets first establashment down to the end of Session 1869-70, vie, July 28, 1870.

Sessions 1832-3-1834-5

Schools Inquiry Commussion (Minutes of Evidence) Vol iv. p. 313, Professor Key, M.A , F R.S., Headmaster of Unuversaty College School, examined, 3rd May 1865.
Quastion 3008 -Is the general system of instruction in the school nearly the same as it has been since the establishment of the sehool P-Chemustry has been introduced, whch was not taught at first, and when it was first tanght t wat not taught practically
You have always had some branches of physical science? -Ies; natural erpenmental phulosophy, and further than
that, apphed mathematics; but then that is for a small number.
When you first knew the school, what branches of physical scuence were taught 3-But little was done in this way sumply because, at the beginming, our boys were too young We had very few old boys for a year or two
Were the ordinary sciences of observation, botany, and zoology, taught?-O ocasionally we have had botany taughts but only occasionally

3057 Has it been thred with specimens? Has is been demonstrative?-Yes, but not systematically My reasons for not applying our time to botany are these it is duffi-
cult for us to obtam specmens in sufficient quantity for all the boys in a ulass to handle them ; and eren then mothort \& maynifyo gixss httile can be done. If a boy wot to
 play But the science of classification it is sard is tauch
 of languare racelf for example At any rate boteny to of language itself, for example. At any rate, botany 18 a 3.008 subject for country scbools finan for us

3,008 Do you attreh more importance to the expery mental sclences ?-Yes; we found we were not doing much good in the other screncer
physical philosophy is the teaching of all these subjects of physical phriosophy is rmperfect unless you can make the boys use their own hands p-I should say so
Apart from these ponts the general system of the schoo is nearly as it was constructed onginally?-Very nearly indeed.

Note on foregowng extract.

The printed "Prize Lusts" specify the followng classes, Which may be given as an illustration
Session 1833-4 I (s e beginning) Class and Upper IIs,
, J834-5. Upper II and Lower III, "Objects ;" Upper III, "Natural Hestory;"
" 1836-7. Lower II.; "Objects."" Muxed Class of Non-Greclans: "Physical Geography and -Astronomy "
" 1837-8 Lower III " "Vegetable substances used for Food
" 1838-9. Upper III., "Objects," Upper III.
Vegetable substances
" 1839-40. Lower IV , "Natural History "
The text-book employed in the object classes was Miss Mayo's "Lessons on Objects," e. gy metals, natural products, such as camphor, guma brabic, \&C These lessons were eventualy discontnued, as they tended to degenerate minto mere teaching of the meaning of hard words
For natural hastory one of the volumes of the "Petar Parley sernes formed a text-book The museum of the college was occasionaly put under contribution for illustrianve specimens. The lower fourth class in thus subject, aession 1839-40, was conducted by Professor Malden,
The volumes entriled "Fruit and Tumber Trees"
"Tegetable substances " ased for Food," forming part of "Yegetable substances used for Food," forming part of the upper and lower divisions respectively, of the thurd class.

Another volume of the same sernes, "Menagemes," was used in the begnning classes.

Session 1835-6

The Upper VI. class of pure mathematios was under the charge of Professor White, of Universnty College The same boys recerved mstruction in natural phulosophy:-the first instance of the mtroduction of this subject into the achool. Vide remarks on table No. 1 in Appendix

The lat and 2nd prizemen in natural phiosophy were prizemen in the same order in the VI. Latin clase acao. The former obtained at the same time the bughest prizee in German and in Greometry.
To thus seasion belongs haewise the formstion of a class of purely, expermental phyares; muxed class of "nonGremans" resding Hydrostatica.
In the following session, the priseman in spphed mathematics, J G. Greenwood, ganed slso the lughest prizes in Latin and in Geometry.
Mr Greenwood graduated at the London University in 1840, obtamung the Umversity Scholarghup in chassics, and is now Principal of Owens College, Manchester.

Session 1838-9.

The VI. class of mechanice, under Mr. Cook, numberng in the second term 20 boys, had three lessons of one hour per week, and read as text-hook Whewell's "Mechanical Euehd." The non-Grecisens of dlasses VI and V., also under Mr. Cook, numbering in the accond term 19 bops
and hkewnse receiving three lessons of one hour per woek read the Useful Knowledge Society's "Laves of Ganleo and Kepler," with illustrations by the master. The same clas had in former years been accustomed to use Webster' Elements of Physics"
The non-Grecians of class upper IV (24 boys in th senond term), under Mr Webster, had two weekly lesson, of one hour, and read the Useful Knowledge Society' "Introduction to Natural Philosophy" The same boy had one lesson every week with Mr. Cook on the use of the globes

Session 1839-40.
The VI class receaved two lessons of three-quarters of an hour wreekly in applied mathematics, and four leasons of simular length in expermental physics, mcluding (exceptionally) chemustry
Bowning (now appled mathematics was awarded to E. A Bown (VI 3 and M P , who was also first prizeThe V Lase class
of an four lessons of three-quarter "Elements." 1 n experimental physies, using Webster't

The priame
The pmzaman $2 n$ this class, L. Field, obtained the prize in cherrustry in the B A examination
${ }^{\text {is }}$ now Feliow of Unversty College. objects, with special reference to arts and manufactures. The lower IV. class spent three hours a week on Natural History.

Session 1840-1
The VI applied mathematics met for two periods of three-quarters of an hour, and the same boys gave four periode to experimental physios.
The lower V class gave three periods and the IV. class four periods to natural phulosophy.

$$
\begin{aligned}
& \text { Session 1843-4. } \\
& \text { Examaner's Report }
\end{aligned}
$$

In the examination of the sixth class in mathematical natural philosophy I read over the papers of the second boy, Hayward, and found them remarkably well done Mr Cook's examination was a very judhcious one, but at the same time imphed a considerable knowledge of elementary maehanics in the boys submitted to it, and I was glad to find by his report that rather more acquitted themselve farly than in the pure mathematics
The lower V class, under Mr Elis, was examined in the elements of natural philosophy without mathematics, bu whth arithmencal calculations The exammation was certanly elementary and very easy, but 1 did not what the worse of in on accoun "rene "rine " thought it judicious. Nine boys were "mentioned

Note
In applied mathematics, seven boys were "mentioned" In differential and integral calculus, six boys were " mentioned "
In geometry, algebra, ànd tiggonometry, five boys were
"mentroned
The "second boy" in applied mathematics, Robert B Hayward, was fourth wrangler in 1850, and became Fellow
of St. John's
The "first boy" on the same occasion was Geo V Yool,
third wrangler in 1851, and subsequently Fellow of Trinity.

> Session 1849-50
> Examaner's Report

Mr Spencer's two classes in nataral philosophy and chemistry may be taken together, as they consisted of neurly the same bogs. His senior olasses in these subjects did very well.

The junior classes consisted of older boys, bat boys of inferior power generally, and it so happened that the classes had dwindled down by the boys, from time to time, lesving the school These jumors dad not do well

Session 1850-1.
Mr Spencer's Report to Headmaster
In natural philosophy, my classes are entarely expen mental. During the past year we have read mechanics and hydrostatics, but in the previous session we had an expernmental course on electrictiy, magnetasm, and elechromagnetsm, bessdes a sho ture of the stcam engine
In chemistry, we devote ourselves entarely to inorgame
I may mention that a very good chemust bas this year spoken very highly of the papera sent in by the first and mecond boys in each clases.

Note.

The "first boy" in the gemor class was Michael Foater subsequently B.A, whth Unversity Classical Scholarship and M D, London, now Praiector in Physiology at Trinity College, Cambridge, and late Professor of Practical Phyaio
logy at Unversity College, London.
The "fecond boy" in the same clask was Willam Stanley Jevons, now M.A , London, and Gold Medallis and Professor of Logic at Owens College, Manchester

Session 1851-2.
Headmaster's Report.
Mr Cook's VI, mathematical mechanics and hydrostatics, which he chuefly attributes to the use of en improved text book
In Mr. Cook's V, expenmental natural philosophy and the higher arrthmetie, some did remarkably well, but, on the whole, the class was somewhat below the average part of becers mon thos part, of boys unable to go on with Mr. Cook's classes, 80 teacher. But the upper part of all his three classes pase teacher. very satisfactory examination
he four classes in expenmental natural philosophy and chemistry (two of each), which are conducted by Mr Spencer appear to have been in a very creditable condition; and am the more disposed to rely upon his report when I find both the silver medais in 1851 chas of chemistry in the colleg who had been hoys in the school in the won by student vz., F. H Robarts and W. S. Jevons.

Note.

In the VI, apphed mathematics, equal przes were given to Joseph Chamberlann, now chaurman of the Executive Committee of the National Education League; and to F. Manning Needham,

The first prize in Mr Spencer's semor class of experymental B.A, and LL B, Lond, tn honours, and Assoc. Instr, C E. The Rov. Wm Brock, of Hampstead, was first prizeman in chernistry (senior class). He matriculated from the achool in 1853

The Rev. F. H. Robarts matriculated in 1852 as fourth in honours in classacs and fourth in chemitry.

Session 1852-3

Examner's Report
I was parthcularly struck and very much pleased with the answers of the boys in the naxth class, under Mr Spencer, in experimental natural philosophy. lhes appeared to have been thoroughly well taught, and the exammation was judicious
In like manner, so far as I am able to judge, I would report very favourably of the semor class of chemistry.

Session 1853-4.
Examines's Report.
I was nouch pleased with the examination of the lower VI class in expermental natural philosophy, and I was gra tified in a very high degree by the examination of the sento class in chemistry Both these classes had been taught by
Mr. Spencer, and did hum very great credut.

Session 1855-6.

Report of Councul.
In the suxth or hughest classes of mathematics and phyaica conducted by the Rev. Wm Cook, the Counch are informed that the class for mechanics, though not large, was a very largert one, that the pupils wene engaged withit Newth smaller one formerly used, and with which they were not satisfied, that there was a great ambition amongst them to work the more difficult problems, and that they encceeded very well Once a week experiments were given in mechanics, hydrostatics, pneumatics, heat and electricity

Mr. Cook's class for pure mathematics learned geometry -Eucld, books VI and XI ; plane tingonometry, spherical trigonometry with applications to astronomy, algebraexpansion of functions of one variable into serics, binomisal theorem, exponental and loganthmic serres, convergency of sernes, algebraic geometry including connc sections, cycloid,

Kce, whth \& few theorems in the differential calculus The class is reported to have averaged better than any of its pre dacesaors, to have taken a lively interest in the work, and to have had only two boys whose progreas falled to give entire satisfaction The ages of the four prizemen in these classes were respectively $154,17,15 \frac{1}{2}$, and 16 .

Examner's Report

In Mr Spencer's two clasges of natural phulosophy, though some of the boys dud faurly well, the questions wer not generally so well answered as I have seen them in former years

In the gixth and fifth chemistry, the boys did not seem to me to do so well as might have been expected, not so well as like olasses in former years

Note

The first prizeman in the VI, pure and apphed mathematios, the late Jacob Stiebel, was afterwards, in 1858, Andrews Scholar of Unuversity College, and stood second in mathematicel honours at matriculation in 1859 , and at obtanned by Mr Dala, of 'Trinty College, Cambridge, thurd obtanned by Mr
The first prizeman in the lower VI, expermmental physics The first prizeman in the lower VI, experimental physics, and in the sennor class of chemustry was W Lant Carpenter at the examination for the latter degree.

Session 1856-7.

Eaamsner's Report.

I looked at the papers of only two boys in the examinatoh of the chamistry classes under Mr Spencer, The happened to be the two boys who gained the prizes in the fifth class I scarcely need say that I found ther answer good.

Note.

The Rev. P Magnus, Zate Andrews Scholar of University College, and BA and B.So, London, whth honours in various aubjects, was one of the two equal prizemen.

Session 1857-8
 Exammer's Report

Mr. Cook exammed the VI class in natural philosophy upon the propagation of waves of aur, and musical vibre tions; and alao upon the phenomena of steam and conge lation, and latent heat, and upon the hygrometer
Mr Spencer gave the lower VI. class in natural philosophy s short examination (five questions) upon the hastor of the steam engine I saw some of the papars, and, as far as I wes able to judge, the boys seemed to understand the subject.
Mr. Spencer printed questions for the examination of $h_{1 s}$ three classes of chemistry I saw the work of some of the boys in the VI and V olasses, and, so far an I was able to judge, I thought it well done. Mr Spences found humself warronted in awarding two prizes in each class, and in men tioning whth prewe rather a large number of the boys un

Note

The first place in Mr. Cook's examination was gained by W Rutt, now CE ; the second place by Mr Magnus (now the Reve), efterwards University (Lond) erhibinan in Enghish; BA. in 1863, wnth first class in moral philo sophy, and LL B. in 1866, with first clage in propple legislation.
The second prizeman in the fifth class of chemistry was H C. Watson, afterwards scholar of Trinity College Cam bridge, and eighth wrangler in 1865 ; late Vice-principal of Elizabeth Collerge, Guernsey
The first prisemen in the fourth olass of chemestry was H G. Howse, now M B and B S., London, and exhibitioner, modaust and scholar of the University ; and demonstrator in anatomy at Guy's Hospital.

Session 1858-9.

Examaner's Report.

In applied mathernatics, the VI. class, under Mr. Cook pessed a hard examanation in statices, and also in the lements of dynamios and of hydrostatios
In erperimental natural philosophy, Mr Spencer gave a of the atmoosphere (barometer the mechanical properties
electricty. I did not see many of the papers, but those I saw were good.

Note.

The first prize in Mr Cook's VI class was oblaned' by Mr H. C Watson, the third by N E Hartog, afterward B A., London, with exhubition in Latin, echolarships in mathernatice and classics, and prizes in French, German, and snumal physiology, more recently seholar of Trmity College, Cambridge, and in 1869 semor wrengler

The second prizeman in Mr. Spencer's class, J E Carpenter, became scholar of University of London in logic and moral philosophy; and MA in 1866 mp the same branch, and "deserving of medal"

Session 1859-60.

Report of Councrl.

Preparatory to the second term of the current session the Counsul, on the application of the Headmaster, made ar rangments for an mproved and more extensive gystem of nustruction in chemustry. They have caused a room to be chemustry and Mr Geoppe Cores Forter acong practical Whemamson in the conduct of the Bulkbeck laboratory analytical chemistry in the collere has been engaced antilytical chemastry in the college, has been engaged by The applocints for permission to attend 1 have been numerous that all could not be admatted The nature and the mode of metruction, and especoally the extent of accom the mode of metruch on, and especialy the extent of accom modation, required that the elass should be of lumited size and Professor Key has made a selection of about 30pupuls according to therr engagements in other claspes, by their character for good conduct, and by the probability that from their provious acqumements in the aubject they would duly profit by the teaching

Headmaster's Report

To the practical class un chemistry none wers admitted who had not already recenved theoretic mstruction in th subject from Mr Spencer Of course, where such a class meets but wince a week, the progress must be comparstivel exertions may be regarded as a favourable acry exartuons may be regarded as a favourable augury, an although he humseif was obliged to resign the duhes at the end of the year, as 1 had been led to expect from the very had the good fortune to replace hume by a highly qualfied successor in Dr-Russell.

Communtcation from Professor G Carey Foster, B.A
 F.R S. (December 1870)

My class of practical chemastry in Unuversity College Sohool began, I belteve, in February 1859
The course of instruction was of this kund. At the begraning of each lesson, each parr of boys was supplied moth certann maternals and apparatus, and, as soon as the were all in their places, I described, as fully as I could, the expermbhat roult to expect, When that wid dout telln made that examine dipmg th' 'mone of had done this, maducts of the operationg ther hed rone that lesson, tha products of the operations they had gone through Th op the way in which cases, and especially so as to make the boya rew thpical cases, and especially so as to maks the boys see that th whole series of changes and could be recoved whiginal properties at the and Gradually I led them on to engy cases of qualitative analysus.
Throughout the course I purposely avolded the use any toxt-book, as I speusall praped that the knowledge boys got in the class should be, as far as possoble, the result of therr ovon observations and expermments.
I went abroad in the autumn of 1859 , so that I had the class only two terms
1 remember thati I was well satissied with the progreas made by several of the boys, and that Dr Russell who succeeded me, told me he found that they knew more than he expected they would have learned in the tume.

Communcation from Dr. Russell (Deqember 1870)
I had oharge of the class of practical chemustry in Un veraty College School three years The class consisted of

- More correctly 30 or 4
about 20 boys; it met for one hour twice a week. The boys were expected to have attended or be attending a course, aliso given in the school, of theoretical chemistry, and consequently to have some general knowledge of the scjence
In my class they began with the preparation of oxygen, and simple experiments allustrating ats properties, puttin ogether for themseives the apparatus necessary from oxygen they went on to hydrogen, and the other mos mportant non-metalic elements, expernmenting with them and their principal compounds. They were taught the x actions for the most common scids, and the analysis of solutions contamning several acids
few of the boys remained long enough, and wer sumcientily advanced to strady the properaes of the metals. and to analyse a solution contaming acids and bases, bu this was rather the exception than the rule.
The boys were interested in their work, and behaved well and my impression is tuat, considering the smail amount of tume devoted to the subject, the class was decidedly successful.

Session, 1859-60.
Emamener's'Report.
The examinstion of Mr Spencer's fifth class in 11atural philosophy wes short and easy, but in my judgment a good and sensible one, sufficient to test the knowledge of the boys, and not so, hard as to discourage them
The questions were upon apecafic gravitiea, the pressure of fluds, and the construction of the arr pump and the barometer. The upper boys did thoroughly well, and several others farly well

Note.

The prizeman of division A., H A Smoth, now of St. artholomew's, matriculated minth in honours
The first prizeman of division B, A W. Harding, ganned medical exhibition at University College in 1867, an craduated as B.A., Lond., wath en first class in moral phlosophy, in the same jear.

Seasion, 1862-3.
Headmaeter's Report
It was thought that to place in different hands the theoretical instruction and the practioal instruction on chomistry, was detimental to good progresm I have therefore, entrusted all our chemical olasses to MrCH Gill, es well as those of natural philosophy, treated experimentally.

Dr. Williamson bears testmitony that Mr. Gill's auccess m rmperting knowledge of the elementary principles of physics and chemistry is auch an he has seldom seen equalled and scarcely ever surpsssed; also that he in a aruly admirahle worker at experimental operations.

Session, 1863-4.
Headmaster's Report (Nov 7, 1863).
Mr. Gill attends from 2.15 to 4 twive a weok, Mondaya and Fridsys From 215 to 3 on Mondays he meets a double class of mome 50 bovs 3 and Mondays he meets a theoretical chemistry On Findays, one halfof this class mest et the eame tume for an examomation conducted in men at the aame time for an examamation, conducted in writang, and Mr Gill employs an hour or eo out of sohool time in the his theorencal class devote or wrill devote an hour on both Monday and Friday (from 3 to 4) to practical chemastry. I have sand will devote, because he finds it desirable at the I have sald woll devote, because he finds it desirable it the outset to give these boys an extra dose, so to say, of theorepractical chemistry.

On Tuesdays and Thuradays the classes of natural phlosophy meet, one from 2.15 to 4 , the other from 3 to 3 45. These tworchases, each consisting of some 25 boys, stand on the same level, and must not be consindered as a senior and jumos

In both classes, whether for chemustry or natural phulo. sophy, Mr. Guil takes for his gurdance the demands of the Unversits of London

It must not be forgotten that oxer and above Mr. Gill classes, there is the class of mathematical phyerce conduoted by Mr Spencer, which meets every one of our four after noons, from 1.30 to 2.25 .

Session 1864-5
Headmaster's evndence before Schools Inquary Commnssion, 3rd May, 1865.
2995. Whth regard to the physical ecrences, do you grve any instruction in them?-We do.
Will you state of what description ? - I will take chemis try We have two classes in chemustry 1 suppose we have as many as bo boys learming -chemastry, learnug ing it practically and they have a keboratory of the own, pad do the thing as ell es able them make the expermonts under the eve of ther teacher I have meason to believe that they become farly proficient We lmit the amount We do not let them ro printo We rather deal with. They do get a practically useful knowledge of chemustry.
chemstry.
3041 What do you consuder to be the practical value of the atridy of physical science for a general commercial education? -If a qubject luke botany is macladed, I ahould say it does but very little good moeed

Chemustry for 'mstance? Well, there, I think there as a practical advantage in the atudy of even'a little chemistry; it is so much connected with life All our manufactures at the present day are becorming scientific manufactures. 3053 At what age do your boys begin the study of physical science?-Our rule is this, that they shall not commence that atudy till they are thoroughly acquantrd with
fractions, vulgar and decmal, and that bring them up to the age of 13 or 14 .

Do they begin the study of chemastry so early as that? -Sometimes. The young man I spoke of, Nums Hartog, did

Apart from the sunple utility of scrence, what place da you assign to science as an element of knowledge for educational traiming?-I think that chemetry is really a very valuable thing for traming the reasoning powers at well as the powers of observation, but the reasorumg powers particularly As to botany, as general
look upon to as a very large ngly spellung book

Session, 1864-5.
Report of Councal'
Of the mathematical and physical depastments, the reports are quite favourable, especially the clam of payencr conducted by Mr Gill, which appears to be allese popular and effectave.

Seasion, 1865-6.

Headmaster's Report.
The charge of the highest class in natural philosophy, Mi2, that of appleed mathematica, has been entrusted to Mr dent of Trinty College, Dublin, and the author of some
origxal papers on appled mathematics, especially one on the interesting subject of the secondary sainbow formed by, reflection upon water

Report of French Commassioners.

Ecole (Secondare) annexé au Collége de l'Unversité.
[Visted in Lent Term, 1866]

Ce qui nous a le plus surpris et charmes, dans notre visite à l'école du Collége de l'Unverarité, o'est l'enseugnement de l'économre politique, qui s'y donnait salors Nous nous défions de cetite promesse du prospectus; nous pensions que l'aceès de cette sorence, ouvert a des enfants de 14 ou 15 ans, était un peu prémeturé. Une leçon, fatte en notre presence par M Hodgson,* a dissipe nos preventions, et nous a montre que, svec du tact uni a beaucoup de savor et d'esprit, un professeur peut zatier tras andent aux eléments de la serence économique les enfants même de cet Age.

Trente-six elèves éartent réruıs dans un amphithếatre. Le professour fausait non pas une leçon suivie, mase une piquante conversation, qu'il dingeait aves habilite et souteneit avec une humour quan adrait pu appeler l'esprit du bon seas. Des exemplea familors, 1 la fors et delassajent l'attention questross eurquelles les éleves s'empressasent de répondre II amenait de petites controverses qu'll farsart discutar ontradictorement, et dont il metrast aux voix la solntion. Cous ces jeunes vissges, tour-i-tour sérieux et sournanta, ftaient sous lo charme de la parole et obérsaraent à toutes ies mpulsions. Aus sortrr dela leçon, nous avons consenllé au principal un nouvesu genre de pumition pour les éleves dont ll serant mécontent, c'est de les priver d'une séance du cours d'éonompe politique.

W B Hodgson, LLD.D, member of the council of the college, gave


```
Communcation from MF. C. F. Gil, F.CS - (December 1870.)
```

During the five years in which I had charge of the classes of expermental actence, 186:3-4 to 1867-8 molusive, instruction wre grven in the following mbjecta :-

1. Elencentary Chemistry, tanght by means of lectures moth full expermental demonstrations, monthly examunations, in which many numencal questions always found place,
There were two classes for thus subject, each meeting twice a week. In the first, any boy wishing to commence the subject was recenved, provided he had a competent knowledge of anthmetac; while to the second only those who had previously acyured a firin ground-work of chemcal facts, enther in the achool itself or elsembere, were admitted.

Most of the boys in the second or semor class, with a few of those from the jumor ciass, siso attended a class of prachical chemstry, which met once a week for two hours. In this most valuable class, the boys themselves undividually performed the ampler expenments of demonstration, and acgurred an insight into the method pursued in solving questions by mesns of experiment,
2. Experimental Phystes, taught in the sarae wiy as chemastry, and with carcful exclusion of mathematical formals The subjects taken were :-
Flementary dynamies and statics, includiug hydrostatics and pneamatics; so treated as to lead the boys to construct the formulae relating to the simpler cases for themselved from the results of experiments exhibited or described.
Elements of heat, includugg the method for determining the constants and calculstions relating to specifie heat, \&ce. Elements of light and radiant heat, socluding nature of hight, sumple laws governing its transmassion, formation of mages in plane and carved mirrors, refraction of light, undex of refraction, formation of mages' by lenses, compound nature of inght, nature of colour, \&c
Elements of sound, and, when thme could be found, some portions of electricity and magnetism
These subjects were spread over two years, each boy followng them in the above order, and recenving two lessons of three quarters of an hour weekly.
My chomes of subjects wras governed by the requrements of the University of London.
The four pernods of three quarters of an hour each devoted to lectures, the like time given to experimental physics, and the two hours for practical chemustry, smount to eyght honrs per wreek employed in scrence teaching
The effect of the study of sctence in each year or even in any number of years, admits of no exach measmement: it nuast be wought in the capabjlities of the boys so prepared. AH that I can add on this pount is that many boys calling, and that no meonanderable number have achieved Unuveranty dzsanction.

APPENDIX TO PART I.

Containang Statistucal Tables, aecompasued by nernerks and explasations.

Table No. 1.

1. Apphead Mathenatics.

The class of apphed matherastics dates from 1835-6, and was for three years under Mr. W. Wright, B.A. former scholar of Tinnty Colege, Cambridge, afterwards
LL.D., and beadmaster of the Colchester Grammar Schooi. and headmaster of the Colchester Grammar Mr. Wrght was followed by the Rev. Wm. Cook, M.A., of Thnity College, Cambridge, who had charge of the class for 22 years.
From April 1860 to the end of the seassion, the class wase condacted by $D_{5 .}$ T Archer Hirst (afterwards F R.S., end professor succeasively of mathemstical physics, and of pure mathematice in University College), who comtinued in the school for the four following sessions as pnnerpal master mi pure mathematics.
From 1860-1 to 1864-5, meluave, the tesching of spphed mathematies was in the hands of Mr J A. Spencer, B.A. London, and Mathematacal Universtiy Exhibitomer.

- Mr. J Welker, M.A., of Trinity College, Dublin, mucceeded Mr Spencer in semion 1865-6.

The following text-books have been nted is succes-
son:-
(I) Whewell's "Mechanceal Euchd."
(2) Snowhall's "Mechances "
(3) (1850-1 to 1854-5) Newth's "Elements of Me-(1850-1 to 1854-5) Newth"s
chanics and Hydrostatics,"
(4.) (1865-6 to $1864-5$) Newth's "Mechamica."
(5) (1862-3 to 1866-7) Galbrath's "Optacs"
($1865-6, \quad 1866-7)$ Gallbrath and Haughton's "Mechanics" and "Hydrostatices."
The book now sanctioned, though the instruction is pritscipelly oral, is:
(7.) Newth's "First Book of Nataral Phloaophy,"

2. Bxpermiental Phymos.

It is not clear whether, under Mr. Wright, there was anr expermental teaching in the suxth class of natural philosophy, or not
the only classes wheh were undonbtedly experimental, np to the close of $1838-9$, consuated tolely of boys who dad not learn Greek.

In the following session, Mr. Cook's becond year, natural philosopny ceased to be a mere alternative for Greek, and becama an integral, though not a compulsory, part of tho currenilum.
For two

For two or three gessano st the least, Mr Cook gave one thard only of hus sixth class's trime to applied mathematios (V2z ${ }_{c}$ 1 $1 \frac{1}{2}$ hours per wreek), whist two-thurds were devoted to expernmental teaching. Duning that time, aithough the mathematical sind erpermmental divisions of
the class consisted of the same or very nearly the same the class consusted of the same or very nearly the same for each branch separately prizes and "honourable mentrons."
As the boys who, in mbsequent years, cams up to the suxth class, had already gone through an expermental course, the proportion of time given by Mr. Cook to expencuental teaching in that class was very much reduced. In 1855-6 only one lesson per wrek was so bestowed Accordingly, in moat years, the two abjects wers no longer separated in Mr. Cook's examinitzons, and praee and " mentuons" canie to be swarded on the aggregate of marka obtained in both branches combined. Mr Cook Wras followed un this practice until $1863-4$ by Mr. Spencer. By the side of the surth clase, in must years, ran a lower sirth, consisting of boys of the same etanding, but of mferior attanmenta. This class was conducted for many years by Mr. Spencer, and was purely erpernmental.
The fifth and fourth clasees of natural philosophy were likewnes under the charge of Mr Cook and Mr. Spencer. Between the Years 18.38 and 1844, Mr. J H. Webstar, B.A. (now M.D.) of Jerus Colleze, Cambndge, and the Rev. F W. Ein, M A,, chaplam in Bengal), wnccessively assisted in the tetching,
The following is the hat of text-bookn arranged in chronological order:-
(1.) The Useful Knowledge Nastural Philosophy" $\}$ used contemporaneously.
(2) Webster's "Elements of Plyynes"
(3.) Carpenter's "Natural Philosophy for Begur ners" ${ }^{\text {narpenter's } " M e c h a n i c a l ~}$
(4.) Carpenter's "Mechanical
ased contemporaneounly.
(5) (1847-8 to 1851-2) Peschel's "Physucs," Vol. I.
(6.) (1852-3 to 1855-6) Lardner's " Firot Courve of Natural Phulosophy " (Mechamca, Hydrostatich, Sound, Optass).
(7.) (1853-4) Lardner's "Second Course" (Electnctry, Heat, Magnetasm).
(8) 1856-7) Lardper'" "Mechances",
(9) 1857-8) Lardner" "Electncoty.
(11.) (1857-8 to 1862-3) Lardner's "Naturil Philosophy for Schoola."
The science classes were remodelled in 1863-4, and were then placed under the charge of Mr. C. Haughton Gill, FC.S, who has surwe publiahed a teri-book entatied "Chemstry for Schoohs."
On Mr. Gill's resigustion, at the clowe of 1867-8, the senior cless of natural phinosophy whes assucned to Mr. Wiaker, who slready gave matruction in apphed matheminct, and the jumor clan (chemeal phyuca) to Mr. T.

A．Orme，F．C S．，whose recently published＂Introduction to the Smence of Heat＂is in use as text－book．

3．Astronomy．

－The elass of astronomy was formed in 1866－7，on Mr． Walker＇s suggestion，and since the begraning of the for－ lowing session has been conducted by hum．During the firat year it was taken provisionally by other masters．

4．Chemistry．
The first matriculation examination of the London Uni－ The fret matrich chemistry bas bean for the first One versity，in whoch chemistry has been from the first one o probably with a view to direct preparation for furture ex－ probably with a view to direct preparation for future ex－ aminations，a class of chemistry was formed in University Cook＇s care Dr．Reid＇s＂Chemistry＂was used as text－ book，and experments were performed with apparatus fur－ nished by the college．
The subject was，howevar，discontinued until 1847－8， when a class was formed under Mr．Spencor＇s charge．In the following year Fownes＂＂Chemistry＂（2nd edition） was introduced as text－book，and continued in uss anti the end of 1862－3．

The earhest date at which hoys began to matruculate
from the school itself，whthout passing into the college，was July 1847，
The theoretical instruction in chemistry remained in Mr． Spencer＇s hands untal the general re－construction of the smence classes in 1863－4．From that date the theoretical classes and the practical class have been under the sampe master，for the first five yeara nuder Mr Gill，snd for the last two years under Mr Orme，and the teashung has been mamly oral．In individual cases，the text－books of Pro
feasor Wilhamson or Professor Roscos fessor Wilhamson or Professor hoscos were sometimes recommended，and，sunce the date of their respective pab－Barfis＂Introductan to Screntific Chemistry＂
 general use，the former for the jumor，and the latter for the general use，
senior class

5．Practreal Chemistry．

A class of practical chemustry was formed for the first time in Lent Term，1859，under Mr G．Carey Foster， B A．Lond，now F．R．S，and Profeesor of Physics in University College．
He was succeeded in the followng sesaion by Dr Chemstry at St．Bartholomew＇s，who taught the class for three years
Mr．Gill had the care of the class durng the anc follow－ ing seasions，and for the last two seasions it has been in the hands of Mr，Orme．

TABLE No． 1.

Nataral Philosophy Classes．	$\underset{\substack{\text { No. of } \\ \text { Cliagsee or } \\ \text { Dinsong } \\ \text { Claseses. }}}{ }$	Apphed Mathematica． Class VI		Experimental Physics． Class VI．		Astronomy． Class $\overline{\mathrm{V}}$ ．		Experimental Phyacs． Class．		Expermental Physics， Class IV．	
Sesson．		A．	E．	A．	B．	A．	B．	A．	8．	A．	B．
1882		－									
1838－8		－	－		\cdots		－		－		
189394		二	－	二	－	－	ב	二	二	$\stackrel{-}{\square}$	
1835－6	2	－	8	－	－	－	－		8		－
1886－7	2	二	4	＝	二	二	二		4		－
1837－8	8	－	7 4	－	二	二	二		5 8		8
1888－40		－	11	－	5		－	－	9		8
1840－1	4	二	4	－	5	－	－	－	4		5
1841－8	8	－	8 8	－	5	二	二		$5+2$		8
1849－4	5	－	7	－	7		－		$4+12+8$		
1844－5	4	－	$\stackrel{3}{3}$	－	8	－	－	－	$7+8$		
1848－6	4	－	8	－	4	－	二		$18+4$		
1846－7．	4	－	5	－	5		－		3＋11		
1848－9	5	－	3	－	8	－	－	－	$9+8+5$		－
1849－50	5	－	4	－					$5+3$		3
1850－1	8	－	4	－		－	－		${ }^{3+6}$		－
1851．9	${ }_{8}^{8}$	－	9	－	$4+10$ $9+10$	－	－	－	$7+5$ $7+5$		－
1853－4	5	－	6	－	64^{9}	－	－		$8+5$		
1854－5	5	－	2	－	$2+18$	－	－		$3+7$		
1855－6	8	－	5	－	5＋11	二	＝	－	${ }_{8}^{2+11}$	二	9
18567	${ }_{6}$	二	7	－	$7+11$	－	二		9		10
1858－9	8	－	9	－	$9+12$	－	－		12	－	5
1859－60	6	－	9	－	$9+9$	二	－		11	－	${ }_{5}^{6}$
1860－1	4	二	7	二	7	二	－	二	${ }_{5+9}^{6}$	－	5
1869－8	4	－	6		6		－		$9+5$	－	
1868－4	8	二	5	－	7	二	二	i＋1		二	
1884－8	s	－	5	二	10	二	二	－	10	－	
$1866-7$	4	10	${ }^{5}$	17	9	16	4	51	11	－	－
${ }_{1868 \text {－9 }}^{1887-8}$	8	${ }^{9}+10$	${ }_{6}^{6}$	24 18	7	15 9	8	${ }_{28}^{46}$	${ }_{8}^{8}$	二	二
1889－70－	4	10	4	32	10	16	8	20	4	二	$=$

Table No. I - eontrmed

The A. columil gives the number of boys un each class at the end of the sestrion, at yhuch tume the procipal examination take place
The \mathbf{B} column' givea the number of hoys meach clase who in each year obtarned prize or honourable mentoun on the aggregate resalts of the three termunal examunations.
Gonersily speakng, it is necessary to obtari at least half the maximmo of marhs, in order to be entitled to a "mention." The spaces are left blank where there is no exact nformation as to numbers.

TABLE No. II.
Showng the Numbiar of Formar Pupils of Untversity Colmag School, to whom phzef have heen awarded in the Natural Philosophy classes, and gold or alver medals in the Chemastry classes, of Unveraty avarded in the Natural Philoso
College, in each year mince 1836

Table No. II.-continued

The results of the teaching in Unuveraity College School are naturally best seen in the success of ith pupils in the college to whuch $1 t$ is stimeched, and for whiah, in zocordance ary he intention of its foundera, pacts as a nursery
The above table has, therefore, been drawn up for the pur-
pose of showng (mith approxmate accuracy) the number of
prizes obtaned by former pupll of the achool in the sciencs
prizes obtanned by former pupila of the sohool in the sclencs
classes of Unversty College
Of certricates, as dustungushed from prizes, correspondOf certificates, as distangushed from prizes, correspond-
ing ma principle to the "honourable mentions" or "coming un principle to the "honourable mentions" or "com-
mendations" of the school prize lists, no account has been mendations" of the school prize lists, no account has been
taken.

TABLE No. III.

The following table oontains, in its first column, the name The proportion during the past seven years has been of every boy who, within the seven years, $1863-4,1869-70$, three classes and four prizes to seven boys
oblained a prize in any one of the four semior soience classes, - The curnculum of the upper school (as distinguished viz., applied mathematics (A M), semor expermental from the junor school or classes for beginners) extends natural phalosophy (\mathbf{E} P), senior theoretical chemstry (C), or practical chemistry (P.C.).

The second column gives the aessibn, and the thurd column the class or classes in which the said prize or prizes were obtaned.

The fourth column specifies the varnous additional subjects in whoh' pnzes ("commendations" or "chonourable mentions" not being taken into account) were won by the name boy in the same seseno
The fifth column gives the sum total of the prizes obtanned

The enxth column shows the College and Unversity distinotions subsequentif, ganned, includung the London matriculation " honours,' which, in some mintances, precoded by a fow weeks the winning of the school proze.
ro explain the significance of the trable, it must be subjects taught is unusually great; (2) the boys are classed separately and indavdually for each aubject, and (3) prizes sepre given yearly in each alass

1	8		4	6	6
Name,	Date of Sclenoe Priba	Bubject of Sclence Prites.	Other Prives obtadnad in the seme Session.		College and Uuftersity honoura [SIf intoulation = Matrioulation in the Univeraity of Iondon.]
Athinson, R. W	1865-6	P. C. -	- - - -	1	Matrioulated 1867 from school, prizes in Universaty College, Royal Entrance exhibition (1868), and Royal Scholarshap (1870) in Royal School of Mines.
Ball, W W. R	1866-7	A. M. \quad -	Grecian bistory, mathematice, chemucal physics	4	Matriculated 1867 from schoel, Mathematreal Entrance exhbibition in University College (1867), and Mathematical Scholarbhip (1869), B.A. (1869) wth first class in logic, Eintrance Scholarship (1869) at Trimty College, Cam bradge
Bishop, W B.	1869-70	P C.	Roman history -	9	(Still ma school)
Findgowater, B. J. -	1864-8	P. C.	Book-keeping, perspectave	3	(In buamess.)
Bryden, J. -	1867-8	A. M. - -	Greozan history, mathemetiot	9	Matricalated 1869 from University College.
Cumberbatoh, C W.	1869-4	A. M. -	Greek, Englush poem - -	8	Matriculated 1868 (private study).
Dale, H F.	1865-6	A.MAER.	Englush essay, socul scrence, ahemistry, chess.	6	(In Cansda.)
Emanuel, Is J.	1866-7	A. M, Bi P and C.	Frenah, German, English, Engish exsay, mathematics, natural phalresophy (notes).	9	Prizes m University College, matriculited 1868, 22ind in ho wours.
- - ...		--n- - - -			O

Table No. III-conninued.

1	2	8	+	b	6
Neme.	$\begin{aligned} & \text { Dabe of } \\ & \text { Acienge } \\ & \text { Prape. } \end{aligned}$	Stujoct or Solenoe	Other Prisee obtainod in the same		of fonidon.]
Frankland, F W	1867-8	E. P.	Latn, Grocian, hustory, mathematres	47	Mathematioal Entrance exhibition in Unio veraty College 1869, matrienlated 1870 cecond in honours with University exhibtion (matriculinted at cariseth poonsible aga).
Ditto	1868-9	A. M. and C.	Greek, Latn, Grecian hustory, Zoman hustory, matharriatice	7	
Carick, ${ }^{\text {c }}$.	1867-8	P. C.	Chemustry	2	Matricalated 1869 (January) from whool
Goodall, F T.	1862-4	A. M,	Hrench, French essay, Inglah, mathematics, matural philosophy, nataral philosophy (notes)s anthmetic.	8	Gold and silpor modals, and echolarshup in Royal Academy, 1869.
Coslett, M W. Ditto	1863-4		Roman history, geography, methematics. Natural phulosophry (notes)	${ }_{2}^{4}$ $\}$	(In butiness.)
Greenfield, J H.	1869-70	E. P.		1	Matrsculated 1870 from whool, $65 \mathrm{th}_{\text {in }}$ in honours.
Euggs, A. H.	1864-5	A. M	But for absence from chief examination, through iliness, would 2most probabiy havo been first in neveral classem.		Matriculated 1867 from Univeraity College (at earlient possible age), first in honours with University exhibtinn, clangical and mathematical acholamhips in Univernty College, 1887, first entrance scholaryhyp at Balisol College, Ovford, 1862, Arst B.A. London 1869, with University meholarekip in Latin.
Jonas, J J.	1867-8	2. P.	Erglish -	2	Matriculated 1869 ftom Univeraty Col-
J́ones, D	1867~8	C.	Engluah, Roman lustory, astro-	4	Matroulated 1.869 from achool, 18 th in honoute and "worthy of a prize"
Keed, E. A.	1869-70	A. M., C. and P. C.	Latan, Engish history - -	3	Matrienlated 1870 from school, ith in honours and "worthy of a prive."
Kemnck, G. H.	1665-8	P. C.	Chemustry	2	Matriculated 1867.
Leverson, B. J.	1869-70	A. M.	Greek, French, reading, mathematices, matriculation mathematice, antibmetic.	7	Entrance mathematical exhifilion in Untvaraty College 1870. [Matriculiated Jan. 1871 from school, first in honours whih Unveraty Kixhbution]
Leverson, J J.	1868-9	A. M	German, Enghash hutory	8	Matrienlated 1869 from sohool, third in honourb with Unverety exhibition.
Lodarges, C.	18	C. and P C.	Mathematucs, natural plulobophy	4	(Ha busmees.)
Lench, E. M.	\&867-8	A. M.	Greek, Latun, mathematics	4	Matriculated 1868 from achool, 10th in honourth, entrance classical exhibition io Univernaty Collage 1868, and acholajship 1870.
Mannder, $\mathbf{E} \mathbf{W}$	1865-6	E \mathbf{P}	Latan, French Enghash hustory,	6	Matricilated 1867 flom echool
Marrhead, A.	1864-5	A. M. and C	$\underset{\substack{\text { Mathenasics, } \\ \text { arithmetic. }}}{\text { chemistry (notes), }}$	5	Prizea in University College 1867, B Sc. London 1869, with firit clase in chemistry.
Osler, S F.	1865-6	E P	Chemustry	2	First B Sc. London 1869.
Pyke, In E.	1868-9	P. C.	Chemistry	2	Matriculated 1869 from achool, 10th it honours, and "worthy of a prize."
Pyke, M. J	1869-70	E. P.	Mathemazas	2	Matriculated 1868 from nchool.
Ruckards, F	1863-4	A. M.	Greek, Tatin. mathematices, bookkeeping.	5	Prize in Unveraty College 1866, matriculated 1868
Robson, W. E.	1865-6	A. M. and C.	Latm, Enghgh hustory, mathemstice, chess.	6	Matriculated 1868 from mahool, first in honourh with Universty exhtbition,
Matt, A	1868-4	C. -	German -	2	
Scholl, B F	1867-8	A. M	Geography, mathematics, draw-	5	
Scmell, \mathbf{E} J	1865-6	A M.	Letom, mathematicy -	8	Matriculated Jamuary 1867 from school, 11 th in honoura, entrance exhibitiop for combined clamence, mathematice, and physuet in Univernty College 1866 (October), firm 3 A. Lomdon 1868 with first class in Englith, appointement in Indua Civil Servise, open eompetition, 1870
Symen, R. 5	1866-7	EP and P.C.	Chemistry	3	Matriculated 1889 from school, 89 th in honours.
Taylor, A.	1868-4	P. C.	- - -	1	
Thosupsion, J. W.	1888-9	E.P.	French, impromppta speakang, chemistry.	4	Matriealasted 1870 froan achool, A5th in banours.
Voelcker, G, H.	-70	c.	- - -	1	Matrealated 1870 frow sehool.
WJat, P. B.	1869-70	A. M	Social science, unathematrics, arthmetce, drawnag, perspective.	5	

REPORT.-PaRt IM.
Account of the present arrangements for Scrence teaching in Unverrsty College School.
Michaelmas Term, 1870.

Conditrone of Admuscon, ifc
Boys who have reached the fifth class of arthmetic (below which standard they are disqualified) are required to onter on the first year's course of science, unless their parente object
The printed programme of the work of the anthmetic clanses whll show what degree of arthmetical proficuency is imphed*
A few boys, though quallied according to the anthmetnal standard, are kept back for a year or so, in consequence of being considered too young.
A few parents object, erther on the ground of general indifference to sorence teaching, or because they thunk it unsurtable for their own sons, but the number of objection very small,
Boys who are proved, by ther want of auccess at the in the science classes, and to bese to be taking no interest removed from them as ano ase there hope of their contmuing to sttend with profit.
In the present session, 1870-1, the backward boys of the olasses of chermatry and chemical physice will be formed, at the commencement of the second term, into a ${ }^{+}$separate class for "object" lessons (meeting twince a week only, It houra), so as to leave the more advanced boys whout impedument to their nuore rapid progress.

The complete science course comprises normally thre jeare.

Fust Year.

Three hours per week.)
Junior class of chemistry, two lessons.
Class of chemical physics, two lessons
Boys who are preparing for matriculation in the Univaranty of London at the end of the current session, but who are not sufficiently advanced for the semor class of ohemstry, are allowed exceptionally to attend the class of practical ohemustry in their first year These boys are neobesanly not under 15 years of age.

Second Year.
(Six hours per week)
Class of experimental natural philosophy, two lectures and two erercses lessons. Thme, three hours.
Sentor class of chemastry, two lessons per weak in theoretical chemistry, and one leason of an hour and a hal in prectical chemstry. Time, three hours.

Third Year.
(Sux hours per week.)
Class of apphed mathematios, four lessons. Time, thres hours

Semior class of theoretncal and praoncel chemistry. Time, thrse hours

The second and third years' courses, though kept distinct where age permits, are in practice sometimes compressed into one year. In this case the time devoted to sclence lessons is nine hourt per week.
The olass of astronomy it an "objet de luxe" attachen to the second year's course, but not forming an essentis part of it.
The clazs of applied mathematics numbers at the present tuma (December 1870) 11 boya: the enior theoretical chemical elasa, 14 boys, the practrical chemstry olass, the samo number, plus 3 boys out of the junior theoretical olass, the astronomy class, 11 boys; and the class of chemical phyaics and chomistry, 78 boys, to be reduced ufter Chmistruss to about 40.

- Work of the IV clace of Anthmotio.

[^13]lat term-Decimels and oo IV clacs of Antament

Communucation from J. J Walker, MA (Dec. 1370).
On Mr. Gill's reagnation of his connexion with University College School at the end of the session, 1867-8 the instruction of the expermential class in the elements o mechameal science, in the outhes of the theories of sound and lyht, and in the elements of plane optics was entrusted to me, specially with the view of makung this class, which would normally be the second year's in the complete science course of University College School, a preparation for the matriculation examination of London University in natural philosophy, and for the class of applsed mathematics forming the thurd year's work in our In the course
In the current session, 1870-1, two lectures in each week are given of an exciusively expenmental character, for the properties of the simple machine and instrumenta the properte twor "exercise lessons" are given in an ardi nary schoolroom, sway from apparatus and madels which the boys are prectised in eser deductons from the fundamental principles established in the experimental lectures, and in the solution of such questions as usually form a part of an examination in the elements of natural philosophy.

The extent to which the subjects taught are courred, and the order in which they are taken up, will be beat gathered from the printed programme of the course.*
For the work of the class of apphed mathematics, I refer also to the printed programme \dagger
At the commencement of aesmor 1866-7, a class of elementary astronomy was formed, of which I have had charge. It has been composed each session of those boys who had previously made some progress in the elements of geometry, and wha could find twme for the subject durng theur schood course in consequence of not being, as a general rule, (subject to exceptions), intended for a undversity career. Two lectures weekly are given, a part of each being devoted to descriptive astronomy and star lessons, the constellations most easily observed in the early mpht at the particular season of the year being sketched, and drections given by whuch the boys may be enabled to recognze them in a dear sky from the gardens or upper is deroted to is devoted to the clemonts of apherical ashonomy with the meridian (so as to obvate any need for the eumployment of trigonometry), to the erplanation of sideral apperent of trigonometry), to the explanation of sidereal, apparent, and mean solar fmae, and the seasons; to the ourimes o the eltpuc movements of the moon and planets, and to the theory and approxumate calculation of echpses and partioularly in connexion opparent diameter" are explained partioularly in connexion whth the sun and moon, sad the solar syatem from the values of these angles supplied by observers. I term the instruotion given "lectures," because no text-book 18 used sketches and diagrams are made on the black-board and the teachng is oral, but the boya take thear notes, and their attention and comprehension are tested by frequent questions and paper exercises. Generally, in science teachang, I make it a practice not to state anything which can be drawn from the boys themselves by questions more or lese "leading "according to the nature of the deduction sought, or by appeal to ther own observation and expenience; and to interweave

with the lessons an outhine of the history of the progreas of science, fixing the epocha by reference to the leading political or social events with which they have been contemporaneons, os far as likely to be known to the class. At the examination of the natural philosophy alses towands the end of the session, selected boys from tha olsasa are required to repeat cartann expermanente and demonstrations With the apparatus with then own hands.

Comnmintanson from T. A Orme, \boldsymbol{F} C.S.-(Dec. 1870.)
Since the begnnmig of cassion 1868-9, ahemistry and cherncal physics have been taright by me. There have been three classes of chemistry, a lower, san upper, and a prachical claw, ah mose sttonton has been pard are the anjecta to the chemusiry on the the leading facts of electroty (chiefly voltaic electricity) and of magetram.
The object cought, whilat giving instructnon in these subjecta, has been sather to teach boys to study mementafically than to mppart to them any purely technceal informas: inn, whuch would only in a few rare cases be of service nom order to attain thus end -
The only faets which the boys have been taught are the connected facts of the erience to which they relate. No meference has been made to any mtarting but as yet insure ficiently explaited phenomenon, unless it tends to throw doubt upon a generally recerved hypothesis Very little tme has been expended on the study of the meraly phyelcal propertues of bodues; and the boys have been strongly dascouraged from committing wach facts to mernory in the jumor classes, the bors hava been taught to reason from stated phenomena rather than to be perfectiy socurate in their memory of them, in the semor classes, they themselves bring about these phenomens in a practical closs, and describe them folly in the theorstical ones.
Very special attention has been pard to popular fallames, incorrect expressions, faulty definitions, and baseless theorres, such as the following -that marble is always colder than wood, that there is a difference botween a combratible and a supporter of combuston, that mercury 18 repelled by glass, that certann compounds can be elassified chemically under the heads of acid, base, and salt, that there are two electme fluids, and such hike.
Text-books have been employed, except in the clasas of prictical chemistry ; but merely as books of reference, and the order adopted in them has not been adhered to in the lectures. The boys have leasnt chiefly from notes taken durng the lecture and from a sylabus of the lectures prited specually for theur use.
All the classes have been axamuned about every five weeks; and in auch a way that, while pure and armple "cramming" is rendered almost impossible, a steadily studious boy, who strives to understand every point when it 18 discussed, and who looks back to past work wher preent work rendars that ado the bughest place oppor plany
 The class receives no nours whatever pions intervale the cura berg as above eteted abort five weeks. The vang bre tor the ore questionnutes, sind the ensprer to one question 18 requured to be Netten dom before the next is given out No marks are ritien for any answer whah is not strictly to the point, perfectily socurate, and sufficientiy short; marks are doducted for any saperfluous words; any apparatus that is mentioned, however simple, has to be sketched by the junior boys, sketched and described by those in the semior classes. After the examination, and on the same day, the proper answers are given to the class, and, at the next meetrig, such vague, illogical, or otherwise faulty enswers as masy have been recerved are pointed out, and the mastakes corrected. Though but a small per-centage of boys can be unduced to work hard at any particular anbject, a very large per-centage of them can be taught therr own ignorance, so that ally shambling answers dimunsh in number as the session procseds At the final Summer Term Erammation, of which notice must be given beforehand, the classes are eramuned by printed papers, but the questions are roquired to be answered in the same order as that m which hey are given, avery boy having by this hme learnt pretty well the exact extent of his own knowiedge. No marks whatever are given for any answer to a question which is not answered in its proper place.
14. Merchant Tamors' School.

10, Leinster Gardens, Hyde Park, W.
recervad no answer from me. lit arrived just as Merohant Taylore' School was breakmg up for the aummer holiday and was malard, and so asoaped my memory.
I have sunce resigned the Goad Mastership, bat I mm able to reply to your questions.

There is no provinom, at prement, for what is tormed scientifio mstruction at Merchant Taylore', though the mathernatical reading 18 very high, and the univeriity das
 It is imposaible, from want of room, and from other curcumstances, to introduce new subjects solong an the schoo rounas in its present conkned locality, But 1 may tall ous rion drawn up by me onth a mew to the teariangement of the cown up beol mon Charterhouse the mpertance of sever bic ingtroc to overlooked of cannut yew Head Master to the adoption of thet apheng but sur littl doubt thet the edumenol beris of the soh nll be onlared, not meraly in the way of scientif tion, but on other wh hon, but in other ways.

> I am, dear sir,
> Yours farthfully,
> J A. Heaser, D C.L ,
> Late Hesd Master of Merchant
> Taylora' School

To the Secretary of the Commission on Scientrif Instruction.

6. Eton College

Eton College, Windsor,

Sir, Feby 2, 1871 rangement of classes recerving screntific instruction at Eton, and I beg to add the followng explanation
The upper boys at Eton (ie, the sixth and fifth forms, containing together about 450 boys), are divided into thrte roups, A, B, and C Group A. contans the firat 100 boys in the school, divided into various classes for classics, mathematics, \&cc. Groups B and C comprise the rest of the fifth form, consisting of (about) 350 boya in all
All boys in groups B and C have two lessons a week in come scientric subject, and have questions to anewer or notes or short essays to write out of achool
An average boy gets into the fifth form (s.en, the lower part of the C division), at from 14 to 16 . It take hir two years and a half or three yeara to pasa through the C and B divisions into the firet 100 Dunig this time he is obluged to learn some branch of acmence. When he reaches the first 100 (18 , the A. division), he has a chorce of subjecte, some branch of science being amongst them. Boys began generally whth phyminal geography, and afterw wards have mechanies, hydrostatict, and astronomy, but We have to alter the order of subjects, occasionaly, to adjust the classes In three yers, and in, our new laboratory oped, In Malan lis we got our new laboratory opened, and Mr. Madan, the Lecturer bonemang class of the boys, has a class of sbout 35 (not olunteers) wn chemistry from the B, division, and the same volunteers) in chemsiary from the C. division. He is also sbout to start a voluntary cisas in chemustry for younger boys. Some of the upper hors come voluntanly for extra work to the laboratory in playhoura The chemustry classes have, i think, been very succensful indeed
Boys in the ordinary, course are compelled to begno chemistry before they get through the B. division The best of these generaily volunteer to go on with it alterFards The succest of the chemistryy teachug makes. for hotany and geology. I belseve we should get very good resulte from it.

I am, sir, your opedtent servant,
J. D. Honsby
The large table headed A. division, Lent School Time, 1871, ahow: the arrangement of the voinntary clasoes in the first 100 Every boy mutt take up two mabjects, eg., French and German, or French and Chemsstry, or one of the lextras classical books there mentroned, or Italian, or
Modern History, but he selects for humelf which two Modern History, but
subjects he shall take.
The other classes given in tablea B. and C. are in no sense voluntary. The subjects and homs wre premeribed.
I send a few epecimen papers of questions, euch as are given weekly, or set in the examumation af the end of the school trme.
A. Division-Lient Schoox-Tine, 1871.

$\begin{aligned} & \text { Prayo. } \\ & \text { Mr. Johrione } \end{aligned}$	Pre	ack.	Gm		Italint	Aschyl AgAn Head Master	Cusmistir.	Mod. History. Mr. Browning
Thurgidsy and Baturday, 9.45. Radeluffe ma, 盂, Be Macanlay maw, K 8 Wintle Balfous Hobhonse Panl, K, 8. Joynes, K. B Radcliffe m K R Donkin man K. B. Heafhcote Dumbon Armitatead ms, K, B. Corrie, $\mathbf{z} .8$. Belwyn, E•S. Welldon, K. ©. Tarvers \boldsymbol{H} S. Milman, K. 5 . Bryams, K. S. Ritohio, K, $\mathrm{A}_{\mathbf{1}}$ Mundy, K. S. Callin, E. © Browing, K, B. Grainger, K. 8.	Tuenday, 9.45 , Finday, 8. Mr. T Tarver. Carter, \mathbf{Z}. $\overline{\mathbf{8}}$. Eeal Courthope ma. Longman Hayes Fdmonstone Day Bonaor max- Rudley ma. Middleton ina. - Mr Ronbiot. Prideanz-Brane Ieahy Brown Greenwood ma. Harter Burton Johneron Myers zua.			Monday and Weannewday, 9.45 Pulman, $\overline{\mathbf{K} . \mathrm{S}}$ Carter, K. : Douton, K. S Donkin ma K. S Pryor max Hall - Murray mata Coarthope nia Collm, K. S. : Leed Browning, 交, Harter Boasor man Bode, K. \boldsymbol{S} \qquad Monday and Wednés day, \qquad Arlewnght Harcourt Mondy, K S Mr. Sidney Walkusin Angon. Buxton Johnson		Tuesiay; 9 4 5 ifraday, Radeliffe man K. S. Tilley, K. 8 Salt, K. s. Pulqañ, K E. Douton, K. S. Madaulay max K. S Wintle Tabor Balfour Benson Lacarta Joynes, K : Radeluffe ma, K. S. Blakesley, K S Keating, K S Heathoote Mutholland ma Armutstead mi K. S Corrie, K. S Selxyin, K S Welldon, K S. Tarzer, K. S Sayer, K. 8. Acland-Hood Bryans, K S. Macnaghten Marray ma Dowper, K S Cartyright Lawford max Heygata Mr Bruce Hoilway, I. S Swan, K S	Monday and Wedneaday, 1030. Blakesley, K. S. Mulholland na. Sayer, K. S Reade, K. S Hall Rutchis, K S. Neal Cooke, K. S Sprimg-Rice, K. S. Hayes. Greenwood ma.	

Lent School-time, 28 II.
Peysical Science,
B.

Monday, 7.30 a.m. Friday, 5.15 p.m. Chemastry $=$

DIV. VIL.-Tennyson to Milea gna. Mr. Roure,
(In Mr. Rouse's Schoolroom)
C.

Wednesday, 3 p.m. \quad Saturday, 945 a.m. Heat.
DIV, IX. (In the Laboratory.) " Mr. Madera.
Physucal Geography.
DIV. X.-Tatham, K. S. to Fort -

Mr. Mozley.
(In Mr. Mozley's Sehoolnoom.)
DIV. XI. (In Mr. Mozley's Sehoolroom.) Mr. Hale.
DIV. XI. (In Mr, Moz, Snow's Schoolrooma.) Mz. Hale.

DIV X.-Frasar to Bowman $\} \quad$ - Mr. Cockshott.
(In Mr. Thackeray's Schoolroom.)

Mechanes.

DIVS. XII. \& XIII.Morrs to Mr.
Mr. Rouse,
(In Mr. Ronse's Schoolroom.)

Astronomy

DIV. XIIL-Marjoribank ma to Ia

Th Mrience Brownig's's Schoolroom.)
Mr. Dalton.
(In Mr, C. C. Jomes' Schoolroom.)

> Div. I., IL., IIL.-A.
> Chemastry.

Midsummer 1870.

1. Descrabe the propertues of the dufferent allotropic forms of phosphorns, stating how the one may be converted into 2 Wh.
2. What compounds does phosphoras form with oxyfen? Give the mode of preparation, and the propertaes of the highest onde.
"h. What ${ }^{1 s}$ that property of acids which we call their phosphoras.
3. Describe erperments which ilinatrate the affinty of chlorne for hydrogen, and give the chief properties of th substance formed by therr union.
4. How is "bleachung powder" prepared, and for what purposes is it used 7 Give experimenta
5. Give the sources, the mode of prepargition, and the tests for the presence of ioduse.
6. Enumerste the chuef properties of chlorme, bromine, and rodine, in such s why as to show thet they form a group in whuch broanine occuptea the madile place.
7. How should we deesde whether a body should be called a motal; or s nors-metal? Take, as mintances, ant mony, graphrte, lead, pyrtes.
8. What is meant by the atomicnty of a substance? How ree metalschassafied socording to thear atomictity
9. To what group of metals does silver belong? Mentom its chafores, sind the method of obteanung the metal from them
10. Give examplea of the dufferent methods by which silver many be rediced from ite compuoind.

Drv. I., II., III.-B
Chemutry.
Midenumer 1870.
1 Desernbe an experiment whoh show how nitrogen may be made to combine directly with oxygen s state which oxide 1 fres formed, and by what teat wa may recognase its
preeno. prebenoe.
2 Gipe
nitrogen dina method of preparation and properties of nitrogen dioxide.
3. Which of the nitrogen oxudes ambine ohemically with water, and what subtances are thne produced?
4 State the foor lawe of chemical combination, illustrating them, as fur as posable, from the serven of nitrogen 0xides.
5. Define an "atom" and a "molecule," and ahow on what princuples the atomic weight of a subatance may le determined although we cannot isolata and weigh a eungle atom.
6. How may it be shown that carbon existo in (a) chaik or marble, (b) exigar?
7. How is the presence of carhon dioxide in an accounted for, and why doee it not accumulate there?
B. Contrast the properties of the two carbon onides, and show how the one may be obterned from the other.
9. What different actions has chlonne upon ethylene? Express the changes in the form of equations.
10. Describe briefly the process for manufacturing oos
gas. What is combustion ? Describe experimenta which ullustrate its nature.
12. From what sonuces are boron and ailucon reapectively obtanged.
13. How is horon trioxide obtaned, and what are it
propertaes?
Div. IV.

Chemustry.

December 1870

1. Define "an element," "a compound." By whas expenments may we prove that three of the four ancient elementa are compound bodues P
2. Describe the construction of an sir pump; and give any two experiments which prove that ar has weight.
3 The reading of a barimeter on two successave days by thus akatement, and reduce the readings to milimetres. (The metre $=3937 \mathrm{~m}$.)
3. What is the Law which expresses the change in volums of a gas when the presure upon it is varied? Dencribe an apparatus which Mustrates this law.
4. Give examples of chemucal combinstion at ordinary
terimperstures between (a) two colids, (b) two gaves.
6 From what sources may oxygen be obtemed? Des
enbe the ordinary method of preparing the gas, givigg e sketch of the apparatus naed.
5. When is a substance eadd to have a "nentral,"
"acid," and "alkalnae" reaction reapectively? Gavy examples.
6. Enumerate the chuef properises of hydrogen, demcibing experiments by which they may be demonstrated.
broid and 30 char mas-rubbar bag 1 metre long, 60 cm . brosd, and 30 cm . deep, is to be filled whth hydrogen. How (One git
(One gramme of hydrogen in obtemed for every $32 \cdot 5$ gramunes of zine diseolved. One intre of hydrogen weigh
7. What
8. What other enketancea bendes oxygen and nitrogen occur in anf, and how may thear presence be detected and accounted for?
9. Describe fully sn apparatua for the analyan of arr by leadeng it over heated sopper.
By means of euch an apparatus Dumas found that 100 groms, of pure dry anr consisted of 23 groms, of oxfgen and 77 grins. of miteogen.
the waight of 1 htre of oxygen is 1430 grm.; of niteogen $1-256 \mathrm{grm}$; of sur $1-295 \mathrm{grm}$. Culculate from these data the composition of 100 htres of aur by valume. 12. How rasy ammonia be propared end collected! Give the chef properties of the gas,

Astronowis,-B.
Noveraber 21影, 1870.

1. Explexn (with a figare) how a solar eclipte si eaused, and mentana some of the pheromens which scoompeny $\%$, Show what canses combine to produce thera.
2. Wnte a short general account of the solar system,
3. State what you know of the planeta Venus, Mars, and Jupiter, as to magnitude, dastance from the sun, and attendent satellites
4. When and by whom was the velocity of light discovered ? What observataons led to 1ts diacovery? Write a short account of a terrestrial experment bearing on this subject
5. What are the "engns of the Zoduac?" From what do they take ther nambs? Into how many constellations are thade? Why does the digcovery of new starg not ? made? Why does the discovery of new stars not involve 7 What ations;
. What ${ }^{1 s}$ the presont sule for the determination of a leap-year ${ }^{2}$ Cure a full account of the changes made the calendar during the Christian era.
8 How many kinds of years are recognised in astronomy? Explain why none of them can be used as our cuvil year and state from which of them the curl year is denved.

Physueal Geography

1. Give, in round numbers, the distance of the earth from the sun, and the diameter of the earth
ψ What is the shape of the earth, and how is it caused
2. What $1 s$ the shape of the earth, and how is it caused
3. What is the density of the earth as compared with water? 4 W
${ }_{5}$ earth? Describe the atmosphere,-1ts composition, pressure, and extent

Why is it incorrect to speak of parallele of longitude?
7. How are the rocks composing the earth's crust arranged by geologists?
8 Explain the following terms -Metamorphuc, ooLitic, carboniferous, cretaceous, fossil
9. What are the principal causes of the diveraines of the earth"s surface?
10. What districte of Europe have extenaive continuous granitic formations?
11 What parts of Europe dusclose sirata of the secondary period?

$$
\begin{aligned}
& \text { Phystcal Geography } \\
& \text { B -December } 1869,
\end{aligned}
$$

1. What are the chamical constituents of water?
2. What seas are exceptions to the rule that mland gea are less salt than the ocean, and why?
3. What is the mean depth of the ocean, and the mean tomperature at great depths?

What is shown by the colour of a sea being gieen?
5 What are the prinorpal causes which account for the existence of currents?

6 How do you account for ourrents, moving towards the equator, having a westerly course?
7. Guve some account of the Gulf Streams

8 What us the Sargasso Sea? and by what name do the Prench geographers gall it?
9 What is the difference between wrond-yraves and earth quake waves ?
10. What are Artesuan wells? What proof have they sforded of the temperature of the mennor of the esirth?
11. Explain the terms-

Watar-sched,
 River-basin

12. Enumerate the rivers forming the river syatem of the Arche cossn. Give some account of three of them

$$
\begin{gathered}
\text { Physical Geography } \\
\text { C.-May } 1870 .
\end{gathered}
$$

1. What proportion of the earth's surface is covered by the ooean, and what are the chuef basuns moto which it is divided p
2 What do you know of the Atlantic Ocean-its aize, depth, bed, \&o

3 Give some particulara concerning the Pacific Ocean
4. What is known respecting the depth of the sea ?

5 To what canses are the different colours of the sea to be sacmbed?

6 What is kuewn of the temperature of the ses?
7. What is the mean proportion of alline matter in the oual how doos the sainness of a sea anioct ra gravity of the Meditermen and Red San difer fom nee wher menerel, and hou do you account for this defference? general, and how do you
relocity of waves ? velocity of waves?

此 is the difference between wnd wares and earthquals wavea ?

Show how the wnd waves are formod.
34784

Physical Geography.

C -Michaelmas School-tume, 1870.

1. State what you know of the earth as a member of the solar system
9 Describe fully the motnons of the carth, and of any of the other planets.
2. What is a satellite? State fully what is meant by the word " month."
3. What result has the earth's rotation had upon its form? Do you know anythung simalar of other planets? 5. What is the cause of the seasons? How do we know the earth is round?
6 Explain the following terms: Ecliptic, tropic, equator, merndian Why is there perpetual day or perpetual nught at the poles?

7 Why is it incorrect to speak of parallels of longitude? Q. What is the composition of the 日imosphere? How anc why does pressure v try?
9. What is known of the internor of the heat of the earth?

Physucal Geography.
C.-November 1870.

1 What are the two main classes into which the materials of the earth's crust are divided? What class is there intermediate between these, and what are its characteristics?
2 Give the principal kinds of stratafied rock un each of the three geological perrods
3 What are fossils, and how do they serve to establush the age of different strata?
4 Give the chief fossils belonging to the different periods. 'What kinds are most abundant through all of them?
5 What is the nature of bassit? and where in the British Islands is it found?
6 State the geological character of the country neai ${ }^{\text {Eton }}$

7 Descurbe geologically any three countries in different parts of Englend
8. Give the meaning of the terms Eocene, Miocene Phocene In what part of England do we find the rocks of oldest formation?

> Physteal Geography
> C-December 7th.

1. Show how ram exercases a destructive effect on the surface of the earth. Grve instances
2 Give as many matances as you can of the destructive effects of rivers
3 Explain why waterfalls often occur in nvers
4 What is meant by denudation? How is this exem phified by deltas? Draw a map of the deltas of either the Nule or the Missussippl
5 What is an avalanche, and how is it caused
6 Explann the effect of frost on a chalk cluff
7 How are glaciers formed? What effeots are caused by glaciers ?
8 How do you account for the paraliel roads of clen Roy?
2. What are erretice ?
3. Give some account of the dufferens effects cewsed by the action of the sea

Class Examination Paper set in the course of the School Time.
Hydrostatice, B. Dionsion.

1. Distangush between the three dufferent states of matter
2 Describe the Florentane experiment, which was supposed ta prove that liquids are incompressable. What did it really prove?
2. Define the words "hornontal " and "verincal."
3. What is meant by sayng that "water nises to its own level "\% How much allowance has to be made in leveling for the ourvature of tho carth's surface?
4. What makes water nise to the eurface in Artesun wells?
6 How did Pascal prove the immense pressure of a long thin vertical column of water?

7 How is it proved that the pressure on the base of any Fessel contaming hquid depends not upon the weight, but upon the height of the liquid

9 When a body is placed in water, by how much is its apparant weight less than its real weight? How was this fapt discovered?

Class Examanation Paper set un the course of the
 School Time.
 Machusery. C

1. Show how a movesble pulley doubles the force of a vorkman
${ }_{2}$ Give figures of moveable pulleys, hangang by the mame, and by dufferent, stringa. Show what forces balance each other on each of them
3 Mention different kinds of levers, and atate where the force is applied, and where the reastance is overcome in each
2. At what distances from the fired penit will weighte of 10 lbs. and 2 lbs . balance each other on a straight lever? 5. Dravi figures of s wheel snd axle, ehowing clearlp how the ropen work, and the advantage of using the machue.
3. What substitutes are used in s कnndlass and a capstan For a wheel and rope?
4. What substitutea are used in a rack and pimon for an 8 and rope?
8 Show how a crane workf, and how it multaplies force.
5. When force is multuplued by any machune, show that longar time is spent.

Collectiona-July 1869.

C. Devsron.

1 The arms of a balance are of unequal lengthe. What weights in the acsle-pans will keep the beam horizontal? \% Describe any common machune for weighung light arthcles, e.g, letters
3 Gnve examples of dufferent kinds of levers, showng in each case where the fulcrum 18, and where the power is apphed To which knd does a wheelbasrow helong, an car, a man's arm, a payr of shears.
4. Deacrye a machine for weighng heavy carriages. Explam earefully how the different levers composung it are supported, and at what point each is pressed down by the carriage
6

5 The shafte of a cart are inclned upwards. What partion of the force exerted by the horse is effective in puling the cart? What becomes of the rest of the force ? by a handle the wheed works tog ane then by a ham Compare the preight lifted with the force ued colled. Compare the weight luted with the force used.
some by Hunter's screw? Explain how it is that, in this machine, the plate does not descend as madiy as the upper screw. Compare the pressure with the force used.

Collections-Easter 1870

Hydrostatics. B
1 Mention some Illustrations of the primeiple that the rree surface of a hquad is a hormzontal plane
2 Deacrabe Bramsh's press and the contrivance for maing it water-tight. Account ior the pressure produced by it
3. Give figurea of conmon pump, and of an sar4 Show how to find the specfic gravity-

$$
\begin{aligned}
& \text { how to tind the spectic gravity } \\
& \text { 1. Of a solud, } 2 \text { Of a liquid. }
\end{aligned}
$$

5 Explain how it is that water can be lifted in a thin straight open tube

6 Describe Boyle's experments prith compresmed aur. What conclusions did he draw from them?
How far has o diving bell descended when the air is compressed unto half its orggnal volume ?
7 Account for the action of a siphon, and of an intermittent spring

- Deacribe the hydranuc camo.

9. What keeps the mercury in a barometer from onking down into the cistern? If a small hole were bored in the middle of the tube, what would happen ?

How can a barometer give an midication of the prohable otate of the weather
10. Describe atugle-actuon steam engine. Explain hat forces cause the alternate motion of the beam.

1. Of the fly-wheel
2. Of the governor ?
3. What is the use of the omall hole in the hid of a tearpot?

$$
\text { Collecrions-July } 1870
$$

Astronomy. B.
1 Distanguish betwean nebula and star-clastere; each ? what is the prevent state of our knowledge as to
2. Show how tha Milky Way helpu us to determine apprommataly the shape of the universa. Referred to the Milky Way, what is the poation of the san?
3 Howe are the stars in each constellation known and arranged $?$ Name 10 of the brightest etare in the heavene. 4. State whas is known of the physical conastitution of the stars. What 74 the photosphers of a star, end what the atmosphere? What are the materials of photospheres, and xn what atate do they ozist ?
5 How, in a genersl way, would you dencribe the surtace
of the sun? of the sun?
6. Explann fully the cange to which we ows the nuacelaion of day and night.
7. What are the latitude and longitude of a place P How much does the polar dismeter of the earth differ from an equatorial diameter? Are all equatonal dametari
8 Explanu the cause of a solar eclipse. In the late lunar eolipse, why dad the moon appenr copper-coloured dnring the totality?
duep Why do meteors omenon of s showes of meteors due P Why do meteors ocoasionaily reach the gurface of the earth, and what are they then called
serohing falls which you rememell-authenticated canal of seroline felle which you remember.
11. Explain the action of a convex lens upon a beam of parallel raye of hight, and ahow whth a figure how lensen ars made use of in an astronomical talescope.

Cohsericions- Election, 1870.

Physreal Geography, C.

duly 20 th.

1. What 18 meant by (i) watersched, (n) nver basn?
2. Whach is the right and which the laft bank of a miver? 3. On what does the velocity of a niver depend, and what geologreal effect does a rapid ourrent produce?
4 Name the Oceanic nver syatems?
5 Name the principal Sibertan rivess. What are therr 6. Which are the chiof Buropean into the Atlantac? Describe one of them.
7 What renders the European mvers so important, hoth geographucally and poLtacally ?
3. What are the chref nvers flowng into the Mediterranean?
9 Give erme account of the Nile, and of its mnual mundations.

What historncal evidence do the mundainone afford?
10 What has been ascertasned of late yeare respecting the source of the Nule?
11. What 18 known of Central Africa?
12. What are deltas, and how are they formed?

Collectiong-December 1870.
Astronomy, \boldsymbol{B},
1 Enumerate the vanous classes of the heavenly bodies, etating briefy the characteristics of each
2. Give reasons for believing that the carth turna rotund an axis
3. What are the trade winds? - Explan how each of the two parta of their direction is carused.
4. Explan the action of the trdes, thowng why, when there is high tide at ony place, there is so slso wt the antapodes of the place.
5. What are the caruses which produce twilight t
6. How many kinds of days are recogrased in astronomy? Why does the time by a surfodal generally differ from that by a clock ? What is the madnownom difference?
7 Write out Kepler's lawrs, and explan the second of them with a figure Taking the earth'r distance from the sun as $91,000,000$ mles, and the dutance of Mars from the oun as $140,000,000$, find approxmately the length of the year in Mars
8. Give a short acconnt of the constritution of a comet and state what you know of the comet of 1843.
9. On what occaston can the dustance of the sua be beat determuned? When will the nert opportamitues occur? Show brnefly, with a figure, how the observations are condiucted.

Fifte Foin Triald-Novecober 17, 1870.
Thursday, 10.30-12.
Parsical Science.
Adtronomy.

1. Enamerate the yarous chasees of heavenhy bodses. stating bnefly the charactenstice of eacb.

2 Explain (wnth a figure) how a lunar ecllpse is caused and account for the moon dumng s total eclipse sometmes being copper-coloured, and at otheas being dark
3 When, and by whom, was the finite veloenty of light ducovered? What observations led to the discovery? Write a ahort account of an experment which corrobo rates it.

4 Explan fully the two principal causea of the change of \quad geasons.

5 Explain and account for the phases of the moon, whth B figure What other bodies exhibit the same phase.

6 What do you know concerning the dimensions and nature of the aun
" Explain "eciptic," " elgne of the zodise," "zenith," 8 To what
8 To what constallations do the following atars deiong *
-Sirnus-Aldebaran-Capella-Vega-Rugel-Alcor?
'Machinery.
1 Give a figure of a system of pulleys, each hanging by a aeparate string, and show what forces will balance each other on it.

2 In the vanous modifications of the wheel and axlewhat substitutes are used for the wheel, and what for the exale? Give figures of one of each, whth forces that balance each other.

3 What is masint by the statement that water rises to its own level.
Explain the Artasian well, and describe a system upon Which the supply of water to s town is usually conducted.
4. To what height wnll water rise when the air upon it is exhausted, and why? How is the air exhsusted, and the water lifted out of a common pump?
16. Mardborodgh Colliege.

Marlborough College,
College,
July 27, 1870
Sir, In acknowledging your letter to the Master, I have to inform you that he is at present travelling on the Conhave no directions to forward any letters bat on has return in September your letter will receive hus attention.

> | I am, Bir, |
| :--- |
| Your most obedient servant, |
| J Norman Lockyer, Esq |

Dear Sir, Cranbrook, Kent, 1871.
Your note reached me this morning Ae I have not yet entared on my dutaes at Marlborough College, I am unable to furash, at present, any accurate reply to your nquiry.
you will apply to the Master of Umpersity College, Oxford, he will be better able than myself to tell you about at some later period I shall be able to tell poy more an self.
self. I may add that it 18 my own earnest desure, as soon as I am rettled in the Mastarship, to do all I can to develope and promote the selentufic instruction now given

I am your obedient servant,
Assistant Secretary.
Frederic W. Farrar.

Univeraity College, Oxford,
Sir,
I AM sorry that I omited to collect the materials for the Commission

1 must confess to having done so The pressure of work on a Head Master 18 very great, and the frequent applications for an scoount
with doing the work.
As it is I must, I fear, yefer you to my successor, who will return to Marlborough about the 9 th inst, when the schnol reassembles. As it has not been my habit to keep careful atatistics of avery item of work done in the College, and as some of the questions, as to the results of work, were not, If I remember, of a nature to be very easnly answered, the answers which you will receive will be somewhat vague but a gereral idea of the work done can casily be given

Your obedient servent,
Late Mastor of Marlborough Collego.
D. Weostar, Esq.
\qquad

17. King's Colleger Sohoor.

Kıg's College School, London,
Lords and Grntlemen,
I megrat extremety that your questions have re
I REGRET extremety that your questions have re man Miderm Teren Winter Session our morangents for were disarranged ownt to the reagnetion of our lecturer wind the pecesity for tho appointment of his auccesion - I can now however, gree you some statistice as to
present position 1, Krag's Co ments-
a The classical school, numbering about 108 boys
b The modern school, numbering about 195, boys
c. The lower or preparatory school, numbering 14% boys.
2. The instruction in science is given partly in the school, and partly in the leoture rooms of the College
3. These lectures embrace-

1 Theoretrical chemistry.
2. Nasactical chemistry

Natural phlosophy, including the qubjects required at the London University Matriculation
號
The number of boys attending the higher
lectures on theoretical chemistry
(2.) The number attending the higher natural
phalosophy lectures - -
3.) The number attending the practical chemistry class, and working in the
(4) Number attending a stall higher chemistry
colass $\overline{\text { ata }}$ Number attending the junior class in natural phulosophy 19
$\begin{aligned} & \text { A. (or classical school) } \\ & \mathrm{B} \text { (or modern school) }\end{aligned}=\quad \div \quad=56$
C (or lower
56
-101
$-\quad 33$
All the boys in the modern school recerve acientific mstruction, and plans are in formation for developung the system stall further.
There is also a class for practical instruction in the workshops, in uron work, metal work, \&e., numbenng from 25 to 30 , though sometimes a smaller proportion
I_{am}
ours very farthfully,
G. F Maclear, B D.,
Head Master.
18. Dulwion College.

Sir, \quad Dulwich College, Feb 8, 1871. His Grace the Duke of Devonshire and the Royal Corse missioners on Scientuic Instruction, I beg to make the folmissioners on Scientifi
lowing statement -

In endeavouring to give an accurate account of the position assigued to scientific beaching in Dulwich College, I aman met at the outaet by a dufficulty which will be at once recognized by the Commisanoners, namely, that while our recognised by the Commisaioners, namely, that while our scheme of instraction on science 18 unusually compre-
hensive, it is only durng the last sax monthe that the completion of the new buildings has rendered it possible to pletion of the new buidings has rendered it posaible to present tume actively engaged (wnth the sanction of the prosent ame actively engaged (wnth the sanction of the lectures.
With regrard to the eystematre teaching of scasnce, there has been constructed, in connexion with the new buldings a large and commorious lsboratory with all the most reeent and approved applances for chemical manipulation. Thert are, at present, tables or compartmenta for 20 pupuls, each with separate dramage and services of gas and water; and provision has been made for the addition of 18 more such tabies. A lecture theatre, fitted with desks for taking notes, and capable of accommodating 220 or 230 atudents, and with rooms adjonning fro the necessary apparatua and storete, has also been erected
Instruction in science is now given as follows:
Chemastry.-A class for instruction in chemistry was defintel formed in September 1870, and placed under the charge of Dr. Debus. F.R.S. (Lecturer in Chemustry at Guy's Hospraal), to whom I am greatly indebted for his numbered durmg the last term department. The class
In the present term, the students have been divided
into two classes of 20 boys each, which recenve instruction separately.

The trme devoted to the subject has been about 33 houn per week, exclusively of "preparation." This thome has been thus apportaoned

$$
\begin{aligned}
& \text { On Wednesday morming a lecture with illus- } \\
& \text { trative expermpents in the thestos - }
\end{aligned}
$$

n Wednesday afternoon, laboratory work under the direction of the ehernical mostructor or hil assistant - (Extended in some cases to ${ }^{*}$ h hours)
(Extended in some cases to 2 hours)
On Saturday morning a class lesson, meludugg the correction of the student's notes on the previous lecture - .
An examonation is held at the end of each term, and prizes are assugned for each class at the annual examination Inetmino
Instruction in chernintry, ${ }^{18}$ not compuisory, and 18
homited to the "searor schcol; " that 18 , to boys in all cases
No addinonal charye exceptions, above 14 years of age.
department. The only erpense incurred by the stadents deparment. is the cost of class-hooks and of such preces of spparatus 7s the cost of class-books and of such preces of epparatus (giass tubing, finnels, sce as ary
as arncles of parsona propirty. Smale for giving instruction in other branches of physical scrence as soon as it 18 found in other branches of physical science as soon
In no case will any additaonal fee for instruction b charged
No other subject strictily belonging to the clase of phyz sital eciences has at present been included in the corrse of dreect and systematic instruction, except-
Physical Geagrapisy - For this subject also as class wrs formed in September last There are now 60 boya under instruction, who are divided into two classes, the higher of which receives each week two lessons, sad the lower one lesson, alternated with a leason on pointical and hastoncal geography.
two n ther branches of serencs have, however, been incidentally taught in connexion with other departments of instruction, espectally-
Comparative Anatomy, in wbich mstruction has been given during the last three yeares to a few of the more advanced pupils in the drawng department, including some who were preparing to enter the medhcal schools of the London hospitals; and-
Colowr, which has alao been treated screntifically in all
cases in which it has formed a part of the art nustruction.
In these subjects, however, not more than, five or anx traming, have recerved ingtruction in any one year.
It is scancely necessary for mae to sdd that in the mathematical departument, mstruction has been given in geometry and mechanics, though with referance chiefly to the mathematical course at the univernities
Another and (as I believe) a very important pronsion in the scherne of scaence teaching, consiste in the coursea of evennag leetures on yarnous scientific subjects, in the lecture heatre
All hoys in the "semor school" are encouraged to attend these lectures, which are open also (upon the recomraendataon of their form masters) to any boys of the jnimor achool who may be desirous of arailing thenaselves of them. The lectures are dessgued, not so mnch to mpart exact knowledge (for this we look rather to our science classes), as to stumulate an interest in screathic anbjecte, and to oonvey such general information as may be farrly considered essentasal to a liberal education
Arrangements have already been made for a course of evening lectures (one in each week), during the present erm, on Lught and Heat A sumilar conrse will be delwered
ter Easter on Geology.
It is intended to provide, as speedly as possible, complete sets of apparatus, of the hest quainy and construction, for expentafic instruction Some progreas has already been made in this direction
It-wronid obvously be premsture to speak of the results of errangemeats of so recent date, and as yet to mo great an extent of a tentative character. On one pornt, however, I feel justified in speakng with confidence. I am conynuced that the matroduction into our great schools of a wider range of optional stradies is productive of incalculable advantage, not to the fets alone (as 18 sometimes supposed), but to the many also. It gives the opportanity of searchang out and developing tastes and talento, where the very exastence of any baste or any talent at sll was before scarcely uspected.
And this is, I ara sure, especially the case with the teach.
ing of physical science, whuch, whatave be ita vaite (and I believe it to be great), at an motrument of general mental traning, in anquestionably the means, in many cases, of stamulatang spparentily dormant intellect into a healthy and vigorous ectuvity, which reaches firy beyond the aubsecta Which onginally called it into exercise
And though it it probable that the highent places in ourt acence classes will generally be won by boyt who are at lenst amongst the more moteligent and earnest atudents in the ordmary work of the school, etill much will beganed by the whole community, morilly at wall es intellectually, If onily a few more of its membere are withdrawn from the class-never, I fear, to be wholly craduasted--of tho wioless and apathetice, and supphed with an object and an occupation.
In making these few remarks I heve throught it right to restract myself to the queetion of the practicnl utility of the subjectso is mesns of tchool traning, whthout oxpresang any oproion as to their relative importance, wompared with other branches of instruction.

1 am , \&o.
Ahyred J, Caryer, D D
Master of Lrulprah College.

19. St. Pavi's Scebol, Lompont.

St. Paul'4, \& C.,

Str, I eorr to have acted math Jan. 30, 1871. courtery, but as I had no return to make, as regardis fin is generally understood by the term "smentific education" for St. Paul's School, and your commonesation of last seemed only a circular, I Gid not at the tame, which Jus in the holdays, see the necesity, of which I am now re manded, of making a reply
We encourage such studies in all sorts of wayt, short of matrodacing them formally into our echool currucuium but many of our acholars sitend physucal ecience leotures at the London Institation, and some have highly so distungurshed themselves to the Unyeratite of Oxford and Cambridge

We have, in fact, no time, now indeed apace, to extend our oystem at present, the boys not resading hers, sad the achool accommodation bejng too much stinted to allow additional class roome for prectical motruction.

Itm, Sur,
H. K7warton, D D,

High Master.
20. Greshai Colerer.

Gresham Collegre, E C
Sir, Y Jen 3i, 1871
Your letter addressed to the Principgl of Greaham
Coliege has been handed to me
You are, perhapa, unaware that Greaham College in place for lecturng to the publue, and not for teachang boy:
or classes.
I beg to refer you to the Chanty Commanoners, who made long mquires mon onr work, and minto the trusts usder which we hold our oftices.
Scmentaic nostruction it cannof properily be called, bat scientific lectures of a popular kind are delivered to tho public at large, ander the will of the fouthder, and the the answering your mquary.
Genersily, I may say that the sttendance at the ecientific lectures is fait, and that mony persons neem to empoy the lectures is fair, and that mony persons secm to enjoy the adyantage
sabjects.
The more popular the lecture the better it se sttended, but the departure from the intentions of the fornder it more glartigg
No evidence from the attepdance at our lectures in of mach use for the purposes of your Commosion in my opipion.

Yomr obedient ecrvant, Cowne
Greabam lecturez on Geometiry.
I deresmy some of our lecturens woald be gled to be called before yon for your examination.
21. Hazbow School.

Deam Sir,
Harnuw, July 25, 1870.
I HAvE haded youts note to my collengue, Mr
Grifith, owr Master in Natral Science, and I have rouncater
him to have the kindncse to answer the vanous questions addressed to me by your Commission
am, dear sir, fauthfully yours,
H. Montagu Betler.

Sin
Harrow, March 7, 1871
I have been requested by Dr Butler to give you information with reference to the instruction in natural science given in Harrow School I enclose a statement Should the Commissioners require further details, I wril gladly furnush them

Your obedient servant,
George Griffiti.
A syatem was eatablished several years ago at Harrow for the encouragement of the atudy of natural science by means of voluntary examinations An account of this is given in Appendix C. of a Report "On the best means for promoting scientinc education in Schools, published in of Science for 1867, p hill. This system 18, with some modifications, atill maintaned.
Four yeara ago a master was appomted for the purpose
of giving systematic instruction in natural serence, and the subject was made part of the ordnnary achool work in a certam number of forms, which at that time meluded nearly 200 out of the 500 boys in Harrow School At present all boys in the 5 th form on the classical side, and the whole of the modern side, recenve motruction in expermental physics.
Those who arei on the classical side attend one lecture as week. In number they are about 140 , and they are arranged in four davisions, the arder of whach depends on proficiency in classics, mathematice, modern hanguages.
The modern alde, conensting at present of about 40 boys wha eatabirshed in 1869 They are taught in two divisions he places in which are determmed by proficiency
mathematics
Each division attends three lessons a week Boys in the 6th form, and in forms below thie 5 th on the lasnical sade, are not taught natural science in school. Those, however, who desire to receive matruction in those subjects which the nasural science master undertakes to teach, are allowed to have private lessons during the hours which are not allotted to school work A few only recerve instruction under these conditions
B. Replees to Secretary's Letter, dated Sept. 27, 1872.

On the 27th of September 1872, the letter and schedule given below were sent to the Head-Masters of the following Colleges and Schools.-

Charterhouse School.	Eton College.
Cheltenham College.	Harrow School.
Christ's Hospital	King's College School.
City of London School.	Manchester Grammar School.
Clifton College.	Marlborough College.
Derby Grammar School.	Merchant Taylors' School.
Dulwich College.	Rossall School.

Rugby School.
Saint Peter's College, Westminster Stonyhurst College.
Stonyhurst College.
Taunton College School.
Unversity College
Wellngton College
Wunchester College

Aid to Science Commission
6, Old Palace Yard, London, S.W,

Sept. 27, 1872.
Sir,
I AM directed by the Duke of Devonshire, the Chairman of this Commission, to state that the Com missioners are extremely anxious to obtain the fullest infocmation respecting scrence tenchung in the publie and first-grade schools, and the Commissioners will therefore, feel greatly obliged if, in addition to the information which you have already been good enough to fornish, you will kindly favour them by answering, as far as you may be able, the several questions in the accompanying schedule.

I am to add, that as the Commissioners are desmone of obtsining information from schools differing in organization, the questions in the accompanying echedule are designed to cover the work of a good many schools. It is not, therefore, expected that answars will be given to any questions but those which may happen to apply to your school
I am further to say that I have been requested by His Grace to confer with you personally, to explan the precise objects the Commissioners have in vew, and the kind of information which will be most valuable to them, if you consider such is course desurable in whreh case I shall be obliged if yon will inform me on what day it wall be most convenient to you that I should visit jour school.

> 1 have the honour to be, Sir,
> Your obedient eeryant,
> - J. NormAn LockrER,
> Secretary.

Sohencle of Particulars on which Information destred by the Royal Commission on Scientuio Instred by en the Advancement of Solence.

Name of School or College.

General Arrangements.

1 How is the School classafied?
II. Is Science a necessary part of the School coures, or 18 it thupht only in apeonal forms or departments
III. Copy of Time Table.

IV Summary of hours per week given in each clase to different subjects (If playtime is utalized for preparation or practical work, this should be shown soparately)
V Summary of the number and average age of hoys learning each of the various aubjects in the Natural Serence

VI Amount of knowledge requred before the study of Science is oommenced
WII Is any alternstive or choice of subjects offered ?
(a) ${ }^{\text {departmenta }}$ of Sclonce are preferred ?
(a) By parents ?
(b) By the boys?
VIII. What branch of Serence receaves most attention in the School, or is found by experience to have the greatest educational value
IX What welght is assugned to screntifio attamments in detarmining a boy's position in the School ?

Methods of Teacheng.
X What proportions of the lessons take the form respeotrvely of-
(a) Oral teaching and demonstration?
(b) Book work?
(c) Practical work ?

XI Which form of lesson is found to be most effectave? XII How are text-books used ; eg, is book work supplementary or preparatory to the oral lesson?
XIIL. Is the use of note books encouraged (a) durnag or b) after the lesson, and to what extent?

XIV How far are boys required to prepare their own apparatus or expenments, or to collect epecimens during an intervals between lessons?
XV. Describe any method of teaching some special branch of Scrence which has been found successful in your School

Instrmments of Teachung.
XVI. What apecual provision (e.g, laboratery, lecture room, observatory, museum, botanic garden, \&ce.) w made for Screntific Instraction, and how in it used?
(Plans and desconptions of these whth statements of thear soet and annual erpense, should if possible, accompany this cturn cost: Me in use What apparatus, diagrams, and specral fittings

yearly

? for new unstrumenta, and to replace matanale noed,
XIX Is there a workshop ? and If so, how, and for what particular purpose, is it nsed?
XX. What text-books are in use ? distmgurshing between those for the junior and senior classes.
XXI To what books of reference, other then ordinary school books, have the echolsars access?
XXII Is there any Smentific Society on Club in conmenon whth the School? and if so, who compose it, how is it worked, and what is its unfluence on the boys?

Tasts of Progress.

XXIII. How often is the work tested?

XXIV In what way 7 e g, by exammation of note books, or by oral or written questions?
or by oral or written questions?
$\mathbf{X X V}$. By whom 3 by the teachers of the subjects, or by an independent examiner?

Teachers

XXVI Is there any difficulty in procuring compretent Science Masters?
XXVII. Where are the best obtsined? Have they been specially tranned for the work; and if so, in what does such training consist ?

XXVIIL. What evidenco of acientifio qualifioation tendered by candidatoy ys found to be of mort value?
XXIX. Can you state eny reanltry of Borence teaching in he School 3 such as(a.) Success, professional or otherwiss, of individual scholars.
(b.) Influence upon the genaral atudien and intallectual life of the Schnol.
XXX. Are any epecial rewarda or encouragementa (e g., exhibitions, scholarships or prizes) open to suocessful students of Scrence in the School ?
XXXI What improvements, do you think, could be ffected in the teaching of Sclence in your own School? - XXXII What are the princupal obstacies to the taaching of Scrence in your own School?
XXXIII How could the Universtres best assist Screnceteaching in Schoole ?
XXXIV Can you suggest ny way in which Government could asenst Serence-taaching in Schools, so, for example, by inspection?
XXXV. Have you any other informstion to give, or suggeation to make, likely to be helpfal to the Commis sioners?

Head Mastry.
Date
Date \qquad

The following replies were received ,-

1. Merchant Taylorg' School.

> Merchant Taylors',

Sept. 30th, 1872.
Sin, Is reply to rour letter of the 27 th inst, 1872.
inform you that hitherto no mstruction in science has been given at this school, owng, to the necessities of ony sutuation.
I may inform you, however, that the members of the Court of the Merchant Taplors' Company, with a niew to the greater advantages of thas schoon, of which they are the governors, have recently purchased for it the site of the old Charterhonse School, now removed from London to Godalming
Upon the removal of thes achool to ats new ste, it will doubtless undergo a complete re-organuzanon, and th whole question or scientaic instruction will receive the most careful considerazon
It would be premature, at present, to do more than add that the school governors have, at the present tame, wnder their delhberations the mportant mastears referred to in your letter.

> I have the honor to be Your farthful servant, Willaw BAEER,
> (Head Master).

2. St. Pethe's Collarge, Webtminstere

General Arrangements

Question 1. How is the rehool classafied ?-According to the attanments of the boys m clasacal and genersal learning For mathemstics in $8 x$ davisions, according to proneiency in that study.
For French or German in groups of about 50 boys each suboficiency stons of the school, about 70 m number, and some 30 of the lower forms have been taken and classified afresh

Question 2 Is sciense a necessary part of the school coursa, or is it tangat only un opecial forms or departments t-Necessary, ander the new requiations, s copy of Which is enclosed, for all boys old enough to profit by it and capable of followng the teaching. There \ddagger a power of exemption in special casea wested in the head master, who must report all sach exemptions annually to the governing body

Questros 3. Copy of tume table?
Monday - 8-9 (or 9-10) 10-1230 $330-5.30$ (or 3-5)
Tuesday - 8-9 (or 9-10) $10-1230 \quad 330-5.30$ (or 3-5).
Wedneeday 8-9 (아 9-10) 10-12.30
$\begin{array}{llll}\text { Enursday }-8-9 \text { (or } 9-10) & 10-12 & 330-5.30 \text { (or 3-5) }\end{array}$
Fnday $=8-9$ (ot - -10) $\quad 10-12.30 \quad 330-5.30$ (or 3-5)
Mondey $\quad 8-9$ (or 9 (10) 10-1
Medneadsy 34 bars ; Satarday 3 hrs ; is , Thursiay 5 hrs.
Preparatnon im the evenmaga and out of sehool.
Questhes 4. Summary of hours per week given in each class to dufferent subjeche. (If playtamo is nalized for pro-
paration of practucal work, this should be shown sepa rately?
Classuca, meludhng Englush - 151
Theology and geography"
Prench or Gierman
Mathematice - -

At least two hours a day of additional work in pre paration 18 given by mdustinous boya, and one hour enforced from all
Questron 5. Summary of the number and average age of boye learning each of the various subjects in the Natural Science Classes

62 Natural Science-Hydrostatics A
27 Natural Sccence-Phymeal Geography B.
A. 3 classes-mverage age senion 17 .
B. 2 classes-avarage oges 16 . 16 or less.

5 or less.
Question 6 Amount of knowiedge requred before the tudy of acience is commenced?
For upper divition Enclid B $1 \% u_{\text {. }}$ Algebra to Quad Equns.
For junior classes, Euchd Bir knowledge of arthmetic and anthmetic to decmals.
Questuon 7. Is any alternative or choice of subjecte offared ?-See answer 5
What departmenta of scuence are preferred?
a By parents?
b. By the boys?

Questrom 8 What branch of scrence recerves most attention in the school, or 18 found by experience to have the greatest educsinunad yalue? "" Applined physics" the only branch which we have as yet attempted or have any opace or spplances for. A corarse of lectures, sec. on heat seemed to answer hest for the classes generally, but the subject of electincity was more interesting to afew of the best pupils.
Cucatron 9. What wenght is ansigned to ecientific attanmenta in determumg a boy'e position in the echool P-Nos much.

Onestron 10. Whathods of Texchang.
Questrom 10. What proportions of the lestons take the (a.) Oral teaching and demonstration?-One hour per week. For another hour quentions are snowered wnder a master's eye.
(b.) Book work?-Text books are prepared by the boye out of school horres.
(c) Practucal work 1

Qucetron 11. Which form of lesson is four d to be mone fectave?

Questron 12. How are text books used 7 eg , Ie book work aupplementary or preparatory to the oral lesson?Both
Question 13. Is the nse of note books encouraged (α) durng or (b) after the lesson, and to what axtent $\}$-The boys prepare notes partly st, and atull more after the les
which are examined by the teacher from tome to tome
Queston 14 How far are boys required to prepare therr own apparatus or experiments, or to collect specmens during the intervals between lessons?
Question 15. Describe any method of teaching some special branch of scrence which has been found successful in yonr school.

Instruments of Teaching
Question 16 What special provision (eg., laboratory lecture toom, observatory, musemm, botanye garden, \&se is made for scientific instruction, and how is it used ? cost and annali expense, should, if posasble accompany this return)

One class room, with presses for apparatus, is used for science lectures, and other rooms are used for physical geography, mechanics, astronomy, \&c.

Question 17. Number of assustant and curators, and annual cost
Questron 18. What apparatus, duagrams, and special fithnge are in use? what was them cost? and what sum is allowed yearly for new instruments, and to replace materials used, ace?-Wills's models of the mechanical powers About 601 worth of apparatus for ulustranng and lent any dragrams which he needed.

Question 19. Is there a workshop? and if so, how, and for what particular purpose, 18 it used i-No
Questron 20. What text-books are in use? distingurshing between those for the jumor and aenior classes?

> Glelg's semes, Tate's Electricity
(Magnetzam, \& \& ${ }^{2}$.
Balfour Stewart on Heat
Ferguison - Electricity
Ansted's and Hughes' Physical Geography
Question 21. To what books of reference, other than ordinery school books, have the scholars access?

Question 22 is there any scientific society or club in connexion with the school ? and if 80, who compose it, how is it worked, and what is its influence on the bnys ? No

Tests of Progress.

Question 23. How often 23 the work teated ?-By weekly questions and half-yearly examinations
Quegtion 24. In what way? eg by exammation of note books, or by oral or written queations?-By written questhons.
Questron 25. By whomi by the teachers of the subjects, or by an independent examuar?-Chuefly by the teachera of the subjeota.

Teachers.
Question 26 Is there any difficulty in procuring compatent scienoe mastera ?
Question 27. Where are the best obtamed? Have they been specially triuned for the work; and if so, in what does uch training consist?
Questron 28 What evidence of scientafio qualification tendered by candidates is found to be of most value?
Question 29. Can you state any results of science teachung in the school ? such as-
(a.) Succoss, professtonal or othermse, of mdindual scholara.
(b) Induence upon the general studises and intellectual hife of the sachool.
Scrence traching has not been given long enough, in any officient form, at Westounster, to enable me to angwer this question
Guestron 30 Are any eppecinal rewards or encourageruent (eg exhbitnona, s hulurships, or prisee) open to nuceessful books if deserved.
be effected in the teeching of eociences in you think, could be effected in the teaching of sorence in Your own school?
Queution $\$ 2$. What one the principal obstecles to the Quentinn se. What are the principal obstacies to the saching of science in your own school ?-Want of space large echeoliroom and four class-vooms: and no-further apece can be obtaned until eartain life intercesta have expred. As to the question of tume, reference to regulsmons ch. vu. sect. 1. (p. 93) mill show what quantity of subjects is required to be taught to all boya.
Gmeshon 33 How could the Unuverainee beat masust norence-teaching in schools?

Question 34. Can You' suggest any way in which Government could assist serence teaching in schools, as, for example, by inspection?
Questrons 35 Have you any other informstion to give, or sufgestions to make, hevely to be helpful to the Commar-sioners?-I can only repeat my conviction that if science teaching is to be really efficient as an mstrument of educanon, it must be made the principal subjent of study, taking science, and others language, as the basis of ther talong science, and others language, as the basis of ther will allow to be pursued with adventage The notion of pressing all subjects on all schools is in my judgment fatal pressang ail subjects on
to any efficient traming.

Cras B Scort,
Head Master.
Oct 4th, 1872.

3. Marlborough College.

 General ArrangementsQuestion 1 How if the school classufied \%-There are three divisions of the school, the upper, the lower, and the boys whose attainments do not ensble them to win a place in the upper school. The modern school is mainly comin the upper school. The modern school is mainly composed of boys intended for the army and navy, for Wool-
wheh, for the Engineering College, for the Induan Civil Weh, for the Engineerin
Question 2 Is scrence a neceasary part of the school course, or is it tarught only in special forms or depart-mental-Two hours a week of science work forms a necessary part of the school work of the upper and two middle divisions of the modern school (about 80 boys), and one hour a week if necessary in the case of the upper shell, upper fourth A, and upper fourth B, (about 75 boya $2 n$ all) Otherwise certan forms are grouped together for science purposes thus sbout 10 boys from each of the three fifths (lower fifth A and B, and middle fifth), with five from the upper fith, and four from the sixth form for the upper voluntary sccence form of 43 boys Again, about 10 boys from each of the upper shell, upper fourth A form and upper fourth B form, form the lower voluntary smence form of 31 boys Each of those forms are voluntary; there are three alternative subjects
Question 3 Copy of time table? -The time table differs with each form, and is in some respects flexable, but an approxmate analysis of the now each form to each subject has been written out on the enclosed sheet

B 4

Modern School. Upper Devovon.				
Latun and Englash		-	-	- 4
French	m	*	-	- 4
German	-	-	-	$\bigcirc 4$
Mathematics -	-	-	*	6 or 8
Dipimby		-	-	- 2
History			-	- 2
Serence	-	-	-	2 or 4
Drawng		-	-	- I

Upper Stecond.		
Classica	- -	- 104
Mathematiog -	*	- 4
Hetory	- *	- 2
Divinity	9	- 2
French	- -	- 9
Enghag	- -	- 3
Sunging	- -	,
		254

Question 4 Summary of hours par week given in each class to different subjects. (If playtume it uthised for preparation or practical work this should be shom preparation
Eeparatoly $)$
Monday, $10-\mathrm{Il}$ am., midile division A modern achool Chematry.
11-12 a m. middie divimon B
modera uchool -
Chemuatry.
" $\quad 5.30-630 \mathrm{pm}$, lowar voluntary
form, consisting of about 10 bays
frem the upper ahell, and from
each of the two apper fourthe (A and B)

Electricuty
Tuesday, $12-1 \mathrm{pm}$. , upper div mod school Chemsitry. Wedneaday, $415-515 \mathrm{p} . \mathrm{m}$, upper fourth A - Chemsetry.
" \quad.30-6.30 $\mathrm{p}^{2} \mathrm{~m}_{\text {n }}$ upper voluntary
and two lower frifths the middle

* 12-1 pm, mid. div. A, mod.

Fraday, $10-11$ an.m. Woolwich clasm - - He
" $415-515$ p.m., upper voluntary form Chemastry. $530-630 \mathrm{pm}$, uppey fourth B
Saturdas, $10-11$ a.m, mid. div B, mod
achool - - - Chematiry.
Questron 5. Summary of the mumber and sverage age
boys learming each of the various subjecta in the of boys learming each of the various subjects in the
Natural Science Classes ?- The age of those boys who Natural Sclence Classes 7-The age of those boys who study sccence varies between 13 and 19, an average age
would perhaps be 16. The sctual number of boys who do acrence in at this time 202, of these 47 do only one enbject
a week (1 hour chemistry); 165 do two subjects a week
(1 hour chemustry and 1 hour electricty), while the Wool wich class, numberng 17, do three subjects a week.
Question 6. Amount of knowledge required before the
study of scrence is commenced P-Scrence is commenced here :-
(A.) In the upper echool yhen a boy enters one of the upper fourth forms
(B.) In tre modern school when a boy entern the middle division B_{2}
Hence no special knowledge is required before a boy can enter the science rone, because he enters it and a new form smultaneously, the commencement of Ecrence beun determined by hus removal into another form.

If a boy shows any very specmal aptitude for science, and is in a form below the science zone, he is permitted come tumes, by the grace of his form mater, to attend science
lectures with the upper fourth A or B form, once or twnee lectures

Questron 7. Is sny alternative or chorce of subject offered?-In the fifth forms a boy may choose between ersea, history, and accence. In the uppar shell and uppe ourth (A and B) forms, a boy msy choose between varsea astory, Fren
What departmenta of scrence are preferred 3
a. By parenta? P-Parents very rarely mieed exprew
a. By parentoree in the mattes.
h. By the boys?-Physics proper seems the preference by the boys. Tha note books and geners mitereat would meem to prove that electicity, magnethem, sec, are more popular thas magneman, and easmer to comprehend
Question 8. Whas branch of sciense recerves mont atter hom in the school, or if found by expariencs to hate th greatest educational value?-Chemistry recerven mont attention here, and 1 beheve cloewhere. I cannot may what branch of screace has the greatest edncestional velue I should think, as matter of individual epmion (not of ex perience), the followning subjects world be most valuable a. For young boys
ary botany.
"chemistry.
mechames, pnexmatica, hydrootatics,
and hydraxhers.

- Eonotimee on Roglinh kencon.
b. For boys between the middle fourth and the fiftios : Elementary heat .

\%	electric
"	magnetism
"	sound
"	light

c. For boys in and above the fiftha :

Meohanics, electricaty, magnetnem, heat, chemistry. Elementary astionomy
Question 9. What weight is assigned to scientficic attainments in determining a boy's position in the school?There are marks nsaigned to each boy who does science, both in his weekly work and in quarterly examinations these mas are aded miotion abserved in adding the place. The exact proportion observed in adding the paries to a cartain extent in different forms, but in every orm a bar would gain very consaderably by hanng really ormoring hingeif in the science work

Methods of Teachng

Question 10 What proportionts of the Iessons take the or respectively of -
(a) Oral teaching and demonstration ?-The ecience work here consists of experimental lectures Questions are asked at the commencement of the lecture, and the boys are invited and deared to
b) Book quek ? - In the midlle diverons A and B

Book Morn Sohool, Roscoe's Scence Prmer, of Balfour Stewatt's Prmer respecturely are prepan Baifour stewat Prmer respechiely are prepared as form work, and portions of them are discussed
(c) Practical work ?
ractical work - As science has not yet been long
introduced into the school curriculum, and we have antroduced into the school curriculum, and we have not as yet been able to provide a regular laboratory, prectical work is only ponsible to any great
tron 11. Which form of lesson is found to be most
Quesizon -Lentures, so long as they be of auch unterest that the attontion of the forma 18 well mamtained upon the subject.
Question 12 How are text-books used? e.g, Is book work supplementary or preparatory to the oral lesson ? -Ercept in the instances mentioned (v par. $10 b$), the posiession and use pf text-books is not compulsory
Question 13 Is the use of note books encouraged (a) uring or (b) after the lesson, and to what extent ?-Th use of note books is required both during and after lecture. Rough pencil notes are expected to be taken durng lecture, enlerged from memory, in a faur copy note-book
Question 14 How far are boys required to propare their own apparatus or experments, or to eollect speomens dunng the mtervala between lessona? - Prizes are yeariy riven for various Natural History Collections eg., wild lowers; anatomsed plants, land and freshwater ahells. butterfies, moths, \&c.
Question 15. Describe any method of tesohing some pecial branch of amense which has been found anceessful In your school ?-Seres of lectures have from thme to time been given by different masters on geology, ammal physio ogy, botany, \&c, with satisfactory resulte in increasin the took of knowledge possessed by a good many boys, and giving a marked stmulus to a fers

Instruments of Teaching

Question 16 What apecial provision (eg, laboratory, leeture room, observatory, museum, botanic garden, \&c mado
Plans and descriphons of these, with statements of their oost and an
There is a good lecture room with apparatus, a museum, and a botame garden, Owning to special circumatancees it us not easy to asy how much they oost, the expense of mantanning them does not in general exoeed 301 . or 401 year.

Question 17. Number of assistants end eurators, and anuual oost?-There is only one regular science master; but bevaral of the other masters assist the boys, especially in natural history, physiral geography, \&ec

The alary of the science master is about 3001 a year.
Queston 18. What apparatus, diagrams, and spectal ftmpearoin usei what whe ther oosti and what sum 18 allowed yearly for new instruments, and to replace mutemals used, \&e. 1-See Question 16.
Qwesthon 19 Is there a workshop; and if so, how, and for what particular purpose, is it used ?-There is work shop olose to the College, fitted up by a tradesman in the 34784.
town. Boys are encouraged to learn turning, \&c, undex his gudance, and it is our mtention to build a good and commodious workshop within the College grounds at the earhest possible opportunity.
Question 20. What text-books are in use ? distinguishing
between those for the junior and semor classes?-
For punior classes:
"Roscoe's Elementary Chemistry Prmer"
"B. Stewart's Elementary Pbyaics Primer."
For senior classes
"W. A. Miller' Elementary Chemastry",
"Privet-Deschanel's Natural Philosophy"
For special pupils
"Ganot's Smaller Physics"
"Huxley's Elementary Physiology "
號 Heat as Mode of Motion."
Question 21. To what books of reference, other than ordinary school books, have the scholars access ?-There are house hbrames, and there is an excellent general hbrary to whe access, and good selentific books
Question 22 Is there any scientific society or club in connexion with the school? and if so, who compose it, how is it worked, and what is its influence on the boys?A natural hustory soonery, the carlest, I beheve, that was for a considerable number of yars One of the masters is president, other masters frequentiy attend and read papers A large number of boys belong to it and read papers A large number of boys belong to it There are by the boys themselves There are various sections (geo logical, botanical, entomological, archzological, \&c), asch logical, botanical, entomological, archaological, \&c), each
of which is presided over by one of the members, and of which is presided over by one of the members, and
which furnish quarterly or more frequent reports There which one or two field-days every term, on thess days the boys go to explore new districts beyond the reach of an ordinary walk. The mfluence of thas socuety on the boys 1 in all respects most valuable, and the extent of practical work which it has effected may he judged by the long senes of pubhshed reports, as well as by the flora of the district, and full accounts of ita entomology, geology, ornithology, \&c., it has produced

Tests of Progress.

Questron 23. How often is the work tested ?-There is a quarterly examination. Note books are then examined and a paper of questions given. But progreas mas more or When a boy answers badly his note book is examured and if insufficient ia filled up out of school or re-wntten.

Question 24. In what way? eg by examination of not books, or by oral or written questions?-By each and every of these means; vide preceding paragraphs.

Questron 25. By whom? by the teachers of the subjects or by an mdependent examiner?-Thus far, except on on occasion, by the teacher of the subjects, but we ahall in future take every opportunity that occurs to secure an inspection or exammation of our science teachung by competent examiners, unconnected with the school

Teachers.
Question 26 Is there any difficulty in procuring com petent acience masters?-Men, with sufficient knowledge to teach are ensily procured, but we cannot be always certain of finding gentlemen who alao have the mportant gutt of being able to impart their knowledge, and to maintain the necessary diseiplune.

Question 27 Where are the best obtamed ? Have they been spectally trained for the work, and, if so, in what does ouch training consist 3-Masters, competent to tegch one or other branch of science, can now be found at both Universities The possession of aufficient knowledge is however, the smallest part of the matter. Out of a hundred tors, tha know enongh of science to quainy that make really good masters, and unless they knew how to teach and to rule, ther knowledge would be valueless for all prachcal purposes.

Questron 28. What ovidence of scientric ualuication tendered by candidates 18 found to be of moat value ?Beyond the evidence of testimonials, published works, \&c., I should always try to obtain come private trustworthy opinion of a candidate's qualification before appointing hum to a science mastershup. Further, I should always think it almost essental that he should have had some experrence un teaching, and should give some promise of being akely to possess the quaities that a teacher requrred
Question 29 Can you state any resulta of smence teaching 2n the achooli such as-
(a) Success, professional or otherwise, of indindual echolars.
(b) Infurence upon the general studres and intelleom tual life of the school.
The only resulty I can give are the averagea of marke oftained at the last examumation. Mar. $=100$.
$U_{\text {Pper voluatary (}}$ (from the fifthe) - Electricity - 5914
 " fourths (A) " \quad (B) $\quad=\quad$ " $\quad=\quad 29.31$ Lower voluntary (from three preceding
forms) - - Eleotncrity - 42.03 Upper division modernachool - Chemister -4950
Middle division $\quad \% \quad-\quad$ - Chemistry $\sim 26^{*} 07$
Lower dunsion \quad " \quad - - Electrianty -2441
Woolwich class " - Propertres of Matter 35.05
Scrence has been zntroduced too recently to have produced any marked results at present. I cannot trace any influence which it has exercised on the general studies of on the intellectual hife There are, however, two good results whech it is producing now, and will produce more and more 1. It eniarges the range of knowledge and mtelligent interests for a large number of boys. 2. It-hbe succeeded in stmmulating and evolyng the powers of a few boys who had failed completely in other studites. These results alone are amply sufficient to justrfy it moduction, and encourage us to parsevare.

Queston 30 Are any special rewards or encouraqements (eg exhibitions, scholarships, or prizes) open to successful shidents of scrence in the sohool - Mine are as yet no natural accience scholszohips, but prizes are treely given to reward success or effort in the acquisitson of screntric knowledge.
Questron 31 What mprovements, do you thank, conld be effected in the teaching of science in your own mehool? -We are anxious to build a laboratory as soon as ous means allow us to do so, and we wish to hava our owr workshops. Further than thes nothing can be at present effected consistently with the character and svowed amms of the school My expernence here has been that the demand for scmentific teaching is entrrely, or almost enturely, lumited by the actual practical requirements of the boys It seem to be impossible at an orduary pablac achool to furmsh any but a very small number of boys with anything that conld be farrly called a thorough education in science. In all the various competitive examunations for which the majonty of them are boing trained, the part occupied by scrence is very subordinate to that claumed by literature. Now and then we find a boy with marked scientific aptitude, and it would be our object to stimulate and hap him to the utmost of ir power, but the practical nead oi most boys, as well as brpo or as at present to ajuring the school.
Questron 32 What are the principal obstacles to the tesching of scrence in your own school?
1 The fact that the boys' tume is already absorbed by tudies which have of late years been largely moultaphed, nd which in most cases they know torbe essental to ther uture prospects in hfe.
2 The fact that the demand for senentifio teaching among parents pe very small. The general opmon seems the wiy for ory career in the future and that a bor top isely to min for hanself a future positron by followng the tudies which form the mann curnchlum of teachugg
Question 33 How could the Universitnes best assist cience teaching in achools?-I da not think that they hups already founded often fall to produce even e small hups o which I hepe been most ghrongly led by econemise this, -that the cease of scientific education would be best served by the founding of a sehool in which senence would occupy the ahaef, and hiterature a subordinate place. If sueh a school were properly endowed, and if Government undertook to provide some career for a certann number yearly of the most auccessful stadents, if, too, the school were maile a thoroughly good one in all other respects, if it were directed by vigorous and able masters, and furnished whth all the best applances, I beheve that much more would be cone for the furtherance of real science than the comparatively tanvial and not very successful efforts which some bchools have made to introduce science into therr oxdinary course.
Questron 34. Can your buggest any way in which Government could assust science teaching in achools, as for example, by inspection:
(a) By setting ande a brilding at South Konangton, or elsewhere, in which the finest modern phymoe apparstus conld be meen, such an the collection of the Conservatonre des Arts et Méneri in Panis, of the Physacal Cabinet in Lespden
(b) By the grant of moneys for the purahase of appes ratus and diagrama, or the loan of auch eppa ratus, or the euthorisation of the fale of euch apparatua at cost price, and by acoredited agenta
(o.) By making some branch of science compulsory in all Government exanangtiong.
Questron 35. Have yon any other information to give, or suggestion to make, likely to be helpful to the Commia. sioners - -1 belzeve from the comparative newness of the study that we are hot in a position to speak with any de finteness concerning the general results to be expected from the introduction of scrente teaching into schools. There can be no donbt the study ought to be pencrall introduced unto all promsy and artisans' school for the better unforming of our mon smeltars, glan workers dyers, and handicraftamen.
Up to the present tmene it csanot honestly be maid either that ronence has flourished at the publuc mohools, or that we have solved the ammense dufficulties of organising the teaching of senence in suoh a way as to produce resulta at al commensurate with the hopes which led to its introduction The real causes of thas are - 2 . That the ground is already pre-cecupied by st multatude of studies which mperatively demand a place, and which are more generaily required by parenta. u. That the introduction of science is still looked on by many teachers as a disturbing element in the pro greas of the ordinary studies. The real solution of our duficultes belongs, I beheve, to the future, and at may possibly be found in the separate sather than the combuned exnstence of screntinic and litarary schuois. I of conrme assume that in scieninio achools ame lierature would be thes thers should on in Encland eme as but I think the acientic element ditnotl prodominten when the sur fic al din jus htearary
present.
F. W. Farraz, B.D., F R.S.

Oct. 8, 1872,
Head Master.

4. Rossall Sohool
 General Arrangements.

Question 1. How is the school classufied 7-The nchool is divided into two dustinct departments-the Classioal and the Modern School. The differenes in the courses of educaaom paded in the two department may be from a comparison of the accompanyang lists of aubjecta of study :

Clasercal.

Greek and Latin Books,	Arthmetic and Algebra.
Exererses.	Geometry
History and Geography.	Higher Mathernaticis.
Arthmetic.	Engheh Language.
Mathematics,	French.
French.	German.
German.	Latin.
Drawng.	Hustory and Ceography.
Music and Singing.	Chemistry.
Writing.	Wirtang and Boolikeoping. Mane.
	Drawing.

Upper A.
Lawer A.
Upper B.
Question 2 Is Science a neceseary part of the school course, or is it taught only in mpecial forms or departmente -Smence is a necessary part of the school course in the Modern Department, but 蛼 open to volanteern from the Clasencal.

Quentron 3. Copy of tame table:-
Chapel at 7 Am .
Breakfast at $7.20 \mathrm{a} . \mathrm{m}$.
Frist School at 8.30 am , to 10.30 am.
Second Sehool at 11.0 am , to 12.30 p.m.
Dinner at 1.30 pisn.
Thand School st 4.0 p ma to 6.0 p .m.
Tee at $60 \mathrm{p} . \mathrm{m}$.
Preparation tat $7.0 \mathrm{p} . \mathrm{m}$. to 8.15 p m.
Chapel at 8.30 p m.
Bed for Muddle and Lower Schools at 90 p.m.
Bed for Upper School at 10.30 pm .

Robeall School Time Table, 1872.
Iot School 8.30 to 1030 amm
2nd School 11.0 to $12.30 \mathrm{am} . \mathrm{m}$

Rossall Schoon Time Table, 2878-oconanued.

	Widmapat.			Taurapay.			Proas.			saturdar.	
	1at School.	and Sothool.	${ }^{\text {8rd }}$ Sohool	1at Sohool	end Sctioot	8rd Sohool.	Sohool.	2nd Solool	8ra Schuol.	10t Echool	9nd Solool
Houtiors $\left\{\begin{array}{l}\text { Uppor } \\ \text { Liver }\end{array}\right.$	\} Mathomatica	Ohames	Oinast	Olnssice •	Clesesios	\{ Mathematios	Olassica -	Mathernatice	Clasalos	Clasalca	-
Probablonene $\left\{\begin{array}{l}\text { Uppor } \\ \text { Lwer }\end{array}\right.$		(a) Cinselas	(3.) Composition -	OLastices -	Olsastos, Gorman -	Clasgics, German (1)	Olasiles -	Mathemation	History	Clang	Classior
A. Uppar	$\left\{\begin{array}{c}\text { Clasaloc, German } \\ (1)\end{array}\right.$ (1)	Buclud, Pudore	solence -	$\left\lvert\,\left\{\left.\begin{array}{c} \text { Prenench,Trigono- } \\ \text { metry } \end{array} \right\rvert\,\right.\right.$	$\text { Dand d Surveging, }_{\text {Druwng }}$			$\left.\left\lvert\, \begin{array}{l} \text { Cicerro, Freach, } \\ \text { Gecioge. } \end{array}\right.\right\}$		Prench, Arithmo- tic.	Cloers, Fronch
- Form $\left\{\begin{array}{l}\text { Uppor } \\ \text { Lowor }\end{array}\right.$	\} Olumion	Glanicen , Misatio:	$\}$ Clasedso		Clastas			Classics -	$\left\{\begin{array}{l} \text { Nitami Soiences, } \\ \text { Classios. } \end{array}\right.$		Classice.
$\text { Iv. Porin \{ } \begin{aligned} & \text { Uppor } \\ & \text { Upror } \end{aligned}$	\} Olasnas -		CClestlar		Clinsaics, Gorman - Gerruan, Clasaca	\} Chasalce -		Olasalces -	$\left\{\begin{array}{c} \text { Natural science } \\ \text { and Clinstioes } \end{array}\right.$		Pranob, Clamica
A Lower	$\left\{\left.\begin{array}{l} \text { Clasules, Gemuan } \\ (1) \end{array} \right\rvert\,\right.$	Tuold, Yidern -	Boiense -	Algebra, Prawh -	Bookkeeping Draming.		$\left\{\begin{array}{c} \text { Aligebrare } \\ \text { Statich } \\ \text { (allermately } \end{array}\right\} \text { reanch }$	$\left\{\begin{array}{c} \text { Cicero, }, \text { Preneh } \\ \text { Geoology } \end{array}\right\}$		$\int \begin{gathered} \text { Anthmetic, } \\ \text { Pronoho } \end{gathered}$	\} Ciseros, Pranch.
IM Yorm $\left\{\begin{array}{l}\text { Uppor } \\ \text { Lower }\end{array}\right.$:	$\mid\} \left.\frac{C l i n e s i o n e n ~ N a t u r a l}{\text { Bcionco }} \right\rvert\,$	$\left\{\begin{array}{l} \text { \{ Mathamanaow } \end{array}\right.$	\}chasies	Clumios	$\left\{\begin{array}{l}\text { Mlagites } \\ \text { Mathematios }\end{array}\right.$	\} Mathematios		Prench, Classics : Clasabat, Frenoh :	Cismica	Oiseticas	$\left\{\begin{array}{c} \text { Kathematics, } \\ \text { Clumbucs. } \end{array}\right.$
Modern B. Upper	$\text { (\% Gorman, Bngliah } \begin{gathered} \text { Laugungo. } \end{gathered}$	chas $\cdot \cdot$	Solunoe	German, Puclid -	Prench	Mathematio	Olamies, Buchad -	Mathematioa	\{Drawury Solool,		Mechanica
Parm \{ Wapor	untor. . $\{$	Olasoiomace	mices	Olamien	$\left\{\begin{array}{l} \text { Mathemantices } \\ \text { Classacs - } \end{array}\right.$	\} Mathematios	$\mid \text { Writing }\} \text { Clasmico } \mid$	Clasalce	$\left\{\begin{array}{l} \text { GInssicen } \\ \text { Clismacs, Prench } \end{array}\right\}$	Clasemos, winting:	$\mid\} \begin{aligned} & \text { Mathematics, } \\ & \text { Clamanze } \end{aligned}$
Nodirn B. Lowrer	oagraphy, Draw and Soliooil	\} Mathematlos	$\left.\left\lvert\, \begin{array}{c} \text { Dictation, Burge } \\ \text { hanh Grinmmar } \end{array}\right.\right\}$	Buclld, Gormau -	thematios -	Frendh, Goography	Clastics -	Sclence	$\left\{\begin{array}{l}\text { Dhnwing School, } \\ \text { Spectul French: }\end{array}\right.$	Buglinb, Scemes	Mathmeal. Popers.
	Clasics Fungish)	Mathemation Clasexios	Rnglish Bng ilish			$\left\lvert\, \begin{aligned} & \text { Mathematloes } \\ & \text { Matiomazitios } \end{aligned}\right.$	Classica, Bnciligh- Snglish, Mathma	Enalish, Claseses: Rnglinh Clasaics	${ }^{\text {Prench, Classeas }}$:	Cliasmes:	Clingater
	$\}$ Oneares -	History -	OTasdes, Dictation	Olamica			Prench, Clisasies -	Frenech, Claseler -	Arithmetia	(Clianira, Wr ritung,	\} Claserich
$\text { Proparators }\left\{\begin{array}{l} \text { Parn III } \\ \text { Uwwer II. } \\ \text { Liver } \end{array}\right.$			玉		Mathematicu MAthematicuc MAtheramick Wrung		Clastices Clases Clases Clasules$: \quad:$		Clasires, Rngisis): Rnyluh. Mathe"		${ }^{\text {Drawiog }}$

Preparation in subjeot of onsumg morning for one hour and a quarter every evening except Sundays. Special Chemistry Class (Practical), Tuesiday and Thursday atternoons, 2 d to 4.

Qucstion 4 Summary of hours per week given in each class to dufferent subjects. (If playtume is uthized for preparation or practical work, this should be shown aeparately)

Question 5. Sumirary of the number and average age of boys learning each of the vanous subjects in the Natural Science Clasees

Question 6. Amount of knowledge required before the study of Science is commenced -No' definite rule atpresent
present
Question 7 Is any alternative or choice of subjects
offered ?
hat departments of Science are preferred?
(a) By parents?-Parenta exhubit complete indifference to the whole subject, whth the exception that they occasionally object to their sons devoting any tame at all to it
(b.) By the boys?-Practical Chemstry. A unscientafic manner, Natural Higtory
Quesion 8 What branch of Scuence recerves most attenton in the school, or is found by experience to have the greatest educational value?-At present Chemistry has been always hold to be the chief eubject in Natural Science But as, accordng to my' experience, Natural Science in schools, as an mstrument of education, can only be useful in developing the observation, and not the memory, much less the judgment, I am monned to think that the branches that can be beat illustrated by specimens and experiments must really have the greatest educational value If Serence is to be taught as an accomplishment, like conversational French, for practical use, then probably Chemistry and Geology are the most upportant.
Questron 9. What weight is assigned to scientific attain ments in determining a boy's position in the achool?-In the modern side, about 10 per cent. of weekly marks, determining the boys' weekly places, are allowed to the Natural Science lessons.

Methods of Teaching
Question 10 What proportions of the lessons take the form respectively of
(a) Oral teaching and demonatration?-The teaching is conducted by lectures socompanied by oral and Written examinations.
(b) Book work ?-No time is devoted to preparation out of
(c) Practical work ?-Five or axx boys work at practical ohemistry in the laboratory for $2 \frac{1}{\frac{1}{2}}$ hours per week
Question 11 Which form of lesson 18 found to be most offeotive ?-The practical work, undoubtedly, next to that the oral teaching, when accompamed by, and based upon, constant repetition and examination

Question 12. How are text-books used? eg, Is book work supplementary or preparatory to the oral lesson?The text-books are used chiefly as a means of repetition, not at all ss a means of preparing for the lesson.
Question 13 Is the use of note books encouraged (a) during or (b) after the lesson, and to what extent?-Notes aro io deroted by the boye to
No time deroted by the boys to preparation for the Salence olasses.
Question 14. How far are boy's required to prepare therr own spparatus or experiments, or to collect specimens during the intervala between lessons?-Some boys take great intarest in the collection of specmens, but there is six boys, no practical scientifio work of any kind in ohemistry or physics.

Question 15. Deecribe any method of tesolhing some apecial branch of Scienoe which has been found successful in your school ?-Geology, to a select class of volunteers, has been very farly taught during the last quarter by lectures once a wrek illustrated by dragrams.
Instrwments of Teachang.

Question 16 What specral provision (e.g, laboratory, leoture room, observatory, museum, botanue garden, \&o. is marie for scientrfio instruction, and how is it used p(Plans and desoriptions of these, with atatements of ther cost and mnual expense, should if possible accompany this return)
There is an observatory contanning 4 -inoh object glass equatorial, a leoture room, and small lahoratory No rergular observations have as yet been made at the ohserratory.

Qwestion 17 Number of assustants and curators, and annual oost?-The scienco teachung is conducted by one mester appounted for the purpose, but no assistant
The ncience mastar has $140 /$. per annum, nsing 201 per
annum to $200 t$, with board and lodging, and, with expenses of laboratory, the cost may be reckoned at about 300l. per annum.
Questron 18 What apparatus, dragrams, and special fittangs are in use 3 what was their cost $?$ and what sum is allowed yearly for new instruments, and to replace materals used, \&ic?-There is the usual apparatus of a laboratory, with plenty of gas and water, and no lack of funds to supply whatever is necessary, whether in the way of new inventions or repair of old instruments
Question 19 Is there a workshop? and if so, how, and for what parthcular purpose, is it used ?-There 15 a workshop under the teaching of the clerk of the works Thus is popular, and well attended Thare is only bench accom-
modation for six at a time, but boys, some of high intellectual power and at a time, but boys, some refinement, will spend two hours a day, play-time, in carpentry The study of practical engineering, under our chref engineer, is also a matter of considerable interest to boys
Questron 20 What text-books are in use, distingurshing between those for the jumior and semior classes?-Roscoe's Chemstry, GIll's Chemstry for Schools; Page's Geology
Questron 21. To what books of reference, other than ordinary school books, have the acholars access ?-There is the school hbrary, to which all books of reference are added is required

Questron 22 Is there any scientific socrety or club in connexion with the school ? and if so, who compose it how is it worked, and what is its influence on the boys?
None at present.

Tests-af Progress.
Question 23 How oftion is the work tested -Once s quarter.
Questron 24. In what way ${ }^{7}$ eg., by examination of note books, or by oral or mitten questions?-By a written examination, generally conducted by an outsider, and generally with unsatisfactory reaults.
Question 25. By whom ? by the teachers of the subjects, or by an independent examiner?-By an independen examiner generally But the dufficulty of getting a good
science examiner 18 only equalled by the difficulty of geting science examiner is only

Teachers.
Question 26. Is there any difficulty in procunng competent science masters?-Immense The science masters seem to have learnt theur subjecta under lectures addressed to men, and probably men all anxious to learn They have no prescriptive or traditionery forms of teachung boya, and no appreciation of the indufference which the average boy has to all knowledge.
Question 27 Where are the best obtaned? Have they been specially traned for the work, and if so, in what does such training consist ?-That is just the question that I am now ansiously constdering I have tried Oxford, and I have tried London In both cases I was happy enough to obtan the services of a gentleman highly taught, and completely master of the subjects I have once or twice attended the lectures of the London University MA myself, and hare found them to be consumanste works of art, extremely interesting and entertaining, yet this gentleof lus teaghing in dugust at the smalliess of the result of hus teaohing.
Questions 28 What evidence of scientific qualification tendered by candidates is found to be of most value?-A London or Oxford degree I have hitherto considered the
best, but i should not mind trying Bonn or Lerpsse best, but I should not mind trying Bonn or Lerpsse
Questron 29 Can you state any results of science teach-
ing in the sechool? such as-
Success, professional or otherwise, of individual
scholars. scholars.
(b) Influence upon the general studies and intellectual

Life of the school.
(a) A acholar of Rossall is now a Natural Science of (b) Nil.

Question 30. Are any specisl rewards or encouragemento (e g. exhbbitions, soholarships, or prizes) open to successful students of science in the school?-Prixes only.
Question 31. What improvementa do you thunk could be effected in the teaching of Scrence in your own school 7 . I thmk we must direct the study more in the direction of observation Boys nust be taught to know by aight and weight the differenoe between the "Arley" and the "Wygap
Fourfoot," between "Memel" and "Dantze" "Old" Four-foot," between "Memel" and "Dantrig," "Old" combination, number of elementary subjects, doctines of
molecules and stoms of geses, may be reserved till the sacouta themselves are agreed about them.

Question 32. What are the principal obstacles to the teachung of Science in your own school?-(1 .) The great inducements held out by the Universities for the study of classucs and mathematics (u) The unsettled state of opmion as to what is the axn of the study. (in.) The inotinctive feeling of boys that, as at present taught, Science is not equal to Latn and Greek, or Mathematics, for educational purposes
Question 33. How could the Universities best assust scrence-teschung in schools?-By dumurining the dispanty between natural science scholarships and the others, or , which I should prefer as an educationiat, by abolshing all competitwe acholarshups,
Queshon 34. Can you suggest any way in which Govern by inopotion? by inspechon oupointments for excellemce in sorence studies, singthing in short, to balance the avartwhelming athractions of classical hor, to balmal and mathoomatical avelihood.
Question 35. Have you any other information to give or suggestion to make likely to be helpfill to the Commissioners ?-Dix

Robert Henniker,
11th Oct: 1872.
Head Master.
5. City pr London School.

General Arrangements.
Question 1 How is the school classified? The school is divided into six divisions for screntricic mstruotaon, vies:-

$\begin{aligned} & 6 \text { th form } \\ & -5 \text { th drtto } \end{aligned}$	- $\}$ Int division.
4th class	- 2 gnd division
Latin class	-, $)^{\text {a }}$ 20a division
3rd class	- 2
2nd class	- -1
1at class	- 4
Grammar class ${ }^{-}$	athenvions.
1 1st junior class	- 5 th division.
2nd junior class	
3rd junior class	-) 6th division.
4th junur class	- forn divion.

4th junor class
Question 2. Is Science aunecessary part of the school course, or is at tarught only in special forms or depast
Questron 3 Copy of Thme Tahle -
1st division Tueaday 2 to 3 pm . (lecture,)
2nd $"$ Monday \quad Thursday
3rd
4th
$\begin{array}{ll}\text { 4th } & \text { Friday } \\ \text { 5th } \\ \text { 6th } & \text { Monday } \\ \text { Thursday }\end{array} 0.45$ to 12 noor $"$
6th Thursday \quad Practical chemustry clase, Wednesdey 12 to 2 .
(N.B.-An occasional lesson of one hour's duration is given in the lower school.)

Subjects Taught
A. 6th division -
(a) Atome theory
b) Hydrogen, orygen, nitrogen, and the inorganic compounds formed by their union
(c.) Phymical and chemical properties of sir and
(d) Thermometers, bsrometers, sir pomp, \&e,
(e) Ventilation.
(f.) Especial attention 18 paid to the use of a'quafortis as a test for gold, \&ze.
(g) Maxufacture of gun cotton and gun powder.
B. 5th davision :-
(a.) Subjects mentioned under A.
(6) Carbon and its morpame componids with oxygen and hydrogen
(c.) Blow prpe, nature of fiame, oonduction and convection of heat
(d.) Davy lamp.
(a) Suble under B
(a) Subjecta ander A and B.

 Bromine.
Iodhare
Fheme ases as re-agents hydric fluonde, hydric hydrofluo Bepecalal attention is given to the mannfic. thine of ol of vitrol and hydrochlorie acd.
D. 3rd division :-
(a.) Subjects mentioned in A_{9}, B_{9} and C.
(b) The common metals
(c.) Especsal sttention being given to the metal-

- hurgreal promessed for obtrming uron, copper,
(d) Mead, minc, anlver, mercury, tin, and gald.
(d) Manufacture of wrought-iron and ateel, tamperng steel,
(e) Manufacture of the common pirmonte,
E. 2nd division -
(a.) Subjects mentioned in A, B.. C., and D.
(b) Alkahes and alkaline earth.
(c.) Heat.
(d.) Prictional and voltaic Eapecial attention is electrimity. $\} \begin{aligned} & \text { given to el } \\ & \text { telegraphy, }\end{aligned}$
(e.) Magnetism.
(f) Outhine of theoratical ohemistry, qualitative
F. 1st division :-
(a) Organio chemistry
(b) Highor branobes of morgonic chomistry and expernmental physics
Boys ase prepared for special examinations in physical geography, zoologr, and botsiny, \&c., \&ec.
In eddition to the before-mentioned class-lessons, the practical chemistry cless work ahould not be forgotten
The three best boys in each of the nine higher classea have the proviege to join this clans
The class genoraliy has about 30 instead of 27 boys.
Questron 4 Summary of hours per week given in each class to different subjects. (If playtme is utinzed for pre paration or practical work, this ahould bs shown separately.
For a summary of hours per week see "Time Table" and
"Subjects Taught."
A few boys in each division avail themselves of the half hours (12 to 1230 and 3 to 330) for trying some of the experments shown at the lectures. The balf holiday if utilzed for the practical work. Boys are aiso helped (durng playtrine) to prepare for the various Solence examinations at Kensington, \&c., \&c.
The Sclence exercusea have to be prepared sometime durmg the week,
The junor divaions have a lesson of one hour and a quarter once a week.
The upper divisions have a lesson of one haur onoe a aek.
An occasional lesson as given in the lower achool.
Question 5. Summary of the number and average sge of boys learning each of the various subjects in the Natural Science Classes

		$\left\lvert\, \begin{gathered} \text { No of boyn } \\ \text { this term. } \end{gathered}\right.$	Averame eme thin termo.
Let driaion $\left\{\begin{array}{l}\text { 6th form }\end{array}\right.$		27	17
Let duvion $\{$ 5th ,	- -	24	159
2nd drasion $\{$ th class -	- -	88	15
2nd aribion Latm clase	* *	50	14
3rid diviston f 8rd clase -	- -	61	$14 \frac{1}{4}$
ar,	- *	64	13
4th division $\left\{\begin{array}{l}\text { lat class - }\end{array}\right.$	- -	85.	18
4th arision $\{$ Grammar clasa	- -	97^{\prime}	12.
5th divition ${ }^{\text {1st }}$ jumor class	\cdots	70	18 nearly
6th dribion \{ 2ni junur class	-	87	12
6th division 8 8rd jontor clase	- *	49	109
	- -	47	104

Question 6. Amount of knowledge requared before the stady of Scrence is commenced.

Writing,
Readrog,
And multiplication table.
Question 7 Is any alternative or choice of mubjecta offered?-No

What departments of Scientes are preferred?
a. By parenta i-As s rule, chemistry.
b. By the boys 2-Practucal chemmiry and electricsty.

Queation 8 What branch of Science raceives moat attenthon in the school, or is found by expeneaces to have the greatest educational vilue?-Chematry (for the lower gehool), and chemuriry and physucs (for the higher wohool).
Questron 9. What weight is assigned to scientufic attain
ments in determaning a boy's pontaon in the school?-

1. Class proinotion as nof at prement unfluenced by screntific stammenta, bu
the point of beng made.
2. Prizes ere given

3 Scrence counts in the general scholarshipt of the school.

Melhodr of Teaching.
Questron 10. What proportions of the leasone take the am respectively of -
(a.) Oral teaching and demonetration?--All the school (a.) Oral teaching and demonstre
(b.) Book work? Home work (about 3 of an hour)
e.) Practical work -Answered u Nos III and IV

Qucestrors 11 . Which form of lesson is found to be most
(l) Oral teaching with demonstration;
(2.) Book work, and
(3). Practical work, will be found the most effective form of lebson, but I am unable to form a companson, as in no dinision of this school is the teaching exclusively confined to any one form The class for practical chemistry at the City School of course ghows to the greatest advantage, as it is composed of the most advanced boys from each of the upper divisions.
Questron 12 How are text-books used 7 eg, wa book work supplementary or preparatory to the oral lesson ? Supplementary
Question 13. Is the use of note books encouraged (a) dumng or (b) after the lesion, and to what extent?-Boys are oblaged to uss note books during the leason, and sacouraged to use them in preparing ther home lessons, 8

Question 14. How far ars boys required to prepare thex own apparatus or experments, or to collect specimens during the intervals betwean lessons? 3 -The boys belonging to the practical chemistry class entirely prepars thear own apparatua, but are not obiged to enther prepare the expe riments or to collect specmens during the intervals between lebsons. They ars, however, encouraged to try expert ments both ait school and at home, and also to collect " apecimens."
Question 15 Desoribe any method of teaching some speotal branch of Science which has been found nuccessful in your school?-In each branch of Serence taught here the course pursued is as follows, viz :-
A lecture is given, and the boys have to take notes. At the end of the lecture a short viva voce examination takes place.

For "home work" the boys have to write answers to certain questions on the subjects treated of in the lecture.

These answaxs are brought on the next lesson day
In the lower sohool the boys have to bring drawings of the apparatus and experments shown at the leoture Boys vemain aftar the lesson to recerve extra instruction, and to try the experments for themselves.

Instruments of Teachung

Question 16. What special provision (e.g, laboratory lacture ${ }^{-00 m}$, observatory, museum, botame garden, \&c made for scientifio instruction, and how is it used
(Plans end descriptions of these, with stritements of their cost and annual expenses, should, if posabie, accompany thes return.)
A lecture room (which is also used as a laboratory by the boys of the practacal chormstry class), also a private labo ratory. I cannot furnush you with the cost, but the accompanying plans may give you some idea.
Question 17. Number of assstants and curators, and ainnual cost? One princmpal teacher, 1801. (at present hang 10l per annum to 2001)

One assistant, 601
Question 18. What apparatus, duagrams, and apecial fittings are in use? what was their cost? and what sum 18 allowed yearly for new unstruments, and to replace materials used, \&o. ?-30h. is sllowed yearly for new instruments and to replace maternala used. The apparatua 18 such as 14 generally employed to illustrate the various points (in demustry and physics, seo) which are brought before the pupuls. A better idee than could be gaven by a report (necessarily so lumited), would be obtsuned by personal inspection
Question 19. Is thare a workshop \boldsymbol{I} and if so, how, and for what particular purpose is it used?-No.
Guesivon 80. What text-books are in use $\%$ distungurshing between those for the jumor and semor dasses ?Hall's Chemistry.
Jumior Ruckmaster's Chemistry (Inorgamo). Targusin's Electrianty.
Tate's Heat, \&c.
Balfour Stewart's Elemantary Physics.
Somior Farman's Qualitative Analysus.
Miller's Chemistiry
Ganot's Phytice.

Brook's Natural Phylosophy.
Olvers Botany
Carpenter's Ammal Physiology.
Semor
Lyell's Geolegy table
Lardner's Handhook of Natural Philosophy (4 vols)
Question 21. To what books of reference, other than ordmary school books, have the scholars access?-Boys in the Gth form can obtam admassion to the Gurldhall Lubrary
Question 22 Is there any accentific society or club in connexion with the school' and if so, who compose $1 t$, how is it worked, and what is its influence on the boys 3There is none.

Tests of Progress.
Question 23. How often is the work tested?-ITnce e year by a written examunation; also by the orva coce examination at the end of each lesson. (Also by occasional inspection of note books)
Questron 24 In what way? eg. by examination of note
books, or by oral or written questions
(2.) By oral (2) questions.
(3) By written \} quis.

Question 25. By whom? by the teachers of the subjects, Question 25. By whom? by the teachers of the subjects,
or by an mdependent examiner ?-Once a year by the or bublic an aminer, John Spillex, Esq, F C.S, late asaistant phemist to the War Department At other tames by the teacher.

Teachers
Questron 26 Is there any diffieuity in procurng com petent Scrence Masters ? - I have not experienced any.
Questron 27 Where are the best obtained P Have they been specially traned for the work, and if so, in what does such tranning conelst ?-From the Government Scence School, Royal School of Chemistry, \&c., \&c
Questron 28 What evidence of scientific qualufication tendered by candidates 15 found to be of most value ?-The most valuable evidence of "scientific qualification," as discoming from the professors in the foregoing institutions.
Question 29. Can you state any results of Scrence teaching in the sehool? such ag-
ing un the school? such as- (access, professional or otherwise, of indrydual
areal andies and intellectual
(b.) Intluence upon the
life of the school. Yels A list has already been forwarded to the Roya Commission on Scientific instructioa and the Advancemen
of Sceence, to which you wrll perhaps kindly permit me to of Scrence, to which you whl periaps kindy permit me
refer you ' I would also mention that the list which was refer you I would also mention that the list whuch was
sent to the Royal Commisanoners on 19th September sent to the Royai Commisenoners on 19 th September
1870 , employed me duning my apare time for upward of a fortnight
Questron 30 . Are any special rewards or encouragements (e g exhibitions, scholarships, or prizes) open to successfu students of Science in the school?-Yes. One exhubituon value about 141 10s, tenable for one year, one allve medal; and 24 prizes (total value $10 l$) Science also counts in the regular scholarships of the school.

Question 31. What mprovements do you think could be effected in the tesohing of Science in your own school -I would auggest the followng alterations -
i) Chemscal proficiency to count im clasa promotion
) An hour's oral teaching with demonstration, followed by an hour's book work, and supplemented by
prectical work This would of course necessitste--
More time to be devoted to the study of Natural Scrence, and
(4) More sasistant
(5.) More valuable exhibinone and prizes to be given for proficiency in Natural Science.
Questrom 3A. What are the prncipal obstacles to the teaching of Screace m your own echool? - The necessacily lumited time given to the etudy of Natural Science.

Question 33 How could the Univerantieg best assust Souenoe-teaching in achools?-By offerng valuable exhs bituons, and by recognusang the Nstaral Siences as a regular
subject in pass and entrance examinations.
Questrom 34. Cap You suggest any way in which Government could assist Science-teaching in Schools, ss, for arample, by inspection ?-Yes,
(1.) By mspection (if not carred to excess) by one er(And 2) By Bed in teaching.
(And 2) By awarding prizes
Questran 35. Have you sny other information to give, or suggestion to make, likely to he helpful to the Commse
sioners ?-That the pupis of the City of London School (and the like) should be allowed to take the prazes and medsis swarded by the science and Art Department (South Kenaington), but at present imared to the atudents of Government Science classes
ful candidates be pabisthed
I understand that thera has been a great falling of in the number of che pupus that have presented ans the medals and prises wece limeted to the atudent from Governmeut Scyence classes 14th October 1872 Edwin A Abiront,

6. Wingarster College.

General Arrangements

Questron 1. How 18 the school classuiled?-The man division is into foru blocks, called-
(A) Suxth Book of 60 (in round numbers)
(B) Semor Part V of 110
(C) Middle Part Y. of $150 \quad$ " \quad "
(D) Juntor Part V, of 60

These blocks are subuivided for the several subjects of study, as follows, into the followng numbers of classes. -

For Classics meto

3 Mathematics
" Natural Scrence
There"ere two modern clesses bessdes, one ranking with B, the other with C.
Questron 2 Is scrence a necessary part of the school course, or 15 it taught only in special forms or departmenta ?-Science is taught-

1. To boys in suxth book who have evinced special capacity for it, or who desire it themselves, or whose parents wish it. 'They amount to about a fourth of the namber
2 To all the boys in Senior Part V. This provides for boye who attain s farr position in the school two years' teachung while in this part of the achool as a art of thear school work
Io the two modern classes,
Questron 3. Copy of tume teble
Question 4 Summary of hours per week given in each class to different subjects (If playtime is utiluzed for preparation or practical work, thus should be shown separately)

		A	B	C	D Modern	
Classics	-	-	10	9	9	10
2						
Mathematics -	-	4	4	4	4	4
Modern languages	-	2	2	3	2	6
Englash subjects	-	2	2	3	4	4
Natural Scjence	-	2	2	-	-	2
Drawna	-	-	-	-	-	3

Composition us done besides this Preparation has 20 hours provided in school tmmes, and boys must usually find an hour a day for work besides out of tome as therr own disposil. About eight hours a day is the average work.
Question 5 Summary of the nomber and average age of boys learning each of the various subjects in the Natural Science Classes.
1 Mechamics and hydrostaties, suxth book No, 12 Age, 17.
2 Geology No., 30. Age, 17.
$\left.\begin{array}{l}3 \\ 4\end{array}\right\}$ Physacal geography $\left\{\begin{array}{l}\text { No, } 40 \\ \text { No, Age, } 16 \\ \text { Age, } 16\end{array}\right.$
Questron 6. Amount of knowledge requured before the study of science is commenced ?- With the exception of are in the higher parts of the school, and faurly advanced in classucs and mathematics.
Questron 7 Is any slternatave or choice of subjects offered ?-No, the classes have ther subjects fired
What depal ments of science are preferred?
2. By parenta?
b. By the boys?-I do not thunk any one branch is generally preferred to others. Some.like one, some another.
Question 8 What branch of science recerves most attention in the school, or is found by expenence to have the greatest educational value?
1 That of the surface of the earth
There za always as clasa in geology
In summer several m botany.
Other branches of phrysics are taken in a cycle.
2 I do wot thunk there
2 I do not thunk there 18 any specral educational value in the leasons dfferent from what is denved from lessons in other subpects giveri in the same way.

The geologioal and botanical ooursea, which cause actual cequarntance with specimens, are the only onts that seem special.
Questron 9. What weight is esangued to scrantrifo attannments in determinung a boy's position in the achool lAbout one tenth of the whole mivks in clase work and exammations.

Methods of Teachang.

Questron 10 What proportionu of the leasong take the form respectively of-
(a.) Oral teaching and demonstration ?-In the lower classes, the whole. In the two higheot this is combneed with hook work
(b) Book work?
(c) Practical work?

Question 11 Which form of lesson : 1 found to be most effective?
Qweshom 12. How are text-book used? g., Is bnok work eupplementary or preparatory to the arad lesson ?Supplementary.
Questron 13. Is the use of note books encouraged (a) during or (b) efter the leason, and to what extent 7 -Notes are requured and taken during the lesson and written ont after it. In all but the higheat class they are encouraged by marks weekly in an effectuve degree
Question 14 How far are boys required to prepare they own apparatos or expermenta, or to colleet specmens doring the motervale between leasons?
Questron 15 Describe any method of teaching some specral branch of science which has been found successful in your school.

Instrmante of Teachsig

Questron 16 What special provision (eg, laboratory. lecture room, observatory, musetum, botanic garden, \&ce.) is made for acrentific instruction, and how us it used 7 (Plans andual expense, should, with possible, accomem of their cost and -A special lecture room fitted for the purnoe tharm.) -A sper room for a maseam and for the use of boys who collect objecte natural history.
Questhon 17. Number of assastants and curators, and annual cost.
Questow 18. What apparatus, diagrams, and speenal fittinge are in use? what was their cont? and what sum ua allowed yearly for mstruments, and to replace materials used, \&c. ?-

Mechanical models.

Elementary electricail apparatua
Apparatus for illustrating pirysica
Botanical plates.
Maps and globes.
Gaps and globes.
Botanical callections.
Question 19 Is there a workshop ? and, if ao, bow and for what particular purpose, is it used?

Questrom 20 What text-books are in use 3 distingtuaning between those for the junuor and semor clasees. -They have vared Ganot's Physice and Page's Geology are two wheb would represent them
Quertion 21. To what books of reference, othet than orduary school books, have the acholurn accese?
Question 22 Is there any acmentific somety or club in connexion wrth the school 9 and if so, who compose it, how 15 it worked, and what is ith infience on the boys ?-A Natural History Boclety, limited to 50 boys, who saopt the melp to manage it. Brya read pspert, and collect and exh to manage it apecimens.
In summer it gives a numble
has been quite real and good.
The lists of plants and msects collected ere growmg satzefactorly.
Mr Griffith has created a conmderable geological interent, and some boys have made good collections here and at home

Teste of Progreat.
Quegtox 23 How often 18 the work terted?
Questrow 24. In what way 7 eg. by examination of note books, or by oral or writien questions?-In both thewe ways.
Quetrow 25, By whow? by the teachers of the euljectu, or by an independent exaramer 7- Writien examinatsons aro held,-

1. By the teachers several trmes a term
2. By mudependent exumaner once a year.

Teachers.
Questson 26. Is there any difficulty in procuring comper tent surnce masters ? Yed

Question 27. Where are the best obtained? Have thay been specially tramed for the work, and, if so, in what does auch trannugg coasist?-Our teachers are and oxford and Cambridge. They have not been specially tramed for the work
Questron 28. What evidence of scientific qualfication tendered by candidates 18 found to be of most value?
Question 29. Can you state any results of science teaching on the school? such ed-
(a) Success, profeasional or otherwise, of individual
(b) scholars.
(b.) Influence upon the general studies and mtellectual
(a) Several bova have
(a) Several boys have gained University distinctions in Natural Science at Oxford
I cannot feel that the individuals who are carrying their studies further were led to do so by their school teaching,
but by personal or professional interest in them
(b) Ihunk there has been an interest created in botany and geology, which has altared the feeling of contempt for such thungs which used to be general.
I do not think it affects the other studies of the school
The principal result is a more general spread of sensible estrimates of the value of such knowledge I don't expect to find individuals do more then eg, Messry F. Buckland ind P. Sclater, who were at the school when no regular weaching wes given in science.

Question 30 Are any special rewards or encouragements (o g exhibitions, scholarehups, or prizes), open to successful students of science in the school?-Prizes are given by Lord Saye and Sele for each of the classes in Natural Scıence.
Question 31 What improvements, do you think, could be effected an the teaching of acience in your own school? -We are at present in such an elementary condition in regard to sclence teaching that the mprovements possible mil, us is selked of tur a made a man bern of a teaching and work
For the purpose of communicating the onthnes of general knowledge or some braaches of Natural Science in popular way, and of ataring intereat and acquaintance Ouestion ${ }^{30}$ What are the prinepal obstarpose
Question 32 What are the principal obstacles to the
enching of selence in your own school? Those incident

1. The of trasthness of starting it, especially in such a branch as chemistry
2. The difficulty of finding teachers possessing actual knowledge of practical and experimental kinds, who are also able to manage a class of boys.
3. The past feeling of inferiority to other aubjects, a feeling, perhaps, harcly past.
4. The feeling that it does not "pay" as well as other

Question 33 How could the Universitiss best assist crence-tarohing in tohoole? -

1. By making it essential for thesr best men to know some rational amount of Natural Science
2. By framing some definite courses of natural science tesachug, -a of a standard fitted for a boy's man study, A Of a popular atandard, fitted to be a
universal study for all boya, subordinate in position inivarsai atudy for all boys, subordinate in position, but sufficient to give some real knowledge

Questron 34 Can you suggest andy way in which Guvernment could assist Science-teachung in schools, as, for what has of plates, e by oryaniong a syen for supplyng sets of of platel specimens of zoology, geology \& Nothing but a central organization erc.
which have no special organzation can ensure schools, which have no special opportumities, che passibility of Ouestron 35 Have you any
Question 35. Have you any other information to give, missioners? - The head ikely to bo helpful to the Comhave asked the Oxford and Cambridge Natural Schoois Boards to draw up outhmes of Natural Science tesching fitted for schools, of the two, standards mentioned above and these bodies have consented to do so

Oct. 16, 1872
G. Ridining,

Head Master.

7. Stonyhurst College

Sir, Stonyhurst College,
In reply to your letter of the 27th ult, I beg to say that in the school or boys department of thas College so httle up the paper sent or to alk anyone to come downt her behalf of the Commistioners I may saye in brief, ther
I may alay, in brief, that we teach the boys sufficient for them to pass the matriculation examination of the University of London It is only the highest class that is specially prepared for this
17 in age) has three hours abt 16 in number, and, perhaps, They are supposed to get weekly with a Science master were taught at theur lost lecture The thext books in use are Barff's Chemistry and Newth's Natural Phulooso in use are There is a laboratory where the boys may make a few experiments, if they wish, under superintendence, but this has not been insisted upon
The next two olasses have one hour a week, just to give them first notions before actually studying for matriculation
There is no regular teaching in Science for any class below these
The more thorough and extended study of Sorence is reserved for young men who are also engaged in the study of mental philosophy But thes is in a department wholly independent of the sehool, and, therefore, l apprehend, not falling in any way within the scope of the Commissioners ${ }^{3}$ uxqury.

I have the honour to be, Sur,
Your obedient servant,
E. J Purbrick, S.J
J. Norman Lockyer, Esq.
8. Cerist's Hospital.

Drar Sir,
Oct 17, 1872
In answer to your questrons I have to say
I The classufication of the school will perhaps be understood from the annexed diagram of the classes in the "Grammar School" or language department, in which every boy (writh the exception of the 50 naval hoys) passes at least half his school hours

The horizontal lines denote the several classes. The classes 8,9 , are under three parallel masters. 10 is com posed of backwherd boys, who are older than the average age on coming from Hertford.
Boys pass from 8, 9, into $1-4$ as soon we they are flt but boys who resch the age of $13 \frac{4}{4}$ before they are qualified tor 4, are draughted from 8, 9, into 7, as are also all boys from 10 on reaching the age of 13 h
The classes $1-4$ are intended to fit boys for professionsil bfe, 5-7 for commercial life.
[Since 1869 no Greek has been taught in any of the classes except 1-4 Up to that tome every boy in the Greek was given to English, French, Letno; and so far as we have gone we see no reason to Lamp; and so far an we have guffer in the upper reason to upprenend unil suffer in the upper clas ang and up by boys who have had previously a thorough grounding
Besides the Grammar Sohool the other chief departments are-

* The Mathematieal School, in whech clanses 1, 2 spend 9 hours a week, and 3,5 an average of 63 hours

8. The Commercial School (for arrthmetic, wring readung, geography, \&c) to which the classes 3,5
ghe an sverage of 6 hours a weok, and 4-10 half their school hours, minus a short time given to \%. The Naval School, in which some 50 boys are prepared for lean
II. Sureuce is a necesgary part of the colhool course.

Every boy in classeas 3-6 gives at least one hour a wreak durng half a year to Natural Philosophy (aral leoturem Whth apparabus and experiments), at an introduction to the Chemistry class, in which he stays at least half a year. Those who show any opecial eptitude are allowed to corytnine Chemietry, and promoted to the practional class.
Further, the boys in 3 and 5 learn Elementary Moahanres in the Mathematical School as soon as they are qualified by therr mathematical knowledge.
In classer 3, 2, Mathematical serenoa (Statiou, Dynmmice, Hydrostatics, Ophos, Astronomy) is studisd in prepiaration for the Universities, and carried to a high point.
The boys in class 10 give ons hour a week to very elomentery
matural ments)

III -IV. I append a copy of the time table, whech answers both these questione.

Ceriet's Hobpital, London.
-

Classeal School.

Modera School.

Lower School.

It appears from this that the tume guven to Natural Scrence is outside the regular achool houra, butas a matter of fact every boy in the pemor part of the school has to give one or two hours is week more than the genersl achool hours to some subject or other., All jumsor boys heve about 26 hours a weak in school, all semor boys from
27 to 29

V. Range of age of 1	-	-	$-16-19$	
$"$,	2	-	-	$-14-16$.
$"$	3,5	-	-	$-14 \frac{1}{2}-16$
3	4,6	-	-	$-12 \frac{1}{2}-142$

VI It will be seen that st general a boy's entrance into the Natrual Science classes depends on his progress in the Langrage Deraace classes depends on is put in the wey of volunteers who wish to begin earlier:
In general a boy who enters the Natural Pbilosophy class mill have learnt only anthmetac; by the tome he reaches the Chemastry clasa he will have learnt a book or two of Euchd and some Algebra Before he learns Mechamea he will have read gir books of Euchid, Algebra as far as quadratic equations, and some Rlementary Thigonometry
VII. Boys who ase preparing for a special career of examation, are often allowed to drop a large part of their classical work, and devote the tume to special branches of

Mathematacs or Scrence Thus, at present two boys who are prepaning for Cooper's Hill College have given ug Latun and Greek composition to stady Light, Heat, \&sc.

VIII Our experzence sa to Cltemustry and Natural Philosophy is very ehort, as the clases have been basely two years at work. We attuch o very high educational valne to the training in Mathematacal Scrence given in clasmeas 1, 2.
IX. Chemistry and Natural Philowoply are allowed no such weight Mathematical Scuetice in i, 2 has great weight, and for some of the more important dietrinctions of the achool as ranked on an equality whth Clasures.
X. Mathematical Scrence is teaght by (a), (b), and, from the nature of the case, bookwork, or rather working problems and exnmples on paper, takes a large proportion of blems and examples on paper,
the turue given to the subject.
Chermstry is taught by (a), (b), (c) in sbout equal proportions
Natural Philosophy by (a), (b) in the ratio of 3 to 1.
Elementary Mechanucs is tanght orally, whd examplea art set to be worked from books.
XL. There is no donbt that in all these cates oral temehng by
XII. In all these subjects the book 18 supplementary to the oral lesson, and is used to systematise and enforce oral teaching, and to supply problems and examples.
XIII. In the Natural Philosophy class no note books are used. In Chemistry and Elementary Mechanics they are used. In Chemistry and
XV. I refer you to Dr. Russell for some account of his.method of teaching Chemustry. [See thas ot the end.]

XVI By the permission of the authomties of St. Bartholomew's Hospital, our Chemistry classes are allowed to make nse of ther admirable laboratorv and lecture room, under the instruction of Dr. Russell
There is no museum or apecial scientific lecture room in the school Itself.

XVII Two of the masters voluntarily help Dr Russell by acting as repétuteurs to the Chemustry classes, and one of the Mathematical masters takes the Natural Phulosophy clase as one of the duttes of his post
XVIII. The Natural Philosophy class has been in exnstence only two years. Apparatus to the value of some 25 I. has ber the elementary lectures given. No special sum is allowed anmually
XIX. There is no workshop.

XX, I. Mathemstical Scrence:
(a) Todhunter's Elementary Meohanics.

Parkinson's ditto
Todhunter's Analytical Statice
Bearnt's Hydrostatices.
Parkinson's Optics.
(8) Hamblin Smith's Hydrostatacs.

Galbrath and Haughton's Hydrostatices and Mechames.
II. Natural Scrence:
(a) Deschanel's Traité de Physique.

Maxwell on Heat.
Tyndall on Heat.
(s) Balfour Stewart's Lessons in Elementary Physies.
Balfour Stewart's Science Prmer,
Bartir Manuai of Chemistry.
(Roseoe \& Gall occasionally)
(a) Semor boyy.
(B) Junor boys.
XXI. Books on serence surtable to boys are added from tume to tume to the achool library, on the suggestions of masters or boys.
XXII There is no such society.
XXIII. Progress in evary subject is tested by half-yearly examinstions, by written questions, and in the Chemastry class by pariodical examination of zote books.

XXV Progress in Mathematical Science is teated once a year by an independent examiner. thenr own teachers

XXVI -XXVIIL I have no answer to give to these questrons.
XXIX. The Mathematical department has had consaderablo success at Oxford and Cambridge. See Report of Schools' Inquiry Commasion, vol. III, pp. 56, 57, and vol IV, pp. 837, 838
The other olpsses are too young for us to be able to state any вuch romults of them.
XXX. The Chemustry and Natural Philosophy classes get their share of the ordinary prises A considerable dhare of the exhibitions to the Universithes has always been assigned to good mathemancianas. Hitherto no specnal roward has been given to Natural Scrence, but I am at present trying an axperiment which may be a precedent A Grecran, who showed a marked unchnation for Natural Serence, has been oroused the grestar part of hut classical and mathematacal work, and is attending leotures at St . Bartholomow's, Kensington, and the Collegge of Surgeons, on Physiology, Chemustry, \&e. If ho satinfios us that his aptatude and progrese are commensurate with those of his onntemporances, who are studying classucs and mathematios, I shall reommond hum to the Governore for an exhibution at Oxford ar Cambindge.
XXXI. I intend proposing to the Governors that wo should have sach sping a course of leeturee on Botany I should further wish that the jumur classee should have
at least one hour a week of oral instruction in some elementary physucal subject, tweated ao as to stumulate ther powers of observation snd analyss.
XXXII (1) Most of the boys lesve before 16; at pres sent there are hardly 30 boys in the school over 16 These found Classices and Mathematics the only (or at least the readiest) avenue to them
(2) Want of time to fit in Natural Scrence by the side of the need for French, German, \&c. for commercial posi-
hons, to which a very large proportion of our boys go ofr.
(3) Our position in the middle of London, which shats our boys off from the many opportunities that country boys have, of observing nature. Recently, when Professor Tennant gave a colurse of lectures on Geology, several boys contrived to form hittle collections of chaik fossils from Charlton, but it 18 obviously dyfficult to find for them many uch opportumities for observation of nature
(4) The fact that the teachers of the existing staff are mostly unacquainted with Natural Scrence, at any rate in such a measure as to be adequate teachers of it
(b) The fact that many teachers are without a clear knowledge of the best subyects and methods of teaching Natura sue for, or adding them to warrano our aibat methode of for, or adding them to, proved sujecta and methode of enformation and guidance on thre subject information and guidance on this subject.
XXXIII.-() The most obvious suggestion is, that the Colleges should offer more encouragement in the shape of scholarships and exhibitions, and that the Colleges and the Universities should put Scrence more on a level with other subjects in ther examinations.
(2) The universities might supply the deficiency of hughly-traned scientafic teachers by endowng a class of local sub-professors, who should further the teaching of Natural Sclence in the schools of a given district by lectures, exammations, and mspection, and by their advice and sug gestnons subectand method of teaching choice of apparatur \&re.
(3) If the scheme of orgsmed examinations of schools by the Universines (suggested by the conference of head masters) should be adopted, Natural Science would find its plice in such examinations.
XXXIV. The Government could assist in analogous waye :-
(1) $\mathrm{By}_{\text {r }}$ requiring natural science in its compentive araminations.
(2) By appointing local inspectors, and further by aiding in the formation of sohool museums and collections.
XXXV. My experience is but short, but I have found already that the plan often adopted of teaching Chemutry as the first subject, is not sansfactory I aftended an admurable course of lectures given by the late Dr. Mstthessen to s class of our boys, who had had no previous ecientific instruction in Natural Scuence It was obvious that most of it was lost upon them for want of familianity with emple serentific notions, and we found it necessary to instituta the Natural Philosophy class as an introduction to the Chemintry class.

Head M C Brle, M.A.*
Head Mastar of Christ's Hospital.

Chemastry Classes at Chrust's Hospital

There are cartan specral circumatances affecting these classee whach should be first stated: they are that the baboratory and lecture-room in which the classes are hald belong to St Bartholomew's Hospita, and are larger and very large classes have to be taught, and, lastly, thet only a small smount of tame is dervoted to this subject.
The chemistry class has been extabhshed about three years The late Dr. Matthiessen wras the first teacher, but the class wes hardly organsed when he died. I have had the honour of holdug the appominnent only about a year and a half, and consider the preeent eystem of tesching hitlle more than tentative. Rach half year considerable changes have been introduced, and further experience and consadaration wnll undoubtedly auggest other changes. The present report 18, therefore, only a aketch of what 19 now being done here, not an moconut of the established method of teaching chemistry at Christ's Hospital.

At the present tume (Outober 1872), there are two chemucal alasses, the jumior class, cansusting of 49 boyb, of the averape age of 149 , and the advanced class, consisting

of 21 boya, of an average age of $15 \cdot 3$. Beside these classes, three semor boys are working in my laboratory, and recesviag from me special mstraction.

Junuar Class.-All the boys in this class have, during the last half year, attended a class of elementary physics, and commenced the study of chemstry at the beginnung of the present half year. The teaching is at first of the most elementary kind; the simpler I have made it, the more efficient it has proved To commence with, I prefer illustrating, explaning, and making the boys porform some very sumple physical experiments, to purely chemical ones, choosing such as are of common occurrence in chemat operations. For instance, the effect of heat upon water, its nise of temperature, its conversion into a gas, and the recovery of the water from the gas (distilation); then passing on to the solution of bodies in water and the teating for them by eraporation. My special object being to begio with phenomena with which the class are famulur and really believe in, and then to pass systematrcally to others of a more technucal character. A boy cares Inttle about a chomucal reaction which he can hardiy underatand, except it be as a pyrotechnic display, or for some reason of that kind; but if he has seen some salt dissolved in water he will be intensely interested in seeing the solution evaporaved Afryess a platle phenomena of this sund rocovered ties of acids and alkelies phe shown the formetro the properties of acds and aikahes are ahown, the forman such as the sction of hydrochlone acid on chalk the experment hang of dyantancely, and the producte axpersmen collected and examined boys gan famiantr with chemical phenoreze and then boys gann familaanty with chemical phenomena, and then pass on to the boys take notes, time belng given them to wrate down in full the most ymportant pouts. After each lecture certain of the boys are called upon to give up their note-books, and these are looked over It is seldom that note-books, and nhese are looked over it is seldom that
the notes are not sufficently full and accurate, if not satisfactory, the boy has to render them complete by satisfactory, the text-book, or to another boy's notes for what 15 not in the text-book a vwa voce examunation precedes every lecture At urregular intervals, depending on the subject in hand, the bour ia devoted to practical work in the laboratory, jastead of a lecture During last haif year the junior class did no practical work, but this half a considerable amount of practical work is beng introùuced. I feel now hittle doubt it will prove very advantageous even to the youngest beginner to have m cortaun amount of practical work introduced into the course of mastruction.
In the advanced class the same system of teachong is carried on The text-book used 18 Barff's Chemstry The order of the sabjects in 1 t is followed, but the teaching 28 not a precise foliowngy of the eubstance of the book in $\mathbf{E} \mathbf{S}$ Carlos and Mr Mackie, both of them masters in Carist's Hospital, who have volunteered their services and have attached themselves one to each class They devote one hour a week to recapitulating to theur class the subject of the last lecture, questioning the boys on the subject, and giving them further explanation of requured.
The features of special interest in these classes ars perhaps the large classes taught and the ample accommo datron we have for teaching anch clasges A practical class of 50 boys 1 is perhaps unknown elsewhere. Notwithtogether and have a complete set of apparatus to themselves On a day when practical work has to be done, the boys go first into the lecture room, and are shown the exact apparatus they have to nse, and exactly how the experiments are to be mode, then they pass to the laboratory and make the experiments for themselves Order, care, and neatness are required from the boys and rigidy enforced, but without the slightest difticuity in the practical tescoing i have foand the greatest advantage to arrse from making the experiments as quantitative as possible. If they have nutrie acid to prepare I give them a known weight of wulphunc acod, and make them calculate out and then weigh out the requasite quantrity of matrate of potash. In atudyug hydrogen 1 have made them reduce a known weight of oxade of copper and weigh the water obtanned this gives a definte saterest to the experment, they appreciate the quantitative nature of the reaction; 11 with whet the crper cot hos been made and arates wpint of emulation to obtann the hest resalte
The senior boys not belongung to these clesses work independently in the taboratory, and follow out their
chemical ettudien, under my drection, in the same why at any other stuclenta would do

W J Rubsicle PR.S. Lecturer on Chemustry at St. Bartholomew's October 30th, 1872 . Hospital.

9. Wellington College.

General drrangements.

Question 1. How is the school clasalied ?-There are two masm divanons or schools, the "Classical School" and the "Mathematical" or "Modern School." These are quite parallel and equal in position and status. There is a sixth orm in each, and the prefects of the actiool may be undiffrently in either school Boys are not allowed to enter the Modern School uniess they are diatinetly qualifed to do so The masters are judges me to thin. Boye may be transferred from one school to the other at any point of ether sohool. Those whose classical work ts umportant to heir future (or who whl, eg, make clasales serviceable in exarminstions, as Woolwich, but wish to end theur work at school with a mathematical traumng, frequentily enter versely, good scholarn in Modern School have some clagsical lessons whth the clasercel axth There are 350 boys.-In Classical School one per cent, 8 in exxth, 191 upper nechool, 26 middle school, 13 lower sehool, in Modern School one per cent., 5 in suxth, 13 upper school, 15 ł midde "school For modern languages, mathematice, and aclence, the forms are rearranged into classes called "seta."

Classocal exxth into	$\begin{cases}2 \text { mathematical } & \text { weta } \\ 2 \text { German } & \text { " } \\ 1 \text { scrence } & \text { an }\end{cases}$
upper sehool into * (3 forms.)	$\left\{\begin{array}{l} 4 \text { mathematical } \\ 4 \text { modern language, } \end{array}\right.$
muddle achool into (4 forms.)	$\left\{\begin{array}{l} 5 \text { mathematical } \\ 5 \text { modern language ", } \end{array}\right.$

$$
\# \quad \begin{gathered}
\text { lower school into - } \\
\text { (3 small forms) }
\end{gathered}\left\{\begin{array}{l}
3 \text { msthematical } \\
3 \text { modern language"," }
\end{array}\right.
$$

Mathematical upper school fith ($\mathbf{3}$ forms $)$ (3 forms.)	$\left\{\begin{array}{l} 4 \text { mathematical } \\ 2 \text { malenca } \\ 1 \text { Greek } \end{array}\right.$

Middle achool - - 3 mathematical "
[Modera languages being basis of form division]
Questron 2 Is scrence a neceasary part of the school course, or is it taught only in epecial forms or departmenta - Necessary in the classical sixth. Neceasary in the mathematical sixth, upper school, and higheat fornn of mudde school. There is also a voluntary class me chematry (practical)

Question 3. Copy of time table 7-Enclosed.
Clabsical Sixth.

Mathematical School．Sixth and Upper Sceool．

－	$7-8$.	91－102，	102－31	12－124	228－14	$4-5$.	5－6
8	－	－	－	－	－	Dt．	－
\mathbf{M}	Di．	－	8 orak	Dr．	Dr	－	M．L，
Tu．	H	－	H．or L	H．or L	M．	－	M L
W	M	K．	－	M L	－	M L	8 or ck．
Th．	M．L	M $\mathrm{L}_{\text {，}}$	－	E or L	M	－	－
\mathbf{F}	M．	D．（9－10t	－	M L	－	$\mathbf{M .}$	M．
s	H or L	－	8 orgk	－	M．	－	－

Clabsical Upper School Form＿

－	＊	安	管	萝	家	9	4	9	
s	－	－	－	－	－	－＇	Di	－	－
M	DL	－	M	－	0	－	－	Hist	Hzerclas
Tu．	0	－	M	－	0.	－	－	0	Exarcise
W	0	${ }^{97}{ }_{0}^{104}$	－	Forg	－	$\underset{\text { orDr }}{\text { Mus }}$	Hist	M．	－
Tu	0	－	0.	－	0.	－	－	－	Brercise．
F	0	－	0	－	m．	－	－	－	Exarciso．
s	0	－	F ora	－	0	－	－	－	－

Clabsical Middle School Form．

－	$\underline{\$}$	豈	突	皆	\＃	$\stackrel{1}{4}$	9	
8	－	－	－	－	－	S D	－	－
M	D．	－	F	－	0	－	H	Exaroise
Tu	0	M	${ }^{104}{ }^{-114}$	－	IPt^{-13}	－	0	Rxaraise
W	c	－	c．	－	Genay	－4．45	0	－
Th．	$\left\{\begin{array}{c}7-7.30 \\ 0.80-8 \\ 0.8\end{array}\right.$	$\} \mathrm{m}$	$\begin{gathered} \text { IOt-11 } \\ \text { Drg } \end{gathered}$	－	${ }^{18 t-11} \mathrm{c} .$	－	－	Bxorcise．
1	0.	－	c．	－	R	F	0.	Rxerolso．
s	0	－	${ }^{10-11 t}$	－	0	-1	－	Map．

Mathimatical School．Middle School．

－	7－8．	Ot－10t	10t－112	11－184	12＊－14．	$4-5$.	5－6．
8	－	－	－	－	－	DL．	－
M	Du，	－	M L．	M L．	B．	－．	M
Tu．	L．	－	M L．	－	M L．	－	4－a
W．	H．${ }^{\text {m }}$	Dn	8．（urite motet）	－	M	M．L．	
Th．	M．	－	L．	－	M．L	－	
P．	M 2	－	M．	－	M L．	－	M．
B．	H	4	M 2		${ }_{.} \mathrm{H}$		

Lower School Form，\quad

－	\＄	㬝	蓠	袁	空	－	9	
M	DL．	c	F	\mathbf{F}	H	－	0	－
Tu．	Geog and Repetition	M	0.	－	0	－	Mod．Hist．	Exercsso
W	C	0.	c．	－	Ans	Hist，	Erarcise．	－
Th	Di akd Repetation	$\underline{1}$	c．	－	0.	Drawing	－	Exarcise．
\boldsymbol{T}	c	$\underline{1}$	7	F	0.	0.	C	－
S	Di．and Repetition	c	$\begin{aligned} & \text { Geog } \\ & \text { Mapp } \end{aligned}$	－	0	－	－	

Question 5．Summary of the number and average age of boys learning each of the various subjects in the Natural Science Classes？

$$
\text { Classical suxth - - } \quad 17057
$$

Mathematical school，ist set， 24 boys，average age 16 TR．m 11
［Botany was taught for about two years in head form of muddle school，has been duscontinued ］
Question 6 Amount of knowledge required before the study of science is commenced？－None specially but what 18 mpphed by having reached the form where it is begun In classical school this would mply four books of Euchd， alcebra as far as quadratic equations．In mathematical equet，abo ； equat a weok quadras generally learnt aurth book of Eachd and done quadratics．
Question＇ 7 Is any alternatave or choice of subjects offered？－In classucal school boys may draw matesd of attending science，only 4 out of 29 do so The other 25 choose scrence，it，muoh harder work and involving great trouble in writing out notes．In mathematneal school there is a chouce between Greek and Scrence Scence is
chosen in about five cases out of six．No cholce allowed hetween different departments of science．
What departments of Science are preferred？

a．By parents ？

By the boys？－Boys when allowed to choose between botany and German chose Germen in three fourths of the cases．The German was harder work，and mvolved much more preparation out
of school．

Question 8．What branch of serence recenves most atten－ tron in the school，or is found by experrence to have the greatest educational value？－Only the phyacal scuences， chemistry，heat，electricity，and a little astronomy，are at present taught．
Queshon 9 What werght is assigaed to scientifio attain－ ments in determining a boy＇s position in the school ？－ In classical saxth the scrence lessons are 1－15th of the clas－
sucal lessons in hours, but have 1-10th of the marics of the classacs.

Methods of Teachang

Question 10. What proportions of the lessons take the m reapectively of
(a.) Oral teachung and demonstration ? - Two of the thrse hours are lectures, generally experimentai Fine third is given to the working of numencal examples or written examinations.
(b.) Book work 7-Books used in preparation for examination Otherwise not more than twies or three tumes in the term
(c) Practical work? - With about two thirds of the first division two hours a week for five or ar consecutive weeks in the year. Electrical measurements the subject at present (to be extended) Four the subject at present (thers the voluntary cheboys are taken ogether, 10 boys in two sets. Each aet works If hours in the laboratory.
Question 11. Which form of lesson is found to be most effective?-Oral teaching accompanied by experments, at least as compared with book work.

Question 12. How ere text-books useif e g., Is book work stipplementary or preparatory to the oral lesson? Supplementary Notes are exseted, written from the leo tures and not from books; but in prepaning for examonation the use of text-books as encopraged.

Question 13 Is the use of note books encouraged (a) durng or (b) after the lesson, and to what ertent ?-Boys take notes dunng the lesson, and are required to bing them farly written out in a continuous form (and not maere memoranda) at the next lesson, of, when the lesson marked, and snnotated after each lesson.

Question 14. How far are boys required to prepare their own apparatus or exparments, or to collect apecimen during the $2 n t e r v a l s$ between lessons?

Question 15. Describe any method of teachmg some apectal branch of scrence which has been found successfus in your school?

Instruments of Teaching

Questron 16 What special provision (eg , laboratory, lecture room, observatory, museum, bokanic garden, \&c) 18 made for scientrfic instruction, and how is it used?
(Plans and descriptions of these, with statements of therr cost and an
One of the class nooms has a sink with water land on, a large table (mercury), and cupboards of apparatus Another has sumply cupboards of apparatus. inere is a laboratory With 10 places, and ennall anterroom, and a atore-room. The cost of maternals to etart the taboratory was about 60 , but leas than this would have sufficed the benches, furnace, cupboards, \&c., fitted up in the laboratory, cost 271. 18s. (The room existed before, and the gen had been land on to each boy's place)

Question 17. Number of assistants and curators, and annual cost?-None

Question 18. What apparstas, dragrames, and special fittriga are in use? what was their cont? and what sum is Nlowed yearly for new mstruments, and to replace materiala used, icc. ?-A farrly complete set of electrical apparatus; or chemsistry and heat little more than what is absolutely
 acrence clase-rooms have cost 211 18s. Ild.

In laboratory	- 17 星
Botanucal lecturee have cost	- 1111
Botanical disgrams	410
Other dagrams, about	20

Cuestion 19. Is there a workshop i and 17 no, how anc for what particuler purpose is it uaed 7

Quastion 20. What text-books are 1 us use? distinguishing between thoses for the junior sind semior clasass?-Barff's Chemistry, Orme on Heat, Deschanel's Electriaty (Everett) Chemastry, Orme on Heat, Deschanel's Electricity (Everet
Ferguson's Electricty (the Intter two by ennion chiefly).

Question 21. To what books of refarence, ather than ordjnary school books, have the neholary acceas? -There a hibrary, open to all the school at fixed hours, farly stocked with books on natural hustory and sclence. Any boy in th mathematical or clasacal sixth may propose books, whooh are uaually bought.

Question 22 Is there any ementald somety or olnb in connexion with the sohool) and if so, who compose it how is it worked, and what is its influence on the boya? There is a soctety called "The Natural History Society" It meeta once a fortmight One of the masters ia president There are 13 members and 25 assoclates, Many of tho masters are honoray members. Meetings open to school on introduction of members and assomates. Communion tions are made, objects exhibited, papers read by manterso boys indiscrumately Two reports have been published at intervals of about 18 months, sind sccounts of meetung appear in the School Magazine. The number of those present vartes from 40 to 80
[Boys have read papera on Mosses, Hawks, Photography, Fortnfication, Electracity, Snakes, Manufacture of Alum, Natural Hastory of Man. Masters (very much mora freguant than boys) lately, on Coal Mines, Spidera, Revent Discoverres in Sea Bottom, Entomology, Botany, How a Sprder spins its Web, A Walk to Finchampetcad, The Eye The Dolomite Formations in England and the Tyrol Modern ArtIIery, Gialla $]$

Tests of Progress.

Question 23. How often is the work tested?
(I) Note books of each lesson are looked over
(2) There 18 an examination every third or fourth week.
(3) There is an examination at the end of each term.

Questron 24. In what miy 3 eg. by examination of note books, or by orsl or writteri questions 3-All three

Question $25 \mathrm{~B}_{7}$ whom $?$ by the teachers of the eubjects, or by an independent examiner?-Twice in the year by the or by an mappendent examiner the whoe in the year by the independent exammer.

Teachers.
Questron 26 Is theresny difficulty in procuring competent science masters?

Question 27. Where are the best obtaned? Hava they been specially traned for the work; and ff so, in what does such trannug consust?-Por teaching electmety and heas Unversity men (especually now that more subjects aro introduced into the tmpos), who have taken good mathematical degrees and have given attention to the practioe of teaching 11 general. For chemistry it $3 s$ dearable for men
who have worked at the subject at school and at the UntWho have worked at the subject at school and at the Uni
veranty still to acquire mampalation in a laboratory, with special view to exhibiting therr experiments derteroualy.

Question 2R. What evidence of acientafio qualification tendered by candidates is found to be of moat value 7

Question 29. Can you state any results of serence teaching in the school? such aso-
(a) Success, profesanonal or otherwise, of mdividual acholars.
(b) Influence apon the general stadien and intellectual life of the school.
Several boys have done very credrtably in military and other exsinumations. No one has been very diesinguished. The work bas developed guyckly of late. The chemistry eaching 18 very hmited. The good eicect on the school undenable, buic for some ittle trme.
I untrodaced it into the clasorcal axath colely with the wiew of mocresaing the boys moterest in hfo (there is not view of to produce results in external examinations), and of mporing thear literary work by widening their intereate. I think it succeede in both respects. :
Question 30. Are any special rewards or encourngements (e.g exhibntions, scholarshipe, or prizes) open to succesuful 201 a for tro yeare tenable te achool at Wrof onch 201 a jear for two. years, benable at achool, at Woolwich, nor's prize eninully for examanainon ma portaon of a text.
book (prepared whthout assistance), and for practical work. Last subject. Last five chapters of Tyndall'a Heat, and to find in solution sux apecified metals I Prizes twice a year for term work and examination in acience to the head boys in this subject in the classical and mathematical schools Two governor's przes for botany, viz, (1) for collecting 40 plants only of at least 10 different orders, to be carefully dried, with descripme schedule of each, (2) for preparing fixed portion of text-book and describing on schedule plants presented to them.
Questson 31 What mprovementa do you think could be effected in the teachung of science in your own sohool?What we mameduately want is (1) a larger laboratory, with (2) more hours of attendance from the teacher of chemstry, and (3) a laboratory assistant [A monor necessity is that in the mathematical school we want one more grade and one more class room Each master teaching acience loses time unless he has a separate class room, but he can perfectly well use such clags room for different subjects.]
Questron 32 What are the principal obstacles to the teaching of science in your own school?-Ses 31
Question 33. How could the Unversities best assist science teaching in schools? The foundation of new schosclence teaching in schools -The foundation of new scholarghips and fellowships, ne in former times, to encourage new etrudies, and meet the increasing number of persons who, to the great benefit of the country, seek higher education,
would more than anything promote the devotion of years would more than anything promote the devotion of years mercial and somi-commercial ams But the diversion of existing foundations of that nature from literary studies would at once injuriously affect all schools as well as the Universines themselves, and not ultimately promote the best interests of science
Questron 34 Can you suggest any way in which Government could assist scrence teachung in schools, as, for example, by inspection? ? It is important that all the subjects of a by inspection ?-It 18 important that all the subjects of a
school education should be pressed forward with an oven school education should be pressed forward with an even
hand, and the relative values affixed to them should not be destroyed, though from time to time they may be carefully remodelled The inspection of any one single branch of work would destroy undesignedly, but steadily, the bsiance

Chabsical Drpartmbet. Clo

	Mondiz.	Turspay.	Wednramay.	Thimenday	Frimay.	Saturdat
$\left.\begin{array}{l} 9-950 \\ 950-10 \cdot 40 \end{array}\right\}$	Greek Testament and Thursday's copy returned.	$\left\{\begin{array}{c} \text { Horace, with } \\ \text { frash sopy. } \\ - \end{array}\right\}$	Codipus Rex with 40 lines Repetation, and Saturday's eopy returned.	$\left\{\begin{array}{l} \text { Horace, with } \\ \text { fresh copy } \\ \cdots \end{array}\right\}$	Cdapus Rex . with 40 hnes Repetation, and Tuerday's.copy returned	$\left\{\begin{array}{l} \begin{array}{c} \text { (Edipus Rex } \\ \text { fresh copy. } \end{array} \\ \hdashline \end{array}\right.$
1040-11 30-	Unseen, fresh Daghan, or Rom man History (Alternativea.)	Cheeró German, Botany, Extra Classuce, or Chemustry (Alternataves.)	$\left\{\begin{array}{l} \text { Composition } \\ \text { mithout } \\ \text { books; } \\ \text { Englah. } \\ \text { (Alternatives) } \end{array}\right.$	Cleero Gerrian, Botany, Entra Clasace, Chemastry (Alternatives)	Unseen, returned. Composition without books, retarned.	German, Botany, Extra Clasices, Chemustry (Alternatives.)
2 80-480 -	Frenah, Electrcity, Extra Classics, Extra Mathematics. (Alternativel.)		History -	- - -	French, Eleotricaty, Extra Clasales, Extra Mathemstucs. (Alternatives)	-
$\left.\begin{array}{ll} 3 \cdot 20-410 & - \\ 4 \cdot 10-5 & - \end{array}\right\}$	Mathematros or Exatra Clissicos (Alromataven.)	$\left\{\begin{array}{ccc} - & - & - \\ & - & \end{array}\right\}$	Mathematics or Extra Clasmaca (Alternstives.)	$\left\{\begin{array}{ccc} - & - & - \\ & - & \end{array}\right\}$	Mathematics or Extra Clasmes, (Alternativea)	-
6-6 - -	Englash - -			-	-	, -

Class x. C .

\cdots	Monday,	Tursmay.	Wedneqday.	Thursday	Fridar.	Sayumar.
$\left.\begin{array}{l} 9-9.50 \\ 9.50-1015 \end{array}\right\}$	Scripture and Greak (Arnold) Composition.	$\left\{\begin{array}{cc}\text { Sophocles } & - \\ - & \end{array}\right\}$	Fiorace and Repetition	$\left\{\begin{array}{cc}\text { Sophoclea } & - \\ - & \end{array}\right\}$	Horace and Re-- petition.	$\left\{\begin{array}{c} \text { Sophocles. } \\ - \end{array}\right.$
10.15-11.50-	- - -	Charo - -	$\cdots \quad$.	Cicero -	- -	Creero
11.90-1818-		German or Scienoa.	-	German or Sciaroe.		German or Soiencs.
230 ms 80 -	Frenoh or Scuenco	- - -	History- -	- -	Fremeh or Senence	一
8 soms	Mathematuos -	- - -	Mathematices -	- - -	Mathematica	-

Clabs 2 a.

-	Morday.	Turedax	Wedressday	Tguphdix:	Friony	Saturdar.
- 950 -	Mathematics -	Mathematics		Flistory - .	Mathematics -	Shakespeare.
$950-1040$ -	Mathematics **	- \quad -		- - -		Natural Scienoe (part of class)
10.40-11 30	Divinity	$\underset{(1045-11 \cdot 45 .)}{\operatorname{Lavg}_{4}}$	German	$\begin{aligned} & \text { Demosthenes } \\ & (10 \cdot 45-11 \cdot 48) \end{aligned}$	Virgl -	$\operatorname{Livy}_{(1045-1146 .)}^{-}$
1130-1215	-	Grammar	- - -	- -	German (part of class).	Go over antracted comparition, L. \mathbf{Y}.
230-8.80 -	Demosthenes	- - -	- - -	- - -	$\cdot \frac{\text { Repetition }}{(280-2 \cdot 45)}$	-
$330-430=$	French -	- -	Freach -	\cdots	(Latin Prose	-
480-5.	Go over corrected composition, L. \mathbf{P}.		Go over corrected composition, GI or G. P.	-	\sim	-

Clabs in. B.

* Lessong by extra masters,

Repeation three trimes a week in both clamea

Time Table of Natural Sciencer Clageeg in the Clabbical Departiment.

* Optronal and gratuitous on the part of the master, Mr Lewis, of Onel.

Clabsical Defartment,-Natural Histoby Time Tablez

Class 1 A.-Military and Civil Departaznt.

	Mondat.	Tubadat.	Wrdmesday.	Teuradat,	Fridat	Saturday.
$9-10.16$	Mathematucs -	Mathematics -	Mathematacs -	English or Scrence	Mathematses -	Mathematics
10.18-11.16-	Mathematies -	Mathematies -	Mathematics -	Mathematies -	Geometrical Draming	Latin, or German, or Scrence
1115-12 15-	Enghah or Scrence	French -	Franch *	Divinty - -	Finglesh or Scrence	Free Hand Drawing '
280-3'90	Franah - -	-	Mathematios		Latm, or German, or Sctence.	-
830-410 -	Mathematios -		Mathematices or Latin	- - -	Latin, or German, or Scuелсе	
4.10-5 -	Latin or Free Hand Drawing		Geometrical Drawmig or Laton.	- - -	Descriphtive Geometry	-

Clasa 1 B-Military Departinent.

-	- Mondax.	Turbday.	Wipdebmay.	Trunsday.	Friday	Satimpar.
9-10 15 -	Mathematics -	Finglish -	Mathematics =	Mathematics -	Euchd - -	Mathemstios
1015-1115-	Mathematics -	Mathematics	French -	Mathematica	Mathematics -	Drawing
11.15-19 15-	Geometrical Dramig.	Enghash -	Germaxa - -	Scuence - -	Mathematics -	Mathematica.
2 $30-390$--	German - -	- -	Drawing - -	- - -	French - -	-
$8 \pm 0-410=$	Scmpture History	-	Geometrical Drawing	- - -	Mathemutics -	-
410-3	Franch - -	-	Science - -	- * -	Engilsh fure Iaterara-	-

Clasai C.-Multary Depabtment.

	Mombar.	Turamay.	Wedonempay.	Thursoly	Famax.	Satumpar.
9-1015 -	Drawing - -	Mathematics	German	Draming -	Ifand	Erazah.
10.25-11 15 -	Enghsh - -	Freometrical Drawng.	English Eistory,	Scuense	Germin	Mathematicm.
1116-12:15-	Mathematies	Scrence	Mathematics	Mathematica	Geometrical Drawing.	
230-820 -	Inglish Language	- -	Mathemataca	* -	Mathematica	\square
$8 \cdot 20-410=$	Somptare History	- -	Mathematic	- -	French -	-
410-5	Mathematics -	- -	French --	- -	Mathematica	-

Class in A.

Class 2 B.

-	Mondax.	Tomedat.	Wedsmadax	Thriginar.	Fedotr.	Saxuedat,
$9-1015$	Divinty -	- -	Plan Drawing -	Drawing - -	Mathematics -	French.
$1015-1115-$	Finclud - -	Englash	Natural Scrence	Plan Drawing -	Mathematics	English.
11.15-12.15-	-	Mathematics	Encha -	Eachd	- - -	Mathematics.
230-820 -	Natural Science		Gexman -		Draming - -	-
320-4.10-	Germari -	- -	Geography	-	Freuch -	-
410-5	History - -	-	Fremoh -	- - -	History - -	-

	Monday.	Turspay.	Wmonraday	Tximbiat.	Fariay.	Saturday.
9-10-15 $-\left\{\begin{array}{l}\text { IL. } \\ \text { IV } \\ \text { A }\end{array}\right.$	Algebrs - Plan Drawing -	History	Suchd : -	Bistory French -	History - -	Geography. Drawng.
$1015-1115\left\{\begin{array}{l}\text { mil } \\ \text { iv A }\end{array}\right.$.	Arthmetric	Encha -Science-	Euciad Plan Drawiag -	German Arthmetres	Algebra - Drawing -	Geography:
$\text { 1110-12 15\{ } \begin{cases}\text { in. A. } \\ \text { iv A. }\end{cases}$	German - Mathemataca	Plan Drawing Erachd		French - Algebra	Freach German	Eacjial
	Divinty - - Divinty = -	-	Scíence Axntumetic		Algebra - -	-
$820-410-\left\{\begin{array}{l}\text { inc. }{ }^{\text {A }} \text {, } \\ \text { iv. }\end{array}\right.$	Algebra - -		Drawing - Hustory		Plan Drawigg Algebra,	-
$4105-\left\{\begin{array}{l}\text { mil. } \\ \mathrm{nv.}\end{array}\right.$	Drawing : -	$=\quad=$	Arithmetic	- -	Scuence - -	-

Tine Tabla of the Science Mafter in Military and Cryil Departuent
Science,

\square	Moxdar.	Tumsday.	Whdirsmax	Thuraday	Friday.	Satumax.
9-10.15	- -	4 B Class	4 A. Class	1 A, Class	-	-
10.15-11 15.	S B. Class	4. A. Class	28 Class	1 C. Claas	2 A. Class	1 A Class.
11.15-12.15-	1 A. Class	1 C. Class	2 A. Class	1 B. Class	4 B. Class	-
280-820 =	2 B. Class		8 A. Class	- \quad	1 A. Class .	-
$880-410$	- -	-	s B Clas\%	- -	I A. Class	
4.10-5	- -		1 B Class	- -	3 A. Class	-

Question 4 Summary of hours per week given in each oless to different subjects (If playtume 18 utized for preparation or practical work, this should he shown so-
parately).-See Trie tables, enclosed, in answer to Q. III.
Sir boys in classioal department are taken, two at a tme, three evernngs weekly, two houre each tume, $430-630$, purely voluntary gift of has thme by the accence mastar, for practical work. In all departsments of the College much time is given out of school hours to preparation of work of overy kind. All boys are in school $2 f$ hours a week. Hardworkung boys in the upper classes would give 25 to 30 hours a week to preparation out of achool The 1 dlest boarder m the lowest clase must give 14 hours a wreek, in the evenmpe, to preparation under aupernsion in large room.
boys work in their own study without supervision

Questions 5 . Summary of the number and average age of
boys learnung each of the various subjects un the natural acience classes ?
Classioal Department:-

Clasaoal Department:-		Bara.	Average age.		
Clasa I.	Eleotrioty	6		yoars 1	months.
	Chemartry	6			
	Botany	20	17	-8	
" II	Chemustry	18		-9	\%
\checkmark III.	Botany	8		${ }^{*} 6$	N
Latum clasa.	Chemistry Chemustry	12		${ }_{*}^{*}{ }^{6}$	$\stackrel{*}{*}$
Military Department :-					
Clasa İ		soun			
		39 30		youra 0	montha
$\stackrel{1}{4}$ III.		30 29	16	$*$ $*$	*
" IV.		29	16	1	

Questron 6. Amount of knowledge requured before the study of sclence is commenced?-In clasgical department such an amount of knowledge is required as places the boy in some one of the four hughest out of the nine olasses, or in one of the two higher of the three divisions of the Latn class.
In the military and civl vepartment a vertana amount of knowledge of mathematics, viz., Euclid, four books: algebre, to binomal theorem; arithmetic, all the princupal rules A boy cannot well have got to Class IV. Whthout his knowledge.
Queshon 7 Is any alternatuve or choice of subjects offered 1-None, except such as appeara in the tume tables, see under Q 3. There is a settled order of subjects, especially in the military department, to meet the average espacity of boys in the classes taught
What departuenta of science is preferred?

${ }^{a}$ By parents?

Question 8. What branch of scrence recelves most attenton in the school, or as found by experrence to have the greatest educational value?-See tume tables, under Q. 3 . The nubjects chosen are practically detesmaned by the eremmations for which our boys are preparing, eg, elossical anamainons for which our oys are preparng, eg, elassical
department for acholarships at the Unveraties and for Indian Civil Servoe.

Military Department for Woolvech and Cooper's Hinl.
The miltary hoya are first taught the chief facts and pruncuples of physacal screace. Chemustry is not taught thll a boy reaches the first class, and then it is atudied thooretically and practically. In thus clase chemastry and heat are altermative antyects with magnetasto and electrictry, or with geology and phymacal geography.

Question 9 What weight id assinged to scientifio attamments in detercinimg a boy's position in the school? In classical department' 7 per cent in marks of half year, in examination $12 \frac{1}{2}$ per cent. in milhtary department not quite 20 per cent

Methods of Teachung.

Question 10. What proportions of the lessons take the form respectively of-
(a) Oral teachng and demonstration ?-Speaking generally, especially of Mintary department,-$\left.\begin{array}{l}\left(\begin{array}{l}a .) \\ b \\ b \\ c\end{array}\right) \frac{1}{2} \\ 0\end{array}\right\}$ d
(b) Book work?:-But this varies with subject, and 'whth master, e g, in botany, prectical work is confined almost entirely to summer months, when at lesst half of every lesson is (c) practical. In- winter there would be occasional microscopic demonstrim hon.
(c) Practical work 7-The solence mester in the classicsl department makes lessons an electricity, princepally (a) oral and demonstrative, with (o) practieal snd in chemistery makes two lessons out of three (a.) oral and idemonstrative, the third lesson catechetrcal.
Qivestion 11. Whuch form of Iesson is found to he most effective?-Speaking geverally, the combination of (a), (b) or (c.) al Question but much depends on the nature of the subject.and the character or genjus of the teachers; and subjecta and the character or genus of the teachers; and When diverse formas of teaching are used as supplementary to each other, it 18 indpossible to contrast theur efficiency.
Quesinon 12. How are text-books used?
work supplementary or preparatory to the oral lesson? Masters and methods differ, subjects differ also. One master would reply, chaefly preparatory; both for first (oz demonstrative) lesson, and also for last (or catechetical) lesson. Another master would say, sumply preparatory except so far os useful for revision of work before exam nation. The head master of the military department, a man of great experience and great wisdom in teaching, who himself taught actence for many years before any special master for science was apponnted, says. "The sub " ject matter of each lesson should generally be explaned in advance; it is then learnt from text-books during "preparation hours, and tested at the next leston time "If any points are not clearly understood, they are agann "explained, and notes made by the boys."
Question 13. Is the use of note books encouraged (a) durmg or (b) after the lesson, and to what extent? Mesters duffer in thewr method slightly - -
A. "Both during and after their lesson, to a con-
a anderable extent" (a) and (b)
B. "Chieny dumng lesson, as supplementary to textbooks" (a) bnly.
C. "Short notes are taken durng lesson (a) Fuller notes and explanations are made in note-books after the lesson" (b)
Where notes are taken after the lesson (b), it is that they may subsequently be produced to the master
Question 14. How far are bpys required to prepare their own apparatus or experwaent, or to collect specimens during the intervals betwreen lessons?-Experments are made in the presence of boys durmg lessons by the master; and aye also made by the boys in the presence of the master at the practical voluntary work
Apparatus 18 not prepared by the boys except for botany, and for botany it is both for lessons and for holrdsy teak expenments are made by the boys in the preaence and experments are made by the boys in the presence and
under the superntendence of the master, but usually by the master humself

Question 15. Describe any method of teaching somé specal branch of serence which has been found succeasful in your school ?

Instruments of Teaching.
Question 16 What special provision (e.g., labovatory, lecture room, observatory, musenm, botanic garden, \&c) sa made for scientrific mastruction, and how is it used ?
(Plans and descriptions of these, writh statements of their cost and annusi expense, should, if possible, accompany this retarn)
There is an excellent laboratory and lecture-room for the miltary department; an excellent lectrure-room for the clessical department, whith will gradually acquare many of the apphances of a laboratory. There is a maseum, partly caranice in contents and harangernent, and there is a three years old, the botanical gatien just 12 months.

Questron 17. Number of ascistants and curatore, and annual cost 7-The maseum in in charge of a meident member of counal, without salary A master, hately decersed, was curator, and a yearly grant of 60l. had beea voted hum by the councl
The botanical garden is in charge of the natural hustory master in the classical depsriment, whthout ealary.
Queston 18. What apparatus, dagrams, and apeaina fittings are in use? What wat their cost ? and what sum in allowed yearif for new anatrumenta, and to replece maternals used, so ? The necesaary apparatus and diagrame are fully provided for the military department, and are being gradu ally provided for the clasical department, into which science Wras introduced only three years ago No yearly mum is allowed for new nostraments or the replacement of maternais, bat grants of money are made by the councal when asked. for
Questron 19. Is there a workshop? and if so, how, and for what partioular purpose is it used ?-There is no workghop.
Queatron 20. What text-hooks are in use ? dustinguiahing betwesn those for the jumor and senior classes?

Classical department
Roscoe'a Elementary Chemstry -Juniors.
Harcourt and Madan'a Practacal Chemistry,-Beniore.
Deschanel's Electricity -Jumors.
Ferguson's Electricity,-Seniors.
Balfour-Stewart's Elementary Pbygos,-Juniors
Balfour's Elements of Botany,-Junsors.
Balforr's Manual of Botany.-Semiors.
Muhtary department -
Balfour-Stewart's Elementary Physics,-Jumors.
Ganot's Physict (Atkinson)-Seniors,
Roscoe's Lessons in Elementary Chemstry -Junions.
Fresenus' Qualitathve Anslysia; Liveing's T'ablen Senuors
Jukes' School Manusl of Geology,-工uniors,
Lyell'g Elements and Principles-
Lyell's Elements and Princuples.-Seniora.
Questron 21. To what books of reference other than ordinary school books, have the scholert access?-There are a few books of reference in the museum and oolloge library, perhape, 120 volumes, but the collection, though growng, is at present inadequate.
There are a few screntificvolumes afeo in the honse library of most or all of the boarding houses.
Question 22, Is there any scmentrfic somety or ciub in connexion with the school? and if so, who compose it how 18 it worked, and what is ita influence on the boys? There is a natural history socrety.
Ten masters (of whom three are working membess) and 40 boys. The aecretary is a boy
The meetinge are weekly or fortaightly duning the winter six months; and in summer there ara fortnightly excur-

Subscription annual, 3s. with entrance fea, 2s. did. Infiuence in good decidedly; but doen not act on a large number.

Testa of Progress.

Question 23. How often is the work teated?-Once a month, examination by master; once a year, examination by examiners appontred by the councl of the college.

Questron 24. In what way ? e.g. by examination of noten books, or by oral or written questions 3-Orally, in part ; by written questions mannly, as regards the examiners apponnted by the council.
In the same way, and also by exammation of note-books by our 0 Wn masters.
Ouestion 25. By whom? by the teachers of the subjects, or by an independent examuer?-By both. See 24 .

Teachers.
Question 26. Is there any difficulty in procunng competent science masters?-Great difficulty in mecuritig downmght good men:-

Ours is not a nich rechool, and wo cannot compete us galantee with Eton, Kugby, Herrow, and Wulchester.
The demand in schools tor teachers of phyticm, chomustry, Sce, hase been very great for the last few years. Posobly there may be a lul m the demand but thers is no lull yet.
3 In appotating two out of onr three teachers of science ut has been necessary to eecure firethet scrence it has been necesary to cecure frot-rate of science; but apart from this noceaity in two out of thiee apponitments, I beheve that a merentific and thorough knowledge of mathematice is the
best basis if not the sine qua non of a scientific and thorough teaching of physics and the natura actences.
4. The Universities offer now-s-days so attractive home for men of science, whether married or unmarried, combining the advantages of ample leisuve, far emolument, splendid collections from museums and hbrares for study and observation, that even large pubise schools, in pleasant positions, tind it hard to attract first-rate teachers of science, except the man himself has a genuine love for boys.
Question 27 Whers are the beat obtained? Have they been spectally traned for the work; and if so, in what does auch trasning consist?-The best men are to be obtanned at tha Universities, or periaps Univeraity graduate with some subsequent experisnce elsewhere Takng ou present staff of three teachers of science in the order of they oining our staff -
(A) Was aeventh wrangler a few years ago, and aftor taking his degree attended several courses of the Cambridge Professor of Botany, attended chemical lectures, and practical work in the chemica laboratory of St John's College, Cambridge.
(B.) Under Professor Maine, first class in mathematic in moderations, and also in the final schools, first clasa in Natural Science, senior Mathematical Scholar in the University of Oxford, Fellow of laboratories under Professors Bradie and Clutom in the Christ Church laboratory and subsequently in the Christ Church laboratory, and subsequently
(C.) Scholar of Sudney Sussex College, Cambridge atood 25 th in the list of successful candidates for the Indian Civil Service, scomns the $111 \operatorname{lig}^{2}$ mark ever scored in Natural Science (927 out of mark evar acored in Natural Science (927 out of 1,000 maximum), Wras elected to an exhibition at lat class of the Natural Science Tripos at Cambridge; and since \boldsymbol{B} A degree, has lectured in various branohes of science in London
Question 28. What evidence of scientific qualification tendered by candidates is found to be of most value?Success in the University examinations, auccessful expentence in imparting his own knowledge, consensus of knowledge needfud, the porrer of imparting at, and the gaft of anspuring others, and the personal qualities of the man humself as sean in personal interviev, after carefus investhgation of testimonuls and confidentral communication with trusted friends
Questron 29. Can you state any reanlts of sorence eachng in the sohool' such as-
(a) Success, professional or othermise of indindua scholars ?-Distinctions in the competitive examinations for commissions in the Royal Engineere and at the Civi Engineenng College at Cooper's Hill, have shown again and agan the practica reanits of scienoe teachng la the mulitary depart ment. As regards the classical department sounnce is of recent introduction (August 1869) but R Obbard went in straight from 1 A clessical to the Indian Civi Serrice examination 1871, scored 476 in natural solence out of 1,000 maximum, after only nine monthas work, and atoad 16 th in the euooessful list
(b) Influence upon the general studnes and intellectual life of the sohool?
Question $\$ 0$ Are any apeotal rewarda or encouragements (eg. extubitions, Bcholardips, or prizes) open to auocesastul atudentsor science in the school?-T hers are prize after tho Cirnstmas exammation in both departments, thers have been special prises for herbaria of boys own collection, and for excellence in phyaioal geography; and the "Old Cheitomisn Sometry gives a apeaial prize for proficienoy in physical science.

Questum 31. What improverpents, do you think, could be effected in the teaching of acience in your own school - Arapler apparatua in some respects

No other amprovement seems posable, except by giving "more tume " but that could only be gaven at the cost of other subjects.
More showy results mught of course be produced by selecting three or four boys, turning them away from othe work, and concentatang all therr other time on scrence.
The selected boys would genarally get a soholarshpp, but their education would be one-sided, and the school organisation would suffer
Quevtion 32 What are the proncopal obstacles to the
teaching of sclence in your own school?-The competing clams of other subjects

Question 33 How could the Unuversines best assist scienco teaching in schools?

1 By offering more scholarships for knowledge in this subject
2. By offering more fellowships for the same subject, as students of of definite ulterior prospects deters many lines of study
Question 34 Can you suggest any way in which Government could assist acience teaching in schools, as, for example, by anspection?

Not by mspection, for which work the Unuersities are fitter, beng less bureauaratic, more elastic, mose truly educataonal.
2. In examination for Civil Service apponntments, at home and abroad, science mught be always an ingredient But as a test of youthful intellect, science seems to the more capable of rapid cram than mathematics or lingustic subjects, and to that extent less trustworthy as a mere test
Question 35. Have you any othex information to give or auggention to make, likely to be helpful to the Commissioners?

Oct. 26th, 1872
T. W Jex-Blake,

Head Mostox.
11. Ceartrriouser School. General Arrangements.
Quegtion 1. How is the school classified ?-The school is
divided into 11 forms, vz_{1} -

6th	
Upper 5th	U Uperer achool.
Under 5th	
Upper 4th	
Under 4th	
Upper Shell	
Upper 3rd Under 3rd	Under achool.
	-
2nd	
$18 t$	

Questron 2 Is science a necessary part of the school course, or is it taught only in special forms or depart-ments?-Scuence forms a part of the oblugatory school course from the 6 th form to the Under 3rd melusive.
Question 3 Copy of time table P
Monday 1045 - 1145 a.m Upper 3rd.
", $2145-1230$ " Upper Shel

Wednesday $\begin{aligned} & 430-1030 \text { a.m Lower Shell }\end{aligned}$
" $1045-1145$ " Lower Fourth
Thursday $1145-1230 "$ Ls on Monday ${ }^{\prime \prime}$
Fruday - as on Monday
Friday - as on Tuesday
Saturday - as on Wednesday.
Question 4. Summary of hours per week given in each ciess to different aubjecte (If playtime is unimed for preparation or prachical work, this should be shown separately - One subject only 18 taught in any given quarter. therefore, the two hours of each week are given exclusively to that one aubject
Question 5 Summary of the number and average age of boys learnung each of the vamous subjects in the Natural Science Classes?

Upp 6th Form

Upper 5th
Upper 4th "
Under 4th
Upper Shell
Under Shell
Upper 3rd

- 21 - - 12

Question 6 Amount of knowledge required before the Ntudy of science 18 commenced ?-For the braxches of Natural salonce which are for the most part descriptive
(Botany, Geology, Physiology, \&cc.) a knowledge of mathematics is not required, but there ts much difficulty in teaching these, owng to the multaphicity of hard names, which the memory cannot retan easily, if the mind succeeds in graspuig them For the branches of Natural Selence which are grouped under "Natural Philosophy," vz..

Chemustry, Electricity, Heat, Optics, Acoustacs, Hydroatancs, zc., a knowiedge of Arihmetic, nncluding valgar and dechmal fractions, and of Algebra, including simple equations, and of elementary Geometry, 18 necessary. Some knowledge of Latn and Greek ise also desurable for the explanation of terms It is obvious that the boys in the

Questron 7. Is any siternative or choree of subjinota offered ?-No, not at pressant Some communucation has been held with the Universithes, who have undertaken to supply the schools with a curriculum of Natural Science study, elementary and advanced It is hoped that we shall thus be provided with an authoritative recommendation for our guidance At Cambrige Dr Humphry, Professor Laveing, and the Rev, Coutts Trotter have the matter in hand
What departments of science are preferred ?-(a.) By the parents. (b) By the boys
Question 8 What branch of science recelves most attention in the schiool, or 18 found by experrence to have the greatest educational value? -Our experience 1 a not sufficient to pustify an answer to this and the preceding questions (a) and (b) of 7. As yet only Botany and Chemstry have been attempted.
Botany was taught in the stromer quaster. It was not a popular subject.
Theoretical Chemistry is the subjećt for this quarter. It ${ }_{2 s}$ popular with most of the boys. Practical chemustry must wait for the completion of the laboratory.
Question 9. What werght is assigned to scientific attainments in determining a boy's position in the sebool?-The amount of acquirement would not at present justify us in attachung any weight to screntific attamments for determining the position in the achool, bat as we make advance this will be remedred

Methods of Teacheng

Question 10. What proportions of the lessons take the form respectively of -
(a) Oral teachung and demonstration? -Each form has two lessons a week, each lesson being of one hour's duration.
(b.) Book work 3-For the, semor boys. Two lessons in suecession are devoted to oral teachang and demonstration The rest of the time is occupred in answerng questions, oral and manuscript. For the jumior boys. One hour of oral teaching and demonstration Half an hour of book work
Half am hour of questions, oral and manuscript
(c) Practreal work?

Question 12 How are text books used 3 eg Is book work supplementary or preparatory to the oral lesson?Text books are used as supplementary to the oral lessons
Question 13. Is the use of note books encouraged (a) durng or (b) after the lesson, and to what extent ?-Short notes may be taken during the lesson At the end of the notes may be taken durng the leason At the end of the then looked over and corrected by the master.
Question 14 How far are boys required to prepare their owa apparatus or expernments, or to collect specmens durng the untervals between lessons ?-No fachities as yet for practical work
Question 15 Describe any method of teaching some apecial branch of scence which has been found successful in your school ?-The natural selence master finds that the plan above given 18 effectire; but he wishes for the addition
of opportunities of practical work of opportanities of practical work

Instruments of Teachang.

Question 16 What special provision (e g, laboratory, lecture room, observatory, museum, botame garden,
made fang
(Pians and descriptnons of these, with statements of ther cosis returni)
As yet only a lecture room, wnth a limited chemical spparatus.

Queshion 20 What text-books are in use, dittenguishung between those for the junior and senuor classes ?- Senio and juanor, Buscoe's Chemustry,
Guestron 21 To what books of reference, other than ordmary echool books, have the secholars access? T-There will be a good supply th the general hbrary
guestion 22 Is there any scientufic society or club in connexion with the school 3 and if so, who compose it how 15 it worked, and what is its unfluence on the boys? No.

Teuts of Prognoss.

Queshon 23 How often is the work tested 1-Frequently. Question 24 In what way i e g., by exannination of note books, or by oral or written questions -- By revialon of note books, and by oral end matten pueston.
Question 25. By whom ? by the teachers of the subjects, or by an adependent examiner ?-By the Natural scienoo master
It is oontemplated that the school shall be examined by
duly qualfied person from the outssid.

Teachers

Question 26. Is there any dufficulty in procurng oompetent ncience masters ? -1 have found none as yet. 1 masterva) is recosing attention tha provision
Questoon 27. Where are the best obtained? Have they been specially tranned for the work; and if so, in what doos buch tranning consist ?-The Natural Sclence mastar now it Charterhouse came from the Londos University, and waa trained under Dr Wullhamson
Quesation 28. What evdence of scientific qualffostion tendered by candidates in found to be of most value? -The value of endence in such a case depends on the oharacter no oue would appont a master math presume that no whth the witers of wich doumente. thith the writers of such documenta.
Question 30 Are any special rewards or encouragements (eg., exhbititons, wcholarships, or przess) open to succesenful etudents of scoence in the school ?-An exhibition is to be given ennually for proficiency in Natural Science It will be of the value of 801 . for four years, and may be held at an Unuversity or anywhere else, provided that the holder satusfies the governing body that he is engaged in preparatron for some carear in lufe which meets their approval.
Question 31 What mprovements, do you thunk, could be effected in the teachung of science in your own wchool? -There 18 room for rauch unprovement, as will be gathered froma previous answers Atiempts are beng made to promote advancement
Question 39. What are the principal obstacles to the teaching of science in your own school 7-I know of none but those that have been already specified

Quegtion 33. How could the Unuversities best ansuat scrence teachung in schools ? -(l) By offoring scholarthups for competition.
(2) By traning qualified teachers.
(3) By providing examiners.

Question 34. Can you suggest any why in wheh Government could ansstst science teaching in schools, as, for Ex ample, by mspection ?-I think that the governing body of all that is requured for the advancement of sclence teaching.

Wh. Haig-Brown,
November 4th, 1872
Head-master.

12. 'Glifton Colnege.

Geveral Arrangements.
Questron 1. How is the school classified?-The achool conessts of three divisions.-

1st. The clasancel arde, contanning 229 boyy.
3rd. The junnor school, contanng 114 boys.
Questron 2 Is acrence necemsary part of the school conrse, or is it taught only m special formus or departmeento? VI and Venoe that is, the four higheat formo of the clasacel ande. These forms contana 99 boys, of whom 31 ane learning scenace

In the remsinning forms of the classical ende and through out the modern ende, as also in the two higheat forms of out funior uchool, it is tatught, as is master of conrme, to our boys without excepticon.

This part of the sehool comprise 294 boys.
In the three lowest forms of the janior school, conmoting of 60 boys between 10 and 12, years of age, scuence n not taught.
(2.) In the VI. and V. forms, both clasacal and modern, boys who show epecial taste for serence or who are likely to require it for professonal purposea, or for bome comb petituve exammation, are also taught ma_{a} special clasce so arranged as to form altexnatuves for mome other parto of the school roxtine
(3) There are also voluminery ciseses donng practical work
in the Chemical Laboratory, Botany, Geology, Physical Question 3. Copy of tume table? -Thme table as Geography, Zoology, and PhyHology
Scrime of Wors.

Clausical Side.					Jmior School.	Modern Side.
Daya.	Hours.	Sixth and PHfth Porms.	Fourth Porms.	Fhurd Forms.	Fourth Forms	All.
Monday	$\left.\begin{gathered} 9-10 \\ 10-11 \\ 11.15-12.15 \\ 4-5 \\ 5-6 \end{gathered} \right\rvert\,$	Divinity. Classics or spectal acience. Do. do Classics. Mathematics	Diwnity. Classics, Clasencs Dratring. Exench.	Divinity, Classics, Classics Phynces $-\quad$ Classics	Divnity English. Arithmetic Clasbics. Classucs	Divinity. History Mathematics. Phystcs Mathematics.
Tuestay	$\left\|\begin{array}{c} 9-10 \\ 10-11 \\ 12.16-12.18 \\ 4-5 \\ 5-6 \end{array}\right\|$	Classics Do. Do Do. Do.	Classics Do Chemastry. Classica Classics.	Clasares History. Classes Classics. Classics	Arthmetuc. Claserce. French, Classics Claselce	Chemustry French German. History. Mathemathes
Wednesday -	$\left\|\begin{array}{c} 9-10 \\ p 0-11 \\ 21,26-12.15 \\ 4-5 \\ 5-6 \end{array}\right\|$	Classic Do or spectal science, Do, do. German, or natural sotence. Mathematics	Classics. Classics. Classics Mathematics. French.	Classics Classica French Mathematics Physzcal geography or botany	Classacs. Geography Arthmetic. Classics Classics.	Clasbles (Latin). Mathematics Drawing German. Geography
Thursday '-	$\left\lvert\, \begin{gathered} 9-10 \\ 100-11 \\ 11.15-12.15 \\ 12.15-1.15 \end{gathered}\right.$	Classies. Do. Do. or specal acience. Do. do.	Classics. Classics. Engish and classics - Mathematace	Classics. French, - Englush. Mathematacs	Anthunetre Classics History. Clagates	Physics Mathematies. French German.
Friday	$\left\|\begin{array}{c} 9-10 \\ 10-11 \\ 11.15-12,15 \\ \frac{45}{3-6} \end{array}\right\|$	Clasgics. Do or speczal sctence Do, or ditto. History Mathematics	Classics and hustory. Classics Classics Mathematics. Classics,	Classics. History. Drawng Mathematice. Classess	Classice French. Classics Clagses Classics.	French Classics (Latun), Chemstry Geography Mathematics.
Saturday -	$\left\|\begin{array}{c} 0-10 \\ 10-11 \\ 11.15-12.15 \\ 12 \\ 15-1.16 \end{array}\right\|$	Englush French. Classics, or spectal actence German, or scuence.	Mathematics. Physict, Classics. Chassce	Mathematics Geography. Classics. Clamstes	Drawng Physces, or physsology ar botany. Clasancs Classucs	Freach Classics (Latn). German. Englash
Sunday	10-11	Divinaty	Divinty	Divinity.	Divinuty	Divimity

Those on the Modern Side who do opectal sctence have about the same amount of specral lessone as those on the classical, in additiox to the four houre grven above
Question 4. Summary of hours par weok given in each class to dufferent subjectis (If playtume 15 utiluzed for preparation or practioal work, this should be shown soparately).-
(a) Classical sude. VI. and V., first and second division arranged secording to proficiency in acience.
Do. do. upper and lower IV do do. Each division, two lectures every week
Modern sude First, second, and thard diviaion arranged according to proficiency in scrence. Elach divason, four lectures overy week
Jusior school. In one division, one lecture every weok
Spectal science elasses. Consasting of boys in the VI and V. forms, seven or enght hours of class teaching every week in addition to the lectures tnentioned above.
(1.) Boys workung in the chamical Laboratory are obluged to attend not less than three houre overy week; many go much more than that. The hours of laboratory work are generally taken from what in our terminology is called "out-of-school hours," designated in the question as playtime.
The remanang voluntary classes manthoned under question 2 generally meet once a weck. In the case of Botany and Geology
the lessoms are supplemented by excursions from tume to tume on half-holidays. In all the parious clasees the boys are expected to keep note-books, and to give some time to the study out of school, elther as preparetion for the lession or in the way of reading afterwards. It should slso be added, that of Voluntary Botany, Geology, and Phyencal Geography classes, it seldom happens that more than two are going on during the same term, that the Zoology and Physiology classes are confined to a small number of the senior boys, sud that none of these voluntary classes movolve any extre payment ercepting the work in the chemucal iaboratory
We also possess a small physscal laboratory in which a few boys do some work with the physacal master, but this is not yet
sufficsently organised for me to be able to
seport upon it more defintely
Queation 5 Summary of the nomber and average age of Quetron 5 Summary of the nomber and average age of
boys learing each of the vanous subjects in the Natural boys learning each
Science Classen?

						EOys.	Averace
Classical	VI, and V.		- 1st division			19	16
				2 d	3	12	16
*	IV.	-		lst	*	24	141
		-		$2 d$	*	43	141
*	III.	-		1 st	\pm	33	14
"	3	-		2d	*	30	13

 of a boy of 12 .
Question 7. Is any altarnative or chorce of subjecta fiered 3-it has happened in a few cesses that we have prewanng fors to do physiology nnstead of physics, or, when attention for a hitto whie only to thoge branches of sience which they intend to preant for axamination but onr wule is to make all boys in any particular part of the school do the subject prescribed for that drvision.
What departments of acience are preferred
a By parents ${ }^{2}-1$ have never consulted parents on the
aubject of their preference as between one branch of acmence and another, and I should consuder their apunon as a general rale quite worthless
b. By the boys?-The preference of the boys, oo far as they state any, is generally determuned by some acondental carcumstance. I should say that, on the whole, judging by the examination papers which pass through my hands, boys find physics somewhat easier than chemiatry, so thst, of the two, the duller boys would probably be found to gave the preference to the former study.

Question 8. What branch of science recenves most attenthon in the achool, or is found by experience to have the ereatest educational value ?-'To the younger boys we teach elementary physice, physical geography, or botany. These subjects have been taken in turn. The elder boys learn
chemistry and physics So far as I have been able to arrive at any definte opinion, I consider this to be the best arrangement of subjects from a purels educational ponit of view, provided that it is supplemented, as with us, by an elastic bystem of voluntary clastes to fachlitate the developnent of individual tastes.

Questron 9 What wesht is asaigned to scientafic attainments an determung a bay's position in the school ? Marks are assigned for each hour of ecmentific work just as for any other kind of work, and on the same scale, our principle being to sward a fixed number of marks for every hour's work whatever the subject.
Methads of Teachong.

Question 10. What proportions of the lessons take the orm respectsvely of-
(a) Oral teaching and demonstration?-A precise and definte answar to a question of thus' kand is not
very easy. All the lessons consigt manily of oral wery easy. All the lessons consist manily of oral tion, exceptang, perheps, mome of the special cissess in chemistry and physics in which it often happens that the lesson in chiefly catechetical or taker up with the working out of examples and prowith the
(b.) Book work ?-The boye are generally expected to read certann portions of the text book in nise as a preparation for each lesson.
(c.) Practical work ?-Practical work is confined, for the most part, to the laboratory classes, botamcal and geologreal exammations, and the manpulation of fowers in some of the botanical lessons.

- Questron 11. Which form of lesson is found to be most effectave?-I cannot describe any single form of lesson as hkely to prove very effective.

In teaching boys of ordmary ablity who possess but Intle knowledge, it is necessary in the first place to lecture a good deal and to $2 m p r e s s$ important facts, principles, and methods as distinctiy as possible by illustrative expermments. Without ouch help, ownig to the great wrant of magination, many boys would not duscover their own tastes, and such conceptions as they mught derve from theng reading or catechetacal lessons would be extremely confused and indiathuct; beandes that, good lectures greatly facilitate the progress even of those boys On the other hand, however, it 18 at least equally necessary to, guard apanst the pasaive attztude of the learner who is marely or chiefty a listener to to keep his class alive by means of test questions, or by insisting on well wnithen notes, or such questions, or by masy bo-mota convententhy spplied. A good deal of the
scientific mstruction which has bitherto been given in echools has falled, comparatively, as a means of educational training, simply from the fact of the tosoher or lecturer having allowed the boya to be too excluarvely pasaive and receptive.
Question 12. How are text-books used 7 eg, Is book work supplementary or preparatary to the oral letaon iIn some casea the mastar gives has lecture, and requirea his class to taice notes, and then expecta them to read certan porions of bookwork bearing on the subject, on whoch he questions them at the beginning of his usxt lessoon, before proceeding to his new lecture; in others, the bookwork is prepared beforehand, and the lecturer applies hy test questiona as he proceeds with hit lecture. In this respect the master uses his off discretion, and his choice, as betiveen the two methods, in necessarly, to some extent, dependent on the age and proflcency of has clase, and on the nature of the subject.
Question. 13. Is the use of note bookn encouraged (a) durna or (b) after the leason, and to what extentiFuery boy 15 requured to maka notes in his note book during each lecture, and be may at any time be called upon hy the master to produce this book as a proof of attention. In the speonal classes, where the numbers are comparatively small, the lessons frequent, the boye nore advanced, and
the method, consequently, more catechencal, the note book is not always ao much used, but paper work, in some shape or other, takes the place of notes.
Question 14. How far are boys required to prepare thes own apparatus or experiments, or to collect specitnena durng the mitervals between lessons?-This kind of preparation is chiefly confined to Botany and Geology.
Question 15. Descmbe any method of tesching some special branch of science which has been Cound successful un your school 3-I consarder that every brauch of screntific teaching which we have tried has been farly succestuful,
quiteras much so as could have been expecter in the case of new studies More paricularly, I should she case Chenostry snd Physica as favicularly, proved should speak of to our sehool work in the middlis and uppar parts of the school, whilst the mame may be sad of Botany, Physacal Geography, sud Elementary Phymes of Boksny, Physical Geography, snd Elementary Payeics emong the younger Our methods are, 1 hope, sufficiently indicated answers to questiona 10 to 13

Instruments of Teacheng

Question 16 What special provision (e g., laboratory, lecture room, observatory, museum, botsnic garden, \&c.) is made for wcientific instruction, and how is it used ?ur special provision for samence is as follows .-
(1). For Chemastry - -

Lectare room to seat ahout 60 boys.
Laboratory adjoining, fitted up to that 14 to 16 boys can work in it sumultaneously
These rooment were built and fitted attached.
These rooms were built and fitted up at a oont of about 6001., exclusive of chemical apparatus and materral.
The average annusl cost of this branch has been fon lectures about $15!$ durnig the last two years, for 2.) Bor Physics , -

Lectare room to seat about 60 boys
Small class room and afore noom adjounng. Laboratory adyoming.
These rooms were built and fitted up at a cost of about $200 l_{\text {, exclusve of apparatus and materish. }}$
The average annual cost of this branch has bean about $30 l$ for the last two years.
(3) For Elementary Chemustry and Pbyacn, i.e. for connonnous comrses of Chemistiry and Phymice, in which the text books used are Roscoe's Primer and Stewstr's Prmer, the lecturer adding s good deal to what is contaned in these books as he goen along
For thes part of our teaching I have fitted up a lecture table with cupboard, kand on the gen mad water, \&c., to one of our ordmary clase rooms large enough to meat from 50 to 60 boys at an expense of about $8!$ to 101 .
The master at the outset expended aleo for chemucals and apparatas, such ac a preumatic trough, large retort atand, gas jars, flacks, \&e., the sum of 71. 5\%

Some thinge which he only requires oscamonally, such at art ptumps, models of pumps, \&cc., he hat hitherto borrowed from the Physical room.

He mfforms me, however, that with a grant of from 33 . to 51. a year, he can keep up and add to his atock of material yeart, to dq all he requres without borrowing anjthmg.

Owr expernence in connexion with this room ghows that slementary instruction in science can be carried on at a much cheaper rate than 18 generally supposed, provided that the teacher will take the trouble to think for humelf and expend a little tome in prepaning apparatus from simple naterials.
(4) Botanic Garden and Museum -

For a deacription of these I may refer to the last report of the master who acts as curator, contained in our Scientific Society's Tramasctions, Part II, pp 93-102. (Copy enclosed)
It is not easy at this early stage to calculate exactly the current expenses of museum and garden, but they need not amount to more than $50 l$ to $60 l$ a year
They have been furnshed enturely by means of private subacnp pollons amongst masters, boys, and pubhe instrtutions puble instrtutions
Queston 17. Number of assistants and curators, and annual cost ?-The question of cost has been answered above. The Natural History master acts as curator of milseam and garden. In the way of paid asasetance, he has about one thrd of the time of a boy, and a gardenar about
two dayy every week.
Questron 18 What apparatus, diagrams, and special fittings are in use? What was their cost? and what sum is allowed yearly for new instruments, and to replace matemals used, de ?-Answered above, as far as possible.
Questron 19 Is there a workshop 3 and if so, how, and or what particular purpose, 18 it used ?-We have a workohop, of which I enclose a ground plan This being too smal for our purpose we are about to convert it into class rooms, and buid enother on a larger scale, of which I also enclose a plan.
The objeot of the workshop may be described as being (I) to teach boys the use of all the common mechanoal tools; (2) to give them some knowledge of different kinds of maternal, ns wood, rron, \&c.; (3) to teach them practical carpentering, fitting, turning, forging, se
The present shop contains (1) four large carpenters' benches, to accommodate 16 boys, (2) enght vices, wnth teel ohisels and other requisites for fitting, \&c., (3) a forge, with the necessary apphances, (4) three turning athes, will ono alde res both wood nd isen
About 50 boys work in $1 t$, at such hours as they can spare during out-of-school tume, each boy paying a fee of $15 s$ a dence, or 26.55 a year, to cover the expenses of superntendence, instruction, and material
Joining the workshop is quite a voluntary matter, and ang boy can take home anything which he makes there. he cost or the builing, which is quite a plain one, and the fittings, tools, \&o. was something under 2501
The superintendent informs ime that he earmatea the cast of mater
lis. per week
rol may be added that any sehool will find a workshop to avove very litile expendature, to the suponntendent will be able st auch times as he is not occupled with the boys to effeot a considereble eaning by attending to repars, the making of deaks, forms, \&ec
Questuon 20. What text-books are in use? distingurahing between those for the juntor and semor classes?
(1.) Chemstry -

Roscoe 18 at present the book generally used but
Roscoo is at present the book generally used hat
we sre about to replace it gradually by Miller's We sre about to repiace it gradually
Text-book of Inorganic Chemistry
Cooke's First Prinorgles of Chemical Philoaoplyy, for special classea.
Miller's Elements of Chemstry, for apecial clesses.
Harcourt and Madan's Practical Chemustry, with MS. Notes, Tables, \&or, suppled by the Master in the Laboratory.
Roscoe's Prumer, for the youngest boys.
(2) Physus -

Deschanel's Natural Plulosophy, in the Upper Class.
Todhunter's Mechanice, in the Upper Class.
Balfour Stewart's Physics, in the Lower Class. Do do. Primer, for the joungest boys.
(3.) Geology -

Pages Small Handbook.
Botany and Geikie.
(1) Botany.-

Ohiver's Botany.
(5.) Physical Geogrephy :34784
(6) Zoology :-

Nicholson's
Physiology -
Kirke.
Rolleston's Forms of Anmal Luíe
Question 21 To what books of reference, other than ordnary school books, have the scholars access ?-See the Labrary Catalogue, enclosed
Questron 22 Is there any scientific socrety or club u connexion with the school $?$ and if ao, who compose it, how is it worked, and what is its mfluence on the boys?-We have a flourishing scientific society, conssiting of about 70 members, managed by one of the members as president and a committee of boys It has exercised a valuable mfluence by stimulating the taste and intellect, and giving much enjoyment to many boys who would otherwise have has also been of use in helping to ine semimething of an has also been of use in helping to give something of an mten of tual hage side of school life from becommg too exclusively predommenat
For a further expression of my opmion on this subject I beg to refer you to the answers I sent to the Commissionera two years ago [See p.]
two years ago [See p ince transactions of our socety, from which it may be seen how it is worked.

Tests of Progress.
Question 23 How often is the work tested?-In addition to the usual examination at the end of each term, we test our science teaching by giving a printed paper of questions once in three weeks Every boy who fails to obtain a kept in the followng helf-hohdey to go over the various cept in the followng hali
The note books which the boys are requred to keep are examined, etther at the tome of theur exammation or at such examined, either at the thme of their examinadiate times as the master may arrange
These tests are of course not intended to obvate the necessity of catechetical questions with which a master begans has lecture, or which are interspersed by him in the course of his lecture.
If any lecturer once stops to ask a boy preked out at random to repeat what he has been saying during the last two of three minutes, he will soon learn the necessity of such parenthetic questioning
Question 24 In what way 3 e g by examination of note books, or by oral or written questions?-Answered above. Question 25 By whom? by the teachers of the subjects, or by an independent examiner ?-At the end of the summer term, which completes our school year, the work is examined by an examiner from the University
At the end of each of the other two terms the masters examine and report upon each other's work, it being a rule with us that where it can be avoided no one examines his own work For the other examinations, to which I alluded above as held once in three weeks, the teacher sets and looks over the papers on his own subjects This I consider necessary as a means of showing him where his teaching is successful and whare and how it is faling These papers wnth the marks and report all pass through my hands when they have been looked over by the master, before being given back to the boys

Teachers.
Question 26 Is there any difficulty mprocunng competent science masters?-Undoubtedly there is as yet great best classical masters, and this is likely, for some tome to come, to add considerably to the drawbacks in the way of ouffioient science teaching in schools.
Question 27. Where are the best obtanned? Have they been specially trained for the work, and if so, in what does such trannag consist?-Oxford seems, as yet, to produce more men suitsble for the work in a school like ours than any other single place, but they cannot be sad to be in any way trained for their work, havng, in fact, to learn their business when they come to us, and the Oxford system has, at best, this very grave defeet, that the men who are tramed in it are apt to take awry with them very extravagant notions about the apparatua necessary for teachang science in sehools They might, with advantage, be mado a great deal more capable of helpung themselves.
Cuestron 28. What evidence of scientific qualificaison tendered by candidates $1 s$ found to be of most value?Endence of success in teaching, and good Unuversity dogrees, as at Orford or the Landon Unversity The tostrmonrals of indiaduais I have found to be of hitle value, as many senentatic men who write them seem to have
but little uden of the requirement for quccers as a mohoolmaster

Question 29 Cai you state any reanults of science teaching in the school? such as-
(a) Success, professionai or otherwise, of individual scholaris-Beside venious siccusses of an inferiot sort, our boys have gained withm the last two years four Natural Scrence Scholarshrps at Cambindge, and three at Oxford.
(b) Influence upon the general studies and melellectual life of the school ?-I consider that the introduetion of science hea not im sny way interfered with the successful pursuit of the old staudies, whilst many of our boys who have gasned distinction in Classics or Mathematics have thus acquired a sound elementary knowledge of two on three branches of aclence, and many others have had all ther powers stimulated by thus findang out that slowness an learning languagss doss not necessarily mean general stupidity. Thus, the number of boys who do nothing well, and have no intellectual interests, has been materriuly dumushed, and the general tone of the bohool
Question 30. Are any special rewards or encouragements (e.g. eximbitions, scholarfinps, or prizes) open to succesal prizes and scholarishps is awarded for proficiency in Natural prizes an

Questron 31 What mprovements, "do you think, could be effected in the temohing of semence in your own school ?Thas 15 a wide quesinon. I hopes to umprove it by getting the masters to enforce their methods, by devaloping zaore fully the syatera of classification secording to ability and proficiency, by givng more time to the study of particular pernods of a boy's school Infs, and thus producing the ac celeration of progress which comes of concentration Thus, and un naany other ways, I hope to make the teachngg considerably more effective than it has been hitherto, though I am wall the obsteclos that beset any branch of new learning.
Question 32 What are the princpal obstacles to the teaching of setence in your own school ?-l Want of previous training or experience on tie part of the masters each one having to a great extent to discover hus method by experiment
2. The difficultues in finding sufficient trme without dusplacing some ather study which the boys cannot afford to give up.
3 The dufficulties in the way of classifyug boys accordmg rproficiency, and arranging the tesching so that the boys may be kept as active as posable, and not reman sumply passive listeners to a lecture.
The difficulty in the way of a progresarive arzangement of classes, at least in a large cehool, is that it necessitates the teaching of beveral classes gimultaneously, in other words several scientific mastars, and savered rooms fitted up writh the necessary apparahus.
I have succeeded so far as to be able to teach three or four gets sumultaneoualy.
4. The prejudice agamst a new stady whuch, to some axtent, hngers long in the minds of both men and boys,
5 The want of good and cheap text books.
Question 33. How conld the Unuversitiea best assist Scrence-teaching in achools?-By offering move inducements to the study of Science, by endeavourng to train men more thoroughly for school work, and teaching them how good expermental lessons may be given without the most expensive apparatus, by encouragng the writing of good text books, by mstututhg examunations auch as those asked for by the Head-masters' Conference, and modifyng their general carriculum so as to offer as far field for these new studies.
Questron 34. Can you suggeat any way in which Government could assist Scrence-teaching in schools, as, for example, by mspection 3-My own belief is that if an efficuent system of University examunation and mopection can be eatablushed for first-grade schools, s,en, sehools naturnilly in close connexion with the Universities, it would be preferable to a Government system, as it would be much more conducive, as things are at present, towards conductang the educataonal defect of our tme
The Senence Pepartment nuder Government maght, however, be of great service, by cheapening shill mowe the supply books, diagrams, apparatus, \&ce.
Question 35. Have yon any ofther mformation to give, or songers? - The maly other wemark whiph st ocere to memb-
thas moments to make 15, that 1 belseve it to bo deetrving of serious cononderation Whether the true mode of conductong the numerous studies which now ciam opontion in the school routine will not be found to be by conoentrating the attention of the boys on s small number of subjecta et one time, and arranging that the aubjects shall muecesd each other in some fixed order, the retention of what has once been learnt beang secured as far as pomable aftarwarde by pernodical exammations.
Incline to the belief that this is the trus method in rsm gard to ell the secondary subjects of a boy's educationg in other words the true method of teaching Sarence, Modern Languages, suc, in the classical depsrtment of a achool, and in the eame way the true method of teaching lanuages in the
Our present methods give great facility and rasdineas, so that I cannot help feeling that the method whith mind, indicated, besides lessoming trition and ming the incrave momentrum which results from concentration, would he al tomether a more wholesome eductronal procen together a more wholesome educational process.

J Percival, MA,
Head-Master.
November 12th, 1872.

13. Rugby Sheol.
 General Arrangemento.

Question 1. How is the school olassified ?-For teaching purpo
(1) The sisth form and upper sohool.
(2.) The maddle school.
(3) The lower sohool

Each of these divisions has its own eeparate clasauficar tion for Mathematics, Modern Languages, and Natnas Scuence, except the lower school, in which Natural Science is not taught.

Questron 2. Is Sonence a necessary part of the school course, or is it taught only in aprecral forma or depart ments ?-In the middle achool, Natural Science forme a necessary part of the courue. In the axith form and upper achool, the choice is allowed betweon Science and German.

In the lower school, Scrence is not taught at all.
in "Suestion 3. Copy of time table? ?-See copy of time table in "Science work" [Given in p. .]
Question 4. Summary of hours per week given in each clase to dufferent subjects. (If playtime us uthized for preparation or practucal work, this should be shown sepa rastely)-Eaoh subject is taught by two lessons per week of about one hour'e duration each. The amount sind kind of preparation required, differs in different "sets"" In somes, note books have to be made up from rough maternal taken aown durng the lesson In othera, definite questions have to be answered in writing, from time to time, or is certann amount of book work has to be prepared upon which oral questions ars put at the commencement of ths loseon, before proceeding to fresh matter; or, occamonally, i com bination of the latter two methods is employed.

Quentron 5 . Summary of the number and average age of boys learning each of the various subjects in the Natural Science Classea ?-There are 10 Natural Science Classes or "sets" in the whols achool. Three in the axth form and apper school, and seven in the rauddle school. The number of boys and average ege in each set are given below -

Sexte RoRy and Uppre Schooh.

The staff of masters employed in tenching thene 10 ecta consists of a Semor Natoral Science Mater and fons

Mathematical Masters who grve a portion of therr tume to Natural Screxce.
(NB -The question how many mastars sae actually employed in teachung Natural Science un this achool has emplently been overlooked, but it certannly should be stated somawhere, and, probably, as well haxe as anywhere.
Question 6 Amount of knowledge regored before the tudy of Science is commenced?-As Natural Snence 18 excluded from the lower school, a boy mool before comreached the standard of the madicicision is in the case mencing it the only sidicional at the end of the firgt of Physics in the madile school allowed to choose between year of a boy's work, for the second year's study. But Geology and Physics for the second farly high in Mathehe cannot take Physics uniess he is farly hagh amonnt of matica. It inould be saited absolutely required before a Arithmean enter the school.
Questron 7 Is any alternative or choice of subjects. Questront Answer in (2) and (6) partly
As much elaminerty es possible is given to the whole ystem of Natural Science work in the school, 80 as to enable a boy to take the subject he has the greatest deaurto learm, s g., in the seloctio
What departments of Sclence are preferred?
What departmonts of Science are preferredy are the only
a. By payents ?-Chemustry and Geology are the only
subjects that have been specislly mentioned by parenta, 80 far as we can learn.
By the boys ?-On the whole, the boys have shown most inclination for Chemustry and Geology or Physical Geography, but in many cases Chemistry has proved a disapporntment, in consemusnos of the difficulty of the numencal examquence and problems, Fhich take up much of the tume of the class.

- Quastion 8 What branch of Sciance receivea most attention in the school, or is found by expernence to have the greatest educational value?-The sabjects vary accorcham to the pasition of a boy in the school. In the sixth form and upper achool, Chemasty and Phybuca are the only subjecte taught, with the axception of a short course of Physiology Under Physics is at present meluded Heat, Magnetism and Electrioity, and Geometrical Optics treated expermentally. Our expenience goes to show that Phyaics osn be taught successfully to a larger proporion ob boys than Chemishry laded g of mind to srapole success quires an ainoul apea involved in chemical affinities and fully with the ideas involved in chemical atninies oud ro-mctions. In the midale school, and thenerore whin younger boys, the teaching of Phyaics has beea found then be leas aatasfactory than in the upper achoo nd Pnemmatices that have been tred are hyarosthics and elements of Heat, but, although most of the boys wave shown considerable anterest on tho facts and expern mental ulustrations, the power of graspung the prisctples and applyug their knowledge to easy problems has been soquired comparatively by few. At present, the greater quired oomparain of the middle school are lanrnug either Botany or Ceology. It is hoped that in tume better arsungementa may be made for carrying on the instruotion in the Natural History side of Souence after a boy has meached the uppor sahool.
Questrom 9 What weight is assigned to melentufio attamnnents in determining a boy's position in the school ?The proportion of the marks for dufferent subjecta, both for

Upper School.			
	Terms mark.		Exam. mark
Clasana and Enghah	- 39 -	-	- 33
Mathematues -	-6	-	6
Grarmen or Natural	Science - 3	-	3
Frenoh	2	-	2
- Middle Selvool.			
Clasuos and English	- - 36	-	
Mathemetres -	- 6	-	
Naturel Serence	- 4	-	
French and German	- - 4	--	3

In the lugher part of the nohool, a boy who ahows abiltty mey be allowed to drop verses, togethor with a certion smount of general classucal work, and devole the extrs tome to Mathernatics or Natural Sceence. The umportant ficis s, that, by so doing, he does not lower hu positron in the recerres a full equivalent of marks for setual work,

Metkods of Teachung
Question 10. What proportions' of the lessons take the form respectively of-
(a.) Oral keaching and demonstration? - All the lessons in Natural Scrence are a combuntion of oral teaching and demonstration
(b) Book work ?-Book work is only supplementary to a lesson
(c) Practical work?-In Botany actual dissechon of botanical specmmens by each boy is a regular part of each lesson in
Qtestion 11. Which form of lesson is found to be most ffective?-A combination of catechetacal lecture and lesson the boys themselves being often encorraged to ask questions upon sny points not clearly nuderstood

Question 12 How are text-books used? eg , is book pork supplementary or preparatory to the oral lesson?Paxtly angwexed in 4. In no set does the master confin humself enturely to a text-book; it is regarded rathot as affording the data upon which a lesson is founded.

Book work is shways supplementary to the oral lesson.
Question 13 Is the nse of note books encouraged (a) during or (b) after the lesson, and to what extent T-Onis rough notes are taken at the time of the dectatron. The notes are worked up more fully noterwards, and shown up about ance every fortnight or three weelad
Questron 14. How far are boye required to prepare theur own apparatus or experiments, or to collect apecumens dunng the intervals between lessons?-The boys frequently assist in lecture experments, but they are not required to prepare them, In the botamy sets they

Question 15 Descmbe any specual methed of teachug some branch of Science which has been fonnd successiful in your school.-(Mr Kitchener has drawn up the following sketch of the method of teaching Botany un the school. Mr. Wilson's lecture on teaching Botany and Geology 18 enclosed, in which the special plan pursued in teaching Geology is described - [See p. .] The botancal teaching, commenced in 1864, has been conducted on a rather novel method. Flowers are at once placed in the hands of each boy, and the class are asked to make each hus dissections and observations. No facts or inferences are admitted, but such as arise spontan a whant of them and the teros ape where posezble tanght in whar English form ingtead of in sesquipedahan words derived from Greek or Latin, or both The study of the tissues 18 from Greek or Laln, or both The study of the thasues 1 postponed thll the tame of the year when no flowers ere postponed bulute, it is found that, for educational parposes, the obtauable, but it is iound that, ior educational purposes, the first term's course, in which the tasics of obgervation and
description come fresh to the boys, is the most valuable in results. A description of a firstit lesson in this spubject, as results. A description of a frst lession in this qubject, an traght at Rugby, is given by Mr Wilson in his essay "On Luberal educatan, pp 272-276 Where flowers are not obtanable in mufticient quantrites for the class, use us made of large models by M Aurony of Paris The scheduling method (introduced by Prof Henslow) is much used, but the schedules ars filled up in Eiggheh terms, and scope mfforded for any boy to remark upon any peculuarnty wheh especially etrikes hum. The description of actual specimena with the ad of a small microscope, forms part of every examunation ra botany

Instrumeets of Teachang

Questum 16. What apecial provisuon (e.g, laboratory; lecture room, observatory, museum, botanic garden, \&c.) is made for scientafic Instruction, and how is it used ?
(Flans and descriptions of these, with statements of their cost and annual expense, should, if possible, accompany this otrurn.)
The epecial buildugs devoted to Scrence at Rughy comprise a laboratory, two large lecture thestrees, apparatus nom, and privabe laboratory Theee are deacribed with plan nd interion new in Nature, Vol 1., p. 485, by Rev. T N Hutchason, cha Nemior Naher Sacace Mastor There 18 ulso a museum contriming a very foe collachon of geolagical lected by a migers of the schoil slao a good collection of ected rele and numerore rot sutcimens Lestly minerwary (described 'by My Seabroke) The there an observatory (described by Mir, Seabroke). The Wry in Which the haboratory is used is described in Mr. Hutchinbon's sccount of "Scence work at Rugby", Pp. 14, 15 fiting the suste of Naturil Scrence Schools at Rugby wha,
as nearly as we can estumate, 2,0001 , exclusive of apparatus The annual expenses of the laboratory and lectures are me partly by special grants of money, from time to time, for general Natural Science expenses, and partly by a payment of from 108 to $15 s$, a term by each boy in the laboratory for his share of chemicais and the use of spparatus.

Question 17. Number of assistants and curators, and annush coat-There is one assistant in the laboratory with a salary of $135 l$. per annum, and a boy to wash bottles, \&c., at $3 s$, cd. per week.

Question 18. What apparatus, duagrams, and special fittings are in use? what was therr cost ? and what sum is allowed yearly for new instrumenta, and to replace materials used, \&ec.?-The school is supplied with en exceedingly complete set of chemical, electrical, and magnetric apparatus. A moderate amount for hydrostatics, pneumatics, and heat, and something for ophes There are alao numerous models and illustrations for mechanus and mechanism. The collection of diagrams, whoh have been prepared chiefly by the lecturers and their friends, 18 considerable. The followng botanical diagrams are in use.-

(2) Balfour's - \dot{B}^{-}- 1100
(3.) Oliver's semes of dred plants, illustrating
the famules, \&c.
(4) Marshall's physiological deagrams 3150

For physiology there 18 a fine collection of prepared specimens to illustrate the typicel forms of amimal life For geology, use is made of s collection of photographs of rock scenery, \&e, sec Within the last two years a complete set of standard meteorological instruments has been purchased, and regular dauly observations are taken and recorded by volunteers from the school.

With regaxd to cost, the apparamis at present in the achool must have cost between 700l. and 8001
Questron 19. Is there a workshop? and if so, how, and for what particular purpose is it used ?-There is no workshop at present; but premises exist under the new gymoen sium builing which it is contemplated might serye for that purpose

- Question 20 What text-books axe in use? distingurehing batween those for the junior and sentor classes?-In the Upper School the text-books used are-

Roscoe's Chemistry
Ganot's Physics, for Electricity and Magnetrsm
Deschanel's Natural Philosophy, for Heat
Aury's Geometrical Ophics.
In the Middle School-
Balfour Stewart's Physuc
Jukes' School Manual of Geology.
Lockyer's Astronomy
Oliver's Elementary Boteny, and, for advanced reading,
Aes Gray's Class Book of Botany, and
Bentham's British Flora.
In the laboratory, the books used, are Harcourt and Madan's Practical Chemistry and Fresenus's Qualitative Analysti

Question 21 To what books of reference, other than ordinary achool hooks, have the scholars access ?-The Arnold Library, the different house libraries, and a small collection of books on Natural History, \&ce, in the room belonging to the School Natural History Society.

See 22
Question 22. Is there any scientific socuety or club in connexion with the achool 1 and if so, who compose it, how is it worked, and what is its influence on the hoya?-Yes,
The Rugby School Natural History Socrety fonnded in 1867 It consists this term (Oct 1872) of nine honorary members (chuefly masters of the school), 39 corresponding members (chiefly old puple), 15 members (present scholars, who have been elected full members for work done), 62 assomates (present acholars not yet promoted to fall membership) The society compnises at present nearly one fifth of the school. It is worked (1) by pablic meetings once a fortnight, the exhibition of objects of interest, readung of papers by masters or boys, \&cc, (2) by sechonal meetings of boys of sumular tastes, as, for unstance, the Botaniste, the Geologats, the Muroscopists, meet for work or discussion, (3) by occasional (though necesssmly rare) excursions from Rup by-thus year we visited (1) Charnwood Forest, and (2) several factones at Brmingham; (4) by the use of a apecial room to which the society slone has access In it are kept collections of msects, plants, \&c.; of booke on Natural Sarence is beding formed and a library A beport of the Somety is published annuslly it Mr Bill. Areport Bueby price Is Influence on the boys binmeetugas show that the somety is popalar, as there are
generally from 70 to 100 present, but great difficulty to found in getting the boys themsolved to take part in the meetings, whether by reading prpers or sharing in discussion hence, grester real good us done by the amaller sectiona meetings The monety in found to be very valuable in bringing to the surface any boy who has a spectality, whoh Su the hary of echool work, might have escaped notice Suchas or by asking questions, and the Preardent then frends or by asking questions, and the President then kindred tastes, to the other boys in the school who have kindred tastes, and brimgs hum under tho notice of tho boys are delighted to be of any use, and will undertate in scientific drudgery suggested to use, and will undertake an told that it will do nome good Good work is can in metsoroloncal observations meording of foral in sketches of geological sectiong, \&o. (Answered by Mr. Kitchener)

Tests of Progress,
Question 23. How often is the work tested 7-Frequentiy duning the term and always at the end.

Questron 24 . In what way $?$ eg. by examination of note books, or by oral or written questions ?-By examination of note books as well as oral and written questions.

Questron 25 By whom? by the teachers of the nubjactm, or by an independent examiner ?-By the taschers of the difterent subjects, except at the end of the summer term, when the eixth form are examunad in Natural selenoe by one of the examiners for exhibitions apponited by the

Teachers,

Question 26 Is there any difflculty in procuring competent Smence Masters ?-I have never had yet to make such an appointment, but I should not anticipate any difficulty greater than in other branches of atudy pursued in the school

Question 27. Where are the best obtained? Have they been spetially traned for the work; and uf so, in what does such traming consist? - I do not think I could mprove upon the teachers who might be selected from Oxford and Cambridge.

They have been epecially tramped as students. As teachers ther proficiency has been attanned by practice.
As students, the University curvicula with professonal guidance, and the competition for the various dretinction open to them, have given thear the necesaary trainung
I would here observe that a mere chemist, yeologist, or naturalist, however eminent an his own special department would hardy be able to take ha place among a body of masters conpposed of Uaiversity men, wihout come in junous effect upon the position which ecrence ought to I
I would add that it seems to me highly important that a practical in his knowledge, skuful in expermenting, and practical in his knowledge, skiful in experimenting, and In preferring the two older Universities, I do so only by reason of their stronger general sympathies with pablio reason of their stronger generai sympathesting I am aware that, if merely wanted a school teaching I am aware that, if merely wanted a equally at Dublin, London, or a Scotch Univeranty

Question 28 What evidence of scientric qualification tendered by candidates is found to be of most value?Tripos class lusta, and other enmular distinctions, guch as those iripos class ista, and other anmuar distinchons, such as those To this might be added contributions to actentific periodicals and the like
The qualfications of teaching and maintanung ducipline which are ususlly more rare to find and difficult to teat thas those of pure science, can only be ensured as experience ol the man is gradually formed.
Any difficulizes arising under this head might, I think, be met by probstionary appointments.
Question 29 Can you atate any results of Science teach. ing in the achool 3 such as-
(a) Success, professional or otherwise, of individual
(b) Influence upon the general studues and intellectual nifuence of the echool.
(a) The Natoral Science Honours at the Univernince mace 1867 ane as follow:-
1867. Natural Science Studentahip, Christ Church, 1868. Nataral Semence Scholsrship, New College, Ox180rd.
1869. Burdett-Contts' Geologicel Scholarship, Orford.
" Natural Susence Scholarihup, Merton College,
1870. Natural Scrence Studentship Christ Church, Oxford

Two in Frrst Class Natural Science Sohool, Oxford.
" One ma Furt Class Nafural Scuence Tripos, Cambradge.
1871. Natural Scrence Studentshyp, Chist Church, Oxford
Burdeti-Coutts' Geologreal Scholarship, Oxford
Nataral Science Exhibition, St. John's College, Cambridge
Scholarghip for Chemiatry and Physics, Rogal School of Mines
Frrat Class Natural Science School, Oxford
1872. Scholarshap for Chemistry and Physics, Royal School of Mines.
" Manor Exhibition in Natural Science, Ball College, Oxford
Four in First Class Natural Scrences School, Ox-
" Natural Science Exhubition, St. John's College, Cambridge.
In addition to these several have passed the matriculation examination for the University of London, and othera have gamed admission to Vanous colleges by taking up some when ther classical knowledge alone would have been madequate
(b) See p 18 of "Scance Work."

Question 30 Are any special rewards or encourageQuesison 30 Are any special rewards or encourage-
mente (e g, exhibitions, scholarghups, or pinzes) open ments (e g, exhibitions, scholarships, or pizes) open
to sucoessful students of sorence in the school ?-Nuoreus prizes are offered for success in various branches merous prizes ars oresed for success in various branches of scrence, viz

Physics	-	- Dne prize of	3 guimeas.
		- n	2
Chemistry	-	-	3
Geology	-	"	2
Astronomy		- "	3
Botany	-	- " ${ }^{-}$	2
Practical C	Chemistry	"	3

Prizes are also given for the best collections of wild flowers, butterflies, and moths, and fossils, made durng the summer vacation.
Question 31. What improvements, do you think, could be effected in the tesching of Science in your own school?-
Question 32 What are the principal obstanles to the teaching of Sarence in your own achool?
Question 33. How could the Unversines best ossist Strence teaching in schools?-I think in no way 'so effectually as by mauntaining a hugh standard of teachung and examining so as to send us the best posarble teachers and examiners

Question 34 Can you suggest any way in which Govern meet could assist science teaching in schools, as, for example, by inspection 3-1 should be averse to Government inspection of the sohool as a whole; and the inspection of a single department seens to me likely to be more fraught with injury than benefit to the school at large con anderad as a place of general education
Quastion 35 Have you any other miformation to give, or suggestion to make, likely to be helpful to the Commisasoners ? - A scientific career, as auch, opened to the asplrstions of candidates, suoh es, I beliave, exists in aome countries, might probably influence for good both pupils and teachers, by giving a definite object with tangible results.
This might, perhaps, have come in under 34, as a possible function of Government

Nov. 27th. 1872. Henry Hayman, Head Mester

14. Unifherity College School.

Mr. Orme's Answers

IV. 5th Class: Chemestry and Physec, one hour and a half per week.
Upper Sth, Chemistry, one hour and a half per week
Chemical Physics, one hour and a half per week;
Ipper 6th, Cherustry, one hour and a half per week; Practical Chemistry, one hour and a half per week
VI. So far as I am concerned no previous knowledge is required for the lower 5th, beyond a powtr of taking thort undiotated notes "For the other classes, boys are expected to have learnt demmals.
The boys in the lower 5 th do not seem to denve mach benefit from the knowledge they may have acquired pre-
viousiy in other subjects.
X. Except in the class of practical chemstry, the eubm ects are explamed solely by means of oral teachng and
demonstration, no portion ot any lesson being ever devoted o bookwork But in "oral teachng" I nelude the explanation of those portions of science which the boys are expected, by the Universites, to know, but which are not capable of expenmental proof in the class-rooms of a chool.
Any dificulty which a boy meets with in the bookwork at home is explanned to him when the lesson is over
Practical work is done only in the practical class, it is accompanted by oral teachng, and, occassonally, there is added such further demonstration as 18 considered necessary to supplement the experiments made by the boys hernselves.
XI. Bookwork has been tred as an experment, but Whth signal faulure, it would undoubtedly be the most effective form of lesson if external examuners were employed, anless, perhaps, their examinations were carriedo n vivd voce before the science mastexs
Oral teachngg and demonstretion are far more effectnve than quaded practical work: hence thexr fusion in the class of practical chemistry
Practical lessons ars, of course, the best form, the only true form, but much less ground is got over by this method, though the knowledge thus acqured
XII
XII As books of reference, and to ensble the boys to recover lost ground after absence. They are altogethea supplementary to the oral lessons.
XIII Rough notes are taken during the lesson; these are copied out into a note-book afterwards, the apparatus being aketched
XIV. Whenever it is posanble-considering the mall accomnodation-the boys prepare their own apparatus and experments They also learn how to make their own re-agents
XV The only answer, short of an eassy, 18. teach them only what they can comprehend, and, of ail expermmental truths, those only which are capable of experimental proof in the class-rooms of a school
It followis, almost as a corollary, that a boy should not be expected to learn the whole of any one sub-division of a natural science
XVI Laboratory, for practical work Work done consists of-(1) Preparation of common gases, acids, and ordinary re-agents (2) Examination of ther properties (3) Qualitative analysis in connexion with non-metallio lements
Lecture-room, with expermental table Work done consists of-(1) Chemistry of non-metallic elements (2) Heat (3) Electricity and magnetnsm (4) A. very little metallic chemustry.
XVIII Apparatus very simple at present, there not being sufficient accommodation for anything costly. We have the College to fall beck upon, howerer, and, through the kindness of Dr Williameom, apparatus is often obtained from that source

The sum allowed is not limited, to my knowledge
Anything really required is purchased without delay or
hindrance of any kind
XX Gill's Chemistry for Schools is used for upper 6 chemistry

Orme's Science of Hest for upper 5, chemical physica But text-books are of comparatively little use unless the master takes the subject in the same order as he finds it
un the book.

XXIII About once a month.
XXIV By written answera to questions dictated at intervals of about five munutes.
XXV. By the teachers.

XXXL. A emaller quantity should be taught, but more perfectly. It should be more general in character, and should take in more of the every-day lufe of a boy, so as to make him think of science despite humself
It should be, throughout, entirely experimental, to the total exclusion of theories except the rew very simple ones, which a boy can easily grasp, and these only aparingly and at long intervals far more stress should be lad on the practreal work. Boys should be taught some acmentific facta much earluar than they are at present, ertannly before 13 years of age. As the matter stands now, boys are allowed to acqure unscientific habits of thought before they begun to learn acience, and when they do begin, the master has not to teach them acience, but to eradicate the evil effects of past neglect-to undo, not to do.
XXXII. The requarements of the linversities, eapecially the Universaty of London, which prevent the adoption of the improvements mentuoned in XXXI The Universities require mors than can be properly learnt by a boy of 16 ;
they require that knowledge to be very special in character, and not by may means to have any connexion with the dauly lufe of the boy; he is asked about chemical subskances which be may never see or hear of again for the rest of his lufe; they seem to lay more streas on theoretical than on sxpermental knowledge, judging from therr questans end from the candrdates who pass, indeed, the boye whll often lesve the practical class for the purpose of preparing for the examination. Lastly, they require an inordinate amourt of knowledge in other than scientific subjects, 80 that a boy cannot well begin sctence before 14 yearm of age.
XXXIII By altagether revising the regulations for their examinations.
XXXIV. Inspection of the ordinary kind, eapecially Government inspection, I should think would encourage that sort of teaching which temporarly shows the best results, vit, bookwork The masters would teach to sabsfy the inspectors, not eo as to benefit the boys or advence the school in the estrmation of the publuc.

Chemioni Theatre and Leaboratory. Filtenga.* It is necessery to divide the following mocount into two perts
(A.) Those fittange which it would be highly desrable to have from the very commencement, regardlese of those Which may be put up hereafter as the neceasty for than anses
(B)
(B) Those fittings (selected from the above) which are absolutely necessary, with a very short sccount of makealifts
for the rest for the rest
1 Bencher and Desky_(A)
of benche and Desks.-Three conoentric arrangements of benches and deaks withm the hemicyole. Breadth of benches 9 inches, of desks 12 inches, A space of about 1 foot between each desk and nest inferior bench. Each bench to be rased at least 1 foot above the next mintinor bench
2 Leeture Table (exde Sketch) -um feet long parallel to the drameter of tho semicircie, with two returns of 2 feet each, at an angle of 150° whth the mann boily of the table.

[^14]Breadth of table 2 feet 3 nches, henght 2 feat 8 mehes The top of the table is to progect about an inch over the face of she cupboardia beneath; but there is atso to be a groove along the sufface all the way round, $\frac{1}{2}$ an inch from the edge; this groove to be about of an inch broad and about $\frac{1}{8}$ of an zuch deep.

2w Drawerg - In the centre of the table (P and P^{\prime}) at least four drawers; if possible, two rows of three each 3 mohes deep.
2b. Cupboards,- ($Q, Q, Q_{\text {se. }}$) to oocupy the remainder of the space avalable for that purpose. These to be provided with one sheif about, 1 foot above bothom of cupboard and coming to wishan trays,
The cuppoards should be as narrow as possible, say and the mflux of dust should be prevented by having a protruding ledge withun, which will overlap the cracks.
20 Trough (D).-In the raght hand return, and at the back of the table, a preumatic trough constructed of slate, dimensions, 1 loot broad, 1 foot and a haif long, 1 foot deep Intemor to be quike plain, except that there must be a hole with plug at the bottom connected with waste-plpe There chould be a grating just below tife plug to prevent atoppage, and a jount within easy resch.
The top edge of the trough (which will be about I moh thick) should be a littile below the level of the table, and a wooden ind should be provided, whuch, when placed over the trough, wril completely cover it and be flush whth the Tap.
Tap (II) for water supply.
2d. Sink (E) of glazed stoneware, 1 foot in diameter, placed in front of trough. Waste pipe and plug of stone ware, on account of acxds, \&c , joint within easy reach.
Tap (H) for water supply
2e Down-draughts (A, A^{\prime}) of glezed stoneware, to come out at mght hand of furnace, where, on a level with the loor, a smail alr-night door is provided, within which is
2f. Gas Pipes (B, B', \&c.)-One par in left-hand return 2f. Gas Pipes ($\mathrm{B}, \mathrm{B}^{\prime}$, \&c.)-One parr in left-hand return and three pairs along the oentral portion. All these
3. Speownen Table (C), to be placed in front of lecturs table Length 6 feet, breadth 1 foot, height 2 feet. The upper surfacs whll be used solely for the dueplay of peormens.
3a, Cupboards, for storing apparatus, \&c. Beneath this
table there should be a series of sliding trays, about 4 mohes part ; doors to revolve; dust kopt aut as in $2 b$
4. Rope and Uproghts, round the lecture table and specimen table, as at $M, M^{\prime}, 8 c c$, to prevent boya from coming near enough to handle specumens, \&c The uprights should be about 2 feet high, as far from the table as the benches in front will permit, and so placed as not to interfere with the cupboarda, $3 a$ The ropeshould be removable at pleasure
5 Blow-pupe Table, placed near the back wall on the left of the still $(q \cdot \theta)$
6. Slate, on movable frame and rollers, 4 feet square. Not black board
7. Work Tables, 3 feet long, 1 foot 9 mehes broad, 3 feet high. Upper axarface of slate (ff of wood, this to be quate plann, neither painted, paraffined, nor stamed, \&re); groove as with lecture table, and to project 3 neches over the cupboards beneath; thers is to be no parition between any two contiguous desks, sunce $7 a, b$, d, and e wnll be quite sufficient to undicate the homts of each; but they should bo
numbered as mdicated below.
7a. Cupboards.-Beneath each table, a cupboard sumular to 2 b ; except that there should be only one sliding tray 4 nohes from top, and two shelves, one of which is 1 foot from bottom and the other midway between this and the sray, both comung to within an med work on binges placed horizontally beneath the surface of the tables, so thist they could not be left open, un case of necessity they could be looped up by a simple contrivance.
7b. Sunks, 1 foot un duameter, of glezed stoneware; waste pipes of same, with plug, beneath which is grating, jounts Within easy reach. One sink for every tivo tables.
$7 c$ Tap, for water aupply, one for each table above unk
7d Gas Pupes. - One pipe dividing into two mmaller ones (one for each table), placed alternately with the sinks Also above each sink one fish-tanl burner for lighting purposes
$7 e$ Shelves Four in number above each table; strongly fixed to the wall; about 4 inches deep. The first shelf to be 1 foot above table, the others 6 noches apart The shelves of one table to be continuous with those" of the adjacent tables, but to be separated from them by a narrow upright placed aganst the wall, these uprughts may, but
need not, come to the front.
$7 f$ N.B Number and arrangement of work tables,
There will be space for the following --
Five each at A, B, C, D, E, and F, and 10 each a

G and H. At present not more than 20 tables will be requrred, these should be those at A, B, C, and D, and they should be numbared from A onwards in regular suoaeft M and N ; these will be approprated as followe -

8 Sonk at N., on the left-hand side, with tap and arrangements for washung and drying bottles, \&c
9. Teacher's soork table at M , on the righthand sude, 6 feet long, 1 foot 9 unches broad, and 3 feet high ; cupboards bensatio with revobong doors and two drawers about 4 mehes doep Deak grooved. Separate sink, tap, and gas supply (tivo gas pupes $1 n$ middle close to the wall, and one at each end). Shelves above to be the eame es with the otiner tables. Thus table will be used for the preper ration of class experiments.
10. Shelpes for large apparatus, \&c. Agaunst the wall and extending as far as the structure whil parmit, ald round the room (excapt over the furnace), there should be two frmily fixed ahelves supported at intervals with atrong freckets. The lower one to be about if foot above the top
shelf of the work-tables, and the other not less than 1 foot 3 mehes hugher. Depth about 8 mehes
11 Cupboard for speoment whth glass doors fixed against the wall at a convenient heught over the furnace. Thus cupboard should be very broed, and neither too high nor too deep, so that as many specimens as possible within it may be visible from ontaide, e g. breadth 20 feet depth (internai) 6 mehes, heaght (so that the top of it 1s) 9 ft . abore foor. If it can be broader it can be lower in proportion, but the depth mast not be leas than 6 naches. If deep

Uprughts at intervals of 2 or 21 ft . will serve to strengthen the shelves The number of doors is mmaternal The abelves to be equidistant from each other not less than 6 mohes and not more than 8 mehes apart.
12. Furwace and not a 6 ft . range, with plate and sand bath in the centre of the beck wall. Frecing the furnace there will be on the night of it the flue from the down draught of the lecrure rable. Stull further on the rught.
13. Draught-cupboard as long es possable, 2 ft . deep and 3 ft . high. Gan jet m flue at the back of plate damper worked by puiley or spindle. The flue opens almetely moto the furnace flue
14 Stall, on separate fire, to be placed on left of furnace and close to it. Stall further on the left will be the blowpipe table

15 Gas burners or chandelier to supply hght during lectures on fogery days.
16. Pexnt. the last coating mast be of zine pant; the last two if not three coatangs ought to be.
17. Exercuse chest A mall wooden chest, simular to that in the mathematical theatre of the college, but whth a chding door which can be altogether removed at plessure and contanning about 200 partitions to be placed at the back of the class beaches $2 n$ the centre of the semu-circumference of the hemicycle. Each partition to be about 28 mehes broad, 4 inches deep and $\frac{4}{4}$ of an nch hugh, ten 10 each horzontal row for the convenjence of counting. The whole dimensions of the chest will, therefore, be about $2 \frac{1}{3}$ feet long, $2 \frac{1}{3}$ feet high, and 4 nehes deep. To be placed about 3 feet above level of floor, so that an average boy
can reach the top of it
18. Ladder, self-sapporting, and high enough to enable an average boy to reach the highest shelf in the room.

(B.)

Absolutely necessary-
The following -
$1,2,2 a, 2 b, 2 c, 2 e, 2 f, 5,6 / 7,7 a, 7 b, 7 c, 7 d, 7 e 7], 8,9$,
$10,12,13,14,16,16,18$
With regard to those omitted and group 7, 7a, 8ce, -
Makeshift for-
2d The teacher will bave to go without till he can get one put in
3 A plan wooden shelf, 6 fest long, 1 foot broad, fitted on the table at a height of 2 feet above the floor.
$3 a$ Go without till they can be obtanned.
4 Do. do.
7, \&e If 20 cannot be put up, there should be as many as possible; and as the tencher's work table is mdispensable let those put up extend from it round the wall towards the furnace on the nght-hand side of the room.
NB-The gas (7 ${ }^{d}$) should be land on, however, all round the room, and the shelves should be put up as described under 7e. The gas pipes ronnd the room will be about 3 feet 1 inch sbove the floor

- As makeshifts for the remander, the work-tables (so alled) which have hitherto been used in the practical class plain dusseqcting tables.
11 Almost indspenssble, but the shelves (No 10) mught be used for a tume in place of the cupboard.

17 Go without tall it can be obtained.
August 22, 1872.

Kemark̄s on Lecture Theatre and Laboratory of Unspersity College School.
It is proposed to have the laboratory and the lecture heatre in the new building now being constracted in one, and besides a few mmor reasons, mere matters of con venience-
(1) Becsuse far more space will be thereby obtamed for ventilating the lecture theatite, which would otherwise be of very sinall dimensions.
(2) Becange in finture hoys will be able, if they choose, to work at therr tables durng wet weather in play tame, or spare hours; the master being engaged in the preptration of clase work in the bame room.
(a.) Because the laborstory wrll be larger than would thermse have been the erse.
(4.) Becaruse it is by no means improbable that laboratory work will become far more extensive than at present ; it may, therefore, be necessary to convert the whole of the room into a iaboratory, it would then contasn at least 100 working-tables, and thus could be effected at a slight expense; a cmall lectune room, or even two, could be fitted up at a moderate expense, and no unconveruence would then arise from the rooms being separate, for under the mpposed circumstances the stafir of scuencs masters would be greater than at present is found necessary

Mr. J. W. Walerr's Notrs of Remites to the Rotal Commissioners on Scrence Instruction a regards the Thaching of Natural Puilosopiy:

i.en, Espervatental Mechanecs, Hydrostatioy and Pmemanics

 and Optses.X. (a.) All the instructaon is orai; the iessons are altere nataly devoted to expermental demonstrations of general principles and to the working of illustrative exercuses and problems on, or deductions from, these prinoples.
(b.) No books are used. Bops often ask for a book to be recommended, trostly auch a one as shall be of most use un prepanng for the matriculation examination of London observatity. They are advised to rely on the apparvatuan of, sketches of the arrangement of of the campla mental demonstrations of all the fundamental the experihe perts of accence which form the echool coum pro exhibited
(c) Vary little "practical work" is found posshble under eristing syrangements, and that is confined chiefly to the detarmanation of specific gravity, sctual observntions and measurement for establishing the lawe of reflection and refraction of light, and the effects of angle, or combinations or, leases and prums, ad also rhombs of Iceland spar In planning the rooma now in courae of construction, the extenron of practical mstruction has been provided for, to be hmited only by the thene at command

XI The best-mdeed only thoroughly satisfactoryresults are found to follow in the case of those boys who have not depended on booke at all, but eolely on the oral lessons and demonstrations.
XII. See answers to X. (b.) and XI.

XIII (a) The making notes is unsiated on; they are in fact skeletons of the lessont, with sketches of the appratue as actually used. Formal statementa, or enuncrations, of fundamental penciples are uswally dictated by the teacher, where precision of expression is of essential importance, but this always follows, and is amed at being made to take the shape of deduction from, the previous expermental demonstration.
(b) It is requred that the notes should be revised (at
home) after each lesson, and, if only roughly takem down at the tume, copied faurly.
XIV. Under existing arrangements they do nothug of thes kind.
XV. The nature of the subjects precluces the postibility of mhroducing any arr of onginality in the teaching, unlest thay be in small details in which the common experumenta, as usually described in books, are varied 80 as to bafle any attempt to repair, by cramming from bookg, institention our courge been presented to, observation If any part of our chould, perhaps, be the pred, in answer to the question, of the satire of images formed by single, or combination of, lenses, by viewnog all the varieties directly whth the eye or by means of the screen. This practical study of the leses is always preceded by that of the prostu, as an instrument for producing refraction only, subsequentify as drspersive instrament.
XVI. For some time the lecture room (fitted with preasea for contasining apparatus and materials, a lectunng and work the means of completely roarred dunng experments on lught) hat onit been tree for the teaching of scrence durng afternoon honve.
XVIII. The apparatus at command is mafictent in quanity for teaching the leadiag pniciples of mechanici, bydrostatics, puenmatics, and optict, but the greater part, hought aoze 15 or 20 years ago, is of a cheap descniption and consequently not as delicate or prounctive of as erace results as might be desired. Two years nince the Commuttee of management authorised the outlay of from 15t. to 201 , m replacing some of thin by rmproved apparatus, and about half that sum wan actually expended in the department of optucs chuefy, further ontloy having been deferred until the completion of the new rooms. If the metruction of classes of from 20 to 25 wers to become practical, a conaderable increase in the quantaty of apparatus would to Tecessary, but this cheisy of the less expeninve partit. ections and parts of the proncipas machines, and of eome scientrific processea of manufacture. It should be added
that auch parts of the apparatus provided for the college professor as can be moved without mik of injury are aveulable for chool use.
XIX. There is no workehop for the use of the boys. Such repara or modifiagtions of the apparatus as appear necessary or desirable during its arrangement for each a few minutes, the teacher does for himself. When repars a few minutes, the teacher does for himself. When repars of more importance are required, the services of the assoarpenter of the college.

XXIII to XXV, By oral questioning, more or less, at every lesson. The demonstrations are, 8 m muoh as pracsucable, drawn from the boys themselves by questions more or lens "leading" The last two lessons of each month are devoted to a written exammation, upon the reault of which, chiefly, the "progress "of each boy is reported and hus "place" in the clase fixed The note books at the same time are inspected and commendation for these given under the head of "dligence" If special occasion should seem to arise, the notes of parthcular boys are demanded for inspection at the close of the lesson, eg, in the case of any whose manner, or fallure to answar the oral test questiona put rung the teachar of the olass, and form the most laborious part of hus work.
XXXIII. Every improvement the Universities introduce into their exammations must be attended with improvement in our teaching, eg, uf the examinations of the Unlversity of London became partly practacal in all departments of soience, as they are, for instance, at University College in the case of botany, classes under instruction would be stimulated to much greater interest in, and attention to, the details of arrangement and manipulation of apparatus; and the substitution of practical instruction for teaching by the exhibition of experiments only must foon follow.

Univerbity College School Natural Phylosophy Theatre Fittings.

1. Three concentric arrangements of benches and deaks Withun the hemieyole The breadth of benohes 9 mehes, of desks 12 inches. It is dessrable that thereshould be a space of about 1 foot between each desk and next intersor bench in order to allow of the master passing round to examine the pupis' work in the exerense class. It us very dessrable that eroh bench should be ransed at least 1 foot above the next interior bench, in order to ghve a clear view of the experimenting table to all.
2 The lecture table ehould be 6 feet long, parallel to the diameter of the semicircle, with two returns, at an angle of about 120° of sbout 2 feet each Breadth about 2 feet 3 mehes; heught, 2 feet 6 mohes; thus -

2. Under the tables should bs oupboards in preference to drawera, but it would be convenient to have an upper drawer, about 4 raches deep, in each retura. One sbolf neant if the top of the table projected about three inches ment if the top of the table projected about three inchee
over the face of tho cupboard
4 Behind the table, of course, will stand the blackboard or slate on moveable frame. Dimensions 4 feet by 3 .
3. Againat the beck wail s press about 7 feet hugh, 4 feet wide, snd 2 feet deep.
4. Between the leoture table and the back wall four tables tach, from 6 to 7 feet long, 2 feet 3 mohes wide, for pupile' practroal work It might be desurable, in new of purposes occasionally, that these should be mopeable, of purposes occasionaly, that these shoul
5. It is understood that wator would be lad on over a amall trough or sunk, and ges brought to tho table.

8th July 1879.
3474.

Form of Monthay Report,-University Colisege, London. School,

Morning Aftermoon : M, Th T F. W. S.

To express decided blame s merbal entry is vied, un accompanied by a aymbol.
Whan a boy is ahout to leave the school, a written notic to that effect must be sent to the secretary before the end of the last term of his attendance. In case of omission to give such notices, the payment of a half term's fee will be
The school breaks up for the Christmas holdays on Wednesday, isth December, at 1230 .
SCIENCE CLASSESA-Prograzimin of Wonc. Chbmical Physics.
 Shrence of Heat."
1st Term-General propertise of mattees, Molecular forces. Metric system (introd) Heat and cold (genera metallic themmometers and pyrometers, relative weight (II). Conduction of heat (III).. Expgnation of hquids, thermometers; relative weight; barometar (IV).
2nd Term,-Expanaion of gases, arr thermometers: thermoscopes, convection of heat, absolute and relatave weights of gases and vapours (V). Evaporation; potential heat; yapour tension. liquefaction of gases; loygrometry (VI). Liquefaction of solsds; freezmg muxtures (VII) Effects of heat (VIII)
3rd Term -Relative heat (IX) Theomes of heat; Laws of energy, work; mechamcal equivalent of heat-umt (X). Relatroris between heat and chemical force (XI) Radra thon, exther; theory of exchanges; formation of dew duathermancy; transmassion and absorptron of heat (XII). Voltaso electricity Electrolysis Electro-magnetism. Ampère's theory Magnets. Magneto-electrioty Electrie telegraph. Frictionsil electricity. Leyden jar. Ohm's law.
The extent to which electncity and magnetism are treated depends upon the previous progreas of the boys:

Chemisthy.

Crasg V

1.st Term-Examination of some natural phenomens: Evaporation, liquefaction, melting, and freezing; clouds, ram, enowr, fog, \&o ;expansion; thermometers; conduction and convection of heat; relative weights of hquads and gases; ayr and atmospheric pressure; the barometer; combustion or chemical combination; compounds and mixtures chemucai elemento, respration.

2nd Term.-Fuxther study of the eomponition, properties, and usea of aur and water oxygen, hydrogen, nitrogen; preparation, properties, and compounds of

3rd Term -Practical study of the metric system; résume of the work of the two previous terms ; wood, coal, char cosl, coke, carbonic acnd, coal gas, and flame, nitne acid hydrochione scid, and ou of visuol, chlonne, gulphor, and phosphorus

> Clasg V,-Uppiza.

Clase VI. -UPPER.
1 Thooretioal Comrse
Text-bookr-Gill's "Chimistay fon Schools." Iot Terme-Oxygen Hydrogen. Whter. Nitrogen Aur. Ammonis, Oxides of nitrogen. Natrates (pp. 1-64; 131-166.)
2nd Term.-Carbon and its compounds. Chloring, bro mane, iodine, fluorme, sulphur; and therr chef compounda. (pp 213-252; 55-130)

3rd Term-Phosphorus, arsenic, entumony, bismuth, boron, silieon, tin; and their chief compounds (pp. 167 212, 26x-274). Principal properties and compounds o calver, mercury, lead, oopper, mon, manganese, sinc, barum calcurm, magnesum, sodium, potassium.
The extent to which the metals are treated depends upon the previous progress of the boys
2. Practucal Course.

1 st Term.-The metric aystem. Quantitative $\begin{gathered}\text { tudy } \\ \text { of }\end{gathered}$ length, ares, volume, weight, relatnve wenght, and solubility: preparation of oxygen, hydrogen, water, ammonas, hydric nitrate; and exammation of the propertiea of those bodies
2nd Term,--Preparation of carbonio acrd, hydric ohlonde, hydric sulphate, sulphurous send, hydice sulphide; and ar momation of the properties of those bodies Properties of nutrates, chlondeg, iodudes, carbonates, sulphates, sulphutem and sulphrdes.
3rd Term.-Properties of phosphates, arseniates and arse nites, borates, silicates, of the salts of sarsenid, entimony tin, silver, mercury, lead, copper, lron, manganeas, zimo barium, calcum, magnesium, potasgum, sodium, ammo nimm.
The extent to which the metals are treated dependa upon. the previous prograss of the boys.

Natoral Pbilosopay (Experimbntal)
1st Tern-Properties of rigid matter. lnartis. Mechanical forces Weight Pressure. Tension. Renction Equalibrium of two, of three, forces Resultants System equalibrum. Stability. Mechanical powers and aimpl machines

Uniform velocity. Newton's first law of motion Vamable velocty and its measure Attwood's machine Masa Momentum Newton's second law Uniformly accelerated movement. Laws of falling bodics.
2nd Term-Oseillations. The pendulum and applicahons Prinemples of clock and watch work Newton' thurd law of motion Impact and collision. Elasticity The apring balance. The tormon balance Curculay move ment Work and energy, with prinemple of conservation of molecular forces. Capillanty.
Properties of fluds. Hydrostatio presompe. Pascal' principle. Hydraulice press. Surface of equilibnom Leveling instruments, ' Archmedes' prinemple. Specofic weught., Elastic properties of air and steam. Bople and Mamotte's law. Engines and mstruments depending on straospheric pressure. Elementary prnerples of the steam engine
3rd Term.-Vibrataons. Outhne of theomes of somnd and light Laws of reflexion. Image formed by plane and spherical murrors. Lawn of angle reftraction Total reflexion. The prism and dispersion of light. Images formed by refraction at the rurrace of watar Lentes. Simple Cicroscopes Core refraction and of polarization of light. Frrat pranaples of spectrum analyers. Rambows and halos.
The lessons to be deveted alternately to expermental demonstrations and explanstions of genersal pringples, and to illustrative exercises on, and deductions from, these.

MATHEMATICAL CLASBES,-Progmamin
0F Wome

Gyonernr.

Ceass IV,-Begrmites,
1st Tanm-Practical Geometry
Such constructrons as ake requied to work out the printed programme Exeremsen mvoling the leading problems for home work, constructions drawn to scale, tice Three darge a week for the firat half term, two days a week for the second half term, when the claee may begn.

Pure Geometry.
(a, Elementary notiona. Straight lines. Angles. Prom erties of triangles (Wright's Plane Geometry, §§ 1-39).
2nd Term.-Practscal Geometry One dey a week.
(b), Perpenduculars and obliques; equality of trangles; parallel lume ; polygons; and easy exercises, pp. 12, 22, 39 (Wright, $5 \$ 40-80$) Two days a week.
3rd Term.-Practical Geometry:- Ons day \& week. Pure Geometry.
(c.) Parallelograms ; construction of triangles from given data, and other elementary problems, and exercises (Wright, 65 81-86 126-134, or 138) Two days a week.
Class IV.-Uppzr.

Practioal Geometry. One day a week
Pure Geometry.
Let Tarm (b), rumning over (a) again 2nd Therm (c)
3rd Term (d) -Equivalence of rectilneal figures (Wrght §§ 272-301, 307-311), with exerceses. Plane mensuration.
Clase V,-Lower,

Practical Geometry One day a week. Pura Geometry
lat Term (c)
2nd Term (d)
3rd Term (e).-Properties of the arcle (Wright, 68 87125, 135-146, 302-306; and exercises). Planemensuration.
Class V.

Practsal Geometry One day a week. Pure Geometry.
lst Term (d)
3rd Term (f) -Ratno and proportion
perties of triangles and andes Croporion. Metrical protronsls (Wight $\$ \$$ 147-181, 201-224; and ox propes) Plane mensuration.

Class V.-Uppria
Practical Geometry, One day a woek during first term. Pure Geometry 1st Term (e)
3rd Term (g) -Properties of smomilar figures. Regular polygons and them areas. Area of crecle. Circular sentors and curcular segmenta (Wright, §§ 182-200, 225-271, 312 to end). Plane mensuration.

Class VI
1st Term-(f) 2nd Term (g)
3rd Term -Elements of solid geometry. Sphere, cone and cylinder (see Rouckes livres ∇ and Vrin^{2}), Mensuration of solids
*" Two periois in eqeh month shall be given to the solntion of exeroneen with hurs class. The exercuses to be worked out at home by the class from seant notea and shown at the next anoceeding stametry lesson.

Syilabus of Work in Geometry,

Crasa	1st Term	2nd Term.'	3nd Term.
Fourth (Beginnars)	$\mathrm{P}_{\mathbf{g}} \mathrm{P}_{\mathbf{8}}\left({ }^{\text {a }}\right.$)	$\mathbf{P}_{1}($ b $)$	$\mathrm{P}_{\mathbf{y}}(\mathrm{c})$
	$P_{2}(b)$	$\mathbf{P}_{1}(\mathrm{c}$)	$\mathrm{P}_{1}($ d $)$
Fifth (Lower)	$P_{2}(\mathrm{c})$	$\mathbf{P}_{1}($ d $)$	$\mathrm{P}_{1}(\mathrm{c})$
" *	$P_{1}(d)$	$P_{\text {a }}$ (a)	$\mathrm{P}_{1}(f)$
" (Upper) -	$\mathrm{P}_{2}(\mathrm{f})$	$\mathrm{L}_{1}(f)$	$\mathrm{T}_{\mathbf{4}}(g)$
Sirch -	$\mathbf{L}_{1}(f)$	$\mathrm{T}_{\mathbf{1}}(g)$	T2S
* (Uppar).			

Plane Mensuration should be commenced whth classes reading Wright (d), and be contanued in the higher divisions as illustrative of the subject matter of the text-book.
\mathbf{P}_{s} stands for Practical Geometry three times a week

$\mathbf{L}_{1}, \boldsymbol{T}_{1}$ stand for Logarithms and Thgonometry, each one day a week.
S stands for Solrd Geometry, sa above.

(a) Elements, first four rules, with use of brackefis, simple equations of one monnown quantity, and easy problems.
(b) Resolution into factors; G.CM.; L.CM', smple equations of one and two anknown quantities; easy problems.
(c) Fractions (ensy) ; smple equations of two and three unknowns; square and cube root
(d) Fractions (lugher), evolution; quadratic equations of one unknown, and easy problems; progresssons.
(e) Sumultaneous equations involving quadratics ; ratio, proportion, variation.
(f) Notation; surds and indices
(g) Interest (without and with the uss of logarithmac tables) ; annuuties, indeterminate equations.
for (h) Permutations and combinations; binomial theorem for positive utegral exponent
(i) Binomial theorem (in its generality); multnomul theorem; Hornar's method of solving equations and extracting roots.
(k) Practioe in all the rules

N B -A letter sccented thus (b^{\prime}) is intended to include prectice in the eariner rules.

. Applied Mathematices.

lst Term.-Mathematical proofs of the principles of elementary staties and uniformly accelerated recthluear elementery statics and uniformly sccient
2nd Tarm.-Hydrostatics and pneumatics, as treated by elementary mathematics, with examples and problems Reperition of, and advanced exereises an, the work of lst Term
3rd Term.-Geometrical optics. Statical friction. Couplen and equilibrum of oo-planar forces generally. Guidin's thorems. Impaot and collision. Centrifugal force. Projectiles. Rectimear vibrations. Sumple pendulnm.

Psarov	I．			II．			13.								
	Rank of Olans	（no or	Room．	Bank of Olass．		Hoom．	Hawk of Oress	S $\begin{gathered}\text { No of } \\ \text { Boyg．}\end{gathered}$	Room，	Pank of Class．	（ No，of	Room．	Pmik of Crane	${ }_{\substack{\text { No．of } \\ \text { Bayt }}}$	Romm．
Lamin Onmesti											$\begin{aligned} & \text { ت } \\ & \text { I8 } \\ & \text { Z } \\ & \Xi \\ & \Xi \\ & \Xi \\ & \Xi \end{aligned}$			$\begin{aligned} & \overline{14} \\ & \underline{Z} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	
Grabx Chabra	$\begin{cases}\text { ：} & \vdots \\ \vdots & \vdots \\ \text { ia．}\end{cases}$	$\begin{aligned} & \text { モ } \\ & \underset{18}{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \text { B. } \end{aligned}$		$\begin{aligned} & 19 \\ & 18 \\ & 18 \\ & \hline 80 \\ & 19 \\ & 19 \end{aligned}$		三	三	ニ	三	こ こ	$\begin{aligned} & \text { Е } \\ & \text { 玉 } \end{aligned}$	三	三	ב \pm
Franci OLhsesa								$\begin{aligned} & \text { J } \\ & \frac{21}{21} \\ & \frac{30}{30} \\ & \frac{30}{31} \\ & 30 \end{aligned}$	$\begin{aligned} & \bar{\Xi} \\ & \frac{\Phi}{U} \\ & \frac{\mathbf{v}}{W} \\ & \frac{1}{U} \end{aligned}$				$\substack{\text { Sa } \\ \text { de } \\ \text { a } \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \square}$		$\begin{aligned} & \overline{\mathrm{T}} \\ & \frac{\mathbf{1}}{\mathbf{w}} \\ & \overline{\mathbf{q}} \\ & \overline{\overline{0}} . \end{aligned}$
Eладй С．	$f: \begin{array}{ll}\text { i } & \vdots \\ i & \end{array}$	$\frac{\Xi}{30}$	三		$\begin{aligned} & 18 \\ & \begin{array}{l} 18 \\ 78 \\ \hline 18 \\ \hline \end{array} \\ & \hline \end{aligned}$	H B Pr R		$\begin{aligned} & \begin{array}{l} 17 \\ 80 \\ \hline \text { sim } \end{array} \end{aligned}$	$\begin{aligned} & \frac{\mathrm{H}}{\mathbf{D}} \\ & \stackrel{\mathbf{P}}{ } \end{aligned}$	4．三	$\frac{\overline{10}}{\underline{E}}$	$\underline{\text { İ }}$	${ }^{\text {a．}} \square^{-}$	$\overline{\text { es }}$	$\stackrel{\overline{\mathrm{D}}}{\underline{-}}$
Lumizuaticas Czamza	Uppare ${ }^{\text {－}}$	16	N．	－	－	－	－	－	－	－	－	－	－	－	－

Unuversity College School-Morning Time Table. Michaelman Tern, 1872.-continued.

[^15]

The Natural Philosophy Clasg conssust of two Divesions, the one meethng during the Lour of yocreation, the other dunug the First Period of the Afternoon. Tha Upper 6th Chematry Class meets for Practical work in the Laboratory for two consecutive periods ($=1$ hour and a half) on Wednemday Afterncon.

The mode of clasmification sdopted In Univeraty College Sohool is explaned in the "Spectal Prospectus," of whrch copy is ment herewnth.
It will be seen that each boy has his own programme of work, whech, subject to the law of permutations, is not necessaruly denincal whth that of any other boy.
The revision of all classes by promotion or degradation at the end of the seession is unversal Each step, however, must be earned, thas is, a boy must aatisfy his master that he can and will follow the work of the rank of the clases to which he is advanced.
Indivdual vases of promotion and degradation are of annost daly occoursence throughout the year. In futare it is intended that no change shall bs made durngg the last month of each terma, but this will be the only lumitation to the practice of ad lbbitum revirion
The advanteges of the system are dwelt upon by the "School Committee" of the Council of the College nu their recent report (v, accompanying extract)
The drawbacks are ullustrated by a pasaage from Professor Key's report to the Councll for the year 1853. (Extract appendec.)
The School Honour List, now printing in a new form lately adopted by the Councl, will show the exact programee of work of each boy attending the scienoe classea, and his degree or prohorancy in oach suberade towards onswaring the Commassioners' quastions.
It muat be borne ill mind that the sehool is not intended for boys above the age of from 16 to 17 .

Extract from the Report of the School Committee, adopted by the Counell, Dec 7, 1872 .
The Committee believe that thrse excellent state of thung in to a conssderable extent attrubutable to the system which prevails in the school of frequently revising the olasgefico provais in the soliool of frequenty revising the chassmoa tron of the pupila in all the subjects of stady, so that a boy any olass whrch is enther too high or too low for hum, but many st any time be removed from a clags which experience has shown la not autable for him to one adapted as closely as possible to has actual requrements. In thas way the opposite evila of disheartening a boy or of makang hym careless are equally avoided, and his interest in every part of his work as constantly manntaned.

Extract from Professor Key'b Report.
The problem of putting all the various classea together is one axceedungly mintroste, and almost of a mathematical character, so that one head alone can successfully work $1 t$ This will easily be understood when it is recollected that a given boy may have made such dufferent progress in hus given boy may have made such duferent progreess in hus place hum in classes altogether incongruoua for all his atudies of mathematios, Latim, Greek, French, eto.

Form A
Univergity Collegh, London. School

Form B.
University Combege London: School
Prigramme of Work.
Boy's (1) Sarnama
and (2) Inibutan
morning.

Period.	M, W, F .	Room	T, Th., S	Room.
1				
2.				
8.				
4.				

* Form B is for boys who attend diffarent roome, 1st period M Th afternoons

Form C.
Univeraity College, London : Schook
Programme of Work.
Boy's (1) Surname)
and (2) Initiala

Penod.	M., W, F.	Room.	T., Th., ${ }_{\text {S }}$.	Hoom.
1.			-	
2				.
8.				
4.		-		
AFTHRNOON.				
Pernod.	$\mathbf{M} . \mathbf{T h}$	Room.	T \| F	Roomb
1.			1	
2.				
8.				
Weat.				
Sat				
$\begin{aligned} & \text { "Besween } \\ & \text { houre } \end{aligned}$		ـ	--	

UNIVERSETY COLLIEGE，LONDON．

School

Under the government of the Council of the Cohlege．

Spactal Probpretub．

The object of the＂specia prospectus，＂as distinguushed from the＂general prospectus，＂is to afford more detaled informstion to the parents of boys already entered in the school．
al prospectus hikewise 18 prefixed occur in the gene－
The information that follows is intended to enable pem rents to gauge more accurarely the sttamments of theur boys，to watch their progress，and to give instructions in
due time as the season approsches for commencing new subjeats．
Explanations are given with regard to the standard course of studies and sequence of subjects；the mode of clasasfication，conditions of promotion，nomenclature of classes，and qualifications for admission into beginming classes，the requirements in respect of home preparation： and the regulations relative to school books and dunner tickets．

Programme of the Normal Wori of Boys in the Upper School．

SEssiom＝ $\mathbf{= T e a r}$ ， Normal Age of Pupil．	浐	宮嵒呂			边	
Subjbotu．	Clasa．	Cless	Oliss	Clasa．	Olass	Olash．
Engith－		4	3	4	${ }^{6}$	0
Arithmetio ：	1	8	8	4	8	6
English History	1	8	${ }_{8}^{8}$	4	8	${ }_{6}$
Prench－	1	8	8	4	5	6
Drawing		$\frac{8}{2}$	${ }_{8}^{8}$	4	${ }_{8}$	${ }_{6}^{6}$
Writing	1	2	${ }_{8}^{8}$	4	\square	
Qorman ${ }^{\text {a }}$	＝	二	8	4	5	${ }^{8}$
Roman Hastor Mathomatica（Pure）	二	二	8	4	6	${ }^{6}$
Groek－	－	－	－	4	6	${ }^{6}$
				4	${ }_{8}^{8}$	
Astronomy（ilementary）				二	${ }_{5}^{6}$	
Grecman History－					8	${ }^{8}$
Chamistry（Theoretical）					8	8
Natwral Pbilosophy		－	－	－	－	6
Applied Mechanies					－	6

＊Boys are admitted to the upper school at any ape under 15，if on examination found competent to enter Applica tons for admission after that age are considered on their merts
＊A boy entering the upeer school at the age of 10 wnll， with ordinary industry，under favourable circumatances， have gone regularly through the entire curnculum of the sctool by the end of the seorion in which he completes his suxteenth year，and ought the ${ }_{\text {I }}$ to be qualnied to pass the matriculation examination of the University of London， and to enter as a student of the college．

Modr of Clagsification．

There is no formal division of the achool into classical and modern departments．
Boys are exammed at entry and classified，with a view to their requirements，in each subject aeparstely according to individual proficiency．Thus the same boy may be classed high in one subject and low in anotber．
clased harents are allowed to select the subjects in which
theur sons are to be anstructed，as well subsequently as at entry．It is esscntal，however，in the former case，that their wisnes should be made known before or，af latest， at the commencement of the session or term when begmoing classes are formed．The head master，moreover，reserves the right of veto

In most subjects beginning olssses are formed as required at the commencement of each term．

Boys who purpose preparing for the matriculation exa－ mination of the University of London shorld give notace of their intention as carly as possible．

Any subject can be omitted at the discretion of parents， provided that the fillag op of the fall pernod of the achool hours is not thereby prevented．
The possibility of taking up the whole of the subject contained in the curriculum is of course subject to the hmitation of school－hours
buited with the exprjects taught in the jumor classes 1 hanted with the exprese purpose of preventing dustraction．

The first day or two at the begnning of the messans， Which commences whth the Michselmas term，ave necom－ sarily spent almont entirely in the business of clasafloatron． The absence of boys at that trme is a serious detmanent to the whole school
At that time oach class below the suxtry advanoes a step．
Boys who are reported by their clase mastars an not having made mufficient progress duriag the foregoing seaston，lose ther promotion and repeat the work of the previous year．
On the other hand，it is not unusual for boys of superios age，induatry，or ability to be allowed to akip a clasa Not unfrequently，m mmuar cases，two stepa are taken，at antervals，in the course of a amgle session．
Boys who have already gons through the ordinary axth classes，and who remain in the echool for another year， either contnuue in the same classen or are formed into
superior classes，distinguished as＂ppoer＂sirth．The ＂upper＂＂elasth is thus vistually as＂upper＂sixth．The
The distmetions of＂uppar＂，and＂lower＂an applied to classes below the nixth，imply uo difference of ypined to classes below the tixth，imply uo differtuce of yeas，but
simply sigmity that the general proficiency of the olen in almply ongmiy that the general proficiency of the olass in
question exceeds or falls below the normal etandard Ihna is generally eccounted for by the time of the omginel formation of the class，according as it dates from the begmang of a session or from some later term．
Where there are eeveral classes of the esmo denomina－ tion m one subject，the letters A，B，C．are added for distinction＇a sake No protrity of rank is implied．

The average number of boys in a claps is about 20 ．
The average number of boys in a class is about 20 ．
Latin－It is considered an advantage in the case of boys under 11 years of age not to have commenced latin befors under 11 yeare of age
enterng the school．
Greek－Boys below the thyrd olase of Latin are not allowed to begin Greek．In regard to taking up this subjeat the inutiative rests with parents
subject the inutisinve rests whth parents German，－Boys below the third class of English end the third class of anthmetic are not allowed to began German． In regard to taking up this subject also the initiative reata with parents
Hebrew．－Thare is no fieed limit of age for beginning this subject．Boys are received at varions ages and degrees of proficiency，according to crenmstanceat．

Early Englash－Boys wrishing to compete for the annual prize offered to the school by the Early Bnghah Text voluntary cless，meetung out of ordinary school－hours．
Mathernatics－Boys who have reached the fourth class of arrthmetic（below which standard they are disqualrfied） are expected to begin mathematics，unless their parent are axp
object
Apphed Mathematucs－It is advisable to reserve this subject，where prachicable，for the seventh tession．
Chemastry，Chemucal Phymes－Boys who insve reached the fifth class of arithmetnc（below which standard they are disqualhfied）are expected to begin these subjects，tinless
their parenti object，It is，however，essental that they should join the classes from the time of ther formation， and this will generally be at the begroning of the Michaelmas Term．

Practical chemistry is an essential part of the mecond year＇s scxence course in conjunction with theoretical che misting．In exceptional cases only，as where a hoy it pre pamng for matriculation，are members of the junior or firat year＇s class allowed to attend the practical class．
Book－keeprog 88 tanght where demred，in a one－year course，to boys aufficiently adranced in arthmetie They are required to be gualified for a fifth or，at loweat，s fourth
class in that subject．The best time for commencing book－ class in that subject．The best time for commencing book－
keeping is at the beguning of the last complete meanon of keeping is at the beguning of
boy＇s attendance at the school
a boy＇s attendance at the school．
Writing may be continued when nocessary，later than Writing may be continued when nocessary，later than
the fourth sesmon，even during ordinary echool－hours． There is lukewise an extra winting class on the Wednewdey afternoon，open to boyw who are unable to attend at othe hours，or who requre apecial attention in thit wibject．
Drawing．－Drawing is treated as，to nome extent，an essential part of education．The general syetem of teachung is arranged to meet，$s 0$ far at practicabio，the requirementi of business and profesatonal life．There are special clasect for matruction in machancal drating Promotion in the A boy who produces a good drawng，provided hus condict A．boy who produces a good diawng，provided has conduc without deldy to the highest ciass he is fit for
Fencmg and gymonatica ean be commenced at any age wrthout restriction．
Whilst most of the sbove regulations reat on prociple come have regard onily to the general convemience of claserficatron．

Home Parparation.

With a few exceptions (chiefly anthmetic and algebra classes, and some first-session classes in Enghsk aubjects) every school class demands a certan amount of preparation out of achool-hours

* A boy 18 expected to give to the homs preparation of his lessons shout two hours on an average every evening. The time will of course vary with the age of the boy Below l2, an hour will generally be sufficient; above 15, more than two hours mey be required. Where a muoh shorter or a much longer time than the average as actually
bestowed, parents are earnestly recommended to consult with the bead master upon the aubject Preparation out of achool-hours on the school premases 3 s wholly discouraged, except in the case of boys of undoubted industiry. Capying exercises renders both giver and receaver hable to gras e punishment.

It to umposable 80 to distribute a boy's tume as to equalize absolutely the nominal amount of work to be prepared for the followng day lessons will necessarily be more mumerous on some nyghts than on others, But, as it is alwaye possible to foreses the extra pressure, boys should learn to make provision accordingly. Many of the leanons follow in regular aequence, and are fixed in quantity: so that e boy may well antrcupate on his slacker nughts some of the wark which falls on the busser ones.
It is of the highest umportance that parents ahould familarize themselves with the mode in which ther sons time at school 18 distributed, and so with the precise subjects of the lessons which have to be prepared at home each evening ; and that, with the view of providiag an addrtional incentive to steady industry, they should observe from day to day the actual numbera from which the "sverage place " in each class, as recorded in the monthly "report, is deduced, this information is supplied by the A narbur regter, Whin each boy is A careful examination and comparison of the monthly re-
if accompanied by eome epecific acknowled enent or reward rising in proportion to thear excellence Reports or remarn mg throughout under the headings of "E Dilugence" and "Conduct" "Progress" not inginded) the hges and bol, vie "1" (三 "Very Good"), are known as "Perfent Reports," and a record is preserved of boys obteining them

Boys are presumed to have fully prepared therr home work, unless prownded with an excuse
A few words of explanation, written on the parent's address card constitute the readiest and most convenien form of excuse. In the case of brothers, a separate card hhould be furmshed to each boy

All oxcuses muat be countersigned by the vice-master and parents ane desired to grant them as aparingly as posable.

School Books.

New books are furmsised at the school, as required, to those boys whose parents desure it, much loss of tume and musunderstanding being thereby aroided It is desirable that all books used at the achool, whether issued there or not, should be marked with the achool stamp. Boys mislaying books or needing to have books bound, cen be temporariy supphed with substritutes from the "loan hibrary warrant fromi parenti.

Dinnet Ticerets.

Boys wishing to dine at the achool are required to provide themselves with dinner tickots These tickets are suppiled "between hours" in room L, on prepayment only

Thokets are issued either angly or in sheeta of twenty ten, or five. By buying them in sheets, requirigg ther production at home, and mitheling them, parents mas money given for payment
To prevent the cale or transference of trickets from ons boy to another, the name of the boy in whose favour they are haved must bo insertad in bach tucket at the wme of presiding master morar presindag master

Unused tickets will be taken back, on the wnitten request of parents, at a discount of twopence a sheet or part of a sheet
Boys umprovided with money may borrow from the vicemaster to the extent of the price of a single tucket
A specimen sheet of "Honour List" is given on the followng page.

Use of the Tables

The Tables show, tern by term, for each boy -
(1) His subjects of study, and the rank of his several classes *
(2) The manner in which he acquited humseif at the exammations held at the close of the term, as evidenced by the number and degree of his honourable mentions :
(3) The numbers of exceptionally good monthly reports obtanned by hum during the term

(1.) Rank of Classes.

The ravk of classes ranges from lower first, first, upper first (expressed in the tsbles by $1,1,1$, up to lower sixth It will
rank of classes is not in the case of certain subjects the rank of classes is not specified In such tastances the classes are either of anoarsable rank or of modefnite rank To the former category belong the following :- 6 applied mathematics, 6 natural philosophy; s chemical physics
5 astronomy, 5 . Grecian history (ranked as suxth for axxth Lastronomy, b. Grecan hastory (canked as suxth for sis book-keeprog, and wrinng
The symbol - is employed to indicate attendance at a elass, where this fact would not otherwige appear, os, fo for example, under the headings of natural philosophy, ion writing, and in the foot notes.

The rank of each boy's classes parres according to hus proticiency in his several subjects of study.
Owng to the peculiarity of classufication inducated, a boy's general standmg in the school is not obvious at sight. To define this, the arrangement by so-called "forms ${ }^{22}{ }^{2}$ is introduced.
The "form" or meas position of each boy $1 s$ determened by calculating the average rank of all his classes.

(2.) Honourable Mentrons

Honourable mentions or "commendations" are of three degrees, viz. "-"commended," "highly commended," "very hughly commended" (expressed in the tables by C. H, V)

The "commendation" awrarded to the first hoy in the exarnmation of any class, whether C, H, or V, is printed un larger typa, thus, $\mathrm{C}, \mathrm{H}, \mathrm{V}$
In some subjects all classes of the same rank are combined for examusstion. The "commendation" gauned by the first boy in such aggregate examinationi is distingushed by larger and heavier type, thue, C, E, \forall
Absenoe from eramunstions is denoted by the symbols * and t, denoting respectuvely " wholly absent" and "partrally sbsent"

Standing in the "term" column, these symbols apply to the examinations as a whole, elsewhere, the referenoe is himited to single specified examuations

Absence from single examuations is then only indicated when commendations would in all probability have been earned.
from all than t is employed in the case of boys absent from all other ersminations except those in which they obtaned commendations.
(3) Morthly Reports.

In the last two columns of the tablea are recorded the number of "parfect" reports and the number of "proxmen" reports which a boy hes obtanned durng the term. For ench torm three reports are given.
Monthily reporisperpatsuang throughont, under the headings of "conf" "and "diligence"" the highes symbol, vis., "1" "F good," are known as "perfect" "2")= TGood," wh but for the presence of a sungle mized as a proxime areports.
x，2，3，4，5，6，denote Lower Frrat Class，Lower Second Class，\＆ro． $1,2,3,4,6,6$ ，denote Firat Class，Necond Class，Thurd Class，\＆ 2，2，3，4，5，©，denote Upper Furst Clase，Upper Second Cless，\＆o． －denotes＂attended Class；＊denotes＂wholly sbsent from Examina－
c， $\mathbf{H}, \mathrm{V},=$ Commended，Highly commended，Very hughly commended．
C， $\mathrm{H}, \mathrm{V}=\mathrm{Ditto}_{\text {，and further，＂First Boy in his Class．}}$
 Examunation．

TSRM	name． N． B －The mall numerala reter to the foot－ 	tram	Olassics．		Modern Iansungee				History			寑		Natural Scenosa			Mathemstice			$\begin{aligned} & \text { 管 } \\ & \frac{\partial}{4} \\ & \text { 㽞 } \end{aligned}$			No．of Hoporta．	
			䓓	高	诺	$\begin{aligned} & \text { g } \\ & \text { ed } \end{aligned}$	$\xrightarrow{\text { Eng }}$	$\frac{1 \text { (Alta) }}{}$	童	管	兾。				$\begin{gathered} \text { 畄 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { 品 } \\ & \text { 葆 } \end{aligned}$	点					曾		害
3	Abrahams，Arthur－－	Leut＊		I	I		1	1			1	7							1					1
8	Aime，Charlos－－	Mich Lent Sum．		2				\because			$\begin{aligned} & 4 \\ & n \\ & " \end{aligned}$	＂	－				＂，	$\begin{aligned} & 4 \\ & ״ \\ & \hline \end{aligned}$	$\begin{array}{ll}3 & 0 \\ " \\ " & \\ 0\end{array}$		Z			
5	Alazander，Joman ${ }^{\text {1 }}$－－	$\begin{aligned} & \text { Moch. } \\ & \text { Lent } \\ & \text { Suan. } \end{aligned}$	50	1 $\#$	$\begin{array}{ll}3 & 0 \\ 4 & 0 \\ 0 & 0\end{array}$	5	${ }^{5}$	＂		$4 \prime$ ＂	$\begin{cases}5 & 0 \\ \vdots "\end{cases}$				二				b，					
5	Althans，Theodor Friedrab＇－	$\left\{\begin{array}{l} \text { Mach } \\ \text { Lent } \\ \text { Some. } \end{array}\right.$	$\frac{4}{\prime \prime}=$	$\left[\begin{array}{ll} 1 & 0 \\ n & 0 \\ n & B \end{array}\right.$	$\left\|\begin{array}{ll} 5 & \stackrel{y}{n} \\ n \\ n & \vdots \end{array}\right\|$	$\begin{array}{ll} 6 & \nabla \\ \# & \nabla \\ " & \end{array}$		$\left\|\begin{array}{ll} 4 & 1 \\ 0 & 1 \\ 0 & 8 \end{array}\right\|$		$\begin{array}{ll} 1 & 0 \\ 0 & 0 \\ 3 & 0 \end{array}$	$\left\|\begin{array}{ll} 4 & \mathbf{B} \\ 0 & 0 \\ 0 & B \end{array}\right\|$						5 ${ }^{\prime \prime}$		$\begin{array}{ll} 5 & c \\ \eta & 0 \end{array}$		$\underset{\mathbf{Z}}{\mathbf{Z}}$		8	9
6	Andertron，Robert ：－－	Mach． Lant Sam	$\left\lvert\, \begin{aligned} & 5 \\ & 100 \\ & 20 \end{aligned}\right.$	10	$\left\|\begin{array}{ll} 4 & 0 \\ n & 0 \\ 0 & 7 \end{array}\right\|$					${ }_{3}^{1}$	$\left\|\begin{array}{ll} 5 & 0 \\ " & \dot{g} \\ " & \mathrm{~V} \end{array}\right\|$			$\left\lvert\, \begin{aligned} & \mathbf{5} \\ & " \prime \\ & " \prime \end{aligned}\right.$	二	Z			$\left[\begin{array}{ll} 5 & 0 \\ n & 1 \\ y & 0 \end{array}\right]$			V		
9	Davidson，s．－．－－	$\left\lvert\, \begin{aligned} & \text { Miob. } \\ & L_{\text {nent }} \\ & \text { Suar. } \end{aligned}\right.$		2 ${ }^{\prime \prime}$				$\begin{aligned} & 4, \mathbf{v} \\ & 3 \\ & 3 \end{aligned}$			$\left\|\begin{array}{ll} 4 & 0 \\ 0 & 7 \\ n & c \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathbf{4} \\ & \prime \prime \\ & " \mathbf{v} \end{aligned}\right.$							$\begin{aligned} & 2 \\ & n \\ & n \\ & \hline \end{aligned}$		$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { O } \end{aligned}$		8 $\mathbf{8}$ $\mathbf{8}$	
5	Jenaungr，A．O ．－－	Sum		58		3 V		67	\checkmark			5 \％					≤ 1		5∇			30	8	
－	Kiraohi，D．Y	$\begin{aligned} & \text { Mich. } \\ & \text { Lems } \\ & \text { Leunn } \end{aligned}$	$\left\|\begin{array}{ll} 0 & \mathbf{v} \\ \because & \nabla \\ : & \mathbf{v} \end{array}\right\|$	$\begin{cases}3 & V \\ 20 & V\end{cases}$	$\left\|\begin{array}{ll} 5 & \mathbf{r} \\ \prime \prime \\ \prime \prime \end{array}\right\|$				$\begin{aligned} & \mathbf{H} \\ & \underset{\mathrm{V}}{2} \end{aligned}$	$\left\lvert\, \begin{array}{ll} 8 & \nabla \\ i & v \end{array}\right.$	$\left\|\begin{array}{ll} 1 & \mathrm{~V} \\ \% & \mathrm{~V} \end{array}\right\|$					$\begin{aligned} & \mathbf{V} \\ & \mathbf{V} \end{aligned}$	$\begin{array}{ll} 10 & 0 \\ \eta & = \end{array}$	$\left\|\begin{array}{ll} 1 & \mathrm{c} \\ n & \mathrm{H} \\ & \mathrm{H} \end{array}\right\|$	$\left(\begin{array}{ll} 0 & \mathbf{V} \\ n & \mathbf{V} \\ \mathbf{v} \end{array}\right)$				8 8 8	
－	Morley，E．F：－－	$\begin{aligned} & \text { Mioh } \\ & \text { Sent } \\ & \text { Sum. } \end{aligned}$			$\|$6 0 \cdots \mathbf{H} \cdots H				V	6	$\begin{array}{ll} \bullet & \mathbf{V} \\ \prime \prime & \mathbf{V} \end{array}$	$\left\|\begin{array}{ll} 6 & \mathbf{V} \\ m & \mathbf{V} \end{array}\right\|$		$\left\|\begin{array}{ll} \mathbf{6} & \mathbf{V} \\ \overline{\mathbf{V}} \\ \mathbf{V} \end{array}\right\|$				$\left\|\begin{array}{ll} \mathbf{B} \\ \boldsymbol{n} \mathbf{V} \\ \boldsymbol{n} \end{array}\right\|$					$\begin{aligned} & \mathbf{a} \\ & \mathbf{2} \\ & \mathbf{8} \end{aligned}$	
5	Oeler，R R S＇．－－	$\begin{aligned} & \text { Miok } \\ & \begin{array}{l} \text { Lent } \\ \text { Suma. } \end{array} \end{aligned}$			$\begin{array}{ll}4 \\ \square & \bar{V} \\ \sim\end{array}$			5 ：		$\stackrel{*}{*} \stackrel{\rightharpoonup}{*}$	（5	5－\square^{-}		$\begin{aligned} & z \\ & n \\ & n \\ & \nabla \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{v}}{\mathbf{v}}$		\％	5% \square \square					$\stackrel{3}{8}$	

15. Tauntor Collegz Shhool.
General Arrangement.

Queation 1 How in the sehool chesanfied?-Into upper, unddee, and lower, each compertment beng sabdivided The primente of elmastication is uniform, that is, there is no different arrangement of clasees for different subjects but ench boy 5 placed scoording to hus general fitness, and
his marks, in all the subjects taught, determine has poantion , in has form.

Question 2 Is scrence a necessary past of the school course, or is it taught only in specnil forms or depart-ments?-Necessary for all boys in the upper and midde schools.

Question 3 Copy of trme table.- $\mathrm{U}_{\boldsymbol{7}}$ upper school; M. midrite school.

Quentron 4. Summary of hours per week given in each chase to drfferent subjecte. (If playtame ma utiluzed for prepminition

Scrpture	-	-	- 2
Engluh -	-	-	- 3
Lestin	-	-	- 5
Greek or German	-	-	- 4
Mathematics	-	-	-7
Chemutry	-	-	
Botamy	-	-	- 2
Musp	-	-	- 2
Freach	-	-	- 2
			30
In muddle mehool :-			
Samptare	-	-	- 2
Eugbata	-	-	- 4
Letru	-	-	- 6
Greek of Greman	*	-	- 3
Mathematace	-	-	- 6
Chemonitry	-	-	- 2
Mechances	-	-	- 2
Mnase	-	-	- 8
French	-	-	- 3

Two papers in Latin, two in Prench, oxe in Greek or Germana, one in mathematicen, and ane in Enghat, are done in the evenings of the wrek, and two hours a week are takem from phingtime for the draving elassea.
Qremon 5. Summary of the number and average age of byy hearang emeh of the vorous aubrects in the Netural Sevence Caseos.
Advanced chemantry, 20 boys of shom 16 years old.
Blemay,
Elemeatary
Mechanast
Qwestion 6. Kmount of knowledge requared before the
tridy of smence so commoneed.
The lower echool hat a weekly liossom with the headmaster on elempertary acreatufio toptes, mintroductory to the fornul stady of scresce.
For the commencement of the stady no other coudrtion us requared then promotion mito the unddie school, which
 of algetret to mmople equationa.
arestion 7. Is sny alternative or choice of subjects fered ?-Nó.
What departments of science are preferred
a. By parents?-Having no option they manufest no
preference.
6 By the boys ?-In fact the most popalar sabjecta are chemustry and botany But I believe that this us due to the apecial enthusiasm dasplayed in teaching these spibjecta, not to any interest inherent in the subjects. The most zealous and effective teacher whil make his own subject the most popular, or, teaching aeveral subjects, the sabject whuch be loves best.
Questos 8. What branch of science receives most atterton in the school, or is found by expernence to have the ton in the school, or is found by expernence to have the greatest just given.
Queatca 9. What wreaght is assigned to scientific attainnenta in determinmg a boy's position m the achool 2-We have endeavoured to give ersctily the samo value un school marka to scrence, poathematica, and languages.

Methode of Teackang.

Qrestuon 10 What proportions of the lessons take the orm reapectively of
(a.) Orail teachung and demonstration?-

Of physnology, at present the whole ; of botany,
On chemastry, for the upper school, one third; for the maddle school, the whole.
Of mechances, the whole.
(b) Book work 7 -

Books are used only out of school as an assustance to notes taken at the lectures.
(c.) Practical work ?-

Physiology, at present none, but this is evil and temporary
Botany, ove half the tmoe is given to dussections, schedule writung, and classificatrou
In chermstry, the upper school gives two thurde of the tume to prectical work.

Queatow 11. Which form of lessom is found to he most effectrve? -Prmetical work unquestronahly, ind we mosk ertendmg it in all suinects as our means and our teaching power increase.

But, for jomice boys, oral teeching and demonstretion, scocompanjed by frequent enamesetrom, 筑, for some trme, almost exclassrely necessary.

Question 12. How are text-books used, eg, Is book Frock aupplementary or preparatory to the oral lesson?Almost a mays supplementary A boy uses hus own textand of what he has learnt in hus Ingt lesson, and tory, 10 its reproduction in the next.

Oueation 13 Is the use of note books encouraged (a) durnng, or (b) after the lesson, snd to what extent?-Note books are used freely during the lessons, are nsed an text-books afterwards, and form the subject matter of periodical examaritions,

Question 14. How far are boys requared to prepare then own apparatus of experiments, or to collect specimens durng the intarvals between lessoni i-T ery rarely betwee lessons, except in botany In practical chemistry, each boy has his own spparatus and works his own experiments, but it is dangerous to give boys access to the laboratory whthout the presence of a master.
Question 15 Describe any method of teaching some special branch of science which has been found successful in your achool 2-A description of our botanical teaching, With copter of our schedules, hist of natural orders, \&e, is in the bands of the Commissioners [See pp. -]

Instruments of Teachang

Question 16. What special provision (e g, labotatory ecture room, observatory, museum, botanic garden, \&c is made for scientific motruction, and how as it used?
(Plans and desmptions of these, with statements of their
(Plans and descraptions of these, with statements of their
cost and ennual expense, should if possible accompany thus cost and
Probably the Commasioners will think that the question was sufficiently answered in my former cominunication. [See pp.
Questron 17 Number of assistants and curators, and annual cost?-Probably the Commessoners will think that this question was sufficently answered in my former communication [See pp.
Questron 18. What apparatus, duagrams, and specral hthngs are in use? what was theur cost? and what sum is allowed yearly for new instruments, and to replace maternals ased, \&ce.3-Probably the Commessioners will think that this question was sufficiently answered in my former commumestion
Question 19 Is there a workshop? and if so, how, and for what particular purpose, is it used 2-Not at present; bat I contemplate apparatus-
(a) For turnugg
(b) For casting and modelling
(c) For microscopical mounting.

Question 20 What text-books are in use? dustmgurghng between those for the junlor and senior, classes?-For seniors, Huxley's Physiology, Oliver's Botany, Landley's Descriptive Botany, Roscoe's Chemistry, Newth's Natural Philosophy and Mechanica, Twisden's Practical Mechanics
Qutation 21 To what books of reference, other than ordnnary school books, have the scholars access?
a To Carpenter's Phystology, Cuvier's Regne Anumal, the Ray Societry's publications; many of the best works on Natural History
b To Watson's Cybele, the works of Babington, Bentham, Balfour, Hooker, Sowerby, Moore
e To the Microscopical Journal, the Micrographucal Dictonary, many old and new works on the microscope
d. To Miller's Elements of Chemustry, Ganot's Physics, Lardner's Handbooks, Harcourt and Madan's Prachical Cherustry.
Questron 22 Is there any scientnfic society or club m connexion prith the school 7 and if so, who compose it, how is it worked, and what ia ite unfiuence on the boys?-Not t present.

Tests of Progress

Questron 23 How often in the work teated 3-There are hort examunations in the sctentific work about once a month, longer papers in the examinations atit the end of each half-year
Questran 24, In what way? eg by examunation of note books, or by oral or written guestans?-By writtea questrons.

Quention 25 By whom ? by the temohere of the sulijerts, or by an modependent examuner ?-By the teachers durung the calf-year, by independent exaroninera at its olose

Teachers.

Queation 26. Is there any difficulty in proeumag competent scrance masters ?-

Question 27. Where are the best obtained Y Have thay been apectally traned for the work; and $1 f$ so, in what does buch traning consist 7 -

Questron 28. What evidence of acientifio qualufication tendered by candidates is found to be of most palue? -
Question 29. Can you state sany result of sctenco tesching un the achool ? such sa-
(a) Success, profeasional of otherwse, of individual echolars.
(b) Influence upon tho general studies and intellectual Lufe of the school.
Queation 30. Are any special rewards or encoumgement (eg exhibitions, scholarshps, or prizes) open to suecessfu ons of the school prizes is given anmually to that at leas of scrence, but there 18 no special encouras some branch of scrence, but there is no special encouragement beyond this.

Question 31. What improvements, do you think, could be effected in the teaching of science in your own nchool ?First, and by far the most important, the establushment of a scrence master The subject suffers by being put who share it. It has been taken hitherto by the mathematical master and myself; and we have learnt from our experience, that, of all possuble topics of edu cation, science moat urgently require a single representative professor, whatever and he may recerve from others
Secondly Specially constructed rcoms and much onlarged apparatus, Our laboratory is of the ronghest, our museum cases, which are rapidly moreasing, have no spectal home; we have orutgrown our botanical garden, and we have no workshops.
The governing body of the echool is keenly ahve to our wants and eager to supply them; bat the mimense expense of newf buidingt has left them for the present whthont means, and though they will probably reel justified in prospect of the other mprovementa I have stated
Question 32 What are the principal obstacles to the teaching of science in yous own achool ?-Covered by the previous answer.
Question 33. How could the Universitics best assurt saence-teaching in schools?-Most materially, by making a certain amount of acrence compulsory in the matriculation and little-go examanations.
Also, Cambridge might include science in the list of subjects on which the Syndicate offer to examine schools. And Oxford mught rescosd the meschuevous rule which lmats jumor candidates in the local examination to five ophonal sabects. A candiate takas up scripture because are musposed to count higher than anything else in the mare supposed to count hufer than aysurg elae in the French, and German, and in all but a fer case Prench to preferred to science Why should not all be taken if all preferred to
are taught?

Quest2on 34. Can you suggest any way in which Governmoent could assist ecience-teaching in achoois, as, for exsmple, by inspection 3-For sonne years to come, antal ment inspection, with grants or ment inspection, with grante or prizes of moderate value or But I hope piturately to gee the der when all boys well achools shall andergo e compuleory pabile aramiontion in cotence as in every other muloct tanght at lmastion in уеан
Question 35. Have you any other information to giva, ar suggeation to make, likely to be helpful to the Commos rioners?-I Fentrye to enclose a paper which I read tep years, ago beiore the Brimoh hasochaca. Thas pape made me ecquanted with the feelmin of a mumber of schoolmontere. In almoett everr a ver large number of councations tell the rame tale, mence, absolute ignomence to mothods and and eager dearre for mande gractucal gradenat from some
recognssed cuthority 1 belkeve that a well-conadened formula, laying down the hours demanded by science, the ago when it ehouid be commenced, the subjects to be taught, the order un which they must be taken, the textbooks to be used, the apparatus necessary, would be mamediately adopted and acted upon by a very large number of schoolmasters:

December 21, 1872
W. Tuctwrin,
Head Master.
[See Supplementary Keport m p. 199]
16. King's Colliger School, London.

General Arrongements
Questron I. How is the school classafied?

1) A. Clasacal Department.
(2) B. Modern Department.
(3.) C. Prepsratory or Iower sechoos

The following is the distribution of the classes.-

Clasnoal Sude.
Opper Surth. Lower Suxth.
Class.
lower Fifth.
mart.
Remove.

Modems Sude.

* Upper Surth.
- Upper Firth.

Middle Fifth.

* Lower Fifth

Upper Fourth.
Lower Pourth.
Upper Remove.

- Lower Remove.

Science Class.
Commercial Class.
Lower School.
\# Third.
Upper Second

* Upper Frist.

Middle Frist.
Middle Frrst.
Lower First.
The clessess marked * attend lectures on acrence and take up clasa-books on science.

Quentras 2. Is science a necessary part of the school course, or is it taught only in special forms or departments?
Scrence is a necessary pert of the achool courso-
(I) In the matricnistion, fourth, and remove classes of the classical division.
(2.) In the whole of the Modern Department, excepting the cornmercial and specisil classes.
(3) In the Third and Uppar First classes of the lower school.
(a) The Elementary Physical Class is attended by the Fourth and Remove (A), the
Upper and Lower Fourth, Upper and Lower Remave (B), the Thurd and Upper Furst (C).
(b.) The Chemical Class is attended by the Matreculation Clase (A), and Upper and Matriculatnon Clase (A), and Upper and by a few boys who jom for the Practucal Chemuetry
(c.) The Advanced Phyancal Class an attended by the Furst, Futh, Upper and Lower by the Furst, Fith, Upper and Lo
Fourth Mastriculation Classes (B).

Question 3. Copy of time table?

Questum 4 Summary of hours per week given in each class to different subjects. (If playtime is ukluzed for preparation or practical work, this should be shown separately)
Owestion 5 Summary of the number and average age of hove learning esch of the various subjectir in the Natumal Science Classes.
(1) Advanced cleas of natural philosophy.

$$
35 \quad \text { Arerage age, } 16
$$

(2) Chemustry class.
54. Average age just under 16.
(i) Elementary class in physics.

160 Average age, slightly under 15.

Question 6. Amonint of knowledge requred before the study of scrence is commenced?
(1) Im the Elementary Class no special knowledge ts requred. It inclades the bulk of the mudde portion of the school.
(2) In the Chemastry Clast, boys uust bave done Euchd $I_{\text {, }} \mathrm{H}_{\text {, }}$ and algebra as far as sumple equations.
(3.) In the Hugher Physucal Clast, boys must have done Euchd I., II., III., and aIgebres as far as quadratics.
Question 7. Is any alternative or choice of subjects offered ?-None, except in very special cases
What departments of ecience are prefersed?
c. By parents?
(2) Natural phalosophy.
(2) Chemetry
(3.) Practacal work in the laboratonea.
b. By the boys?
(1) Chemistry.
(2.) Practical work in the laboratories and the workshop.
Question 8. What branch of acience recenves most attention in the school, or wa found by experrence to have the greatest educational value 2-Chemistry and natural phulosophy.
Question 9. What weight is assugned to screntafic attanments in determumg a boy's position in the whool?None in determming hise position, but has marks for semence are added to hus class marks to obtan a prize.

Methods of Teaching.

Qmestion 10. What proportions of the lessons take the form respectively of -
(a.) Oral teaching and demonstration?

In physical classes.
(1) one lectwre por week to each class, I hour and a quarter for higher classes, hour for elamentary classss.
(2) In Chemastry Class, lecture and demonstration 1 hour
(b) Book work?

One hour and a quarter of book work with a class master.
(c.) Prachical work?

20 boys do practucal chemsstry two houre per week.
One apecial boy does considerably more durng the week.
A few boyn go into the physical laboratory.
Question 11. Which form of lesson is found to be most dfective? Where the oral teaphing of the lecturer wis followed by the use of the text-book.
Question 12 How are text-books used 7 e g.; It book Fork aupplementary or preparatory to the oral leason 2 The taxt-books are used both for cupplementary and pre paratory work. The lecturer gases out the mubject of the nert lecture, and in the meantame the boye have to get up the eubject in the text-book. They thum know sometbing beforehand of the experiments whuch they see, and are also prectised in working out chempin formule.
Questiom.13. Is the wee of note booke encoursged (a) during or (b) after the leavon, and to what extent?
(a.) Every boy has to take notes of the lecture, and,
(b.) From those ho draws up a full socount of the lecture out of echool hours, and cllustraten it with duegreme of the expermenta. These "eccounts" are marked according to mert.

Queation 14 How far sre boys required to prepare thear own apparatuie or expermenta, or to collect spectuties durnag the mitervals between lemons $1-$ No boy it requared ta rork expenments at home, but mevern do, and the and mupplea them with minmanow for teating, fich.
Queatioa 15. Describe any mothod of teaching sume speeal brunch of acrence which hat been found macouffil in your mahool.

Instriments of Teaching.

Quegion 16. What apectal provision (e.g., laboratory lecture room, observatory, museum, botanic garden, \&e, is made for screntific matruction, and how it is used?
(Plans and descriptoons of these, whth statements of theit and this retura.)

We have the age wath the College of a thurd physueal and chemical laboratory and three lecture rooms

Questron 17. Number of asssstants and curntors, and nnausl cost.
Questron 18. What apparatus, diagrama, and special fthnge ars in use? what was their cost ? and phat sum in allowed yearly for new matruments, qnd to replace mos terials used, \&c.?

Queston 19 Is there a trorkshop $\%$ and if so, how, and for what particular purpose, is it used ?-We have a workshop in common with the College. The regalar workday are the afternoons of the half-holudays, Wedneaday an Saturday. The number of boys in attendance is 39. -O hese-
(a) 26 are ongeged in wood-work, such as carpenters and cabinet makers'
(b) 6 do wood-turning
(c) 7 are doing more advanoed kinds of wood-work

After completing a course in wood-work, they commence ron-work, and construct lathes and small steam-engines, bollers, and models of machinery of wamous sorts.

Question 20 What text-books are in use ? dustanguashing between those for the jumior and semor classes.
(1) For Chemstiry-

Miller's Introductory Text-book
Roscoe's Chemistry Cless-book.
(2.) For Natural Phslosophy-

$$
\begin{aligned}
& \text { Ganof's "Physics" " } \\
& \text { Parkinson's "Mechanics," } \\
& \text { Todhunter"s "c Mechances" } \\
& \text { Besant's "Hydrostatics"" }
\end{aligned}
$$

Ferguson's "Electrienty."
Question 21 To what books of reference, other than rdinary achool books, have the scholars access ?-To the books kept by the semor mathematical master, and such books as they can get lent them at home
Question 22 Is there any scientafic aocrety or club in connexion with the school P and if 80 , who compose xt , how is it worked, and what is its unfiuence on the boys? No.

Tests of Progress

Questron 23. How often is the work teated ?-By examination at the end of every term, and by queations at every lecture
Question 24 In what way $?$ eg. by exammation of note books, or by oral or watten questions?

1. By questions in lecture
2. By examination of note books.
3. By written examumation at the close of each term.

Questron 25 By whom? by the teachers of the subjects, or by en undependent examiner?

1. Both the Physical Science classes are exammed by the lecturer humself
2. In the Chemstry clasa-
(a) The lecturer examnes at the close of term. (b) A regular class master examines also each day
As yet we have not employed an independent examiner.

Teachers.

Question 26. Is thene any difficulty in procuring competent science masters ?-The chosce is very hmited.

Queston 27. Where are the best obtaned? Have they been specsally traned for the work, and if so, in what does buch trainung consist?
Questrom 28. What endence of screntric qualification condered by canddatea is found to be of most value?
Ouestion 29. Can you state any resulta of acrence teaching m the school? such as-
(a) Suecess, professional or otherwise, of indrvidusi scholars.
(b) Infuence upon the general studies and intellectua iffe of the tchool.

1. A Netaral Scieneo bcholarship as Chnat! College, Cambndgo.
2. Honours in Botany and Zoology at the London Unversity.
3. Royal Exhibition at the School of Minee, and Exhibition of 50 l . for three years.
4. Prizes and Erhibitions wit Kug's College, London
5. Scuence Scholarshup at Owent College, Manchester.
Questron 30: Are any special rewarda or encouragement (e g exhubitions, acholarships, or prises) open to nuccesafu students of science in the sabool f
A. Terninal prizes.
(a.) One to the beat boy in each of the upper classes, rank being determined by the term's work and examinations
(b) Three to the best boys in the large elementary class, one being selected from each of the class, one bemg selected
three diverons, A, B, and C .
B. Annual prszos.

One for Natursl Philosophy.
One for Chemustry.
Question 31 What mompovements, do you think, could be effected in the teaching of science in your own school -Improvements could be effected-

1. By the appontment of separate scrence masters for the schaol, independently of the College
2 By the establushment of un independent laboratory. so that all who attend lectures and do the book work might also do practical work.
2. By the appomtment of mdependent examiners to teat the work.
3. By requuring of the lecturer in chemistry that he should also take the clasees in their book work.
Questron 32. What are the principal obstaclea to the tesching of science in your own school?
4. The necessity of accommodating the hours of scrence lectures to the arrangemente of the college
5. The absence of acience masters wholly devoted to the school and its interesta
6. The late age at which many boys jow the sehool, especislly the modern department.
7. The baskwatd state in which they come to us.
8. The rapidity with which boy almost inovitably pase through the modern department,
Question 33 How could the Unvernities best assist scrence-teachang in achools?

Question 34. Can you auggest any way in which Government could assist science-teaching in sehools, as, for exsmple, by inspection?-By donstions of screntific book to form a school library of science, and screntific specmena and matruments of varions kinds
Question 35. Have you any other information to give, augheation to make, likely to be belpful to the Commu slonere?
G. F Maclesab, D D,

Decamber 21, 1872,
Head Master

KING'S COLLEGE SCHOOL, LONDON

Enannerince Woryshops.

1. Enguneering workshops have heen establushed' for some years for the joint noe of stadente at King's College
and boys at $K i n g ' s$ College School.
2 They have recently been cononderably enlarged by the addrtion of another floor for wood work, and have been also maproved by the addrion of a planing machune for metal Frork, and by the matroduction of a steam engane.
2. The followng is the general scheme of work:-

4 Students or boys of the first year, on jorning the department, are made acyuainted with the drferent tools, penters' and jouners' work, by gong throngh the processes
of preparing the wood, settung out and forming, from figured drawings prepared oy themselves, the various joints used in constractions of wood, after which they are employed in making models in which the precedun jounts are combined, so as to form trusses for roofs, bridges, girders, and other framing, requared for buldangs and other purposes.
5. Students are then enabled in their third term to proceed with the construction of models of vamous 80 th in illustration of the different apparatus used in practica mechanics, manufactures, and phulosophical experments which involve the neoessity of turning, for which purpos they are instructed in the use of tools for turning aoft wood, hard wood, ivory, and other substances, and also in the mode of preparing and fixing the work in the lathe The formation of cyclodid, epicycloidal, and in volute teeth, for wheels, pinions, racks, \&o They are also mstructed in the method of working in sheet metals and soldering
6. Second year's students commence metal work, the operations of which conast of the varous processes of chipping, filing, fittang, trurning, bornng, serewseuthing and planing, the construction of foundry pattarns in wood or metal and core-boxes
These students are also inatructed in forging wrought rron and ateel, and in Easter term a moulder attends who gives practical imstruction in the art of monlding
7 With proper attention to the foregoing routing of procedure, the students become aufficiently proficuent to be enabled to make for themseivec, lathes, and the apparatua of nected whin them, tools of vaixus sorts, worng in congemetion of which ather metal or mood or the $t w$ combined, are employed

The third year's students continue the second year's subjects, and in addition theyare encouraged to make expernments on the strength of arches, beams, and girders are coustructed from workmg drawngs made by the students hemselve
8. At the termination of the year a prize is gaven, in each year, for pronciency in the execution of some plece of mechanusm, the subjeut of which is given out during the Lent or Easter term.
In order to obtain a prize in either the second or the third year, the student is requred to send in with has model or machune a finushed form, dry pattern, with core boxes, \&ic, of at least one of the castings used in such maohinery or models, which pattern he thall humelf have made, accompanied by working drawings of such machanery, also made by humself.
Every student is expected to furmsh humself whth a set of the smplest tools requisite for working un wood and metals In order to duminish the expense of these tools metals In order to duminish the expenge of these tools
as much as possible, the student may purchase them at as much as possible, the student may purchase them at
the College, and upon his leaving they whl be repurchased from hum at a reduction depending on the condition in which they are returned
9. No student is allowed to obtam tools or materals in the workshop to a greater amount than $4 l \mathrm{~m}$ any one term, without the consent in Writing of his parent or guardinn

Regulations to be observed by Stunentes in the Collegaz Woreshops.

1 Na student is allowed to wear the college gown in the workohops, or a coat with long skurts or loose aleeves, or to work in shirt-sleeves withqut theur being tarned up so tudents when using any of the machines driven by bitan tudents when using any of the machines driven by steam power.
2 No student is allowed under any curcumstances to ntarfere with any of the machunea, oxcept the machine with which he is actually engaged at work.
3. No student is allowed to interfere in any way with the bell sugnais, or to give the signal for starting or atoppug the engioe, anless requested to do so by the superintendent or foreman, or in cuse of an acodent.
4. The reguiar aignal for staring or stopping the engine whll be three distanct strokes of the bell, and whenever the angori is given for stopping the engue, sil machmea must immediately be thrown out of gear. The same signal mill be given for the engrine room, always prenous to starting or stopping the engine
5. No strudent is admitted to the segine room whthout the permission of the ouperintendeni, and when admatte he is not to touch any of the gauge cocks, ralves, or any of the gear belongung to.the engine or bonler.
6. The stationary adjustments of the lathea and machmes are nof to be altered in any way, without application to th supenntendent or foreman

7 Studente must be careful in using those tools which are provided by the college for general use, to preserve by the eharged on any eharged on ant damasye done or loss sustanned
8. No fresh materals are to be cut off or used without previous application to the superintendent or foreman
9. No unnecessary nonse must be made, and playng or throwang musales of any kud 18 atrictiy prohibited
10 No sawning or chiselling is allowed upon the benches except with the use of the bench-plece provided for that purpose

11 Students must be careful in the continual preserpation of then own tools, for the good condataon of whuch they are responsible.
12. All tool-boxes are to be kept under the benches as far as the space will permit
13. Students are to keep to their own work, and not to walk about the shop so as to be in the way, or to hinder other students when at work
14. No student can be admitted into the workshops at any other hours than those mentioned in the trme table, whthout previous perrission of the Dean of the department, as well as that of the superintendent. Thus sanction will only be given on condition that the apolicant is not theyeby neglecting other duties in the college
No student can, however, be permatted to occupy the time of, or have any asisistance from, the workmen out of the regular hours of attendance named in the calendar.

The infringement of thas rule by any atudent will haye the effect of causing hum to be entirely shut out from the workshops durng the period not specified in the calendar for regular attendance

17. Mancerster Grammar Sohool:

General Arrangements.

Question 1. How $1 s$ the school classified ?-Classification of school for 1873.-There are 550 boys in the school, dinsded for the purpose of general instruction into 21
forms

Eleven are classical-

Parsllel to the lower five of these are five modern language forms, and parallel to the upper half are four Scrence forms and one Mathematical form.
In the Science and Mathematical forms the boy has hus choice between the study of classics and modern languages.

For the purpose of mathematical teaching all the forms below the Three Suxthe, Science, Classical, and Mathematical are re-drotributed into three groups, each consisting of five gets
Questron 2. Is Scrence a necessary part of the school course, or is it taught only in special forms or departments 8 -Scrence constitutes the principal part of the teaching of the four Science forms, and an essental part of the teaching of the Mathematical Sixth
There are, besides, optional classes for the teaching of Mechanica, Elementary Chemustry, and Physical Geo graphy, drawn from all parts of the school

Questros 3. Copy of time table, see Pp. 180-182.

Ther Table for 1873

		Hours．	Olasencel		$\frac{8 \text { sclence }}{\mathbf{Y L}}$	Belence Trangitin：	8ectence	8 gionce Remova	Olmanical	Uppos Clenaca	$\begin{aligned} & \text { Kanver } \\ & \text { Clangical } \end{aligned}$
$\begin{aligned} & \text { y } \\ & \text { 苞 } \\ & \text { 㖴 } \end{aligned}$	1	015 10 10.45	Cinamist．	Classion or Modern Langugga．	Classica or Moderth Janguage．	Phyictat．	Chamintry．	Mathe－	Cimmica	Canaice．	Drawing
	2	11 10 1280	Chamiow	Mather rastice．	Physicer	Chention or Modern Language	Chastrove or Modern Iantruagen	Ohemistry．	Prench．	Clamice．	Clasides
	8	2．40	Clanscas．	Physion	Chemustry	Chemistary．	Model and Macbine Drawing	Mathe： matica．	Clsanica．	Tinglirh．	Oinmion，
		8 to ${ }^{1}$	5athe－ matics．	Phymol．	Chamistry．	Chemintry．	Practical Glometry	French	Clamdom．	Framak．	Tinflish
M部亩	1	$\begin{gathered} 915 \\ \text { to } \\ \text { to } \end{gathered}$	Clanesce	Mathe－	Mather	Clasites or Modern Eanguage，	Clasgics or Modera Lenguaga．	Fuglinh，	Clamila．	Olamion．	Clawios．
	\％		Cleasica．	Classica or Modern Langrage．	Clastres or Modera Langrage．	Mathe－ tratucts．	Mnothe－ matica．	Physen	Mathow matices．	Mathe－	Mathe－ matice
	s		Olamsics	Model and Machine Drawing	Phytioa．	Model and Machine Drawng．	Chamintry	Mathe－	Clasalea	Oremion	Drawinf
	＊	8 to 4	French	Practical Geometry	Phydica．	Practical Germetry	Chemiatry	Prenoh．	Clamicas．	Praboch．	Olamitan
$\begin{aligned} & \text { H } \\ & \text { 甼 } \\ & \text { 曾 } \end{aligned}$	1	$\begin{aligned} & 916 \\ & \text { to } \\ & 10.46 \end{aligned}$	Orassica	Mathe－ matics．	Mathe－ matiel．	Clasaics or Modern Language．	Clamales or Modern langunge．	Prench．	Clasmas．	Clasulce．	Clamion．
	2		Classica．	Olassics or Modern Lsaguage	Claseica or Modera Language．	Mnther matices．	Mathe matrices．	Physices	Mathe－ mantica．	Mathe matica．	Mathom madilea
	8	$\begin{gathered} 145 \\ \text { to } \\ 8 \end{gathered}$	Germant．	Physicas	Chamintry．	Chamistry．	Model and Maohhne Drawhy	Mathe mintucs	Clamalen．	Clandicm．	Oramich
	4	8 to 4	Clasauce．	Physue．	Chemustry	Chemistry．	Practicn 1 Grometay		Oramica．	Drawing．	Prench
$\begin{aligned} & \text { M } \\ & \text { 虽 } \\ & \text { 昌 } \end{aligned}$	1	$\begin{gathered} 0.15 \\ \text { to } \\ 10.45 \end{gathered}$	Clasacs	Clansics or Modern Language．	Classich ar Kiforar Language	Mathe－	Mather	Chumistry．	$\begin{aligned} & \text { Hathe- } \\ & \text { maltuc. } \end{aligned}$	Mathe	Yathe matice．
	2	$\cos _{\text {to }}^{12}$	Olasales	Matho－ mastace．	Pbparas．	Clasacs or Modern Laxgunge．	Clamen or Kodern ＇IAngrages．	Franch	Oleadios	Clamica	Clanices．
	8	$\begin{gathered} \text { 1.45 } \\ \text { to } \\ 8 \end{gathered}$	$\begin{aligned} & \text { Mathe } \\ & \text { mathees } \end{aligned}$	Model and Machume Drawng－	Chemustry．	Chamiotry．	Phyuical．	Mather mathen，	Oiamact	Olmatiou	Higelialm．
	＊	6tos 4	Clascicas	Practical	Chemititry	Chamistry．	Thysics．		OTrualice	Gerriar	Preoch
E最	1	$\begin{gathered} 915 \\ \text { to } \\ 10.46 \end{gathered}$	Clasmas．	Clasgies or Modern Language：	Clasacas or Modera Language	Mathe－	Mathe	Pbspicat	$\begin{aligned} & \text { Matho } \\ & \text { manacico } \end{aligned}$	Yosthe matus．	Yatho
	8	11 10 12.80	Clumers．	Mathe－ minstics．	Model and Machune Drawing	Hodel and Machine Dreming．	Chemistry	French．	Gersuen	Cluaden．	Clamicu
		$\begin{gathered} 1.45 \\ \text { to } \\ \text { on } \end{gathered}$	French	Mathe－ matice	Praction Geometry．	Praetical Geometry．	Pligytiom	$\left.\begin{array}{\|c} \text { History } \\ \text { Geographer } \end{array} \right\rvert\,$	Cremen	Clamien．	Treneht．
	4	3604	Clasaca．	Mather	$\begin{aligned} & \text { Mathe } \\ & \text { maxtec } \end{aligned}$	Chamizs or Modera Innguage．	Clesacts or Modern language	$\begin{aligned} & \text { Drivitr } \\ & \text { watheng. } \end{aligned}$	Comicr	Drwaine	Clumber．

Tame Table for 1873.

Modern $\begin{array}{l}\text { Languare } \\ \text { Remuove. }\end{array}$	Olamsical मemove	${ }^{\text {Olapaical }}$	Clangeal	Clamical	$\begin{array}{\|c} \text { Opper } \\ \text { Olasseceal } \\ \mathbf{L} . \end{array}$	$\begin{gathered} \text { ILower } \\ \text { Oloancal } \\ 1 . \end{gathered}$	${ }_{\text {ITranch }}^{\text {IIL }}$	$\underset{\text { French }}{\text { II, }}$	$\begin{gathered} \text { Opper } \\ \text { Pronch } \\ \text { L. } \end{gathered}$	$\frac{\text { Midiale }}{\substack{\text { Mrenoh } \\ \text { L. }}}$	$\underset{\substack{\text { Yranch }}}{\text { Yower }}$
Englishin	Onamen	$\begin{aligned} & \text { Drawing } \\ & \text { Wrinting } \end{aligned}$	Mathematica.	$\underset{\text { mathes }}{\substack{\text { Men }}}$	Matho- matcs	Mathematics.	Mastho- matrica	$\begin{aligned} & \text { Drawing } \\ & \text { and } \\ & \text { Writing } \end{aligned}$	Yranch,	Yrench.	Prenoh
Fronoh.	$\begin{aligned} & \text { Drawing } \\ & \text { Wrinding } \end{aligned}$	Claselce	Osasico.	Engluba	Chensics.	OMassicar.	$\begin{aligned} & \text { Drawng } \\ & \text { wand } \\ & \text { wning } \end{aligned}$	Mather matacs.	Mather natice.		$\underset{\substack{\text { Mathee } \\ \text { matbea. }}}{ }$
German	CIInstica.	Prench	Mather matices.	Mathe matese	Mathe matice	Mather matcich	Mathon maticas	Knglish.	Franok.	$\begin{aligned} & \text { Draping } \\ & \text { Wrathing. } \end{aligned}$	$\begin{gathered} \text { Draming } \\ \text { Want } \\ \text { Fintug } \end{gathered}$
$\begin{aligned} & \text { Drawing } \\ & \text { writing } \\ & \text { wring } \end{aligned}$	Engluth.	Enghan	$\begin{gathered} \text { Drawing } \\ \text { Wriding } \end{gathered}$	Preach	French,	Englinh	Fronoh	$\underset{\substack{\text { Mrathe } \\ \text { matics }}}{ }$	Mathomatica	${ }^{\text {THathe }}$	Mnthe matace
Pronol.	Clumicas.	Onusles.	$\begin{aligned} & \text { Drawing } \\ & \text { Wnd } \\ & \text { Wntrugu } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Draming } \\ \text { writiting } \end{array} \end{aligned}$	$\begin{aligned} & \text { Drawing } \\ & \text { Wrand } \\ & \text { Wang } \end{aligned}$	$\begin{aligned} & \text { Drawng } \\ & \text { wntign } \\ & \text { Wrtimg } \end{aligned}$	Rnglush	Fronch.	English.	English	Buglish
Matho. matican.	Matho- matict	${ }_{\text {Matha }}^{\text {Matica. }}$	Chasmica.	Cinsica	Clasalice	Classics	French.	$\begin{aligned} & \text { Drawing } \\ & \text { Whiding } \\ & \text { Writing } \end{aligned}$	$\begin{aligned} & \text { Drawing } \\ & \text { Wriitugg } \end{aligned}$	Yressch	Prench
Englioh	Chanden.	Prenoh	$\underset{\substack{\text { Mrathe- } \\ \text { matios }}}{\text { a }}$	Mathe matice	Mathe- matice.	Mathe- mathes.	$\begin{aligned} & \text { Mathoen } \\ & \text { matica } \end{aligned}$	Euglish.	French.	Prench	Prench.
German.	Prench	Classlos.	English.	$\begin{gathered} \text { History } \\ \text { GOogrtaphy } \end{gathered}$	English	Prench.	$\begin{aligned} & \text { Drawng } \\ & \text { Wridtug. } \end{aligned}$	$\underset{\substack{\text { Mathor } \\ \text { matoios }}}{ }$	$\xrightarrow{\text { Mathe- }}$ mates.		M'atheo matuce
Prench	Olastica,	Engilish.	French.	$\begin{aligned} & \text { Draming } \\ & \text { Wryding } \end{aligned}$	$\begin{aligned} & \text { Drawing } \\ & \text { wrind } \\ & \text { Wring } \end{aligned}$	Olasices	Engluah.	$\begin{aligned} & \text { Drawing } \\ & \text { wind } \\ & \text { wring } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { History } \\ \text { and } \\ \text { and } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { History } \\ \text { and } \\ \text { arography } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { History } \\ \text { Gesography } \end{gathered}\right.$
Matho- matioa	$\underset{\substack{\text { Mathoe } \\ \text { matice }}}{\substack{\text { and }}}$	$\underset{\substack{\text { Mathe- } \\ \text { matica }}}{ }$	Clasastes.	Onsasics	Clamen. ${ }^{\text {a }}$	$\begin{aligned} & D_{\text {rawng }} \\ & \text { wixitug } \end{aligned}$	$\begin{aligned} & \text { Drawing } \\ & \text { winh } \\ & \text { Wring. } \end{aligned}$	Prench	Preneh.	French	Drawing wrid Wring
German.	Classio.	$\begin{aligned} & \text { Drawing } \\ & \text { writing, } \\ & \text { Wert } \end{aligned}$	${ }_{\text {Matino- }}^{\text {Matica }}$	Mathe- matics	Mathe- matice	Mrathe-	${ }_{\substack{\text { Mathe } \\ \text { maticas. }}}^{\text {a }}$	Frenah.	French.	Prench	Frenoh.
$\begin{array}{\|} \text { History } \\ \text { Oeontriphy } \end{array}$	Euglab.	Oluancos.	$\begin{gathered} \text { Drawnug } \\ \text { writing. } \\ \text { wring } \end{gathered}$	Pranoh.	Pranch.	Engliah.	Pratch	$\underset{\substack{\text { Mathe } \\ \text { maticea }}}{ }$	$\underset{\text { Matho- }}{\text { mataca }}$	Msthen	$\underset{\substack{\text { Mathor } \\ \text { matiout }}}{ }$
$\underset{\substack{\text { Mratho } \\ \text { matiod }}}{ }$	Matho- minthot	Matho- mathos	Clasicas.	Olmakler.	Classion	$\begin{aligned} & \text { Drawing } \\ & \text { Wend } \\ & \text { Writing } \end{aligned}$	Frenoh	Frenek,	$\begin{aligned} & \text { Drawng } \\ & \text { מrind } \\ & \text { Wring. } \end{aligned}$	Drawng and Writing	Prench
Prenoh.	$\begin{aligned} & \text { Drawng } \\ & \text { Drind } \\ & \text { Writing. } \end{aligned}$	OTumatict	$\begin{gathered} \text { History } \\ \text { Geosimphy } \end{gathered}$	Pruglish	$\begin{aligned} & \text { Drowing } \\ & \text { Wrind } \end{aligned}$	Eranch,	$\begin{aligned} & \text { Drawing } \\ & \text { Wrind } \\ & \text { Wring } \end{aligned}$	$\xrightarrow{\text { Mathe }}$ mathe.	Mation	Matho:	$\underset{\substack{\text { Matho- } \\ \text { matica }}}{\text { and }}$
German	Clamion.	Prench.	Mathemation.	Mathe mation	Mathematica.	Mathe matice.	$\begin{aligned} & \text { Mathe } \\ & \text { mathion } \end{aligned}$	$\left\|\begin{array}{c} \text { History } \\ \text { Heostraphy } \end{array}\right\|$	French	Prenok,	$\begin{aligned} & \text { Dramng } \\ & \text { wnd } \\ & \text { Whing } \end{aligned}$
$\begin{aligned} & \text { Druming } \\ & \text { Wridting } \end{aligned}$	$\left\|\begin{array}{c} \text { History } \\ \text { acoorraphy } \end{array}\right\|$		Prenob.	Ohnmioa	Clanomon.	$\begin{gathered} \text { History } \\ \text { Geengraphy } \end{gathered}$	Pranch.	Matho matica	$\underset{\substack{\text { Mathes } \\ \text { matioe }}}{ }$	$\xrightarrow{\text { Kathe }}$	Matho- matica
Mathe.	$\underset{\substack{\text { Mrathen } \\ \text { matioat }}}{\substack{\text { a }}}$	Matho matich	Clasmios.	Clasact.	Cleasion,	Bnglinh.	Anglish.	Frencli.	French	Prench.	$\begin{aligned} & \text { Drawing } \\ & \text { Whilug } \end{aligned}$
Germana,	Prenali.	Olumicer	Olamices.	$\begin{aligned} & \text { Dramng } \\ & \text { Writing } \end{aligned}$	English.	Climsace	Prenoh.	Mather matico.	$\underset{\substack{\text { Mnthee } \\ \text { maxce. }}}{ }$	Masthe mation.	Matho
$\begin{aligned} & \text { Drawing } \\ & \text { Writung. } \end{aligned}$	Olisemos.	Olvation	Pranch.	Clinasct.		Olnemicen	French.	$\underset{\substack{\text { Kathe- } \\ \text { witicti: }}}{ }$	Matho- matick	${ }_{\text {c }}^{\text {M }}$ Mathe	Mrather maniol
Prenah.	$\begin{aligned} & \text { Drawing } \\ & \text { wnituys. } \end{aligned}$		English.	French	French.	Clustica	$\left\|\begin{array}{c} \text { Hustory } \\ \text { Cent } \\ \text { soctaphy } \end{array}\right\|$	Phegish,	Bugliah.	Tngliah.*	Euplush.

Question 4 Sumamary of hours per week given in each＂proparation，of prachoal work，thill should be ahown clana to dufferent．subjects，（If playtume ia utissed for neparately．）

Thin Tabie for 1873.

	$\left\|\begin{array}{l} \dot{E} \\ \frac{E}{2} \\ \frac{D}{D} \end{array}\right\|$			豈		䀰罟			者				恸	H				㫛	㫛		䀂	
	$=1$	$\left\lvert\, \begin{gathered} \frac{74}{3} \\ \frac{9}{9} \\ -4 \\ \hdashline-4 \end{gathered}\right.$		$\frac{y}{6}$	$\begin{aligned} & \frac{7}{7} \\ & \frac{7}{8} \\ & 8 \\ & \frac{8}{4} \end{aligned}$		$\begin{gathered} \frac{178}{9} \\ \frac{1}{9} \\ = \\ \hline \end{gathered}$		$\begin{gathered} \frac{19}{3} \\ \frac{2}{2} \\ \frac{9}{6} \\ = \\ = \\ \hline \end{gathered}$				$\begin{aligned} & \frac{9}{9} \\ & \frac{9}{8} \\ & \frac{14}{1+4} \\ & 9 \\ & \overline{9} \end{aligned}$								㜢	
Totel	237	28\％	281	294	284	284	204	289	${ }^{204}$	4 ${ }_{4}$	881	相	304				28＊	sat	201	not	20\％	0

Questron 5．Summary of the number and average age of boys learning each of the various subjects in the Natural Science Claseem：－

Mathematical Suxth
Science Sixth
Science Tranitus
Scrence Fifth
Science Remove

Average Age．	15
－ $17 \frac{1}{2}$	15
－ $16 \frac{1}{3}$	20
－151	30
15	30

Question 6．Amount of knowledge required before the study of Scence is commenced．Those boyt who show an aptitude for Mathematics are specrally urged to enter the sptitude forme．None would be permitted to enter them （except under special curcumstances）who have not reached the Fourth form．

Question 7．Is any alternative or chonce of subjects 0 ffered？

What departments of Science are preferred 3
（a）By parenta？
（b．）By the boys as I have sand before，there are voluntary classas for Chemistry Mechanice，and Phyancal Geography，any，or all of which a boy may attend at his pleasure．
（a．）There are several boys in the school whom their parents destine to become manufactoritg chemusts ；in the case of some of these the wrih
has been expressed that specisl attention should
be given to their Chemical studues
（b）Electricaty and Chemstry
Question 8．What－branch of Scrence receives most atters－ tron in the schooi，or is forand by experyence to have the greatest educational value ？－Phyeics and Chemustry recelve
an equal degree of care．Beginners seem to derive most an equal degree of care．Begnners seembranced students prom Optras and Chemustry ；Electracity and Heat occupying gin intermediate position

Question 9．What weight 15 assigned to screntufic ettain－ ments in determingig a boy＇s position in the school ？－A boy＇s position in the Scesence forms and his prospects of promotion depend aimost enturely on his sciontice aitan－the men an Mas equal to the highest classical forms．
Noris－The answers exgned＂J．A．＂ane written by Mr．Angell，the teacher of Phyncs at the Grammar School．

> Methods of Teaching.

Question 10．What proportions of thē lessons take the orm respectively of－
（a）Orad teaching and demonstration？
b．）Book work ？
c．Practical work ：
（c．）The whole of the tome occupred in the class is given （whil wery few exesptions）to oral teaching and expermental demonstration．＂J．A＂
（b．）Text－books are med only in the preparation of home work，excepting anly where they are used in the absence of the necessary large diagrams or special apparatus，which may be well figured in the text beok．－＂I．J．An＂
（c．）A very few only of the uppar boys in the Sixth Solence form do any rystematic practical work， because of the want of a phymeal laboratory（a great defect）The boyn are，however，often called down during san ordinary lesson and required （before the class）to arrange apparatus for a particular demonstration，or to perform an expern In the Chamical letsons
In the Chemical lessons practical work in the laboratory
occupies twise as much thome as oral teaching．
Question 11．Whuch form of lesson us found to be most effectave 3－I find the＂Sogratio＂form of leason the most efficient．In this form of lesson the information required to be trught is eithar educed or built up by sernes of logical questions systematically put to the boys，not on what they have acquured verbaily rrom the book or the teachers，but put to them on the apparatus，the experment，or the ohenomena，of probleme as they are actually belore them． In thas wiy the obsarving end reasoning proceses，and those of scientaic istarary exponition are cuitivated onmul taneously．＂J．A．＂

Question 12．How are tert－books used？e．g．，Is book work supplementary or preparatory to the oral leason ？－ Text－books are manly used for the purpose of resapitulan thon and revision，the book worls is used as aupplementary to the oral lesson，that 18 ，not so much for the purpose of communicating information as for qupplying a fiterary model of connected acientufic txpostaon．
Question 13 Is the use of note－books encouraged（a） during or（b）after the leason，and to what extent？
（a．）Note books are used durugg the leston，bat only for the briefeat possuble notes，rather heads of rubjects， apparatus，expenments，etc，than notes proper． But they are chiefly used after the lesson for making fuller home notes，is which case the boys are also ancouraged to use the text－book as an auriluary．In the＂Socratic＂form of leston the work of the lesson atwelf keepa the teacher fully mformed of the progress and attannmenta of him clase＂J．A．＂
My own experience has shown me that，in sccentific teaching，whare mere memory is the least mportant active faculty，but where the actavity of the observing，reacoming construchive，and unvestigating powers is contrucasig of full notes incorsurtent unth the resi screntufic progress of full notea mo made dming the eourse of any really which should be mail demonetreted ementule Jemen：the wotes made after the lesson cannot，however，be too full on notes made after 4ne
Question 14．How far are boys requared to prepane therr own apparatise or expenments，or to collect ppeciment during the nulaval requrad to cownacil piace of apparatis，as－a polariecone home lessons，specas pheces ane an electrophorus，mduction elenite ingurion apparatios，models of Nicol＇s prismes cecturn however，we have no proper playsical laboratory．＂J．A＂；
The chemstry lecture noom can eccommodate easiby 80
nya．The chemical laboratory accormmodatea 84 boys
each of whom is provided with a cuppboard, and drawer, and set of chemical re-agents, each boy 18 told at the beginning of the leason what hus work for the day is, and how to do it, he is then left to perform the expermments, and must do so to the satissfaction of the master. When aufficiently advanced, he is given a solution or substance to analyse.
Questron 15. Descmbe any method of teaching some specsal branch of Scuence which has been found successful "J your," achool ?-The "Sooratic" method (See 11.)

Instruments of Teachung,

Question 16. What spectal provision (e g., laboratory, lecture room, observatory; museum, botanic garden, \&a, is made for scientific mistruchon, and how 28 it used 7 their cost and annual expense, should, if possible, accompany this retura.)

A shemical laboratory and lecinure room, balance room, and preparation room.
2. A physical lecture room with preparation room

Tracings of these rooms are sent heremth.
Question 1\%. Number of assistants and curators, and annual cost ?-For phyarcs, Mr Angall and pupil eassistant; for chemistry, Mr Jones and assistant. Gross cost 650l. a year.
To thus should be added the cost of teachngg experimental meohamiss, on which one of the mathematical masters spends no small part of has tame
Question 18. What apparatua, diagrams, and special fthnge are in use? what was there cost? and what sum 18 allowed yearly for new instruments, and to replace matenals used, \&c. ?-Our most valuable and useful set of apparatus is our oxyhydrogen lentern, microscope and polarisoopes (reflectung and refracting). "J, A"
The annual cost seems to be about 1007. There is no fexed sum allowed yesrly, but grants are made by the Trustees from time to time at their disaretion.

List of Apparatus and Cost.

This liat contams only the principal scientric apparatus in use at the Grammar School, the numerous smaller and less umportant artaclea have been omitted from the fore-
comg list. gomg last.

Questron 19. Is there a workshop 3 and if so, how, and for what parricular purpose '1s it used ?-We have unfortunately no workshop "J. A"
Questron 20. What text-books are in use, distinguishing book, "Chemistry" sensors, Roscoe's Chemustry, Bloxam's Metallurgy, Fownes' Chemistiry ; gumors, Roscoe's Che mistry.
Our text-book for gunnors 18 , "Lessons on Elementary Phyange" by Balfour Stewart, but we probably next year may find a better illustrated work, one with a greater number of experiments, and pictures of apparatus.
The text-book for our seniors is, "Genot's Physics" by Atkinson, many of the boys also use Balfour Stewart's "Treatise on Heat;", also "Deschagel's Natural Phylosophy," by Everett. "J A."
Questron 21 To what books of zeference, other than ordmary school bookg, have the scholars access ?
(a.) The boys Philosophical society has formed a mmall crence hbrary of ith own, which within the last month or two has been augmented by the liberality of a friond
(b.) Watts' - Dictionary of Chenastry, Miller's Chemastry, Tyndall on Sound, Heat, Diamagnetism, Humboldit's Cosmos, Roscoe's, Spectrum Analy318, Lyell's Geology, Carpenter's Physiology, Darwn's Descent of Man, Ansted's Physioal Geography, etc etc
Questron 22 Is thare any scientific socrety or club in connexion whth the school? and if so, who compose it, how is it worked, and what is its influence on the bows 3Yes, "The Mancheater Grammar School "Philosophical Society,' established in 1869.
It is composed of the boys of the sixth and other science forms, its officers are elected from among its members by baliot, it meets every Friday after school for the readng and discussion of screntific papers, wnitten by its members, There are three terms per annuma The society is deadedly useful un promoting scientific reading and thought among the members "f J A."

Tests of Progress

Questron 23. How often 18 the work tested ?-Progress is tested during each lesson (eee Q. 11).
Special class examonations are also made about twice each term, note books are also examined Progress is also tested by independent examiners, that 18 , by the ordinary yearly acrence examinations held each May by the Department of Scxence and Art (Professor Tyudall, examiner).
And by examinations conducted annuaily in July by
an independent examiner sent from the Unvergity of an independent examiner sent from the University of "Oxford This year the examuner was Professor'Chapman J. A."

Question 24 In what way? e.g, by exammation of note books, or by oral or watten questions? --The mdependent examinere conduct ther examanations by means of printed papers. Our own exammations also include that of note books. "J. A."
Question 95 By whom? by the teachers of the subjecta or by an independent examuner 3-In May by the Department of Scrence and Art at theur ordmary annual science examination
At the end of July by an examiner from Oxford or Cambridges Our last three examiners have been Mr. Esson of Merton Collage, Mr- Vernon Harcourt of Chnist Charch, and Mr. Chapman of Magdalen College, Oxford.
At Christrass by a general exammation, by means of written papers, by the teaschers of the subjects. "J. A"

Teachers.
Question 26. Is there any difficulty in procuring competent Science masters ? -I have been concerned in the apponntment of three science masters, and on each occasnon there were several eligrtle candidstes The thrse gentlemen who wero belected had each recerved a different kund of tranning, but had all proved themsalves suecessful teachers.
Quastron 27. Where are the beat obtanned? Have they been specoally tramed for the work; and if so, in what
does ench tranng oonsust?-Ses answer to preceding question, .

Question 28 What ovidence of acmentafic qualification tendered by candidates is found to be of most value? Success en a teacher is the qualification upon which I hould lay most atress.

Question 29 Can you state any reanits of amence teaching in the school 7 ruch asw
(a.) Success, professonal or otherwise, of indindual acholart.
(b.) Influence upon the general studres and intellectual
(a,) Ten or 12 boys from the school have taken Science scholarships at the University of Oxford, and a few have passed the first B Sc at the Univeraity of London, but we must not expect to ses the tangible results of our sorence teaching for soms years to come.
(b.) Since the introduction of the scrence teaching and the connected changes in our gystem the number
of our boys has largely increased. By tha sids of the old classioal forms, which remani at least as strong as before, there have grown up acience and mathematacal forms, tranning, for a life of study and an Universty career, boys who earlier would with difficulty have found a place for ther apecial aptitudes The number of prizes and certificates from South Kensington show that an infiuence for good has been at work upon the younger boys, and to name the result which (to the schoolmaster) 18, perhaps, the most important of 15 and 18 , who seem incapsble of boys between 15 and 18, who seem incapable of baing roused
to take an interest in anythang, has almost disto take an
sppeared.
Questron 30. Are any special rewards or encouragements (eg., exhibinons, scholarshipa, or pmzes) open to snecessful students of science in the Schoo M- here Brackenbury) worth about 452 a year each, tenable for thres years at the University of Oxford, consequently there is a Science exhubition awarded two years out of three

The Serenceforms take theur full ahare of the general prizes of the school.

Question 31. What mprovements do you thank could be effected in the teaching of Science in your own school ?- 1 beheve an observatory, a physical laborstory, and a boy's workshop would be of great service, but what we most need in an increase in the teaching staff.

Question 32. What are the primerpal obstacles to the teaching of sonence in your own school? The boys in the classical forms are fully tasked, I think overtasked, by their present work, so that under exnsting conditions they cannot be taught Scrence with any good results; many boys, however, are detained by their parents in the classical formes, who mentally would proft har more in a Science that a Interary training is of vital mportance to the boy's prospects in life

Questron 33. How could the Univeraities best assist science-teschung in achools?-The Unversity of Oxford has done much towards the introduction of Selence into school teaching, indeed, I have often been surpinsed by the ignorance men of science show at the ngorous efforts made in this direction, both by the Univerity and the Department of Sceence and Art. Much additional good would be done if the Universities instituted a general matinculation or leaving examination, comprising .-
(1) Mathematics, (2) Science, (3) Language and Literature, and allowing excellence in one subject to compensate for defects in anothes. School teaching ought to lay in the minds of the young a broad and a common basis for subsequent and wore special calture. Many hindrances have hitherto lam m the way. A fear of superficis knowledge, the mmmeduate demands of practacal lufe, varions competitive exammations, but chefly the want of agreement as to the subjects to be tanght. this last and princapal obstacle us fast disappearing, and if the State and the Diversines gave the schoolmaster their asastance we should soon see more comprehensure and harmomous system of instruction introduced.

Question 34. Can you anggest any way in which Government could assist scrence-teachong in schools, wos, for example, by inspectaon f-Nothing m my judgunent would be eo benefical to endowed schools as systematice in Spectaon and subondimatzon to some central anthortys.

suoh s change, and it would be great, Clasact, Mathomathes, and Modern Languages, would recave harily leas,
 Fredi. W. Walembu, MA.,
 Hegh Mastar, (p. 8. H, H)
 Deomber 26, 1872.

18. Harrow Schiol.

Genoral Arrangemente.
Question 1. How at the sohool clasufied ?-The Ectron consists of two Sides: (1.) The Clasateal Side: and (2) 1869). The Forma during the present Term are as follow :-

The Classical Sude,

The Montore and VI. 1	-	- 35	boys.
VI. 2	-	- 31	
Firat Vth	-	- 35	
Second Vth	-	- 32	*
Thurd V.	-	-. 93	*
Upper Remove		- 33	"
Lowar Remove a 34		-63	"
Uppar Shell * a ${ }^{\text {a }}$ (92$\}$		$\because 63$	"
	-	65	"
Muddle Shell - a 32	-	- 63	"
Lower Shell - -	-	- 83	
Furst IVth	-	- 33	\cdots
Second IV,	-	- 32	,
Third IV.	*	- 17	"

(2) The Modern Side (which wan eatablushed in Sepm tember 1869).

The Modern Sude.				
VIth	-	.	- 6	oys.
Upper Vth	-	-	- 9	
Lowyer Vth	4	-	- 12	,
Modern Remove	-	-	- 10	"
Upper Shell	-	-	- 11	
Lower Shell	*	-	- 4	\%

Question 2. Is Science a necessary part of the achool course, or is it taught only in special forms or departments? -Natural Science 18 tbught to all boys on the Modern side, and to boys in the Vth forms and Upper Remove on the Classucal side
Question 3. Copy of time table?
Questron 4. Summary of houry per week gaven in each clase to different subjects. (If playtime is uthlized for pre paration or practical work, this should be shown separately.)
Question 5 Summary of the number and average age of boys learning each of the various mubjecta in the Natural Scrence classes ?-The Modern side have been taught in two divisions, each consisting of about 26 In future they will be divided mito three divimons. The boya on the Clasgical bide are at present tanght in four divisons, each consisting of about 33 boys.

Questron 6. Amount of knowledge requared before the study of Science 18 commenced 9-No boy 14 at present allowed to joun the Modern ade unless he bas been one year in achool, and is at least in the Lower Shall.

Question 7. Is any alternative or ohonce of subject offered?

What departments of Science are preferred 7
a By parenta?
b. By the boys? 7

Qucathos 8. What branch of Science recenvea most attenmon in the school, or is fornd by experience to have the greatest educanonal valne - Expernmental phymice is the only subject which has been taught in mehool. A few boyt recerve instruction in comparative anatomy and phymology
durng the half hohdays, and other turnea which ther cam durng the haif hohdays
arrange with the teacher.

Question 9. What weight is assigned to acrentrfic attemnments in determuning a boy's poention in the school 7 -The same weught as to other mabjects, the proportions being iletermined by the tume gaven to the tereral onbjecte.

Methods of Teachung.
Question 10. What proportions of the lescons take the form respectavely of -
(a.) Oral teaching and demonstration"-The boye on the Clawsical Side are preent ot one lecture a
week. The boyt on the Modern Side are
resent of two lectures in each weex All the oys are required to take notes of the lectures, which are examined by the teacher
(b.) Book work ?-The boys who are in the Upper Division of the Modern Side are
(c) Practical work? - Practical work is attempted only with the Upper Division of the Modern Side one hour in the week. As soon as the new lecture rooms and laboratones are erected, it is expected that practical work in physics and chemigtry wil be found to be the most efferent means of teaching these subjects.
Question 11. Which form of lesson 18 found to, bo most ffective? -As far as it has been-attempted, a lesson in which the boys are made to repeat experments which they have seen performed by the teacher at a previous lesson, or other ample experments, is found to be by far the most㫙ective.
Questron 12 How are text-books used? eg., Is book work eupplementary or preparatory to the oral lesson?At present text-books are used in a few cases only, as stated in the answer to $Q 10$.
Qutestion 13 Is the use of note books encouraged (a) durng or (b) after the lesson, and to what extent?-The boyd are recommended to take but not drawings of apparatus, \&c
Question 14 How far are boys required to prepare their own apparatus or experments, or to collect specinens during the intervals between lessons ?- In the summer, prizes ars offered by the School Scientric Society for the best collections of plants, moths, butterflies, \&c.
Questron 15. Describe any method of teaching some special branch of Science which has been found successful in your school?-Comparative anatomy has been taught to a few boys, whth some success, by making them read Professor Huxley's Physiology, as an introduction to the subject. The teacher gives one or two elementary lectures on the subject of each chapter before it is read The thasues are examined and carefully drawn Comparative Osteology is then commenced Specimens of every umportant order are examined and made out-with the teacher's halp, or by reference to auch books as Professor Flower's Osteology of the Mammalia Specimens of dissectad anmals are then examined, and dussections of all the classes of anmals are made

Instruments of Teaching

Question 16 What special provision (eg , laboratory lecturs room, observatory, museam, botanic garden, \&ec 15 made for scientific instruction, and how is it used ?
(Plans and descriptiona of these, with statements of therr cost and annual expense, should, if possible, accompeny this return)
it is intended that the following rooms should be erected in 1873 :-
One lecture room for physics, capable of holding 75 boys
One laboratory for phyacs, capable of holding about 20 boys at work
One apparatus room, and a small atting room, for physics.
One lectu
One lecture room for chemistry, capable of holding 75
One laboratory for chemistry, capable of holding 2 boya.
These buildings will cost 4,800 , exclusive of fittungs
These builings will cost 4,800 , exclusive of fittungs tion room and a balance room for the chemeal department It is alao proposed to have a room for typical specimens (illustrative of Botany, Zoology, Geology, and Mineralogy), and for practical work in comparstive anatomy

Queshon 17. Numbor of assistants and curators, and annual cost?-At present there is only one mastar When the chernoal lecture room, \&cc., referred to above, are ready another master will be appointed.

Question 18 What apparatus, duagrams, and special fttings are in use \& what wes therr cost ? and what sum is allowed yearly for new instruments, and to replace materials
used, \& if
Queston 19. Is there a workshop ? and if so, how, and for what particular purpose, 18 it used ?-L Large workshops will be erected durng the course of 1872 .
Ovestion 20 What text-books are in use \& distingunlung between those for the junior and semiot classen?

Question 21 To what books of reference, other than ordinary school books, have the scholars access ?-There is a good school library to which all boys have accesa during certain hours

Question 22 Is there any scientific soclety or club in connexion with the school ? and if so, who compose it, how is it worked, and what is its influence on the boys?-Yes. The rules of the society are appended Meetings are held about once a fortaght. Papers are read by the members, or, occasionally, by strangers It is almost impossible to estrmate its influence on the boys generaly The members themselves undoubtedly recelve benefit from the papers, and the discussions which follow. The society also exercises good influence on those who make botanical and other collections

Tests of Progress

Question 23 How often is the work tested ?-Once in each term. (Three times a year)
Question 24 In what way eg by examination of note books, or by oral or written questions?-By examination of note books once a week, or oftener, and by written questions at the ead of each term
Question 25 By whom $?$ by the teachers of the subjects, or by an independent examiner? The examinations referred to above are at present held by the teacher, but, once a year, there is an exammation in the work of the year for bwo prizes given by the Head Master. This is conducted by an bridge).

Weachers.
Question 26 Is there any dificulty in procuring competent Scrence masters?

Quastion 27. Where are the best obtanned? Have they been specally tranned for the work? and if so, in what does such training consist?

Questron 28. What evidence of scmentific qualification tendered by candrdates as found to be of most value?
Question 29 Can you state any results of Scrence teachung in the school? such as-
(a) Success, professional or otherwise, of individual scholars
(3) Influence upon the general studies and intellectual hife of the school
Question 30 Are any special rewards or encouragements (eg exhibitions, scholarships, or prizes) open to successful students of Science in the school 3-Two prizes are given annually by the Head Master.
Question 31 What improvements, do you think, could be effected in the teaching of Science in your own school -At present nil the teaching of Natural Science is carried on in a room which is used during certann hours of the day by one of the classical masters. As soon as the new rooma are finshed, it is hoped that the teachung will be much more effective No practical work, worthy of the name, is now attempted, except with a few boys, and whthout prachical work no real progress seems to be possible, except in the case of boys of unusual ability.
Question 32 What are the principal obstacles to the teaching of Science in your ρ wn school ?-Vide answer to question 31
Question 33 How could the Universities best assist science-teaching in schools?-Probably by increasing the number of scholarships, sind by making some branch of expenmental physice or chemustry a necessary part of the first examnation that is passed by every undergraduate.
Questoon 34. Can you suggest any way in which Government could assist acience-teaching in schools, as, for erainples, by inspection :-If Leaving Examnations" Were estabNatoral Srease at achools, if some branch of the given to Natural Sarice at schools, s some brach or tha subject were conducted by the Gorernment or by the Univeraities

Question 35 Have you any other information to give, or suggestion to make, likely to be helpful to the Commas
sioners?

H Montagu Butlea, D D,
 Head Master.

January 23, 1873.

19. Eton Collegre
 Answbrs mx Rry. Dr. Horkby
 General Arrangements.

Questron 1. How is the achool classified ? - The nominal forms ere the Eth (the highest), the 5th, the Remove, the 4th, and the 3 rd , but these forms are, 1 n soms cases, verf large, eq, the 5 th contaurs about 480 boys The 6 th

and 5 th forms together are, therefore, splat up into 14 diviand sth tornas together are, therefore, sphit up unto 14 divi| wions, each under a different classical master |
| :--- |
| divisions are arranged in groups, called A. BC.D. Thess |

The A group comprises divisions $-1,2,3$.

For mathematics "and science (and in some cases for French), the different groups are dunded afresh, on a
different pruciple, among the mathematical staff (or the rench stafi).
A whole group, a.g B. or C., goos to mathernation together, and the mathematical masters arrange them, according to there mathemstacal proficiency, in dufferent olsones. Ten mathematical clastes can go on simultaneously.
A surular redistribution, but not so completa, is made for science teaching: see Mr. Madan's answar to quemhon 31
The Ramove and 4th form are sumilarly arranged, bat they have no accience teaching.
Questron 2. Is scmence e necessary part of the sohool course, or is it taught only in special forma or departh ments ?-Scence is taught as a necessary part of the sohool course from division IV to IX inclusive.
It is an blternative subject with modern languages, modern hatory, extra classics, or extra mathenasicas, in divisions I., II., III.

Questron 3. Copy of Thme Table.

Weolwier Divibiong-Lenty School-Timb, 1873
B.

Day of Week.	7.30.	9.455.	11 18.	8.	B.18.
Mónday	Greek Testament -	- - -	Mathematses	Mathematio	Mathematice
Treaday -	Freach -	Politresl Geography	Mathematias	-	-
Wednesday	Vers3on -	- - -	Mathematics	Latin Construtag -	Iatin Conktrong
Tharsday -	French -	Mathernatics	Poltheal Geography	-	-
Friay -	Mathematics	- - -	Mathematics	Latin Construing -	Mathematics
Saturday -	Version -	Latio Cosstruing -	Mathematica		-

1 Divinty, 6 Latin, 2 French, 2 Political Grography, 11 Mathematics.

c.

1 Divinty, 6 Leatin, I Geography, 2 Poltrcal Geography, 2 Fremeh, 10 Mathematick.
D.

Monday ~		Greek 'Testament -	-	Misthematics	Mathematics -	Geography.
Tuesday		Mathematics	Political Geography	Mathematics	- -	-
Wednesdlay	-	Mathematics	- - -	Latur Construng -	Mathematuen	Erench
Thursiay -		Matheramatics	Iatun Constrang	Politscal Geography	-	
Truday -		Latm Composition	- - -	Latzs Construng -	Latm Censtrwig -	Erench
Sauxilay		Saying Lesson	Mathematica	Mathematica	-	-

Divinity, 5 Iatn, 1 Sayng, 1 Geography, 2 Pohtacal Geography, 2 French, 10 Mathematicu.

A (Divisions, I, II, III.)

Tumer	Monday	Tumeday.		Wrindrspay.	Thurbday	Frbdat		Saturdax.
780	Greelr Testament	Construe Poetry	Latan	Compostion in School. Latin.	Saying Lesson	Construe Poetry.	Greek	Versiom Translation.
9.45	Mathematics -		-	- - -	New Studies			New Stadres
11.15	Construe Prose Greek	Construs Prose	Greek	Construe Poetry Greek	Construe Probe.	Mathematics		Construe Latin Paetry.
80	Sayinğ Leesson -	- .	-	New Studies	- - -	New Studies	- ${ }^{-}$	-
8.15	Construe Prote.		-	5 Mathematics -	- * -	Construe Prose.	Latin	

B. (Divisions IV , V, VI)

C. (Divisions VII., VIII., IX , X.)

$\begin{array}{r} 780 \\ 9.45 \\ 11.16 \end{array}$	Greek Testament Construe Greek	French - Saying Lesson - Construe Greak				Latin	Translation. Physucal Scrence.
	Prose	Prose	Prosa.	Potry	Poetry		Constrae Poetry
9.0	Geography -	- - -	Saying Lesson -	- -	Mathematice		-
515	5. Mathematuas -	- -	Construe Labn Probe.	- - .	Construe Poetry	Latur	-

D. (Divisone XI., XII , XIII., XIV)

7.80	Greek Testament	Mathematics -	Saymb Leason -	Mathematies -	Latun Composition in School.	Saying Lesson.
9.45	- - -	Greek Exercise -	- - -	Construe Latun		Construe Greek
1115	Construe Greek Prose.	Construe Prose Greek	Construe Prose Latin	Construe Greek Poetry	Construe Latin Poetry	Poetry Mathematics.
8.0	Mathematics	-	Mathematics	- . -	Construe Poctry	-
515	Geography	- - -	French -	- - -	French.	-

The acompanyig Scheme shows the arrangement of lessons for the first 14 school divisions, $i e$, for the whole of the Suxth and Fifth Fortmas. The tume table of the Lower boys is not given, as it 18 not proposed to admit any of them into the army olass
Boys who join the army olass oan commute Greek for additional Mathematues and Englash, giving up five lessone in the week,
ade ang six, thus getnog 22 lessons in the week as aganst 21 in the ordmary Classical course
The praportion of studes in thas Soheme is as follows -
French Diviaions-i Lesson Diviuty, 8 Latin, 6 Mathematics, 8 Fingish Fhatory and Laterature, 4 New Studies, ie. In the B. C D. Dinkiong-1 Lesson Dipmity, 7 Latun, 6 Mathemathes, 8 English, 2 French, 2 Physical Science, 1 Greek Woolwoh Divisions

Feb. 6th 1878.
3. J. Hommay.

Question 4. Summary of hours per week given in each oless to different subjects. (If playtime is utilized for class to different aubjeats. (If playtime ls utilized for preparation
A. Divisions $\quad=1$ hour Divinity.

3 $\quad=3$ Mathematics.
tory, sce., \%c.
" $\quad 13$ Classics.
$\frac{1}{3}$ Mour Divinity.
2 Scrence.
2 French
13 Classice.
C. $* \quad=$ I'he same, except that there is eg geography leason in place of ons of the olassucal lessons
D. s - The same as C., excopt that there is no Science, but five mathematical lessons mstead of three
Exerases are done out of school, and other work, e g extra divmity, classics, Enghsh, \&se., \&cy, are done with
the tutors in thew houses. This is known me private Tanness.
There 18 also voluntary work in the laboratory during play hours ' ase Mr Madan's answers
'Question 5. Summary of the number and average agge of boys learning each of the parious subjects in the Natural Science classes
-See Mr Madan's answer for his own olasses; other boys are learning phymical geography, or elementary astronomy, or mechanres in the Sctence houre See Mr. Dalton's answer.
Therr ages range from 18 to 13.
Question 6 Amount of knowledge requared before tha tudy of Serence is commenced.
Sufficient knowledge of classiea and mathematics to get into the Lower Fifth form. This may be done by average boys of 13 or 14 years of age.
The eramination for admission to the 5th form includes translation from such books as Homer, Viryl, Xenophon, Cussar, Latin (prose and verse) compostion, French anent

In Mathematice-
Arthmetia, all, except the lugher Fules, eg. duscount, profit and loss, stocks.
Algebre, to simultanoous equalions (inclusave).
Euchd, first 12 propositions.
Question 7. Is any aldernative or chows of subjecto offered ?

What departments of Sclence are preferred?
a By^{2} parentes?
6 By the boys?
Question 8. What branch of Science receeves most atten uon in the school, or is found by expernence to have the greatest educational value?
Questson 9. What weight is assigned to acmentric attainnents in determining a boy's position in the school f-In the "trials" for school promotion into the maddle division of the 5 th Form, and into the Upper division, one Sctence paper za set The papers are I2 in all.

> Methods of Teaching.

Question 10 What proportions of the leasons take the orm respectavely of-
(a) Oral teaching and demonstration ?
b.) Book work?
(c.) Practical work

Question 11 Whach form of lesson is found to be moast effective?
Questron 12 How are text-books used7eg., Is book work supplementary or preparatory to the oral lesson?
Question 13 Is the use of note books encouraged (a) during or (b) after the lesson, and to what extent?

Question 14 How far are hoys required to prepare theur own apparatus or experiments, or to collect specimens during the intervals between lessons?

Question 15. Describe any method of teaching some special branch of Science which has been found successful in your achool.

Instruments of Teachang

Quastron 16 What apecial provision (eg., laboratory, lecture room, observatory, museum, botanic garden, \&o., is made for acrentfic instruction, and how is it used?
(Mans and descripnons, of these, with statements of therr cost and annual expenso, should, if possible ascompany this retura.)

Queston 17. Number of assistants and curators, and annual cost.
Queston 18. What apparatus, dragrame, and special fittinge are in use? what was therr cost? and what sam is allowed yearly for new matrumenta, and to replace masterials used, \&e.?
Question 19. Is thare s workshop? and if so, how, and for what particular purpose, is it used ?

Questron 20 What text-books are in use? distingurshing between thoas for the jumor and senvor classes.

Question 21 To what bookg of reference, other than ordinary school books, have the scholars access?
Questron $22{ }^{\circ}$ Is there any scientific socrety or club in connexion with the school? and if so, who compose it how is it worked, and what is ite infiuence on the boys?

Tests of Progress.
Questron 23 How often is the work tested
Question 24. In what way ? eg, by examination of note
books, or by oral or written questions?
Questron 25 By whom? by the teachers of the subjecte, or by an independent examiner?

Teachers.

Question 26 Is there any difficulty in procuning competent Scrence masters? I have hardly experience enough to answer this question, havng only apponted one master, who was highly recomamended by very competent persons, and has proved most able and is canments who also ehle and willong to teach
Question 27. Where are the best obtaned? Have they been specially tranned for the work; and if ac, in what doe such traming consist?
Question 28. What evidence of scientrific qualification endered by candidates is found to be of most value?
Questrom 29 Can you state any reanits of Scuence aching in the ectiool 3 much as-
(a.) Success, professional or otherwise, of individaal scholars
(b.) Influence upon the general studies and intellectual

Questron 30. Are any epecial rewarda or encoumagement (e g. extubitiona, exholarships, or prises) open to euccesaful sudents of Selence in the school?
Question 31. What umprovementa, do yoe think, eovid be effected in the teaching of Science in your own ehool ?
Queston 32. What are the proncipal obstaclen to tho teaching of Scrence in your own echool?
Quentson 33. How could the Unaveraties beat esant Scence teaching in tchoolis?
Questros 34. Can you ouggest any way in which Governmeat conld assist Science teaching in achoole, as, for example, by inspection :
Questhon 35. Have you any other information to give, or suggestion to make, lakely to be heipful to the commismioners?

January 24, 1873.

Answres by H. G. Madar, Esq.

General Arrangements.

Question 1. How is the echool ciassified ?
Questyon 2. Is Science a neceasary part of the achool course, or is it taught only in apecial forms or depart

Questron 3. Copy of Time Table.
Questron 4. Summary of hours per week given in each preparation or to preparation or practical work, this should be shown
separstely eparately.)
Question 5 Summary of the number and average age of boys learning each of the varnous subjects in the Natural Science classes.

-	Optice	Chemustry.	Hydrostatien	
Number of boya	-	5	64	22
Average age -	-	$17-18$	$15-18$	16

[The above refers to Mr Madan's present ciassen.]
Question 6. Amount of knowledge required before the study of Science is commenced.
Queation 7 Is any elternative or chorce of aubjects offered ?-No alternatave or chores of mubjectit 1s, an a rule, offered

What departments of Sclence are preferred?
a. By parents?

Parenta do not appear to have any decided preference for particular subjects, beng anmply desurous that their boys should be taught Natural Science. Chemstry 16 sometimes mentioned, but whether on rational ground or not, is hardly clear.
b. By the boya ?
"Boys seem to take most interest in the subjecta of "Heat" and "Chemstry of the non-metalluc elements." The former aubject, treated in a sumple way, is undoubtedly very attractuve to the younger boys
Question 8. What branch of Scrence receivea most attention in the whool, or ill found by experience to have the greatest educational value?
Questron 9. What weight is asatgred to scientiflc attamments in determumg a boy's pontion in the school 7

Methods of Teachang.

Question 10. What proportions of the lessons take the orm respectively of -
(a) Oral teaching and demonstration 7
and e work in school connisty entriely of oral teaching and demonstration, the firt 10 minutes, or more, bemg oceapted in questions on the previous lesson.
(c) Practical work?

Practical work in the laborstory us dons entreely out of school, the time devoted to it being fromin 3 to 3 h hours is each week The thme spent in regular achool lemsons is about one half of this
Question 11 Which form of leason is forind to be mont effectavel It is not quite enay to compare the oral matrucnon with the practical Fork. The latiter is strietly sipplementary to the former, and serven to fix in the mind what

It is doubtful whether practical work by itself 19 suffcient. Without previous oral teaching a boy is apt to do an experiment mechanically, without realisung its full meaning. During laboratory work the boys are advised to consult thers text-books and note books, and constant reference is made to what has been shown in lecture

Questron 12 How are text-books used Peg, is bookWork supplementary or preparatory to the oral lesson?-Text-bookd are connidered as subsudiary and aupplementary
to oral lessons The latter follow the general course of to oral lessons The latter follow the general course the text-book, and the boys are told to refer to their books, and details beyond those which can be given in school hours

Questron 13. Is the use of noto books encouraged (a) during or (b) after the lesson, and to what extent ?-The use of note books is compulsory in all the classes
In most ceases the boys have to take rough notes during the lesson, and to show up once in each wrees an account or abstract of the two previous lessons, farly written out in a larger book. These are looked over, corrected, and marked, the marks beng read out in public
In some of the lower classes the notes are written down, once for all, during the lessons, chiefly from dictation, many experments, however, are left for the boys themselves to describe m thesr own words,
Question 14. How far are boys requred to prepare theur own apparatus or expermente, or to collect specimens durng the intervals between lessons? -Boys are required to make and set up their own apparatus as far as possible Nothing is done for them which they seem able to do for themselves in making gises, for example, the tubes are bent, corks fitted, substances weighed out, \&cc., by each boy for himself: Prizes are given each year for coliectrons of butterfles made by the boys themselves during play hours.
Question 15 Describs any method of teaching some special branch of Science which has been found successful in your aghool

Instruments of Teachsng

Question 16. What special provision (e g, laboratory, leoture room, observatory, museum, botanc garden, \&ce is made for Scientufic Instruction, and how is it used
(Plans and descriptions of these, with statements of their costa and an
pany this return)
plan Theratory buldings are shown in the annered plan Thear total cost, melusive of apparatus and fittangs, was about 4,000l The annual expenses cannot yet be accurately estimated, but will be ahout $80 l$, oz $90 l$, meluding ooals, gas, insurance, rates, \&o, but exclusive of serweek.
ek.
work in the laboratory is voluntary, and done durn play hours When a boy has attended chemical lecture for a torm, he 18 allowed to put his name down for laboratory work, and may, to a great extent, choose his own tumes for working Each boy oomes for a persod of 1 or 2 hours twioe a week A place at a work table 1 is allotted to him, and all necessary materals and apparatus are suppled. As much personal supervision as possible 1a given, and a full account of every analysis made (and in many cases, of other experimentis) is writton out and looked over by the teacher
The observatory contanns an equatorial teleacope (with 6 in. objeot glass), with divided curcles, driving clock, \&c , a sidereal clock, togethar with a few nec
It 10 under the management of a committee of masters who take it in turas to be in the observatory from 930 Who take it an
to $1030 \mathrm{p} . \mathrm{m}$
The names of boys who are recommended by their masters are entered in a book, and four or five are taken up on every fine nught, as well as occasionally during the day.
Queshom 17. Number of assistants and curators, and annual cost: see the answer to the previous question.
Quastion 18. What apparatus, diagrams, and apecial fitings are in use? what was theur cost? and what sum ollowed yearly for new instruments, and to replace maternals used, \&e ?-The number of places fitted up in the liboratory, under its present arrangement, 1832 The number of names put down 18 never less than 90 , and uaually all the avalable placea are ocoupied
Question 19 Is there a workshop ? and if so, how, and for what particular purpose, in it used?-There is a workahop connected with the laboratory, containing two lathes, work-bench, forge, and a faur supply of tools.

84734

It is chrefly nsed for preparing apparatus for lectures, but boys are encouraged to come there and taught to make things for themselves
'There are, besides thes, two or three turners' shops in the town, to which many boys go

Questron 20° What text-books are in use 3 distmguishng between those for the junior and senior classes

Junior - Wilson's Chemistry, Chambers's Course, Harcourt and Madan's Practical
Chemistry Chemustry. Quaditative Analyma
Physics. Balfour Stewart'a Elementary Physics ; Ganot's Physica. ,
Question 21. To what books of reference, other than ordunary achool books, have the scholars access?-There is a good achool hbrary, conzainung many standard accentfic works, e g., Watts' Dictionary of Chemistry
Question 22 Is there any scientific society or club in connexion with the school? and if so, who compose it, how is it worked, and what is its influence on the boys?-

Tests of Progress.

Questron 23 How often is the work tested ?-A part of each lesson is spent in puttong questions on the previous lesson.

Note-books are looked over and marked ones a week
Two (or more) papers of questions are set in the course of the half,
There is an exammanon during the summer half conducted by independent excmoners, in certan specsied subjects, a list of which is published about a year prevously
Questron 24. In what way? e g. by examination of note books, or by oral or written questions?-Answered under previous question
Questron 25 By whom 3 by the teachers of the subjects, or by an independent examiner?-Answered under previous queston.

Teachers.
Questron 26 Is there any difficulty in procuring competent sclence masters? -
Question 27. Where are the best obtained? Have they been specrally tramed for the work, and if so, in what doea such training consist?
Question 28 What evidence of screntric qualification tendered by candidates is-found to be of most value P-
Question 29. Can you state any results of science teaching in the school? suah as-
(a.) Success, professional or otherwise, of madinidual scholars
(b) Influence upon the general studnes and intollectual life of the school.
Science work has, no doubt, brought out some (but not many) boys who have previously shown no interest in, or power over, thenf school studies
Generally apeakng, however, the bent boys in Classics
are the best also m Natural Science.
Questron 30. Are any special rewards or encouragemente (eg. exhubitions, scholarships, or prizes) open to successful students of science in the school?-A prize of 10l, and another of 52 , are given upon the results of the annua examination alluded to under question 23.

Question 31 What improvements, do you think, could be effected in the teaching of science in your own school ? It would seem better to re-arrauge the divisions for scmence work more completely than is now done At present the boys (below the first hundred) are arranged mamly acoording to their olassical or mathematical work, and there is some dyfficulty in organising a consecutive courss of instruction for the boys

A large room for 8 musenm is also much wanted. There is agood mucleus for a geological collection, but no mean of displaying it properly.

Quesmon 32 What are the prineipal obstacles to the teaching of sclence in your own school ?-The natural unwilhngness of parents and tutora to allow boys to giv up much tume to a subject which has not hitherto had much mfluence on a boy's place in the school, and which does not often serve as an fintroduction to any recognised caneer or profession. This nnwnillingness 18 quate justofiable, as also is the objectnon made, that boys ought not to be taught too many aubjecta at once.

Question 33 How could the universitues best assist Scsence teaching in schools?-By offening scholarships and prize for Natural Science.

By giving inaressed facilities for the traning of men as Sonence masters Lectures might be given (as occasionally at Sorth Kensington) on modes of teaclung. Thas worald undrectly assigt in the numerous cases where boys are never intended to go to the Unversity, but enter bit once a profession, such as engineering or applied chemistry, where a knowledge of screnoe is requigite.
Cuestion 34. Can you suggest any way in which Goverament could assist Scrence teaching in schools, es, for oxmenple, by inspection?-By grants or loans of epparatus, ample, by inspection i-ny grants of loans of epppe.
By occanonally sending lecturers, who might also be inspectora,
Questron 35. Have you any other information to give, or suggestion to make, likely to be helpful to the Commissloners?

Awswers by Rev. T. Daiton

General Arrangements.

- Question 1. How is the school classified?

Question 2. Is Science a necessary part of the Echool course, or is it taught only in special forms or departmente?

Question 3. Copy of time table?
Question 4. Summary of hours per week given in each olass to different subjects. (If, playtime is utilized for preparation or practical work, this should be shown separately.)
Question 5 Summary of the number and average age of oys learming each of the vamous subjects in the Natural Science classes?

IVth division, Chemustry Geography:
6 classes in Physical
Divisions V.-XIV. formed until $\left\{\begin{array}{l}6 \text { classes in Physical } \\ \text { Geography. } \\ 3 \text { classes inAstronomy } \\ 3 \text { classes in Mechanics }\end{array}\right.$
last schooltime $-=\{3$ classes in Mechanice and Hydrostatuas.
Last gchooltime.
a elass in Heat.

Divisions V -VIII. formed \qquad Geography

$$
3 \text { clasaes in Mechanic }
$$

Divierons IX-XIV, had ne Physical Science *
In Divisions I-III there are 100 boys, whose arges vary (generally) from 17 to 19 They are allowed to choose two extra subjects out of about 10 , and to each subject they give two hours a week, As 1 wave sand my answer, three liasses are ar mer of boye meach, lest schooltme Geography. Tres as follows :-

> 4 in lst Chemastry class 14 min 2nd ", ", 8 in 3rd 6 in Physical Geography elass.,

Division IV. consists of 34 boys, of ages varying generally from 16 to 18 . . XIV have generilly all the 1 of boys,-in most terms, 33 each.
The 13 classes into which I have said they are divided for Scrence Teachmg, are on the average of the same size, which gives (33×10) boys for 13 classes, or about 25 boys in éach class Ther ages usually vary from 14 to 18 , though occssionally a boy of 12 us so advanced as to have reached thas part of the school.
Question 6. Amount of knowledge requyred befose the study of suence is commenced.
Questron 7. Is any altermative or choice of subjects offered? -Only in divisions I,-IIL.

What departmentit of Scuence are preferred?
(a.) By parents?-Chumustry has attracted most mterest; perhapa, owng to the perfect arrangemy the for
(b.) By the boys 2-My experience is mI favour of alementary astronomy ; but probably teachers of other subjects could produce equally favourable nastances
Question 8. What branch of science recerves most attentron in the school, or us found by experience to have the greatest educatanal value?
Question 9 What weight is assigned to scientrfic attanmenta in determuning s boy's porition in the achool 3

Methode of Teachung.

Question 10. What proportions of the lessoni take the
form respectively of-
(a.) Oral teachumg and demonstration ?
b Book work?
I can best sonwer this and the following queations together.
I have generally taught elementary entronomy for two consecutave sehooltimes to the same class. The first sahooltrme no text book is uaed; I usually give e general explar nation of the lesson, then I dictate a bref regume of this explanation, which the boys anke down in their note hookn: the next lesson 18 begun by a thorough axamination, owd ooct, of what wes learnt the provious tame; this probably occupres one-thurd of the time of the lesson, the remainder beng used asefore m explanation and dictation of the next part of the subject.
The second schooltume we use Mr. Lockyer's Astronomy. My method with this is to give a short explanatory acoount of what the lesson contang, and the next thme to quesion thotoughly upon it.
One hour in about 7 or 8 is given to an examinainon paper.
In explainng, I , of course, make considerable use of the black-board
I may add that, as far as my experience goes, mgorous oral questrioning is most important, and is much more acessary in teacong is in Questron 11. Whach form of lesson is found to be most effective?
Question 12 How are text-books used $\%$ eg., is book work eupplementary or preparatory to the oral lession?
Question 13 Is the use of note books enoouraged (a)
urug, or (b) after the lesson, and to what extent during, or (b) after the lesson, and to what extent lDuring the lesson See answer to Q. 10.
Question 14. How far are boys requured to prepare therr own spparatus or expermente, or to collent specmens dumng the intervals between lessons ?-Two pnzes are given for the best collection of wild flowers and of insects. The boys collect for these dunng the schooltime.
Questron 15. Describe any method of teaching some apeasal branch of scrence which has been found successful in your cohool.

Instruments of Teaching
Questaon 16. What special provision (e.g., laboratory, lecture room, observatory, museum, botanio garden \&c) is made for Scientafic Instruction, and how in it uaed?
(Plans and descriptrons of these, with statement of their cost and annual expense, shonld, if posmble accom pany this return.)
I send with this a small photograph of the telescope It was made by Cooke of York. It is of 6 minch aperture, and was made by Cooke of York. It is of 6minch aperture, and the expense of strengthenugg the tower by grrders, and of the dome and fittings, \&ac, was between 250%, and 900%.
Questron 17. Number of assistants and curritors, and Qunual cont?
One assistant helps in the deboratory ; part of his duty m
to clean out the observatory, and look to the instrument.
Question 18. What apparatus, diagrams, and pecial Question 18. What apparatua, diagrams, and pecial
fittinga are un use? what was ther cost? sind what sum is allowed yearly for wew unstrumente, and to replace 18 gllowed yeariy f
matenals used, \&ze?
There 15 no fixed sum; the school fund bears the exonse of keeming the observatory in order It aleo pays pors whatever is regurred at the laboratory beyond a payment of 10 s made by each boy who is making expervments
Question 19. Is there a workshop 7 and if so, how; and Question 19. Ls there a workshop ? a
for what particular purpose, is it need?

Question 20. What text-books ave in use 7 distuggurhiog between those for the gunior and senior clasaes.
Questwon 21. To what books of reference, other than ordinary school hooks, have the scholars acceas ?
Questron 22 Is there any Screntrfic Socrety or Club in connexion with the school? and if so, who compose it, how is it worked, and what is its mfluence on the boys 7

Tests of Progress.

Question 23. How often in the work tested 2-0nce in three or forr weaks by a wntten examination Three tumen a year by a paper on the work of the school tume: also once a year by the examination (trals) for change of form.

Quentuan 24. In what way 3 e.g by extmmation of note books or by oral or written questions?-By written questions.
The note books are examined frequently daring the schooltsme.

Question 25. By whom ? by the teachers of the subject, or by an independent examuer?

Teacherg.

Questor 26. Is there any difficulty in procurug competent Science masters?
Queation 27. Where are the best obtanned? Have they been specislly tranned for the work; and if so, in, what does such training consist?
Question 28. What evidence of scientific qualrfication tendered by candıdates is found to be of most value?
Questron 29. Can you state any results of 'Scrence eaching in the school \% such as-
(a.) Success, professional or otherrise, of individual scholaws,
(b.) Influence upon the general studues and mitellectual life of the school.
The subject has hardly been mtroduced long enough to produce success at the Unversities, I thunk if has had a beneficial result upon the school, both generally, and in the case of individuals. Almost all boys have had a certann amount of interest excited in them for this branch of knowledge: in seversl cases boys who have shown no aptitude for clasisics or mathematics have cone extremaly well in, and really worked at, Physical Scrence, but as a rule, boys who are good in clasescs or mathernatics, Bre good also in Scrence
Question 30. Are any speat rewards or encouragements (e.g. exhibitions, scholershups, or prizes) open to successful tudents of Science in the school?
Questron 31. What mprovements, do you thunk, could be effected in the teaching of Science in your own schools?
Questron 32 What are the prumpal obstacles to the reaching of Scrence in your own school?
The whole tone of the sohooh has, until lately, bserr so absolutely classical, that Science had to start with a certan amourit of prejudice against it; this, I think, it has cem taunly overcome, it being now generally allowed that the aubject has done good work for the boys. The rewards for auccess in classics are, however, so great that a boy must eesitate about endangering his progress in them, and it is iuffioult to reward him adequataly for suecess in Selance.
Queston 33. How could the Universities best assist Sorence teaohing in sehools?
Questron 34. Can you suggest any way in which Goverament could assust Scionce teaching in achools, ss, for example, by inspection?
Question 35 Have you any other information to give, or suggestion to make, likely to be helpful to the Commiasioners?

Answers by Rev. E. Hale

General Arranyments.
Quastion 1. How is the school classified?
Question 2. Is Scence a necessary part of the sohool course, or is it taught only in special forms or departmenta?
Quastion 3. Copy of Time Table.
Quastion 4. Summary of hours per week given in each oless to dufferent subjects (If playtmes is uthrzed for preparation or practical work, this should be shown separataly)

Question 5. Summary of the number and average age of buye learning eaoh of the various subjects in the Natural Science classes.
Question 6. Amount of knowledge requured before the tudy of Sorence is commenced.
Question 7. Is any altarnative or cholce of subjects offered?-Yos

What departments of Sonence are preferred
a. By parents P-Parents requure Scienoe, but seem to
b. have no preference.
. By the boys ?-I think physical geography and chemastry (when this
Questron 8. What branoh of Sclence receives most attention in the school, or is found by expernepes to have the greatest educational value?

Questom 9 What weught in assigned to somentufic attam ments in determung a boy's postion in the school . Methods of Teachang.
Questiom 10. What proportions of the lessona take the arm respoctuvely of -
(a.) Oral teachung and demonstration i-There are two
sorte of classes in physical geography. One a
small selent clase of boys who are older, the other divisions of 30 boys or more. In the former, textbooks are used, but in the latter no text-book is used except a physical atlas.
(b.). Book work? The teaching is oral, maps, daspramg, and photographs, and specmens of fossils (or Prints) being used to exemplufy the teachung. There are two leasons weekly. Eaioh boy bring weekly an abstract of the two leasons These abstracts are returned to them looked over and marked After enght or 10 lessons an examinghon paper is ret and carefully looked over and marked.
(c) Practical work ? -

Questron 11. Which form of lesson is found to be most effective? For a large class, oral teaching
Questuon 12. How are text-books used ? e.g, is book Work supplementary or preparatory to the oral lesson ?-
When text-books are used (as for the small select class mentioned), a portion of the text-book is explanned, further illustrations are gaven, and before the next lesson the pupils bring an analysis of that portion which has been alyeady explamed to them
Question 13 Is the use of note books encouraged (a) dumng or (b) after the lesson, and to what extent ?- The use of note books durng the lesson is encouraged Some notes

Question 14. How far are boys requured to prepare ther own apparatuis or experments, of to collett specumens for the best collections (systematically arranged) of wild flowers and insects.

Question 15. Describe any method of teachung some special branch of smense which has been found sacepessful in yous school.

Instruments of Teachsag.

Question 16. What special promaion (eg, laboratory, lecture yoom, observatory, museum, botanue garden, \&re.) is made for secentific mstruction, and how 18 it used?
(Plans and descraptions of these, whith statements of therr cost and annual expense, should, ff possible, accompany thas retum)
Question 17. Number of assistants and curators, and annual cost.
Question 18. What apparatus, diagrams, and special fittings are in use ? what was their cost? and what sum is allowed yearly for new matruments, and to replace materials used, \&c.?

Questron 19 Is there a workshop ' ath if so, how, and for what particular purpose, is it used?
Question 20. What text-books are in use? distingrushing between those for the junior and senuor classes?-Kerth Johnston's Physical Atlas for Schools (for all boys). In the small select class nndividual boyshave used Mrs. Somerville's Physical Geography, Herschel's Physacal Geography . Lyell's Elements and Pynciples ; Tyndall on Heat.
Questron 21 . To what books of reference, other than ordmary school books, have the scholars access ?-There $1 s$ an excellent school library, to which the boys have access, and any books recommended by the serence teachers are purchased for tho hbrary.
Questwon 22 Is there any scientufic tociety or alub in connexion with the school \& and if so, who oompose it, how is it worked, and what is its influence on the boys ?--
a literaxy and scmentifio socmetys managed by the boys, and A hiterazy and scmentufio societyr managed by the boys, and
the members elected by them. The members read papers, and a discussion takes place. Occamonally bectures are given by parsons not reandentat Eton, by mintation of the Socety.

Tests of Progreas.

Question 23 How ofteri is the work tested ;-Yearly, a general exsmunation in held for decidug places in the sohool, and a paper on the scuentifia worls of the school for that year 13 sect.
There are frequent class exammations, by pmnted papers, and every week the note-boolss or abstractis of lessons are looked over.

Question 24. In what way 2 eg. by examunation of note books'or by oral or wintan quegtions 2-A A , atated before, is yoth ways
Questum 25. By wham ' by the toachers of the subjecte,
or by zn independent examiner?

Teachers
Question 26 Is there any difficulty in $\boldsymbol{p r o o m}$ ring competent Scrence masters?
Questron 27. Where are they best obtained 3 Have they
been specially tranued for the work; and if so, m wast does auch trammg conbst?

Question 28 What evidence of scnentric quajification tendered by candidatea 3 found to be of most value?
Questron 29. Can yon state any reaults of Science teach og in the achool 3 such as-
(a) Success, professional or otherwise, of indindual
(a) Success, Pr
scholars Influenes upon the
bife of the school
(a) The time aince which Science hae been taught is too short to admut of any profescaonal success, but of three candidates in 1872 for the medals of the Royal Geographical Socjety, two of the four medals were gained by them, and the other boy
receved honourable mentron.
(b) Intellectual activity is promoted, and habits of thought and observation ars gained Proofs of
this are, that boys not remarkable for proficiancy or the interest they tske in thear usual stindies, are sometmes full of interest in learning sciance, and in rarer instances enthusiastio.
Question 30. Are any special rewards or encouragements (eg exhibitions, scholarships, or prizes) open to successful students of Science in the school?
Questions 31. What amprovernents, do you think, could be effected in the teaching of Science in your own school? -By a syatematic division of subjects, nllothing s certann course progressive
I thank, for efficrent Serence teaching, every boy should be taught Erd-kunde, in some suoh course as the following ,-
(i.) The earth's position in the Solar aystem,
ii) The Atmosphere, Solar Heate (Rain, Snow, \&cc.).
ini.) Very elementary Geology.
(iv) Changes in the physical features of the Earth's Surface carused by Ram, Rivers, Ice, Snow, \&c.
v.) The Sea, Thies, Winds, Cimate.
v.) Various dinisions of animbis and plants on the earth's surface, and their dastrabution
After"each boy has gone through a course of this, ha hould choose one of three divistons.
Div. (a) Astronomy, Mechantes, Hydrostatics, \&ee, and a boy chooning this division should give extra nme to mathematnes
Div. (8) Chemastry, Heat, Electriaty, Bow
Div. (7) Geology, Zoology, Butany, 80

Curestion 32 What are the pmocipal ohstactes to the
tesching of Seience in your own school?
(i.) The divisions of the echool ben enade with ference to the clasaical work only.
(i) The want of a museum and lecture-roum.
(ul.) The behef among parents and masters that Soiance doss not "pay," and wo more play than work,
Quesfion 33. How could the Universitien beat asolith Scrence teaching in sohools ?-By offering hecter rewarda to successful acientific men at the Unversity, t g, by more Fellowshups. (I refer roore to Cambndge than to Oxford)
Questron 34 Can jou mageat any why in whoh Government could assist Science teaching in in whioh for example, by inspeotion? --By inspection, but not by exarumation.
Question 35 Have you any other information to give or suggeation to make, lukely to be helpful to the Com masioners?

20. Dulwice College.
 - (Upper School.)

General Arvangements.

Questron 1. How it the school classified 7-The achool is divided into three sections (the junior section, the semior section, and the axth form), within eanh of which an inde pendent classification as made for each subject or group of subjects in whioh metruction as given.

The subjects of instruction are grouped as followa :-
n the jumar section-

1. Form work, including Englush, Latin, and Frenoh
2. Arthmetic
3. Drawing

In the senior section and suxth form-
1 Form work, upcludiag Englush, Latin, and French.
2 Mathematies.
3. Greek

4 German.
6. Physical science
6. Drawing.

Question 2. Is science a necessary part of the school course, or is it taught only in special forms or depart-ments?-Instruction in acrence wopen to all boys in the senior section and in the axath form, but is not compulsory, except no far that all boys not learsing Greek and the highor classics are required to take up at least one subject in science.
Questron 3 Copy of tume table;

Geneqal Time Tables.--Sixta Form, let Thrm, 1873

A. (1)-Clabetcat.			A (2.)-Mataematiohe ano Modrem.	
Day.	Trme.	Scheme	Time	Schume.
Monday - -	$\begin{gathered} 9-1 t \\ 11-1280 \\ 2-280 \\ 380-4,30 \end{gathered}$	Horm Work. Mathematics. Higher Classicg Freanch.	$\begin{gathered} 9-11 \\ 11-1280 \\ 2-830 \\ 830-4.80 \end{gathered}$	Form Work, Mathematics. Mathematics. Wrench.
Turbmax - -	$\begin{gathered} 9-11 \\ 11-1230 \\ 2-315 \\ 815-430 \end{gathered}$	Form Work. Higher Classice Hugher Classics (or Germann). Hugher Clagerca	$\begin{gathered} 9-11 \\ 11-1280 \\ 2-8.15 \\ 815-480 \end{gathered}$	Form Work. Physical Science. German Mathematics.
Wednreday	$\begin{aligned} & 9-11 \\ & 11-1 \end{aligned}$	Forrn Work. Special Classem	$\begin{aligned} & 9-11 \\ & 11-1 \end{aligned}$	Form Work Speczal Clasesa.
Thuraday -	$\begin{gathered} 910 \\ 10-11 \\ 11-1230 \\ 2-830 \\ 8.80-480 \end{gathered}$	Forza Work Mathematics. Form Work Highex Classica. French.	$\begin{gathered} 9-10 \\ 10-11 \\ 12-12.80 \\ 2-880 \\ 3.80-430 \end{gathered}$	Form Worls Mathemstics Form Work Germas. Freach
Fridax - -	$\begin{gathered} 9-10 \\ 10-1180 \\ 1130-12.30 \\ 2-315 \\ 8.15-4.50 \end{gathered}$	Form Work Higher Clasacs. Form Work. Higher Claseres (or German). Higher Clasacas.	$\begin{gathered} 9-10 \\ 10-11.30 \\ 11.80-1230 \\ 2-815 \\ 3.15-4.30 \end{gathered}$	Form Work. Mathematics Form Work. German or Mathematucs. Mathematues.
Satirday - $=$	$\begin{gathered} 9-10.80 \\ 10.30-11 \\ 11-1 \end{gathered}$	Forrs Work. Hugher Clasgies. Special Classea	$\begin{gathered} 9-10.80 \\ 1030-11 \\ 11 \sim 1 \end{gathered}$	Form Work Phymeal Serence. Speczal Clasues.

Nors.-Form work includes Latm, Eaghnh, and Devinty.
Specisl Classes from 11 to 12 and 12 to 1. The choice is offered betwren Drawing, Greek, Freach, German, Phymeal Beience, and Mathernstics.

Detalled Timm Tablig,-Sixth Fobm, Ibt Term 1873.

The Engluh Essay is set on Satarday, and is dehvered up on
the following Saturday Componitions are looked over with each boy beparataly during Preparation Time.
In the Speoial Classes a "Classical" boy will generally take up either Classics enturely, or Classice snd German, but he has the option, under the wasual restrictons, of any of the other Specral Subjeots.

In the Special Classes a "Mathematical" boy will generally tase up Science amel Mathematics; tons, of any of the other Special Subjects.

[^16]Genzraif Thme Tables.-Sentor Section, Iet Teqm, 1873,

-	Table 3 -Semior Segmon.			
	Day.	Tume.	\square	
	MORDAY = $\quad-\quad-$	$\begin{gathered} 9-1280 \\ 2-315 \\ 8.15-4.80 \end{gathered}$	Form Work French Form Work.	
	Tumadar - -	$\left.\begin{array}{l} 9-11 \\ 11-12.80 \\ 2-815 \\ 315-80 \end{array}\right\}$	Mathematien Form Work. Greek $\left\{\begin{array}{l}\text { Germnn } \\ \text { Fhysacal } \\ \text { Science }\end{array}\right.$	-
	Wudneaday = -	$\begin{aligned} & 9-11 \\ & 11 \sim 1 \end{aligned}$	Form Work. (Special Claneer.)	
	Trumbday -	$\begin{gathered} 9-10 \\ 10-11 \\ 11-12.80 \\ 2-8.15 \\ 2.15-430 \end{gathered}$	Form Work. Greek $\left\{\begin{array}{l}\text { German or } \\ \text { Scuence. }\end{array}\right.$ Mathematica. Frenah. Form Work.	,
	Frimax - - -	$\left.\begin{array}{c} 9-11 \\ 11-1280 \\ 2-815 \\ 815-4,90 \end{array}\right\}$	Mathematics. Form Work. Greek $\left\{\begin{array}{l}\text { German, } \\ \text { Physical Scrence. }\end{array}\right.$	
	Saturdax - -	$\begin{aligned} & 9-11 \\ & 11-1 \end{aligned}$	Form Work. (Special Classes)	,

Form work includes Latin, Englash, and Divimty (also witing in the Lower Forms)
Special Classes from 11 to 12 and from 12 to 1 The choice is offered between Drawng, Greok, Eranch, Germarr, Phymical Science, and Mathematics.

* Scrence Students.—On' Wednesday afternoons Laboratory Work as for the Sixth Form.

If a Science Student wishes to take up an addutional subject he can to so during the tume assigued to "Special Clabses" on Wednesdays and Saturdays

Question 4 Summary of hours per week given in each class to diferent subjecte (If playtime is uthlued for preparation or practical work, this should be shown separately)

Tasces indicating the distribution of thme among the several Subjects of Study, with an estimate of the tme apent in Evening Prepaiation

Sixth Fonk.

Clasaceal.	School Work Hours	Evenugg Work Hours.	Hours.	Mathemastieal.	Sohool Work Horrs.	Evening Work Hours.	Houss.
Englush - $=$ Latim $=$ - Mrench Mathematict - $=$ Greek and Higher Classics	48	618	114	Snglish -	3878211484	5 4 14 5 24	$\begin{array}{r} 8 \frac{8}{11} \\ 118 \\ 8 \frac{1}{4} \\ 164 \\ 6 \end{array}$
	74,	7	14				
	2	11	$8 \frac{1}{2}$				
	${ }_{11}^{24}$	18 8 18					
	11	33	14 ${ }^{4}$				
	32	201*	524		82	18	50

* Evening Work includes a Drvinity Lesson (presumed to be learnt on Sunday) and Comporinont.

Scuence Students.-Dúrng School hooks (as above) -

Do. Addithonal Branch of Serenee
Tume available for Scuence Study
-4 hours.
-2
$-\frac{4}{6}$
$\frac{4}{10}$ houres

Senion Skction：－Distribation of tume in one of the Forme of the Semior Section

Classical		Behool Work．	Evening Work	－	Mathematical．		School Work	Evening Work．	－－
Bngish Iatin Eremch Mathematncs Greek Do（Special） Ona Specisal Class	－	37	8	$11 \frac{1}{2}$	Enghah－－TanaFrench－MathematicsGermanPhacal Scence－－	- - - -	$\begin{gathered} 3 \\ 31 \\ 2 \frac{1}{1} \\ 9 \frac{1}{2} \\ 2 \frac{1}{2} \end{gathered}$	$\begin{aligned} & 7 \\ & 44 \\ & 2 \\ & 24 \\ & 24 \end{aligned}$	10$15 \frac{1}{4}$$4 \frac{1}{2}$12$4 \frac{1}{2}$$3 \frac{3}{3}$
		11	44	15					
		21	2	4					
		54	12	7					
		－	\cdots	\square					
		78	2	9줄					
		2	－	2					
		82	179	49 星			32	173	49 是
	Scrence Students－During Schools hours（as above）After School hours－－								
		Do．	Addutrone	ranch	cremee－		$\begin{aligned} & 5 \frac{1}{2} \\ & 2 \end{aligned}$		
				Trme	ulable for Scrence Stud		71		

Question 6 Summary of the number and average age of boys learming each of the various subjects in the Natural Science classes？

Chemistry，lst olsas	21 boys．	Average age
Chemistry 2nd cleass	18 ＂	13
Practical ohemistry，1st class	9%	151
2nd class	12	$13 \frac{1}{1}$
Electricity and magnetism	32	14
Geology	35	14 菫
Physical geography	16	14

I have atated the aotual average age，but the return in this respect is ullusory，since the recent increase of the achool（from 130 to 500 boys），and the excess in conse－ quence of yourg boys lately admutted，reduces the average of age below ita normal amount．
Questron 6．Amount of knowledge required before the study of sclence 18 commenced ？－Instruction m science 18 open to all boys the semor section are pregurned to herm fair elementary knowledge of Englah，French，Latm，and annthmetic
Question 7 Is any alternative or choice of subjects offered ？－The scienoe subjects sre grouped as follows－ If．Chemistry，with laboratory work

Physics（at present elec－${ }^{\text {silternative subjects taught }}$ tricity and magnetism）$\} \begin{aligned} & \text { at the same tame by duf－} \\ & \text { ferant mastars．}\end{aligned}$ Geology＂ryang
Boys have the opportunity of recerving mstruction in one or more of these groups．
hat departments of acience are preferred？
a．By parents？I have no sufficient data at present
a．By parents ？${ }_{i}$ By have no sufficient data at prese
Question 8．What branoh of eorence recesves most atten－ tion in the sahool，or is found by experience to have the greatest educational value？－A continuous course of in－ struction is given in ohemistry
Instruction is given from time to time in other branches of science－hheat，electrucity，raggnethsm，geology．

I am decidedly of opinion that chemustry possesses the greateat educational volue．
Question 9 What weight is assigned to scientific attain－ ments in determining a boy＇s position in the school？－The olassufication for scrance is enturely undependent Prizes are awarded in each cuass at the annual examination．In the award of axhibitions 200 marks are assigned to science as aganst 220 to English， 220 to Latin， 150 to each modern anguage， 150 to elementary mathematios，and 300 to the highar mathematios．

Methods of Teachung

Questros 10．What proportions of the lessons take the vely of
（a．）Oral teaching and demonatration？－Each of the classed recarives two lectures per week of an hour
b）or an hour and a quarter each．
（b．）Book work？－Blook work is got up during the ＂preparation time，＂which，for the more advanced pupils，smounts to about two hours for chemistry
c．）Pract ons hour and a half for physica
（c．）Practical work P－One hour a week，for edvanced pupis two hours．
At course of evaming fectures（generally four or five
term．Attendance at these lectures is＂voluntary．They are open to all boys，whether pupils in any of the scrence classes or not
Questron 11．Which form of lesson is found to be most effective？－No one of them can be dispensed with，without imparing the efficiency of the entire Bystem of mstruction．

Question 12 How are text－books used？e．g，Is book work supplementary or preparatory to the oral lesson？－ Generally as supplementary to the oral mstruction．
Question 13 Is the use of note books encouraged（a） during or（b）after the lesson，and to what extent ？－All boys are required to take notes at the lecture，and to get up the substance of their notes during preparation time in the intervals between the science leasons．
The note books are examuned from time to time by the science master．
Question 14．How far are boys required to prepare therr own apparatus or experments，or to collect specimens dung tho chemustry claid At the lect
At the lectures the boys are told off in turn，one from arch class，to assist the science master in preparing the apparatus and making the experments．
Questron 15 Descuribe any method of teaching some special branch of science which has been found successful in your school？

Instruments of Teachnng．

Questron 16 What special provision（e，g，laboratory， lectuxe room，observatory，museum，hotanic garden，\＆ce ）is made for scientific instruction，and how is it used？
（Plans apd descriptions of these，whth statements of then cost and annual expense，should，if possible，scoompany this retura）
（1）A very complete laboratory，with all the most approved appliances，and capable of accomanodating 36 students To this is attached a smaller laboratory for a ow more savanced pupis．
（2）A lecture theatre，fitted＂inth movesble desks for taking notes，and with pneumatic trough，Bunsen burners， and applan for expern ental purposea at 1 lachurer＇s he desks and 300 hen the desk ave abour at
（2）The fopmation of musum of
（2．）The formation of a museum of geology and natural
atory tras been lately commenced
The laboratory is used foz prectacal work，under supes－ The theatre for lectures on chemustry or physics four hours a week，and for the courses of evening lectures．
No plans are available．
The cost of construction being included in the general contract for the erectan of the new buldinge，is not on record，and could not，I fear，be estmasted without much difficulty
Question 17．Number of assustants and curatorss，and annual cost？

A teacher of chemistry，1201．a year
A tesahar of physics（who is also a form master），part of salary apportioned to science， 801 a year．
The services of the working angmeer and of one or mors of the collere servants are employed in thas dopartment as required
Separate payment is made for the evening lectures．

Question 18 What apparative, diagrams, and speanal fittings are in use? what. pas therr enst? and what parm is allowed yearly for new instrumenta, and to replece matamals used, \&o ?-Apparatus, diagrams, \&c ore being pradnall used, se $7-$-Apparatus, diagrams, $\& c$ are beng gradualiy
provided. 751 was expended in 1871 on the purchase of apparatus, and about 301 last year.
There is no fixed sum appropriated for this purpose.
Question 19. Is there a workshop? and if so, how, and
for what paricular purpose, is it used i-Not at present.
Question 20. What text-books are un use? distinguishing between those for the junor and semor classes?

chemiatry "

1st class-Muller's Inorganc Chemistey.
Gull's Chemstry for Schools.
Harcourt and Madan's Practical Chemustry Fresemus's Quaitative Analyess.
2nd class-Roscoe's Chemustry ("Science Primer ").
Physica -
Bolfour Stewart's Elomentary Physics. Deschanel's Natural Philosophy.
Geology :-
1 st class--Jukes's Student's Manual of Geology
2nd class--Page's Introductory Text Book.
Jukes's School Matual of Geolog;
Question 21. To what books of reference, other then ordinary school books, have the scholars accesa?-A fep acientific books in the College hbrary (to which the hoys have access by special leave) and in the boys' school ubrary
Question 22. Is there any scientific society or chab in connexion whit the school 3 and if Bo, who compose ht, how is it worked, and what is its mfluence on the boye?-No.

Testa of Progress.

Questron 23. How often is the work tested ?-At the end of each term, and also by partial examanations two or three nmes durngg the course of the term
cuestzon 24. In what way ? eg., by examination of note books or by oral or written questions?-At the terminal and peneral examunations by primted papers, at the miter-

Ousstion 25 . By
Questron 25. By whom? by the teachers of the subjects, by one of the masters in the College not being the teacher by one of the masters in the College not being the teacher of the ciass examined ; and at the general examination of intermedrate examanations by the teacher of the class.

Teachers.

Question 26 Is there any difficulty in procunng competent acience masters?-There is at present some difticulty, but (I think) a decreasing one, in obtaming as acience versity education. versity education.
Questios 27. Where are the best obtamed? Have they been specially traned for the work; and if so, in what does such traming consist?-I have been able to obtan two well-quahified masters who have been educated at Graman unversities, and one who has taken first-class honours in the science tripos at Cambridge.

Questron 28. What evidence of scientrfic qualrication tendered by candidates is found to be of most valae ?

Questron 29. Can you state any results of smence teaching (a) school? such ay-
(a.) Success, profencional or otherwise, of mdividual
(6) Influence upon the general studies and intellectus life of the school?
The science classes are of too recent formation to thetaf me in speaking defintely of the reaults.

With respect to the infirence of the general etudies and intalleatual life of the school, expressed my news in a statement which I had the honou to aubmit to the Commissoners in February 1871 (p. My subsequent experience has not led mo in any Wray to modify the favourable opinion which I then ontar-
tamed. tained.
Queation 30 Are any opecial rewards or eneouragementa (eg, exhibitions, scholarships, or prises) open to suceessful students of sexence in the school 7 - Prizes are given for each branch of science and in every clase. The marlec obtained in the serence examinationa are combined in a fixed proportion whth those for other subjects of study, to form the aggregate upon which the award of exhibitions it made.
Questron 31 What improvements, do you think, could be effected in the teaching of scrence in your own school ? The system is now in process of depelopment, sind is receiving further extension and improvement every term.

Questrons 32 Whas ars the principal obstaolea to the teaching of science in your own school?

Questron 33. How could the unvermines best nasiat scrence-teaching in schools?-Most effectually, I beheve, by offenng rewards to science studente within the univer If the proposed
If the proposed scheme of exammation of echools by the universities is adopted, the science-tesching must of course be subjected to, the same tests as the other anbjecta of tudy
Quesion 34 Can you suggest any way in which Govern. ment could assist science-teaching in sehools, as, for example, by inspection;
Question 35 Have you any other information to give, or ouggestion to make, hikelg to be helpful to the Commissioners 3

April 7th, $1873 \quad \begin{gathered}\text { Alprep } \\ \text { Master of Dumbiwn College. }\end{gathered}$

21. Frisnds' Boxs' Schcory Yoar.

General Arrangements

Question 1. How is the school classufied? Mnto four classes for the general English instruction The language classes are to some extent distinct; for drawning, aiso, and gether, or the arrangemente are modsfied.

Question 2 Is Scrence a necessary part of the echool course, or is it only taught in specral forms or departument -To some extent it is tanght to all the boys.

Questron 3. Copy of Tine Table?-

Sewion Class.

Tmp.	Monday		Turgmay	Whingaday	Thureday.	Friday	Saturdar.
7-8 A. . .	French	-	Scence	$\underset{\substack{\text { Mental } \\ \text { metre. }}}{\text { Anth- }}$	Latin -	French - -	Anthrotie.
9-107	German	-	Greek -	Writig	Labn	German -	Tatim.
	French	-	Dretation and Writing:	Meetang for Dipue Worship	Engush	Physics or Anth metic.	Greek.
12-1 Fax $^{\text {a }}$	Mensuration	-	Drawing -	Greek or Drill -	Scrence	$\begin{aligned} & \text { Drill, Mental } \\ & \text { Calculation } \end{aligned}$	Drawing.
	Encha -	-	History	-	History	Enclia - -	-
	Algebra		Do -	-	Do - ${ }^{-}$	Algebra -	-
	Reading	-	Compound Addition.		Compornd Addithon	Readung	-
	Lecture	-	Prepare Greek (or Recmitan). -	Prepare Latio -	Prepare German, and ditto $\frac{1}{2}$ hour'a Anthmetac or Physuss.	Prepane Latup and Greek	Prepare Prench sud German.

Srcond Difision

Time	Mompar	- Tuesdat.	Wedrraday	Trutraday.	Friday	Saturday.
7-8	German or Writ mg	Latin -	$\begin{aligned} & \text { Mental Arth- } \\ & \text { mens. } \end{aligned}$	Latn -	German or Writmg	Prepare Latin.
9-101	French -	Greek -	Wring ${ }^{-}$	Latn - -	Fremch -	Latin
203-11	Dictation	Drawing	Meeting for D1vine Worship.	Writing and	Dictation	Scinace
11-118	Scrence	Drawing	- -	History -	Arthmetic	$\underset{\text { Wrining }}{\text { Spelling }}$ and
12-1 $\mathbf{p}^{\text {m }}$	Geography* -	$\underset{\substack{\text { English } \\ \text { mar }}}{ }$ Gram-	Arthmetic and	Geography -	Drill and Mental Calculation.	Eistory ${ }^{\text {a }}$
8-44	Mensuration -	Arithmetie	- - -	Drawng Reading	Algebra - -	-
Evewing Work		Reading ${ }_{\text {Prepare }}$ Greek -		Enchd - Prepare French	Etymology Lecture	
Evewing Work	Prepare Greek and Latin, sce.	Prepare Greek -	Prepare Latin -	Prepare French and German, 8 sc	Lecture	Prepare French, German, sec

Question 4 Summary of höurs por week given in each class to different subjects. (If playtime is utilized for preparation or practical work, this should be shown sepa rately

In the Senior Class-
Latan - 313 hours +11 hour (say) preparation.

Germann - 2if Mensuration, 4, or for boys not taking
Arthmetic and Mensuration,
the Theoretical Physics, 64
Euchd, $1 \frac{1}{1}$
Algebra, $1 \frac{12}{\text { S }}$, or, includung the Physics, 2 a
Writing, Spelling, \&c., $2 t$
History, 9
Science Lecture, 14 , Classwork, 2 ; total 3 3
Junior Class -Few of these boys learn German, and none
Greek, the tume being mostly gives to Arthmethe and
riting, approximately
Latin 3 位 hours $+\frac{1}{2}$ preparation.

Scripture, 1 hour (beandes Sunday)
Anthmetic, 6 hours
Wring and Speling, $4 \frac{1}{4}$ hours.
Reading, 2 hours
Geograpiny, id $+\frac{3}{4}$ hour preparation.
History, ditto.
Sclence, lithour, lecture; 14 hour, class.
The Second Division can be deduced from Table above
The Third Division 19 nearly as the Jumor Clase
Question 5 Summary of the number and average age of boys in the dufforent Natural Science Classes learming exch of the vamous subjects?

The subjects vary from year to year, the Senior Class are now takng Physiology and Optios, the Lower Class, Acoustios and Physiology, Chemistry forms a regular part of nearly evary year's course
Question 6. Amount of knowledge required before the study of Science is commenoed?-No fixed lue land down
Question 7. In any alternative or choice of subjects offered ?-Not in the regular lectures and lossonas A good doal of lesuure tame $x 8$ often devoted by some of the boys, voluntarily, to dufferent departments of Natural History
(eg Botany, Entamology, \&o.), or to Astronomy or Che(e.g Botany, Entomology, \&io.), or to Astronomy or Chemistry
hati departments of Scienco are preferred $?$
a) By parents ?-Beyond incidental remarks, we have

Bo meana of judging as to thas point.
the boys - Chemstry and Physiolory; also, by a few of the alder boys, Astranomy.
Questivn 8. What branch of Sclence recuives most attento in in the school, or us found by erperiences to have the greatest educational value?-In different sessions our probably, on a Probably, on a general view, we might ary that Chemastry, attention, ss direct sehool subjects to Botany and Entomology for the pursurts of lersure tume.
Questhon 9. What weght is assigned to scientufic attaun-
ments in determuang a boy't posstion in the school ?-The 94734.

Sclence classes rank on equal terms with those on any othar subjects A boy at the top of his class 12 the Scence lessons for any month, takes as much advantage as of he were at the top of his Latin or French cless, or his class in Arrthmetic or Geography.

Methods of Teashung.

Questron 10, What proportions of the lessons take the form respectively of -
(a.) Oral teachng and demonstration?
(b) Book work?
(c) Practical work? about 20 boys, one ditto to the rest of the school (about 45 boys). The notes taken in these lectures are studied afterwards, and enther the special Science teacher, or one of the regular class teschers, questions upon these in class. The. boys have some elementary manual to refer to in preparing for these questionngs The practseal work is pretty much. confined to two or three elder boys, who assist in preparing for the lectures, except in regard to Astronomy, where the Observatory affords opportunity to a good many boys belonging to the Semor Class, to learn the use of instrumenta.

Question 11. What form of lesson is found to be most. effective? We think the combination described in answer 10 the best adapted to our curcumstances
Question 12 How are text-books used? eg., 18 book work aupplementary or preparatory to the oral Iesson? Supplementary to the lectures, preparatory to the queshoning
Question 13 Is the ubs of note books encouraged (a) luring or (b) after the lesson, and to what extent P
(a.) During the lecture the boys take as copions notes as may be, and these they, are expected to study
ther
Only the Senior Class take notes in nak, the reat in pencl, cop

Question 14 How far are boys required to prepare their own apparatus or expermente, or to coliect epecimens durng the intervals between lessons?-See answer 10 .
The collection of Botamical, Conchological, Entomological, Geological, and other specimens, has long been encouraged as a puraust for lersure tome, and very successully practised
See reports o
ee reports of $\mathrm{N}^{\text {"H }}$ Sonety accompanying
Question 15 Describe any mothod of teachung some special branch of Science which has been found successful in your sahool?

Instruments of Teachang

Question 16 What special provision (e.g laborstory, leoture roorn, observatory, museum, botanic garden, \&c. as made for Scientafic Instruction, and how is it used
(Plans and descriptions of these, with statemuents of their cost and annual expense, should, if possible, accompany thas return)
We have a lecture room, seating about 43 comfortably, with wrining desk in front of the forms, much luke the deske at Unversity College, London. The room 18 rarely used for scientafic lectares with more than shout 40 st a tume, but the whole school can be accommodated A amsill laboratory adjoming is used by the Science teacher and any boys engaged in asousting hum. The olservatory, contain-
ing an equatonaliy-mounted refracting telescope of $4 \boldsymbol{i}$-inch aperture, by Cooke of York, a mall transit instrument aud sudereal clock, cost altogenior about 200 A roon bion to the achool Netura Hiotory Cocety embrang a large and valuable gemes of Geological and Mineralogical a large and a collo of thelle, insectege \&e We have elyo a number of mechanical models, working models of steam engines, and the like, some the property of the school, some belonging to one of the teachers, who has occasionally lectured on the ateam engine and kindred subjects

Question 17 Number of sassistants and curatore, and annusi cost?

Question 18. What apparstus, duagrams, and specsal fittings are in use, what was their cost; and what sum is allowed yearly for new instruments, and to replace materials used, \&c.?-See answer 16, suppra -The Science teacher has been accustomed to provide what he deamed needful, withm moderate hraits, for his lectures, and charge the emount to the school funds, any special outlay beng first proposed to the superintendent for has sanction. The cost last year of the lectures, as to matemals, wear and tear breakage, \&c, may be roughly estimated at $6 i \mathrm{ks}$ to which should be sdded about $4 l$ for repars of observatory instruments, and some connected with the workshop (refithing of part of a lathe)

The apparatus, diagrams, B̌C, have accumulated through a. long series of years, and it would be difficult to give an estmate as to cost

Question 19 Is there a workshop, and, if go, how and for what partucular purpose is it used 3-There is a workshop, much used by some of the boys in their leisure time It is provided with two lathes, a fret saw machume, carpenter's bench, and suitable tools. A small oubscription from the boys meets current expenses, with occasional grants from boys sonoets funds for any special outlay required. Usually at the end of a session, when an exbibition of the results of out-of-sthool work is held, a large number of specimens of turning, fret-cutting, and the like, are produced; not, perhaps, anythung very elaborate, as a general rule, but often evinemg a good deal of panstaking effort

Question 20 What text-books are iu use, dustaggarshing between those for the junior and senior classes?-Most of the jumor boys are supplied with Nos. 2 and 3 of the recently assued Sclence primers The upper boys use such books as Roscoe's or Willamson's Chemustry, Balfour Stewart on Hest, Herschel's Astronomy, Newth's and Wormell's books on Theoreticsi Physica (Mechanics, Hydrostatics, Optics, \&o.), Bari's Cheraistry

Question 21 To what books of reference, other than ordinary achool books, have the scholars zocess?-Some of those mentaned m answer 20 are perhaps rather used at books of reference than ss "school books" In addition to them the achool hbrary contains, among others,-

Aury's Lectures, \&c
See catalogue of books, pp. 13-19
Question 22. Is thers any Smentific Society or Club in connezion with the schoolz and if so, who compose it, how is it worked, and what is its influence on the boys? The Natural Hustory and Polytechne Socnety conststs practucally; and has done for many years, of all the scholars and teachers, the subsiription being purposely kept almost nominal, sbout $2 s$ per annum as a minimum There were tumes, 20 years ago, or more, when only a small part of the boys jouned it, it is now a matter of course for every one to do so A Committee of elder acholars and teachers, annually elected, manage the sflaurs, and take care of the collection belongug to the Society A yearly exhibition 18 held of collections of plants, sheils, insects, \&e, made by members durng the year, sinall prues being given from the Noctety: dunds for them, Observatory wegasters, and in the Polptechnic Department, the exhibitons for which are half-yearly, for drawnags, turnery, fretwork, \&co., \&e Photography, electrotypung, tariderint, the preparation of skeletons, and various other pursurts, have occasionally been added to those mentaoned sbove.
(See Reports sent herewnth)

Teats of Progress

Questrom 23 How often is the work tested "-The ordmayy school work is registered, and places in class xevised by these registers about every six weeks A writterr examanar tron, embracing, of course, the scientific as well as the other the Mudsummer vacation

A few of the older boye have for the last year or two sat st the South Keneington local aremunations in mathematios (elementary), chemstry, and physics; their dong no wa not compuisory, but those who had taken an interest in year three took the mathematios all of whom tut year, three took the mathematica, all of whom passed; 12 the chementry, of whom three, I beleve, feiled

Qusstion 24. In what way ${ }^{\prime}$ e.g by examination of note books merely, or by oral or written questions ? - The class work, of which registers are taken (see 23) 10 conduoted both by oral and written questions.

Question 25. By whom? by the teachers of the aubjecta, or by an independent examiner ?-The cless twork as above is conducted mainly by the Scrence teacher, but in the lower classes the ordinary class teacher takes come part of tha duty.
Superntearly examination questions are proposed by the submintendent, on the basis of questions prepared and cubatied to hum by the Sonence Teacher (and to soma mined, in the upper clasera by the Smencs teacher, in the lower by the ordmary teschar of the clase.

Teachers

Question 26 Is there ony difficulty in procunng com patent Saence Masters ? Not for our purpose; if wo wanted more distinotly technucal instruction, the case might be different.
Question 27 Where are the best obtamed? Have they been specially tranned for the work, and if $\mathbf{s o}$, in what doen such training consiat? -Our late Science Teacher, T, H. Waller, was a B A. and B Sc of the Umversity of London; but I thank it is not too much to say that he was pretty much self-taught, beyond the fact that while a scholar with us he acqured a very farr groundwork of melentufic knowledge
Hmis successoz, our present Teacher of Scienca, Was aminarly trained, and though not equal 1 nt brillianoy of
scientific abulity to his predecessor, he is for onr purpose very effichent.
Question 28 What evidence of scientitic qualification tendered by candidates is considered of most value?Having only had to deal with young men trauned ap in the school as scholsrs and pupl teachers, we have judged of therr qualificatson rather from our own observation than from any testimomals or daplomas The London \mathbf{B} Sc degree we should think amply, sufficient as a test of attainment for our purpose; but a real love for scientific pursute, end thorough ability as a teacher, would be even more important
Question 29 Can you atate any results of Ecrence-teaching in the school 7 such as-
(a) Success, profestional or otherwise, of individual schotars
(b.) Influence upon the general tudies and intellectual life of the school.
Many of our scholsra have afterwards anccesefully proecuted the study of vanous branchem of Serence, and axe at this tome carrying on Scientific and Nstaral History puxsuta, mostly in addition to thear ordramery svocationis
Several have gone from us to Owens College, and been complamented by the Professory on therr knowledge of Scence
Questron 30 Are any special rewards or encouragements (e g exhibitions, scholarshipe, or prizen) apen to auccesto those referred to in answor 22 , and those offered in conneson with the South Kensington Examinations.

Questron 31 What mprovements, do yon think, conld be effected in the teachang of Sicuence m your own tchool 1 The limited time at our disposal for Sclence seems to me pretty effectively employed Had we anuch larger number of scholars, it might be an advancage with different more nases, so siy, to provide more continnucus gradation of work, e g, take chermstry one year, electrictir, heata, and eptics another, mechanica another, and move the boys on from class to class eo so to secure a wider range; but with our numbers, and the lumated time that many boys etay with us, thus would not be practicable.
Cuestron 32 What are the principal obstacles to the teaching of Scrence kn your own echool ?-Want of time: the pressure of other studies, deemed equally maportant.

Question 33 How could the Univerantas beat agast Scrence-teaching in schools 3-Personslly, Inorid be glad of an examonation cimular to that of the London Matricr:
lation in dufflculty, bat divided into two sections, so that a boy of good ability in Science and Mathematies might Euchd I-IV
Algebra to quadratics
Physics and Chemusury as at present, or the Chemastry a Fittie more advanced
French or German.
And another might take up-
Lsan
Greek
$\left.\begin{array}{c}\text { English language } \\ \text { Hastory }\end{array}\right\}$ as at present.
Hystory
French or German
Many boys leaving achool at 16, with no prospect of gotng to College, like to take the London Matriculation Examination as a test of good school work, but it is so broad in its range as to be beyond the reach of a good many who, would find mu exammantion such as I suggest e sereinst unshing this instead of the present Matriculation Exemunation, wheh I hepe may not be in any way curtailed for the actual purpose as a preliminary to studying for a degree: but for many who use it now as the best available degre of good sohoolwork, without any udea of a College course afterwards, it would be more useful diveded, s clever boy could atull pass in both sections, just as at present.

Question 34. Can you suggest any way in which Government could assust Scrence-teaching in Schools, "as, for example, by inspection?

Question 35. Have you any other information to give, on suggeation to make, likely to be helpful to the Com misstoners?

Nov 5, 1873.

+ Firlden Thorp, Superintenden
Joun F. Frybr, Head Master

TAUNTON COLLEGE SCHOOL.

(Supplementary Report)

The Callege School, Taunton,
October $18,1873$.
Sir,
In answering your letter of the 14 th mst, I mus explain that our science tasching has been so greatly de veloped during the past year that my former report 1 obsolete, and bas to be almost entrely rewritien. In case the Commissioners may wish to retain my former etate ments, as illustrative of what can be done towards teaching sclence in a young school and with imperfect spplances, I leave the old report untouched, and send a fresh statement arranged in accordance whth the plan of their Appendir 1 should mention that we have recently bult a laboratory, added conaiderably to our apparatus, and angaged as Special Science master of very high reputation

61 On the General Arrangbmen t of Schools
The school consusta of seven Forms. The sixth and fifth Forms are divided, one asde being classical, the other ecrentific. The scientific arde works in the laboratory, the olassioal ards merely attends some of the screntific lectures The "Remove" has no practical scaences work, but attends all the lectures, the fourth Form does practreal work in the laboratory, and also attends lectures, the thurd Form recerves slementary instruction in Physics.

\cdots	Chemistry	Botany.	Pbywican	Physical Geography
Number	64	*	18	70
Avarago aga -	14-18	16-18	14-18	14-18

§3. Hours pirr Weer aiven to Scrence in the
sbveral Colleges and Schools
There are two lectures per week in General and Theo retical Chemistry, attended by the four higher Forms. There is one lecture a week on Phyeical Geography, at tended by the same Forma. The "Scrence sude"; of

Forms VI. and V. works four hours per week' in the la boratory The fourth Form works two hours per week in th laboratory. Each of these classes attends a separsate lecture once a week in mavd voce work, and problems in Chemustry and Heat The VI and V. Forms aftend two lectures a week in Botany

64 Subjects tauget to Senior and Joniob Studente
At the present moment the mann subjects are Chemistry and Botany Practical Chemastry ocoupies a promument position, bsing the basis of the laboratory work. In Botany salso high value is assigned to practacal work, the boys bemg targht to dissect aud classify plants There is an elementary class in Phyaics, conducted by experwental teaching; and a more advanced class un Physical Geography an and
list of subjects taught has lately been under revision, and the present arrangements are only tentatrve, and prelirainary to a more complete scheme Thus Physies will ultumately rank as co-ordinate in value with the other leading subjects, Phystology, in which two courses have been conducted, may probably be revived; the Surveying elass, which has in past years done much practical work whth the theodolite, will be contnnued; and Meteorology, of whoh the semior boys have a good working knowledge, derked from daily regstration, will be taught to them scientafically It should be xemarked that we possess a complete collectron of meteorological instruments, a farrly typical museum of biological preparations, zoological, geological, munera logical, and botanical specrmens, and a botamic garden conteining from 700 to 800 selected species

55 Text Books

In Practical Chemistry no text book is nsed A scheme of laboratory practuce is dictated, and carefully writiten down by each boy. In Physical Geography, the master lectures by each boy. In Physical Geography, the master lectures drom his own notes, which the boys are expected to repro recommend Roscoe, in Botany, Oliver, and Lindley's Descruptape Botany; im Physics, at present confined to the younger boys, Balfour Stewart's Prumer.
§ 7 Methods of Traching, as regards Orar De monstration, Book Work, and Practical Work
In the laboratory each boy learns the reactions of the metaluc and non-metallic bodes. Mixtures are then given of progressive difficulty, the composition of which the pupil detects by his own judgment Much supervision is em ployed, in order to cultivate habits of neatness, and akil in manupulation The course of lectures on Theoretical Chemistry is illustrated by expermments, and there are addational classea in which problems previously guren to be worked out of school are verified on the black board, In the same lectures previously assugned portions of the text book are discussed, and questions put on past lectures High value is attached to the working out of problems, Which appear to be a good test of scientafie sbinty Upon theoks, so that they miny acquire mental of reading scientific books, so that they may acquare mental mdependence, and not remain a mere shadow of therr teachar Specrsl opporany difficulties they mey encounter The Bor duscussing mclude dissection and sehedule mitong mith proce melude dassection and schedule writung, whth practice in
elasafication and descriptson

68 Thets of Progress
Oral questroning in class, and exammation of note books after each lecture. Written examinations twice in each term,

§ 9. Most bpfactiva form of Lifsion

Our Science Master is of opinion that the advantages derived from practical and theoretncal work are dufferent in kind and cannot easily be compared. But, while assignme equal effectiveness to lectures illustrated by experment to practucal work, and to discussion of book work, he lays much stress on the necessity of working out problems, as enabling a boy not only to give a verbal enunciation of a law is Chemstry or Physics, but to understand and exhibit its applications

W Tucewelw,
Head Master of Taunton College School.
honours gained at the untersities by science students from the various colleges and schools

Naytral Science. Honotiss obtatned by former Pupils of Univibsity Collece School. N,B - The hat melndes,-

1) Honours in Mathemathes in cases where the exammations in Natural Phlosophy are
(2) Fellowshaps, Scholarshaps and Prtzes given without spe cification of subject when the presumable ground of award was distinction on Mathematics and Natural Philosophy
March 1874

1838.

Univeratry of London - Matriculation Honours: Two mentions in Mathemathes and Natural Phlosophy

1839

University of London,-Matriculation Honours Mention in Mathematics and Natural Philosophy
1841.

University of Cambridge-B A. Honowrs - Mathematrics and Natural Phulosophy : Senior optme (whth frrst class in Claseics)
University of London --list M B Honours. Gold medal and mention in Anatomy and Physiology, mention in Materia Medica and Pharmaceutical Chenistry
Matriculation Honours Exhibition in Mathernatics and Natural Pholosophy.
1842.

Univerasty of Cambridge,-membroke College Scholarship, prize

1843

University of Cambridge,-B A Honours: Mathematics and Natural Philosophy Semor optime
University of Landon - First M B, Honours - Exhibition and gold medal in Chemistry, mention in Anatomy and
Physiology, exhibition and gold medal in Materia Medica
and Pharmaceutical Chemistry.
Matriculation Honours. Mention in Mathematics and Natural Pbilosophy.

1844

Univeraity of London -B A Honours. Prize in Che mistry
Matriculation Honours. Mention in Mathematica and Natural Phulosophy

1845.

Unversity of London-BA Honours: Scholarship in Mathematics end Natural Philosophy
Matrioulation Honours Exbibition and mention in
Mathematies and Natural Phulosophy and mention in

1846

Unversity of London-FIrst M B Honours. Gold madal in Materna Medica and Pharmaceutical Chematry.
1847.

University of Cambidge - St John's College. Pmze. Unversity of London -B A Honours Scholarship in Mathematics and Natural Philosophy
Matriculation Honoars - Exhibition and mention in
Mathematics and Natural Pbulosophy,

1848

University of Cambindge.-St. John's College Prze Trinity College. Two prizes
University of London -B.A. Honours. Scholarship in
Mathematics and Natural Philosophy
Matriculation Honours: Mention in Mathemstice and Natural Philosophy.

1849

Unuersity of Cambndge -St. John's College. Scholar shap, prize.

TrnityCollege Scholarship, prise.
Unversity of London.-BA, Honours: Scholarshn in Muthematacs and Natural Phulosophy, threo mentione in

University of Cambndge-B A Honours Mathematics and Naturad Phulosophy Fourth wrang.ership; semor optime

Trinity College. Prize
Emmanuel College Scholarship, prize
Unversity of London-B A Honours Scholarshipin.
Mathematics and Natural Philosophy.
Matriculation Honours. Mention in Mathematics and Natural Philosophy.

1851

Univeraity of Cambridge -B A Honours Mathematics and Natural Philosophy Third wranglership and second Smilh's prize
St Peter's Collage Scholarahap, prize in Mathematics. Trunty College Prize for Mathematics
Emmanuel College Scholarship: prize
University of London-B A Honours Mention in
Animal Physiology, mention in Botany
Matriculation Honours , Mention in Chemistry

1852

Unversity of Cambridge -B A. Honours Nataral
Sciences First class.
St Peter's College Prize in Mathematics.
St. John's College, Fellowshup
Trinty Collegge Two prizes
Emmsnuel College. Prize
University of London.-MA Exammation - Gold medal 17. Mathematres and Natural Phulosophy

B A Honours. Mention in Animal Physology
Furst M B Honours : Gold medal in Chemistry, mention in Anatomy and Physiology, mention in Botany
atncal Porours Two mentions in Mathematacs and Natural Philosophy ; two suentions in Chemistry s prize,
in Botany un Botany

1853.

Univeraity of Oxford,-Moderatrons First class in Mathematics (together with first class in Classics) University of Cambridge - B A, Honours - Mathematios and Natural Phulosophy. Second wranglership; second Smith's prize
St. Peter's College Prize in Mathematics.
Canus College Scholarship
Trimity College.' Fellowship; scholarship; prize.
Emmanuel College. Fellowship
Unversity of London - M A Examination Gold medal in Mathematics and Natural Philosophy

BA. Honours Mention in Chemistry
Matriculation Honours. Mention in Mathematics and Natural Phulosophy

1854

Unversity of Cambridge,-B A. Honours * Mathematics and Natural Philosophy. Senor wranglershup, equal first Smith's prize

Caus College. Prize in Mathematices
Trunty Hall Two scholarshups oprize
Trinty College. Prize.
Physiology and Compara--M B. Honours . Gold medsi in Physiology and Comparative Anatomy
BA. Honours * Mention un Mathematics and Natural
Philosophy, mention an Anmail Physiology
anstriculation Honours: Two mentions in Mathematics and Natural Phulosophy, mention in Zoology

University of Oxford -B A. Honours - Thurd class in
Mathematics and Physics (with thurd class in Classica)
Mathematios and Physics (with thurd class in Classica)
University of Cambindge-B A. Honours Mathenatics
and Natural Phulosophy. Fourth Wranglership.
St Peter's College. Fellowrship
Trmty Hall. Prize in Mathematics.
'Trimity College. Prize for Mathematics
University of London --B.A, Honours
University of London -B.A. Honours Mention 10
Mathematica and Natural Phulosophy; mention in Ammal Physiology.
Matriculation Honours: Three mentions in Mathematics
and Natural Phulosophy.

1856.

Unversity of Cambridge-B A. Honours: Mathematice and Natural Philosophy Semor optime, equior optime (with first class in Classics).

Trunty College Fellowship, two priven : Montion in
Univergity of London -BBA Hanours * Mentron in
Mathematics and Natural Phulosophy
First M.B Honours: Gold medal in Botany; mention in Materia Medica.
Matroculation Honours Exhibition and mention in Mathenatics and Natural Phulosophy,

1857

Univeraty of Cambridge - B A Hononrs, Mathematics and Natural Phulosophy; Nanth wranglerehup; semio optime.
Tnnity Hall. Fellowshup.
Trinity College. Scholarship; prize.
University of London - B A. Honours; Mention in Mathematacs and Natural Philosophy; mention in Anmal Physiology.

1858

University of Cambudge.-Trinty College. Prize University of London-B.A. Honoure: Scholarship and mention in Mathemstica and Natural Pbilosophy mention in Animal Physiology, mention in Botany
Matriculation Honours Mention in Mathematics and Natural Phulosophy; two mentions in Chernistry.

1859.

University of Cambridge -B.A. Honours - Mathematics and Natural Philosophy : Suxteenth wranglership
University of London - M A Examination • Two degrees in Mathematnce and Natural Philosophy

M B. Honours. Gold medal in Phymology and Comparative Anatomy
Matriculation Honours : Three mentions in Mathematies and Natural Philosophy; mention in Chemistry.

1860

University of Cambridge-B. A Honours: Mathematice and Naiural Philosophy Junor optume
University of London,-M A. Examination - Gold medal in Matheraatics and Natural Pholosophy.
in Mathezaatics and Natural Philosophy, Phulosophy; prize in Anmal Phybiology
Furst B A Honours : Two mentioni in Mathematics and Mechanical Phulosophy
Matriculation Honours: Thrse mentions in Mathernatics and Nistural Philosophy.

1861

Umrernity of Cembridge.-Trnity College. Fellowship minor echolarship
Universtity of London,-B A Honours Mention in Mathematics and Natural Phulosophy.
First B A Honours: Three mentions in Mathematics and
Mechanical Philosophy.
Prel Sci. (M B) Honours. Exhibition in Chemistry and Natural Philosophy.

Matriculation Honours: Three meations in Mathematacs and Natural Phulosophy, two mentions in Chemistry

1862.

University of Oxford.-B A. Honours: Mathematies and Physica. Fourth class (with first classe 10 Classics)

University of Cambridge -Trinty College Two pnzes. Unuversity of London-B So Honours : Mention in Matherngitice and Natural Phlosophy.*
BA. Honours Mention in Mathematics and Natural Philosophy.

First M B Honoury Exhibition and gold medel in Organie Chemustry $;$ mention in Physiology, Histology and mparative Anstomy
First B. Sc. Honoure. Furat place in Chemistry; mention in Brology
Prel. Sci. (M B) Honours: Mention in Chemistry Pral. SCl. (M B) Ho
and Natural Philoasphy.
Mastural Phulosophy.
Two mentions in Mathematica and Natural Philosophy; mention in Zoology.
1863.

University of Cambindge.-Tinnty College. Scholarship.
Unip. (one with gold medial) in Mathemstics and Natural Phzlosophy
B. Sc Honours - First clase with acholarshlp in Chem mistry; second clase and third clase in Biology 3 mecond class in Geology
classes in Anumal Fhyst elass with prese, and two eeoond classes in Anumal Phymology
Furst B A Honours: Second clast in Mathemation and Pri Son Phiosophy
Prel. sar (M.B.) Honours: First alsan with exhibition in Brology,
Matriculation Honours: Two mentions in Chemistry.

1864.

University of Cambridge - Trinity College. Prise University of London.-B. Se. Honours. First cleas in Logie and Moral Phulosophy.
Logic and Moral Phuosophy, wn monolarship in Mathe matics and Natural Philosophy; first cless whth prys in matics and Natural

Fimal Physiology M Honours: Furst dans with exhibtion and medal in Physiology, Hustology and Comparative Ans moma ; frst clans in Organic Chemishy Comparative Ans Matriculation* General Honoura: Two prize and two mentions.

1865

University of Cambrige.-B A. Honours • Mathematio and Natural Phulonophy: Eughth wranglerthap; nemion optrme

Trunity College Minor scholarship.
Sidner Susbex College. Entrance scholarship.
Univeraity of Loindon. Anmsl Phynologr.
Prel. Sci. (M,B) Honoura . Firat class in Chemistry and Natural Philosophy
Matriculation General Honours; Exhibition and three mentione.

1866

-Univeranty of Cambindge -Trnity College. Two prizes Sidney Sussex College Prize in Mathematice ; prize in Natural Science - . Unversity of London -Prel. Sci. (M B) Honours: Second class in Biology. Matriculation General bition and two mentions.

1867
Unversity of Oxford.-Moderations. Thied clasu in Mathematics.
Unuversity of Cambridge -Trimity College. Scholarshyp; pnze

Sidney Sussex College Prize in Mathematics.
Downing College. Minor scholarship.
University of London -First B A Honours : Becond class in Mathematics and Mechanical Phulosophy.

Matriculstion General Honours : Furt Place with exhubition and two mentions.
1868.

Univernity of Cambndge.-B.A. Ifomoure Mathematica and Natural Phulosophy Senior optume.
St Peter's College Entrance Science acholarghip.
Thity Cole Prze.
University of Liondon.-B.A. Honourss. Second class in
Anmal Physiology Furst M B. Hon
Organic Chemustry. First B Sc. Honours Second Class end two thri
clases in Chemustry and Natural Phiosophy, thrrd class classes in Chemistry and Natura
in Botany: First clasa in Zoology
Futany B A. Honoars: Second class in Mathematice and Mechanical Philosophy.
Prel. Sci. (M B.) Honontra: Second clesen and thard class in Chemstry sind Natural Phulosophy; firtit class in Zoology; thurd clans in Botany.
Matruculation General Honours; Exhibntion and two mentions

University of Oxford.-B A Honours. Mathematics and hybice. Third clats
Univeraty of Cambindge,-B A. Honours Mathematice and Natral Phiosophy Senvo wrenglershup, secon Smith's prize,

St. John's College Naturà Scence Exhibition
Trnity College. Minor Scholarshnp, prize for Mathe-
Sidney Sussex College. First entrance scholarahip in Mathematica
Downing College Scholarship, prize in Mathematics Downing College Scholarship, prize in Mathermahics in Chemistry ; first class in Zoology, first class in Logic and Moral Phlosophy
Prel Ses (M B.) Honours Third claps in Botany Matriculation General Honoura . Exhibition, four pnzes, and four mentoons.
1870.

Unveraty of Oxford -, B,A Honours • Nafural Scrence: Second class.
Moderations ' Mathematics Second class
Unversity of Cambridge - St Jonn's College Scholar-
atp in Natural Science, prize in Natural Science
Sidney Sussex College Scholarship, prize in Mathemance
Downing College Prize in Mathematncs
Unversity of London.-First B Sc Honours. Second
lass in Chemistry
Prel Scl. (M B.) Honours : Second class in Chemistry
Matriculation General Honoura . Second place with exhbbition in Jamuary Examination, second place with exhibition in June Examonation; three prizes and four mentions

1871.

Royal Socrety - Fellowship.
University of Oxford.-B.A Hozours Mathematnes and Physics Third class
Unversity of Cambridge -Hon M.A. for distinction in Natural Science
BA. Honours * Mathematres and Natural Philosophy Senior optame
St John's College Prize in Natural'Science
Trinty College Fellowelup for Natural Science, scholarship, open scholarship in Natural Science; prize Sidney Subsex College Prize in Mathemstics.
University of Dublin -Furst senior moderatorship in
Natural Science
University of London.-Fust B. Sc. Honours: Second oless in Expermental Physics, second class in Chemistry. Sal (M B) Honours Second class in Chemistry
Matroulation General Honours: Furst place whth ex Inbition.

1872

Royal Soaiety.-Four fellowships
Unversity of Cambrndge - $\mathbf{B} \mathbf{A}$ Honours - Natural Sciences : Firat place in first olass.
Trinity College. Prise
Sudney Sussex Collage. Scholarship
University of London - D Sc, Degree in Electricity
B. Sc. Honours. Firat class with scholarship in Chemistry

Matroulation Geteral Honours Furat place with ex
bubition ; thard place with exhubition, two mentions
University of Glasgow - Prixe in Mechanies, two pmees in Natural Phulosophy

1879

Unuveraty of Cambridge - B A Honours Mathematica and Netural Phulosophy, semior optime; Natural Sciences, usoond class.
rrity Hall Entrance scholership" in Mathematios St. John's Collega. Fellowshup for distanction in Natural
Trinity Colloge. Entrance exhibition, prise.
Trinity College. Entrance exhibition, prise.
Unvaraty of London.-M A. Examination Gold medal
1n Matherantices and Natural Philosophy.
Furst B Sc. Honours. First class in Chemastry; thurd
class un Experumental Phyacs
Prel. Sch (M B.) Honours Second class in Bxperimental
Matriculation General Honoure. Two exhabitions; priso ; mentron.

34784
1874.

University of Cambridge -BA. Honours, Mathematics University of Cambridge-B A. Honours, Mathemathics and Nstural
University of London -Matrioulation General Honours Two mentions

List of pormer Pdpils of Univeraity Coldiner Sohool distinguisum in Sclences
(I) Natural Science.

Abraham, P, B Sc, London, B A Dublm B Sc. London (1869) First Class Honcura; B.A Dublin (1871) Furst Senior Moderator in Natural Science
Atkenson, R. W., B Sc London:
B Sc (1872) Scholar in Chemistry; Demonstrator of Burkbeck Laboratory, Unuversity College, London.
Burkbeck
Ayrton,
\boldsymbol{E}
\boldsymbol{E} .
Professor of Natural Philosophy, Yeddo, Japan; late Assistant Electsical Superntendent of Indran Govern as representative of the Great Wentern 'Lelegraph Com pany's engucers.

Assistant Geologist, Geological Survey of the United Kingdom.
Carpenter, W L , B A and B Sc. London i B A (1860), B. Sc. (1862).

Dellon, E'd, B.A. London
B A (1868), Assocuate of the Royal School of Munes in Metallurgy and Minmg (1871-72), Chnef Assayex, Imperial Mınt, Osaka, Japan
Fleming, J A, B Sc. London
B Sc. (1870); Asmatant Demonstrator in the Advanced Laboratory, Royal College of Chementry, late Scionce Master at Rossail School
Foster, Michael, B A and M.D. London, M A. Cammidge, FRS
BA. (1854) Scholar in Classics, Hon M A. Cam* bridge (1871); Fellow of University College, London, . and of Trimty Colleqe, Cambridge, Praelector an Phy, niology, Trinity College, Csmbridge; Iate Professor of Physiology, Royal Institution, and Professor of Practical Physiology, University College, London.
Garrod, A. H, B A Cembridge.
B A. (1872) Head of Nstural Sciences Trpos, Fellow of St John's College, Cambridge; Prosector to the Graham, J C \mathbf{B} Soly
Graham,
B. So (1871) Se London
Guthre, Fred
B A (1852) Professor of Physics, Royal School of Mines
Harding, P J., B A Cambridge
Late Soholar of Sudney Sussex College, Cambridge; Late Soholsr of Sidney Sussex College, Cambridge;
later in Apphed Mathematics, University College, London; Asaistant Examuner in Experimental Physies, Iniversity of London
Jepons, W. S, M A. London, F R S.:
M A (1862) Gold Medal 2 L Logic and Moral Philo aophy; Professor of Political Economy and of Mental Philosophy, Owens College, Manchester, formerly Aasayer, Royal Mint, Sydney, N S W.
Krox, G W, $B \mathbf{S e}$ London.
B. Sc (1863) Scholar in Chemustry; Mming Engineer.
Magnus, Rev P, B A. and B Sc. London.
B A (1863)' Furst Clase Honours; B Sc. (1864) Furst Class Hononrs.
Mushead, Alex, D Sc London:
B Sc (1869) Firat Class Honours; D Sc (1872) in Electricity; Momber of Councll of Society of Tolegraph Engnneera.
Tmeacher of Chemistry and Chemucal Physics, Umi versity College School; Aath or of "An Introduction to the Science of Heat";

(II.) Mothematical Scrence.

Adler, M N, MA. London:
M.A. (1859) in Mathernatncs and Natural Philosophy : Fellow of University College, London, Actiary.

(III) Medical Science

Arnott, Hy., \mathbf{F} R CS .
FR.CS (1868) Joint Lecturer on Morbnd Anatomy, St. Thomss's Hospital, late Jonut Lecturer on Pathology, Middlesex Hospital.

BA (1857) Staff Surgeon, Arny Medical Service. bang, C. T., MS and M D, london
M'S (1872) M.D (1873), late Honse Surgeon, St Thomas's Hospital
Bruce, Aler, B Sc., M B and M S., London : (the late). B Sc.-M S (1863-66), (two exhibinons and gold medal); Scholas of University Collegre, Lomdon, and Pathology (1866-68) Unversity College.

Buchanan, Albt., B.A. and M.B Loodon.
B.A (1854) in Honoura; M B. (1861).

Buchanas, George, B A and M D London
B A (1851) in Honoura; Furst M.B. Gold Medal MB (1854) Gold Medal in Physiology, Scholar and Medai in Surgery, Scholar and Medal in Mcdione M D. (L855); Fellow of Unversity College ${ }^{2}$ Landon Inspeotor, Meducal Departinent of the Prvy Councul.
Burgon, Jog:
First M B (1846) Gold Medal
Colgate, Hy, MB and B.S. London
Mold Meds] (1873) Scholar and Gold Medal \& B S. (1875)
Gold Medal
Sobrbatch, A. B, M B London'
Scholar of St Basthalomew's (1868); M B. (1871),
Demonstrator of Anatomy St Barthoner
Demonstrator of Anatomy, St Bartholomew's Hospital. MB. (1850)

M D (1862) Thesis Gold Medal; Profesar of Prace tical Physiology and Histology, Owens Collegs, Manchestar, Examiner in Forensio Medinns, Univeraty of
London; late Lecturer on Plygiology, Surgeons' Hall, London: la
Gasquet, $J^{\prime} R, M B$ London.
M B. (1852), Gold Medsl.
Hakes, Jus., F R C.S
First M.B. London (1843) Kxhubition and Medal in Chemistry; Exhibition and Meded in Materia Medica: Honorary Surgeon, Liverpool Royal Infinnary
Harding, A W, B,A and M.B London.
B A (1867) Furst Cless Honours; M.B (1871) Iste Radcliffe Student, Oxford; House Surgeon, Infirmary
for Children, Liverpool.
MB (1859) Gold Medal ; Surgeon and Teacher at Practical Surgery, University College Hospital
Howse, H. G, M B and M S London:
M B (1866) Goid Medal and "Deserving of Scholarship," B S (I867) Scholarir And Gold Medal , M S and Lecturer on Anatomy, and Demonstrator of Morbnd Histology, Guy's Hospital.
Mattheto, T P
Furst M 8 London (1841) Gold Medal
Nunneley, FB, BS. and MD London
BS. (1866) Scholar and Gold Medal, MD. (1867)
"Degervng of Medal," and "Distingushed by Epecisi Proficiency;" Fellow of University College, London; late Asenstant Physician, and Lecturer on Expenmental Physiology end Histology, St Mary's Hosprtal.
Powell, W. M B London
MB. (1862) in Honourn, House Surgeon, Torbay Infirmary, Iate Reandent Medical Officer, London Hospital
Power, W. H T, BA Landon.
BA (1857); Surgeon Major, Indian Army Medical Service (appointment by open competition).
Sohlestryert, B, M. .
Scholar m_{2} Pathology and Assustant Curator (1873); late Scholar and Assistant Demonstrator in Anatomy, Sabley, S. W, FRCS.
Sabley, S. W, FRCS.:
FRCS (1857) late Lecturer on Pathologreal Anatomy, Middlesex Hospital.
Syath, H Alder, F R,C S. :
Fumit M B House Surgeon, and House Physicuan, St. Bartholomew's Hosprital.

Furst M B London (1856) Gold Medal.
Tapson, \boldsymbol{A} J, MB London:
Thompson, J. A.
Proze Essay; Guy's Hospital (1868); late Rendent Acooucheur, Muddlesex Hospital.
Turle, Jas, M D. Edmburgh:
MD (1857) Thems Gold Medal.
Waller, A, B A and B. Se London
B.A. (1865) 2 In Honours; B. Sc. (1866); late House

Surgeon, St Thomas's Hospital.
Winterbotham, L
MR.CG. (1956) Conalting Surgeorr, Cheltenhana
General Hospital.

APPENDIX V.,

RETURNS FROM THE HEAD MASTERS OF CERTAIN ENDOWED SCHOOLS IN ENGLAND AND WALES FOR SECONDARY EDUCATION HAVING (AS STATED IN THE REPORT OF THE SCHOOLS INQUIRY COMMISSION) ANNUAL ENDOWMENTS OF 2002. AND UPWARDS

A.

[The following letter and form were sent to the Head Masters of two hundred and five Endowed Schools in England and Wales, on the 30th June 1871.]

- Royal Commission on Scientific Instruction and the Advancement of Sclence,

Iir, \quad 6, Old Palace Yard, S.W, 30th June 1871 I ΔM dureated by the Duke of Devonshire, the Charman of this Commission, to beg that
you will be so good as to and the Commissioners in.the Inquries which have been entrusted to them by filling up the enclosed form, and returning it, together with any additional information respectung the Teachung of Science in your School which you may be good, enough to afford, with the least possible delay.

I have the honour to bet \&o
J. Norman LockyEr, Secretary.

County
Endowed School at

[The following returns have been received in answer to the foregoing letter.]

s4784.

Net Annual Falue of Income and Kxhibitorns.	Number ef Scholat: learnug Nataral Scrence.	Hours of Instruction per Week given by Matera.	What Weight asaigned to Netural Solenoe in Exammation for Exhibituona	Whether ary Laboratory or other Ardn for Practional Tuabhing in Saience.
Eancrix-contu tewheham, for hrodr	of of Blackhenth.			
zoohester (Cath	adral Sohool).	There are two leseons a week in text bookn of Sciences, and it forma part of the regular achool work.		
Roohenter (Cashearal Sohool). None - None in the school.		None given by masters except in Mechanics and Dynamics, \&e, as portions of muxed Mathematacs.	No examnation for exhbitions of eny kind.	None at all.
5481 as returned to Schoola' Inquury Commassion	-			-
Tombridge.	,			
Income about 2,643I (net). Four exhibinons annually of 1001 . each.	None.	None	None.	None.
Lanccagryan, Bleokrod (B'roa Free	8chaol)			
-	9	324	-	None.
Boltom-lo-2moors (Cram	ar Behool).			
There are none of any kınd.	About 40.	2 hours,	Due weight would be essugned of there were Exhibitions.	Strictly mpeaking there in no lahora tory, but there are numerous chemucals and inotroments be longing to the achool.
Citherae, in Pariah of	Whalley.			
Income of school from endowment, about 3002 Two Exhibitions, each 401. per annum.	All the Semor Forms, about 20 nan number	No regular stated hours, but a lesson per week.	The Exhibntang are awrasded to the boy of highest standing, not by special subjectis.	None attechng to the school. All euch property belonge to the Head Master, who hae good phrlowophue apparatus, sad usee it to allowtrate the theool lessons.

ROYAL COMMISSION ON GOLENTLFIC INSTRUCTION, ETG:

ROXAL COMMISEIOR ON SCLENTIFIC INSTRUCTION, ETO:

Anount mexpandud in Trackuraby			
Clambics.	Mathematics	Natural Science	
2.8225	$\pm \underset{1}{\sim}$	E. ${ }^{\text {d }}$.	The achool is at present in a traustion state, pendung its reconstructron. A. Russworm, Mead Master .
	70	60	As yet Natural Science is represented by elementary works on Astronomy and Chemistry. For the last year, and for the succeeding one (perhaps certainly), $50 l$ out of the Head Master's salary has been, and will be, pand to a Third Master, who teaches Classics and Mathematics. (Rey) Edward Rogers Pitman, M.A., 1846, Chust's Coll, Cambridge, Edrtor of "Iphagema in Taurrs," 1857.
6603. Mor both subjects.		-	Sume years ago there was a Chemstry class, for a time it flourished, but as the subject was optional the numbers fell off, and the class was discontn u ued. The boys then paid 10 s each a year for tuition in Chemistry, and the Governors of the school allowed an addrtional asalary to the teacher of $2 l$. Under the new schame, it is proposed to make one of the Natural Scences not optronal but compulsory Walsall, July 3, 1871. A. C. Irvine, Head Master.
275	00	Nil	*From Report of Commissioners, p. 146. Half an hour per week is devoted to the fourth and fifth Forms by the Head Master in teaching the general principles of Natural Philosophy, and explaming the mechanical powers and ordinary instruments and maohunes. Different Mastars take upper and lower work in different eubjects, so that it is utterly mpossible to classify the amount expended in dufferent branches of teaching There 18 no possibulity of apportioning the suma paid by the endowment for Clasercs, Mathematics, and English separately. A H. Wratislaty, M.A, Head Maeter.
The same ! ployed in these surj there is n unstitutin head. Mester Natural	asters are emteachmg both ecta, so that posesibluty of a compariso The Head aches the list arnce which ie	under thes athematical amount of ndertaken.	A scheme will be shortly submetted by the Trustees to the Charnty Commussioners for appropriating a considersble sum to the uses of the school, and it is probable that some portion will be devoted, provided the application be successful, to the promotron of Natural Science teaching. The funds of the school at present are insufficient to provide adequate salarres for the aristing Masters. H. Holdrn, LL D., Head Master.
It is duffloult to enewar these questions, as we have no apecial Master for the teaching of Natural Science. William Tatri, M,A., LLl.D., Head Master.			
-		—	The Whatgift Middle-olass Sehool was opened on the 4th of May 1871, and at present Science is not taught in it It is hoped that in the course of the nert year instraction in some branches of Natural Scuence may be given. July 3ri, 1871 Bobert Brodify M A, Oxon, Head Master.
-	-	-	The matruction gaven in this school is purely elementary, axd_ no thme wo devoted to the study of the Screpces. Riged. Hunt.
-	$-$	-	Natural Sceence is not taught in the above school Jorn Banks, Mastor,
Ni.	Nil.	Nul.	The Head Mastarship of this echool is at present vacant The Trustees of the school ane the Mercers' Company of Lqndon I do not know the net annual nncome. It was founded for 60 poor chuldren, and the Trustees added 20 ma 1857 ; the total 80 are chosen by the local Govarnors from the poor, and recelve their edacation enturaly free of any charge. There are no Exhibitions attached to the channty. The present scholarstare of that class of life found in the apper classee of national schools. July 3rd, 1871. Ro, Craeo (Usher), Acting Mlaster.

84734.

Analybis of the foregoing Retorns from Schoola having Annoal Endowmente amounting to 2001 . and upwards.

Number sent to.	Number of Beturns.	Number in which Scrence is taught	Number having a Laboratory.	Number having limited Apparatus for Teachng 8elonce
205	128	63	13	18

B.

[The following letter and form were sent, on the 16th of November 1874, to the Head Masters of the one hundred and twenty-eight Endowed Schools contained in the preceding list.]

Sir,

- Royal Commission on Scientuflo Instruction and the Advancement of Science,

I AM directed by the Dake of Devongt, Old Palace Yard, S.W., 16 th November 1874.
 You would confer an additional favour if you would place His Grace in possession of this information at the earliest possable moment.

I have the honour to be, \&ec. .
J. Normar Locer fer, Secretary.

Endowed School at

\qquad

1. Number of boys in the School
2. Number of boya learning Science -
3. Number of hours given per week by each boy loarning Science to that subject in clase time. (If some boys give more than others this should be stated.) \qquad
4. Number of hours given per week by each boy learning Scence to laboratory or practical work -
\qquad
[The following returns have been received.]

Number of Boys in the School	Number of Boys learning Scrence.	Number of Hours given per Week by each Boy learmung Scuence to that Stubject in Clasa Tme.	Number of Hours given per Week by each Boy learming Serence to Laboratory or Practical Wox'	Remarse.
Beancmarina. 14				
	-	, -	-	Those parent who wish ther boys to learn Scuence can have them taught. There is no extre charge, and one of the masters $1 s$ competent to teach Chemustry, \&ec. C. P. Milwer, B A., Camb, Head Master.
Alittle more than 270	A few occamionally, voluntamly, from a teacher, unconnected woth the sehool, on the South Kensington plan.	-	-	By the New scheme for the government of the school, Natural Sctence 15 required to be taught; but the Governows have not yet made the arrangements necessary for its being done. F. Fanghawe, Nov. 17, 1874. Head Magter.
70	Nearly all at tumes have some instruction	Varnoug-tht times two hours.	No practical work, as there is no laboratory.	
$\begin{aligned} & \text { Agectaroci- } \\ & \text { Breeon (Chetot' } \\ & \text { College). } \\ & 46 \end{aligned}$	-			
		-		J. D. Williamg,
	-			Nov. 23, 1874.

APPENDIX TQ BIXTH: REPORTM

*The identry of namber in theee alasses is accidental, the classes comprismg only partially the spme members.

Number of Boys in the Sohool. *	Number of Boys learning Scrence,	Number of Hours given per Week by each Boy learning Serence to that Sabject in Cless Thme.	Number of Hoars given per Weel by each Boy learning Scence to Laboratory or Practical Work	frimaks
	10	Three - ;	None, except that they are called upon in class to manrpulate the models of simple machines.	W. J R. Conatable. LL D , Head Master.
$\underset{57}{\text { zeelghington. }}$	None	-	-	Frederick Day, Head Master
Limuled to 100 generally kept on the list Of courge nome are always absent out of the 100 .	None, the boys leavs when fourteen.	-	- .	The average number of boys attending school varies, between 70 and 80 I shall be glad to answer any questrons. as correctly as I possibly can. Charles Wildbores, Humberstone, Head Master 20th Nov. 1874
$\frac{\text { stamfora. }}{43}$		1	0	-
murdomanix.				
milk street, Chenpside (City of Iondon Bohool).				
677	All - -	From 45 munutes to 75 minutes 27 boys in the Prac. theal Chemustry Class devote two hours a week on Wednesday after- noons ; likewise, two or three boys prepanng for the Natural Serence, receive extra inatruction in the Laboratory	None for the ordrpary scholars, but those who take an extra interest in the subject attend the Prachical Class and the after-lecture experiments	. -
			-	No School in connection with this Foundation, but the boys are elected to Exhubitions for the City School and King's College, and will, it is presumed, be included in the returns obtained from those schools Jas, Hx, Davidson, pp. Trustees; Vestry Clork of St Lawrence Jewry, 24th Nov. 1874. 70, Basinghall Street, E.C.
202		$1 \times$	No Laboratory	$\cdots \quad \square$
Enald,	$\stackrel{ }{4}$	-	-	The achool buuldings having fallen into a very bad state, the sohool was closed A now scheme obtamed Royal assent July 1874, and the Governors are now about restoration, and when re-opened the standard wnll be rased. Ceas. Chambers.
$\begin{gathered} 150 \\ \text { (N B.-The ave- } \\ \text { rage age of the } \\ \text { three hhihest } \\ \text { classes is in } 16, \\ 15,14 \end{gathered}$		(Also $1 \frac{1}{4}$ hours learn Naby Philosophy for London University Matriculation, two hours addutional.	None (The Chemistry lessons are always lllustrated by experments)	
$\begin{gathered} \text { mithraten } \\ 172 \end{gathered}$	About 110	33 boys 24 hours, the rest I hour.	14 hours - -	The subject has been only introduced within the last gux months, and the tmene given to it will be increased next year.
205	93	6 give two hours, 3 one hour.	None; no facilites	Chas B Scottr Head Master. I 14

Number of Boys in the School.	Number of Boys learning Science.	Namaber of Hours given per Week by each Boy learning Bemence to that Subject in Clase Trme.	Number of Elours given per Week by each Boy learmung Scremoe to Laboratory or Practical Work	Rimancs.
2ripDritser-cont.		Lower clasges two	Tume divided	
	School).	hours, Upper classes hours.	Tums avided botween theorethoal and practical work.	-
$\begin{aligned} & \text { zroproxe. } \\ & \text { Thetrora. } \end{aligned}$		-	,	
-	-	-	-	This school is closed at present, s new schems heing under consideration. A. Fowler Smite, MA. Head Master.
$\begin{aligned} & \text { Yarmouth } \\ & 154, \end{aligned}$	None - -	None -	None - - =	17 Nov., $1874 \begin{gathered}\text { J. J. Raven, D.D., } \\ \text { Head Mauter. }\end{gathered}$
Haydon Bridge. 89 (not including infants).	5	1 (on an average)	-	W. L Panderad, Head Master.
motynirgiane. zast metford,			-	
45	14	1ti hours - -	None 㫙 prebent -	Alpaid Churoh, Hend Master.
OxFOED.				
magdelen college, Offord (Dicendowed):				
115	About 12 - -	From 9 to 15 or more	About aix * -	No boy learn: Science here who is not trying either for the Indian Civi Service, Cooperis Hill, Woolwnch, or a College Scholarshyp (Signed) R H Hilu, D C.L., Head Mastar.
Pudlow.				
71	(Mathematical Science exclusively.)	About 25 boys give sux hours per week in class time About 15 give four hours	There is no laboratory work, as none of the science it experrmental,	By Mathematical Serence are intended Euchd, Algebra, Trigonometry, Mechanics, Mensuration, Practical Geom metry, Use of Scales, and Plotting from Field-books, Practical Sold Geometry A proposal has bean made to commence a course of Chemustry for young farmers, but at present the authonties do not Bee therr Wray. Will. C. Aparrow, LL.D., Head Maeter.
$\begin{aligned} & \text { Oswentry: } \\ & 82 \end{aligned}$	-	-	-	It is the intention of the Head Martar to begin teaching Elementary Scuence in January. M. 5 Foreter, Head Master.
trem. Average attendance for the year, 15.	None - -	-	-	Wm Boulton, Head Master.
$\begin{aligned} & \text { Whitechwrch. } \\ & 41 \end{aligned}$	None - .	None - - -	- -	There mere Chemastry Classer in the schooi whinn the last two yeare, but the boys are now almont all young, and the teaching they require is quite clementary.
someragix. Emingter.				
26	11 for public examination, but the whole tanght.	Four half hours, two to each subject.	None; subjecta not requurng it.	W.J. Woodwand, B.A.,
souryian propr.				
Fortrmouth.			\square	Schoolyclowed.

ROYAL COMMISSION ON SOLZANTIFIO TNSTRUCTION, ETC.

analysis of the returns received in answer to the secretarys letter OF THE 16th OF NOVEMBER 1874

Beturna sent oats	Ratarus rocerver back.	Number of Schools in which Scrence 1s Tanght.	Aggreyate Namber of buysin the Schoole	Number of Boys Learnug Science.	Number of Hours given per Weak to Scuence, as far as the Informition recelved with regard to the Thms siven by the Boys to sarence can be tabulated.
128	$87 \begin{array}{rr}87 \\ \\ & \end{array}$	57	8,945	2,430	Halfen hour perweak in 8 schools 1 hour per week in 7 schools
					11 hour $\quad 3 \quad 3$
					2 hours " 16 "
					8 hours ", 9
					31 hors $\quad 3 \quad 2 \quad "$
					4 hoars " 10 "
					5 hours " 4 \%
					6 hours " 9 "
					10 hours " 2 "

LONDON

Printed by Gboron E Exhe and Wimian Sportiswooma,
Printers to the Queen's most Excellent Majesty
For Eer Majesty's Stathomery Office.

SEVENTH • REPORT

ON

SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WHLLIAM SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXGELLENT MAJESTY. POR HER MAJESTY'S STATIONERY OPPICR.

$$
1875
$$

[C.-1297.] Price 10d.

CONTENTS.

COMMISSIÒNS	-	-	-	-	-
Page					
REPORT	-	-	$-\infty$	-	-
	-	1			
aPPENDICES	-	-	-	-	-

- ROYAL COMMISSION' ON SCTENTIFIC INSTRUCIION AND THE ADVANCEMENT OF SCIENCE.

VIOTORLA R .

Victoria, by the Grace of God of the United Kingdom of Great Britain and [reland Queen', Defender of the Faith, To. Our Right' Trusty and Right'Entirely Beloved Cousin William Duke of Devonshire, Knight of Our Most Noble Order of the Garter,-~. Our Right Trusty and Entirely' Beloved Cousin Henry Charles Keith Marquess of Lansdowne,-Our Trusty and Wellbeloved Sir John Lubbock, Baronet,-Our Trusty and Wellbeloved Sir James Phillips Kay-Shuttleworth, Baronet,-Our Trusty and Wellbeloved Bernhard Samuelson, Esquire,-Our Trusty and Wellbeloved Wilham Sharpey, Esquire, Doctor of Medicine,-Our Trusty and Wellbeloved Thomas Heary Huxley, Esquire, Professor of Natural History in the Royal School of Mines,-Our Trusty and Wellbeloved William Allen Miller, Esquire, Doctor of Medicine, Professor of Chemistry in Kings College, London,-and Our Trusty and Wellbeloved George Gabriel Stokes, Esquire, Master of Arts, Lucasian Professor of Mathematics in the University of Cambridge, Greeting :

Whereas We have deemed it expedient for divers good causes and considerations that a Commission should forthwith issue to make Inquiry with regard to Scientific Instruction and the Advancement of Science and to Inquire what aid thereto is derived from Grants yoted by Parliament or from Endowments belonging to the several Universities in Great Britain and Ireland and the Colleges thereof and whether such aid could be rendered in a manner more effectual for the purpose.

Now Know Ye that We reposing great Trust and Confidence in your Ability and Discretion have nominated constituted and appointed and do by these Presents nominate constitute and appoint you the said William, Duke of Devonshire-Henry Charles Keith, Marquess of Lansdowne-Sir John Lubbock-Sir James Phillips Kay-Shuttleworth-Bernhard Samuelson-William Sharpey-Thomas Henry HuxleyWilliam Allen Miller-and George Gabriel Stokes-to be Our Commissioners for the purposes of the said Inquiry.

And for the better enabling you to carry Our Royal Intentions into effect We do by these Presents authorize and empower you or any three or more of you to call before you or any three or more of you such persons as you may judge necessary by whom you may be the better informed of the matters herein submitted for your consideration and also to call for and examine all such Books Documents Papers or Records as you shall judge likely to afford you the fullest information on the subject of this Our Commission and to Inquire of and concerning the Premises by all other lawful ways and means whatsoever.
And Our further Will and Pleasure is that you or any three or more of you do Report to Us under your Hands and Seals (with as little delay as may be consistent with a due discharge of the Duties hereby imposed upon you) your opinion on the several matters herein submitted for your consideration, with power to certify unto Us from time to time your several proceedings in respect of any of the matters aforesaid, if it may seem expedient for you so to do.

And We do further Will and Command and by these Presents ordain that this Our Commission shall continue in full force and virtue and that you Our said Commissioners or any three or more of you shall and may from time to time proceed in the 35871
execution thereof and of every matter and thing tberein contained although the same be not continued from time to time by adjournment.

And for your assistance in the execution of these Presents We do hereby authorize and empower you to appoint a Secretary to this Our Commission to attend you whose services and assistance we require you to use from time to time as occasion may require.

Given at Our Court at Saint James's, the Eighteenth day of May 1870, in the Thirty-third year of Owr Reign.

By Her Majesty's Command,
H. A. BROCE.

ROYAL COMMISSION ON SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

V1CTORTA R.

Victoris, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen, Defender of the Faith, To Our Trusty and Well-beloved Henry John Stephen Smith, Esquire, Master of Arts, Savilian Professor of Geometry in Our University of Oxford, Greeting :

Whereas We did by Warrant, under Our Royal Sign Manual, bearing date the Eighteenth Day of May, One Thousand Eight Hundred and Seventy, appoint Our Right Trusty and Right Entirely Beloved Cousin, William, Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty and Entirely Beloved Cousin, Henry Charles Keith, Marquess of Lansdowne, together with the several Gentlemen therein named; to be Our Commissioners to make Inquiry with regard to Scientific Instruction and the Advancement of Science, and to inquire what aid thereto is derived from Grants voted by Parliament, or from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such aid could be rendered in a manner more effectual for the purpose: And whereas since the issue of the said Warrant William Allen Miller, Doctor of Medicine, one of the Commissioners thereby appointed, hath deceased:

Now Know Ye, that We, reposing great Trust and Confidence in Your Zeal, Discretion, and Integrity, have authorized and appointed, and do by these Presents authorize and appoint you the said Henry John Stephen Smith to be a Commissioner for the purpose aforesaid, in addition to, and together with, the Commissioners now acting under the above-mentioned Royal Warrant.

Given at Our Court at Saint James's the First Day of December 1870, in the Thirty-Fourth Year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE.

Professor Henry John Stephen Smith, M.A.,
To be a Commissioner for inquiring into. Scientific Instruction and the Advancement of Science.

SEVENTH REPORT:

TO'THE QUEEN'S MOST EXCELLEN'T MAJESTY.

May it please Your Majesty

We, the Commissioners appointed by Your Majesty to make Inquiry with regard to Scientific Instruction and the Advancement' of 'Science, and to Inquire what Aid thereto is derived from Grants voted' by Parliament, 'or' from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such Aid could be rendered in a manner more effectual for the purpose, humbly beg leave to present to Your Majesty;' in' continuation of 'our' former Reports, the following Report on the University of London; on'the Universities of Scotland (Edinburgh, Glasgow, St. Andrew's, and Aberdeen) ; on the University' of Dublin and Trinity College; and on the Queen's University in Ireland.
As in our Third Report we have dealt with; The Universities of Oxford and Cambridge, and as in our Fifth Report we have referred to the Arrangements made by The University of Durham for the Promotion of Scientific Instruction at Newcastle-on-Tyne, the present Report will conclude that part of the Inquiry, entrusted to, us which relates to the Universities in Great Britan and Leland and the Colleges thereof,

I.-The University of London.

1. The University of London was founded by Royal Charter, on the 28th of November 1836, for Objects which are best expressed in the words of its Original Charter :
"Deeming it to be the duty of our Royal Office, for the Advancement of Religion and Morality, and for the Promotion of Useful Knowledge to hold forth to all classes and denominations of our faithful subjects, without anyr distinction whatsoever, an encouragement for pursuing a regular and liberal Course of Education; and considering that many persons do prosecute or complete their studies both in the Metropolis and in other parts of the United Kingdom, to whom it is expedient that there should be offered such facilities, and on whom it is just that there should be conferred such distinctions and, rewards, as may incline them to persevere in these their laudable pursuits; further know that for the purpose of ascertaining, by means of Examination, the persons who have acquired proficiency in Literature, Sclence, and Art, by the pursuit of such course of education, as evidence of their respective attanments, and marks of honour proportioned thereunto, we do will, grant, declare, and constitute our rigbt trusty and right well beloved cousin, William Cavendish Earl of Burlington [with 37 others], one Body Politic and Corporate, by the name of 'The University of London.' ${ }^{3}$;
2. The Governing Bodies of the University are the Senate, and the Convocation. The Senate consists of the Chancellor, Vice-Chancellor, and Fellows. The Fellows (36 in number, exclusive of the Chancellor and Vice-Chancellor for the time being) are appointed partly by the Crown and partly by the Members of the Senate under the powers granted by the Charter. The following Graduates of the University constitute the Convocation of the University, viz., all Doctors of Law, Doctors of Medicıne, and Masters of Arts; all Bachelors of Law of two years' standing, all Bachelors of Medicine of two years' standing, all Bachelors of Arts of three years' standing, all Doctors of Science, all Bachelors of Science of three years' standing; and also all Graduates holding other Degrees recognised as qualifications for admission to Convocation by resolution of Convocation.
3. The whole of the annual expenses of the University are provided for in the Civil Thesam Service Estimates, the Eatimates for the finaucial year 1874-75, being 9,8614 . The fees padin was received by the University are paid into the Exchequer: the sum thus paid in tor the ${ }^{4,202 l .10 s}$. same year is given in the Appendix, together with the annual expenses for $1875-56$.
4.

A
4. That the Government which founded the University desired specially to encourage the introduction of Scientific Study into General Education, may be inferred from the character of the original Body of Fellows; which included many names distinguished in Science, as well as many eminent members of the Medical Profession.
5. The Senate was not originally empowered to grant any other Degrees than those of Bachelor and Master of Arts, Bachelor and Doctor of Laws, and Bachelor and Doctor of Medicine.
6. Certificates of Studentship in some one br more of the affiliated Colleges or Medical Schools were required from all Candidates for Examination; and on the Report of the Senate to the Home Secretary, from time to time, the list of such affilated Institutions might be varied, altered, or amended.
7. The Examinations have from the first been conducted by Examiners appointed by the Senate.
8. In proceeding to frame a Curriculum of Study for Degrees in Arts and Medicine (Degrees in Laws beng originally conferred only upon such'as had previously Graduated in Arts), the Senate determined to institute a Matriculation Examination, which should be the test of the candidate's qualification to enter upon a course of Academical Study for either of such, Degrees, This, Examination included, from the first, not merely Classics, Mathematics, and English, but also an Elementary, Knowledge of either Natural Philosophy, Chemistry, of, Natural History i: and a further encouragement to the study of these Departments of Science was given by subsequent-Honours Examinations.
: 9. The value attached to this Matriculation Examination, as a test of a good School Education, is increasingly ehown by the large number of Candidates (now exceeding 1,000 annually) who present themselves at its, 4 considerable proportion of these haying no intention of proceeding to any Degree. .
: 10. No practical Examiniation was originally, instituted at Matriculation, and no chánge in this respect'ha's been bitherto made. It is evident that there would be considerable difficulty in organizing' such' an examination for five' or six' hundred candidates. 'But there can' be no "doubt "that' $f^{\prime \prime}$ this difficulty" could 'be ' overcome, the enforcement of a practical test would accelerate the introduction of Eractical Work into School Teaching, and would thus exert a very favourable influence on the progress of Scientific Education.
11. The Curriculum for the Degres of Bachelor of Arts included Animal Physiology, with Classics, Mathematics, and Mental Phlosophy, as subjects of the Pass Examination; and' Hónours' Examintationss 'twere instituted in Chemistry, Animal Physiology, and Vegetable Physiology with Structural Botany.
12. The First Examination for the Degree of Bachelor of Medicine included Chemistry and Botany'; in borh' which'subjects the examination was practical as well as written and oral. ' 'A's subsequent Honours Examination was held in Chemistry, to which' was attached an' Exhibition of '30l. per annum for two years. And an Honourl Examination

13. In the Second Examination for the Degree of Bachelor of Medicine, Phyiology (with Comparative Ahatomy) took equal rank with Medicine, Surgery, and Midwifery; and was the isubject of a subsequent Honours Examination, to which was' attached a Scholarship of 507 . per annum for two years, with a gold medal and the style of University Medical Scholar.
14. No material change in these arrangements took place until the grant of a New Charter in the fyear 1858 , by which the University was empowered to conter the several degrees of Bachelor, Master, and Doctor, in Arts, Laws, Science, Medicine, Music, and in auch other Departments of Knowledge (except Theology) as the Senate might determine. And the same Chatter provided that persons not educated in any of the affiliated Institutions, might be admitted to examination for any of the Degreen conferred by the University, other than Medical Degrees:?
15. Before the terms of this Charter were finally settled, a Memorial had been presented to the Senate, ssigned byiu 20 of the most eminent Scientific Men in the Metropolis, urging the propriety of establishing Degrees in Scrence, and a Committee of the Senate, which included Dri Armott,' Mri, Brande, and Mrs Faraday, with the subsequent addstion of Mr. Hopkins, had , beer appointed for the consideration of the subject. In the following year (1859), the Degrees of Bachelor and Doctor ins Science were instituted, under Regulations which, with some alterations in detail, remain in force at the present time.
16. The principle on which the Curriculum of Study for the Degree of Bachelor in Science was framed, was that of laying a broad foundation of Scientific Culture, upon which the student might advantageously base his acquirements is whatever department of Science he might choose as his special pursuit. The First (Pass) Examination for the

Degree of Bachelor of Science includes Pure Mathematics, Experimental Physics, Inorganic Chemistry, Zoology and Botany. Subsequent Honours Examinations are held in these several "branches of Enowledge; 'an "Exhibition" of 40l. per annum for two years being awarded to the highest proficient in each, provided that he is found deserving of it.t, The competition for the Exhibition in Mathematios is open also to Candidates who have passed the Eirst Examination for the Degree of Bachelor of Arts; and the competition for the other Exhibitions is open, also to Medical Candidates.
17. The First Examination for the Degree of Bachelor of Science, with the omission of Mathematics, under the style of the Preliminary Scientific, Examination for the Degree of Bachelor of Medicine, is now imposed "on all Candidates for degrees in, Medicipe, as a preliminary to the proper Medical Curriculum ; the subjects of Inorganic Chemistry and Botany being, omitted from the First Examination for the Bachelon's Degree, while Physiology, is, now, transferred to it from the Second, All Medical, Candidates are required to ga through a Practical Examination in Chemistry; and it is the intention of the Senate to impose this test on Candidates for Degrees im Science also; The Examinations in Zoology and Botany have from the first been partly practical.
18. The Second (Pass) Examination for the Degree of Bachelor of Science includes Mechanical and Natural, Philosophy, Organic, Chemistry, Geology and, Palmontology, Animal Physiology, and Logic, and Maral Philosophy. , Subsequent Honours Examinations are held in these several branches of, knopledge; Scholarships of $50 l$, per annum for three years (the competition for which is, open also to candydates who hape, passed the Second Examination for the Degree of Backelor of Arts) being awarded, to the highest proficients, in Mathematics and, in Logic, and, Moral Philosophy; respectively; and Scholarships of 50l. per ánum for two years being awarded to the, bighest proficjents in Chemistry, Zoology (iacluding Physiology), and Geology and, P'alæontology respectively.
19. The Programme of Subjects for the Degree of Doctor in Science, on the other hand, was framed, with i view, of eacouraging the, highest proficiency in, some special Branch of Knowledge; the candidate, being expected, to be so fully conversant with the principal subject be may select, as to be able to go through any test, (whether by theoretical or practical Examination) of ,his acquirements in it that can , be fairly applied. Sixteen Primary Branches are specified $;$, but several of these, are again subdivided, and others may be treated in different ways, at the option of the Candidate.

20, The total number of Candidates wha have obtained the Degree of Bachelor in Science up to the present time is 157 ; the number, of those, who have obtained the Degree of Doctor in Science is 21 , of whom 17 presented, themselyes in one or other of the Departments of Chemistry.
21. In our Third Report we have suggested that a Dloctorate "in Science should be Third Reestablished in the Unversities, of Oxford and Cambridge, and, we have expressed the port, p. su. opinion "that Candidates for this, Degree should not merely show pioficiency of know" ledge as tested by Examination, but should also" offer some Original Contribution to "Science," This principle has already been adopted" by the Unıversity of Edinburgh, See para 40 and we think that the Senate of, the University of London would, do, well to consider whether they should not also award the Degree of Dgctor of Scjence only to those who have given proofs of the desire and the capacity to, make some addition to Scientific Knowledge.

II.-The Universities of Scotland.
 Genbral Remarig.

22. The four Scottish Universities were, as lately as 1863, the subject of an Inquiry, conducted, at considerable length and with great minuteness, by Commissioners appointed under the Universities (Scotland) Act of 1858. The powers given to the Commissioners included the Arrangement of the Financial Affairs of the several Universities and Colleges ; the Foundation of new Professorships; the Regulation of the Course of Study and of Examinations for Degrees; and the Revision of Foundations. These powers were, however, conferred upon the Commissioners on the understanding that the additional sum to be provided by Parliament for the four Universities was not to exceed 10,000l.

See Letters in Appendix II., p. 44.

General Re-
port of the
Commis-
sioners under
the Univer-
sitites (Scot-
land) Act,
1858,
p. xxyii.

Ibid, p. xxix.

Ibid, p. xurx. in those Universities for a very long period;" they dwelt upon the variety of the subjects which that course already embraced, and upon the injurious effect of too large a variety in dissipating the attention of the Students; and they hesitated to recommend any steps which might tend to distract the attention of the Student still further.
26. "They were, however, of opinion that"it was impossible to dispense with any of the branches of study "already 'embraced in that course. "No one," they said, "who *" is' competent to form an opinion on 'such' a question, could doubt the propriety " of making Classical Learning the Foundation of an University Course." Again, the historical distinction of the Scottish Universities as "Seminaries of Learning "for the cultivation of the various branches of Mental Philosophy," rendered the Commissioners unwilling to 'assign' to fit' a 'position less considerable than that which it had hitherto occupied. So, too, the study of Mathematics, which, under the terms of Ordinance 14, includes Pure' Mathematics and Natural Philosophy, appeared
Ibid, p. xxx.

Ibrd, p. 18x. to form an essential subject. Finally, a considering the importance which belongs "to the 'study of the English L'anguage and Literature as part of a liberal education," and the success of the Literature Classes already in existence, although not compulsory, in 'the'dufferent Universities, "the Commissioners 'st did not hesitate to prescribe, over " and above the three original subjects, attendance on the Language and Literature "Course to all Candidates for Degrees [without Honours] in Arts."
27. These four subjects once admitted to the curriculum, the Commissioners were

Ibid, Appen-

Tbid, Appen-
24. 'The fourteenth Ordinance, which applies to the four Universities, prescribes for Graduation in Arts "a course extending over four winter sessions, and including "astendance on the Classes of Humanity, Greek, Mathematics, Logic, Moral Philois sophy, and Natural Philosophy;" and, in addition to these, "attendance on a course "r of English Literature," which previously had not been' required in any Scottish University except that of Edinburgh.
25. The Commissioners "considered it necessary to take, as the basis of a System 25. The Commissioners "considered it necessary to take, as the basis of a System unwilling, unless the Universities themselves should think it expedient, to require attendance on a Natural Science Course (including in that term Geology, Zoology, Chemistry, and Botany) in addition to the subjects prescribed as essential by Ordinance 14.
28. Previously to this, however, attendance at Lectures on a branch of Natural Science, either Chemistry or Natural History, had been included in the course of study at the Universities of St. Andrew's and Aberdeen, and representations were addressed to the Commissioners by gentlemen connected with the latter University. In consequence of these representations a fresh Ordinance, No. 18, was issued, sec. 4 of which empowers the University Court of each University to require all Candidates for Graduation to give attendance on the Lectures of any one of the Professors of Natural History, Chemistry, or Botany, whose lectures are included in the Department of Honours in Natural Science. The University of Aberdeen is the only one which has taken action under this Ordinance.
29. For the purposes of Graduation with Honours, Ordmance 14 permits a student to select any one, or mure, of the four following Departments :- a year, and there can be no doubt that in making the Recommendations contained in their Report, they were influenced, not only by the ascertained wants of the Universities, but by the consciousness that their expenditure was to be confined within this limit.
23. We have not thought it necessary to follow the Report of the Commissioners through its various details. It is, however, important that we should point out the position assigned by them to Science in the System of Education enjoined by their Ordinances.
(1.) Classical Literature.
(2.) Mental Philosophy ; including Logic, Metaphysics, and Moral Philosophy.
(3.) Mathematics; including Pure Mathematics and Natural Philosophy.
(4.) Natural Science; including Geology, Zoology, Chemistry, and Botany.
30. In each of the first three of these Departments two Grades of Honour are recognised. In the Department of Natural Science, however; one Class only was mstituted by the Commissioners, in the anticipation that, for some time, fewer candidates would present themselves in this than in the other Departments.
31. The effect of this arrangement has been stated to us by Dr. Young, the Professor of Natural History in the University of Glasgow :-
"The understandıng' amongst the Professors, both in Glasgow and, f^{\prime} believe, nalso nn 3 Edınburgh, is, that Qu. 9578. the hmitation to one elass of Honours in Science means, practically, that the cendidate shall pass sumply. We require two classes of Honours in Arts, and a pass is all that is requisite, mader the Ordmances, in Natural Science, so that hitherto there has been, one might almost say, no unducement to Students to attend the Classes in Natural Science."
32. In order to prevent this discouragement of the study of Natural Science, we Recommend that for the future two Classes'be recognised in the. Natural Science Honours List.
33. We have already, in our Report on the Universities of Oxford and Cambridge, Third expressed the opinion that, just as a knowledge of Language and Literature 'is Reporth indispensable to the Science Student, so also some' acquaintance with Natural Science is essential to the completeness of that education of which a' Degree in Arts given by oue of the National Universities is accepted as a proof.

We observe with satisfaction that this principle has been 'adopted by the Scottish Universities, as the chief Departments of Experımental Physics are included under the head of Mathematics, which is one of the compulsory 'subjects for' the Degree in Arts. We would suggest that the Student should be allowed to show the required proficiency, whether in Sclence or Literature, by passing an Examination at such a period in his University career as will enable him, in the latter part of his Academical Course, to devote his attention systematically to a particular group of stibjects.
34. A large proportion of the Students at the Scottish Universities attend the Courses with the object of preparing themselves for a Profession. Their education is, not unfrequently, procured with difficulty, and at a sacrifice by which their resources, are severely taxed. "It is undoubted," say the Commissioners of 1858, "t that a very large "numb General number of the Students in the Scotch Universities are in exceedingly poor circume Report of the " stances. Many of them engage during the summer" in teaching and other employ" ments, in order to gain the means of supporting themselves at the University during "the winter; and the Professors receive, in the last few weeks of the Winter Session, " frequent 'applications from Students to dispense with "their longer attendance, on " account of their scanty funds being already exhausted."
It follows from this that the payments which the Iniversities feel themselves justified in demanding' from their Students are small, and the resources of the Universitres themselves, in so far as they are derived from fees', are slender in proportion. Nor Qu. 9785. will their endowments bear comparison with those of the sister Universities in England. It was no doubt upon these grounds that Parliament, upon the occasion of the passing of the Universities (Scotland) Act, agreed to make, from public funds, a contribution in Aid of these Universities. An account of the application of these Grants, so far as they are available for Science Teaching, will be'subsequently given,
35. In Universities accessible to, and widely" used by, the middle' classes, it is "not surprising that,'side by side with a system of education which has' been' successful in producing 'Literary' and' Scientific' Cultare' 'of the highest order, there should 'exist a body of teaching more 'utilitarian in its character,' and assigning a prominent 'position not only to Pure but to Applied Science.
Thus, in each of the Universities of Edmburgh, Glasgow, and 'Aberdeen, there is ${ }^{\circ} \mathrm{g}$ complete Medical School, at which a large body of Students are engaged in qualifying themselves for the Medical Profession, by attendance on the Lectures of the Professors, and by Clipical Instruction in the Hospitals. In the University of St. Andrev's there is a Medical Faculty but no Medical School.

Agrain, both in Edinburgh and in Glasyow there Chirs of Engivering of whi 9787-8. an acccunt will be found in a subsequent part of this Report. These Chairs, as well as a Chair of Agriculture in the University of Edinburgh, the teaching of all of which has a decidedly technical character, are directly endowed by Government from Public Funds, while they share the advantages' which have", been secured to the Universities of Edinburgh and Glasgow by the expenditure of large sums of money voted by Parliament for the erection of University buldings.
36.: The position assigned to Science in the University of Edunburgh has, in so far as it enters into the Examination for Graduation in, Arts, been already described in the general account which we have given of Ordinance 14 of the Commissioners of 1858.
37. The Scientific Subjects taught ip connexion with the Medical School may be divided into three groups :-

A, The general Sciences, in which all Medical Students are instructed and examined in a manner to be presently described.
B. The Sciences: more especially appertaining to Medicine, such as Anatomy', Physiology, and Pathology.
C. The Special Medical Subjects themselves, such as the Practice of Medicine, Surgery', and the Clinical Courses.:
38:All Candidates for the Degrees of Bachelor and Doctor of Medicine are required to pass an Entrance Examination, including, among other subjects, Mechanics and Natural Philosophy m, They then undergo a Preliminary, Examination in Botany, Natural History, and Chemistry; and Candidates obtaining more than 75 per cent. of the mark are placed in the Honours List. This Examanation is irrespective of those in the more strictly Medical Departments of Study included in the second and third of the above Groups. It is, however, proper to point out that doubts have been thrown by one of the Witnesses, whom, we have examined (the Professor of Natural Philosophy) upon the sufficiency; of these Examinations for the purposes of his own Department. Mr. Tait

Edinburgh
University
Cal. 1875-
76, p. 128;
App. 1 .
p. 47. states that "there is no provision in the University Regulations for attendance on Natural "Philospphy, by Medical Students., They, are required to pass an exceedingly slight is Entrance, Examination in the merest elements of what is commonly called Mechanics, "c, and there is also another Examination on what is called Natural Philosophy, but it "would be absurd to say that the so-called elements of Natural Philosophy in which
"they are examined embrace the whole subject."
39 'The Examinations for Degrees in Science are described in the following 'extracts from'a 'Statement firnished to us by a Committee of Senatus of the University.
"G Gandidates for the Degrees of Bachelor and Doctor of Science, in the Department of Physical and Natural Sćience, undergoa Prelıninary Scientufic Examinstion up Mathematics, Natural Philosophy, Chemistry, Zoology, and Botanys" Thus examination is called the First Bechelor of Sceence Examination. The candidate may
 Bachelor of Scenence: -;

"For the Degree of Doctor of Science, the candidate must profess that Science which he intends to be the gpecial object of his future stady, and mast further select a particular branch of it in whoh he believes humsalf to have attauned a considerable knowledga."
40. Since the foregoing information was received from the Authorities of the University of Edinburgh, a Regulation has been made that each Candidate for the Degree of Doctor of Science must submit a Thesis containing "Some Original Researches on the subject of his intended examination, and such Thesis must be approved before the candidate is, allowed to proceed to examination."
41. In addition to the above General Degrée in Science, there is also a Special Degree in the Department of Engrueering, which is thus referred to in the same document:-, ;
" Candidatea for the Degrees of Bachelor and Doctor of Science in the Department of Engneering must undergo a Preliminary Examination in Mathematics, Nataral Philosophy, and Chemstry. They may then proceed to the Second, Bachelor of Science Examunation uit the followng subjects :-Mathemastics appleed to
 machelprofess ones and not pore than one, of the subdrisions in each of the two following groups of snbjects :-

" L-Practical Engineering
(b.) The preparation of designs, speenfications, and estimates for,
(c.) Applied Mathematics.

(d.) Telegraphy.

- The examinations in Group I. consist in requiring the actual execution of the specfied work The eandidate is axsmined orally in connecrion with the wort submitted wes his own."

42. To the Departments in which Degrees in Science, may be obtained, has, we also App. III. ${ }^{\prime \prime}$ learn, been recently added a Departraent ief. Public: Health, an account of which will be p. 53.! found in the Appendix to this Report.

The System of Examination:

43. 'We desire, before proceeding further, to refer to the Evidence which we have received with regard to the manner in which the Examinations for Graduation are conducted in this University, Its means have not admitted of payments to Special Examiners for the Science Degree, and the Examinations have consequently been hitherto conducted-almost entirely by the Professors themselves; who receive no remuneration for 'their labour as Examiners.
44. The,Examination for Degrees in the case of the Faculty of Medicine was, at the Qu. 9329. time when we received Evidence from this University, entrusted to all the Professors in the Medical Faculty, with three Non-Professorial Examiners, elected by the University Court, and paid by a Parliamentary Grant of 100l. a year each:
45. This arrangement was not one with which the University Authorities were content.
" Many of my Colleagues," says the Professor of Anatomy, "and myself also are of Qu. 9333.
"ropinion that our System of Examination would be improved if we had more than
"t three Non-Professonal Examners specially qualified. We are by no means indisposed
" to receive additional examiners ab extra, supposing that any arrangement could be " made for properly remunerating them." With reference to this subject, the Professor Qu. 9380. of Chemistry stated to us that all his Colleagues "desired" an inčrease in the number of " Non-Professorial Examiners, because, as they are not appointed as Examiners in any
"one Department, it must frequently happen that no one of them is specially acquainted
"with the subject" in which he is called upon to examine.
46. Since this Evidence was given, the University Court has, in the case of the Medical App. III., Examinations, thoroughly recognised the principle of associating with the Professors addi- p. 51 . tional Examiners, unconnected with the Professoriate, and has introduced a large number of additional Examiners. It would be very desirable that a similar improvement should be introduced into the other Scientific Examinations of the University., We learn that the question of appointing additional Examiners, not Professors, for the Degrees in Sclence, has been under the consideration of the University Court, but that this useful reform is still likely to be retarded, owing to want of funds. We'should regard it ass a fortunate result if, out of any assistance granted to the University, funds could be appropriated for this object.

Financial Statement.,

47. The capital of the University was stated, in 1872, to amount to 144,951 l.' ' Of this Qa. 9269. capital, the sum of $103,556 l$. is specially limited to certain uses. The income avaulable for other than these special uses consists of-
48. Interest on the difference between the above sums:
49. Matriculation and Graduation Fees.
50. The Annual Grant from Government.
51. Sundry minor receipts.

From these various sources the University derives an income of ' $7,375 \%$, of the distribution of which we received the following account:-
"The general administration of the University (min, the salary of the Secretary, the salary of the Clerk, the Qu, 9270 . salary of the Factor, that is our man of busaness, the salary of the Dean of the Medical Faculty, of the Dean of the Faculty of Arts, and the Edating of the Calendar) costs 981 a year: the Labrary absorbs 1,584l. annually ; 2177 . 18 allowed for the support of the Anatomical and Botanucal Museumes; the repair, eleanung, heating, and lightung of the buidings, the poor rate and water rate, and msurancess abeorb $1,827 \%$; on the general servioe of the Unversity, in the shape of door-keepers, warders, and so on, 5955. 18 spent, 1,4655. for Class Assastants and class expenses; 366i. for printrig and advertsements; 207l. for prizes; 181. for graduation expenses, and 414. for sundries, making altogether 7,301k. The balance of anexpended mcome for the year 1871 was only 74 l."
48. Out of the income derived from the capital sum of $103,556 l$., the interest of $24,056 \mathrm{l}$. is applied under special bequests to the Eudowment ofefive Chairs, including one of Natural History, while the interest of $54 ; 720 l$. is set apart for Bursaries; Scholarships, and Fellowships, of which, however, one only is given in the Medical, and three only in the Natural Science School, the remainder being associated with the Faculties of Arts and Theology.
49. We have been supplied with the following Statement of the Funds Annually applied to Scientific Instruction, whether from Endowments or Parliamentary Grants or from the general University Fund.

Funds anndality axlocated from tare Ginbral. Onjebrgity Fund to Soikntific Inftruction. \dagger

[^17]
50. A Statement of the total Emoluments of the Professors, inclusive of fees, will be App. III., found in the Appendix. It will be observed that there is a great disparity in the ${ }^{\text {pp. }}$. $4-58$. amounts received.
51. In the early part of the present century the University received from Government 129,000l. towards the erection of the present buildings, which had been commenced with a sum of 30,000 l. only, raised by public subscription in Scotland. The result of this large expenditure has been to provide the University with buldings containing much excellent accommodation, though, as will be shown by the Evidence to which we shall subsequently refer, they are absolutely insufficient for its present needs.

Number of Students.

52. The number of Students who have Matriculated at the University each year, since Qu. 9287; 1867, indicutes a steady and rapid increase, as will be seen from the following State- and see ment:-

The number of Students in the Medical and Engineering Schools during the same period was as follows:-

No of	No. of Medical Stuguearing
Students	Studental

$1867-68$	-	-	-	445	-
$1868-69-$	-	-	-	516	29
$1869-70$	-	-	-	586	47
$1870-71$	-	-	-	678	55
$1871-72-$	-	-	-	725	45
$1872-78-$	-	-	-	782	62
$1878-74-$	-	-	-	839	50

53. With regard to the numbers of Students newly joming the different Faculties of the Unversity in the Summer Session, the following Statistics, relating to the last three years, have been placed before us:-

[^18]54. During the Winter Session of 1874-75, the number of Students attending the University Course in the different Faculties has been as follows :

Taking the average attendance at the suinmer Course, deduced from the foregoing Table, the number of Students attending the University of Edinburgh during the Academical Year 1874-75, way be, set down as-
During the Winter Session'(actual) 'a
During the Summer Session (estimate)

App. III., p. 63.

Qu. 9483.
55. The fees paid for the various subjects will be found given at length in Appendix IIf, to this Report.

Museums and Collections.

56. The Museums 'and Collections available' for Members of this University are as follows :-

1,1. An Anatomical Museum, the property of the University, maintained by a manall grant from the general fund, This Museum is open to the Students and tused by them and the Professors.' It contains a valuable Collection' (used for Teaching Purposes) illustrative of Comparative Anatomy.
2. A Museum of Materia Medica.
3. An Herbarium. '
4. The Edinburgh' Museum of Science and Art, open to the' University under an arrangement made at the time when the Natural History 'Maseum of the University was transferred to the Sicience and Art Department. Specimens are also collected by the Geological Survey, but there is at present no means of arranging them in such a mannet as to render them awailable fori the Purposes of Instruction.
"The Geological Survey," Professor Geikie informs us, "has been prosectuted for about " 16 years in Scotland, and every year during that time considerable Collections bave " been made to illustrate the Rocks, Fossils, and Minerals of the various districts which " have been under examination by the Survey. These Collections have been to a very "s small extent exhibited in the Museum attached to the University; a large portion of
" them, all or nearly ail the fossilg; and a large mass of rock specimens and minerals, " which would be of great value "ta the public if they were exhibited, to illustrate wide "areas of the country, are at present stowed away in cellaty for want of any space "in which to exhibit them."

Deficiencies in respect to Buildengs, Assistants, aud Apparatus.

57. We have received much Evidetice with regard to the Wants of the University, and

For Schedule
toon, see
App III.
 to the Difficulties under which Sctentific Teaching within it appears to labour. These Dificulties aue occasioned principally by deficiencies in the accommodation afforded by the present University Buildings, and in the supply of Assistants and Apparatus.

Buildrngs.
58. There is a complete concurrence of testimony as to the insufficiency of the present building for the work of the University. It is now provided with 18 lecture Rooms, is which no less than 40 distinct Cousses of Instruction have to be conducted. Some of thi rooms are used for the Lectures of three different Professors, and it is not matter fo
014. 9284. surprise, therefore, that this should occasion great inconvenience. The Professor o Pathology has, we are told, "to lecture in a room which is used only one hour before h. " enters it by the Professor of Moral Philosophy, and one hour after he leaves it by thi
" Professor of Geology."
69. The demand which has arisen in all the Departments of Scientific Education for Teaching of a more Practical Character than that, with which the pablic was formerly satisfied, has given additional force to the plea unanimously put forward by the different Professors for accommodation more ample than that which the existıng buildings afford. ". Class rooms for practical mstruction take up," we,are reminded, "a large comparative ", amount of space, because you carinot pack up the Students as you do ma lecture " room ; they must have space to move about in."
60. The Professor of Chemistry represents to us that the accommodation at his disposal is not only inadequate, but most inconveniently arranged. The room which is used for the laboratory "was never ,ntended for the purpose. It is dark and ill-wentilated, ands " altogether unsuitable." The Students in the Practical Classes of this Department have increased from 72 in the Academical yean $1861-62$ to 140 in the Academical year 1870-71. The University Laboratory is able to accommodate about 12 students only at a time, and, owing to this limitation of the space available, it has been found necessary to preclude all but the more advanced Students from Laboratory work.
61. The same want has been felt by the Professor of Natural Philosophy. He found it impossible to obtain space for a Laboratory till 1868, when he was provided" with "a " small class-room which had come to be disused, entirely unsuitable, or at least by "'no means very suitable for almost any class of experiments." The result bf this is that when more than 8 or 10 students attend the Laboratory at once, some of them are obliged to work in the Class-room, and some among the Professor's Collection of apparatas. x "The " superintendence of groups of students scattered about, with stairs to ascend, 'and pas4 sages between them, is a matter of considerable difficulty, and adds materially to the " labour of teaching."
62. We are informed by the Professor of Geology that his Lecture-Room is not adapted Qu. 9467. for the Purposes of a Natural History, Lectureship. : Diagramsi and models cannot be properly displayed, and "the only table space for the exhubition of specimens is the desk which is used by the Professor of Moral Philosophy." For the storing of the specimens themselves there is no accommodation whatever in the lecture-room. A cellar in the S.E. part of the College Buildngs has been used for this purpose, buit it is inconvenient, owing to deficiency of ligbt, distance from the lecture-room, and difficulty of access. The requrements for the effectual performance of the duties of this Chair are described by Professor Geikie in the following terms a:
"In order to the effectual performance of the dutires of thas Chair I consider $1 t$ essential, first of all, that Qu. 9469. the Professor should have a separate class room, with a sutable lecture table and wall space, as well as the other accommodation which is usual for illustration of lectures by means' of dagrams, models, specimens, and apparatus. In the second plase; there is required a retiring room attached to the class room, wath sufficient space for cabinets of specimens, dagrams, \&e, and with proper light to admat of the examination of the specimons, and also with adequato provision of mucroscopes, lathes, blowpipes, and other testing apparatus for thorough practical anstruction in the subjects of the Chair; for I consider that the duties of this Char should consst not merely in lecturing, which is all that they can consist of at present, but in practical instruction by examination of apeamens, and 20 the timeralogical part of the Charr by a series of carafully instruction by examination of apecimena, and 20 the thineralogical part of the Chair by a sertes of carafuly dirseted lessons in mineralogical research, and especially in rese
63. The University Authorities have, however, by no means limited themselves to barren App. III, complaints of their present situation. A Committee, was formed for the purpose of far- p. 65. mulating theRequirements of the different Departments, and, we have had before us a copy of their Report. It was proposed "to transplant the Medical School from the Qu. 9284. present University Buildings to a new site, so as to leave the present bulldings for the other Departments of the University." , The University was at this time in treaty "for "the acquisition of a piece of ground excellently situated for the purpose, and, hopes if to acquire this ground without much delay," It was contenplated that in the New Buldings the Medical School would require about 60,000 superficial feet, made up as follows: Anatomy, 20,000 square feet; Chemistry, 12,000; Materia Medica, 5,616; Institutes of Medicine (that is, Physiology) 5,500; Pathology, 4,000; Medical Jurisprudence; Surgery, Practice of Medicine, and Midwifery', 3,000 each. The very large amount of space required for Anatomy, includes what is needed not only for Class Teaching Purposes, but also for the Anatomical Museum belonging to the University. This Collection is at present very inadequately accommodated.
64. Such a scheme of extension as that indicated above could obviously not be carried out except at very considerable expense. From the account already given of the financial situation of the Universaty; it will be evident that it has no capital of its own to apply for the purpose of erecting new buldings. "The University," we were told by Pro- Qu, 9295 , fessor Turner, by whom the Report was laid before us, "has to ask for money, both "for buying the ground and for building the necessary structures-; We propose to go "" to the public and endeavour to raise what we can in the way of subscruption. But I B 2
" may state that the people of Edinburgh and of the surrounding district have, during
"the past four or five years, raised a sum of upwards of 70,000 l. for building a New
"Infirmary, so that the public pocket has been, we think, very materially draned for
ct that purpose; and although we may raise, and I hope we shall raise, a considerable
"sum of money, yet we do not anticipate that we shall be able to collect all that will
" be needed, and we are desirous of obtaining aid in this respect from the Govern-
"ment." * *
At a public meeting held in London on December 7, 1874, it was stated by his Royal Highness the Duke of Edinburgh, who presided, that no less than $70,000 \mathrm{~K}$ had already been subscribed towards the cost of the University Buildings. The necessity for mcreased accommodation was at the same meeting explained by the Earl of Derby, who stated that at the time when the existing boildings were erected, -
"The accommodation which it was thought necessary to pronde was for a number not much exceeding 600, certanily not exceeding 700 students in all, the number of profeseors being then 21. At present as you have heard from his Royal Highness, the number of students falls luttle short of 2,000 , and the number of the professons is 35 , and though I cannot actually prove it from figures or facta, I have very little doabt that the still further growth of the University has to some extent been checked by that very great want of space for which we desse to provide a remedy."
At the same meeting, the Right Hon. Lyon Playfair made use of words to the following effect:-
"As a Professor of lengthened experience, he might be allowed to teatify that the Laboratorien of Chamustry, Physics, Anstomy, Physiology, and Biology were altogether unworthy of such an mportant University."
65. We are informed by the Principal of the University that, since the date of the above proceedings, the sabscriptions have increased up to a sum of over 75,0000 . The site for the new Medical School, and for the University Hall, in immedrate proximity to the New Royal Infirmary at Edinburgh, has been purchased for a sum which, with law and other expenses, will reach about $34,000 l$. It will, however, be impossible to complete the buildings, even in the plainest style, under a cost of 76,0001 ., while the internal fittings are estimated at $20,000 \mathrm{l}$. A further sum of $20,000 l$. will, it is contemplated, be required, in order to adapt the old Medical Class Rooms in the present College for the uses to which they will in future be put.

Assistants and Apparatus.

66. The Scientific Professors are much embarrassed by the want of a sufficient number of Assistants. This also is attributable to the Inadequacy of the Resources of the University. Among the powers vested in the Commissiuners appointed under the Universities (Scotland) Act, is that "c of making Ordinances in order to found new. Professorships "where they are required, and to provide for the Appointment of Assistants to such "Professors as from the nature and duties of their Professorships require assistance, " and to provide for the remuneration of such Assistants." Under these powers, a certain number were appointed. The Commissioners state in their Report that they were strongly urged to provide Assistants for a greater number of Chairs, but that they
See para 22. found it impossible with the means at their disposal to do so. They were, therefore, compelled to select for such help those Professorships which appeared to them to stand most in need of assistance. The Professors are consequently still either without the necessary staff, or obliged to provide it at their own expense.
67. It is, however, requisite to bear in mind that, in the case of those Professors by whom a special fee is charged for admission to their Practical Classes, apart from that payable for attendance on the Course of Lectures, an increase in the number of pupils, while necessitating increased expense for the payment of Assistants, serves also to increase the emoluments of the Chair.
68. In the University of Edinburgh there are, it appears, three Classes of Assistants:1st. Assistants allowed by an Ordinance of the Uaiversity Commissioners, and associated by them with certain Chairs.
2nd. Assistants appointed by the Professors, whose appointments are confirmed by the Senatus.
(Both these Classes receive their salaries from the general fund of the University, and discharge similar functions.)
3rd. Assistants appointed by the Professors on their own responsibility, and paid by the Professors themselves.
69. The number of Assistants and their emoluments are, as we have already said, often inadequate. The Professor of Physiology has only 100 L a year allowed for his Assistant, whose time is entirely taken up, and who, during nine or ten months of the year, is
working the greater part of the day. The Professor of Chemistry has four assistants, two of whom are paid at the rate of 100l. a year, each, under the Ordinance, the Professor providng from his own resources for the payment of the other two. In addition Qu. 9348 to this he finds bimself obliged to increase the salaries allowed under the Ordinance in Qu. 9359. order to obtann the services of properly qualified persons.
70. Several of the Assistants throughout the University receive the very small sum of $25 b$. a year; a remuneration so inadequate for a man who has already been obliged to provide for his own professional training, that its amount can only be explained by the assumption that these appointments are sought for by Science Students on account of the opportunities for improvement which they afford, rather than for the emoluments attached to them.
71. It is of the highest importance that the Scientific Professors should be provided with Assistants qualified, at all events, to take charge, and to make use, of the apparatus and collections entrusted to them. One Assistant, at least, of those attached to each Chair should be competent to relieve the Professor of the routine work of his Practical Classes. These duties cannot be effectually discharged except by a person of some standing and attainments, who has by habit and acquautance become famlar with the work of the Class and the methods adopted by the Professor in treating his subject. It is idle to expect such qualfications from an Assistant whose services are requited so slenderly as to render him anxious to transfer them as quickly as possible to some better remunerated employment.
72. It is fair to assume that the salaries allowed by the Commissioners of 1858 were fixed with reference to the limitation to which we have already referred in the amount of the Annual Grant. We desire to record our upinion, that, in the present day, they can See para. 22. be no longer expected to command or to retain the services of a properly qualified staff. The Professor of Natural Philosophy has given us, the following Evidence on this question:-
"You are also very much inconvemenced, are you not, by the want of proper assistance? That agan is Qu. 9420 a source of excessively unnecessary labour to myself, owing to the small amount of money which I recerve for the payment of a mechanical assistant. I am not speaking of teaching asastance, but simply of assistance in keeping in order and seting up for expeniment my apparatus My dufficalty in that respect is very great, but that agand is merely a question of money The mechanical assistant whom I have at the present moment is a man between 70 and 80 years cld, who, I may mentron, was in Sre John Leshe's service. Ele Was dooskeeper when Sir John was Professor of Mathematies in the University of Edinburgh, and served him as mechanical assistant the whole time he was Professor of Natural Phulosophy, and he served the whole or the principal part of his time with Principal Foibes in all his experiments, and he has served me since my appointment to the Chair. This is his 58th session in the University, and he is at present the sole mechanical assustant that I have, seeing that his son $1 s$ temporarily dusabled."
"He is pard by the College, is he not ?-Yes, he is pard out of the same fund as that from which I get Qu. 9421. 100t. a year for class expenses."
"Have you any teaching assustant ?-I have a clase assistant, and I have already alluded to his giving Qu. 9422. Tutorial Lectures. He helps me not only by giving those Tutomal Lectures, but also by superintending the Laboratory when I cannot be present myself; and besides that by reloeving me of the excessively tedious woik of looking over the answers to the examination papers: In the course of his looking over those answers to examanation papers merely, he has, on the average, about 1,500 answers to examine once a fortnight. Then he spends the greater part of five hours each day in the Laboratory, in addition to what Tutomal Lectures he is giving for me at the time."
"How is he remunerated ?-He gets 100l. a year from the Exchequer. I may mention that when you contrast the amount of work which he has to do for me with the pay which he recerves, it is not at all wonderful that during the short period that I have had such an Assistant, I have had almost every second or thurd fear to trasn a new one, because the salary is utterly inadequate to the work expected of him."
"Is it not a consequence of so much work fallingnupon the Professor that he has not safficient leisure Qu. 9425 for original work ?-Whan matters are at the best, I have very little leisure for nine months in each year; but at the present moment I may say that I have absolutely no lessure at all. I may say that it is hardly possible, without a large sum, to hire a really rsastant would be eapable of giving me thed assistant; no improvised assistant would be capable or giving me the least help, and, therefore, during the temporary disablement of my own assistant I must simply do his work myself as well as my 0 wn. It would take at least two months
or more of traning before I could trust a man wih the apparatug," or more of traming before I could trust a man with the apparatus."
73. On pages 12-14, Appendix V., Vol. IL., will be found a Recapitulation of the principal wants of the University in respect of Scientific Instruction and the Advancement of Science; and it will be observed that the want of increased and better padd assistance felt by the Professors to whose Evidence we have already referred, is experienced in almost every one of those Departments of the University in which Scientific Teaching is carried on. It will be evident from what bas been already stated with regard to the finances of the University, that it has no funds out of which these requirements can be sufficiently complied with.
74. The Inadequacy of the Staff of Assistants causes an encroachment upon the time which the Professor might otherwise devote to original work. The poverty of the Laboratory accommodation is also a serious inppediment. The Professor of Chemistry stated in Evidence: "Before I bechme Professor, while I was what we call an Extra " Academical Lecturer (which corresponds to the privat docent in German Universities),
${ }^{4}$ at the Laboratory which I had at that time, I had more opportunity for carrying on ${ }^{*}$ original investigations than I have at present in the University; because our space is
w' insufficient.". The Evidence of the Professor of Natural Philosophy, already quoted, is to the sampe effect.
75. We shall deal in a separate Report with the subject of the Endowment of Scientific

Eighth
Report.

Minutes of
Evidence,
Vol. II,
Appendix V. prges 12-14

Qu. 931Ω.

Research': in connexion with the present branch 'of our Inquiry; it will bo sufficient for as to express our conviction'that it istof the highest importance to these National Universities that the amount of work assigned to their Professors should not be such as to retider Original Work bn their part impossible from mere lack of time and physical strength. In the case of the University of Edınburgh, that time is often taken up, and that strength overtasked, by the performance of duties which a moderately paid assistant is'competent to discharge. We have not overlooked the fact that the summer Facation of six months, allowed in this and other'Scottish Universities, affords to some of the 'Professors's long period of continuous relef from the work of teaching. It does not, however, appear to us that this period is excessive, considering that the Lectures are 'given throughout the whole'Session, and that the careful preparation which thay require must, to a great extent, take place during vacation time. Others of the Professors are required to give, in addition to their Winter Courses, a Summer Course, and it is obvious tbat these can bave but slender opportunities for Original Work, unless the aid which 'they' receive from Assistanta is sufficient' to relieve them from ${ }^{2}$ a considerable portion of the routine work of ther Classes.

76 The Appatatus possessed by the University is very far from being adequate to the Modern Requirements of Scientific Teaching. The Professor of Chemastry is suppled with only, "a collection of old apparatus, mostly inapplicable to the purpose, which "5'belongs to the University, the remains of old collections. There is also a collection of "'specmens for the illustration of lectures which was presented to the University by " Professor Playfair when he retired from the chair. The remainder of the apparatua, 4. both what is rased in the laboratory for practical work, and what is used for lecture "purposes," belonge to the present Professor. He purchased what belonged to Professor Playfair, whose private property the apparatus was.' The University grant of 100l; a year for the purpose of keeping up and renewing the apparatus is insufficient. The same want is also expressed, in the Statement to which we bave already referred, on behalf of the" Chairs of Natural Philosophy,' Practical Astronomy, 'Engineering,' Physiology, Anatorny, Botany, Medicizé, Pathology and Clinical Medicine.
77 'The different wants which we have now' noticed seriatim are thus recapitulated by the Professor of Anatomy in his Evidence:-
"If we possessed proper buildings for teaching purposes, if we possessed proper appliances in the way of apparatus' and if we possessed sufficient funds to тemunerate apd retain about us a good staff of well-qualified assistants, I thunk that the Unversity would be enabled to develope itself' as a teaching body, in connexion with affording general scientific, instruction, much more so than it has hitherto been able to do."

Conclusion and Recommendations

78. The Resources of the University of Edinburgh are comparatively small, and it would be unreasonable to expect from local sources contributions sufficient for the complete removal of the defects which we have noticed.
'79. We are, therefore, of opinion' that, considering the largely increased numbers of Students attending the University, and the demand now, universally made in all the great centres of National Education for Scientific Instruction of a very complete and practical kind, the University' of Edinburgh has established a claim to increased assistance from Government.
csicid. We Recommend that such Assistance should be given; both in the form of a Capital Sutim in aid of' a 'Scheme' of Extension, such as that to "which our attention has been specially directed; ; and of an Anninal Grant sufficient to enable the University to increase the Number, and, in 'some cases, the Emoluments of Assistants; to make more ample provision of Apparatus for Teaching; and to revise the Salaries of the Scientific Professors', regard being had to the disparity of iheir endowments, and to the income which they derive from fees.
Fifth Report
79. We further Recommend, as we have already done in the case of Owens College Manchester, and the Metropolitan Colleges, that the Grant of the Capital Sum in aid of the Extension of the University should be contingent upon the receipt of substantial contributions from Private Sources'; and that an account of the Expenditare of any Amoual Grant be submitted to the Government, with a view to the exercise of Parliamentary control.

GLASGOW.
 The Science Curricuilum.

- 82. There are Four Faculties in' this University, and the Students are distinguished into Students of 'Aits', Theology, Law' 'and Medicine' according to the 'nature of their principal studies'" The position' assigtied to Science ni the arts Curriculum is 'governed, as in the other Universities, by the Provisions of Ordinance 14:
"83:' 'Since the date when we receved' Evidence from this University, "the Senatns' Wás Instituted Degrees in Science with four alternative Courses of Study', viz., Law,'Biolo'gieal Science, Geological Science, and Engineering Scrence.' No Faculty of Sciepce 'has yet been' instituted,' but'the Faculty of Medicine, and that of Arts are' said "'to' contam "between them lid their provinces tearly all of what is commonly called Science."

84. The Degrees in Science ,were instituted in consequence,' as we have been informed by Professor Allen Thomson, of a feeling that Science was' too much neglected in, the old Arts Degree, and " it was thought best to institute a separaté Degree 'in'Science, for " which also facilities existed from"the fact of its being recognised in the last Reform " Act for 'Scotland as' a qualification for the University franchise. The'Representation " of the People of 'Scotland 'Act recognises the Bachelorship, of 'Science' as"a degree " qualifying to vote. There is no mention of a' degree in science'in' the University' Act, " nor in "the Report of the Commission of ' 1858 ; but the Comimissoners' took evidence "6 from the professors' and others with respect'to the question whether there was 'reason "to modify the degree In Arts." ${ }^{\text {" }}$, Professor Thomson suggested "that the topics " ircluded in the Curriculum of Arts were too yarious ánd too' extensive to 'enable any "candidate to acquire á sufficiently good 'knowledge' of them 'to'appear' for an examind:-
"tion," and "that the Degree in" Arts should be 'modified, sómedwat after 'a' platu' of
" divergence in four directions; that a canrryculum pof two years, which all should be
" required to go through, including, of course, languages and mathematics, should form
" 4 a commor foundation, and that then the degree 'might' be given to the candidates' who
" pursued theirs studies and passed Examinations in" four different sections-classics,
" literature, and'languages for one,, philosophy, meaning mental philosophy, for another;
" mathematics, physical science, and natural philospphy, for a third; the fourth, which "would probably require subduvision, being natural science or biology and geology."

On further consideration it was decided that candıdates for the Degree of Master of Arts Qu. 9865. should be permitted to graduafter in any of the four courses of study'to which we have referred. The present arrangenents have thus been described to us by the same Witness :"In the_Scheme which has been adopted by the Senatus," while the screntific " branches lare recognised separately, they are in each department combined wrth a " part-of-the-arts curriculam.- Our degree in law has hitherto been only an honorary "" degree, and it was held to to iae desirable that we should have the means of giving "a degree upon study, und law is accordngly one of the departments ". A certificate
" in engineering had already been given, and it was considered desirable to raise that "into, the rank of a degre irthat is the second department, viz., of engineering and " mechanics; the third department is that of natural science, divided into two, the " biological, gnd the geological, sections. In each of these three departments the " branches of study which, were considered most immedaately necessary, and specially
"connected with the department are made tou constitate the curriculum; and then,
" in somewhat different proportions, the residuum is made up of a varying number of
" branches taken from the curriculum of arts at the choice of the candidates."
85. We extract from the Calendar of the University, for 1873-74, the following account of the'Subjects required for Graduation in each of the Departments in Science:-
 to dispense with one of the Arts Classess

In Brologioali Sorsncre-Any four of these five --1. Chemistry. 2. Anatomy. 3' Physiology. 4. Zoology (uncluding Comparative Anatomy). 6. Botany. And any four of the Clusses in the Arts Curriculum.
In Grocoogiaal Scimanci,-1. Gealagy. 2. Cheronstry, 3. Zoology (meluding Comparative Anatomy). 4. Hegher Natural Philosophy. And any four of the Classes in the Ants Curriculum: provided always that in the event of a Student taking Geodesy in conjunction with any University Class of not less than 25 lectures, he shall be allowed to dispense with one of the Arts. Clesses.
In Bremerrine Scanscaz +hur Mathematics (1 or 2). 2. Natural Philosophy (1 or 2). 3. Inorgame Chemistry (1): 4. Geology (1), 5. Givi Engineering (2)* And any two of the Classes in the Arts Curriculum oxcept Mathematices and Natural Phulosophy: provided always that in the event of a Student taking Geodesy in conjunction with any Unversity Class of not less than 25 lectures, he shall be allowed to dispense with one of the Arts Classes
86. This classification is open to the apparent objection that the Student is expected to show, upon the occasion of a tinal examination for his Degree in Science, proficiency in a more or less numerous group of subjects unconnected with that which he has specially selected.
87. We have assumed throughout this and other Reports that there are certain kinds of knowledge and certain forms of intellectual discipline which constitute the essential elements of general Culture, and fall under the two heads of Literature and Science. We have further assumed that means should be taken to ensure the possession of this general culture by all persons who receive an University education, and that it is desirable to permit the Student who has given evidence of this general culture to devote his attention exclusively either to literature or to Science, and to obtain his Degree by passing an Examination condugted in such a manner as to test the reality and extent of his acquaintance with the subject to which he has devoted himself.
88. We learn that in the University of Glasgow the Student who has attended the Lectures on any subjects for the requisite number of Sessions is permitted to present himselt for examination in those subjects at the next examination for degrees, and is not again examined in the same subjects as a condition of his takiag the Degree of Master of Arts. The regulation under which this privilege is accorded does not, however, ensure freedom from distraction, during the later part of his University Course, to the Student who desires to devote hinself more particularly to some one branch of Study, inasmuch as there is nothing to prevent him from postponing, until the end, his preparation for passing an examination in those subjects in which he is content with showing a competent knowledge. Nor does it seem to contemplate, as the normal practice of the larger number of the Students, that bifurcation of which we have maintained the importance, and which we have already suggested in the 33rd paragraph of this Report. The documents printed in the Appendix show that the Regulations for granting Degrees

Glasgow
University
for 1874-75
p. 78. in Science are now under revision; and we, therefore, take occasion to invite the attention of the University Authorities to the above observations,

Financial Statement.

Minutes of Evidence, Vol. II, App.V., p. \%.
89. We have received from the Clerk of the Senate the following Statement of Sums applied to the Advancement of Science or to Scientific Instruction in the University of Glasgow, which are derived from Endowments or from Parliamentary Grants:-

Watt Prze of 10L annually for an Essay on a Scientific bubject.
Walker Prizes in Civil Engineering and Mechanics; annal talae, 152.
Cleland Gold Medal (10 L 10s), awarded every second year to a Stndent of Natural Philosophy.
Breadalbane Scholarshups (two, each of 50h. annaal valne) m Mathematacal and Nataral Science.
Sir Willam Thomson Expermental Scholarships (three, each of 20 l annual vaine).

- Neil Armott Prizes in Natural Philosophy, consisting of the free annual vaiue proceeds of Dr. N. Arnott's gift to the University of $1,000 \mathrm{~L}$.

90. A Statement of the total Emoluments of the Professors, inclusive of Fees, will be Appendx found in the Appendix. It will be observed that there is a great disparity in the $\frac{1 V}{68,69 \text {. }}$. amounts received.
91. In addition to the Annual Grants, a statement of which has been given, very Glasgow considerable assistance was afforded by the Government to the University at the tune of Unversaty its removal to the site which it now occupies. When this transfer was made, a sum of Calendar, nearly $100,000 l$. was contributed locally, chiefly in the city of Glasgow. The sale of the pp. 16-18. Old College and ground produced $100,000 l$. A further sum of $17,500 l$. represented the principal and interest of the compensation obtained by the University from the Monkland Junction Railway Company for the non-fulfilment of their agreement. In consideration of the importance of the work, and the public interest excited by it, the Government of the day announced their intention to ask Parliament for the sum of 120,000 l. in six annual instalments, on condition of a like amount being raised by subscription and expended on the buildings. This proposal was assented to by Parhament, and the sixth instalment of $20,000 l$. was paid in 1873-74, the public subscription towards the combined extension, meluding the erection of a hospital, having then reached the large sum of $171,642 l$.

Number of Students; Fees; and Bursaries.
92. The number of the Matriculated Students attending the University Course in the past Session was 1,456,-distributed in the following manner between the different Faculties:-

Faculty of Arts				App. IV.,
Faculty of Medicine	-	-	-	904
Faculty of Law	-	-	-	
Faculty of Divinity	-	-	-	
		Total	-153	
		$-1,456$		

93. Each Student attending the University pays annually a Matriculation fee of $1 l$., and App. IV., also a Class fee to each Professor whose lectures he attends, the fee for each Course p.70. being 3l. 3s., with the following exceptions, viz., Natural Philosophy, Scots Law, Civil Law, Conveyancing. $4 l$. . 4s. each; Astronomy, 1 l. 1s.; Political Economy, 1l. 11s. 6d.; and higher Metaphysics, 11 . 118 6d.
94. It appears from the Calendar that Bursaries, varying in value from $4 l$. to $50 l$. a year, are attached to this University. Of these eight only are, we observe, specially available as rewards for Proficiency in Science. A large majority of these prizes are restricted to inhabitants of particular localities, members of particular families, or they are otherwise strictly limited.

The Engineering School.

95. The situation of the University of Glasgow, in one of the Industrial Centres of this Empire, and in the midst of a densely-inhabited district, upon the face and under the surface of which manufacturing and mining enterprise are widely spread, has tended to increase thie attention pard in its course of Instruction to branches of Sclence admitting of Application to Commerce and Manufactures. It has, accordingly, become the seat of an important Engineering School. The Chair of Civil Engineering and Mechanics itself was instituted in 1840, and is endowed by a Parliamentary Grant. The present Department of Engineering Science was not, however, established until about 12 years ago. The functions of this Department are not limited to the preparation of Students for the Degree in Engineerng Science. It was described to us by the late Professor Rankme as "consisting of a course of study in the various Qu. 9506. " branches of Science that are applicable to Engineering, and followed by a System of "Examinations, and the granting of what we call a Certificate of Proticiency." Professsor Rankine continues :'
[^19]Which he shows. Thardly, as to Jnorganic Chemistry, he stadies until he bas attained a knowledge of the fundamental prineples of Chemstry; of the Chemastry of the more ordinary metala used in engmearnag atructures and machines, such as aron, einc, tin, copper, and so on, of the chematry of bualding materiale such, for example, as cementing materials and building stones, end of the chemustry of air and water, and such elementary matters as that. The fourth sabjeet is Geology, snd in Geology his studies are apecially
 directed to what the writens of the present day call Lithology, a branch of Geology that relatee to etone and the
substances that are used as building materials; he also atudies Petrology end Stratigraphy, which have a substances that are used as building materials; he also studies Petrology and Stratigraphy, which have a
bearing upon the execution of earthwork. ; Those are the parts of Geology which are more eepecially beanng upon the execution of earthwork., Those are the parts of Geology which are more especially
applicable to engineering. Then the fifth branch of this department of study, which conclades the hat of the compulsory branches, is civil engreering and mechanics, whach is stadred for two sessions. Thas braneh relates to the art of applying the principles of the other branches of Sclence mantioned to practical purposea, There 18 a special mode of treating such principles where they are to be applied practically; for instanse to engineering field work, to engineering structures, and to machines; a specisl method different from a purely scientufic treatment. I will mention one of the special characters of the esplication of scientific pringiples to practice. For'any given practical purposet there is a certain degree of precibion required inferior to the precsion requured for purely sesentufic purposes ; and the atadent ought to be eble to judge of the idegree of precision that is wanted in applyng Science to a partincular practical purpose, in order that time and labour and expense may not be wasted on an unneceasary degree of precision. It is a very important and rather difficult subject, and I could exemplufy it at great length, bat I euppose it is not necessary to ocenpy the trme of the Commission by giving detailed examples of itr. Then, on presing a satisfactory examination in those five branches, a student recovves a Certsicate of Proficiency in Enguneering Scuence."
96. Before the Certificate referred to in the foregoing Evidence can be obtained, the Student must show a"proficiency in Mathematics and Natural Philosophy sufficient to qualify him for Second Class Honours in Arts. No Literary Subjects are, however, required for the Certificate, which idenotes merely ". Proficiency in Engineering Science," but not that the Student is "qualified to execute or superintend works. Should he desire to obtain not only this Certificate but also a Degree, he must study any two additional subjects taken from the Curriculum of Arts, and of those two, one must be Literary or Philosophical. ©The Degree may be with or without Honours; the subjects prescribed, for Graduation" will be found in the Table extracted from the University Calendar, already given in para. "84. There is no Compulsory Entrance Examination in this Department ; there is, however, a Voluntary Examination, by passing which a Student may, if he means to take the Arts Degree, shorten the duration of his attendance by about a year.
97. 'Professor Rankine stated that his' pupils usually came' to him fairly prepared in Mathematics. Preparatory study is, he considered, scarcely wanted in the remaining subjects, with the exception of Drawing, for the teaching of which there is no provision in the University. "There is evidently," the Professor remarked, "a deficiency of "good, instruction in Drawing throughout the country generally."
The same, Witness has giyen us important Evidence with regard to the Association of Scientric Teaching with the Applications of Science:
"The'rasm point wheh has ibeer umpressed apon me by my experience is the advisability of carrymg on scientutic study and practical study ss completely separste and independent', departmente. When I furs became professor the lectures were attended to e considerabls extent, and to some extent they are attended now, by young men who are actually engaged in btanase at the tume, and who are working at fome practical businese as civil engineers or as, mechamical enguneers during one part of the day, and get leave of absenca, or find leature, somehow or another, to attend the lectures alsb" Frotr'my experience that does not 'enswere' It it too great a stresin for one thing upon the mentail facaltues;-and then the states of mond requred ril practacal operations and in soientific study are so different that a sudden change from the one state of mund to the other at different periods of the day $1 s$ mjurnous to both in the esrliest gears af my holding this professorship, I whs induced to give evening lectures. In fact, my predecessor lectured ${ }^{1}$ m the evening, and I followed the same 'plan, in ordar that not only young 'cuvil engimeers' assistants, but young men engaged in' mechanical engineering works and in torkshops might beable to sttend, but I found those eveming lectives were all but useless. The students were very attentive, butwhori I eame to examme them I found that the instruction given to them had taken little hold upon their minds. I found, in fact, that from the state of boduly and mental fatugue in, which they were, there was little or no permanent benefit gained."
98, Professor Rankine's experience led him to think that lectures given in the evening, or during the intervals between working hours, will not be practically useful to the students, and "that the best way to combine practical and scientific instruction is what "we actually practise, indeed, to a great extent, or induce our students to practise as " far as we can, that is, to devote the winter half of the year to scientific study, and " the eummer half to practical work." The following further definition of the limits within which Applied Science may be taught within an University was given us, by the same Witness :

Qu. 9511.
${ }^{c}$ I think it useless to attempt to give inatruction in practice proper in an University. If, for instance, we set up a mechanncal workshop with machue tools in it in our Dniversity, or if we got, say a mile or two of railway, and set our students to superintend the works, thus would be worse that useless. The difference between doing things on a small scale like that, and dong things on a great scale, as in actual practice, is sx between doing things on a smanl scale like that, and doang tho hgs more knowledge than they really did possess great that the students would only be led to fancy that they had more knowledge than they really did possess great scale. There is one rather apparant than real exception to that. I think that a certain degree o
instruction in mechanical manipulation would be, useful in our University; or fin any University indeed, but rather in connexion with experimental physics than with engineering: such instruction as would make a student, if he were engaged in acientific inquiry, able to make, his own apparatus. That actually goes on in the Unversity of Glasgow in the physical laboratory A great deal of the apparatus used there is made by the students themselves, under the superintendence of the professor sand his assistants. This would be useful to young engmeers: as well asi to pthen students ; but they should not be led to suppose that in practusing young engureersi: Rs well ast to other asudents at but they should, not be led to suppose that in practising that one meets with, in engueering workshops, or in the execution of thnes of railway br other engineering works".
 applicable to enganeering and mechanics, and, secondly, to toach thespecial art of applying acientuic pinaciples
 and baving examined him to see that he if properly proficient in it, can then' certify that he is a proficient in engineering science, but not that he is one qualified to execute or to superntendiporks. I think there 15 a lumit to the function of an University, which is to impart and to coxtufy the scientific knowledge, but not to cartafy the practical skull, of the candudate,"
99. Engineering has now become a profession comparable in importance with reference to the wants of the present time to Law and Medicine. In the University of Glasgow, as well as' in some other Universities, there is a tendency to claim for 'It recognition as a Faculty. When this claim is conceded, this'new Faculty, with that of Medicine, will stand in the same relation to the 'Faculty of Science as that in which the Faculties of Theology and Law at present stand to that of Arts; and just as we should maintain that a Degree in Medicine ought to be preceded by an Examination in Science, and Degrees in Law or Theology by a General Examination in Arts, so, also, we should be of opinion that Candidates for a Degree in Engmeering should be required to pass a Preliminary Examination of a general kind in Science.

100 The Certificates to which we have above referred are awarded to Candidates showing Proficiency in Engineering, unaccompanied by any evidence of General Culture, either Literary or Scientific; but the distinction between the "Certificate" and Degree is, we consider, sufficiently marked to justify the dispensation with such evidence in the case of the Certsficate. We are, moreover, of opinion that by granting such Certificates to Students who may be unable to follow the complete course of study prescribed for Graduates, the University has been able to extend its benefits to a large class which might otherwise be excluded from them, and which, living as it does in the immediate neighbounhood of the University, should certainly be as far as possible brought into contact with its influences.

Museums, fo.

101. The University is fortunate in the possession of a good Museum, called the Hunterian Museum. This Museum contans a general collection bequeathed to the Unversity in 1783 by Doctor Wm. Hunter, together with 8,000l. for the erection of a building and the maintenance of the collection. The collection has been accommodated in the New Unıversity Buildings; it contains an important Anatomical Department, besides a Library of rare books and manuscripts, conss, and antiquities, pictures, and natuıal history specimens. The Museum is available for teaching purpose, and maintained by the Univelsity at a cost of about 300 l . per annum, the whole of the original bequest having been expended. The University bas also an Observatory with a considerable collection of 'instruments. 'The Professor of Anatomy has a collection of his own' and 'another purchased by the University, the two together formmg a large Illustrative Class Museum. Some of the nther Professors possess small Class Collections. There are a Botanic Garden and Collections in the city of Glasgow to which the University has access.
102. We learn, however, that there is a total want of funds for the mantenance of the Museums, both public and private, and that the expense of supporimg the private Museums has fallen entirely on the Professors.

The Chair of Natumal History.

- 103. Our attention has been called to the position of the Chair of Natural History, the occupier of which has represented to us "that, as the Chair is at present arranged, it is "perfectly impossible for the holder of that Chair to do justice to the work that ss " expected of him; that in the first place he is required to teach Zoology to Medical "Students ; in the second place he is required to teach Geology to Students of Engi" neering; that those two offices are incompatible, since to discharge the one adequately " be would require to spend his whole year in dissections and indoor study; and to do ${ }^{4}$ the work of the other, he would require to be the major part of the year in the field, * making investigations in geology, and that the combination of the two duties renders
${ }^{\prime}$ it imperative upon the teacher to neglect, to some considerable extent, one or the "other. In my own case," says Professor Young, I have been oblyged to surrender " the Geological Section of my work to some extent, so as to attend more thoroughly to
"the Medical Students, the requirements of the General Medical Council making it
" imperative upon me that I should do my best for the very large number of Medical
"Students who attend my class."
This Chair receives 200l. altogether from a Parliamentary Grant, and the fees amount to about 260 l . Sir Wm. Thomson expresses his opinion that it 18 , perhaps, the most

Qu. 2741.

Qu. 9797. insufficiently endowed of all the Professorships in the University. There is a complete concurrence of testimony with regard to the objectionable character of the arrangement wnder which this Professor has charge of the two subjects of Zoology and Geology, and as to the inadequacy of this Endowment. Dr. Allen Thomson, the Professor of Anatomy, is of opinion that there would be great advantage in separating the two subjects and assigning them to distunct Chairs.
104. In this opinion we entirely concur; and we Recommend that provision be made out of moneys voted by Parliament for the Endowment of an addtional Chair between which 'aud that to which we bave just referred the subjects now dealt with by Professor Young should be divided in the manner most advantageous to the University.

Deficiencies as regards Assistants.

105. In this University, as in that of Edinburgh, the want of sufficient and competent assistance to the Professors forms an obstacle in the way of the efficient Teaching aud Study of Scence. It, appears fron the table quoted on p. 16 that no provision is made either from Parliamentary Grants or from University Revenues for the payment of Assistants to the Professors of Civil Engıneering, Natural History, or Botany.
106. The Natural History Professor states that-
(2u. 9576.
"But for the accident that I am Keeper of the Museum, I should be absolutely without assistance. There
is an Assistant Keeper of the Museum, who recerves a salary of $100 l$ a year from the University ; and in my own interest I pay hum 25l. a year out of my own pocket to secure his coloperation in the Geological Course. Other assistance I have none as regards the Chair. What assistance I have, thercfore, comes entirely ont of my own pocket, and no provision in the Univer sities' Act ndmits of my receining such assistance, because the terms of the Act go to forbid an increase of the emoluments of any Professor."
The same Professor complains that in his own depart nent he suffers "from the want " of some one who would undertake especially the Histological Course, requiring a great "deal of time to be expended upon the preparation of the specimens, and upon the "instiuction of the students in the method of prepaing those specimens. In Geology
"I am practically at a standstill, as regards the special training of Eugiuecring Students, " from want of some one who could undertake a sufficiently good course of instruction
" in Mining. For three years, at my own expense, I procured the assistance of a :" medical student who had come to the profession from the pit, who gave a course "each year of 10 or 12 lectures upon Practicd Minıng. I paid him, and I supplied
" him with the necessary plant and all the expenses required for taking the party out "to the field for practical instruction"
107. The Professor of Engineering makes the following statement:-

Qu. 9513.
"In connexion with the teaching of the scientific prnciples of Naval Archutecture, which I have mentioned as one of the subjects of my lectures, there should be an assistant, a lecturer, or a teacher of some kund, to teach a variety of detanls that are not properly the sabject of lectures, but such detals as are taught in the Royal School of Naval Architecture, namely, the preparation of the plans of a ship and the making of a wet of routine calculatuons which in desigang a ahip are always required. Thas, in fact, can only be done by the help of some assistant or teacher for that purpose."
Qu. 2680.

Qu. 9825.
108. Sir William Thomson observes, "that it is absolutely necessary, for the efficiency " of the teaching and for the position of the Professors in respect to the Advancement of "Science, that there should be a sufficient number of assistants of the Tutorial Class." 109. The Professor of Anatomy states that, in conducting his practical or laboratory work, he has the aid of a Demonstrator and several Assistants, and that such employ. ment is much desired by young men of merit.
110. The Professor of Chemistry has two Assistants under the Ordinances of the Commissioners; these are both Skilled Assistants and receive 100l. a year each from a Parliamentary vote.

Conclusion and Recommendation.

111. Upon a review of this Evidence we are of opinion that an increase in the payments on account of Assistants to the Scientific Professors is essential to the promotion of the Teaching of Scrence in this University; and we recommend that the Government Grant
be augmented sufficiently to permit the University to make this increase, and to revise the Salaries of the Scientific Professors, regard being had to the disparty of their endowments, and to the income which they derive from fees; an account of the expenditure of this Annual Grant being submitted to the Government with a vew to the exercise of Parliamentary contiol.

The Andersonian Institution.

112. Before leaving the subject of Scientific Instruction in Glasgow, we desine to refer briefly to the Evidence we have received as to an Institution in that City known as "Anderson's University." This Instrtation was founded under the will of John Anderson, Professor of, Natural Philosophy in the University of Glasgow, towards the close of the last century, with the object of affording a ${ }^{2}$, bigher education to the working classes of Glasgow. It is governed by eighty-one Trustees, and by nine Managers elected by the Trustees. In the will of its Founder, it is designated an University, and has Departneents which are termed Faculties of Arts, Medicine, Law, and Theology, but as it has neither a Charter nor the power of granting Degrees, it is not an University, nor has it Faculties, in the usual sense of those terms. The Faculty of Arts includes Physics, Mathematics, and Chemistiy. The Faculties of Law and Theology are both in abeyance.

It is stated in the Evidence that, "with the exception of philosophical apparatus Qu. 9943.
" and persoual effects, there was little else than the formation of the system mentioned in
"the will wherewith to carry out the intentions of the Founder."
The lnstitution, of which the system was, indicated in the will, has, we are told, Qu.9944o:
" been maintained, up to the present day, in its present efficient condition, through the
" perseverance of the Trustees and the occasional gifts from time to time of the citizens
" of Glasgow." The Trustees have also, it would seem, at different times, made purchases of property which has been-mortgaged to banks, the Institution payng the interest of the loan. More recently the Institution has received liberal gifts of 10,5002 . Qu. 9985, from Mr. Young "for the purpose of establishing a Chair of Technical Chemistry"; of and 9987. 2,100l. from Mr. Euing for building purposes ; and of 5,000l. from Mr. Freeland for the extinction of debt. No endowments have, however, been attached to any of the Faculties, and the Lecturers are dependant upon fees. Until lately they were obliged to pay rent for lecture-rooms.
113. The attendance on the Scientific Classes appears to be fairly numerous. In addition to these, Popular Classes have, from the first, been carried on in the evening, and the attendance at these appears to be increasng. 7,500l. has been assigned by Qu. 9969 . Mr. Freeland, and 3,000l. by Mr. Euing of Glasgow, in support of these classes. The number of the Students attending the Institution in 1873-74 is shown by the Caleadar Calendar for to have been 2,499 .
114. The fees payable are as follows:

Faculty of Arts -
Chemistry (lectures and demonstrations), $22.2 s$. per course of six months.
Technical Chemistry, 18l. per session of nine months, 7l. for three months, or 2l. 10 s. for one month.
Faculty of Medicine:-
Class fees for each course of lectures: First session $2 l .2 s$. , second session $1 l .1 s$, afterwards free.
Anatomy class fees, for both courses (lectures and demonstrations) : First session 4l. $4 s$. ; second series $4 l .4 s$. ; summer session, with dissection, 8ac., 1h. $1 s$.
Practical Anatomy : the Dissecting room is free for two Sessions to those who attend both courses of Anatomy; after the second year, the fee for Practical Anatomy is 1h. 1s. per Sessuon.
Ophthalmic Surgery : Attendance gratis by paying a Matriculation Fee of 5 s.
The fees for all the Lectures and Hospital Practice required of Candidates for the Diplomas of Physician and Surgeon amount to $50 l$.

The fee for attendance at the Evening Classes is 28.6 d . or $38 .$, except in the case of Qu. 9980. one Course, that of Applied Mechanics, in which a fee of 10 s . 6 d . is charged; the payment of these fees entitles the Student to admission to a library of 6,000 volumes.
115. There does not appear to be any regular System of Examinations in connexion with the Evening Classes; the Students can, however, present themselves at the Examina- proves that the "workang classes of Glasgow are in the habit of a availing themselves
extensively of them; the order of students, on the other hand, who attend the Faculties of Medicine and of Arts, is pretty much the same as that by which the Glargow University is attended. We observe that Students attending these Classes are drawn from all parts of the United Kingdom.
116. It has been suggested to us that this Institution might, under certain circumstances, receive a Cbarter, in order to enable it to compete, on more equal terms, with the University of Glasgow. In this suggestion we are not able to concur; the proper function of the Institution is, we' believe, to' afford facilities for education to those classes' whose 'means or opportunities do not permit them to follow an University course. The competition for students of the same class to which we have already referred is, perhaps, inevitable, but should not, at all events, be encouraged; nor do we' believe that an increase in the number of Degree Giving Bodies in Scotland is desirable in the interests of the Higher Education of that Country.

It Has also been suggested to us that the Institution might be used as a Central Establishment for the Training 'of Scientific' Teachers, and that it might receive a Government, Endowment for thas purpose.

Sx. ANDREW'S

The Colleges and Scientific Chairs.

117. This University contains two Colleges, the United College of St. Salvator and St. ${ }^{\text {P }}$ Leonard, and St. Mary's College.
118. The Scientific Department of the University consists of five Chairs, comprising Mathematics, Natural Philosophy, Chemistry, a Chair of Civil History and Natural History, and of Medicine and Anatomy. A certain degree of acquantance with the subjects, taught by the Professors occupying the first three of these Chairs is required of all Students Graduating in Arts. The Theological Students are required to attend the lectures of the Mathematical and Natural Philosophy Professors.

119, The Professor of Mathematics ": teaches in the junior class six books of Euclid, "Algebra as fat as Sumple Equations, including ratio and proportion, and the Theory of
"s Arthmetic. In the second class Algebra, Plane Trigonometry, the application of
"A Algebra to Geometry, Trigonometry, and Conic Sections. In the third, or senior
of class, for three days-a week he teaches Analytical Trigonometry, Analytical Conic
"Sections, and Differential and Integral Calculus."
Qu. 9623.
120. The Professor of Natural Philosophy "teachess one class, lecturing seven hours " a week. His subjects are the Properties of Matter and" of Force, including Inertia, " Gravitation, Molecular Forces, Laws of Motion, Conservation of Energy, \&cc.,
" Dynamics or Mechanics, 'including Hydrostatics and Pneumatics,' Sound, Heat, Light,
"Electricity; Astronomy; and Mebeorology."
121. The Professor of Chemistry "teaches one class, lectüring' an' hour each of the "teaching days, that is five days a week, and he has a practical class, decturing three "additional hours. The subjects tanght are Chemical Physics, including the Chemical
"' Relations of Cohesion, Adhesion, Heat, Light, and Electricity ; Chemical Philosophy,
" including the Atomic Theory ; the, Non-Metallic and, Metallic Elements and their
"Compounds, and Organic Chemistry." .".". ${ }^{n-}$ ". ". "'
122. Of the Chair of Civil and Natural History, which is in private patronage, we have received the following account, form the Princlpal of the University :- ":
"It was origunally the Chair of History, which was interpreted to mean Civil Fistory. The University Commissioners gave it the; name of the Char of Civl and Natpral Bustory. The Char does not belong to the curnculam, and it has not been practically an useful Chaur ever sance I recollect, and my recollection extends to the period when I was a Student, ws wrell as since I became officually commected with the Univermity. Dr. Ferrie was the Professor when I was a Stadent, and ha lectured occmanally tupon General History. The class was attended for three or four lectures, and then it ceased. Dr. McDonall, the present Professor, The class was attended for three or four lectures, and than it caased. Dr. , McDonaly, managed to get a class, but from many causes the class has not been regalar,"
"Then yan would say that the Unveranty at present gives no insmruction in any branch of Natural History? -I eamot-say that it does."
This condition of things was, however, described by another Witness as only temporary, and we learn that on the death of Dr. Macdonald, a Naturalist was appointed to this Chair.
123. The Professor of Medicine and Anatomy has a class described to us bythe Principal as a semi-popular one the lecture' being chiefly devoted to the hygrenicsaspeots of thet equ. 9636 . subject. No Examination is held in this Class,' whech qenérally numbers about 30 and is chiefly attended by the Senior Students.

Museum and Library.

124. The University Museum is represented to us as fairly good; the , collection is mainly a local one, but it is pretty complete in all the Departments of Natural, History, . and as a Teaching Museum it is in excellent condition.

The University Library is a very extensive one, consisting of about 110,000 volumes; but the buildings in which it is placed do not afford proper accommodation for the books. These buildings, like most of those in the Scottish Universitues, are the property of the Nation, and the expediency of a grant for their extension has, we are informed, been under the consideration of different Goveraments during recent years.

Financial Statement.

125. The Capital Fund of the University is about 21,000t., and its annual income App. V., consists of the interest on this sum, and the Matricalation and Graduation Fees, p. 70 . amounting to 500%. or $600 l$, a year. A sum of $600 l$. a year, received as commutation of the University's right to books from Stationers" Hall, is spent upon the Library. The total expenditure upon this, however, including salaries to librarians, exceeds this amount. The income of the Colleges may, be taken at $2,67 q l_{2}$, but, the appropriation of the whole of the College revenues is determined by Act of Parliament or by Ordinance of the Commissioners, so that there is no surplus, revenue from, College, Funds available for other purposes. We have received from the Senior Principal "the followitg, Statement of the only sums which can, in his opinion, be considered as applied from Endow'ment, or' from Votes by Parliament to the Advancement of Science or 'to ${ }^{+}$Scientific

*Thase sums represent the additionsi to the Emoluments of the Chars recommended by the Commussioners of 1858

App. $\bar{\nabla}$. pp. 70.71.
126. A similar return for the past year will be found in the Appendix. It will be seen that the emoluments of the Scientific Professors are uniformly low.

Number of Students, and amount of Fees.

127. The number 'f Students attending the Classes in the Faculty of Arts during the Session 1874-75 was 118. The number attending the Faculty of Theology was 23, making a total of 141 Students, 'thus distributed among the Colleges :

$$
\begin{align*}
& \text { Number of Matricuilated Students at the United College . .'. . . .' . } 118 \tag{118}\\
& \text { Number of Matnculated Students at St. Mary's Collige }
\end{align*}
$$

128. Students attending the United College pay a Matriculation Fee of $1 l$. on entering, and a fee of $3 l .38$. for each Class they may attend during the Session. Should they attend three Classes, which is the average number, the annual payment made by each Student amounts to 10l. 98. In the event of their proceeding to Graduation in Arts, a further fee of 1l. 18. is payable for each of the three Departments of Examination. Students of St. Mary's College pay a Matriculation Fee of 1l., and a Fee of $2 l .28$. for each of the Classes they attend, which is in general three in number,

Deficiency as regards Assistants and À Apparatus.

129. The Scientific Instruction given in the University of St. Andrew's suffers equally with that given in the other Scottish Universities from the want of Skilled Assistants.
130. With regard to Laboratories and Apparatus, we have it in. Evidence that although the Professors of Chemistry and of Civil and Natural History, ind of Medicine and Anatomy, have their respective apparatus, and receive annually from the University a grant for the purpose of adding to and restoring it, the apparatus is very inadequate and the sum allowed insufficient for the parpose for which it is intended. The Principal of the University expresses his conviction that the University requires additional apparatus and appliances for teaching, and states that the University has no funds
131. The Professor of Chemistry recelves from the University an annual grant of 52l. 10 . for all the working expenses, including apparatus, chemicals, and Assistants. It is scarcely matter for surprise that the whole of this sum should not have sufficed to provide the two former items, and that the Professor has in consequence never had any assistance at all except that which one of the Senior Students has, from time to time, been, in his own interests, willing to afford. The Professor has given it as his opinion that, " in present circumstances, an assistant at a salary of not less than 80l. is "absolutely necessary; and it would require a sum of from 100l. to 120l. for the pur" poses of apparatus and chemicals, and waste of materials," that being the amount of the sum which he has voluntarily made up out of his own pocket, in order to keep the class in efficient working.
132. The Professor of Natural Philosophy receives also 52l. 10 g . for all expenses, and out of this sum 12l. only is, he informs us, available for the payment of an assistant. When

[^20]asked, "Do you feel the want of an assistant of a different kind from that , which you " are enabled to provide under the present arrangements ?" the Professon replied; ;
"L do very much indead. 'Indeed, I am obliged every day that I give an experimental lecture tó' work for a great many hours, never less than' four hours, doing a great deal of work which an assuatant ought to do. Then on the other alternate days, by antacipation, I am also obliged to work im preparing experimeits, so that a great deal of tume is, occupied m doug common work, which an assistant mught do. Even our present stack of exparatus is valuable, and will, every year, become more so: and in the event of increased grants, we may expect to have a very valuable stock of apparatus, in a few years. It is extremely deamable that some Curator of such a collection of apparatus should be provided, able to take care of it. Such an assistant as I have, at 12l. a year, although he 19^{9} an extremely intelligent and perfectly honest man, has not knowledge enough to be entrusted with such a collection. It would need man mpecially, educated to take charge of such क्ष collection",
133. The Scottish Universities Commissioners, who, in consequence of the inadequacy of the resources at their command, provided very insufficiently for the appointment of Para. 22. Assistants to the Scientific Staff 'of 'the other Universities; did not recommend a grant for this purpose to the University' of Sta Andrew's, which has accordıngly, been obliged to fall back upon its own slender resources.
134. It is our opinion that the Teaching of Science should be encouraged in this, at in every other University, as a part of the groundwork of a Complete System of Education, and that the Staff of the University; and the Appliances at its disposal', should be sufficient to secure this end. 'We are not, however, disposed to suggest any steps which might have the effect of erecting at St. Andrew's Technical or Medical Schools such as those of Glasgow or Edinburgh.

Proposed Connection with, Dundee.

135. 'The University of St. Andrew's is' distant 11 or 12 miles in a direct line from the town of Dundee, from which, moreover, it has been hitherto effectually'separated by the intervening. Frith of Tay. The completion of the bridge now under construction will, however, render the town and the University much more accessible to each other, and it has been suggested, that, advantage, sshould, be taken of, therr , vicinity, in order to conneet them for purposes of education.
136. We have received Evidence'with regard to the' expediency of establishing Classes,' taught by the University Staff, for artisans in the' town' of 'Dundee, 'and of founding in Dundee a School of Science affiliated to, and in close relations with, the University. A large building known as the Albert Hall; and containing a Public Library, has been designated as suitable for some such purpose. Whatever may be the decison ultimately arrived at, it must be obvious that no such instruction could be given in Dundee by the University Staff, unless that staff were very considerably increased.' 'The Professors have already as much work as they are able to undertake. We have pointed out that they are far from being adequately provided with skilled assistance, and it would, we think, be unreasonable to expect that they should, in addition to their present lectures and practical classee, travel backwards and forwards between St. Andrew's and Dundee in order to lecture, to working men in the evening, or to, attend to such Students as might be unable or unwilling to make the short journey between the two places,
137. A certain number of the Students are' natives of Dundee, and we may expect that the number will increase. "Many of these Students would, "in the event of effect being given to such a scheme as that which has beenn indicated to us, probably cease to reside at St. Andrew's, and would lose 'thereby' the opportunities offered them for acquiring; the gioundwork of a sound general education. It is further to be observed. that the Establishment of a separate Science, School in Dundee would necessitate, not only an increase in the University Staff, but also additional Laboratories, and of other appliances which could not be provided except at a very large increase of expense; while, as we have already stated, there are no funds at present available for these purposes. Such an arrangement could only be justified on the grounds of its absolute necessity, and of this we are by no means satisfied, taking into consideration, on the one hand, the ease with which a student who is able to devote the greater part of the day to his studies will be able to attend the St. Andrew's Courses, and, on the other hand, the partial and limited character of the Instruction which artizans, or other persons most of whose time is engaged in professional or commercial pursuits are likely to derive from attendance at Evening Classes.
noy38: 诲e desire, saso, to expremsour disapprobation ofithe suggeation which has, it would appear; tbebmr made'tod the 'Unitersitys that the "Scientific Chains. of. St: 'Andrew's University should be transferred bodily to Dundee, and that a separate Faculty of Science should be created in that town. "It seems to us almost needless to insist on the hardship which such an arrangement would inyolve ta those Students who now undergo, while in residence at St. Andrew's, 8 course of combined Literary and Scientifio Instrua tion," and who might be called 'upon to attend possibly during the same day classea in each, of the, two towns, We should object to the Scheme "of thy ground rloce, "but' we do so stall more from our conviction that, it is undesirable to decentralise and separate the different Faculties of the same Universities." Such a System tends in the direction of narrow and specialised education, widely different from that general "and broidly grounded" culture which it is the true propince of an University to promote.
t: 139. Since, the date at which our Evidence warreceived, we have beer made aware of tha 3xistence cof :s Scheme which has met with considerable encouragement, in the town of Dundee, rand of which the intentioh is to foinn in that townift College in whigh might be "acquired the highest attainments in Literatureysoiencebrand, Art," wheh is, College might it it was, suggested ${ }_{2}$ ber affiliated to the peighbouring ${ }_{1}$ University, the , connection impilying if that the Teachng of the, Cpllegen 1 , , fecognized by the University as, sufficient ifto, quthorize, the Stuqdents $1 \mathrm{in}_{\mathrm{c}}$ that College to compete, for Degrees conferped by the "University "u The cost of giving effect to such a a Scheme is estimated, by its promoters
 sum of this magnitude being raised by local or other contripptoons, and, We, do not therefore, feel called upon to express any opinion with tegard to the merits of the Scheme, of which the outline only has been before us. We cannot, however, believe that an University so ancient antlitioldisting unished" as that"br 'St. Andrew's, possessing a
 are likely to remain lopg dissociateq or or that the, citizens, of Dundee, in the event of the establishment of, easier, and, rmore, rapid communication with, Sf, Andrew, will be slow toisyail, themselyes of, the adpantages afforded by the proximity of the Upixersity
 extend its establishments for the Teaching of Scietios; ;foe should mot hesitate to recom mend that hocal, efforts fo meet the necessary rexpenditure shonld be supported by a

T:Conolusson bad Recimmerdations.
 by the traditions and associations of a long and interesting history; it needs, we believe, in order fo the fall development of its, usefulness for the purposes of Scientific Instruction, only', such assistance as will enable the Professors to give efficiently that education which with the limited, means at their, pusposal, the y are now endeqwouring, to propide
 Governforit' Grant sufficient to 'enable the Uriversity to prowide the Professors with an adequate Staff and with"the proper bppliances! forp Instruction int Science, and to revise the salaries of tha Scientific Professors, regard, being, had to the disparity of their endowments and to the, income which they derve from fees an account, of the Expenditure of the Annual Grant being submitted to, the Gopernments with a wiew to the exercise of

", 1422' Tf this bedone', we see nör reason'why the University should not be able, without dismemberment or removal, to enlarge considerably the area so which fits beaefits extend.

ABERDEEN.

143. It will be observed, on reference to the Correspondence printed in, the Appendix to Appendix, this Report, that the University of Aberdeen has declined, to pavail, jtself I of the oppor- VI., p. 72. tunites offered to it of tendering Evidence before this Commission." If In' 1
144. We have, however; received from the Principal, the following Statendent of the sums (derived from Endowmentsor from Parliamentary Greqnts) which are available for Scientific Instruction in the University :T:

*'145. "The A'ts' Curriculum in this Unversity'does nót appear'to differ materially, in so far as the Scientific Subjects which form a part of it are concerned, from that of the other Scottish Universities, with the "exception 'that, "under' Ordinances 18, 'it has required all Candidates for Graduation to attend the Lectures of one of the Professors in the Department of Natural Science.
145. No Degree is given in Science, but Candidates for Graduation with Honours in Arts may offer themselves for examination in the , Department of ${ }_{j}$ Natural Scrence, 1 , which includes, as in the, pther Universities, Geology, Zoology, Chemistry, and Botany.; The Regulations for Graduation appear to , us to be judicpous, and, in accordance with the principles which we have advocated should be adopted elsewhere
146. The University contains a Medical School, and we learn from thé Calendaf that Calendar for there is a Museum of Natural History containing icollections of Zoological, Geological, p. 24. and Mineralogical Specimens, and that there are other Collections used for purposes of Calendar for illustration in connection with the different Classes oi the Medical School.
147. The number of Students attending the University Courses in the-Unversity of Aberdeen during the past Session (1874-75):was'as'follows:-

Faculty of Arts	3
Faculty of Divinity	
Faculty of Law	
Faculty of Medicine	

Students in both Arts and Medicifee $[,: 15\}^{13}$

- Students in'both Divinty fand Medicite

4Total number of Students ' dit 603 .

$$
\text { " } 2,500 \text {, but the subjects of competition weie in former days confined to Classical }
$$

"Literature. For several years one fourth of the marks has been given for Mathematics, "1and by a Scheme, "coming into operation next year, Chemistry and Zoology, are "'admitted into the list of subjects. The obvious tendency of such a competition is to "make, the bursaries instrumental in stimulating the study, of Science in the, Schools " preparatory to the University."

Summary of Recommendations with regard to the Universities of

 Scotland.15i. 'In conclusion of ourc'Inquiry into the Universities of Scotland, we beg leave to submit the following Summary of the Recommendations which we have had occasion to make in' the course of the above Report:
Paras. 80,81. With regard to The Oniversity of Edinburgh we have Recommended::
I. That increased assistanee be given, both in the form of a Capital Sum in aid of a - well-considejed Scheme of Extension, and in that of an Annual Grant sufficient to enable the Unversity-(1) To increase the number, and, in some cases, , the emoluments of Assistants; (2) To make more ample provision of Apparatus, for Teaching ; and (3) To revise the Salaries of the Scientific Pro'fessor's, regard being had to the disparity of their endowmenta, and to the income which they derive from fees.
II. That the Grant of any Capital' Sum in aid of the Extension of the University be contingent upon the receipt of substantial contributions from private sources.

Paras. 104, 111.	With regard to The University of Glasgov, we have Recommended: I. That the Chair of Natural History be divided in the manner most advantageous the University; and that'provision be made out iof moneys voted by Parliamen for endowing a new Professorship.
	I工. That the Government Grant be augmented sufficiently to enable the University to make an increase in the Payments on account of Assistants to the Scientific Professors, and to'rrevise the Salaries of the Scientific Professors, regard being had to the disparity of their endowments, and to the income which they derive from fees.
	That assistance be afforded by an increase of the Government Grant sufficient to enable the University to provide the Professors with' an adequate Staff and with proper Appliances for Instruction in Science; and to revise the Salaries of the Scientific Professors, regard being had to the disparity of their endowments; and to the income which they derive from fees.
	have also Recommended generally
	That an account of the Expenditure of any Annual Grant prade to the Uni sities above referred , to, be, pubmitted, to the Government, with a view the exercise of Parliamentary control.
	That for the future, two ${ }_{1}$ Classes be recognized in the Natural Science Ho List.

III. The University of Dublin and Trinity College :

152. The University of Dublin contains only a single College, Trinity College, which was founded by, Queen Elizabeth in 1591 , and created, a Corporate Body, consisting originally of a Provost, three Fellows, and three Scholars. The Foundation has been enlarged from times to time ${ }_{j}$ and there are now, 7 . Senior and 26 Junior Fellowships, and 70 Foundation Scholarships.
153. The principal subjects referred to, in the Evidence, which, we have taken with regard to the University of Dublin and Trinity College, are, the following ;". in
"I. I. The Courses of Study and the Examinations.ui" :

- II. The Exhibitions,' Scholarships, and Studentships: ${ }^{\prime}$.
III. 'The Provostship and the Fellowshipst 'in

V. Museums and other Scientific Institutions, "!:
VI. The Councl.
I.-The Courses of Studuriand the Examinations:

154. For admission into the University, a Student has to pass an Entrance Examinatiou ${ }_{3}$ which includes Classical and other Literary Subjects, together with Arithmetic and the elementary parts of Algebra. "At the Entrance Examination there is a further Examination for Honours which is confined to Classical and other Literary Subjects.
155. Sizarships, tenable for four years, may be obtained at Entrance. They are awarded by the result of a. Competitive Examination, which, however; is open only' to Students of limited means. One Sizarship is awarded annually for proficiency in Mathematics.
156. As regards the mode of obtaining a Bachelor of Arts Degree, the University of Dublin occuples a position intermediate between the older English Universities, on the one hand, and the University of London, on the other. At Dublin, as at Oxford and Cam. bridge, a certain number of Terms must be kept before the Degree can be obtaned, and provision is made for the Instruction and Discipline of Resident Students; but a Non-resideat Student is accounted as having kept a Term if he passes an Examination held at the beginning of the following Term.t There are thius two distinct ways in which a Term may be kept: (1) by actual residence, combined with attendance, at the prescribed Courses of 'Lectures'; (2) by passing the/Term Examination.
157. There are three Terms in each year,--the Michaelmas, Hilary, and Trinity Terms,-T and the Undergraduate Course extends over four years. It is not, however, essential that the Student should keep all these twelve Terms.' He must; pass in; succession through the four Classes of Junior Freshman, Senior Freshman, Junior Sophister, and Senior Sophister, Classes which are designed to consist of Students of the first, second, third, and fourth years respectively. To pass from Junior to Seaior Freshman, the Student must have kept at least one Term by examination, in his frst. Year. ' To rise to Junior Sophister, he must have lept at least three Terms in all, of which one at least (which may be kept in either way) must be kept in; the Senior Freshman's year, and he must further pass an Examination at the beginnung of the third year., The Final Examination for the Degree of Bachelor of Arts is held in the Michaelmas Term of the Senior Sophister year, and before admission to it the Student must have kept oue Term by Examination as Junior. Sophister, one Term etther, way as Senor Sophister, and a third Term either way in either year.
158. Thus, a Student, before presenting himself for the Final Examination for the Degree of Bachelor of Arts, must bave, kept at least, siz Terms, properly distributed, of which two at least must have been kept by Examination, and he must have passed one Examination besides the Entrance Examination and those by which Terms are kepta,
159. The natural operation of these rules would be that Resideut Students would, as a rule, keep many more Terms than the minimum required, for the sake of profiting by the Lectures, while Non-Residents would content themselves with passing the Examinations absolutely required, with, perhaps, such additional days of examination as are, given to Candidates for Honours. Thus, as regards Residents, although orily six Terms, of which two must be kept by Examination, are nominally required in the whole of the four years, the system practicaliy agrees with that which prevails at Oxford and Cambridge; while, as regards Non-Residents, although a larger number of examinations are requred to be passed than at the University of London, the position of the Unversity towards the Student is in principle the same, and the University acts' merely as an Examining Board.

Qu. 12,738. 160. It is stated by Mr. Jellett, that it is the general opinion at Trinity College that this substitution of attendance ail Idectures for es part of the Examinations. Which would otherwise be required for Degrees works satisfactorily; and that it is generally thought that attendance at'a Course of Lectures, which are, in a large degree, catechetical, ia a more satisfactory test, and comminnicates to the Student a greater amount of knowledge than a simple preparation for an examination, no mattar, how good the examination may
Qu. 12,739. of Lectures.

谁 u lus

Qu. 12,744. 161. "The obligatory Subjects of study in the beveral years are as follows :-In the first year Mathematics "and some "Classics ; in" thel secondj" Logic, 'a certain "amount of Metaphysics, and again.Classica; in the third, Mathematical Physics, namely Mechanites and Astronomy, and reithernClassics or Experimental on Natural Science; in the fourth, Astronomy and Ethics, and twalontiof the Ifour branohes-Classics, Experimental

162. In the designation of these Coarsies, it should, be observed that the term "Natural Science," being distinguished from "Expermental Science," is' used, in a restricted sense. The subjects embraced in it are Zoology, Botany, Geology, and (in the cabe of Moderatorships) Raysiology and Cgmparative Anatomy,$^{\prime \prime}$, $\boldsymbol{r l}^{\circ}$
163. A Student is free to devote himself to Science alone from the end of his second year er and as the frisit ryear, ig allowed tor, bencounted, by passing an Eatrance. Examination' held ofiear the tend roft the ithard Terms, and, ono Firstryear Examination held at the' beginining of the first Term tof the followingl academical, year; a Sciepce Studeut may be free frome the obligation: to "study Clasica | after [litule more than a year from entrance s; and, 'sipprosing' he takes. his Degree rqf: Bachelon of IArts ; at, the usual time, hes fas' then ₹two 'yearsi left roft Bisi Undergraduate, Gourse which: he \}may, devote to
 : 164. ${ }^{2}$ Ate ehch Term-Examination, therel are Examinations for those Students who are qualified to beodme Candidatestor Hobours in the several Departments of Undergraduate
 Matketratice, rClassics. (2.) Senidr Freshmeny. Mathematics ; Classics ; Logic. (3.) Juhior Sophisters ; Mathemàtical Physics; Classics; Metaphysict ; Expernmental Science; Natural Science; Modera'History 5 Madern Literature. (4.) Senior Sophisters: Mathez maticar ${ }^{\prime}$ Physics'; Classics ; Ethics; Experımental Sciencel; Natural Squence; History and Political Sciencéy Moderd Iiterature.,
165. At the Examination for thé Bachelor of Arts Degree, phich is held in the Mighael. mas Tein of the fourth year, examinations are held fox Special Honours called Moderator shifjer 3There"afe , seven Courses in which Moderatorshipe may" be obtained; pamely,

 -Senib? dild Jumior, tatcording tol menitos's
"1 166."Thertet aré four Profossionali Schools recognized br; the, Nuıversity ;' namely,
 severat Faculties', but onlytufter the Prelitnnary Degree of Bachelor of Atts has been tobtainéd. ' Prôféssionäl Students followt therustal Arte Course fon the first two yeare, after twhieh'they are'at sliberty' to commence there, Professional Studies.' If they do so, they
 ${ }^{1}$ Professional Studies.) The Professional Studies decapy two years at the deast.

167 fithas beeré alyeáay ydentiótét that Sizarships are obtainable at Entrance. These,
 'to those' whoset'perents dr "gudrdians are of dimited meansy do not fall ander the head of emoluments hawarded purely according to merit.
168! In 1870 it twes resolved by the Board that 20 Exhibitions, of the value of 251 . a year teach, tind tenable fon two yearis, Bhould be awarded amnully, provided sufficient merie 'were 'stiown'by fithe Gaudidates.' Of these Exhibitionis 12,:which' are called Junior Exhibitions; arefoffered for competition to $\operatorname{Stadents}$ of the first year, and the remaining 8 , which are called Senior Exhibitions, tare dotainable at the close of thée second year.:"
-169.'The Juntor'Exhibitions are'adardéd accordug to the result of' an Examination
 Trigonometry,

S170.' The Senion Exhibitions are :awarded according' to the marks obtained partly jin a Special Examination in subjects similar to the above, and in Logic and Locke; partly." in the Prize Examinátions, iniMatbematics, Classuce, Luogics, and Eaglish Literaturee and
 n171. There are 70 Foundation Scholarships, tenable from, the time of election till the holder is of M. A. standing st The Scholars are of, two classes, elected, for, Sciegntific and for Classical Merit respectrvely ei Candidates fon Science Scholarshipss are exammed, in Pure and Applied Mathematics; together with a cartaid, amount, of L Logic and Metaphysics. .The tvalue attached to the sexeral branches in athe Examination is expressed br the following numbers in Pure Mathematics, $250 ;$ AppliediMathematics, 250 , Logic; anduMetaphysics, 100 . Candidates for these. Scholarships aqe at: liberty to. substitute the course in Experimental Physics of the Junior Sophister year don the, course in. Logic. : 11 :172. There apéi alsoj seven Scholarships, of Purvate Foundation, for subjects not: connected with iscience, and 30 . Scholarships founded by the Commissioners of Education in Ireland for Students from the Royal Schools of Armagh, Dinggannoa ${ }_{j 1}$ Enniskillen, or Cavan. These latter are awarded for general proficiency in a course comprising Classics, English Language and Literature ${ }_{2}$ Modern Languages, and Science. The number of marks assigned to Scientific Subjects is 100 out of 450. The principal Scientific Subject is' 'Pute' Mathematics as' far as Plane Trigonorhetry. The' Exanition includes, however, Physical, as well, as Descriptive Geography,
173. By a Royal Statute of 22 Victoria, 14 'Studentships were founded int Trinity Collegel open to candidates, of all religious denominations, to bel teriable fow "a' period not ex-1 oeeding seven years, with 'g' salary to' be fixed by' the 'Provost and Senion Fellows, not exceeding took. a'year, Two Students are electedue very year according to therresults of the Moderatorship Examinations.r The award is decided by thes aggregate mertin two Courses, one Primary and one Secondary, which bear credit as-3- to 2. The Primary Course must be one of the two-Máthematics and Rhysics, off Classicss (ThenSécondary Course may be either the remaining one of thosetwoy wif any othee. of thec.Moderatorship Courses.
16.

174. The Provost, who is the Resident Head of the hollege, is ppponted by the Clown. Besides presiding over the whole College' he is, in compon with the Senio Fellows, fesponsible for the Expmnatigns which devolve on the Board.
175. There are 33 Fellowships, which are tenable forilife, irrespective of the restriction of celibacy, and are now open to all without distinction of creed These are divided into 7 Senior and 2Gir Junior, The Senior Fellowships are filled by co-optation from the Junior ; the Junior, by an aunual; election lin case-there bee ardacancy:" Thd awerage númber of vacancies has latterly been hardly more than one per annumi-1 will is 'w'
176. The Fellpwships are awarded in accordance with the results of a Special Examination extending over ${ }^{\text {a }}$ a wide range of subjects comprised-in foar principal courses, the relative importance of which is approximarely determined by numbers/representing the maximum obtainable, hy the highest possible answering in the sseveral courses. These numbers are aq follopram

177. It will be seen that Classies and Mathematics rank considerably above ayy other course. Mr. Jellett says in his eridence, "If a student's object is, to optain a Fellow" ship, he must, practically speaking, be either a good mathematician or a good classical "scholar. I think that a man whol is neither a good mathematician por a good classical " scholar would have a very slight chance indeed of obtaining a Fellowshipn"; , hiv'
178. The award being made atrictly in accordance with the result of an examination, there is no provision for taking account of Original, Research in the estimate of the merit of a candidate. Mr. Jellett observes on this point: ' 3 The thing I know has been talked of Qu, 12,759. "several times, 'but' we'never could'see a practical way of earyying out such a thing.?
179. It is understood that the emoluments of a Senior Fellowship in Trinity College; Dublin, are much greater than at Oxford or CambridgellwÂs regards the, Junior Fellows; their ncome' is, to a 'great extent; dependent upon their being all rengaged, in College work. Mr. Jellett-says, ". All oux Fellows ane-engaged in teaching. We have no Qu 12,754, "Fellowships, gf the nature, that they have at Oxford, and Cambndge; they are more
"' of the nature of prizes. We take a man's life, and we require him to give his life " to it."
180. Formerly; there was a certain number of Non.Tutorial Junior Fellowships, but now all the Junior Fellows have to give lectures, whether they be Professors or not. As the staff is large, and the lectures of the Fellows naturally harmonise with their own pursuits they, or, at least, many of them, have a good deal of leisure, and have, therefore, an opportunity of engagng in Original Research, which is by no means neglected.
181. A Junior Fellow may look forward to succeeding in time to the seniority. The Senior Fellows are exempt from the duty of lecturing, but, with the Provost, form a Board to which, within the limits prescribed by the Statutes, or by any Regulation made by the Senate at large, is entrusted the General Management of the University. On this Board devolves aleo the Duty of Examining for Fellowships, Scholarships, and Sizarships; but it is at liberty from" among the. Professors"or Junior Fellows. - Such, at least, were the rules prior to the Establishment of the New.Courcil.

Thr Professoriate.

182. Most of the Professorships in the University of Dublin, which are of ancient foundation, were established to pipmote the study of Divinity or Literature, but several have of vecent years , been founded in warious branches of Science, and the University possessesi,the power of establishing additional Professorships as they may seem to be requrred. . The ,following is a list of the Scientific Professorships at present existing, including therein those which refer to Professional Studies of a Scientific Nature :-

[^21]Arts or Faoulties in the University, and the appointment and election of Professors. But by the Letters above mentioned, a Council has been established to co-operate and bave a share in the Regulation of the Studies, Lectures, and Examinations of the College, and in the Appointment and Election of Professors, and the Regulation of the tenure of office and of the duties of such Professors.
184. The Council consists of seventeen members, the Provost (or in his absence the ViceProvost) being ex officio Member and Chairman, and the remaning sixteen being elected out of the Members of the Senate, or Public Congregation of the University, four by the Senior Fellows, four by the Junior Fellows, foun by the Professors who are not Fellows, and four by those Members of the Senate who have not voted, nor been entitled to vote, at the last Election of any existing Member of the Council, either as 'Senior Fellows, as Junior Fellows,'; of' as Professors.'
185. "The Council has the nomination to all Bursarsbiips," except those,' thè nomination to' ${ }^{\prime \prime}$ which ' is provided for by Act of Parliament, or, by the Directions of Private Founders.
186. The nomination of the Council is' subject to the approval' of the' Board", except'in the case of Bursarships in the Schoolvof Divinity. If the Board should refuse to approve a nomination of the Council, the decision rests with the. Chancellor.
187. It is also provided, with certain exceptoons, that any new Rules or Regulations, ànd any alterations in existing Regulations respecting Studies, Lectures, and Examinations, or respecting the qualifications, duthes, and tenure of offic of any Professor, shall require the approval both of the Board and of the Council.

Museums and other Scientific Institutions.

188. The following Museums are used for the purposes of Practical Instruction in Trinity College: the Museum of Natural Philosophy; the Museum of Zoology and Archæology; the Museum of Geology and Mineralogy? the Museum of Engineering Models; the Museum of Anatomy, Materia Medica, and Midwifery, the Museum of Botany. In connexion with the last must be mentioned the College Botanic Garden, which is situated about a mile from the College, and contams eight acres of ground.
189. About 20 years' ago the College erected' a handsome and 'commodious building in the College Park to' contain therr collections, 'and' to provide working rooms for the Students.

Trinity College has three Chemical Laboratories. The first 'of these is intended for the use of the Professor and for Orginal Research. The second, or Student's Laboratory, is entirely devoted to Students who are leapning Chemistry as a Practical Science. It is capable of accommodating 56 Students. The thard Laboratory, is attached to the Lecture Theatre in Applied Chemistry, and belongs more especially to the Engineering School.
190. The University possesses an Astronomical Observatory, which is available for the Instruction of Students. The Professor of Astronomy has charge of the Observatory, and is the Royal Astronomer of Ireland. This Uffice was founded in 1783, and since that date has been held by such distingushed men as Dr. Brinkley, Sur William Rowan Hamilton, and Dr. Brunnow.

Professor Jellett informs us that "The Astronomical Observatory has lately received Mnutes of " large additions and improvements. The large object glass presented to Trinity "College by Sir James South has been mounted as an Equatoral in an Observatory " specially constructed to recerve it, and a new Meridan Circle, with all the modern
" improvements, and carrying a telescope of six inches aperture and eight feet focal
" length, has been ordered from Messrs. Pistòr and Martin, of Berlin, and is expected " to be completed in the course of the next month."

There is also an Observatory, "erected for the special purpose of Observations Muutes of " in Meteorology and Terrestrial Maguetism. In this Observatory an elaborate series Evidence, " of Observations at stated hours has been canied on during a lengthened period; and Vol. II.,
"the Results of these Observations for the first eleven years have been recently Appendx \mathbf{V}.
" published in two quarto volumes."
191. There is at present no Laboratory specially appropriated to Physics. The University Authorities appear to be fully conscious of this defect in therr Scientific Arrangements, and the erection of a Yhysical Laboratory on an extended scale is in contemplation.

Genbral Remarks.

192. In Trinity College, Dublin, as in the old English Universities, the prospect of obtaining a Fellowship furnishes the highest class of Students with a powerful motive
for exertion, and the studies for proficiency in which tellowships' are 'usually awarded accordingly attract special attention. 3 : Thei proportion iof Students who are -directly influenced by such considerations must, however, be considerably smaller at. Trnity College, Dubln, than at Oxford or Cambridge. For not only are the Fellowships much less numerous, in proportion to the number of Students, than at the English Universities, but, inasmuch as they are tenable for life, irrespective of marriage, the succession is slower; nor could this state of things be changed without an entire remodelling of the System of Fellowships, which we do not think desirable. The great mass of Students, and even of , the more promising Students, must, therefore, soon perceive that they have no chance of obtaining a Fellowship.
193. 'Accordingly', any alteration in the studies which have a predominant influence in the award of Fellowships would, at least in its direct influence, affect only a much smaller number of Stadents than at :Oxford or Cambridge. Indurectly, no doubt, such change would not be without influence, for the fact that the most powerful minds are turned towards particular studies by, preference, must tend to commend those studies to the great mass of the Students.
!
194. The rarity of vacancies'renders it exceedingly difficult to reward by election to A Fellowship proficiency in any'one of a variety of branches of study. There-is probably but one Fellowship to be bestowed in a year, and if one or two great branches of study are selected as exercising ia' prellominant fofnence, highly qualified candidates ate 'sure to present themselves; and it would be a matter of extreme difficulty to compare firstrate claims in three or four different great branches of study.
195. We think, however, that it would be very desirable that in the election to Fellow-
 and we believe that if thss were done, it would be possiblej, without lewering the Standard of the Examination, to enlarge the Range of the Scientific Subjecte fncluded in it.- We have already mentioned' thas the' subject has not been overlooked by the University Authorities, though hitherto no practical method of dealing with it has presented itself.
196. Fronis thér 'Ténure and the Conditions of their Award, one object for which the 'Studentships are designed would seem to be, to assist those who are reading for Fellow. ships.' The subjects, therefore, for which they are chiefly awarded naturally, agree with those which enter inta the Examination for fellowshipges

- '197. The number of Foundation Scholarships, however,' annually awarded is 'much greater, and there appears to betio reason why theyquould all follow in the line of the Fellowship Examination, and be eeither mainly for Pure and Applied Mathematics, or else mainly for Classicsilin We, thinkr that' some. Foundation 'Scholarshıps might well be assigned as a reward for eminent proficiency in Pbysical or Biological Science. , how'

IV.-The Queen's' University in Ireland.

Foundation and Administration.

f198. The Queden's University in Ireland was founded by Royal Charter, dated the 3rd of September, 1850. 'A Supplementary Charter was granted on the 17th of July, 1851; but, subsequently, both these Charters were revoked; and a New Charter was granted on the 8th of October, 1864, under which the University is at present constituted.

- 199. The circumstances which led' to 'the Foundation' of the Queen's University are well known, and need not be referred to here. ,They are sufficiently indicated by the Provisions which prohibit the University from imposing any Relgions Test, from Granting any Distinction whatever or any Degree in Theology, or even from admttung any person to a Theological Examination.

200. The General Legislation, Government, and Administration of the University under the Oharter,' and in cases not provided for by it, 'aze vested in the Senate of the University: The Senate consists of nineteen persons' nominated, the first instance, by the Crown, and holding therr offices at the will and pleasure of the Crown. As vacancres arise, the Charter provides that every alternate 'vacancy shall be filled by the Convocation of the University untrl six places in all have Been so filled up. The Senators elected by Con-vocation are to be elected from 'the Members of Convocation not holding office in any of the Colleges" of the University, 'and each Senator' so elected holds office for' three 'years' from the date of his election, or during the will and pleasure of the Crown: Outgoing Senators may be re-elected.
201. The Convocotion of the Úniversity consists of the Chancellor, Senators, Secretary; Professors, and Registered Graduates of the University for the time being; all Graduates of two years' standing being entitled to register. . The Powers of Convocation, besides that, already referred to, of appointing six Senators, are extremely limited They have, however, the right of discussing any matter whatsoever, relating to the University, and of declaring the opinion of Convocation thereon; due notice being given, a week previously, of any such discussion. But it is expressly provided that Convocation shall not be entitled to interfere in, or to have any control over, the affairs of the University.
'202. The principal' duty of the' Senate is to make Byelaws and Regulations touching' the Examinations and Qualifications for Degrees, and' other University Distinctions;'such Byelaws have, howerver, to be submitted to the Lord-Lieutenant, and to be approved of by him.

- 203. The three Queen's'Colleges at Belfast, Cork; and Galway were founded at the same time' as the Queen's University', and are declared in its Charter to be Colleges of the Universitys 'The Presidents of thé three Colleges are, 'exr officio, Members of the Senate. Each of the Colleges has a Charter of its ownj and, in all matters of internal government, is "undependent of the others, and of the 'University.' The Governing Body of each College consists of a President; iand of a Cowncil composed of s1x Professors 'elected by the Professors of the Colleges:
${ }^{11}$ 204.: In its general outlines ithe Course of Study, in the Colleges is regulated by the Byelaws of the Senate, which determine the character of the University Examinations, but the manner in which the Students are to bet prepared for these Examinations is left entirely to be arranged by each College. The Degrees of the University are granted only to Students who have resided and have gone through a Course of Instruction in one of the three Colleges;', The Medical Degrees form; to ' a certami extent, an exception, as bnly one year of study in 'a' Queen's' College is; ;equired from' a Candidate for a Medical Degree, land' the remainder of his irstruction may be obtained in any' other; Medical School.: The Professors in the three Colleges haye, by Charter, the status of Professors of the Queen's University, and conduct the University Examinations in that capacity; although they lecture only in thein capacity ass. College Professors. Thus, the Examinations are under the immediate control of the Universitys but the Teaching in the Colleges is so only indirectlyi 'Nevertheless,' Sir Robert Kane contends that the Queen's Qu. 13,204. University " may be reganded quiter geqmucho as the University of Edinburgh, "or the E 2
"University of Oxford or of Cambridge, to be strictly and properly a Teaching
"University." "We attach," he adds, "some importance to that question"....
"The Colleges are Colleges of the University, not, as in the London University, " where the Degrees are given to any persop who presents himself, and who chooses to " pass through certain Examinations, without reference to" whether he has ever gone
" through any really Educational Course in a Collegiate Institution or not."

205. The Queen's University grants Degrees in Arts, in Law, in Medicine, and, besides, the Degree of Bachelor in Engineering. 1 For the Degree of Bachelor' in Arts, the Student has to pass two University Examinations, called; respectively, the First Universtry Examination in Arts and the Degree Examination in Arts. The Pass Examination in the First University Examination in Arts includes Greek, Latin, a Modern Continental Language, and Mathematics and Mathematical Physics. For the Degree Examination in Arts, the Student has to select a ceitain number of subjects from a list prescribed by the Senate. The Degree of Bachelor of Arts is attainable without any knowledge of Science beyond that included in the Course of Mathematical Physics, which comprises Mechanics, Hydrostatics, Optics, and Elementary Astronomy, as treated in very elementary works,
206. In addition to these Examinations, each College imposes a Matriculation or Entrance Examuation and Sessional or Mlass Examuntions. No Student who does not pass the Matriculation Examination as, admifted to the College, and no Student who does not pass the Sessional Examination or a Supplemental Examination, which is held to provide for cases oftyailure in the, Sessional Examination, is allowed to count his Session, but is obliged to go, through the course of, study of that year over again. It is stated, in the Evidence, that the Sessional Examinations for promotion are conducted very strictly, so that, for example, in the Examination held in Cork at the close of the Session of 1870-1, " an the Faculty of Arts out of a total pf 50 Students, 23 were promoted and 27 were " not promoted. In the Faculty of Law there were nine Students, of whom five " were promoted and four were not promoted. In the Faculty of Engineering, out of "/ 30 Students, 14 were promoted and 16 were'not promoted; so that of ' 89 Students, 42 "" "ere promoted and 47 were not promoted; 'but a large number of that 47 would get " in in October, by means of the Supplemental Examination." "'
, The University Examinations are all held in Dublin. Formenly 'they used to be conducted in the Colleges, although by the University Professors, and on papers sent down from the University; but it has been now arranged by the Senate that even at the First University Examination all the Students 'must be examined in Dublin. Thus, it is stated, has been found more 'cordiucive to thé proper conduct of the Examinations, and to the convenience of the Students themselyes. The Standard of the University Exami-
Qu. 13,189. nations is said to be fully as high as, the Standard in Trinity College, Dublin,
'207.' 'So tar as the Degrees in' Arts,' Law, and Engineering are concerned, the Examining Body is entirely composed of the Professors, acting not as College Professors, but as
Qu. 13,214. University Professors. "'The firee Proféssors in each branch 'of Science or Letters, for " instance, the three Professors of Chemistry, or the three Professors of Mathematics, " form a Board of Examiners, and the Examination Papers are prepared in common, a " portion of the papers being prepared by each Protessor. Then the Students are " examined on those papers, and the value of the answers is judged by the Professors "conjointly acting together." With regard to the Medical Degrees, those parts of the Examination which refer to Practical Medical Subjects are conducted by outsiders. "The University Senate reserve to themselves the power of appointing any Examiners "that they wish, and, generally speaking, they appoint some of the most eminent Dublin " men from the Dublin' Medical Schools to examine." They' consider that they probably "'get a somewhat highericlass lof Medical Practitioners from'Dubliu than they could "g get from merely provincial towns, and also remove the suspicion of partiality in the "Professors examining their own pupils.": ",

Scholabships.

208. In each of the Colleges there are forty-six Junior Scholarships-thirty of the value of 24l. each, for Students pursuing the Course prescribed for the Degree of A.B.; eight of the value of 251 ., for Students ; pursuing the Course prescribed for the Degree of M.D.; three of the value of 20l., for Students in Law; and five of 20l., for Students of Civil Engineering. The Junior Scholarships are awarded annually, by a General Examination, and are tenable for one year only, with the exception of those awarded to Students in Arts of the second year, which are tenable for two years. The Scholars of any year are not disqualified from being candrdates for Scholarships the succeeding year. There are also in each College,eight Senior Scholarships, of the value of 401 . a year, of which.
one is given each 'year to Greèk and Latin, one' to Modern Languageś and Modern History, one to Mathematics, one to Natural Philosophy, one to Metaphysical and Economical Sciences, one to Chemistry, one to Natural History, and one to Law. All Graduates in Arts of the Queen's University are ellgible to the Senior Scholarships; these Scholarships are awarded by examination, and are tenable for one year only, the Scholar not being re-eligible. Certain duties are imposed both upon the Junior and the Senior Scholars, the Senior Scholars in particular being required to assist the Professors in the Matriculation and Class Examinations, and in conducting the business of the special Departments of Literature and Science to which their Scholarships severally belong. They are also required to pursue, under the superintendence of a Professor, an Advanced Course of Study in one or more of the branches in which they have been examined for the Scholarship. If no candidate of sufficient merit presents himself, the Scholarship (whether Senior or Junior) is not filled up During the five years, from 1866-67 to 1871-72, "c in " the Faculty of Arts the total number of Scholarships available was I85, that is, including "both Senior and Junior Scholarships taken altogether, and the number awarded was " 129, or $69 \frac{1}{2}$ per cent. In the Faculty of Arts there were, thus, only seven-tenthe of the "Scholarships conferred. In the Faculty of Medicine, out of 40 Scholarships available, " in the five years, there were 35 conferred. In the Faculty of Engineering, out of 25 "available, 22 were conferred; and in the Faculty of Law, out of 20 that were available " 19 were conferred; and the rotal result was; out of 270 Scholarships, 205° were given " or it may be taken as 76 per cent. of the Scholarships. Those 270 Scholarships, in " the five years, were competed for by 1,190 Students, which gives an average of about " five Students, competing for each Scholarship." It is unquestionable that young men of abulity are attracted ta the Queen's Colleges by the probability of obtaining these Scholarships, and we may infer from the, Evidence that the Standard of Instruction in the Colleges would be much lower if it, were not for the presence of this class of Scholars, Thus, Professor Purser states, "My principal difficulty arises from the widely different " degrees of progress Students have made before they enter College. We grant, in "Queen's College, Belfast, Scholarships to Students at entrance, and half of them are " given for attainments in Pure Mathematics. These are, very eagerly competed for, and "consequently we find a contingent of the Students come up well prepared. On the " other hand, the greater number of the Students in Arts know but the first elements " of Mathematics."
209. Besides the Junior and Senior Scholarships, to which reference has just been made, a certain number of Eshibitions and of Prizes has been established in the Queen's University with funds raised by a public subscription originated by Sir Rothert Peel in 1861. In the Faculty of Arts there have thus been provided three Exhibitions of 20l., three of 15l., and two of 101 , all tenable for three years. In the Faculty of Medicine, and also in the School of Engineering, there are each year two exhibitions, one of the total value of $40 l$, the other of 301 . All these Exhibitions are given away, in accordance with the Results of the University Examinations, to Students who satisfy certain conditions as to standing, \&c. Some of the Exhibitions are, assigned in equal proportions to the three Colleges; the remainder are competed for by Students in any one of the three. They have not been established in perpetuity, but only for a period of 10 years. A fund, however, amounting, at present, to 3,408 l. is beng raised with a view to the future continuance of the endowment.

Number of Students:
210. 'The' Number and Distribution of Students under Instruction in the Queen's Colleges in Ireland in the Session 1873-74, was as follows :-

3 *

212. At the Queen's College, Belfast, the number of Arts Students showed a tendency

Qu. 13,302.

Appendix to diminish during the eight or ten yeare preceding 1872-73. Two causes are assigned for this falling off by, Professor Purser: (1), "that the number of Candidates for the Presbyterian Mmistry has of late, years diminished," whereas such Candidates usually took the Axts Course-in the, Queen's College before entering the Presbyterian Theological College and (2), that during a period of commercial prosperity, there is an inducement to prepare young men for trade and, business rather than for a profession. A decided increase is shown by the Returns for 1873-74, and 1874-75.

"少is." The followhen are the Professorships of Science in each of the Queen's Colleges: Mathematics, Natural Philosophy, Chemistry, "Natural History, Civil Engineering, Geology, and 'Minetalogy, 'Anatomy and Physiology. In Belfast, there is a Professor of 'A'griculture", and, 'on the 'other' hand, the Professorship of Natural History is united with the Professorship' of Geology 'and Mineralogy!
${ }^{11}$ 21'4'The stipends of the Professors are partly derived from a fixed salary and partly from' the fees of the 'Students.' The 'fixed salaries vary from $150 l$, in the case of the Medical' Professors,'to $330 l$.' in the case of the Professors of subjects included in the Arts Course.
215. With regard to the appliances for teaching, the Evidence tends to show that they are in some respects insufficient. Each College receives, 7,000l. a year from the Consolidated Fund, 'but this amount is entirely appropriated to the payment of the stipends of the Professors and of the 'other Officers of the College. "In addition to this, there is an annual Parliamentary Grant of 1,000l. a year to each of the Colleges at Cork and Galway, and" of $1,374 l$. to the College of Belfast, out of which the whole of the establishment expenses of the Colleges, and any augmentations of the Museums, Libraries, or Collections of Apparatus have to be provided. The annual grant was originally 1,600l. a year, but it was reduced to the present amount about ten years ago, when the inadequacy of the Professorial Salaries was brought under the notice of the Government. The salaries, were augmented,' but the fuids 'required for the augmentation were obtained by trenching on the only resources available for the supply of apparatus and books.
216. With regard to Belfast, it is stated that the apparatus in the Laboratory of the Professor of Chemistry, if fully maintained, would be sufficient for the Practical Instruction of the Students, but that to maintain it properly with the present funds of the to those Medical Students who attend a Summer Course in Practical Chemistry. But the Students who go through a more extensive course of training in the Chemical Laboratory are elected by Examination, and are admitted gratuitously by Professor Andrews ': who not only himself pays the salaries of the Assistants, but also provides gratuitous instruetion to such Laboratory Students. The apparatus at the disposal of the Professor, of Natural Philosophy is described as decidedly inadequate. Professor Canningham, who holds the: united Professorships of Natural History and Geology and Mineralogy, says that there is "a museum in which the Geology and the Zoology are "c best represented, upon the whole, but we have a very fair Herbarium of British Plants, ". and there us the Botanical Garden belonging to the town, which allows us specimens of "plants during my course, on payment of a certan sum by the College to the Garden." The Professor has no Assistant, and his share of the annual grant of $1,000 \mathrm{l}$. is about 50%. or 602. The Senior Scholars who are required to assist the Professors are not, found to supply adequately the place of regular Assistants. Professor Cunningham says, "I have " ${ }^{2}$ Sencor Scholar, whò is appöinted annually in my Department, and he is supposed to
"give me some help when I call upon him to do so in connéxion with other duties. If
"he, is a very good man, I may occasionally get a little help from him in the Museum,
" but nothing very essential." And Professor Purser states that it is "exceedingly " difficult for the Professor to teach all [the, Mathematical Students] at the same time.
"s I and my predecessors have endeavoured to, meet this difficulty; to a certan extent, by
" making use of the Senior Mathematical Scholar, a Graduate who has been elected to a
" Scholarship for one year after taking his Degree. I have derived in this way much
" valuable aid from the Senior Scholars, but, such aid is quite insufficient, and a regular
" and permanent Assistant to my chair is most urgently needed, to render the traning
" in the Mathematical School thoroughly efficient." Nor are the services of the Senior Scholars always really at the disposal of the Professor. "In many cases the Seniot
" Scholars are studying for a Profession or some Civil Service Appointment, and it
" becomes very irksome to them to have their time drawn upon to any large extent,
" and the College feel a difficulty in doing so."
217. In Cork similar deficiencies exist. Sir Robert Kane states that of the grant of 1,0007. annually voted by the House of Commons (to which must he added about 100l. derived from fees paid by the Students to the College), no less than $550 l$. were absorbed by the Establishment and Admmistration Expenses of the College in the year ending the 31st of March 1872, leaving for the whole of the Scientific and Literary Departments only about 500l. This is a sum which must be regarded as totally insufficient, when it is considered that there are four Literary Departments to be conducted, and Collections of Books to be kept up in a satisfactory state, besides the several Scientific Departraents! Sir Robert Kane adds, "we have done our best with the funds that were at our'disposal for pro" viding apparatus and illustrations of all kinds, but we have been obliged ito jo it it with " such parsimony, I may say, that we are possessed only of the material that is absolutely " indispensable for anything like proper teaching." "We have no means " whatever at our disposal for advancing Science. All that by any possibility we can " pretend to do, is, so far as our means allow, to represent to the Students the " actual condition of Science, but we have no means whatsoever by which we could "pretend to advance it.". At Cork, however, the Departments of the Natural History Museum are described, with one exception, as being in a tolerably satisfactory condition. There has been formed in the grounds of the College "a small garden containing "such plants as are useful in illustrating Lectures on Botany and on Materia Medica " in the Medical School, as will grow in the open air in these countries, but we have " no conservatories. We have had no funds available for the purpose, and the Govern" ment has never conceded to us the means of erecting a stove house, in which we could
" have a collection of such Tropical or Sub-Tropical Forms as would render our illustra-
" tions of living plants more complete. * * * * That is, I think, almost
"c the only point in which our means of illustration in Natural History, or at least in
"Botany, is defective."
218. In Galway the Cheraical Laboratory is described as adequate, and the Museum of Natural History is tolerably well supplied with Zoological and Botanical Specimens, and with Diagrams. "The Geological Museum $1 s$ well supplied with fosslls, which "are ranged stratigraphically; there is a very good supply of rocks, both native " and forenga, and of course Irish ${ }_{\text {i }}$ and there is a very good supply of models of "crystals, along with diagrams and geological maps and sections, that are used for
" lecturing purposes." There is no Practical Instruction in Physics.

Conclusion and Recommendations with regard to the Queen's University in Ireland.

219. In Founding the Queen's Colleges, the State did not adopt the Principle of Assisting and Stumulating Local Efforts, and if we except the Exhibitions and Prizes, to which reference has been already made, as having been provided by public subscription, and a few other Exhibitions which have been founded at Belfast, no voluntary contributions have been received by them. They are Institutions for which the State has made itself responsible, and in which, as part of an University System, a complete Scientific Traiining is implied.

220. As we think it of grat importance that the sanction of the State should not be given to the Teaching of Science on a scale inadequate to ensure its efficiency, we recommend;
221. That an increased Annual Grant be made to the Queen's Colleges for the purpose of providing Assistants, Apparatus, and the other necessary Appliances of Practical Scientific Teaching.
We further recommend :
II. That the Professorship of Natural History in the Queen's College, Belfast, be separated from that of Geology and Mineralogy.

All of which ne humbly beg leave to submit for Your Majesty's gracious consideration.

(Signed)	DEVONSHIRE. LANSDOWNE. JOHN LUBBOCK..

JOHN LUBBOCK.
JAMES P. KAY-SHUTTLEWORTH.
BERNHARD SAMUELSON
W SHARPEY.
THOMAS H. HUXLEY.
G. G. STOKES.

HENRY J. S. SMITH.
J. Norman Lockyrr,

Secretary.
June 18th, 1875.

APPENDICES.

LIST OF APPENDICES.

APPENDIX IAPPNDI.48, 44
I. Correspondence relatng to the Fees recaived in the Financial year 1874-75 - 48

1. Extracts from the Civil Service Estamates for the Financial Year 1876-76 थ.
APPENDIX III. Correspondence relating to the Amount at the disposal of the Commissionersunder the Universities (Scotland) Act, of 195844
II. Extracts from the Civil Service Estimates for the Financial Year 1875-76 tb.
APPENDIX III.
 46,471. System of Examinations for Degrees in Science in the University of Edinburgh - 46
Non-Professorial Examiners in the Faculty of Medicine in the Unversity of Edinburgh - - - - - - - - - - - - \quad -IIL. Statement of the total Emoluments of the Professors and Assistanta, and Scheduleof Lectures and Laboratory Instruction -

$$
\text { VI. The proposed New Buidungs for the Dmapersity of Edunburgh - - } \quad \text { - 65-67 }
$$

APPENDIX V

I. Income of the University of St. Andrew's * - * - 7
II. Statement of the total Emoluments of the Professors and Assistants in the Universaty of St. Andrew's, and Schedule of Lectures and Laboratory Instrue-
 III. Number of Students attending the University of Sto Andrew's - Fees payable by Studenta at the Umversity of St. Andrew's \quad - \quad. 71,72 APPENDIX VI.
L. Correspondence between Her Majesty's Commissioners and the Principal of the University of Aberdeen
Number of Students attending the University of Aberdeen
III. Fees payable by Students at the University of Aberdeon - - $\quad 73$

APPENDIX TO SEVENTH 'REPORT.

APPENDIX I.

Exhbotions at Firct M.B. Emaminatroen:

Two in 1873, 401 per annum each, two quarters

Eahbuttons at Firyt LL B. Eramunation :

 One in 1874, 401 per annum, yearOne in 2875, 401

> Unversaty Scholarthupz in Arts:

One in 1872, 50 l per annum, three quarters - $\quad 37$ io One in 1875, 501 . In one quartey $\mathrm{K}=$: 1210

Onsuersty Scholarships in Science:
One in 1873, 501 per annum, three quarters : $\quad 3710$ Two in 1874,502 p, esok, year Three in 1875,50l. ", m one quarter

$$
\begin{aligned}
& \text { University S̈cholarshups sm, drts, arad } \\
& \text { Suxence; }
\end{aligned}
$$

One in 1878, 50l. per annuith, year - - : 1500

Unveersty Medioal Scholarahups:
Two in 1873, 30l. per annum, each, three quarters

Two in 1874, 301 के \cdot,
One no 1875, 502, " one quaster- i 1210
Two in 1875, 301. . is eaoh - '
Unwersty Syrgual Scholarshyps. One in 1874, 50 l per annum, year $\quad 500$

1210 One in 1875, 50% ' y, one qquarter . 1210

$100+0$
3710

450

Unverenty Law Soholarihpos:

One in 1874, 501. per annum, year One in 1875, 50 .		
Prues: ' '		
At Matriculation, June, 1875 and Jan. 1876		
Frrst B.A. Exammation, 1875	20	O
" B A. Degree. 1875	30	0
Sernptural Exemınations, 1876	30	0
\checkmark - Medals:		
One Gold Medal at LL.D. Degree, 1876 - 20		
, " ${ }^{\text {a M.S. " }}$		
Fourteen", in Mediane", ", 51. each 70		
		0
Deduct Amount that may not be payable	250	

Total for Exhibitiong Scholarships, Pruses, and Medale - - $\quad 41,6650$ D.-Lat Exprangea , - . 200
E.-Incidintal Expanama:-
Expenses at Sorentricic and Medioal Examinan
tions
Mamntenance of Library Mamntenance of Labrary - $\quad . \quad 1000$
Sundrees, znoluding "Pontage, Carriagso of

- Papers, and Expenses of Convocation $-150 \quad 0$

At Matricalation, June, 1875 and Jan. $1876=100$
s. First B.A. Exammataon, $1875=10$

Pne Gald Medal at LLL. D_{f} Degree, 1876 , 200
, , Total for Incidental Expensea - eia75 0

APPENDIX II.

 Digposal of the Commisbioneras ander the DniTEEGITLES (SOOTLAND) Act of 1858.
[In reply to a telegram.]

> 38, George Sgaune Edenburgh,

Stin, Or merint June 14, 1877 .
ON receipt of pour talegraim, askang me for docimentary endence regardang my statement that the Scottash lumted to the amaual sum of 10,0000 to be voted by Parhament for the better endowment of the'Scotangh Univargitres, I wrote to the Lord Justice-General as by far fhe best anthority on the subject. I have received (and with it perioussion to use it as I mey think fity the anclosed statement of facts in reply.
I beg leave to forward it for the use of the Royal Comemission, and asir that it may be permitted to appear ars an Appendux to my Endence
Imm, ke
P. G. Thit.
3. M. Lockyer, Theq.

My drar Propegsor, Edinburgh, June 10, 1875.
In reply to your note of yesterday, I am masble to In reply to your note of yesterday, I am unsble to
you a reference to any Documentary Evidence un give you a reference to any Documentary Evidence in
support of your statement, that the Unversities Commissuppors appointed by the Act of 1858 werce lumited to the surm of 10,0001 per annum as the smonert of the total sum of 10,0001 per nanum as the amonnt of the total
addutions which they were to make to the Endowraents of the Scottush Universines But I can give you positive assurance of the fact I was, as you know, Lord Advoassurance of the fact I was, as you know, Lond Advocate at the trme, and obtained the aanction and consent of the Cabinet to the messure which I introduced, and which Was passed un the session of 1858, on the additional sum to be provided by Parliament shonld not exceed $10,000 \mathrm{~h}$ per annum. .
Afterwards, as Charman of the Comm r by the Act, I had the best meang of knowng that the Commassioners considered theioselves to be hmited by thus condition, and wonid, but for this condition, have been dusposed to draw mach, wione liberally on the funds to be provided by Parliament.
It is highly probable that this matter forms the eninect of a Treasnry Mmpte, of whuch, I daresay, a eopy conld be obtained. But I never thought it of any mportance
to ask for any such endence, because the arrangement between the Cabinet and myself was so distinct. Believe me, \&c.
Jorm Inglis.
Profengor P. G. Tart.
II-Eimitacts from the Civis Survios Eistimates for the Financtal maar 1876-76.
A-Univergity of St. Andrim's 2,105
A-UNIVEREITY OF ST. ANDRKW' 2,811

215,885
Detailif of the above.

- Unted College of St Sal
vator and St. Leonard.
The Factor or Steward, for the use of the Princspal and
Masters

Total for 8t, Andrew': Unuversity $\overline{\text { e2,105 }}$
The present holter of this ofice recelvez fol shen was Member of

APPENDIX III.

1.-System of Examinations for Degrees in Secence in the University of Edinburgb.
II.-Non-Professorial Examiners in the Faculty of Medicine in the University of Edunburgh
III.-Statement of the total Emoluments of the Professorn and Assistants, and Schedule of Lectures and Laboratory work.
IV.-The Number of Studenta attending the University, V.- Stafement of the Fees paysule by the Students VI.-The proposed New Buldings for the University of Gdunbuygh
1.-System of Bxaminations for Degreers in Schence in the University of Edinburgi.
[In reply to a telegram]
University of Edinburgh
Msy lst, 1875. P to this tome the Exammanons for the Degreet in Scrence have been almost entirely conducted by the Professors, each Profesbor exsmining on his own subject. Some assistance has been given by the Non-Professorial examuer m Natural the absence of the Somentar Subjecta examined on are the essors of the Ncriners ithereve that the question of esponito edditional E rammers not Professors for the appointing zaditional Exammers, not Procasora, or of the University Court; but in this in in other matters affecting the University, ubeful reforms and advisable madufications are retarded through mant of funds to pay the additional Examiners, for \boldsymbol{I} should explann that the the additional Examiners, for 1 should explam that the Professors examine without receiving any remuneration for the benefit of their services in that capacity without any cost, The number of Candidates for the Degrees in Science as as yet small, not amounting, I think, to more than enght or tem in the year, the fees also are small, so that the revenue derived by the University from this source is trifling.
The University Conrt, however, has thoroughly recogorsed the principle of associbting whith the Professors addıtional Exammers who are not Professors, and has, as explanned in a former letter to the Commssioners, carried this out in the Examinations for Degrees in Medicine. I have no doubt that, did the funds of the University pernut, the Court would appoint Non-Professorial Examiners for the Degrees in Science
I hope that I have now accurately apprehended the question and given you the anformation requred; but should the Commissioners atill deare further information on this or other matters appertaining to the Univeraty, I shall be happy, so far as hes in my power, to supply it
J. N. Lockyer, Esq. Belueve me, \&ce.Turner.
P.S Sance writing the above I have seen Mr, Christison, the Secretary to the Unversaty Court, who unforms me that there is doubt whether the Court has powers, under Ordinance No 8, Section 5, as amended on 6th of August cine to examine also for Degrees in Scrence If the money dufficulty, however, dud not exist, the Court, by the powers it at present possesses, could at once provide Non-Professorial Examiners in Science.
W. T.

Raculations for Graduation in Scirnce
(From the University Calendar, 1875-76)
[Referred to in Professor Turner's Letter of May Ist, 1875]
Two Degrees in Scaence are conferred by the University of Edinburgh, viz, Bachelor of Scence (B Sc) and Doetor of Scrence (D'Sc.) Both these Degrees are conferred in Physicad and Natural Serence, in Public Health, snd in Engineering In Mental Science and Phulology, the Degree of Doctor of Scrence only is conferred

Sgction A.-Pgybical and Natural Scirnce.

I Qualifications requiged in Candidateg.

1. Candidates for a Degree un Physical and Natural Scuence must give proofs of having received a hberal education by bemg exther-
(a) Bachelors or Masters of Arts, by examination; of Briash or recogrised Colonual Univerentaes.
(b) Bachelors or Dootors of Meducine of British or recognised Colonial Universiaea.
(c.) Holders of two Departmental Certificatea in the Paculty of Arts of this University
(d.) Matriculsted Studentis of the Univeraity of London, If certified for Greek and for Logic or Moral
Phuloaophy
2 Faling any of these qualitications, the candidate must pass a Prelrminary Examination in Enghash, Latin, Arthmetic, the Elementr of Mathemstica, and the Elements of Mechanios; and he must also pastan Examination on as lemat two of the following subjecta Greek, French, German, Higher Mathematica, Natural Philosophy, Logic, and Moral Phuosophy.
Candidates for the Prehminary Examination are examined at the same time as those for entrance into the Study of Medicune For furiher details as to the Preliminary Exemunations, see Notices under "Medical Graduation"' in the Calendar
3 They must also produce evidenoe of attendance on qualifying Classee embracing the subjects included in the 4.ence Examination which they purpose to undergo.
2. The attendence on guch clases must extend over three Academic years, one of which muat be passed at the University of Edinburgh, the other two years either at this University or at Universities or Instatutions* recogmised by and approved by this University.
b, Each Academic year must be conatituted by ettendless than 100 lectures dung at least two courses of not ese than 100 lectures each, or one course of 100 lectures and two courses
mand Candidate for a Degree in Science muat be matriculated for the year in which he appears for Exam-

7 .

7. The Fizat and Second Examination for Degrees in Science muat in each case be faken at a single period
II. Examinations.

For the Degree of Bachelor of Sceence thare are two Examinations, conducted by written questions, as well an orally and practueally.
(a) First Bachelor of Science Emamination

1. The Firet, Examination for B Sc. 38 an to the general knowledge of the Candidate on the followng oubjeeta, via. | Mathematycs. | Zoology, meluding Com- |
| :--- | :--- | Natural Philosophy. parative Anstomy.

Botany.
Chemustry.
2. The Examnations in Mathematics and Natural Phylosophy take place on the disys of Examination for these aubjecte, announced in the Regulations for Graduation in Arts
3. The Examonations in Chemstry, Zoology, and Botany bake place at the same time as the examinations on these subjects, announced in the Regulations for Graduation in Medicine.
4 Exemptiona from Exnmination:
(1.) Persons posaeasing the followng qualifications are Exempted fro
a. Mastert of Arts who have taken honourm in the Natural Sciences after pasmig the exammatione Natural Sciences after pasin
for M.A. in this Univeraty
A. Bachelors and Doctort of Medicme and candrdates for these Degreen who have taken honotur in the Natural Scrences at their profensional examunataons in this University, and who have aiso passed with distanction in Higher Mathematics and Natural Philosophy in therr extruprofesonozal or prehminary exsmunation: iders of certhicates from the clasues devotad to any of the above subjects in Scrence in the University of Edinburgh, showing that the candudate obtamed at least 80 per cent. of the avaulable marky during the Seasion, will be exempted from the arritien examination on that sabject.
(3.) Masters of Arts are exempted from Exammation in Mathemstice and Natural Phulowophy.

The Institution to be epproved of by the Universtit mind bo of a

(b.) Second Bachelor of Science Emamunatron

1. The Second B Sc. Examination 18 divided into the following groups, one of wheh must be professed by the candidate.-
(a) The Mathematical Sciences $\{$ Higher Mathematncs Natural Philosophy
$\begin{aligned} & \text { (b) The Physical Experimental } \begin{array}{l}\text { Sciencea }\end{array} \quad \begin{array}{l}\text { Experimental Physies, } \\ \text { Chemstry }\end{array} \\ & \text { (c.) The Natural Sciences }\end{aligned} \quad-\left\{\begin{array}{l}\text { Zoology, Botany, Phy }\end{array}\right.$
(b) The Physical Experimental $\left\{\begin{array}{l}\text { Experimental Physacs } \\ \text { Scrences }\end{array},-\left\{\begin{array}{l}\text { Chemstry } \\ \text { Zoology, Bowny, Phy }\end{array}\right.\right.$
(c.) The Natural Sciences
(o.) The Natural Sciences - $\quad \begin{aligned} & \text { Zoology, Bowany, } \\ & \text { siology, Geology. }\end{aligned}$

2 The Examunations in the first two of these departments (except in Chemistry) will take place at the same time as the Examination for the Degree of M A , and in the last (and in Chemistry) at the same tame as the Examination for the First M B Professional Examination
3 A. Candidate who has passed the First B Sc Exam nation may proceed to the Second after an interval of sux montha.
4 a. Candidate who has passed the First and 'Second B Sc. Examinations will be recommended to the Senatu for that Degree, which will be conferred at one of the usual tumes appointed for giving Degrees
(c) Doctor of Sosenoe Examination

1. A Canddate who has recewed the Degree of B Sc may proceed to that of Doctor of Science, after a lapse of twelve montha
2. A Candidate for the Degree of $D S_{c}$ must profess one of the above-mentioned sciences, of which he will be expected to have a thorough knowledge
3 He must submit a Thesus contanning some onginal Researches on the subject of his intended Examination, and much Thesis must be approved before the Candidate is allowed to proceed to Examination
4 The Degree of D Sc will not Be^{\prime} conferred on any Candidata who has not completed his 2lat year. .
IIL. Fems.

The following to the acale of fees which are charged for the Degrees in Scrence (sects A and B) -

1. For the Preliminary Examination, or for Registration of Qualification
For the Furst Bachelor of Science Examination Examination -
For the Doctor of Scrence Examination " " ${ }^{\circ}$

01	1	0
2	2	0
2	2	0
5	5	0

Candsdatea for Sorence Examunations should announce then names and addresses to the Regastrar, and pay the fees, before the 5th of March on the lst of October. In the event of a Candidate not passing either of the B Sc or D.Sa Examinations in Sections A, B, and E, the fee 18 not returned, but be may appear st one subsequent examnation without paying an extra fee, and at any future examination on paying one half of the fee
IV. Outline of Subjrets reauirbd in Examinations for Digrers in Scrence.
First Bachelor of Scuence Erammation.

1 Mathematics.

Euchd, Books 1.-nt with the first twenty-one Propositions of Book $\mathbf{x I}$.
chementary Trigonometry and Come Sections.
Elementary Algabra, including Progressions, Surds, the Binomial Theorem, \&o.

2. Natural Phlosophy.

(a.) Applied Mathematios, including the treatment by

Elementary Geometry, Algebra, and Trigonometry
of the following subjects (such as may reasonably
be aoquired in one or two sessions" attendance at a course of Natural Philosophy)
Kinematics, iucluding Velocity, Acceleration, Augular Velocity, Smple Hamonc Monon, \&e, and their compoathon and resolution.
Abstract Dynamios, including Elementary Statics, Kinetics, Hydrostatics, and Hydrokinetics
Geometrical Optice
Plane Astronomy.
(b) Expeminental Phys.es, inciuding-

Laws of Motion
Properties of Matter
Sound and Harmonion

Light, with the fundamental principles of the Undulatory Theory

Heat, with the fundamental prinerples of the Dynamica Theory
Electricity, uncluding the Experimental Laws of Static and Galvanic Electricity, Induction, Magnetism, and Electro-Magnetism
Conservation of Energy as the experimental law of physical phenomena

3 Chemistry

${ }^{1}$ Classification of Elements General Laws of Chemucal Combination and Action, as illustrated in the simpler com pounds of the more commonly occurring elements Symboli Notation-
Preparation and Properties of the Non-Metallio Elements and their chief Compounds Manufacture of Sulphuric, Nitrec, and Hydrochionce Acrds and Ammona.
Classification and General; Properties of Acids, Bases and Salts,
Manufacture and Properties of Soda, Potash, Nitre Gunpowder, Limestone, Lime, Mortars, Cementa, Clay Moware, Porcelam, and Glass
Metallurgical operations in general Preparation of Iron Zinc, Copper, Lead, Tm, Mercury, and Sulver, from then Ores Principal salion Composition of Cast-Iron, Wrought tron, Properthes,
Iron, and Steel
Classefication of Organe Compounds Alcohol, Acetre
Acid, Wood, Sugars, Starch, Coal Gas, Coal-Tar, Olls, and
Fats, Saponufication
Simple Quantitative Analysis [The Examination in Analysis is conducted practically].

1 4. Zoology, meluding Compaxative Anatomy.

Distinctive characters of the three great Kingdoms of Nature
Ideas involved in "Specialisation of Function" and "Morphologacal Type",
Homology and Analogy. The general structure and physiology of the followng groupe of Anmais.-
Mammalia, Aves, Repthina, Ampinbia, Pisces
Insecta, Myrapoda, Arachnida, Crustacea, Annelda,
Rotifera, Nematelmenthes, Platelmenthes
Echinodermata
Cephalopoda, Gasteropoda, Pteropoda, Lamelhbranchatata
Brachıopoda, Tunicata, Polyzor
Actinozoa, Hydrozos
Infusoria, Rhizopoda, Spongına, Gregarınæ
The candidate will be required to refer to its proper
group, among those named above, any specmen which group, be exhbbited for this purpose by the Exammer

Phyaical Geography, in so far especially as it is concerned whth the geographical distribution of orgame beings

5 Botany

Candudates to be examined on the structure and functions of plants, the principles of classification, classes, sub-classes, and sections of the Natural System, and a few of the promelpal Ordexs, as enumerated below
Trext Book-Balfour's Class Book, or has Manual of Botany.

More specific statement of Subjecta.
Elementary Tissues of Plants, their chemical constrituents, contents, and mode of development.
General characters and functions of the Root, Stem, Leaf envelopes of the Flower, Stamen, Pistil, Frut, and Seed. Phyllotanis, Inflorescence, Anthotexis, Metamorphosss, Vernation, Ástivation, Stipulation, Placentation Respration and Transpiration Movement of Sap and its causea
Embryogenc process in Phanerogamic and Cryptogamic Plants

Germination. Propagation by Buds and by Division Phanerogication of Plants Coluiar and Vascular Plants, opermous and Gymnospermous), Monocotyledons, Aco tyledone ; Exogens, Endogens; Acrogens, Thallogens. - Botanical characters to be demonstrated on conspicuous specumens of the following Natural Orders "-
Ranunculacew, Papaveraceæ, Cruciferm, Carophyllacea Malvacem, Stercuhacew, Leguminosw, Rosacee, Onagraceze, Umbelluferw, Dıpsacaceæ, Composite, Campanulacee, Boragnacem, Labiatee, Scrophulariacea, Primulacem, Euphor biacem, Salicaces, Corylacer, Conferm, Cycadaces, Or obydaces, Amarylldaces, Musscex, Lulhacem Palmex, Cyperacez, Grammez, Flices, Musci

Derivation and meaning of the more important Botancal terma

Second Bachelor of Scumoe Bisamatatrons.

(a.) The Mathematacal Scrences.

1 Mathematucs

Algebra, induding the Theory of Equations.
Trigonometry, Plane and Spherical.
Analytical Geometry of two and three dumensions. The Differential and Integral Calculus,

2. Natural Philosophy.

For the Second Examination, the sama subjecta will be taken as in the Furst, but they will be carned out with ligher application of Mathemance, and with s more sinct Expermental part of the subject.
(b) The Phyaucal Experimental Screncea,

> 1. Experimental Phyaics.

Candudates will be required to show consudarable fami harivy with the processes required for the determination of physical constants, such as, for instance, the Specric Heat the Specific Inductive Capacty, the Tharmal and Electric Conductuvity of a substance, the Velocity of Light or of Sound, the Magnetic Dip, Varnation, and Horizontal Intensity, \&ec., \&ec.

2. Chemustry

The seme subjects as for the first Bachelor of Scence Exammation, but carried out in greater detail, and in addition, the connexion between Chemacal Composition and Crystalline Forms, and Optanal and Tharmia Properties.
Complex Qualitative Anslyais. ; [The Exammation in Analysis wrll be conducted practically.]

> (c) The Natural Sciences.

1 Zoology, meluding Comparative Anatomy.
Same subjects as for First Bachelor of Sorence Exrmonathon, but cearried out in greater detanl.

2. Animal Physiology,

1 The alimentary sabstances approprate for the food of animala
2. The processes of mastrcation, insslivation, and degIntition.
3 Digestion in the stomach-the effect of the gastmo juce upon the food, and the nervous influencea The functions of the hues
4. The functions of the hiver. bload
6 The generga functions of secrenion, Comparis ond the structuas and actions of the of animals
The gencral fumctions of the nervons syatem.
9 The general fumctions of the
10 Muscular contractibulity.
11 Functions of the cerebral lobe and of the cerebellum.
12 Functions of the spmal cord.
13. Theory of refiex or diastaltic functions.
3. Botany (Speciainsed.)

Vegetable Hastology, Vegetable Morphology, Vegetable Physiology, including Development.
Systernatic Botany-The atructure and phymological
charscters of the princpalinatural Ordens of the Vegetable Kingdom.
.
4. Geology, inchuding Palexontology and Muneralogy.

Physucal Geography, Meteorology, and Dynamscal Geology The nature and operation of Geological agents: Rain, Ruvers, Ice, the Sea, Earthquakes, Volcances Movements of Upheaval and Depression.
Mineralogreal and Peirographacal Geology-Charnatera on Rock-torming Minerals: Componitnon, Ongin, and Distribation of Rocks.
Atruetural Geology -The Structure of Rock-masses: Joints, Bedding, Clearage, Foluation, Metarnorphiem, Fanlts, Unconformability, Denndation.
Strathgraphecal Geology -The History of the Geologicel Formatuons of the British Islands.
Paleontologscal Geology,-Characters and Distribution in tume of the more important Ganame and Ordern found fossil im Bntain.

Drotor of Secomoe Erumination.

1. Mathematnon.

The oandidste will be requirad to show vary high astann ments in one of the followng subjects:

1. Geometry and Thigonometry.
2. Analytrical Geometry.
3. Algebra,
4. The Differentual Calculus generally.
'6. Special departments, anch as the Calculus of Varib-
tions, the Theory of Determingnts, Quaternions, \&o.

2. Natural Philowophy.

Candidatos are requured to pass pasarching examination in one of the follownig subjects or groaps of subjects (in in one of the followng subjects or groups of subjecta (in
all its details), and to show more than a mere elementary knowledge of at least theo otherss t-
(A.) Applied Mathematios.

1. Abstract Dyiamics, moluding Kinemstras,
2. Acoustros and Theory of Light.

3 Conservation of Energy including the Dynamical Theory of Heat
4. Electricity, including the mathematical theories of Static sud Voltanc Electricitys Induction, Magnetism, and Electro-Magnetism.
5. Phymical Astronomy, meluding the Lunar and Planekary Theories, the Figure of the Earth, Precession, and Nutation.
(b.) Expermental Physics, or Science of Observation.
6. Propertres of Matter.
6. Properines of Matte
7. Sound and Laght.
8. Heat and Energy (genarally).
8. Heat and Energy (kenarally).
9. Electacaty, Magnetism, \&ce.

(o.) Prachcal Astronomy.

1. Nautical Astronomy, and suoh applications of reasived bcience as are necessary in finding angular ponitions, as latitude and longitude, in voyagng over the surface of the globe.
2. Terrestria! Astronomy, and those procestas, both of obsarvation and computation, which are employed in determining the size and figure of the earth, an a base ho for further measures.
3. Coamacal Astronomy, and the determunation, by the mont refined operations, of the distances, magnitndes masses, and movements of the heavenly bodjes.
In each of these branchen, a knowlege of the prineplea of the usual instruments employed in them will be roquired ; tome observations proth one at least of them, and upon one or more of the problems, must have been taken under the open sky; and practical bibity shown, in elmmatang by calculation instrumental and terreatrial errons, ás well as m exhibiting the numernoel value of the astronomical result, both mith regard to what has been doze by previous good observers in the mame feld, and to the predictions of the beat theory.
4. Chemistry

The candudate wrll be required to pass a searching examination in one of the following branches .--

1. The Chemistry and Chemical Technology of Inorganic

Bodies, 1ncludung Metallurgy
2. Organie Chemustry.

And to show a thorough practucal scquantance with Chemical Analysis in anl ato branches.
4. Zoology, includug Comparative Anatorny. .

The more mportant specsal modifiontions, structural and phyerologacal, in each of the groupe meluded is the First Bachelor of Scrence Examosnation, and also the leading phenomens of developnent throaghout the vanoun clanses of the Anumal Krngdom.
5. Anumal Physiology

In addrtion to any of the aubjecte in the Bachelor of Science Examination-

1. Fonctions of the ganghonic syetem of nerves.
2. Fonctions of the ganghonic syetrm of nerves.
3. Functions of the elementary Atructures of the b.
4. General propertien and fanctions of the blood.
5. General propertien and functions of the blood.
6. General idens as to vitality end vital functions.
7. Teneral zess as to vitainty sad vital the phenomens of development.

6. Botany.

Structural and Phymological characters of the Natumal Orders of the Vegetable Kragdom, together with a practical knowiedige of the genera and species of some partscular gronp to be selected by the candicate, and spproved by the Examine
Botemy.

7 Geology, inciuding Palzontology and Mineralogy
In addition to a more searching teat of the knowledge of the subjecte prescribed for the Second Bachelor of Science Examination, Candddates will be required to chow some acquanntance with the Geology and Palmontology of foreign countries as well as of the British Islands. It will be necersary that they evince sound practieal knowledge. To test thear acquirements ur thas respect, they will be asked to identify and describe specimens of munerals, rocks, and fossils placed before them, and from a geological map which will be furnished to them, to wnite a paper (with sections) on the geology of the dietract to which the man refers.
\mathbf{J}_{1} H BALprovz
Alex, Crum Browns,
Jount Conveners.

Sictrion B.mEngineraing

The Degrees of Bachelor of Scrence and Doctor of Scuence ars open to Candudates aubmitting themselves for scrance ars open to Candidatea submiting Engroering according to the subjoined Rules

1. Candidates must also have the qualification by paragraphs 2, 3, 4, and 5 of Section A, p 46
2. There will be two Examinations in Science for the Degree of Bachelor of Science, and a thurd Examination for the Degree of Doctor of Scrence The examunations will be written, oral, and practical ict
3 The first examination is as to the general knowledge of the Candidate on the following subjects, wiz, .-

$$
\begin{aligned}
& \text { : Mathematiosar } \\
& \text { Natural Phylosophy } \\
& \text { Chemistry }
\end{aligned}
$$

4. This examunation is called the Fitst Bachelor of Screnoe Examination in Enguneerng, and is compulsory on all who do not posiess the qualifications which entitle a Candidate to be exempted from the First Berchelor of Serence Examination in Seotion A.
6 The Candreate who has passed the Furst Bachelor of Science Examination (or has the qualuication necessary to exempt him from this Examination, may proceed to the Second Examination after an interval of sax months, Thu Is called the Second Bachelor of Science Eramination. The Candidats will be examined an the folloming aub jeots:-

> Mathemetics applied to Mechames
> Engineering.
> Drawng

6, The Candidate, after passing the Second Examination shall be recommended to the Senatue for the Degree of Bachelor of Scrence.

7 A Candidate who has recerved the Degree of B Sc and whe deszeat to prosesd to the Degree of Doctor of Sousnce, may present humealf for a third oxamination, after the expiry of twelve months.
8. The Examinations far Degreea will be conducted by University Examinera, and an Examinen apposnted by the Unveraity Court,
19. The Daprae of D.So. will not be conferred on any Candidate wha hes not complated has 2lat year.

First Bachelor of Senence Eatamination
(a.) Mathematncs-

Arithmetio
Algebra.-To the end of Quadratic Equations mclusive, whth Prorressiong the Bqumal and Exponential Theorems, and Logarithms.
Goomatry -E Equivalant to the first four and axxth Books of Euold, and part of the eleventh.
Como Sochons, treated geometrically
Plame Trigonometry,-Angles and Trangles, with therr relations.
Analytreal Geometry.-The Rudiments in two and in three Dimenerons.
(b) Natural Philosophy
(a.) Applied Mathematres, including the treatment by Elementary Geometry, Algebra, and Trigonomotry, of the following subjects (such as may reasonably bo aoquired in one or two aeasions attendance at a course of Natural Phulosophy)Kinematics, meluding Velocity, Accoloration, Angular Veloaty, Sumple Harmonio Motion, \&ic.,
Abstract Dynamposition and resolution
Abstract Dynanuos, inoluding Elementary Statics,
Kunetacs, Hydrosfatics, and Hydroknetios Keometres, Hydrosfatics, and Hydrokinetios Peometrical Opthea
(b) Expermental Physics, moludiag

Laws of Motion.
Properties of Matter
Sound and Harmonues Undulatory Theory
Heat, with the fundamental principles of the Dynamical Theory
Electincity, including the Expermental Laws of Static and Galvanic Electricity, Inductron, Magnetnem ${ }^{2}$ and ElectnowMagnethsm.
Conservatnon of Energy as the Experimental Lavy of Physical Phenomena
(c) Chemistry

Classification of Elements, General Laws of Chemical Combination and Action, as illustrated in the simpler compounds of the mora commonly occurring elements. Symbolic Notation.
Preparation end Properties of the Non-Metallic Preparation and Properties of the Non-Metalic facture of Sulphume, Nitric, and Hydrochlorie Acids and Ammonis.
Classification and General Properties of Aolds, Bases, and Salts.
Manufacture and Properines of Soda, Potash, Nitre, Guapowder, Limestone, Lime, Mortars, Cements, Clay, Earthenware, Poreelam, and Glass
Metallurgioal operations in general Preparation of Lrons $_{\text {, Znac }}^{y}$ Coppar, Lead, Tin, Mercury, and Silver, from their Ores. Principal salts of these 'metala' Alloys. Preparation Properties, and Composition of Cast-rron, Wrought-Iron, and Steel. 1
Classification of Orgames Compounds. Alcohol Acetne Acid, Wood, Sugars, Starch Coal-Gas Coal-Tar, Oils, and Fats, Saponification
Sumple Qualitative Analysis The Exammation in Ansilysis is conducted practically]
Second Baohelor of Senence Emamsnations
(a.) Mathematics applied to Mechanios .

The Applications of Mathematics (as far as the , Elements of the Differential and Integral Calculus) to
Kinematice
Statics of Rugid Solids, Elastic and Perfectly Flexible Bodies, and Perfect Flunds.
Kinetics of a Parncle and of Rugíd Solids
The Simplar Portions of Kinetics of Perfect Fluds
(b.) Engineering.

Properthes ${ }^{\prime \prime}$ Matersals -Genaral Properties, with special knowledge of ther Strength, and the Purposes to which they are apphed, with some knowledge of them Cost
Strength and Stabilaty of Struetures Destgned by Csval Engineers:-Metal and Wooden Bridges and - Roofs.! Arches in Masonry Walls Retaining Walls Embankments Cuttings. Breakwaters. Aqueducts. Pipes., Capals
Strongth and Forms of the Elements of Machunery
Deszgn of Combnned Structures -An Elementar knowledge of the Design of Brdges and Roofs of Reservoirs, Embankments, collecting and dus tributing Machinery of Waterworks, \&nd of the man features of Ralway construction, Harbours, and Drannge
Dessgn of Muchanery.-An Elementary knowledge of the construction of the Steam Engine, stamonary and locomotive, of Prime Movers driven by Water, of Mull-wright work, and the general arrangement of Factories
Prume Movers-Sources of Power Estimate of Power requred Measurement of work done. Application of the Prineiples of Dynamics
(c). Drawing

The Student must be sble to represent neatiy, in the style used by Enguneers, Plans and Section of Buildings and Machinery, and also to make Engineering Sketches with Figured dimensions from actual objects.
The candrdate who successfully passes the two examuna tions will be recommended to the Senatus for the Degree

Doctor of Sctence Examanatuons.

1. Every candidate for this Degree must prove that he has passed under a curll engmear m practica. He must then profess one, and not more than ons, of the sub divisions in each of the two following groups of subjects:

G 4

1 Pracheal Engineering:
(a) The design of Machinery, with complete Draw-

Ings, Specticahons and Estimates
(b.) The preparation of Designs, Specifications, and Estamates for Civil Engineening work
II. Applied Scrence .
(a) Applied Mathomatics.
(b) Chemistry
(c) Geology.
(d) One Branch of Natural Philosophy.
(e) Telegraphy.
2. The class of machnery, or the special engineering work on which the student is examined, will be chosen with reference to the special work in which he has been engaged during his pupilage
3. The Examinations in Group I will consist in requiring the actual execution of the required work by the student within a month of his recerving the instructions of the Uxamners At the end of that time he will send in his drawings, specifications, estimates, and calculstiont. When these have been eramined and approved, the Stadent will be requared to submit to an oral examination in connection with the work submitted as his own By this examination the authenticity of the work will be tested.
4 A high degree of proficency will be requared in the special branch chosen by the Stadent.

J H. Balpour,
Alex. Crum Brown,
Joint Conveners.
Section C.-Dreree of Doctor in Mental Science.

The Degree of Doctor of Scrence 13 also open to Candidates highly prepared in the Mentsl Sciences
1 The Candudate must be a Bachelor or Master of Arts, by examination, of a Bratash of recognused Colomal University
2. He must be a Matriculated Student of thas Univeraity for the year in which he appears for Examination
3 Ho muat have attended for at least one Academic year in this University, and durmg that year he must have taken at least two classes on the subjects embraced in the Examination
4 The Candidate must, in evidence of hiterary and phylosophical culture, present, as least one month before proceeding to Examination, an original Thesis on a siabject in Mental Science approved by the Examiners
5 The Thesis beng accepted, the Candidate may'then proceed to an Exampnation, which shall mehade Logic and Metaphysies, Moral Philosophy, and the History of Phllosophy, both Metaphysical and Morsl, in particular on any of the subjects embraced in the following Programms -

Logic and Mrtaphysics

(a.) Logte -The Pronince of Logic Formal Lagic The Theory and detarks of Propositional and Syllogistic Forms, with theur recent Developments, especially by
Hamiton De Morgan, and BoDle. Fallacies Verbal Hamilton, De Morgan, and Boole. Fallacies Verbal Logic - Definition - the Predicables - Nomnalism and Realism Material Logic-The different sorts of Evidence. Authonty and Science The methods of Scuentific Inductoon Ine ph
(3) Metaphysucs. - Personality, - Clasbification of the facts of Consciousness, whth relative Psychological and Physiological Questions, Esternality and External Per-ception-Matter-Space and Tme-Cansation and Power. The ongin, nature, and limits of Haman KnowledgeThe finte and the Infinte

Modal Philosophy,
Moral Actsons The Moral Faculty Desires and Emothong The Will Moral Obligation. The Existence and Attributes of God. The relation of Absolute Soverengnty to finite Existence, and especisily to human will The Origno of Evil The Immortality of the Soul. Practical Ethics, including the laws which regulate the formation of moral character, and the gudance of mdividual and gocmal life.

Histony of Philosophy-Metaphysical.
The History of Logic-Formail and Inductive A general knowledge of the History of Ancient and Modern Prychology and Metaphyzies. Special Stady of Plato or Kent

History of Philosophy-Moral.

The relathon of the pro-Soeratio Philowophy to Morn Phlosophy The Soaratic theory as in the Memorabina. The Platome theory, as in the Repubico. The Anstoteluan. Store, and Epicurean Theores The Theores of Hobben, Spinona, Cudworth, Price, Hume, and Kant, with the Jater: developments of Intuitional and Utuitarime Ethuos.
6. The exammations will be held annually in April and November Candidates may be tested both orally and by wring.
7. Those who have taken the Degree of Mater of Arta In this University with Furst-Cliss Honourn in the Department of Mental Philosophy, may obtann the Degree of Foctor in Mental Scrence when a pernod of not lese than three years shall have elspaed after ther have obtsanced enoh Honorrs, by sabmitting a muffiment Thesis on s subjeot approved by the Examinera, and on grivig Exch other evidence of controused protionency in the Mental Sciencea as may be satisfactory to the Senatus.
8 The fee for the Degree of Doctor in Medical Science 19717 s . The fee must be pard at least 10 days before ths date of Examination, when the Diploma and Certafeates of the Candudate must be transmatted to the Dean of the Faculty of Arta. In the event of the Candidate not passing, the Examunation wrathout paprop an extra fee, ind aubsequent Examination on paying one half of the fee Examination on paying one half of the fee
A. C. Fraser,
Dean of Fagulty of Arta.

Sraction E,-Deqrefe of Doctor of Scisnce in Piftology.

The Degres of Doctor of Science is also open to Candz dates highly proficsent in Pbilology
1 The Condidste must be a B,A. of MA. by examine tion, of a British of recognized Colonisi Univeraity. i2 He must be a Matriculated Student of thus Univeruity or the year un which he appears for Examination.
3 He must have attended for at least one Academic year at this University, and during that year be must have baken at letst two olasses on the subjeots embraced in the Examination
4 The Candidate must present, at least ons month before Examination, an Onginal Diasertation on some pount of Philological or Archæological Research. Mere compulationa will not be secepted Only when this Dissertation has been approved of will the candidste be admutted to further examnnation
5. The Candidate may offer himself for Examination in any one of the following branches.-

1. The Latin and Greek Languapea

2 The Seminc Languagen.
It is expected that Candidates for a Degree in Philology in this branch, besades beng acguainted trith the snow the first four Surat or Chapters of the Koran, and be capable of turnung seatences of English into Hebrew, Smac, and Arbbo-rupplying, at the tams tume, the proper vowel and diacritical marks. A Dissertation on Semitac Grammar is also deemed necessary.
3. The Sanakrit and Comparative Philology.*
(a.) Sanskrit Language and Literature Translation of passages from current Sanakint Authors 2 to Congliah, and from Eaghish into Sankri.
(b) Comparative Philology of the indo-Europesn Languagea, Acquantance wnth the Principlew of the Science, as laid down m the Cornparative Grammar of Bopp, Schleteher's "Compen-
(c.) Phiosophy of Lariguage. Candidates must show aome degree of famaliarity with the works of Lord Monboddo, "On the Ongin sad Progress Purley;" Lerseh, "Sprach-philosophue der Purley;" Hersch, "System do SprachwnisenAlten,", Heyse, "Systemann, "Die Lehre von den schaft, Redetherlen;"Steinthal, "Der Uraprung der Sprache."
6. Candrdates for the Degree of Doctor of Scrence in Classical Phulology whll be teited in respect of therr genesal Scholarsbip by tranalation from Latin and Greek Authors and by compoation in Latan and Greek Prose. They wh further be requised to profess a cntacal knowledge of some

Candudste who ghall irst meceed in taking the deg

special Department or Epoch of Classical Literatare, or of some three or four of the more difficult and mportant Classical Writers.
7. The Exammations will be held annually in April and Novernber. Candidates may be teated either orally or by wnting.
8. Those who have taken the Degree of Master of Arts in this Univeraty, with First Class Honours in the Department of Classical Literature, may obtain the Degree of Doctor of Science in Philology, when a period of not less than three years shall have elapsed after they have obtanned such Honours, by submitting a aufficient Thesis on a subject approved by the Eraminers, and by auch other evidence of conthnued proficiency in Phulological Research as may be satisfactory to the Senatua,
9. The Fee for the Dagree of Doctor of Science in Philology is 7 ll . 78 . The Fee muat bo pard at least ten days Certaficates must be trensmitted to the Dean of the Faculty Cor Arts. The same regulation es to the non-return of fees of Artes. with refarence to this Section as to Section D

$$
\begin{aligned}
& \text { A. C. FRaser, } \\
& \text { Debin of Faculty of Axts. }
\end{aligned}
$$

Souence Fellowshitp and Scholarshups.

The followng Fellowshap and Scholarships are open to Greduates in Sorence - -
1 The Falconer Memoral Fellowshup, in Palzontology and Geology, of the annual value of about 1001 , tenable for two years or more, according to crecumstance (See under Fellowahips, \&o.), is open to Graduates un Science or Medi-
cine of this Unuveraity of not mors than three years' standang at the date the Examination The next competition ing at the date the Examination The next competition Fellowshup 18 George Alex. Gibson, B Sc. of 1874, who obtamed the Fellowship in December 1874
2. The Bauter Physucal Sevenee Scholarshop, tenable for two years, is awarded to the most eminent of the Bechelors of Scrence who have passed ther Examinations in the Physical Scuences, inoluding Experimental Philosophy and Chemistry, etther in the year preceding a vacancy or in the year in which a vacancy ocours The Scholarship is held subject to the condition that the holder shall have taken the Degree of Dootor of science in the first year of his tenure of t. Annual value, $60 l$ Next appointment may be made in November 1876. The present holder 18 Robert Romamis, B Sc., who obtauned the Scholarship in Novem ber 1874
3. The Bawter Natural Sovence Seholarshyp, tenable for two years, 18 emparded to the most eminent of the Bechelors of Science whe have passed thenr Examinations in the De. partment of Natural Sosences, including Botany, Zoology, Phyenology, and Geology, etther in the year preceding a vacenoy or in the year in which a vacency occurs. Annual thus, Gor. The scholarehpis held subject to the condition that the holder shall have taken tas Degres of Doctor holder of the Soholaritip is Tone Beplor Balfour B Sc, hol om it awarded in Norambar 1873 B The nott com

Notice as to Sctence Esamsanations for 1875-76.
Sections A and B

1. Prelminary Examinations will take place on Tuesday and Wednesday, 12th and 13th October 1875; and on Tuesday and Wedneaday, 14th and 15th March 1876, an iuesday and We
1030 ot clock A.M.
Esxammation on Tuesdays.-English, Anthmetio, Mechanies, Higher Mathematics, Greek, German, and other Languages.
Esacmanation on Wednesdays.-Latin, Elements of Mathematica, Natural Phulosophy, French, Logac, and Moral Phulosophy.
For further particularm as to the Examination un these subjects aee Medical Preliminary Examination in Arta, in Calempar
2 First iB So. Exammation in Mathematica and Natural Phlosophy, will take place in April and Ootobex, at the same tarue as the examination in Arts on these subjects, vis, 25th, 26 th , and 27 th Ootober 1875, and 10 th , 11 th, and 12th Aprli 1876.
2. First B Sc. Exammation in Chemistry, Botany, and Zoology, wull take place in Aprl and October, at the same time as the First Medical Prafessional Eramination, vis., 22nd and 2ird Octobur 1876, and lst and Bnd Aprul 1876.
3. Second B So. Exammations will take place at the anme time as thi Fitet Medical Profesaronal Examiation
4. Exammations for D.Sc. whll be held in April and Otobor Candidates must present ther Thesas at least one month before the date of the Examination.

For B.Se. in Enginezeing.

Furst B. Sc. Exammation in Chembtry on the 2 gnd October 18\%5, and 1st Apral 1876, at 11 o'clock Examination in Mathematies and Natural phalosopy, on 25th, 26th, and 27th October 1875 and 10th, 11th, and 12th April 1876.

Second B.Sc. m Engineriang

Exammation in Engineering and Drawing will take place on 22nd and 23rd October 1875, and 1st and 3rd April 1876 In Mathematucs epplied to Mechanics, on 27th October 1875, and 12th April 1876

Seotion C.-Puble Health.
The Examinations will take place on the 22nd and 23 rd October 1875, and lat and 3rd April 1876, at 12 o'clock each day.

Sections D. and E.

D Sc. in Mental Science and Peilology. Monday, November lst, 1875, and followng days, as well as Thursday, 13th April 1876, and followng days, at for the Degree of Doctor in Mental Science and of Docto in Philology
in Philology
befors the date must present theur Theses at least one month befors the date of the Exammation,
II. -Non-Profassorial Exameners in the Faculty seo para, tha of Medionise in the University of Edinbdrgif.

Royal Commigsion on Serentific Instruction
6, Old Palace Yard, London, S.W
Sir, 6, OL, Palace Kard Linarch 23, 1875.
I AM directed by the Duke of Devonshure, the Charrman of this Commission, to state that the Commiesioners are deburous of knowng what has recently been done whi reference to the Non-Professomal Exammers in the versity of Edinburgh, and to ask if you can favour th Commisaion with any further informa.
I have, \&c.

Professor Turner,
niversity of Edinhurgh
orman Locexbr, Secretary
University of Edinburgh,
\qquad March 25th, 1875
SIr,'
In reply to your letter of the 23 rd inst., in which you ask for further information relatave to the Non-Professorial Examiners in this University, I beg to enclose some documents which will, I think, furmish the Duke of Devonshure and the Royal Commission on Scientricic Instruction whth the information required.

A, gives the terms of the Resolution of the Unversity Court to morease the number of Non-Professorial Examiners from three "to not fewer than seven persons specially "qualified to examine in the subjects of the Medical Exami" nations,"

B, gives the Regulations adopted by the Court relative to the appountment of suatably qualnfied persons to fill the fice or Examuer.
In conformity with these Regulations the Examinerships were advertised in the newspapers, and in the month of January of the present year the Unversity Court selected Exammers ome fert of the aubjects embraced in the series of examinations The nemeg of the

He names of the gentleman selected, and the subjectis' they are appointed to examine on, are gaven in C.
${ }^{+}$The Board of Examiners of Candudstes for our Degrees in Medicme and Surgery now consists of twenty-four candidate, therefore, will be examined in each aubject of exammation by two examinera specially qualified for the purpose, - a professor and a non-professor.
Should any further information on this matter be desired by the Duke of Devonshire I shall be happy to sapply it I may take this opportunity of enclosing for the information of the Commusmon an extract [D] from the Minutee of the Unversaty Court of date 10th June 1874, beng a Resolution to add a Department of Publo Health to the Departmenta in which. Degress in Science may be obtained in this Univensity. The first exammonion for this Degree was held in October last.
It us believed that the matitation of thin Degree by the Unuversity will aupphy an umportant

I have, dee.
J. Norman Lookyex Esq,

Alferation of Orditancy providing por'the Ap POINTHENT OF ADDITYONAIC (NON-PROYEBSORIAL)

Extract from the Minutes of the "Unversity Court of the Imversaty of Edinburgh, of date 6th July 1874, besn esolution adophing citerations on Orimuses No. B, Edin burgh No. 3, and Ordmance No 23, Edinhurgh No. 5 providag for the appountment ${ }^{2}$ of addinonsi Non-Pro lessorzal Examuars in'Meducue, and making regulstions
relative thereto.
"The Univeraty Court of the University of Edinburgh, considerang that it is demrtble that the number of parson Who may be sppointed to act sa meducal exarnimers for gredination in znedicine an the Unvenditybin addition to the Professors of the Faculty of Mediaine, es provided in Ont dinance No. B, Edinburgh No. 3, of the Commisanoners appenated for the purposes of the Unversities (Scotisnd) Act, 1858 , should be mereased, wn prder that such ipersons may in future be appointed with e view to their special guplrioation to examine no one or two of the subjecth of the Cixammations for Graviustion in Medioine bn which ther may respectrvely be appointedr to bsamine ' hather than onth e view' to theur 'qualificetion to examene ati buch subjecta generally,-resolve
Ordinatice: following alterstion shall be made wa the gasd Ordinance
"Srerion Quanto of Ordinance No. B, Edinhurgh No. 3 to be deleted, and the follownig to be substituted therefor.

 the Meducal Examiners for all Candudaten for Graduation in Medicine in the sant University sham be the Professor in the Taculty of Medicinte thetein, and in addition not fewer than seven persons specitily qualiated in the manne herrin-after descrabed to examine in the subjects of th Medral Examinations 'Such persont shall be appointed annually by the University Courb, under azoh Regnlation as mey be issued by the sasd Court from 'tume to fime', 的 ohall be eligable for re-lection Nos such person sball hold the office of Examiner is more than two of such subjects 碞 the ssme tame; two or more of them shall not examure on the same subject, and each tof them shall be specually qualified' 1 in the sulyect' or subjects of which he shall be appointed to examine Such perions shail be selected from among the members of the three following bodies, namely, the Royal College of Physicians of Edanburgh, the Royad College of Surgeons of Edunburgh, and the Faculty of Physicisns and Surgeons of Glasgow, or shall be persons otherwise fully qualified in the judgment of the University Court, Each of such persons, shall recelve o fee of Fifty pounds for each year, for each subject on owheh he shall be apponted to act as examuner
Ordinance No. 8 Edinburg N, by the asad alteration of Ordinance No, 8 , Edinburgh No, 3 , instead of three ad One hundred pounds per annum, each recsifng on aum of One hundred pounds per annum, pard from, moneyl yoted by Parliament for the purpose, under the propisiont of She said Universities Comnnossioners, there will in future be in the Univeranty not fewer than seren siditional Examinars in Medicine specraily qualified in the subjects of the Medical Examinations in the manner above set forth: Medical Examinstions jn the manner soove aet forth, that these subjects are at present thutteen in number, that for each year for each subject on which he shaly be appointed for each year for each subject on which he ahaly be appointed to examine. and, consequently, that it is necessary that the moneys voted by Pariuament for the purpose, should in moneys voted by Pariuament for the purpose, should in that provision should be made for an additional annual sum for payment of the rempinder of the sad fees of fifte pounds each. The University Court further resolve wr
"That the following alteration shall be maite on the said
 vensintes Commusanonerg.
 No. 5, to be deleted, and, the followotag to be mbututyted
 "a XLIXL-Thie stum of Futty poundey quyabde to thes ad dinonal Examuners ur Meducine ins respect of esche of thete subjects, onswhuct they may, be sapponitedi tha erratonne by the Umversity Court, in terms of Section Qurinto of On dubance No 8, Edinhtright No. 2, ss aldored by Resolntson of the WUnveraty Gourn tof daba fith $3 J$ uly 1874_{y} shally be
 Physuology, Practice of Medreure, Surgery, Chuycal Medieme, and Cluman. Srupent, shall be pard out of moneys to be voted by Parlament for the ppripoany and tha audutuonal \dagger^{\prime}

Remainert ob the othet Mbjecta of the Merhand Rxamme hone shall be pand trom Extracted by
Edinhurgh, 8th July 1874.
. Cheretrion, W.S. Sedretary.
The altarstans of Orduances Noa. 8 and 23, conkained in the sbove Extrset Mraute, recarved the consent of the Chanceltor of the Uarversity on 20th Jule 1874 and ware approved by Her Majesty by Order in Council dated 6th Auguat 1874,

B.

Braglations. Rblative to the Appointukne of Nom Propessorial Examiners m Mmpicina
Extreat Pram the Minutes of the University Oourt of the Unversity of Edinburgh, of date 9th Novembar 1874, bein regulatons for the appontinent of the Non-Professoriad Exammess in thedicine in the University, adopted by the Cout under the powere conferred on them by man altaration of Ordinanine Ne. 8, Edunburgh No 8, appioved by Her Majeaty by Order in Counol on 6th August 1874.
"The Umversity Coturt oonandering that by Section Quinto of Ordinance No. B, Fidunburgh No. 3, of the Scotitioh Unuversitues Commissioners, 1858 , as altered by the Court by a "resolution of dste 6th July 1874, which received the approval of Her Majesty in Councif of 6 th Augget 1874 the Coust ase emperwored from end after lat Januery 1875 znnually so appomb saditional examnerry apecraliy qualifie onder such regulstions es they mas from tone to medicine,
 alterano thereop end further conario arasie that 4 he
 that othar metters relative to thio apporntment of auch pe
 sons inent, mesta the eubject of formal st
; W1. That asch permon appointed under the end Ondint we altered, to examine on zny oft the subjeote pequmita for

 mose Provided slusye, that on the frat :occestors, the perrons apponnted to axamue on three of the wiblecte of oxamiontanan masy be re-apponted annually theroto for three wears; those sppomited to examme on two of wuoh aubrecte may be re-appointed annualis thereto for four yeare ; thone appointed to examine on three of such subjectif may be re-apponted annually thereto for five years ; those apponkted to examine on two of much subjecte may be reapponited amuaily thereto for \sin yeara ; and those appointed to examine on three of such subjects inay be re-apponated anmual y thereto for seven yeare
F2. It thall be oompetent for the Court, tunder epecosal croumstancea, to re-appont sny person to examine on any mobjeot or subjects, mmodiately after he hat acted as bxammes thereon for five consectuve yearn, for such furcher soms of yeare as the Court nayy determine.
"3. No person shall be appointed to examine on two anbjects which ore in the same division of the examinations for graduation in medictine
"4. Persons resident in Edinburgh shall not be expected to give in testimonisle on wiplying for wuch sppontrmenty, In the case of personid rasidint elcewtiore, who may, give in sestimonais, not more hasi foy torkuonaly owa be given in for 'each sulject in examination, for appombrasent to Fhich
 pappers and anechces youmale the the Conit may durect, not less than one mon before the date at which such vacancaem
 d.

Unwersity of Pdmburgh,
W.S.

Secretary.

 GY

- With powere of manul neapporgtment by the Coutition

 Thiree years.Amatonay-4. Johm Chicues, M D, Lectures on Eurgery, Edmbrirgh, formerly Demonntrator of Anatomy in the Unversity : : is
 Midwifery, Edunburghe.

Surgery, Edmburgh.

 Andrews, Examiner in Botany to the Indua Offico for the
 and Materie Medice, and Botamat to Governanenit, Madras ${ }^{1}$ Medseal Jurrsporudence:- 5 " David Ferrier, M D', Professor of Forensic Medionne, King's College, London

 mastant Physion to St. Bartholomew's Hosptat, London Py Py Natural Hustory - 8 .Wm,C MoIntosh', MI D., Murthly Author of waifous ymportant orignal works on Natural History. ":

With power of annual re-appountment by the-Court for Six years.

Physician to, azd late Demonstrator of Morbid Axatomiy
at it. Thomas's Hospital, London. at St. Thomas's Hospital, London
Matera Medaca-10. Thomas R Fraser, M, Mutien Ery -Medical Offiegrof Of Hellbu-Myd-Cheshare, formerly Lecturer on Materia Medica, Edinburgh, and Ex̦aminer on, Materia Medice in the University of London.
With power of annual rearapponntinent by the Coter

on Practree of Phynos nad on Clymeal Medicnoe, Edmburgh,
Physucian to the Roydih Infirmary, Edinburgh, and Member
ut of the Genenal, Modiceal Council.
P Phystalagy, 13. Arthur Gamgee, M D, FRSSL \& E E,
Professor of Preotical Physiology m-thé Owens College
Manckestavy sand Exatminer on Foremsie Medicme to the

-

Extraet Fhomzthin Minutes of tha Univikraty
Covet on dítri 10th Jung 1874, being hrboluy tion adding a Departmant of pubig health To thei departhrnts in weich Drgrers in , Science may be obtained in the university
\because It The Universstry. Ceurt of the University of Edunburgh considering the grreat demand which now exasts for Medica Officere of Healths, and the mportance 'to the publue of some means of ascortanning that members of the medical profession have apeciality studied the dubject of Public Health, and haring, as pequired by Section xu. 2, of thi Universities (Scotland) Act, 1858, held due communacation on the matter with the Senatua Academucus, and cona
 Ressolve -
I. That a Department of Publo Health ahall be added to the Departraents in which Degrees in Science may present be obtained in the Unverrity at Edurburgh.
II. Candidates for Graduation in Schence in the Det partment of Public Health must be Graduates un Medicine of a British Univerathy, or of such Foraign or Colonial Unversties as may be epeosally recognazed by the Unverisity Court
III. Candidstes who have not passed an Annus Medscus in the Unweraty of Edinhurgh must before presenturg themselves for examinatron, have atienced as matziculated Students in the University at least two-courses of instruc tron, Solentifio or Professional, bearing on
the Examinations.
IV. There shall be two Exammations for the Degree of Bachelor of Science in the Department of Pable Health Candidates who have passed the First Exammataon may prooeed to the Second after an suteryal of five montha.
in V. Candidatos must produce endence that, atither duruyg thair Medical Studies, or aubsequently, thay have attended Publo Health, and that they have studned Analytical Chemistry practically for threo mone sthadied Analy inthoal Clemanstr:
VI The Examinations shall be wniten, oral, and prac troal, and ahall be conducted by Unuversity Examiners selectod by the University Court.
VII. The Subjects of the Examuations for the Degree

 Health may, after the lapge of one yepr, proceed to the Degree on octor in the same Departument on producing entionce hilt they have beaniengaged mrachical sanktation suce the Science, and on presenting e Itresis bu some subject in the be tertified wilthei Candrdet to have been composed by be eerrified wy 'the Candydate to have been oomposed by humself; ana 'must be happroved of by the Examiners.
Department of Publici Health shall be,-
Department of Public Health shall be,-
2he'For the firtt Examiation for the Degre
For the second Examination for the Degree ${ }^{\circ}$
nus wh of Buchelor

For, the Degref of Degtor: : $\quad: \quad$| 5 | 5 | 0 |
| ---: | ---: | ---: |
| 5 | 5 | 0 |

"Extracted by* Curistison, WIS,
 trons. contaried in the foregoing Extract Minute, and annction the same in terms of the Unverraties (Scathand) Aot, 1858, Section $\mathbf{x I I} .2$.

sco purn so LII-Statkmenty of the total Emolimmerts of the Professons and Assistants in the University of Edinburge; and Schedule of Legctures mad Laboratory Instruction.

Róyal Commsasion on Scientific Ingtruction and the Adrancament of Science, Sir, 6, Old Palacé Yard, London, S.W., May 81 st 1875.
I anc directed by the Duke of Devonshure," the Chaurman of this Commisanon, to inform you that th Commssmoners whth a view of making their Report on the Universities of Scotland as complete an possible and, as far as may be, similar in the character of the information it affords, to the Report already issued on the Enghsh Colleges, are desmrons of including a Statement of the Total Emolumente of the Professors and Assistants in the various Faculties.
With this view, the accompanying Schedules have been drawn up, and I am to aek you to be so good as to further the Yuquries entrasted to the Commission by affording the required information in as complete a form as possible, together with any remarks you may be pleased to make.
I am to add, thas as the Report is now nearly ready for presentation to Her Majesty, the Commiskioner* would be glad to receive the Schedoles at as early a date as practicable.

The Principal of
I have the hopour to be, \&80,
The University of Edinburgh.
J. Normar Loorren,

Secretary.
[The following Returns have been forwarded to the Royal Commiskionern by the Principal of the University of Edinbargh.]

55

1. Drintit		$11914{ }_{0}^{2}$		None.	None.	The ram under the head of "Endowment" is that given m the University Caleadar, knowing, owing to Profestor Crawford's absence. The amount of Fees 13 that recerved from 57 btadenta, at two guyeas each. There were other five, bat these, according to the Professor's matruetiona, were admitted to the clase without a. fee.
9. Divimity and Cuurar Hismort.	35000	79160	429160^{\prime}	-	-	-
9. Biblical CartyCIBN And Birn home Anty gutwis.	09900	6900	69800	-		There were 42 students, of whom 12 recerved free tuckets. The fee is $2 l$ 2s. The uncome is rapidly and steadily dummshong, as it 13 drawn from the tounds of the Chapel Royal, and parish minuters in 14 parshes have a mght to augmentation of stipend from these tands. Each has a right every 20 yeare.
1. Hbprbw and ouд018	30000	3180	371 8 0 48 2 0 373 10 0	Fiad an mssistant for three weeks for the first time in 97 שesanong.	-	- Add for two Studenta of Elementary Hebrew.

Soopmand

2. Tacurgy of amge

35871.

Chatr.	Lecture per Weok		Lectares per Bemion.		Yabomatory Worin		Himenes
	Wintare	(tumers.	Winter.	Spumana	Wintorm	Burumer	
12. Botanz.	Occasional course of popular lecturea amonntang to 30 or 40.	Iectures 5. of 1 hour eah. Demonostray thoms 8, of 1 hour eack Weekly excursionson Saturdays mith de-monotrathon. Thme oconpred each iday from 5 to 10 or I2 hours.	Ste reply in previous 1 winter column	Xectures 60 to A5. De-monstratrons, 30 to 88. 12 exaris mont on Saturdays, wish de-monstratrons, from End week of May thll lant week of July.	Histological room, herben, rram rom, and maseam open for practical work Gardea and hounea niso open.	Specien histological alareas oonducted by the Profeasor of Botany and hus atmentination four days $=$ week, from let May to the end of July.	There ba a great want of nocommodation for studenth, both en sagarth the lectare-koom and the practical working twom. There is no facility for carrying on proper laboretory work, more especially in the departanent of physiological botamy. Room and apparatat are argontly required. The University has appplied 12 mieroscopes for the clase, white 1 have capphed 60.

Namber of pupils, 854 ; of these 308 wene medical mudentr, 9 soience studenta, 4 pharmaseutisal etmients, and 88 gemeral

The followny were the excarmona:-1. Gorebrifige and Amistom, 2. Kinghorn and Burntialand. 8, Currio and Statoford. 4. Driston and North Berwick. 6. Broomlee and Dolphatom. 6. Innlithgow. 7. Beatock and Moffat 8. Epringfelld and Tadybank. 9 East I miton amd Iynumghame.' 10 Bridge of Allan and Stirting, 12. Murthly. 12. Inveraran, Ben Vourliah, Ioch Lomond
Number of apeces of plants collected Anting the excarsions.-Phanerogamous planta, 685; forns and their alliet, 41; othor
Number of miles. travelled by railway, eteamboat, and waiking, 961. The number of atudenta Fho atteaded the excursione frat 228 ; And the number at eadh excursion vaned from 15 to 182. Total expense of the trips, 87. 70.

Exe paraa.
IV.-Number of Students attending the several Courses in the Univeraity of Edinburgil.

Royat Commisnom on Berentifle Instruchon and Adrancement of Scence,
6. OHd Palace Yand, Inondon, S.W.

Sis,
I Am directed by the Duke' of Devonshire, the Chaminan of this Commission, to ask you to be so good as to favonr the Commensioners by stating the numbers of Matriculated Students at the Univergity of Edunirurgh in
Also the numbers studying in the Medical and Engineeming Schoole
both inclusive.

$$
\begin{aligned}
& \text { I have, Ece. } \\
& \text { J. Nopyay Locigyer, }
\end{aligned}
$$

The Principal of J. Nopyay LockYer,

University of Bdmburgh,
Sir, Univesity Moy 14th, 1875 . IN heply to your letter dated lith instant, I have statistacs requred by has Grace the Duke of Devanshive.

I have, \&sc.
A. Ge, sec,

Numbers of Students Matriculated at the University of Edmburgh for the years 1871-72, 1872-73, and 1875-74.

$$
\begin{aligned}
& 1871-72 \\
& 187273 \\
& 1873-74
\end{aligned} \quad=\quad=1,854
$$

Numeners of Medical Studenta in the University of Edinburgh in each year from 1867 - 68 to 1873 -74, both years uncluavy, sand mumbers attending the Class of being the date of Foundation of the Charr, to 1873-74, both yeess inclumive.

Yean,	Mo. of Kedical - haderit	No of , Engineerfins
1867-68	448	-
1869-69	516	29
1869-70	586	47
1870-71	678	85
1871-72	725	45
1878-78	782	52
1878-74	889	50

Royal Commistion on Scientafic Inatruction and the Advancement of Scrence

81 n 6, Oid Palres Yourd, Iondon, 8in. April 17th, 1875.

I AM directad by the Dake of Devomehres, the Cheirmana of this Commuseion, to ank You to be so good wis to
Thave, sac Principal of
The University of Edinburgh. Jorman Lockyme,
Segretary.
$\mathbf{S i r}_{\text {, }}$

niversity of Edinburgh,

In compliance with the reguest contained in your letter, dated l7th instant, I have the honour to atate the Duke of Dericulars for the imformation of Hus Grace the Instruction:-
The Winter Session 1874-75 in the Unuversity of Eduna burgh was closed yesterday. Durnig the Session the numattending the University Course in the different Faculties has been has follows:

$$
\begin{aligned}
& \text { 1. In the Faculty of Arts } \\
& \text { 2. In the Faculty of Medicme } \\
& \text { 3. In the Faculty of Lavy } \\
& \text { 4. In the Faculty of Divinity } \\
&
\end{aligned}
$$

The Summer Session of the Univeratity will open on the 3rd May, when an additional number of Students will join the University. During the last three years the numbers of Students newly joining the different Facuities of the Univeraty in the Summer Session have been as follows:

Summer: Sebson	Taoulties of			Total.
	Medicina.	Arta	Law.	
1879	89	8	0	106
1878	117	6	,	130
1874	128	8	8	144
Totals	834	22	24	880
Average	111	7	8	. 126

Owing to the fact that Professor Hixley is to lecture on Natural History in this University during the ensuing Summer Session, it is expected that the number of new Students whi be above the average But, taking merely verovty of Edimburgh during the Academical Year 1874m75 may bs set down as,

rm 85. V.-Stathment of the Fers payable by Students attend ing the Courses at the Unversity of Edinburgh

Royal Commission on Seientific Instruction and the Advancement of Science.

R
I AM direatad by the Duke of April 28th, 1875.
nof this Commiselon, to ask you to be so good so to state, for the information of the Commuesioners, the amount, on an average, of the fees payable by Students per annum at the Unuersity of Edinburgh.

To the Principal of
The Univeraty of Edinhurgh.

Sre
University of Edinburgh, Edinburgh,
5th May, 1875.
Sir, In veference to your letter dated 28th April (which absence from Eduburgh has prevented me from replying to sooner), I beg to enclose excerpta from the University Calendar [martsed A \& B] whech show the foes charged for aach Clasa in the different Facultres.

It wrill be seen that the fee for each Class, or Course of Lectures, in Medicins is four guneas, for each Class in ho Faculty of Arts, three guneas, whth the exception of Sansknt, Geology, Agricultare, and Engineering, which are charged four gumeas each, for each class in the Fab ulty of Theology, two gumeas; while the fees in the Faculty of Law vary from five to three gameas, according to the ength of the respectave courses
I also enclose excerpts (marked C \& D) which show the mimmum cost of a full Medicni Education in the Univera sity, and the incudence of that cost on each' year of the dent's attendance
With regard to the Faculties of Arts, Law, and Theology, perhaps, it may be roughly eatumated that each Student, attends two Classes on an average per annum I beg, owever, to point ont, for the iniormation of His Grace ot form any contribution towards the expenses of the
 who teaches the class The Matrienlation
on fees mantioned in excerpte B are tha only contribution made by Students towards the University Expenses.
ear while hade Matriculates, not once for all, but aach year while he attends the Univeranty, and he pays the Man "ericulation fee which entitles hum duung that year to be ar envs Of the University. In the last published sccounts stated for the year as $1,841 \%$.

I have, \&o
A Grant,
Prineipal
. Norman Lockyer, Esqre
(A.)

Pragramme of Classes.
Summer Slaston.

Classef.	Professorsa',	Class Fiee
Enguneerngg, Surveging, Levelling, ste.	Prof. Jenku	
Sankkrit -	Prof. Aufrecht	3
Hindustani, \&c.	Prof. Liaton -	22
Civi Law -	Prof Muirhead	$5{ }^{\text {5* }}$
Scots Law	Prof Macpherson	5 5*
Constitutional Law and History	Prof. Mackay -	
Medreal Jurisprudence, -	Prof Maclagan	
Botany - -	Prof Balfour -	44
Botanical DemonstrationMonday, Wednesday, and Friday	- - -	
Vegetable Histology-Treeday and Thursday	-	-
Anatomical Demonstration	Prof Turner.	
Practical Anatomy -	-	22
Chnucal Surgery-Monday and Thureday.	Prof Lister	
Chuical Meducme-Monday and Thursday, Tuesday and Friday	Prof Laycock and Prof Sanders:	
Nataral History -	Prof Thomsen	44
Practical Physiology	Prof Ratherford	53.
Medical Psychology and Mental Diseasea-Monday, Tuesday, and Thurt day	Prof. Laycock	28.
Medical Psyohology and	\cdots	881
Mental Diseases with Practical Instraction at an Asylum		
Operative Sargery	Prof Spence	28
Practucal Pathology	Prof. Sanders -	23

Summer Tutorial Classea un the Faculty of Arts, in Latin, Greak, and Mathematics, will be opened for Students Who have attended a Winter Comrse on these subjects. Thase Classes whll meet five days in each week, commencing on 2nd May, and cloang on 2ist July Fee for each Clage, 21. 2s, payable to the Class Tutor:

- Inclusive of Wintar Sessyon.

Wuarpis Sexeron

Royal Intirmary at Noon, Daify -Perpetuat TTcket, 101; Amnual 'Ticket, 51 5t.; Halk-yearly Ticket, 31 iss.' Neparate payments of two years erritile the Studerit to a Perpelas Traket-

Matrioulation Fees.

For thg Aosdemical Year $\begin{array}{ccc}\boldsymbol{2} & 2 & d \\ \mathbf{1} & \mathbf{0} & 0 \\ 0 & 0\end{array}$ For the Suramer Seation onlya: a 10 o All Students are required to Mstriculate at the Regre Cras's Offica, in the University, before entanng any of tha Classes.

Clast Seancons.

There are Two' Seanons of the Classes in ascl year, axi I The Summar Sesaion, which opens in the begraning of May and ends with July.
of Novernber, snd sends writh April, durng whiah the Clangea of Novernber, and ends with April, durngy which the Classeen in all the four Faothse are assembled.
The order of attendance at the Clamen in the Pacolty of Arter ze roferred to in the etatement relative to the Curricus lum prafixed to the Symopsest of the Clanes in that Facuily, and is grven at length in the Regulations for Graduation in Arts, 8 E
In the Facuity of Medicine, bemdes the Regulatione for Graduation, there is a Vidimus of the minimum oint of Grttendance with the order of atady recommended for Gradunhapes appended to the Synopses of the Clamess in In the Facultedes of
In the Facuities of Lasw and Divinty, the order of mady IB given in the Regulations for Graduatoon in these PaculDuring Summer subs Wequent part of the Calendar.
During Summer and Winter, the following means aro afforded for Practical Instruction -. -Drsseoting Rooms open daily, undar the auperntendence of Professof Turnar, asasisted by J. A. Russeel, M.B., D. J. Cunninghan, M B, and A H Young.
Chemical Laboratories open daily, under the superintendence of the Profetsoox, assisted by E. A. Lettos, Ph D., and A P Autken, D Se
Phymiologicat Laboratory open deily, under the superanPhyseal Laboratoryford, assisted by Wm, Storling.
Phymeal Laboratory, and Meducal Jumsprudense Labo ratory, open daily froth 10 to 3, under saperintendence of Rogal Botanio Gedeng
Roya Botanic Garden, Berbanum, and Musetim, open Natural Hastory Minemu a mot to 6 pm . and Arti Argyll Square, is, in the Muneum of Science sttending the Natural Hustory Class

(C.)

Mennamum cosil of attending the Medical Classes, tonth the Order of study.
Whulst there 2 no anthorsed order of study, the nsual Course x given below: Prelmmary Examination in Art to be taken in the month of March or October, before entering Medical ClasBes By order of the General Medua Councl, all Medical Studente require to be regrotered a suan stadent ay ulom thed to 0 mers or Session Studenta are recom the to commence the Medical Studer by attending the Summer Sesvion.

Only one Course of Instruction on eagh subject as here stated, that heing the minumum.

> : "Fees for Degrees

Examination in Botany, Chemustry, Chemical Testang, and Natural History
Examination in Anstomy, Physiology, Mataria
Medica, and Pathology \quad -
Enal Examination an Surgery, Midmnfery, Prac-
tice of Physis, Cimical Medicine, Chinical
trons, durng last Summer Sbsaion -
Total Fees for M B Diploma
Additional Fee for C M. Drploms
Additionsil Fee for M D. Diploms
550 -5.0 Government Stamp-Duty (for M.D. only) - 10.00
in Noter-Total Fees and Stannp for graduating as M.D only, by Regulations for Students commencung. before February 1861, 251.

The Fees for Examinations must be pard eight days before the dates therreof and the Fees for Degrees of $\mathbf{C} \mathrm{m}$. and M.D., and Stamp-Duty for the latter, must be pard on or before the 15th dey of July m the year of Graduation.
 gity of Edianurga.

Uriversity of Edinburgh,
My Lomd Mardenses, 23rd March 187
I ak requested by Mr. Lyoh Playfar to Iurnush your Lordship with information relative to the proposed Net Bualdings for the Universaty of Edinburgh The partioulars are as follows :
The sate for the new Medncal School and Hall of the University, in mamediate proximity to the New Royal Infirmary of Edinburgh, has been purchased for a som which, with law expenses, amounts to about $33,000 \mathrm{~h}$ Abotat 1,000d, will have to be p
oper part of the ground
ver part of the ground
The Buildngs themselves, which are beng designed in the plainest style, are roughly estrmated to cost 76,0001 .
The total cost of the New Buildung with Atehytect's
riay then be set down as not less than $135,000 \mathrm{~L}$. Besides this expense, sbout $20,000 \mathrm{~d}$ wll be requared for legepting for the old Medical Clast-rooms of Profinssons in Arts, ono present Collegt for the ure of Professons in Arts, 20 ; total 155,000 $75,200 \mathrm{~L}$. The subscreption field ts nearly exhansted, but perhaps, by great exertions, somo 10,0001 mere may be

I am, *8.

The Most Hon.
Tha Marquese of Lansdowne.

Univzrgipy on Edinaugga Buhbinge Extangyon

Appeal for $r^{2} \mathrm{~m}^{2}$, $\quad-100,000 \mathrm{n}$
t Of whuch already sabsernbed - - 75,2007
A Acmang Commitrem
The Right Hon the Lord Provost
Principal Sir Alexander Grant, Bart, LLD
Professor Sur Robert Christison, Bart, D,C L

- James Cowern, Esg., M P.
E. L I. Blyth, Esq, C.E.
T. J. Boyd, Esq.

Professor Crum Brown
John Christison, Esq, W.S
John Clapperton, Esq
George Harrison, Esq
Charles Jenner, Esq ${ }^{\text {R Brace Johnston, Esq", W S }}$
Profeseor Muryhead.
T. G Murray, Esq ${ }_{1}$ W.S.
R. M. Smrth, Esq.

Professor Taut.
Profeesor Tarner:
Professor Wilson
Princupal Sur, Alezander Grant, Barta, Copveners.
Samuel Hay, Esc., Urion Bank of Scotiand, Edmburgh *
James Norwell, Esq., Searetary, Unon Bank of Scotiand, Edmburgh
$\underset{\text { Hon, Treasurers, }}{\text {, }}$
${ }^{\text {Professor Wilson, }}$, ' ${ }^{\prime}{ }^{\prime}$
John Christison, Esqu, W S.', Brwe Johnston, Esq, W.Sig
Hon': Secretartesis

London Cominamering

The Rught Hor Lyon Playfart, CB; M.P.
F. Bennoch, Eing, 80, Wood Street, City
G. M. Burdwood, Esq., M.D., India Museum

Alexander Halley', Esq, M D.: "
H B. Mux, Esq, 34, Clement's Lane, Lombsird Street
Richard Dary, Esq, FRCS.
Dyce Duckworth, Lisq., M D , I1, Grafton Street, Prccadilly.
F. Churchill, Esq, MD

The Rey Cosmo R Gordor, D D
If M. Matheson, Esiq , 3, Lombard Street.
Macree Morr, Esq , M.A., Barrister-at-Law
Charles Murchison, Esq , M D.
E H. Srevelang, Esq., M D
Philp Vanderbyl, Esq, Cannon Street.
Edward Wyld, Esq, Holland Park
Dyee Duckworth, Esqi, M.D., IL, Grafton Street, Precadilly, G. M. Burdwoodiz Esq e M. D., Indus Museum,
Hon. Secretarres.

Summary of Proposals.

lst. To purchase the sites of Park Place and Teviot Row. (This has been already effected at a cost of about 33,0001 2nd To erect in the immediate viennity of the New Royal Infirmary, complete Class-rooms; Theatres, Laboratories,
and Museums, with the latest scientific improvements, for - and Museumg, with the Medical Faculty of the University of Edmburgh
the Medical Facuity of the University of Edmburgh 3rd To reorganize the oxastang Class-rooms of the College, and to mprove them in durect adaptation to the wants of
the severai Professors in the Faculties of Arts, Law, and Theology

ineolog.

4th. To provide marensect and more convement accommodation for the Unuversity Lubrary
Degres ereot hat University Hall for the conferring of Degrees, the holding of Exammations, and for all public Academical Cevemonials To improve to some extent the north front of the College bulding

Statement and Appeal
One hundred' years ago an appeal was made to the publeo on behalf of the University of Edinburgh, The number of studs was thea sha of the Collemate bux and seven humared, the madequany of the Collegrate bullungs out and it was deolarad that whilo in Edinb outs and it was dealred hat whis in al handes "great mo Fersity fabmi alona" remaned "sil such a neglected atato as to be generally counted a dishonour to the city of Edinburgh, sad to thus part of the Kingdom.
The reault of thatioppeal was a hberal publuc subsceription, opened in March 1768, whuch, with the aud of Government provided the handscems edufioo now exasting. That buildfing for iong persod smply suficed for al thy teaching
purposee of the Univeraty. But the lapae of a century has produced great ehsnges. During that pernod the population of the Metropolis has been more than trebled; increased faclutisas for travelling have brought the University withun easy resch of all parta of the country; the adrantages of an University education have becoras much more appreciated; the Advancement of Science has widely extended the fieid of academio teaching, and the renown aluke of Teachers the University of Edenburgh, has ancreased Its fame and reputation throughout the world.
its fame and repuraina
Thus, the buildings of the University agem prove to be Fholly madequate to its necessitios The thadequacy wo felt in various wayg
The number of Students attending the University in 1768 was "betmixt six and seven hundred," and the ($1874-5$) the number of Students 18 between 1,900 and 2,000 , (1874-5) the number of Students 18 bstween 1,900 and 2,000, madation has thus become wholly insufficient The Students madanon has thus become whoily insumicient The Studenta at present attending the Chempistry, Anatomy, and Natural
History Classes number about 300 mu each case The History Classes number about 300 in each case , The great persmal discomfort is thus occasioned to both the greathere and the taught.
But apart fromi the present buildrage being insufficient - as regards the number of students 10 attendance, the nature of the modern system of temehing $2 n$ geveral branchos has rendered the existing accommodation altogether unsuitahle Since the present University buldings were erected, the whole subject of Practhcal Chemstry has been added to the Course of Study Within the last 10 years large and commodious Laboratories have been provided 12 oonnesion wntr many of the European Universities, and it would be most unfortunate if the Uuversity of Eamburgh, whitruction in first British School to mintroduce practical mstruction 3 n to carry on satisfactonly thas smportant branch of medical and scientrfic treaning.
Agam, the instruction formerly given in Anatomy consisted almost entarely of lectures and demonstrations delivered in the class-room The changes in medical education dunng the last 30 years render it necessary that each Student should now pursue for humseif the atudy of Practical Anatomy. The rooms at present in use were not constructed for that porpose, and are lamentably inadequate for the work to be done in them.
But besides the Departunents of Chemistry and Anatomy, increased accommodation, in the form of Laboratoryes and sooms suted for mucroscopte and other practical nivestigation and instruchion, 18 requred for the Chaira or Materis
Medica, the Inatitutes of Medicine, Natural History, and Medica, the Institutes of Medicine, Natural History, and accommodanon for the apparauss aud ane phy a aboratory of the Chair of Natural Philosophy should be provided, Edunburgh, by the liberality of the late Sir David Baxter, Edinburgh, by the liberailty of the late Sur Dand Baxter, of the Merchant Company of Edinburgh, and of the late Sir Roderack Murchuson, Chairs of Eagneerrag, Political Economy, and Geology respectively, and by the munticence of Mr. H. G Watson and Miss Watson, arrangemants
have been made for estabhishing a Charr of Fine Art in have been made for estabhishng a Chair of Fine Art in
honour of the late Sur John Watson Gordon, therr brother. Honour of the late Sur John Watson Gordon, theyr brother. For none of the classes thus created is there sutable accom-
modation withn the present Unversity buidings, and modation withun the present Unversity buidungs, and
should the much-needed additional Chars of Unversal History, of Modern Languages, \&ec, be hereafter erected, the absolute msufficency of the present clase-roomas would of course be mereasingly felt.
Collateral with the want of teachung accommodation there is also the dissadvantage of restriction upon the natural growth of the Museums of the Unuversity That of Angr tomy, for motance, has by the accumulations of years so outgrown the space allotred to it that the Stadents cannot be freejly admitted, and it is to a great extent rendered unavailable for teschung purposes.
The Univeranty Library, whach yearly accomulates a large number of valuable books, and which 18 contunually zeceive. nug, by gift and otherwise, accessions of literary treasures, 38 fast outgrowng the lumis ssangned to it.

Nor 18 it only in its teachung and Belentific operations that the Unversity is hampered by the present inadequacy of its buildings All who are intereated in the Unverstry must feel it to be unfortunate, if not dracreditable, that it Ponferred, the Unversity Conncul wonvened, and the incontaliations of Chancellors and Rectors and other scadempeal cerremonises conduoted. It us not only meonvenient but stranned to hure the Muse Hall or other common AssemblyRoom for suck purposes, whuldt other Unaversaties poesess
handsome halls. Thas about ta be erected in Glavgow in ertamated at a coos of not lesa than $55,000 \mathrm{~h}$.
On the occession of the late Scott centenary banquat (9th August 1871), the Eari of Dalhousie mede a apinted sppeal to supply, in oonnexion with the name of Sur Walter soots, this great want of the Univeraty of Edinburgh. A eubr scription for a "Soott Hall" was opened, and had good prospect of sucose ; but the committeo in charge thought it rught to advise ste diseontinuance for the time, leat at should be found to interfere with that which muat be a paramonnt object with all well-wnishers to the Univerattynamely, the provision of more eutisble nocomunodation for it parious educational departanenta.
" It 18 now resolved to make the most otrennous efforta for effecting the improvemente thue indicated as easeentrial.
After a Pull consaderation of all the corcumstancess, it has bean concluded that the beat arrangement will be to dovote the existing University buildings to the servioe of the Faculthes of Arts, Divinity, and Law, and to trannfer the Medical School to a new buidding which will at once afford sufficiont acoommodathon for Lecture-rooma, Muecuma, Laboratories, and other apartments for practical work.
The site in wrew, which containg an area of 80,000 s suare feet, is that occupped br Park Place and a portion of Teviot Row adjacent to the New Royal Infirmary in Dourse of erection. The new buildings will be such as to enable the University to reorgunize, not only the Departments of Anatomy and Chemubtry, but all the separate Departmenta of Medical Teaohung, on a scale suted to the present adranced atate of science, and to the numbera ortudento now attendugg the classes.
The olose proximity of the Infirmary will be a great advantage to the medical studenta, and the removal of that department from the present University buildng, whll ber of class rooms which, together with all the clase-roome ber of class rooms, whach, together with all the class-roome
of the College, ahould now be amproved in ventilition sod In other respecta.
If it be desired that the Unverastry of Edinburgh should conntinue to hold its present high position, measures of the nature nodicated have now become sun absolute necosinty; for thas University cannot be expected to mantuin ity reputation of it is excelled by other Univeratises in the materal applances of teadhing.
By the munificent liberality, for the most part, of the been furnished with a complete equipnient of academical buildugg. The private contributions for this purpose 'samounted, on 27 th April last, to 149,2771 . 16er. 2d. Unleas thus University cas now extend ate fabric, it will not only be debarred from anticupang that steady morease in the number of its students, which it might otherwise naturally expect, but it is obvious that it may even cease to occupy its present high place among the educational inetitutions of the country. It need hardly be sand that nuch a result is to be deprecated. © The nteresta and well-beang of the cety of Edunburgh, and ndeed of all Scolland, are closely bound up with those of the Metropolitan Unverestry:
On these grounds, and because the Unversty has no funds to meet the emergency which has arisen, it in now determined to renew the appeeal which was made no offectuably to the pable a handred years ago. The reputation Which the Universty has earned by the teaching of such men as Munro, Dugald Stewart, Black, Cavimerrs, Gzegory, Lesale, Forbea, Hanulton, Goodmin, Syme, and Sumpson,
 kintosh, Walter Scott, Charles Bell, Liston, hbercrommen, Been most worthily mantaused it is the poccess of the heen most worthiy mantamed, it is the nocceas on the Univeranty which hat rendored ros buidung axtension necer: sary, and 2t 18 hoped that ail those who are miterested tha coppeal.
${ }^{2}{ }^{2} 19$ praia proposed to make the provision of an University Hall dependent on the amount that may be subscribed bering sufficent for all purposes, and the contributions will, in the first mastance, be devoted to supplying what hat become absountely necessary for the Univeroity an a Teaching and Scentific Instatution.
Lookung to the probable coot of the admurable site wexlected, and of the required bouldangs with their ortifit, nocluding uncidental expenses, the Comimittee find it necerwary to appeal to the general publie for contributions to the extemt of not lese than 100,0006 ,
The amount recenved will be applied in anch marner as may be deternined by the General Comumitree, or by any Actung Corumittee to be appointed by them.
It is hoped that Her Majesty's Government, which largely contrabated to the aplendid now buildngss of the Uurveraty
private efforts for placing the Metropolitan University of cootiand on suche a footing as is necessary to preserve it in te present state of efficiency, and enable at to keep pace with other Universities in the march of improvement.
The foregoing Statement and Appeal were framed dunng the lifetime of that generous friend of the University, the late Sur David Baxter, Bart.r and the Commattee were encouraged to venture upon the extensive plan of mprovements above indicated by his counsel and co-operation, and by the hope that he would liberally assast in carrying it out That hope has been amply realized, Sur David having bequeathed the sum of $20,000 l$ for the extension of the buldungs of the Univereity, or for the purchase of land to orin a aite hos circumstance, together wrih the onCornites p bing P Proposal " whach also malude the deprovemen of the north front of the exysting bulding

The scheme embodied in the foregong staternent and appeal was maugurated at a publie meetang held in Edinburgh, on 6th April 1874, at which the Right Hon the Lord Provast pressded, and the speakers were Has Grace the Duke of Buccleuch, the Right Hon Lyon Playfarr, M P , the Rught Hon the Lord Justice-General, Chancelior of the Unversity, Mr Charles Cowan of Logan House, Mr. Campbell-Swnton of Kımmergharme, Mr Duncan M•Laren, M P, the Rev Dr Macgregor, Mr John Marshall, advocate, the Rev Dr James Taylor, Provost Swan, Krrkcaldy, and the Right Rex. Bishop Cotterill.
The National umportance of the Unversaty of Edinburgh, and the strong claims of the echeme for ats extension to the upport of all who are interested in a contmuance of iss fame and reputanno, wore ably deroonstrated by the speech of the copies of a fin report appheation to any of the Honorary Secretaries.

APPENDIX TV.

I-Proposed Regulations for the Sarence Degrex.

Extractmd from the Glasoow Univensity Calendar for $1874-75$, Pp 85-90]
Baohelor of Scuence

The Serata, with the approval of the Unversity Court. have resolved to take the necessary steps to establash the Degree of Bachelor of Scrence, with three alternative courses of study Students will be admitted to examination, pronesonally, in November 1875 The Courses of Study in the several Departments will be as follow, "-
A. In Biological Science-Any four of these fire'

1. Chemistry.
2. Anatomy.
3. Physiology.

4 Zoology (including Compazative Anatomy) 6 Botany.
And any four of the Classes in the Arts Curriculum *
B. In Gideqgicar Science:

1: Geology.
3. Zoology (including Comparative Anatomy)
4. Higher Natural Philosophy.

And any four of the Classea in the Arto Curriculam: provided siways that, m the event of a student taking Geodesy in comjunction with any University Class of not leas than 26 lectures, he bian be allowed to dispense with one of the Axts Clesses.
C. In Enginerrina Solinger .

1. Muthematice (1 or 2)

2 Natural Philosophy (1 or 2).
3. Inorganic Chemistry (1)
4. Geology (1),

5 Cinil Engineemig (2).
And any two of the Classes in the Arts Curriculum axcept Mathematics and Natural Phulosophy * proexcept Mathematics and Natural Phuosophy" proGeodeay in conjunction with the practical course ing Civil Enginearing, or any other University Class of not less than 25 lectures, he shall be allowed to dispanse with one of the Arts Classes
The followng ard the General Regulations proposed for the Degree of Bachelor of Serence.

1. The examinations in those subjects which are token from the Curriculum of Arts shall be the same, and subject to the aame reguistions, as the examuation in those sub jeets for the Dexrie of M.A.
2. No student may prosent humself for examination in any aubjeot without having attended a class on that subject m an University s but atudents may present themselves for examination in any one or mare of the gubjectes so soon sin thoy have attended the requsite classes. No student shall

[^22] $358 i 1$,
be admitted to a Degree in Scrence unless he shall have goven attendance in this University during the last two essions of bis course, nor unless he has attended the half at least of bis course un this Universify

No special certnicate shall be given to stadents who have passed examinstions in subjects for the Degree in Sosence, but a certafied list of successful candidates shall be publushed after each exammation, and shall be copied into a book kept for the purpose by the Registray,
pres of the list shall be signed by the examiners.
4. The fee for the Degree in Science shall be $3 l$ 3s, it for exammantion that if any candidate shall present humself he ahall psy $1 l$ le in each session in which he is exammed, bll he has paid 3538
b Students who commenced theur course for 8 certificate a-Engineering Sctence before Session 1871-72, may be granted a Degree on examination in all the appointed aubjects without attendance on any class but those requaste or the Certificate in Engineerng Science.
6 Examuations for the Degree of MA will not be held as available for the Degres of B Sc, unless passed by the student as a candrdate for that degree; but examinations for the Degree of MA, passed previously to lst January 1874, will be accepted for the Degree of B Sc, on the candudate paying the fees for examination for that degree, over and above any fees he may have paid as a candidate for the Degree of M A
7. Honours in the subjects taken from the Froculty of Arts shall be given to Graduates in Science only on the same curriculum and examination as to Graduates in Arta.
A. In session 1875-76, the subjects of examination in the department of Brological Science shall be ss follows:In Phystology -A general knowledge of the subject as treated, og, in Huxley's Elensentary Manual, and special knowledge of some part of the subject, to be announced fro for special subject for next year to be the General Func-
tions of the Nervous System, including the-Bran and tions of the
In Anatomy.-A general knowledge of Descriptive Anstomy and Histology, sud a more detalled knowledge of certain parts of the subject, to be snnounced from nime to the The special subjects for next year to Musce (2) Ne skeleton (2) Auscles
In Zoology and Comparative Anatomy -A general knowledge of the prociples of Zoological Classification, subjeot, to be announced from thme to thme The special. subjeats for next year to be-the Narsons System as a guide to Classification; the Placental Manmalia and the Mollusca.
In Botany - Morphology (Organography), Physiology, and Systematic Botany, the last restricted to the and Systematic Botany, the prial princlea of olassification, and to British - Natural Orinciples of olassification, and to Bintish describe plants set before him, and refer then"to their describe plants set before him, and refer then"to their
proper place in the Vegetahle Kingdom. (Text-Bools proper place in the Vegetahle kingdam. (Text-Bool Ndasters' Edition)

In Chemistry-General Praciples of Organio Chemistry Classification of Organic Substances, and Chemistry of Blood,' Ble, and Urime.
-:
B. The subjects of examination in the Depariment of Geological Senence shall be as follows - -
In Chemastry. - The Fundamental Princuples of the Serence; the Chemistry of Rock Formations and Mineralogy.
In Geology.-Luthology and Stratigraphy; Palzeonto logy, and the conditnons on which Chmatel Chsnges depend As specsal subjects for next year :-Denuder tion, atmospheric and mamne; the composition and varieties of Igneons Rooks found associated whth the Carbouferou: Strate in Scotland
In Zoology:-Principles of Classification, and a more detaled knowledge of certann parts of the subject, to detaled knowledge of certain parts of the subject, to for next year to be-Climatal Influence on the Distrifor next year to be-climatal Influence on the DistirBrachopoda.
In Natural Phalosophy,-Studenta will be required to * show equal proficiency to that which is requared for the
C. The mubjecte in the Departmont of Enginearing Scieno Thsill be es follows :-
IS Mathematref, - The eubicoter of the Senior Mathemat tical Clabs.
If Natural Philosophy -Thomson and Tait'a Elementary Treatuse on Natural Phulosophy: portions of Maxwell or Baffour Stewart on Heat; Central Forces. Candidistea may profees higher ubbjecto
In Cuil Znngweerng. -The subjecks mentioned in the Calendar at ppe 45 and 44, for the two Courtes of the Professor of Engneering.
In Geodesy. -- Theory of Geodesical Inatruments Methods of Determuning Local Tme; Longituden, Latitudes, and Azmuths 5 Measurement of Base Limos Pnacaples of Triangulation ; Mesaurement of Aros of the Meridian
In Chemastry. - The Fundamental Prnaplea of the Science; the Chemustry of Iron, Copper, Lead, Tin and Zine; of Building Maternaly; of Water and At i_{n} Geoshagy -ill
In Geology -Lithology, Stratigraphy; Geology as applued to Miniag, and Geologecal Surveying.
If Chensetry and Geology the examination may be con. tiucted, in whole or in part, at the discration of the Examuners, by roference to apocment, or (in Geology)
by excuranong in the field.
 - Giasgow ; and Sohbdule of Ligotures and Laboratory Instruction.

Royal Commisson on Scentific Instruction and the Advancement of Science,

I Am directed by the Duke of Devonshire, the Chairman of this Commission, to inform you that the Commissioners, with a view of making their Report on the Universities of Scotland as complete as posaible, and, as far as may be, sumlar, in the character of the information it affords, to the Report already issued on the Finglish Colleges, are desrrous of inclading a Statement of the Total Emolumente of the Professors and Assistants in the various Faculines.
Wxth this niew, the accompanying 'Schedules have been drawn up, and I am to ask you to be so good as to further the Inquires entrusted to the Commseron by affording the required information in es complete a form as passible, together with any remarks you may be pleased to make.
I am to add, that, as the Report xs now nearly ready for presentation to Her Majesty, the Commissioners would be glad to receive the Schedules at as early a date as practicable.

I have the honour to be, \&c.
J. Norman Lockrer,

The Principal of
The University of Glasgow.
Sin,

$$
-
$$

IN the absence of the Principal, I enclose a statement of the-Professors Glasgow Univeraty, June 18th, 1875. this Unverssty As the Wimter Session closed un Apri, and only a few of the Clasees meet in summer, it has been found mpossible, partly owng to the absence of some of the Professors, to make the Return gaute complete.
In the second return (Schedules of Lectures, \&e), the numbers given include all Clase meetings, whether for lectures strictiy so called, or for examizatons, or other ciass work. In some of the Clamsea, instruotion in conveyed aimost entirely by means of lectures (examunations bemg only occasional), mothers, the greater part of the time us oseupied wht the examination, chuefly oral but also in writngef, of the Students in ceartam presombed trakian In the Humanity and Greek Classes, for example, three of the four hours of daniy meetnog are spent an thus way, and only one in lecturean and probations, delvered by the Professor.,

I have the honour to be, ick.,
Duncan Hishair,
'I.-Schedunar of Papmitins.

[^23]| Sabjects. | Endowments. | Fees or Shar of Fees (Average for 3 Years). | Total of Emolumentsy i | |
 Aggregate Stupend of
 Aseistants and
 Demonstrators. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Mathematics. | $\begin{array}{ccc}2 & s & d \\ 312 & 0 & 0 \\ & 0 & \\ 300 & 0 & 0\end{array}$ | $\begin{array}{ccc} \\ 82 & s & s \\ 820 & 0 & \\ & & \\ & 3 & 10\end{array}$ | $\begin{array}{lll} \mathbb{E}^{\prime} & s & d \\ * 1,132 & 0 & 0 \end{array}$ | One assistant | '100l ' (increased ${ }^{\prime \prime}$ by Professor) |
| Astronomy. - | 300 | 310 | *303 100 | One arsistant | |
| Civil Engineering and Mechames. | 47500 | 1798 | 654800 | One assistant | $50 t^{H}$ (pasd by Profes. sor). |
| Englash Iaterature, - | 200 0 0 | 380 | $\begin{array}{lll}580 & 0 & 0\end{array}$ | | |
| Divinity - - | 43813,7 | 11800 | * 55613,7 | | |
| Onental Languages | 30000 | 149.0 | *449 00 | | |
| Ecclesmastical History | 341757 | ${ }^{\prime} 777^{1} 00$ | *418 157 | | |
| Biblical Criticism : | 315000 | 620 | 3770 | | |
| Law | 31000 | 340 | * 650 , 0,0 | - | |
| Conveyancmg | 10000 | 21300 | 31300 | | |
| Medroine - | 27000 | 781 | *- - | One assistant | Paid by Professor.) |
| Anatomy | 25000 | 781130 | *1,031 130 | Demonstrator and assastanta | 2002 for assustants and class expenses. |
| Natural History | 210 a, 0 | 230 0.0 | 440.0 | One assustant in Geo- logy. | (Paid by Professor.) |
| Surgery | 10000 | 52450 | 624 5\% 0 | - | |
| Mudwfery | 1000 | 21519 | 315194 | - | |
| Chemutry | 2000 | 64000 | 8400.0 | Two assistants | 2002. |
| Botany - | 230 0. 0 | 300 0,0 | 530, 0 10 | | |
| Mataris Medica - | 10000 | 264114 | 364114 | One assustant | 254 (moreased by Professor to 466). |
| Institutes of Medicine | $150^{\prime \prime} 0^{\prime}$ | $2 \sim \mathrm{~L}$ | | \#Assistant - | Payd by Professond |
| Forensic Medioune . | 10000 | 20000 | 30000 | One assistant | 257 (mereased by Professor). |
| Cunical Surgery | $\begin{array}{lll}100 & 0 & 0\end{array}$ | 10496 | $2049^{\text {a }}$ | | |
| Clinical Medicine | 10000 | 9726 | 197 2 6 | | |
| Waltoman Lecturar on the Eye. | $\begin{array}{llll}105 & 5 & 0 \\ & & \end{array}$ | $-\quad=$ $-\ldots .$. | | \square | 1 |

II-SCimbulé of Lectures and Laboratory Instruction.

seaparas. IIL-Nunber of Students at the Univeratic of Glascow.
Royal Commiseion on Souentrfic Instrachon and the Adranotement of Science,
6, Old Palace Yard, London, S W.
Sir, I AM durected by the Duke of April 17th, 1875 . man of thas Commussion, to ask you to be so good sa to fapour the Commasioners with a Statement of the number of Studenta attending the Univerinty Course during the past aessan in the dufferent Faculhes of the Unuverity of Glasgow. The Commssioners are dearrous of having as detailed as Statement as possible

,	I have, \&co.
The Principal of The University of \mathbf{G}	J. Norman Lockyen,
	Glasgow University,
Str,	22nd April 1875.

to inform ing thucted by the Prncipal of this University to ninorn you that the number Mannculated Student attending the Uuversity durng the past Session was 1,456, viz

- I ann also mstructed to forward to you the encolosed copy of the "Class Catalogues" of the Dniversity refernng to the , arme Session.

IV.-Fare payable by Studients at the Untribary or pae pa

Glasaow.
Royal Commisaion on Scientifie Instruction
and the Advancernent of Screace,
6, Old Palace Yerd, S W.,
Sia, man of this Commission, to esk pous to be so the Chaur state, for the information of the Commessioners, the amount on an average, of the fees payable by Studenta per annum at the Univeraty of Glasgom.

To the Princmal of The University of Glaagow.
J. Normam Locxyze Secretary.
 16. 11e. 6d.; Metaphysics, 14. ILe $6 d$

Many of the Stridents attend two Classes each Seasion, others a greater number, but some take only one Clasa.

1 am, 8co.
Twos. Moir,

APPENDIX \mathbf{V}.

Seeparans. I -InCOME of the UNIVERSITX OF S'T. ASMREW'S Royal Commiselon on Scientific Instruction and the Advancerment of Science,
16, Old Palace Yard, Liondon, S.W April 28th 1875.
Sir, I Am durected by the Duke of Devonshire, the Chairman of this Commussion, to ask you to be so good as to of the mome the United Coll f the ingome of Leonard in the University of St Andrew

$$
\begin{aligned}
& \text { The Pruncipal of the United } \\
& \text { College of St. Salyator } \\
& \text { and St. Leonard, Unversity } \\
& \text { of St Andrew's }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I have, see } \\
& J \text { Nor }
\end{aligned}
$$

3 Norman Locky

Sra,
St Andrew's
I AM durected by the Procipal of the Upin 1875. n the Univeraty of St Andrew's to acknowedged Collegre of your letter, of date acknowledge the receipt for the information of the Comernission the him to state, ncome of the United College of St, Salvetor of the Leonard
In compliance with said request I have now to mention that the income of the United College available for the salaries and incomes of the Principal and eight Professors m the College, aiter payment of public and parochual burdens on the college lands, permanent charges and expenses, amounts, on an average of the past three years, to The Profeso
The Professor of Chemistry in the United College does not participate in the above uncome. He recerves a salary or 908 per annam from the proceeds of a bequest by the late Dr. Gray, the net amount of which, aitter defrayng made to the Professor
J Norman Lockyer, Esq,
Secretary, Royal Commisgion
on Scentricic Instructron and
the Advancement of Seience

1 have, \&e.
Stuaht Grace,
ecretary, United College

St Andrew's,
Sis,
I AM durected by the Principal 6th May 1875
in the Unyerraty of St, Andrew's, to acknowledge the recenpt
of your letter of date 28 th ult, requesting him to state for the mformation of the Commasaion the amount of the meome of St. Mary's College.
In complance with said request, I have now to mention that the feyemue of St Marys College available for payment of the Salaries and Incomes of the Principal, the Profeator of Divinity and Biblical Criticism, and the Professor of Hebrew in the College, after deduction of publio and parochual burdens on the College Landa, permanent charges and expenses, amounts, on an average of the past three years, to $720 l$ 8s $3 d$.
The Professor of Divinity and Church History in St. Mary's College does not participate un the above Inoome.
J Norman Lockyer, E®aq,
Secretary, Royal Commisgro
on Scenthfic Instratction and
the Advancement of Scrence
have, 8 sog .
Stuart Graća,
Secretary of St. Mary's
Coliegre.

IL=Statement of the total Emoldugnte of the Profebsors and Absistants in the Univehaity of St. Andrew's ; and Schembley of Lecturies and Laboratory Instevction:

Royal Commiseion on Serentific Instruction and the Advancement of Bcience, 6, Old Palace Yard, London, \mathcal{S} W., May 8 Lst, 1875.
Srr,
I Au direcred by the Duke of Devonshire, the Chairman of this Commussion, to inform yon that the Commigstoners, whth a view of making their Report or the Universities of Scotland as complete as pogsoble, and, as far as may be, simular, in the character of the information it affords, to the Beport already iesued on the English Colieges, are desirous of incloding as Statement of the total Emoluments of the Profeasors and Assustants in the various Facultics.
With thus view, the accompanying Gchednles have been drawn up, and I am to agk you to be 80 good as to farther the Inquiries entrusted to the Commesion

[^24]I-Sceeduli of Payments.

- From Dr Gray's Mortification $\quad \dagger$ The Prinoipal of St Mary's College has an offlichal reatdence

TMhf ineludes a share of the revenuen of the Deanery of the Ohapel Royal, which the University Commagerion estivanated would

Subjecta	Leothres per weok.	Leoturea per asssion,	Taboratory work.
1.-Unitbi Coxlmas,			
Prnaupal - -	7	cocasional.	-
Humanity Profendor -	15		\cdots
Greek ${ }^{\text {a }}$	15	345	-
Matheinatics an	18	298	-
Logio and English Iateram ture Professor	8	184	
Moral Phlosophy and Pohtioal Esonomy Prof	7	150	-
Natural Philosophy \quad	7	168	三
Chemistry Profeasor -	7	16169	
Medreme ${ }^{\text {a }}$ -	8		二
Natural Eistory Professor	5	115	-
IL.-St Marys Colmman			
Prinarpal and Syatematac Theology Protessor.	9	162	-
Bibheal Criticism Profersor	5	9090	-
Eoclesiastical History n			
Hebrew Professor -	10	180	-

opars. 197
III.-Numbers of Students attending the UniverSITY OF.ST. ANDREW's.
Royal Commssion on Scientific Instructio and the Advancement of Science, 6, Old Palace Yard, London, S W Sir, A, I am dreoted by the Duke of Appil 17th, 1875. I am dureoted by the Duke of Devonshre, the Chaur-
man of this Commusson, to ask yon to be so good as to man of this Commussion, to ask you to be no good as to
favour the Commissioners with a Statement of the number
past Session in the different Pacultses of the University of as detarled a Statement as gossible
The Principal of I have, \&c.
J Norman Litceyman The University of St Androw's. Normane Lockyza
Unuversity, St. Andrew's, 1875
Sin, Apri 22nd,
In reply to your letter of the 17 th inst, I beg to ata that the number of Students attending the Classea in the Faculty of Arts durng Sesmon $1874-75$ has been 118 Thas Frculty meludes the followng Classes in Mathematical and Physical Sceence, vix, Mathematacs, Nataral Philo sophy, and Chemistry. The number attending the Faculty
of Theology has been 23 I enolose e printed list
I enclose s printed list, from which the Commussioners Will see the number of Studenta attending the respective Classes.

> I have, \&c. J C. Shairp,
Principal of the United College
Number of Matriculated Stadents (Session
1874-75) at the Umited College - - 118
Number of Matriculated Students at St. Mary's
Total at the University - $\quad \overline{14}$
[Extracted from Lusts for 1874-75.]
IV.-Fers payable by Students at the University seopara. of St. Axdrew's.
Royal Commassion on Screntific Instruction and the Advancement of Sclence, 6, Old Palace Yard, is W, Sir, I April 28 th, 1875 .
man of this Cominission, to ask yon to be so good as to K 3
state, for the information of the Commestaners, the amount, on an average, or the fees payabie by Students per annum at the University of St. Andrew's

To the Principal of Ihave, \&c. Norman Lockyeg, The University of St Andrew's. Secretary

University, St. Andrew's,
Sir, May 5th, 1875.
In reply to your letter of the 28th Apri, addressed to the Principal, I am durected to inform you that Stadents attendang toe United College pay s Matriculation Fee of
11 on entering, and a few of 33 . 3 s . for sach Clasa they may
ettand dunng the Sossion. Should they attend thres Classes, which the wverape number, in thet onse the annual payment made by each Student mmounts to $10 i 9_{k}$. In the event of their proceeding to Graduation in Arta a further fee of 11 . 1s. 18 payable for each of the three Departmente of Examination.
of 1L., and a Fee of 2 I 28 . for pach a Matriculation Fee of 11 , and a Fee of $242 s$. for esch of the Ciassen they attend, which in in general three in number:

APPENDIX VI.

Scemare, 1ash 1. Correspondsincri brtwern Her Majebty's Commigsioners and the Princtpal of the University of Aberdeens.

Royal Commassion on Scientific Instruction
and the Advancement of Science,
6, Old Palace Yard, Irondon, \mathbf{S} W., Sir, \quad February 17th, 1872, man of this Commisanon, to acquaint you that Evidence on. the subject of Scientific Instruction in the Spothish Unwerantres is now being taken, and I am to ask you if you are ence to the Scientific Instruction given in the Unuveraty of Aberdeen, and the Statement which you have already been $s 0$ good as to formard to the Commisaion In the event of this ane the case I to request you to be so good as to favour me with the names of the witnesses fohom pou would propose, and to state if enther'Wedneaday or Friasy next week would be convenient for taking the endence, of which a pricis should be at once forwarded, in order that it may be printed and curculated among the; Commserioners prior to the day of meeting.
have, Sor
I Norman Lockyer,
The Prnoupal of
The Univeraits of Aberdeen
University of Aberdeen, Feb, 23rd, 1872.
Sir, I thave commumicated the contents of your lefter to the Profespors of the Unvertory
I regret to say that, it this busy season of the year, it would be ectremely inconvenent, if not nonpossible, for any of them to leave ther Academic canties for the purpose of going to London. .
At the same time I have to observe, that if a precis. of the examination to which, in the event of therr going there they would be subjected, or any senes of quesres, should bs Professors Professors fupurahed, any Informanon be gladly furnished

May 1 venture respectfully to express an earnest hope should result from the labourg of the Cominissors the
 eviarly as to means of slustration which this and other Unveratinea labour under, may be borne in mind.
Unveraitiea labour under, may be borne in mind.
I have, \&e. . Signed) P Cauppzian,
J. N. Lockyer, Esq

Principal.
6, Old Palace Yard, London, B.W., March 2nd, 1872.
Sir, I zave laid your letter of the e3nd of February before this Commasson, and I am directed by the Chauroan to ask when it would be convenient for any of the Scientufic Professors to appear before the Commasioners with a view of giving evidence on the deficiencies in spplisnces for Screntific Instruction referred to in your letter, as the Commisaioners can only Report on what may be given in
Evidence before them. Prafessot

I fear, however, that it will scascely be posaible for them formally to come to a dectaton on it before the next meeting of the Senatus, which if to be on the 9th nist.,-Sisturday next,
In the meantume, I should be much obliged by your tellugg me how long the Commension is to ait, and what is the latest perrod ot which evidence will be recenved.

; I Am durected by the Duke of Devonshire, the Chairman of thrs Commission, to ask whether it wrould be convenient for any of the Scientific Professora to appear before the Comminsionerg on elther the 12th or 19 th of April, for the purpoae of gring Evidence on'Sanenthfo Inatruction an the Univessity of Aberdeen?
The Principal of \quad hbye, Nomman Locetwe
The Univaraty of Aberdean. '; Socretary,
The University, Aberdeen,
Sir, to tha Princmpal of this Umiveraty, I trust that, I may in to the Principal of this Umveraty, I trust that I may, in the absence of the Princlpal fromin ill heaith, be permitted to say that I shall lay your letter before the Senatus after which I shail be sble to give you a definite answrer.

"Thie Secretary," (Signed) Secretary of the University.
Royal Commassion on Serentific Instruction.
The University, Aberdeen,
Sa, Refrabringe to your letter to Apri 8th, 1872.
Reparalasg to your letter to the Pnuchpal of this University of date 23 rd March 1872, I am instruoted by the Senatus Academiens to say that, on conarderation of the mubject therem referred to, the Senstuk thof ommon thas it has nothing apecial to communicate to the Com mussion.

 Abrederes,
Royal Commismon on Scientific Inatruction and the Advancement of Scence, 6, Old Palace Yard, London, S.W, April 17 th, 1876 Sis, I Ay drected by the Duke of Devonghre, the Charreman of the Commussion, to ask you to be so good as to fayour the Commenonexa with a Statement of the number of Studentas attending the Univeraty Course daring the past Session in the different Facnlites of the Unupensity of Aberdeen. The Commismoners aro deamous of having as detalled a Statement as poserble.
P. 1

The Princpal of J. Norman Locerys
The Universsty of Aberdeen. Secretary
Rosemonnt, Sudmonth, Devon
: Rosemonils, Sidmonth, Devon, 1875. to state this the number of Students atteading the Umi-

These are the average gums paad yearly by the Studente followng the courses requisite in each Frculty, but as many Students attend more than the requisite number of Classes, ther expenditure is in such cases higher than the above.
The fee for each Class or Course of Lectures is generally $3 l$ 3s.; for Second Classes and Summer Courses generally 2l. 2 s , in some cases 1 ll Ls. In Anatomy -Second Course, $3 l 3 s$, Third Course, 12 ls.
The average yearly payment stated above includes in each case the annual Matrictilation Fee of in (which com prises Lubrary and all mendental expenses), as well as fees to Professora Addinonal payments have to be made at Examination for Degrees, in Arts, 3l. $3 s$; in Divinity (B D), 36. $3 \mathrm{~s}, \mathrm{in}$ Medime (M B), 156 15s, (C M) $5 l_{r} 5 s$, on promotion from M B. to MD, $5 l$. 56 , in addition to the stamp duty on Diploma The Degrees of D D and LL.D. are Honorary, and no charge is made for them.
A considerable number 'of Students in the Medical Faculty attend this University only during the last two zears of the Curriculum, having studied at other Medical Schools, and some Students, having no news to Gradus tion, attend Special Lectures in the Faculties of Arts or of Medicine, paying the usual feep to the Professors whose lectures they attend

I do not understand 'tit to be 'the wish of' the Commissioners to know the gross Revenue of the University and its Offictals, arising from pyaments by the Students But although your letter does not appear to imply this, 1 should andeave to prepare a statement on the subject, 1 desired, and if you would be so good as to let me know the number of yeara over which you would wish the average to be taken.

I have, soo ${ }_{P} \mathrm{C}_{\text {amprete }}$
Principal of the University of Aberdeen
. Norman Lockyet, Esq, Secretary,
Royal Commiserion

APPENDIX VII

I. Extracis from the Civic. Serfici Estimates for the Finanolal, Year 1875-76
The Queen's Unverstry in Ireland

 This Oifloer ruaryed allo 18 gutuot in 1874 as Ansistant Fin

May，1875（Sugned）Rp．Oulton，B D．，Regastrar，
lege，Cork，among the several Faculties，during the
Session 1873－74，is shown in the followng Table．

1 m	Matriculated Btudental	$\begin{aligned} & \text { Nb: } \\ & \text { Matriculatod } \\ & \text { Eitadonta } \end{aligned}$	Totan．
Facuity of Arts－ ＂Iaw－ ＂Medicine－ 3 Engneering Total	58 7 154 18	$\frac{6}{16}$	64 7 170 19
	288	22	200＊

＊Of thas nomber， 10 Stadenta entered for，and attended Leco－
\qquad
Sir，\quad Queen＇s College，Gaiway，May 14th， 1876. the Duke of Devonahire and the Commerion of his Grace the Duke of Devonshire and the Commibsioners of Scien－ tricic Instruction，the Dumber of Students in the several Facuitise at the Queen＇s College，Galway，during the
Sesion 1873－74． have，\＆e，
EDWA

Edward Brawice，Prebident．
Return showing the Number of Students in the neversi
Faculties at Queen＇s College，Galway，durng the Session 1873－74

－		真		告咅	菑
Faculty of Artr \quad－	7	21 8	26 5	1	58 9
\＃Medicme－	21	15	48	4	88
Departmentofitingmeerng	6	2	2	\sim	10
Occastonal Stadents－	－	1	1	\sim	2
Nom－Mstriculated－	2	－	3	1	0
Totals－	37	42	80	6	165
$\left.\begin{array}{c}\text { Of these nine attended in } \\ \text { two Faculties，} v z-\}\end{array}\right\}$		4	8		9
Total of separate indi－ nduals．	35	88	77	6	156

Queen＇s College，Galway
May 14 th， 1875.
 in the Sesson 1874－6
［Reoared is reply to telegrams］

LONDON：
Printed by Grozer R．Ryize and Wixian Broriswoode，
Primers to the Queen＇s Moot Excellem Majesty
For Her Majerty＇s Btationery Office．

EIGHTH REPORT

のF THO
ROYAL COMMISSION

ON

SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILLIAM SPOTTISWOODE,
pRINTERS TO the qUEEN's MOST EXCELLENT MAJESTX.
POR HER YAJESTY'S STATIONEFI OPRICB.
1875.
[C.-1298.] Pruce 7d.

CONTENTS.							
COMMISSIONS	-	i*	-	-	-	-	$\begin{gathered} \text { Page } \\ \text { iii } \end{gathered}$
REPORT	-		-	-	-	-	1
APPENDICES	-		-		-	-	49

ROYÁL' COMMISSION ON SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

VIOTORIA R.

Victoria, by the Grace of God of the United Kingdom of Great Britam and [reland Queen, Defender of the Faith, To. Our Right Trusty' and. Pight Entirely Beloved Cousin William Duke of Devonshire, Knight of Our Most. Noble Order of the Garter,Our Right Irusty and Entirely Beloved Cousin Henry Charles Keith Marquess of Lansdowne,-Our, Trusty and Wellbeloved Sir John Lubbock, Baronet,-Our Trusty and Wellbeloved Sir James Phillips Kay-Shuttleworth, Baronet,-Our Trusty and Wellbeloved Bernhard Samuelson, Esquire,-Our Trusty and Wellbeloved William Sharpey, Esquire, Doctor of Medicine,-Our Trusty and Wellbeloved Thomas Henry Huxley, Esquire, Professor of Natural History in the Royal School of Mines,-Our Trusty and Wellbeloved William Allen Miller, Esquire, Doctor of Medicine, Professor of Chemistry in Kings College, London,-and Our Trusty and Wellbeloved George Gabriel Stokes, Esquire, Master of Arts, Lucasian Professor of Mathematics in the University of Cambridge, Greeting:

Whereas We have deemed it expedient for divers good causes and considerations that a Commission should forthwith issue to make Inquiry with regard to Scientific Instruction and the Advancement of Science and to Inquire what aid thereto is derived from Grants voted by Parliament or from Endowments belonging to the several Universities in Great Britain and Ireland and the Colleges thereof and whether such aid could be rendered in a manner more effectual for the purpose

Now Know $Y e$ that We reposing great Trust and Confidence in your Ability and Discretion have nominated constrtuted and appointed and do by these Presents nominate constitute and appoint you the said Wilham, Duke of Devonshire-Henry Oharles Keith, Marquess of Lansdowne-Sir John Lubbock-Sir James Phullips Kay-Shuttleworth-Bernhard Samuelson-William Sharpey-Thomas Henry HuxleyWilliam Allen Miller-and George Gabriel Stokes-to be Our Commissioners for the purposes of the said Inquiry.

And for the better enabling you to carry Our Royal Intentions into effect We do by these Presents authorize and empower you or any three or more of you to call before you or any three or more of you such persons as you may judge necessary by whom you may be the better informed of the matters herein submitted for your consideration and also to call for and examine all such Books Documents Papers or Records as you shall judge likely to afford you the fullest information on the subject of this Our Commission and to Inquire of and concerning the Premises by all other lawful ways and means whatsoerer.

And Our further Will and Pleasure is that you or any three or more of you do Report to Us under your Hands and Seals (with as little delay as may be consistent with a due discharge of the Duties hereby imposed upon you) your opinion on the several matters herein submitted for your consideration, with power to certify unto Us from time to time your several proceedings in respect of any of the matters aforesaid, if it may seem expedient for you so to do.

And We do further Will and Command and by these Presents ordain that this Our Commission shall continue in full force and virtue and that you Our said Commissioners or any three or more of you shall and may from time to time proceed in the 34356.
execution thereof and of every matter and thing tberein contained although the same be not continued from time to time by adjournment.

And for your assistance in the execution of these Presents We do hereby authorize and empower you to appoint a Secretary to this Our Commission to attend you whose services and assistance we require you to use from time to time as occasion may require.

Given at Our Court at Saint James's, the Eighteenth day of May 1870, in the Thirty-third year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE.

ROYAL COMMISSION ON SCIENTIFIC INSTRUCTION AND THE ADVANCEMENT OF SCIENCE.

VICTORIA R.

Victoria, by the Grace of God of the United Kingdom of Great Britain and Ireland Queen. Defender of the Faith, To Our Trusty and Well-beloved Henry John Stephen Smith, Esquire, Master of Arts; Savilian Professor of Geometry in Our University of Oxford, Greeting :

Whereas We did by Warrant, under Our Royal Sign Manual, bearing date the Eighteenth Day of May, One Thousand Eight Hundred and Seventy, appoint Our Right Trusty and Right Entirely Beloved Cousin, William, Duke of Devonshire, Knight of Our Most Noble Order of the Garter, Our Right Trusty and Entirely Beloved Cousin," Henry Charles Keith, Marquess of Lansdowne, together with the several Gentlemen therein named, to be Our Commissioners to make Inquiry with regard to Scientific Instruction and the Advancement of Science, and to inquire what aid thereto is derived from Grants voted by Parliament, or from Endowments belonging to the several Universities in Great Britain and Ireland, and the Colleges thereof, and whether such aid could be rendered in a manner more effectual for the purpose: And whereas since the issue of the said Warrant William Allen Miller, Doctor of Medicine, one of the Commissioners thereby appointed, hath deceased:

Now Know Xe, that We, reposing great Trust and Confidence in Your Zeal, Discretion, and Integrity, have authorized and appointed, and do by these Presents authorize and appoint you the said Henry John Stephen Smith to be a Commissioner for the purpose aforesaid, in addition to, and together with, the Commissioners now acting under the above-mentioned Royal Warrant.

Given at Our Court at Saint James's the First Day of December 1870, in the Thirty-Fourth Year of Our Reign.

By Her Majesty's Command,
H. A. BRUCE.

- Professor Henry John Stephen Smith, M.A.,

To be a Commissioner for inquiring into
Soientific Instruction and the Advancement of Science.

EIGHTH REPORT.

TO THE QUEEN'S MOST EXCELLENT'MAJESTY.

May it pleasr Your Majesty,

We, the Conmissioners appointed by Yeur Majesty to make Inquiry with regard to Scientific Instruction and the Advancement of Scences, humbly beg leave, to present to Your Majesty, in conclusion of the Inquiry entrusted to us, the following Report on the Advancement of Science and on the Relations of Government to. Sclence

In the course of our Iavestigations into the Proceedngss and Management of the Universittes, Colleges, Museums, and other Institutions, which exist wholly or in part for Scientific Purposes, considerations bearing on the Relations' of the Government to Science, and on the Advancement of Scientific Research, necessanly came under our notice to a certain extent ; they were, consequently, referred to in an incidental manner in the Reports already submitted to Your Majesty, which, however, were mainly concerned with Scientific' Instruction. The present Report will address itself ditectly to the Relations of Government to Science, and to the Advancement of Scientufic Research; and our Inquiry divides itself into the following branches:-
(1.) The Scientufic Work carried on by Departments of the Government.
(2.) The Assistance at present given by the State towards the promotion of Scientific Research.
(3.) The Assistance which it is desirable the State should give towards that object.
(4.) The Central Organization which is best calculated to, enable the, Government to determine ats action in all questions affecting Science.

I.-The Scientific Work carried on by Departments of the Government.

The principal branches of Scientific Work conducted by Officers of the Imperial Government, and the Departments by which they are administered, are as follows:-

Topographical Súrvey [Treasury (Office of Works)].
Hydrographical Survey [Admiralty].
Geological Survey [Privy Council].
Astronomical Observations:
Greenwich and the Cape of Good Hope [Admiralty]:
Edinburgh [Treasury (Office of Works)].
Meteorological Observations :
Greenwich [Admiralty].
Edinburgh' [Treasury (Office of Works)] ${ }^{1}$ -
The Meteorological Ofice.
[The Meteorological, Offte is not adminstered by any Pubhc Department, bat is directed Ey a Conmmittee, which, although sppounted by the Royal Socetety, is nndependent of that body.;
Botany.-Ropal Gardens, Kew ; Botanic Garden, Edinburgh ;'Botanec Gardens, Dublin [Treasury' (Office of Works)].
The Chemical Department of the War Office.
The Standards Department of the Board of Trade.
Analogous work is carried on in some of the Colonies and Foreign Possessions by Departments of their respective Governments.
In one case, that of the Royal Observatory, Gieenwich, the work is examined into and reported on to the Admiralty by a Board of Visitors composed of men of Science.

Some branches of the work dealt with, from the accident of their origin and from other causes, are less entirely devoted to the direct necessities of the State than others; whilst it will be seen, that there are certain lines of investigation of no less importance to the State than those for which provision has already been made, which the State has not as yet undertaken.

The Imperial Investigations enumerated, with the exception of the very'special work of 44356
the Chemical Department of the War Office and the Standards Department of the Board of Trade, generally extend over large areas or long periods of time, and consequently are of such a nature that the, State pould not safely intrust them to the action of Individuals or Societies, even if these were Willing to undertake them! f;

When Scientific questions arise on which the Departments are not supposed to possess the requisite theoretical or practical information, Special Committees are appointed or the advice of individuals presumed to be specially qualfied is obtained, either directly or through the Royal, the Geographical, or some other Learned Society.

The following is a Statement showing the annual charges borne by Imperial Funds, ai the present time, to defray the expenses of such of these various unvestigations as appear separately in the Estimates for the yeat 1874-75.

In addition to these recurring charges, sums are toted from time to time for variousExpeditions and for Experiments incidental to the Services of the various Departments, such as the Investigatrons concerning the Causes and Processes of Disease carried on puder the Direction of the Lords of the Privy Council, and the various Experimental Researches carried on for the Arnyy and Navy.
'We have not considered it ' necessary to take Evidence regarding' the detailed work of the Public Departments, but have thought it sufficient to collect the general opinion of those who are connected with, or well-informed concerning, the Scientific Work carried on by those Departments.

In the case of the Meteorological Office, \bar{h} owever, both on account of its recent establishment and the circumstance that it is not directly responsible to any Public Department's we' have felt it our 'duty to itake Evidence at some length, both as regards its Scientufic and Financial Administration.

> Evidence as the Insufficiency of the present Organization.

The Evidence which we have taken; as to the sufficiency or insufficiency of the work done for the Advancement of Science, including that of the Government Departments, is very copious. A large portion of it is contained in the, volumes already published, and it will have been seen that there is a general concurrence, of opinion, that, even in the interests of the Departments, themselyes, more ought, to be done by the Government in the way of Investigation, particularly in respect of those Sciences the Practical Application of which has been developed, or the scope of which has been enlarged by Discoyery, within recent years.

These opinions are entertained alike by persons engaged' in S"cientific Work under the various Departments of the Government, and by Scientifiç, Men ,having no official connexion with \ddagger he, State...
onnexion with the, State.
The following are extracts from the Evidence on this, branch of the subject.
Sir Henry Rawlinsong a member of the, Indian Councll, states, that in that Council they perpetually have references before then which they aré unable to deal with.' He adds:
Qu. 12,565. * "We have, for instance, Sut Whiliam Bakerr upon t the Council, and General Etrachey and Colonel Strange both attached to the Office ; yet, notwithstanding their valuable ald, there are many angjecto referred to us with whick we are 'quite 'moompetent to deal" I
He then refers to the following subjects among others :-The Manufacture of Iron and Steel in India; the Efflorescence of Soda on Irrigated Land; the Fermentation of Beer, "which " $¢$ may involve, a loss of, 200,0001 . or 300,0001 . a"year to the British Government;" the question of Drought arising from the Destruction of Forests; the Construction of Harbours and of other Hydraulic, Works; the Founding of Brass Gums; Tidal Observations; the Publcation of Works on the Flora and Fauna of India; Geological and Trigonometrical Surveys; Sea Dredging; and Observatories.

He points out that many of these questions are, practical and economical, but that still there is a scientific element in almost all of them, and he adds-

[^25] ohip to begin with, 19 a waste of money. The cost of constryuction of, 8 big ship las an, wastrument of anvestigation 18 enormous; and, if it is tried with a niew to the applicution of, a new princules, there must be the rask that the experment will be to some extent wasted. Beng an experment, the, rery, fact, that 1 t , 15 an experiment imples that it may not, turn out as it 15 expected, and a farlure m so egstly e puece of apparatus as a new complate ship is mevitably a very costly falure. So far as ft , ls , possable to arme at a proper understanding of such subjeets by small-scale trals, it is of the utmost'rmportance, economically, that that method should be adopted, and I think that that has not been sufficiently adopted."

It will be seen from the Evidence of General Strachey, which we quote in" a subsequen't part of this Report, that he also disapproves, of the mode, in which Government is at present advised on questions of Science, especially on the ground of the absence of scientific training in the political and official classes of this country:
Sir Wm. Thomson has given us the following Evidence:,

[^26]" II do not think so, because they have to find out the dream and the interpretation both, which is always a difficulty. They have to feal their way to a locus stand, which would already be poesessed by a Council habitually operating with reference to the subject."

Additional examples of these defects are given, not only by, these Witnesses, but also by others whom $_{\mathrm{a}}$ we shall quote in that part of our, Repolt which deals with the proposed remedies.

Evidence as to the Insufficiency of the present Appliances for Investigation

Our attention has been especially directed to the want of Laboratories for the use of the officials charged with Sclentific Investigations urgently required for the economical management of the Public Departments.

Mr. Anderson, the Superintendent of Machinery at Woolwich, who has been responsible for the expenditure of "very nearly $3,000,000$ l. of public money," points out that there are no means at the disposal of State servants to enable them to investigate questions on which large expenditure depends. With special regard to his own Department, he states :
"There is a very great deal which I should like to see taken ma hand gystematically. * . . Thore is much that we are 1 the dark about ; we are groping in the dark in almost everything at present." of steel, there is yet very much which we do not know, and I of steel, there 18 yet very much which we do not know, und I am persuaded that if we could with cerrainty treat ord nary cast ron 10 the way that we sometimes do nenrly by chanos, we would do away with three-
fourthe, ur a very large proportion of the wrought iron which is now used in this country, and we should use foanthas, or a very large proportion of the wrought iron which 18 now waed in this country, ard we shouid use
cast rion. A great denl of the east iron of commerce is not much nboye five tone per square inch in tenacty, ceast iron. A great deen, of the east iron of commerce is not much above ive ton pers aquers inch in tenactity, are obscure end it It very dufficult to see what they are. I a should like that the aubject of cast iron should be thoroughly, exhansted, and at the same time I should like to see the physccal properthes of iron thoroughly exhausted."

He next refers to another question of great importance to almost all the Public Departments:

Qu. 11,931.

* * ${ }^{*}$ There is another very important subject which I might mention to the Commission. Some 20 yeare ago we were using 10 or 12 pounds of conl per horse-power per hour, and the majority of engines still require aix pounds, but by the improvements that have taken place we are now down to two pounds. There is a little engrne at work now in the London district which is working at 14 pounds. There is a great gulf yet between getting steam-engines that will work at 13 pounds per horse-power per hour, and the point Where we are now; I mean getting that done practically; but I believe that if the right man, or two men, were told off to thoroughly 1 ivestigate this subject, and not to stop working until they had brought it to a practical shape, we could in 10 years from thas tame get down to one pound per horso-power per hour. I gee that there are very many leakages or loss in steam-cngines in the very best way that we make them at present. The knowledge that was gained by Joule's experimenta a few years ago seems to me to have been of immense value. Those experiments that he carried out for liniself were the sort of thing which I think the Govermment should have done for the alke of the country. He did more to make engineery thoroughly the Governnent should have wone with their present knowledge with regard to what they can do with stemm than snything which dissatisied with their present knowledge with regard on whe before. I believe that what Mo. Joule did wo more for this country than even what James Watt did. The part that James Watt took wae very great, and the world gives him full credit for it, but tho world is scarcely willing to give credit to Joule for what he will do; but he has made all engineers dissatisfied. They know that the best steam engine is not doing one-sixth of the work which it ought to do and can do, That 18 a ead state of matters to ba 2 m when we know that we are so far wrong, but yet no one will go to the trouble of going to the end of the question so as to mprove the ateam engine as at might he done; in fact, it will cost a great deal of trouble and a great denl of expeuse, 1 have no doubt."

解 regard to the question whether it is "desirable that the Government should establish any Laboratories for carrying on those investigations," he thus stated his opinion :
"I should like to see a grand laboratory fitted with everything that would go towards the investigation of such matters, and at the same time a testing apparatus for getting at the physical facts as well. To get up the proper plant would be very expensive, but still 1 should hese the nation to have it, co that any pablie department could go to this same laboratory and ask them for assistance to investigate any doubtinl point, ing is overpowered with work-either they get too much or too little to do-and the investigator should not be bothered with such miscellaneous work. For example, take my own case, I may have 60 anbjecta in a day many times. Yesterday I had well on to 50 subjects to take up, and go into them all as well as I could, and I did not get over my work to write the paper which now hes before your Grace until 9 o'clock lank night. A man is not in a position to pursue investigations when he is overworked in that way."

Mr. Anderson's Evidence finds a parallel in that given by Mr. E. J. Reed, M.P., late Chief Constructor of the Navy.
Qus. 12.706.
"I think that there are many branches of science remaning modeveloped at present, the dovelopment of which would be of great advantage to the conntry I base that opuon partly upon the experinnce which I acquired at the Admuralty; in which I contannally found that great and mportant questionk were undeveloped for the want of organisation and of the means of developing them."
Qu. 12,707. " "Mr. Fronde in his evidence before this Commission stated that he had in hand a series of experimad resistance in ohiss, having for ther primary object the determination of the relations between form, speen, there is one subject related to that which Mr. Froule has under consideration, but which hat not been developed at all yet, and it as one upon which very moportant finaneial questions hang; I refer to the dependdeveloped at all yet, and it af one apon which very mportant financial questions hang; I refer to the depend
ence of the form of ehips npon the weight of the materials composing their hulls. It will be obvious to the Commission that if you are gonng to bund as abip for high speed of the thunsest steel, you can afford to prolong the ends of the vessel at either end, and gave them extrene fineness in a manner and to adegree which would be preposterous, and I may even say monstrous, in the case of aship which had to be built with very thickly-armovred sudea. In this country the earher ironclads were made of a form involving vary long
nnd fine lines, in fact a form smalogous to that of mercantile steamshipa, and the consequence was that although in the "Minotarr' type of ship armour and backing equivalent only to that ased in the first instance in the
'Warrior' was employed, yet we got a ship 400 feet long, costing nearly half a million stering. The impropriety of that course impressed atself upon my mind, and I beleve it was more for that reason than for any other that I ventured to propose to the Admuralty a great change in that respect, and placed before them the deagn for' the 'Bellerophon' as an example of as vessel which should be as fast as those' long ships, and more effectuolly armoured, and much more handy, carrying at least as efficient an armament, and ye and no Grace the Duke of Somerset; the 'Bellerophon' was built, and I belheve long before she was finished the principle obtaned so much favour 'that the idea of building another of the extremely long vessels never entered anybody's mind, and it was stated
by the late First Lord of the Admuralty, M. Childers, in Parlisment, offically, that' by adoptugg that moditication of form at least a mullon sterling had been saved, to the county in the course of a very short time.. But I wrih to impress upon the Commsssion, if I may be allowed to do so, that that economy resulted from a mere tentative and limited application of a scientific pronciple, which has never been developed, and which the corganisation of the Admuraly furnishes no means for developing. I indicated the nature of this mevestigation in a paper land before the Royal Society some two or three years ago, but as the solution of it involves high mathematics on the one hand, and elaborate experimental investigations upon the other it has never been taken up and dealt with in any sufficient way.",
"A second illustration which I should like to give' is this:' the present condition' of the marine steamengine and boiler is very unsatisfactory. It is unsatisfactory to such an extent that I believe of the manufacture of rron and steel were improved with reference to its use in, the construction of engunes and boilers, and if improved material were applied by improved methods, a saving of one half of the present weight would be attanned, and when I say one half I know that I am speakung greatly within the lumits which some persons who have thought very much about this quastion would be prepared to express. Of course, if that be so, 'If we are carrying about in our mercantile and other steamships twice the weight' which is essential for the production of the power, that 18 so Tauch taken off either from the further power and speed which-might be obtanned, or from the fresghtage and commercial value of the vessel. I may mention that in the manufacture of shafts, for instance, of the marine engine and of stern posts, and other large forgings for ships, the method of production is comparatively rude, and it very much needs development. I for one feel the necessity of great improvement in these respects, because I know that at the present moment the successful production , of those enormous forgings rests a great deal more upon the akill of a workman than upon the application of any science whatever to them. So much has the subject been neglected, that, at thas moment, I have the responsibility of seemg some very large forgings mdeed made for certain ships, and the most effectual manner in whach I can give effect to my i esponsibulty is that of selecting the very best workng smith that I can find, and puting him into the manufactory where those things are bengg made, for hum to do the best that has expernence enables him to do, in order to see them pioperly constructed., I belleve that of a regular udependent scentufic anvestigation were appled to a manufacture of that nature, enormous advantage would at once result,"

The Standards Departucnt of the Board of Trade is another Department requiring advice in varied scientific subjects. The Warden of the Standards (Mr. Chisholm) states:
"There 18 no scientific authority to which I_{i} am entitled to appeal. It happens at the present time that Qu. 11,666. I have the advantage of appealing to my former colleagues in the Standards Commission, to the Astronomer Royal and to Professor Miller, and I get a great deal of assistance from them in that way, espectally from Professor 'Miller. 'In fact I could hardly have executed the scientific duties' of my department without having assistance of that kind, but such ard has been obtained merely m consequence of my relations with them as a colleague. I am in no wise authomsed to call upon them or upon any other scientific authority for information or assistance, I may here particularly refer to one subject which is mentioned in my paper, the preparation of new standard trual plates for conn. I actually required scientufic information upon that point and I could only apply to the Astronomer Royal, but his' time' was takon up ro much that after some tume he dechned interfering in the matter, so that I have been obliged to act in the matter without having any scientific authority to aid me, although it is a very responsible duty cast upon me by law."

Sir William Thomson, in reference to the subject of Standards, says :
"The conservanay of weights and measures is a subject involving questions of the most extreme scientifio nivety. Faraday made statements showing how completely unknown at present are the properthes of matter upon which we depend for a permament standard of length. One of the very first objects that should be undertaken in connexion with the conservancy of the standards of weight and length is secular experiments, on the dimensions af metals and solids of other classes under various conditions of stress, temperature, and atmosphere. Those would anvolve scientific expermments of an extremely difficult character, and also operations extendug from year to year. There ought to be just now a set of experimental specimens of solds laud up which should be exammed every year, or every 10 years, or every 50 years, or every 100 years, the tumes when observations are to be made from age to age being regulated by the experience of the prenious observations, It would be necessary to begin observing evely month, then when constancy is attamed withup the degrees of observable minuteness to observe every year, then every 10 years, then perhaps every 50 years, and then it might be sufficient to look at them every 500 years, and examine whether this copper standard and that brass standard have retaned precieely the same length. ' This would not be a very difficult or expengive thung to institute in such a way os eventually to obtain good results, but at would be an operation of a secular character, which could ouly be carried out by the Government."
Dr. Frankland thus refers to the various requirements of Government involving Chemical Investigations:

* * The State requires many important investigations to be carried on. Such investigations are Qu. 11,065. being continually conducted in buildings often very ill-edapted for the purpose, and which are fitted up for the parpose at a great cost. The laboratory of the Rivers Commission, for instance, which we have occupred for four yeare, was construcled in a house in Victora Street; a rent of 200l. a year is pand for it, and it is hterally nothing more than a moderate sazed room, and twa smaller ones, very ill-adapted for the parposed Consequently, this laboratory is not so efficient as a building erected for the express purpose of condncting such investigations would be."

In the Evidence which we have taken with regard to Astronomical Physics and Meteorology, the expressions of opinion as to the insufficiency of the means of investigation are so interspersed with suggestions as to the remedies to be applied, that we think it more convenient to refer more particularly to these subjects in the Third Part of this Report.

Inr

1. It may" be convenient, for the purposes of this Report, to consider the Assistance giver

Fourth

 by the State towards Scientific Research as being either Permanent or Occasional.Report. Our great National Museums (upon which we have already reported) come under thi first of these descriptions, and it will have been seen that for, the purposes of the Student of the Biological and Geological Sciences, Collections are provided on an extenaje acale so that the Student 'of these branches of Soience has advantages similar to those provided for the Student of Art or Literature.

On the other hand, the Student of the Physical Sciences has no such facilities; there are, at the best, for some of these branches of atudy, Collections of Instruments of a very inadequate kind, and relating for the' inost part to Applied as distinguished from Theo. retical 'Science.
We have also, reported to Your Majesty that the National Collections, so far as they illustrate the Biological and Geological Sciences, are rendered easily accessible to the Students of those Sciences. But the few instruments illustrative of Physical Science in any Nationdl Collectiop are so placed that they can scarcely be used even in the study of 'the' History of Science ${ }_{m}$ 'Moreover, as a mere collection of instruments, however com. plete, xwithout. working laboratories, is of little luse to the Student of, the Experimental Sciences, "tad as there are no Public Laboratories available for the Researches of Pritate In'vestigafors' it may 'be' said that' in't pany branches of Experimental Science the State affords po permanent, material aid, to such Investigators, in

- Assistande:of a Permanent Deseription is also afforded ta certain Learned Societies, by providing them' with apartments free of rent, or with annual grants of money in lien of such accommodation the sum of 500l. gıanted annually to the Royal Geographical Society tinder' 'kertain conditions is an instance of such 'a grant.
${ }^{4}$ We may 'regard as' \mathbf{a}^{6} Permanent ${ }^{1}$ Ard to ${ }^{4}$ Science the granr of $1,000 l$. for Researches carried on by Private Individuals, which is annually voted by Parliament, and administered by"a Committee' bf the Royal Society.:
"This Grant has rendered such great, services" "to "Science, that . We desire to give the following Outline of its History..
The first proposal for such' a ${ }^{\text {t/ }}$ grant wás contained in a letter (dated October 24th, 1849) from Edrit Russell' (then Lord 'John Russeli) to "the "then', President of the Royal Society (the "Earl of Rosse), and was to the following effect :
App. XI. UAs there are from thme to time scientific discoveries and researches which cost money and assistance the App. X1. students of scrence can often bat ill afford, I am induced to consult your Lordship, as President of the

Royal Society, on the following auggestion :- ' of the Treasury a lumited number of persons to whom the grant of meward, or of same to dofray the cost of the Treasury a hmited number of persens to Whom the grant of seward, or of s sum to dearay the cosit
of pxperimente, mught be of essentul service. The whole sum which I could recommend the Crown to grant in the present year ik $1,000 \rho_{s}$ nor can I be cortasn that my succeesor would follow the same course; bat I should wish to learn whether, 11 y your Lordshp's opmon sand that cof your colleagues, the cause of acience would be promoted by auch grante"
\therefore Lo'd Rosse, in his, reply' to the' proposal made by, Lord John, Russell, expressed his personal opinion that the judicious employment of grants in the way proposed "would very"materially promote the Advancement of "Science;" and of the two alternatives, namely, expending the $1,000 \mathrm{l}^{\prime}$ in rewards or appropriating it to the payment of the expenses of experiments, he preferred the latter, indicating his reasons as follows;
App. XI "wethere arfe often détals to be" workéd out before it ìs possable to employ nsefully newly discovered princivol II. p. 41. ples. In many of the sciences reductions are required before observations can be made use of. Both in Science and Airt fants techncally ealled constantsanel the materials of discovery; to determine them aceurately in of great importance. Now in all these cases, and an many othere, the work to be done is laborious emd expensive, and as it adds but little comparatively to the fame of the individual, it especially requires encouragement."
 Gommittee was appointed "to consider and-report respecting the application of the "proposed granti" This Committee agreed to the following Recommendations:
"Frrst and chrefy-That the grant be awarded in aid of private individnal scientific investigation.
I"Secondiy, In and of the caiculation mad scientric rednction of masees of actumulated observations.
"Thurdly. In and of estronomical, meteorological, and other ,ebeervations, wheh mught be aesisted by the purchase and employment of new instruments.
"Foarthly, and, subordnately to the purposes above named, un aid of such' other zcientific objecte as may from tume to time appear to be of safficient ynterest, alchough not coming; inder atis of the foregorng heads."

It was further added-

"That a Committee be appointed, consisting of the whole Councll for the tume being, ex officio, togethen App. XI. with an equal number of Fellows of the Society, chosen by the Council amongst the members most conversant vol. II. Pp. with the business of the Royal Socrety, or with one or more of the leadng departments of Scrence, $41,42$. or officially connected with the princapal scientufic bodies of the kungdom; such gdditional members to be named for a period of three 'years,' subject to the annusl' revishon of the Counch, and provision beiag made for filling up the vacancy occasioned by'such addrtional member becoming a member of Council during his torm of service on the satd Committee, should such occur."
,With regard to this Government' Grant, 'Sir Edward Sabine, 'in his E'vidence, says :'

- *" "I suppose that the 1,000l. in one, year was desgened as an experiment to try the matter in the first Qu. 11,135. instance. I always understood that Lord Russell contemplated that the sum would be augmented if the plan' were found to work well."
Neither the amount of the Grant, nor the conditions of its admunistration, have been varied from the time of its commencement. For full details as to its application in successive years, we refer to the Statement presented by, Sir E. Sabine, and printed in the Appendix to Vol. II., at pp. 48 to 47. In a later part of this Report,' we shall . refer to the proposals which have, 'been" made to us' for increasing' the 'amount' and usefulness of the Grant..

The most important instances of the Occasional Assistance given by the State, are Expeditions for Special Researches, and Outfits of Ships,' and Apparatus and Grants of Money for such Researches. These contributions are of great value, but, they do not appear to be granted or refused on any sufficiently well defined principle,

III.-The Assistance which it is desirable the State should give towards Scientific Research.

We have received strong Evidence that it is the interest and within the proper function of the State to give efficient aid to the Advancement of Knowledge, even in those cases where such knowledge is not directly required for State purposes, and, we may remalk, that some of the most decided expressions of opinion to this effect are those of Statesmen, whose views, owing to their official experience and their intimate knowledge of the exigencies of Parliamentary Government, are entitled to great weight on points involving increased grants of public money.
The Evidence of Lord Salisbury is enphatic :

Qa. 13,555.
${ }_{14}$ Do you hold that the State may legitmately interfere in grivg aid to the adyancement of science P-I certainly do. It $2 s$ a very orthodox doctrine to hold, and one which could be supported if necessary by quotations out of Adam Smith, the essence of the doctrine being, that the State is perfectly juatafied iti stimulating that kind of industry which will not find its reward from the preference of individuals, but which is useful to the community et darge."
"The State has already, to a considerable extent, recognized, has it not, that' duty; and thers are considerable number of scientific institutions supported more or less by the State P-No doubt the State, in the money that it gives, and has given in past tmes, to the best Universities, has recognized that doty."
"There are the Observatory fat Greenwich, the Britush Musenm, Cand Kew Gardens; you would considar those as instances in which the State ands the promotion of science? -They would be all unstances in point:
and I do not apprehend that as to the abstract doctrine itself there has ever bean say senous contest."

Lord Derby's Evidence in favour of State Ald to Science is all the more weighty from the limitations by which he guards it:
"I think there has been a very general consent amongat a large namber of men of acience who have been examined before this Commission that in the present state of science there are many branches as to which there is no probablity of ther being advanced to the degree to which they are capable of being advanced by private effort, and wathout the assistance of State funds in some ahape; what is your Lordship's opinion upon that subject ? -I am, as a general rule, very strongly in favour of private effort, and very decidedly againat the application of State funds to any purpose that can be accomplished without them; but I think that if thare is application ezception to that which I venture to call a sound and wholesome rale, it is in the case of scientific research, because the results are not immediate, they are nof popular in their character, and they bring absolutely no pecumary advantage to the person engaged in working them onte A great mathematical or a great astronompcal discovery is is benefit to the whole community, and in a certain sense to mankind in general; but it is productive of absolutely no benefit, in a pecuniary point of view, to the perton who has given has labour to it:*

Sir Stafford Northcote thus states his opinion on the point:
Qu. 13,623.

* " The State should do what it can both to promote scientific education and also to assist in the prosecution of scientific experments and uqquries when they can be best prosecuted by the aid of the State."

On the proposition that it is the duty of the State to encourage Original Research, we might multiply our extracts from the Evidence indefinitely. Dr. Frankland, Sir W. Thomson, Dr. Joule, Mr. Gore, Dr. Carpenter, Professor A. W. Williamson, Mr. Reed, Sur E. Sabine, Dr. Siemens, Dr. Sclater, Mr. Farrer, Admiral Richards, and numerous others, show that the Aid of Government to Scientific Research has been beneficial, so far as it has gone, but that it has been insufficient and should be increased.
We have selected the Evidence of Dr. Frankland and Sir W. Thomson from amongst that given by men of Science.

Dr. Frankland's Evidence is to the following effect :

"Seting aside the interests of science, what would be your expectation nnder equal circumstances otherwise, in reference to two countries, in one of which scientific research was neglected, whilst in the other it was pursued with considerable vigour, with regard to the progress of the arts and of manufactures ?"
"In my opmion there could not be any doubt but that the nation which neglected acience must suffer in the end, because although it could buy scientific inventons from the other country, yet still it would always be hehind, as it were, in the market; it would have to follow the lead of the other conntry, which I umagine would be a commercial disadrantage."
Qu. 5884.
sc Mught it not also be the case that the appraciation of the commercial value of acientific inventions would be very much more ancertan in the one country than in the other ?"
"Fes. It is also much more dufficalt to establish mannfactures upon new inventiong in a country which neglects science, because you cannot have enther workpeople or managers competent to conduct those processes which depend upon scientific principles."
"\& People might pay large sums for what was worthless, and neglect that which was of great valne 3 " "They might."
Qu. 5885.
Sir W. Thomson emphatically asserts that, in his opinion, it is of the most inmediate consequence to the honour and welfare of the country that men should be enabled to

Tive on Scientific Research, and that a definite and secured position should be given' to Scientific Workers.

In another part of his Evidence he states:

* * "There are many investigations which can only be done by the nation as a whole; and Qri. 2,693 . Viewing the Government in one sense as actung for the aation, as it were a commattee of the whole nation, there are very many investigations not merely of importance with reference to promoting the material prosperity of the nation, but valuable to the nation as promoting acientific discovernes, in which the whole nation takes a pleasure, and from which the whole nation derives as great beneft as anything maternal can possibly produce. Investigations for which a large expenditure of money is necessary, and which must be continued through long periods of years, cannot be undertaken by private individuals. Generally speaking, I believe that if the Government is well advised in respect to science, it will be for the good of the nation that the Goverament should make it part of its functions to promote experimental investigations in science."
As representing the opinions of public servants occupying high official positions in Government Departments, we may refer to the Evidence of Admiral Rıchards, late Hydrographer of the Admiralty, and to that of Mr. Farrer, Secretary to the Board of Trade, the latter of whom, in answer to the question-" Have, you formed any opinion Qu. 12,642. " as to whether further grants ought to be given by the Government for Scientific Research ?" says;
" I can only give an opinion which is of very little value; but I think there can be no doubt whatever that there aro numerous subjects, and always will be numerous subjects, in which private observers are unable to do what is wanted. For the older aciences you have had observatories established at the Government expense, for astronomy, and now, recently, for metsorology; and those cannot be the only sciences to which assistance ought to be given on the same principle."

Evidence relating to the Establishment of Laboratories.

We proceed to give extracts from the Evidence placed before us in reference to the heed of Laboratories for conducting alike Chemical, Physical, Metallurgical, and Physiological Inquiries, both for Departmental Work, and for the Researches of Private Individuals. Where the Evidence is of a general character, and includes proposals regarding Observatories also, we give it here, although we shall deal with the special question of Physical Observatories separately.

Amongst the witnesses who are in favour of the erection of new Laboratorres for Research is Colonel Strange, whose view of the National Requirements in these respects is thus given:-
"Will you be so good as to enumerate the institutions which you think should be under the State? Qu. 10,441. (1,) an observatory for physics of astronomy; (2,) an observatory for terrestrial physics, namely, meteorology, magnetism, \&c ; (3,) a physical laboratory; (4,) an extension of the Slandards, Office; (5,) a metallurgical laboratory, (6), in chemical laboratory; (7, , an extension of collections of natural history, and an able staff of naturalista; (8,) a physiological laboratory; (9 ,) a museum of machines, scientric instruments, \&ce. I beleve that under one or other of these and existing umstitutions every requsite investigation will range itself. I have not stopped to inquure whether one or another ss more or less important.' My aum in the sprit of my postulate No. 2 bas been completeness. It may be neeessary for a manufacturer to prosecute only such particular investigations as promise direct and apeedy profit. A great nation must not act in that commercial spirit. All the operations of nature are so intimately interwoven, that it is impossible to say beforehand that a given hne of research apparently unproductuve may not throw light in unsuspected drections, and so lead to uniold and undreamt of treasures."

Sir W. Thomson's Evidence is as follows:-

"Are you of opinion that any national institutions supported by the Government are required for the advancement of science ?-I thmk that there ought to be institutions for pure research supported by the Government, and not connected with the Universities. The only suitable place at present for such institutions would be London, or the neighbourhood of London; in that situation, I believe, very great things could be done by institutions for pure research, at which work of a very great immediate money value would be produced at an extremely moderate cost, and I beheve that discoveries redounding to the honour, and credit, and pleasure of this country would infallibly be made "
"Are you able to give any idea as to how many such mstitutions would be requred "-There should be Qu, $10,697$. five. One at present exasts, pamely, the Royal Observatory at Greenwich. Another in my opinion is very much wanted, an observatory for astronomical physics, then agan a physical laboratory, and a laboratory for chemical research, and a physiological laboratory are necessary. ${ }^{\circ}$.
"Would auch a physical laboratory differ in any essential respects from a physical laboratory attached to an Unversity ?-Yes ; it would be adapted solely for research, with no provision for pupils except what may oo called apprentices, or pupils for research; no provision for teaching the mere elements of manipulation, but provision for researches directly adapted to increase knowledge, and for making pattern researches for the sake of traming research pupuls who had already ganed experience and proved ablity in institutions of instruction."
"Would you leave the researches to be carried on at such a laboratory mainly to the discretion of the person Qu, 10,704. who had charge of it, or would you place it in any degree under the control of the councul of which gnu have been speaking ? I ryould leave it to the discretion of the person who has charge of it," . .

84856

Qu. 10,705. Qu. 10,706.

Qu. 10,707.
Qu, 10,709.
Qa. 10,710.

Qu. 10,711.

10,712.
"And that the Government should also be able to command investigation on the advice of the council ? Yes**
"Of course the director would report P-Yes, the durector would report on everything, both researches undertaken at his own instigation, and investigations undertaken for the councu, or for the Government." " And your view of what should be done in the chemical and phydiological laboratoriee would, I presume, be something of the same nature? - Yes, something of the same kind, mutatus mutandrs."
"With respect to the apparatus, and the annual supply of apparatus, it is probable, in it not, that the physical laboratoriea would be the most costly ? - Yes, the most costly in apparatus."
"Some very fine instraments of a costly kind are now required in physiological inquiries, and large pieces of apparatus sure sometames employed, such as the respiration apparatus at Munich, which was put up on the recommendation of Professor Pettenkofer P-Yes, it would be in my opimon necessary not to limit to a fixed endowment the expénduture of any one of those institutions, but so let it be determined (if I may use the expression once more) by aatural selection, applications for money to be made to the council to be duly weighed, and the council to apply to the Treasury. That would be much more economical than giving a fixed sum which, being to be spent, might be spent without due regard to economy, or which, on the other hand, might prove to be msufficient for valuable researches, caunug the institurtion thereby to be orippled and to lose efficiency:'
"You would not think if indispenseble, would you, that such institutiong, if the Government thought it to establish them, should be in the heart of London, or in any very central attuation ? No ; it would be mueh better that, they whould ber in; the country in positions conventently acoeserble to Londone for a phyarcal laboratory quetness of, the ground is of immense importance. It ;would be impossible to make a great deal of the most important scientific investagations in a phyacal laboratory mithin 200 yarda of any of the greast thoroughfares of Lrondon, and a much greater distance than 100 yards is quito necessary for many auch inveatigations:"
"You, wonld not instutute, any regular, provision for teaching ${ }^{2}$, those laboratories P-No."
"Butyou would, allow yong men of students who, wroshed, se farry out original research to avail themsolves of them ander the durection pt the persong who were, in charge of them ${ }^{2}$-Fes, ander the direction, and to some degree under the instruction of the persons in charge'; but the mstruction should be limited to methods for advancing science. The director of such on institution must not be occupied with lecturing in any other mastituthon, or with lecturing at all. He ought indeed to be prohibited from lecturing, except one or two occasional lectures in the course of a year."
"You thonk that the object for which you recommend the establishment of those laboratores could not be
 Certaunly not by any other means."
 and states his, yiew in reference, to their management:
" "Can you make any suggestions as to atimulating original research in this country ? on ". We hava in this country a considerable body of inveatigatoris who are not engaged in teaching ait all, and I thunk that this us a peculidrly hopeful feature of our case. ${ }^{\prime \prime}$ It shows that the English have not only a taste for ressarch, but that they have a natural talent for it. We have numerous-men like Mr, Gaserot; Sir. W. Grove, Dn De Ia Rue, Mr, Spottuwooder, Mro Huggus, Mr. Duppa, Mr, Buckton, Mr. Joule, Mr. Lockyer, Mr. Perkin, Mr, Schunck, Colonel Yorke, and otherg whom I conld, name, who are not in any way engaged in teachugg, and nevor have been, but who have made important oifginal researches, and have spent a geod deal of their time in the working out of new discovenes Now that method of stmmulating research, which I have mentioned in thy former examination, would not of course apply to them. Men of this class are really peculisr to England, for I have never known any such mstance an Germany or $2 n$ France, of men altogether dasconnected with teaching taking up reaearch in the way it $x s$ done in England. I think that for such men the establushment of ostiona matitutions such as those which are recommended by Colonel Strange would be peculiarly useful. In fact, I bave heard several of these gentlemen express strong opmions as to the great advantage it would be to them if they could go to some anstitution of that knd to conduct research, where expenive instruments, which are often required for their experments, were provided for a number of sach investagators, and where appropriate pooms, for carryng on, these researches could be had. It is exceedingly difficult to carry on chemioal repearch in one's own house, because of the want of proper contrivances for dealung with corrosive gases and vapours; and hence appropriate buldugs ought to be provided for carrying on ouch anvestigations. I think, therefore that at would afford sh great stamulus to research of this kind if such anstatutions were provided, and furnighed with such instruments as would be generally usefni in research, leafing the more apecial instrumente and materials adapted to the particular researches themselves, to be provided by each operator. * . I have reason to beheve that no inconsuerable number of men, more espeensify of those educated in wima of the science sohools, would undertake researches if such fachines were afforded them,"
"Wauld you consider the chief, use of such institutions as laboratories to be to enable private inquirers to carry on their researches, or would you propose that any investigations should be carrsed on there on behalf of the State? -I think that both thangs might be provided for. The State requires many important investigations to be carried on. ** That mught well form one part of the objects of such a hailding, but I should think that so far as abstract research, of which we are more especially speaking now, is concerned, the other portion of those objects, namely, the encouragement of original investigation in the case of amateur Fould be move important, because the investigations made for the Government are essentially practical investigations; they are not meusily of that character which lead to discoveries or to the advancement of science,"
"Wand you place those laboratories under a permanent official ?-They mast of necesanty be under the direct and constant supernatendence of some one thoroughly conversant with the operations going on in them; and so far as the conducting of the separate original researches is concerned, I think that it would be very desirable that the admission into such pastitutions should be granted throngh some anch body as the Research Fund Committee, for instance, of the Conncil of the Royal Society, or some body of that kind, who would make intelligent and impartial inquary into the qualificatons of the men applyng for accommodation."
«You would not throw apon the durector the sole responsibility of decuding who should be admitted and who should not ?-I think that would not be desirable.".
"And I understood you to say that yon would not think it desirable that the Government should drect any specific orignal research to be carried on, except with reference to come practical purpose? E-Except with regard to subjects abont which the Government wished for information, Ithuk it is much better for each
man to devise his own rosearch; hetakes muph more interest in it, amd is mach more hkaly to porsue at with

"And do you think it would be requiste that those instritutions should be on a large scale ?-I think that Qu. 11,069. they ought to be on a fairly large scale even to begin with, becanse it'is always a' costly' process to rebtuld such instatutions; and I am imelined to think that they would be rapidly filled. A tolerably Jarge institution of that kind would probably in a very few years be filled with workers."
"You would not recommend, in the first instance, at, least, more than the establishment, of one for each Qu. $11,070$. department of science? -I think not more than that "
"And should it be in London ?-Yes, I suppose they must be commenced here, but eventuslly at would be Qu. $11,071$. dearable that the impertant centres in the provinces should also be furnshed with such places" "
"Colonel Strange recommended the establishment of four laboratories; should you be disposed to agree Qu, 11, 072sis with him in that noew? - Yes, I think that those would be necessary ; perhaps the least essential of them would be the metallurgical one, but certaynly the others would be quite essential"
 mught be combined with the chemical laboratory, as the processes are sumilar. There would be the chemucal laboratory, the physical laboratory, the physico-astronomical, as we may' term it, and the biological. It, would be necessary, in connexion with the physico-astronomical observatory, to have the means of performing, various chemical experiments and making physical observations. Of course the chemical operations would be quite subsidury to the cosmical observations there."

Mr. De La Rue expresses himself as follows :-

"Are you of opinon that any new institutions in the way of laboratories should be established by the Qu. 13,054, State ?-I hold it to be so important that Chemastry should be extensively cultivated in England, that I would atrongly advocate that there ahould be a State laboratory. That State laboratory should undertake all, the chemical work which the Government might require, but at the same time, according to the views which, I hold, it ought to be such an establishment as could afford facuties to mea who have completed theur screntafic education, and who might be desurous of continung original anvestngations, in which space for working and, instruments should be afforded them, and, moreover, if men were not in a position of fortune to continue therr, researches, in some cases materials and even money, maght be granted to them on the recommendation of, the councul. I may state that of my own knowledge I know that chemical science at present not progressing in England in a satisfactory manner, that we do not make so many original researches as our continental neighbours, particularly the Garmans, do. In Germany very great patronage is given to science, magnificent, laboratories have been built, and the students, who, after they are sufficuently sdvanced, are encouraged to make, orginal investigations, aontribute at present most largely to scientific Chemistry."
" Do you think that the establishment of those Government laboratories would be likely to give fise to Qu. 13,063. complants from any existmg anstitutions ?-I think not, if those Government establishments weve not, educas tional eatablishments. There would be a natural jealousy on the part of edrcational establishments if the Government were to undertake to educate students without charge; but what I contemplate is merely that faculitias should be given to men wha have already been educated, and nat to interfere at all. With the functions of educational establushments""

* "I think that some good might be done" by ading educational establishments ; but I belreve that the Qu. 13,105. more advantageous course would be for the State to afford faclities in the laboratory which it mighti, require cor other purposes."
"Do you thunk that any other laboratories would be needed 2-I attach the greatest umportance to a chemacal. Qu, 13,057. laboratory, because I believe that Chemistry is destined to play a very important part in the advancement of the arts in all envilused countries, but there also ought to bea physical laboratory, very much on the same footing as the chamical, laboratory, and in which faculities should foe afforded, for conducting physical investigations."
"You would give admission to those laboratories on the same principle as to the chemical lahoratories ?- Qu. $13,058$. Yes, to men who could show that they were qualified to make a beneficial use of them."
"You think that any inveatigations required by the State should also be conducted there? -Yes, they Qu, 13,059. should. be conducted in outher the chemcal or physical, laboratory according to the nature of the investigan thons. For example, there were a great number of investigations carried on at Woolwich relating to the strength of different alloys whose chemical composition was determined by analysis, Such investigations would be very well conducted in the chemical laboratories."
${ }^{46}$ Would you transfer the work now done at Woolwich to such a laboratory ?-Part of the work, but I would Qu. $13,077$. except such speoval work as could be, better done at each of the: Government establushments. Spectal investigations would fall within the duties of the central government laboratory. The testing of the purity of the products to be used in the department, and routine work, would be better conducted in those establushments."
"With respect to the other purpose of the laboratory, do you think that there would be a sufficient number Qu. 13,078 of independent inquirers to occupy an establishment like that ?-I think that there would be a great number of men who would be very glad to aval themselves of such opportunaties as a laboratory of that kind would afford, and theur doing 80 would not add materially to the cost of the establishment."

Mr. Gore also recommends the establishment of Laboratories :-
"Are there any measures that you can suggest to the Commussion which you wish to see adopted in $\mathbf{Q u}, 10,782$. order more affectually to promote this object than 1s the case at pressant?-I propose that national laboratories ahould be establahed, in which abstract sciontafic investigation alone should be carred on. I propose that in thoese laboratornes scientific mvestigatora should be wholly employed npon abstract orginal nvestigation, and be pard for ther labour and be supplied with the necessary means in theur respective sciences, leaving each investigator to chooso his special suhjacts of research."
"Perhaps you could explana to the Commission rather more fully what should be the general character Qu. 10,784 of those laboratories ?-For making ariginal scientific investigations in the subjects of chemical physics and chemistry. I speak only withun the aubjects whth which I am famular.".
"Do you refer, in this recommendation, to the establashment of a physical laboratory "-If you mean by Qu. 10,785 a physical laboratory one in which the sciences of heat, light, electricity, and magnetusm would pe investagated,
I ahonld mean a physical laboratory."

" And you thank that that ought to be dustunct from a

Qu. 10,787.
"I understand you to recommend that this ghould be a, Government institation aupported entirelf
by Government funds?-Yes, I do recommend that."
We next proceed to refer to the Evidence in which other views are expressed. It will we seen that it is rather in favour of the utilization and extension of existing, than of the eatablishment of new Laboratories. We shall confine ourselves to extracts from the Evidence of Dr. A. W. Willamson, Dr. Siemens, Dr. Burdon Sanderson, and Lord, Salisbury.

Dr. A. W. Williamson-
"A good deal of evidence has been offered to the Commission in favour of establishing and maintaining laboratones of research at the expense of the State, in order to give opportuncties to original unquirers to carry on investigations. Have you formed uny opinion of the expedioncy of such arrangements? - I thanis that to establish a laboratory for research only would be beginming at the club end, and would be decidedly inadrisable. I thmk that the main thing for research is to give to schools, and especially to the higher schools, proper faculties for $1 t$, and to develope them greatly. At the same time, it 18 quite possible that, in exceptional cases, research might with advantage be carried on in sepal ate places; but I should always view with regret, as a waste of resources, the sepuration of that higher work of research from the urore humble work of teachung, which naturally belongs to it. They help one another, and I think that each would lose from beng separated from the other; still, in some cases, it might possibly be advisable."

Dr. Siemens-
"What is your opinion as to the establishment of laboratoriss at the Government expense ?-I would recommend the establishment of observatories bat not of laboratories, for the same reason, that in laboratorres unconnected with teaching, as have been proposed, usmg the public convenvences, and public money, thore would be a necessity for results which would lead to a cortain extent to something approaching charintanism in the enunciation of those results ; and, moreover, I consider that it might lead to disappointment in many, who would believe that they had an equal right with others to take advantage of such establishmente."
"Do you consider that laboratories are required in greater numbers, and better equipped than they are at present ?-I think so, decidedly."
"But still you would not remedy that defect by establishing Government laboratories ?-Not by establishing Government laboratories, but by granting Government mad towards the establishment of laboratories, and chiefly by the endowment of chairs."
"Do you thmk that laboratories should chíefly exist in connexion with nuiversities or other tenching institutions ?-I thank so, because we should always look to the coming genoration, opon which the future depends chiefly; and a well appointed academacel laboratory precents great opportunities for a student, under a great leader, to attann to eminence himself"
"With refer ence to national physical laboratoríes, 'it has been suggested to the Commission by several wntinesses that such laboratories mught be of use, not so nuch for the researches to be carried on officially in them, but as gaving opportunties to private individuals for carrying on researches in them; has it occurred to you whether, in that point of view, they might be'useful or not i-They might be useful in certan cases ; but if the Government takes in hand such a thing, there must always be favouritism. It would be mpossible to grant such facilities to all applicants, and it would be very difficult for the Government to use such discrimination. Any university or society could do so by granting facilities to men who had given promises of success by reading papers, or by fully explaining their objecta in view ; but for the Government to use such discretion would be impracticable, ithink."
"Then you think that there should be such laboratories that should be evailable to persons who could not afford, for instance, to have a plyysical laboratory of their own, but you do not thunk that such laboratories should be under the control of the Goverument, or should be Government institutions ?-They should be exceptional cases altogether. If, in any existing laboratory, whether Government or otherwise, an instrument existed necessary for certam research, I think that facilities might be given occosionally to an applicant, but I am of opimon that it would not be desirable to estabhah what might be termed a national workshop of science."
"Is there any auch institution in Germany as a plysical or other laboratory (apart from astronomical observatories), undependent of an university or an educational establishment?-I beheve not. There are laboratories connected with Polytechmic or Mining schools, but still they are connected with tenching."
"Has any difficulty been found in affording facilities in those laboratories to origmal inquirers who may not belong to the school 2-It would not be difficult for any one to get aceess, for instance, to the laboratory of an University If he entered his name, he would be allowed to go into the laboratory, and, nuder certain restrictions, imposed by the Professor, carry on his researches."
" Are those laboratories, as established in Germany in connection with the anversities and other educational instritutions, quite sufficent for all the wants of science and of original investrgation in science ?-Whether more might be done by uncreasing therr number I am not prepared to say, but etill there seems to be no expressed want for additional laboratories"
"At any rate you would not propose to establish laboratories on \& different footing ? ${ }^{\text {en }} \mathrm{No}$."

Dr. Burdon Sanderson-

"Will you proceed to state in what way you consider that money might be appled for the promotion of physiology? - I consader that at might be avalable for three purposes ; namely, for the mprovement of laboratories for the providing of mastroments and maternals for research, and for the remuneration of workers. I will speak first of the spending of monay upon the mprovement of laboratories. I do not myself see at the present moment that we are in a position to require the expenditure of large aums of money upon the building of large laboratories, for this reason, that if such laboratories were built we should not have the building of large haboratories, for this reason, that if such laboratories were baik we should not have
workers to work in them; st present we have not men to work in the laboratoriee that we actually possess. Workers to work in them; at present we have not men to work in the laboratoriee that we actually possese.
We have men of a certain class, but we have not men of that tramed class which we require. I am of We have men of a certain class, but we have not men of that tramed class which we require, I and of
opmion that a physiological laboratory to be of any use at all must be in connexion with the great echools of medicme. A phyenological laboratory at a dastance from sach schools would finl for want of people to work in it. Physiology whil never flourish, therefore, excepting in connexion with the two arts wheh are dependent upon it. Just as vegetable physiology will flourish best in connexion with agricolture, so aise anmal phyuology will flournsh best in connexion with meducine. I thunk that grants might be very advan-
tageously given for the improvement of the laboratories now existing. Of course, in the admunistration of such grants, one would go upon the principle 'to hum that hath shall be given', that is to say, wherever a good laboratory exists, or wherever men are to be found to work a laboratony, and where there are likely to be students to work in it, money should be given to cariy out improvements. 'I would further notice that in, physiological researches, the expenditure for materials 18 usually much greater than for mstruments, and consequently money is more wanted for current than mitial expenses sor this reason large sums ought not to be expended in the purchase of collections of costly mstruxaents, for if such sums were spent they would be expended in the purchase of collections of costly notruments, for if, guch sums were spent they would
probably not be used. It is much better to provide money to assust to meet those heavy expenses which arf probably not be nsed. It is much better to provide money to assust to meet those heavy expenses which are
requred for material. To show this ut would merely be necessary to refer to some of the physuological researches which are now being carried out, in which a great expenditure as required for material, bui no tremendous expense for instruments. Of course I do not mean to say that it is not necessary to spend money on matruments, but any expenditure on a large acale for this object would be very lukely wasted. On the whole I belheve that money can be more economically apent in sums pard for work done than in any other way, c.e., ether in the way of perrodical payment to men of acknowledged competency, for the purposo of carrying out inquiries of long duration, or in the form of separate grants for special researches, or in the form of giants for skilled assrstants. ** Of course in Germany men who do this work are not paid, and it is very necessary to bear this in mind, but the difference there is that such men have something to look forward to. There are in Germany numerous teaching appointments to which a man can look forward with the certainty that of he works industriously for a certain teme, he is sure to get an appointment of some kind afterwards, which wall enable him to take the position of a professor. This state of things doss not exist in England, and therofore it is more necessary in England to encourage the younger men to engage in research by pecuniary alds then it is in Germany"

Lord Salisbury -

"In speaking of the establishment of laboratories by the State, your Lordship appeared to me rather to Qu. 13,590 . refer to chemical laboratories; but it has not escaped your attention, I ame sure, that the cost of physical apparatus is so very great as to put physical inquinies really out of the reach of a very large number of persons who probably might be capable of conducting such researches, and in consequence of there being no such assistance assigned to such persons as a State laboi atory, in which they could obtain the use of apparatus, and of a really fitting bunlding, constructed with sufficient solidity for the purposes of research, a gieat many persons are provented from entering upom researches of that kind by the want of means; and it has been contended that by providing laboratories, at the expense of the State, you would be doing ng more for such persons than has been done for learned men by providing them with great publie hibranes, as' you would be only providing them with the opportunities of research, which otherwise they could not have?--My fear would be that there would be a difficulty in providing laboratories in sufficient numbers to satisfy all, as you can provide books at the Bratish Museum to satisfy all, and that the result would be that rery often those who are least fitted to obtain any pseful result would engross the matruments. For the purpose of really first-rate workers, I think that the Govennment might very advantageously be liberal ; but such liberality I first-rate workers, I think that beuld the the form of an increased grant to the Royal Sochety. But I should be doubtful whether it was possible by any moderate expenditure of funds to provide an expensive class of scientific instruments of all kunds for all the peasons who might be inclined to ase them."

Evidence relating to the Establishment of Physical Observatories.

On the general question of the Establishment and Maintenance of Physical Observàtories, Lord Salisbury agrees that:

* * "Some of these institutions which have been alluded to in your Grace's question, especially Qu. $13,575$. observatories, clearly fall within the duties of the Government ; and certanly, from all that one hears, it is in. is probnble that their duty in that xespect is inadequately performed, and that observatories for a much larger range of observations might with great advantage be multiphed." ** *

Sir George Airy thus states his view on the subject ;

"When I began to be an astronomer, such questions as those of the constitution of the sun and the hike Qu. $\mathbf{1 0 , 4 8 1}$. wore not entertaned" "*
"Are jou prepared to express an opinon as to whether it is an object which would be a proper one for the Qn. 10,485. Government to take up as a State establishment? -The Government are already pushed very hard in therr estimates. The serew is always put upon them, 'Cannot you reduce the estimates a luttle more ?' And then it would always come to a question of extensive feeling in the House of Commons, and of popular feeling out of the House of Commons; and I am confident from what' I have seen' that those two bodies feeling out of the House of Commons; and 1 am confident
would not in every case support an extension."
"Should your that it $s 8$ an object which 18 not very likely to be proverutan with
"Should you sey that it as an object which 18 not very likely to be prosecuted with 'sufficient vigour unless Qu. $10,486$. taken up by the Government? I-I do not see how it could go on except it were taken up by the Government. I do not beheve that it could go on in any other way."
"It is not likely, you think, to be prosecuted by privata individuals, or by other public bodies soch as the Qu: 10,487 . Unversities ?-No, I thnk that their funds are almost all requrred for other objects, and the dfficulty even of getung the business into shape is extremely greast." ***
"Then such observations, in all probability, will either not be made at all or must be taken up by the Qup 10,488 ,
Mr. De La Rue's opinion is thus given in reply to question 13,066:
"I think that the time for the State providing means for reducing obser vations has now coma: when $\mathrm{Qu}, 13,066$, the State should take up, besides mathematical astronomy (which deals whth the places of the stars and planets, and the moon especally), physical observations, more particularly observations of the sun, which appen to me to bear directly upon meteorological phenomena," ** *
He says further, in regard to observations of this nature, that they necessitate - a " certain staff of assistants, and require continuous superintendence, hence it is necessary
" that an amateur astronomer who undertakes such work should have, leisure during
** the day, and that he should be sble to pay for duly qualified essistants, and such men " have to be highly paid."

Sir W. Thomson points out the importance of multiplying such Observatories :
Qu. 10,698. * * In respect to the obsarvatoriea, it might be necessary to have several observatorian fon satronomical physice in this country, of it were only to seeure observations of interesting conjuncturas, note wnthstanding the vanietiee of the weather, that there may be in different parts of the country; and, agnin, observatories for astronemical physuca ought most certainly to be founded in othor parte of the Eritiah dominiona than England, Ireland, and Scotland ; in other Iatitudes and on the other side of the world"

Dr. Siemens expresses the same view in the following Evidence:
Qu. 11,789. * *An observatory or several observatories should be eatablished for carryng on physical research, research to obtain information on general subjects, such as Bolar observations, magnetic observations, and othor subjecta that maght be thought desurable to obtain contmually information upor." . .
"I think that almost the only new establishments which you recommend are certain physical observatorien ? - Yes."

Qu. 11,865. "What would be the principal object of such observatones :-For the purpose of magnetic observations,
solar observations, and other general uquiries into physical phenomena."
"Do you contemplate the establishment of more than ane such observatory ?-Probably more than one would be desurable:
Qu. 11,867. "Do you contemplate the' establishment of any such observatories in any of the colonial possessions of the country ?-Yes, I think to"
"Speaking generally, would they be costly establishments to found ;-Not very costly, not poopostly as astronomical observatories."

Dr. Frankland has also given Evidence on the importance of promoting the study of
Astronomical Physics, pointing out that "It would be necessary, in connexion with the *r Physico-Astronomical Observatory, to have the means of performing various chemical ': experiments and making physical observations. Of course the chemical operations "would be quite subsidiany. to the cosmoal observations there.",
Mr. De La Rue, in, reference to tocality and organization, in answer to the question whether provision for carrying out, Observations of this character should be in connexion with the Greenwich Observatory, says:
"In connexion " with 'the" Gre'enwich Dobservatory, yen But at the 'Greenwich Observatory I shoutd ayy not. I do not think, in the first place, that there is appace enough at Greenwich, and the duties of the staff are aireedy so very onerous that it would require a separate establushment for such special work; besides otaer new buildings it would entail a chemical laboratory, and there is hardly space for those at Groen-: wich. I believe also that it would cause too divided attention on the part of the Astronomer Roval, if which. Ibelieve also that it would cause eno divied attontion on the part of the Astronomer Royal, if would be very desirable that any now establishments, if they are to exist, should be affilited to Greenwich."
Being asked" "whether' the' new 'establishment should be in the neighbourhood of Greenwich ? he replies; :.
"Not at all necessarly so. In fact Greenwich would not be at all desirable for soma class of observationa, at is much too near London."
And in answer'tor the question' "Would you place the proposed new observatory for " those purposes in any respecy, under the control of the Astronomer Royal?"-
"It would be desirable that the State should have to deal only with one aatronomer. Possibly by the increase of the clams upon his attention fit might bed Alesurable for ther Astronomen Bay il to have drectors nuder him, so that he should not have to devote so much time to details even of the Greenwich Obserwatory, but I do not think that the State onght to have to deal with a great number of astronomers, indeed there might be some difficulty in its doing so,",
Qu. 13,071.
He says further, "In order to obtain a daily record, 1 would advise that one or possibly "t two observatories should be established in India, and one at the Cape of Good Hope." " At the Kew Observatory it was frequently cloudy for several consecutive days."

Admiral Richards says;

Qu. 11,625.
"If 'you are going permanently to establish physical observatories, I should prefer to see separate ones. I think that the physical work probably would be better separated from the Royal Observatory."
You think that the two ciaspes of observations are so distnet in charactor as to render that desirable :Of course there is a certain amount of meteorology that mast be observed at the sstronomical obeervatory; bat it need not be of any extended character." "
Qu. 1i,991.'
Mr. Spottiswoode's' Evidence is as follows':-
"The Observatornes which you recommend could, in your opunion, be attached to exusting Observatories ; an Observatory for Solar Physics, for instance?" "This might be met by an extension of the existing Observistories ",
Qu. 11,992.
"Do you think that at would be as ngeful, if attached to Greenwich, as if a special observatory were established for the purpose? \mathbf{I} have ne doubt that if an independent observatory were adapted to that purpone and furnshed with adequate mstruments, and mamed by anch a staft an ond conld wish, more would be done in such an medependent observatory, so manned, than by a branch of the Royal Observatory at Greanmech, but, at the same time, that' would involve such a much larger expense, that \mathbf{I} thought that the question of expense would perkaps outwengh the seientific advantages to be gauned by it,"
"Do yon think that a greast deal might be done by making some adiutione to the prevent Obeervatorise ?"

If A great deal, because man large'observatory'there are, not unfrequently, instruments only partally on- Qu. 11,993. ployed. For example, st Greenwich there is large and very fine matrument suted to the mivestigation of solar physics, which is, at all events, largely disposable for such observations."

It will be seen that most of the Witnesses dealing with Physico-Astronomical Observations recommend that, whether or not they be placed under the control of, the Astronomer Royal, they should certainly beconducted by Special Directors, and be placed by preference in localities which the Witnesses deem to be better adapted to the purpose than Greenwich.

Such is not the opinion of the Astronomer Royal himself. 'Sir George Airy this deals with the question specially referring to the difficalty as to space at Greenwich and the mode of management:-
" Do you think it would be practicable to adopt’any measures at the present observatory at Greenwich to $\mathbf{Q u}$. $\mathbf{1 0 , 4 8 2}$. make observations of that character? I I thmk it is possible that 16 might be done, but I am not prepared with a plan at present, and I am very much inclued to think that the difficulties in these matters will be rather in detall than anything else. There is always andufficulty in keeping an observatory of rather an rather un detani than anythong else. There ass aways g, duficuity in keeping an
indefmite character un such a stace that it will satisfy the publec demands" " It has\% c .
 on further extensions wheve at,would be in suffecent proxamity to the Royal, Observatory to be under the aanne general control."
"If a department of that kind were mistututed, da you sse any objection to" its being placed under the Qu. 10,484. Astrozomer Royal, or would it give hum too mach to do ?-It would gave hum much to do, but a grest deal may be effected by organisation, espectally with the heense to have officers of good position under him ; to

A Resolution in general accordance with the views expressed by Sir'George Airy was Appendix transmitted to us in July 1872, by the President and, Council of the Royal Astronomical Vin., Vol. II. Society. This Resolution is in favour of the extension of the Royal Observatory at p. ${ }^{3 \prime}$. Greenwich and other existing Astronomical Observatorres, and does not recommend the Establishment of an independent Government Obseryatory, for the cultivation of Astronomical Physics in England.

In connexion with some points on which differences of opinion have been expressed in Vppendix this Evidence, we give the following extracts from a Paper handed in by Colonel Strange, AII., Vol.II consisting of questions addressed by 'hm to Professor Sir W. Thomson, Professor Pp. 27-s1. Hilgard, the Secretary of the American National Academy of Sciences, and Professor Balfour Stewart, and to M. Faye, the President of the French Academy of Science; and their replies thereto.'

Colonel Strange's questions, and the replies to them, were' as follows:-
"(1.) Is the systematic study of the solar constitution likely to throw light on subjects of Terrestrial Phygices, such as Meteorology and Magnetism ?.
" (2.) What meane, at present known to Science, are avalable for stadying the sun?
" (3.) Da you consider that Photography (one of the assumed means) will suffice for the purpose 8
4 (4.) Do you consider that the class of observations (defined in your answer to my question 2) are such as can be efficiently made in an observatory maintamed by the State, of that any of them would be better left to the zeal of volunteer astronomers ?"
[Addressed to M. Faye only.].
"(5.) Do you consider that it would be advantageous to carry on Physico-Astronomead researches on an extensive scale, and Meridional observations, in one and the same observatory, under a single director ?"

Sir W. Thomson : -

"The subject of invegtigation in any observatory for Astronomical Physies $2 s$ son very dufterent from that for which the great Astronomical observatories at present existing were founded, that 1 beheve genexally it would not be good economy of respurces to attempt to adapt the old observatories to the new investigations. The instruments adapted for accurately determining the positions of the heavenly bodues, which constatute the most mportant part of the great observatories hitherto established, are scarcely adapted to give any pontributron towards Astronomical Physics. New mstruments designed for the work of the spectroscope, and new buldings to contann them, are necessary. A chemacal laboratory, and an extensive system of gaivanic batteries and elcetro-magnetic apparatus are required for the new kind of Astronomical observatory. I doubt very much whether one man oould act effectively as executive chief of an obsorvatory of Aatronomical Physacs, and at the same tume of an observatory of the old kind."

Professor Hilgard:
" (1.) That the systematic study of the ann's constitution 18 likely to throw light on subjecta of terrestral physics, I would unhesitatangly affirm ; yet without expressing the behef that, the minor meteonc or magnetic varnations are dependent on changes taking place in the sun.
"(2.) The avalable means for studyng the sun at present known to science are, in my apprehension, in eddition to obsorvations made with the eye, solar photography, photometric and calorvoetric observations, and spectroscopic observations, combined with laboratory experiments necessary for the interpretation of the latter.
" (3.) I do not think that photography alone will suffice for the purpose indicated, since it will give little else than a registration of solar epots, the study of which by means of the spectroseope appeara to be also of prime importance.
" (4) I perceive no difficulty in organizing the several classer of observations above mentioned systemastically, so as to be efficiently made in an observatory manntamed by the State. Sumilar considerations to those upor which the manntenance of meteorological and magnetucal observations is based, would warrant a prominon for aystematic obsarration of the sur.
" The value of the latter, ins of the former classes of observations, largely depends upon their regalar contnuity, which cannot be expected from the zeal of volunteer observers, who must look for therr reward to results of immedate interest."

Dr. Ba.four Stewart :

${ }^{6}$ In reply to your first question, I cannot help thinking that a study of the solar constitation is likely to throw light on the subjects of Terrestrial Physics, such as Meteorology and Magnetism, My reasons are:-
" (1.) That I consider the fact of a connexion between sun apot activity and disturbances of the carth's magnetism to be very well proved, although we are ignorant of the nature of the connexion.
${ }^{4} 4$ (2.) The recent researches of Mr. Baxendell, Mr. Stone, Professor C. P. Smyth, and others, render it extremely probable that there is likewise a connexion between the period of solar actavity and the meleorology of our globe.
(3.) The recent researches of Messre. Warren De Le Rae, Stewart, and Loewry, as well as those of Professor Wolf, render it very probable that there is a connexion between the poentions of the chef planeta and the behaviour of san spols.
" (4) The recent observations of Messrs, Browning and others render probable a connexion between the appearance of the planet Jupiter and the state of the solar dise.
"I think that all these, taken together, can leave us in hittie doubt of our duty with regard to solar observations. If we were not only perfectly sure of connexion, but likewnse knew ell about the nature of that connexion, the necessity of studying the sun would yet be as strong as that of recording the positions of the various planets with the view of verifying the law of gravitation. But nasmuch as here the nature of the connexion is unknown, it is of imperious necessity to stady the sun with the new of sccumalating e sufficient number of good observations which may ultumately enable tus to determine the natare of this unknown connexion,
"We ought to remember how greatly the accurate observations of Tyoho Biahe contributed to the generaluzations of Kepler,
"In reply to your second
" (1.) Eyye observations through a telescope.
" (2.) Photography.
" (3.) Spectroscopic observations.
" (4) Actunic observations.
-
"In reply to your thurd question, I do not consuder Photography sufficient for the purpose I think that eye observations, more partacularly when combined with the spectroscops, are essential to enable us to know what is goung on in the sun from minute to minute, and unless we know thas, I do not well see that we are ever Jikely to arrive at a true theory of solar disturbances, or of the connexion between these and the disturbances of the meteorology and magnetism of the earth. Could we ever have ascertaned the velocity of the solar currents without the ard of tine spectroscope?
"As a self-recording instrument for registering the actinic effect of the solar rays has been perfected by Ds Roscoe, and as it is a point of mportance to study the mfluence of the solar rays upon vegetation, I thank that whenever the sun's surface is regularly studued, actime observations ought, from thas cease as well as from thor physical importance, to be included among the duttes of the observatory،
"In reply to your fourth question, belianng that a long contınued and aystematic series of observations is beyond the means of volunteers, I think that the four knds of observation of the solar surface which I have specified ought to be made in an obsarvatory mantained by the State. Indeed, for some of them more than one observatory would be requisite, for I think it an object of great importance to obtan a daly record not only of the position but of the area of every group of spots which, appaars on the surface of the sun. But to obtan this more than one observatory would be necessary, for we must be independent of the influence of weather; and to be so we must have stations so distributed that when at rained at one station it mught reasonably be expected to be fair at another:
"I think that the study of the sun ought to be systematically conducted in an institution for the purpose working under Government, and connected with a number of stations sufficient to eusure 4 good record of what takes place on the solar surface, independent of the influence of weather.
"It appears to me also that such an anstrtution should have a laboratory as well as a workshop connected with it."

M. Faye:

" 1. L'étude de la constitution physique du solenl ne me parait pas appelée à répandre de grande lumière sur la Physique Terrestre, c'est-ג-dire aur la Météorolugie et le Magnétisne. L'action solaire est actuellement caractérisée par une constance bien remarquable, sauf de petites varnations acadentelles ou périodiques de peu d'importance. L'étude drecte de ces divers sujets de Physique Terrestre suffit amplement. Mays il en est autienent des âges geologiques dont l'histoure me parait hée intimement à des changemente progressfs d'ont on reconnait la possibilité dans l'activité interne du solenl.
"Toutefos on ne peut ner que les recherches nouvelles qui ont eu pour but de rattacher certaines périodes dans les phénonènes magnêtuques aux phénomènes également périodques du solell ne méritent intérêt es considération.
" 2 Les moyens dont nous disposons aujourd'hai pour l'étude du eoleil sont an nombre de hate :-
" 1°. Etade des mouvements de la photosphère par les tackes et les facules. (Carrington)
" 2^{3}. Etude de la constitution chmique de la photosphère et de la chromosphère. Varistions, plus ou moinf rapides, de cette constatution. Analyse chimique continuelle de la eaperficio solare.
" 3°. Etude des mouvements de la chromosphère, éroptions, protaberances, etc. Distribation de ces phénomènes selon la latitude.
" 4́. Etude dee varrations périodaques de Ia aurface, par les precédés de Schrabe et cenx de l'Observatonre do Kemp,
*5. Etude des éclipses totales', auréole, couronne, etc., aru moyen d'expéditions lonntaínes.

- $6{ }^{\circ}$. Etudes des changements séculares de l'activité solare au moyen des données de la géologie.
a 70. Etude analognque du solel an moyen de l'observstion des étonles varrables oa nouvelles.
" 8°. Application de la mécanique moderne à l'étude des mouvements internes qu'on peat supposer dans los masse solare.
"3. Le moyen le meilleur d'étudier' les mouvements des taches et des facules est incontestablement la photographie. C'est surtout par là qu'on peut espérer de rencontrer des phénomènes auxquels s'appliqueront tôt ou tard les lois de la mécanque. Mais ce n'est lis qu'une face de la question. La spectroscopie n'est pas mont indispensable. Coast par elle que la physique et la chimie peuvent sappliquer aux ótudes solares auss bien que la mecanıque. Rédure cette étude à la photographie ce serait se condamner à ne voir qu'une face de la question. Je ne veux pas que cette opinion puisse etre sérieusement soutenue.
"4. Il suffit d'envisager l'ımportance du but des études solarres et la varıété du moyen d'actıon que la science moderne nous présente pour penser que le moment est venu de confier les études à un ou plusieurs établisse ments pourvu de grandes ressources, et pouvant fonctionner avec continuite pendant in laps de tenips 1lımité.
th Sans doute on devra comptery sur le concours puissant des volontan es de la science. Mais le concours se présonte toujours avec des rebirictions quant aux ressources, à la continuite, et à la durée, lesquellés me paraissent peu compatibles avee les resultata à obtenir.
"6. Je surs d'avis que les érudes douvent être poursuivies dans des étabhssements spéciaux; que leur introduc\%, tion dans les observatorres astronomques serait nusible à l'astronome proprement dite,' sans pouvoir donnes tous les résultats que procurerast une division bien nette du travail.', L'expérience que nous ea ayong en Frances me paraît décuenve."

Evidence relating to Meteorology.

For the reasons which have already 'been stated, we have taken a considerable amount of Evidence with reference to the Meteorological Obscrvations at present carried on in the United Kingdom, whether at the cost of the Government, or of Socleties or Private Observers. To some points in this Evidence we think it tecessary to call attention : of these the most important are those which relate to the Meteorological Office.

This Office is under the Management of the Méteorological Committee of the Royal Society, the Functions of which are thus described in the Report annually presented to Parliament:-
"The Meteorological Committee consists of Fellows of the Royal Saciety who were nominated by its President and Councll, at the request of the Board of Trade, for the purpose of saperntending the Metaorological dutees formerly undertaken by a Government Department, under the charge of Admaral FitzRoy.
"The Committee are creduted with a sum of 10,0001 . voted annually in the Estumates, for the administration of which they are wholly responsible, and over which they are given the entire control
"The Meetings of the Committee are held once a fortnight, or oftener when necessary, when every sulject on which action has to be taken by their executive officers receives their careful consideration. The daties of the Committee are onerous, and entrely gratutous; they were' accepted; and are very willugly performed by the members, on account of the earnest desire they severally feel for the mprovement of Meteorological Science."

The position of the Committee is anomalous.. In the words of the Director of the Meteorological Office-
"The Government drstinctly dusclaims all connexan with ne, whilst the 'Royal Society equally disclaims all Qux 13,867 control over us, except merely the nomination of the members of the Committee."
"As a matter of fact, all that the Royal Society does is to nommate the members of the Commiltee ? That 18 all."
"Heving so done, it ceases to have any control whatever, does it not ?--Entirely."
"What is the precise relation between the Office and the, Government ?-That the Government gives a vote of 10,0001 . every year, sad that it calls for no account of thas money, excepting the account annually prosented to Parlament.
"Who sudtat the accounts ?-The members of the Committee there' is no formal andit, because, as the Government would not recognize any andit excepting its own, the Committee consdered that it was not worth while paying an anditor if such audit would not ba reeognzed, and, as a matter of fact, two of the members take the trouble of audtring the accounts every year."
"What, in your opinion, are the chief advantages and disadrantages' of auch an arrangement as compared Qu . 13,473. with those of the direct management of the Office by the Government?-The chief advantage is the periect freedom fiom poltical management. The nsk in being connected writh the Government 19 that if a new President of the Board of Trade comes, he may reverse the action of the preceding one. The existence of a scientific superrysiou for the Office is exceediugly important; it acts as an untermediate party between the publio and the Office. I may mention a decided disadrantage which reeults from the Office not being connected with the Government, namely, the loss of prestige. The difficulty 13 , that if we are sending msstrumenta by sea or by ralrond, if we do not call them Government mstruments we cannot get as much attennoon pad to therm, and it is my opmon that we should get more co-operation from the merchant navy if we were an office of the Board of Thade. We should have more prestage as aclung dreectly from the Government."

The following very clear account of the objects which the Meteorological Committee propose to themselves is taken from the Evidence, of Major-General Strachey, one of the Members :-
, "I would, then, state generally what I understand to be the objects which the Meteorological Commirtee Qu. 14,212. sess6.
has to superintend. These are, first, the bolleation of meteorologioal datm from shipg' loge, with in viaw to the preparation of maps for the use of sallors, showing the probables or it may be termed the everage, meteoralogical elements all over the ocean, on the chief line of tyade routeg for the several months in the year. Included with these is the anvestigation of the oceas currente. Thas branch of duties is carried on ander Captain Toynbee. The second branch of the business is the collection and dauly publication of meteorological observations made on the Britush Isless and neighbouring coasta, extending from the coasts of Scandinaris to France, and partly to Spain. Although at the ontset of the issue of warnings as to probable bad weather was not contemplated, yet after the Committee had been in operation for a few months it was considered desirable agasn to undertake this, and an the first year of the Committee's existence the issue of warnings of anticipated stormy weather was, resumed. I daresay Mr. Scott has, told the Commussioners, that within the last few months there has been a little more detail given in the warnings. Originally they were mere warnings that atormy weather was likely to occur. Now there is a statement also given of the probable direction from which the wind is to come, and whether it will be of extreme force. The third of the objecte is the recording at cortain specially-organsed observatories, seven in number, maintamed under the direction of the Committee, of the principal meteorological elements, with self-recording instrumente; with the intention of obtalning a continuons record with as great accuracy and precision as possible, and thus of procuring accurate data for the scientific study of meteorology by all persons who are interested in that science. I should add that the Coma mittee has, within the last month or two, from the commencement of the year in fact, begun to print and to issue monthly the detailed observations made at these seven observatories. The Commuttee also prblibhes quarterly reports, which contann diagrams ambodying the obsorvations at the seven observatories, and an analysis of the weather over the British Iales, of which the details are furmahed in the dauly reporta. There is no doubt that the publication of those quarterly neporta is an, nseful addition to the douly reporte, which are extremely volumnons, and not very easy for persons to follow who do not devote themselves to the subject The last of the specific duties of the Committee 1s the supply of meteorological instruments for the Royal Navy and Mercantule Marine. Besides various mascellaneous references come froman the Board of Trade, to which, of course, the Commattee gives auch answers as it is capable of doing."

It is admitted that the objects thus described do not exhaust the whole of Meteoro. logy, and 'that the Committee jn' their selection of these objects have been, to a great extent, guided by the proceedings of the Meteorological Department of the Board of Trade, which existed prior, to, and which has been superseded by the Committee. 'Thus Major-General Strachey says:-
"The Committee is' now in reality doing no more than continoing the exercise of certaun functions which had, in the course of time, been thrown 'upon the Board of Trade by the position which that Department occupies in connexion with the public administration."
"Has the consequence been that the action of the Committtes has been from the outsef rather in a practical direction than in one of onginal research or scientific observation, properly so called p-I think distinctly that such is the cesee, and that at has necessarily followed from the position in which the Committee wae placed. If a reference is made to the earler papers, and to the Report of the gentlemen on whose suggestions the present arrangements orngnated, there perhaps is an undication that they anticrpated something more in the way of scuentufic research than has actually occurred; but the turn that things bave taken seems to me the necessary result of the sort of datuas that were put upon the Committee under the essential condition that it had bot a lumited sum of money to spend."
"Have any results of sclentafic mportance an your opumon been obtained by the action of the Committee? -In the direction of what one may call mestagation of an absolutely sclentific character, I should say none at all. Of course the observations that are made at the specual observatones are valuable scientific information, and so far one has no nght to say that scientufic resalts have not been produced; but [I do not thunk that these can properly be referred to as specific resalts of anything that the Committee has done. To the best of my beluef there has been nothing nundertaken in the way of orginal investigation into the specafic physical causes of any of the phenomena which are recorded, nor any original research, properly so called, in relation to any of the several branches of meteorology. The Committee hardly has apphances at its command for any such investigations, and, the funds at tts disposal being lumited, it whe hardly pomeible that it elonid attempt them. It 18 also no doubt quite true that the observations which are made at the seven observatorien do not include any matters which are of "great' importance in physical science, and which would propetiy come withan the range of meteorology."
"Are the funds at the disposal of the' Committee in 'your opinion insuficient for doing anything more than has been actually done at present?-I should say distunctly that thas is the case. The Committee has adways considered that it is bound to attend primarily to the speciad objects before referred to, whek were in a specific manner made over to it, and it finds that after this has been done there is no money left for other things."

Again, the same Witness expresses a decided opinion that the State should do more for the promotion of Meteorological Science than it does at present, but entertains some doubt whether any increased duties could advantageously be allowed to devolve upon a body such as the Meteorological Committee :-
Qu. 14,226.
"Can you state the directoons in which you think the State should intervene? -This seems to me an extremely dufficult questron to answer. 'The fact is that the form in which the State might in a sabasfactory way, intervene must depend npon the extent to which it is disposed to intervene. If one know that the Government really desired to assist in the development of scientifio meteorology, it would be possible to make a scheme, but I do not see how anybody could make what I may call sa abstract plan which shonld have any real utility in it. My own impression is thast so Iong as there 18 no greater finterest taken in this sort of matter than at present, probably the best thung to do us to leave the expenditare of what money the Governmant choose to give for the purpose under the conirol of some such body ss our Committee; but I should further say that if the Government is sernonaly in earnest in taking the matter up, it would then be the proper thmg to have a public department that should manage the business.' Then agask, if there wrere a publec department, it must be a part of an organised system; sand in order to secure some oficer connected durectly
with the Government, an Under-Secretary of State, or some such person,' who should be responsible that ine excecuthve screntific staff preperly carried ont the whole of the operations of their seversi departments.
"A Are you disposed to think that the Meteorologncal Committee might in any way extend ats aphere of action Qux. 14,285. with advantage ? Ans matters are now F हhould think it is extremely donbtful. I look upon the Meteorological Committee as bemg maunly a controlling body to supervise the expenditure of a definite sam of money in a definte way. At all events that practically has been ther position. There has been no virtual change from the tume that they were started up to the present tme"
1"Do you thunk that that money would be spent better in some other way; that is to say, supposing the Qu. 14,286. thing had to be started afresh, are those objects whech the Committee at present have to carry out exactly those that you would have given them to carry out? '- I should say in general terms that the whole of the objects which the Committee has charge of are reasonable objects. I do not thruk that there is any one of them that it is not desirable to attend to. As to whether the precise method of dealing with them is the hest posable will be a matter of opinion, but I do not think that I could, very usefully go moto that."
"Does it occur to you that there 18 anything else which should be added to the functions. of the Com- Qu. 14.287. mittee?-My general imprassion, as I impled before, ta that the Commattee is a quassinancial body having certain scientific knowledge. Its duty is not strictly speakng to durect scientrfic research or seientific operatrons, but it 18 to see that a certam sum of money which the !Government thinks may reasonably be applied to collecting and publishing meteorological observations, and doung certann other matters, is not unreasonably appled. It exercises a check upon the persont who have actually to carry out those duties, as I understand it; and I do not think myself that, with a body consthtuted as the Meteorological Committtee is, you can expect more from it than that."
" Do you think it would be desurable that the Committee should be entrusted with money to enable it Qu. 14,288. to have any observations collected, scientufically discossed, and turned to scientific use ? be much better if any such fund were not given to a body like the Committee. If some indaydual were selected, and the entire responsiblity put upon him, I think it would be a much better plan."
" You want to do away with the Commottee altogether ? I-I thank so, certainly; supposing alwayat that Qu. 14, 289. I am at liberty to replace it according to my own conceptions of what is best."
The same view is expressed by Professor Balfour 'Stewart-:
" Would you organize the Meteorological Committee in any really dufferent form, to that which at Qu. 14,085. present obtains ?-I should be incluned to dispense with the Meteorological Committee altogether, and subatitute a Meteorologist Royal, or whatever his appellation might be, a aingle official who should be responsible to the Government in the same way as the Astronomer. Royal is responsible for his department. I do not see why the one department should be on one foongg and the other department on a different footing: F thank that there are grave disadvantages with a department administered by an unpand nommittee."
"Would you appoint a Meteorologist Royal corresponding with the Astronomer Royal P-Yes, whatever Qu. 14,036. the name might be; I shoald appoint an official very much corresponding to the Astronomer Royal and responsible to the same extent. A board of visitors would not be objectronable, but the durection of an unpaid committee appeare to me to be very objectionable." -

The same Witness considers that the subject of Meteorology naturally divides itself into two heads, (1), Physical Meteorology, of which "the 'object would be to ascer- Qu. 14,031. tain the Physics of the earth's atmosphere, and perhaps of the earth's ocean," and which must consequently be regarded as a branch of Terrestrial Physics; and (2), Local or Climatic Meteorblogy, involving a number of Inquiries having special relation to Health, Agriculture, and various Human Interests., The distinction is one which perhaps does not admit of beng very closely pressed. For example, it is not clear to which of the two heads the Observations upon Rain-fall should be referred; not to mention that any serres of Meteorological Observations, with whatever object undertaken, must Qu, 14,059. have a special value with reference to the Locality, at which they are made. Professor Stewart is further of opinion that while Physical Meteorology should receive even larger support from Goverpment that it does at present, Climatic Meteorology might in the mann be left to voluntary and local exertions.
"Would you leave the other branch of the subject, clumatic meteorology, to mdividuals and local efforts?' Qa, 14,037. Yes, I think so, possibly eupported to some extent by funds from the Government, but I should nut put such branches under the superintendence of a central board at the present moment."

And again,
*) Would you leave climatic meteorology altogether to societaes and to individual effort? ? At the present Qu. 14,045. moment is appears to me to be a matter that mght best be left in that position, and that a central authoxity 'would do no good in a question of this kind, but rather do' harm; in fact, rather tend to depress tham to encourage these local efforts. I have no doubt that a great deal might be done by the zeal of local induriduala, but if the thing were undertaken in its present state by a central board, which would do litile but register a number of observations, I do not thenk that any good would at the present moment be done,"

Such aid as Government might give to Climatic Meteorology, should, in the opinion of the Professor, rather take the form of Grants, to Societies, than of any extension, Qu. 14,047. inv this direction, of the Functions of the Meteorological Office, for the double reason that it would be undesirable to discourage local efforts, and to dissipate the energies of the Meteorological Office by diverting them from Physical Meteorology.
"As far as the money is concerned, I consider that mare mattar of detail, but I should be very strongly Qu. 14,039. against the Meteoralogical Committee undertaking anything but Physical Metsorology; I think that they
ought to confine their labouns to that. If they at present andectake all those branches of meteorology bearng upon the various individual homan interests, it appears to me that vou will leave them no anergy to attacis the problems of phyercal meteorology. I think the greas point is to put physical meteorology somewhat more into the position of a branch of physical aciences at the present moment is appears to me to occupy a very low position indeed."

It appears that within the last two or three years the Meteorological Committee, have made gieat efforts to extend their work in such directions as might be most likely to help in the promotion of Scientific Meteorology. Thus, they have commenced publishing the individual values derived from their self-recording instruments and they have undertaken regular Observations upon Atmospheric Electricity. But the efforts of the Committee to extend therr operations are limited by insufficiency of funds.
"Is there a want of funds for a more complete treatment of the subject of land meteorology ${ }^{\mathrm{P}}$ - A very serious want of funds. As I mentioned before, for any sorious discussion like that of the hourly values for all the elements for five years wo are not provided with a sufficiency of funds; in fact the amount of our staff for land meteorology would be sufficient to dssoxas the resulte for one observatory, but nof for seven. It is in that sort of way that the origunal provision of clerks whe were to discuss the work was quite insufficient, the amount of materials being so enormous."

Mr. Scott also informs us that:- ,
Qu. 13,925.
Supplemen-
tary Ent-
" Arrangements have been concluded between the Metaorological Society and the Meteorological Offica,
and have come mato effect on the 1st January 1875. The principal features of these arrangementa are that the Observers belonging to these two organuzations are suppled with an uniform sohedule for recording their observations, and that the Society undertakes to furnish to the Office monthly returns from certain selected atations for publication with the returns from its own etations, in consideration of a certain payment, which will probably average about 50l. per anrum."
"An invitation has been issued to the Scottish Meteorological Society to co-operate with the Office on similar terms, and the Meteorological Committes are mot without some hope that this proposel may be accepted."

Besides the sum of $10,000 l$, which is placed on the Civil Service Estimates and is mnnually 'paid to the Meteorological Committee, the Government incurs a certain expenditure on account of Meteorology at the two National Observatories of Greenwich and Edinburgh. This expenditure for the year 1874-75 amounted to $1,221 \mathrm{l}$. for Greenvich, and $115 l_{\text {a }}$ for Edipburgh.

A further small annual payment of 150 . is ' made by the Registrar General for the Reports of Meteorological Observations which are printed in his Monthly Returns. These Reports are'sapplied by Mr. Glaisher, the observations being made at different stations in various parts of England, by unpaid private observers, whose co-operation Mr. Glaisher has been' able to obtain. The Evidence shows that the work is done under regulations which are sufficient to ensure its general accuracy ; and it is obvious that the annual payment of $150 l_{\text {, }}$ hardly covers the expenses incurred, and affords no remuneration for the trouble taken in' organizing and controlling the System of Observations.

Evidence rélating to to Tidal Observations.
Evidence in reference to Tidal Observations has been placed before us by Dr. Joule and Professor Sir W. Thomson.

Dr. Joule is of opinion that-w

Qu. 10,568. "With regard to the sea level and the tides, although the laws with regard to the tidea are pretty well known, they ought to be continuously observed, if only for the purpose of registering the changes arning from the alteration of banks, depth of channels, \&cc, Also with regard to the sea level, there have been reports from time to time with regard to the inroads of the sea on our coasts, but sofficient atepn do not appear to have been takan to ascertan the facts in those cases. It seems to me very important to be acquainted with any elterations in the configuration of the earth which may be taking place, howevar minnte those alterations may bes"

He thus expresses his' views as to the manner in which these Inquiries may be carried on:
Qu. 10, 576.
"Wonld that bes wort which'onght, in your opinion, to be carried on from day to day by a permanent establishment at such plaees?" "I believe that self-registermg apparatus have been devised which would ensble the mean sea level to be registered, and the tides to be registered, without very mach trouble."
"Is it a sort of work which can be carried on by pablic officers stationed at any of the ports, or would you require a separate staff?" "Probably it mught be carried on by the officers at the atations. I do not bhinh it woald be necessary for anyone to be exclusively cocupied in such a work."

Sir W. Thomson's Evidence on this point is as follows :

"In addition to those institutions which you havé recommended, jou consider", do you not, that it would be Qu. 10,715. adrisable that the Government should mudertake secular observations of the tides?" "Yes, certamly, secular observations of the thdes with accurate self-registering inde gauges, with the triple object of minestigating the soience of the tides, of perfecting our knowledge of the actual pheromena of the tides, both in respect to navigation and as a branch of natural history, and, thurdly, with a view to ascertaining the changes of the sea lovel from century to century."
"Is anything of the kind done at present"" "There are several tude gauges, some of which have been carried on with great care, others with not sufficient care, sad none with any security of permanance's
"Was not it in connexion with the Ordnance Survey of Great Britain? -No sufficiont steps have been taken "Was not it in connexion with the Ordnance Survey of Great Britain? -No sufficiont steps h
o ascertan whether the sea level is changing relatively to the, land in any part of this country."
"Would you think a large number of stations requisite for the observations of the tides to which you have Qu. $10,720$. alluded ?-Yes, a laige number. The phenomena of the tides are of great complexty, but not of baffing complexity, provided that we make the observations at a suffiesently greats number of points."
"Would the duties attached to such observations take up the whole time of, the persons who had charge Qu. 10,121. of them?-By no means. They could undertake other duties. A tide gauge may be put under the hands of a careful harbour master or officer of the coastguard service at any station, bat it must be under inspection to secure accuracy. The most careful and scrupulous of such men cannot make sure that the nnstrument 18 giving accurate results; and they cannot, except auder instruction and occasional inspection, give out recorded curves, that they can be quite sure of being accurate in all points of scientific nicety $;$, but the mspection that ia required to secure accurate results would be a very smple and moderate matter."

The accurate Reduction of Tidal Observations without which, of course, they are useless, has not hitherto been undertaken by any' Department' of the 'State, and we are indebted to the zeal of individuals for the results which have been obtained. The reductions are laboi ious, and require the employment of paid computers. The following Memorial from the British Asscciation for the Advancement 'of Science to the Lords Commissioners of the Treasury, put in 'evidence" by' Sir William Thomson, shows the difficulty that has heen' felt in 'procuring' the moderate sum required for the Reductions:-

" Mimorial to the Right Honourable the Lords Commissioyers of Her Majestx's Treasury. "The Memorial of the Britigh Association for the Adroncement of Scrence.

" Humbly sheweth,-
" 1. That in the year 1867 the British Association appointed a Committee 'for the purpose of promoting the extension, mprovement, and harmonic analysis of tidal observations.' From that time until the present, under committees reappointed from year to year, the proposed work has been carried on, The mode of procedure adopted, and the results obtained up to the month of Auguist 187a, ane fully stated in the accompanymg series of printed reports.
" 2. The primary object of this investigation is the advance of tidal science, but the Committee have uuformly kept in riew the practical application of their results to Physical Geography, Meteorology, Coast and Has bour Eagineet ing, and Navigation.
" 3. A large mass of valuable obserrations, recorded by self-registerng tide ganges durng the last 20 years, having been found avaulable, the Committee have apphed, themselves, in the first place, to the reduction of these observations, and have deferred the object of promoling observations in other localities until the observations already made have been utilized to the utmost.
" 4. The work thus undertaken has proved, as was anticipated, most laborious. The calculations have been performed, under the superntendence of Sir Wilham Thomson, by skilled calculators recommended by the Nautical Almanac Office. The funds required to pay the calculators, and to print and prepare tables; forms for calculations, dre. to the amount of 600 l , have, been granted by the British Assaciation in' four successive annual allowances of 1001 . each, and a sum of 200 l . voted at the last meeting. The last grant barely sufficed for the work actually in hand, and to secure the contmnuance of the anvesugation additional funds are necessary. The Council of the British Association, therefore, drected the Tidal Committee to make an application to the Government for assistance, the amount at present asked for being lumited to 150 l.
" 6. It seemed to the Council that after the Association had done so much in the way of actual expenditure of tume by the members of ats Committee, and had given such a large contribution fiom its very limited funds, enough had been done to show the object to be one for which assistance may reasonably be expected from Government. On representations made by Colouel Walker, Director of the Trigouometrical Survey of Inda, the Indian Government has already granted the means of defisying the expense of making trdal observations in India, and applying to them the methods of reduction devised by the Conimittee of the British Assaciation. The Council hope, thercfore, that the Government of this country may be similarly diposed to assist in a mattor of national importance.
c May 21, 1872.
(Signed) Whliam Thowson,
The Lords Commissioners of the Tressury did
 Memorial, so that, at present, there is no guarantee that the Observations which have alheady been accumulated, and those which are still in progress, will ever be adequately discussed and utlized.

Evidence relating to the Extension of the Government Grant administered by the Royal Society.

The strong and concurrent Evidence which we have received as to the usefulness of the Government Grant, as at present administered by a Committee of the Royal Society, his led us to inquire whether this Grant might not be advantageously extended; and
the'Witnesses.whom we have examinied on ithis point are unanimous in expressing the opinion that great benefits might be expected from such an extension.
Qu. 11,570.
Thus, to the Question, "Have you formed'any opinion as to whether it would be * desirable that the Government Grant of 1,0001. a year, placed at the disposal of the "Council of the Royal Society, should be increased or not P". Professor Owen replies : "It has been so admirably appliegd and with such gain to Science, that there cannot be " a doubt that it would be a great benefit to Science if it were doubled to begin with."
Qu. 11,995:
Mr. Spottiswoode, the present Treasurer of the Fund, states his opinion that an extension of the Government ${ }^{3}$ Grant would be desirable, and expects that the minimum which might be voted every year would increase materially.
Qu, 12,214. Professor Grant gives his opinion "that it is very desirable that the grant should be enlarged." He also considers that it "would be expedient that wider publicity should "" be given to the fact of its being generally avalable to persons engaged in scientifio " investigations."
Qun 13,135. 'Mr. De La Rue is of opinion "that it is administered exceedingly well and very carefully."' 'He considers that the amount should be increased.
Qu. 13,590.
From the Evidence given on page 13; it"appears that Lord Salisbury also 'is of opinion that, the Govermment Grant might be; increased, with the object of affording liberal assistance to "first-rate workers."

In a Memorial presented to us by the Royal Society of Edinburgh, it is recommended
Appendix
XIV., Vol. that acorresponding Grant be placed at the disposal of that Body, for the Promotion of Science in Scotland., The claims of Scientific Workers in Scotland to participate in the Grant equally with those in other parts of the United Kingdom, have been fully recognised, and we think it of importance that there should be but one such Grant for the whole of the United Kingdom and one body responsible for its administration. In the measure hereinafter recommended we have suggested that the Administration of future Grants should be assigned to a Council of Science which should include the Representatives of the Scientific Societies of the United Kingdom.

Eividence as to the Payment of Scientific. Workers.

On' this's branch" of our Inquiry, the Evidence 'laid before us, both by Statesmen and men of Science, is to the same effect, and in favour of increased State Aid. It has also especially been urged upon us, that to afford, by direct pecuniary aid, the means of Tirelihood to men' of distinction in pure investigation would be a great advantage to science, as competent investigators would thus be enabled and encouraged to pursue a strictly Scientific Career.
.Lord Salisbury is of opinion that the cause of Science is hindered by the want of a sufficient career for scientific men, giving the following statement of his reasons:
"I am induced to think so, by hoticing how very mach more rapid the progress of research is where there is a commercial value attached to the results of it, than in other cases. The peculur strmulus which has been 'given to electrical research, in the particular direction of those parte of it which concern the telegraph, is a very good instance in point, and the extent to which researches into organce chemnstry have almost clustered themselves round the production of cosi tar colours is tmother instance in point. And therefore it is difficult to avoid the conclusion that research if resily hindered by the necesaty under which those who are most competent to conduct it feel themselves, of providug for their own support by meane of the talent and the knowledge which they possess."

[^27] this point as follows :
" That man should be enabled to live' on scientific research is a matter of most immediate consequence to the honour and welfare of this country. I At presens a man cannot live on scientific research. If he aspres to devote hunself to it he must cast aboat for a means of sapporting humself, and the only generally accepted posibility of being able to support humself is by teaching, and to seccure even a very stall income berely sufficient to live uron, by teaching, involves the expenditure of almost his whole tume npon it in most situsitions, so thet at presemt it is seally only in untervals of hard work in profeselous that men not of independent means in thus comntry can apply themeelves at all to scientufic research.
'Professor Henry; the distinguished Director: of the Smithsonian ' Tnstitution'iirxthe United States, who was good, enough to appeat before tus when he was in this country;", gave the following emphatic evidence in the same direction :-
"My idea would be that if the funds were 'sufficient, and men copuld be found capsble of advancing science, 'Qu. 1520. they abould be consecrated to science, and' be provided witt the means of living above all care for physical. wante, and suppled with all the mplements necessary to unvestigation."

- Professor Balfour Stewart,' after referring to the instances of "wealthy persons who $\mathrm{Qu}, 11,419$. undertake Scientric Research' in this country; points out that the 'namber of those no circumstanced is very small in comparison with the number of able men who are willng to give their tume and capacitues to Observations and Research. He goes on to' say that able men, and men competent to conduct research, suffer in this country from not having sufficient means at their disposal to proceed as they would like to do. "
"Do you anticipaie, then, that if there were any intelligent centre for the distribution of a sufficient fund to. Qu. $11,421$. persons having the requisite capacities for observation and research, but not having the means, the dustribur, thon of such a fund would have any benumbing infinence npon original observation and research ?"-"No,", I should thunk quite the contrary; it would encourage it very mpich.".

Mr. Gore also advocates the enlargement of the present system.

[^28]He then gives his own personal experience, which probably resembles, that of many of those who, without private fortune, engage in pure research, ' ${ }^{\prime}$, AL,
 come to me ** *gave up some papila a short time ago to enable me to have pore time for original mpestigation."

Some of the Witnesses seem to have considered the Pecuniary Aid which they think should be afforded, more in the light of Rewards for work done than as an Aid to work to be done. Thus, Dr. Joule, is of opinion-..
"That a small sum of money in recognition of screntufic laboun would be in many cases, a most useful Qua 10,654 . help as weil as a great encouragement, and if the Patent Laws are retamed they might be supplemented whth proninons to meet the case of those duscoveries to which the Patent Lawe do not apply." -

Drs Siemens is of opinion that, the Government might promote original research by 0. 11,771. liberal grants to the Learned Societiss; remarking that this is done now to some extent; but might be done with advantage to a greater extent; .

He then suggests that the Government might also encourage Scientific Research s'by Qu, 11,771 " granting through Societies, rewards for successful results obtained by independent re*
" search. In many mastances the Patent Law provides for the reward, but in other eases " of pure science the Patent Law does not apply, and the results of original research are " lefi unrewarded."
 their researches, in some cases materials and even money mught be granted to them.

Referring to the extent and value of the Origunal Researches in Chemistry carried on in Qu. 13,094. Germany, he ascrabes them "to the care which is given to the cultivation of every, brauch Qu. $\mathbf{1 3 , 0 9 5}$. " of science; and moreover to the positions and places at the disposal of the Government " which are given from time to tume to men who render themselves eminent in Science."

With regard to the Scale on which such Remuneration or Payments for Maintenance should be made, Lord Salisbury abserves :-
"I should sBy, taking the parallel [that of certan offices in the Church], to which I have alresdy alluded, Qu. 13,569, that an income of about 1,000 d or 1,5001 . a year would be the kind of income which world suffice for the parpose that I have in view."

And he would also add Provision for Retirement.

With reference to the safeguards against abuse which would be necessary, Lorid Qu. 13,568. Salisbury continues:-m

- * It would, for thair [the investigators'] own interest, and to save them from invidions comments, be desirable, to impoes upon them the necessity of publishing, etther in the form of books or in the form of leotures (but not sufficaent in number really to impede their work), an account of the result of theur labours during eech successive year. Perhape one or two stated lectures in the sourse of a year; to be delivered to University students, would be the best means of imposung upon them that test of indusiry."

Lord Salisbury further recommends that aid of this kind shouid be given directly and with as little concealment by ostensible duties of another kind as possible; adding :
Qu. 13,560. * * "If any money is to be given, as I think it ought to be given, for the purpase of furnishng a career to men who are really engaged in research which is not pecunurily profitable, 1 think that it would be far better given directly and openly than given under the form of an office which would practically be a sinecure."
In contrast with this view, that the endowment should be given directly, we think it right to quote the opinion of the late Professor Rankine :-
"I think there is no general principle, but every case must be judged of on its own fmente. The 'othor thing which is wanted, beades money, is the lessure time of competent persons. It peeme to me that it in out of the question for any State to provide or endow such a seat of persons, and that it would be iopposasble for any department of the Government, etther to judge who were fit peisons, or how they ought to be employed, or what would be a proper remuneration for them. And I believe that if any such system were unstituted, it would only lead to abuse. Setting aside such leisure time as men may have who are of independent fortune, and do not require to practise any profession or special occupation, I would say that it appears to me that in order to ensure that orher compotent persons shall have the requisite leisure, it is desirabie that there ahould be offices with other fanctions attached to them, but those functions should be of such a nature that the holdar, of the oflice may have leisure time for original research." * *

Remarks on the foregoing Evimence.

The great advances in Physical Science which have been made in this Country, and, within this century, by such men as Dalton, Davy, and Faraday, without aid from the State; the existence of our numerous Learned Societies; and the devotion of some few, rich individuals to the current work of Science; at first sight appear to reduce the limits within which State Aid to Research is required in this country.

But whilst we have reason to be proud of the contributions of some great Englishmen; to our Knowledge of the Laws of Nature, it must be admitted that at the present day Scientufic Investagation is carried on abroad to an extent and with a completeness of organization to which this country can offer no parallel. The work done in this country by private individuals, although of great value, is small when compared with that which is needed in the interests of Science; and the efforts of the Learned Societies, not excepting the Royal Society, are directed to the Discussion and Publication of the Scientific facts brought under their notice; these Societies do not consider it any part of their corporate functions to undertake or conduct Research.

It will have been seen, from the extracts from the Evidence, that amongst the Witnesses who have adrocated an increase of State Assistance are some who have made great sacrifices in time and money in the cause of Scientific Research.

But whatever may be the disposition of individuals to conduct researches at their own cost, the Advancement of Modern Science requires Investigations and Observations extending sover areas so large and periods so long that the means and lives of nations are alone commensurate with them.

Hence, the Progress of Scientific Research must in a great degree depend upon the aid of Governments.. As a Nation we ought to take our share of the current Scientific Work of the World: Much of this work has always been voluntarily undertaken by individuals, and it is not desirable that Government should supersede such efforts; but it is bound to assume that large portion of the National Duty which individuals do not attempt to perform, or cannot sauisfactorily accomplish.
The following considerations have been suggested to us by the Heads' of Evidence relating to (1) Laboratories, (2) Observatories, (3) Meteorology, (4) Tidal Observations, and (5) the Payment of Scientific Workers.

1. The first condition of scientific investigation is that there should be Collections, Laboratories, and Observatolies accessible to qualified persons. The evidence has shown that' at present, for certain branches, these do not exist or are incomplete.
Moreover there can be no doubt that the Government Service should, to a great extent, contain within itself the means of carrying on Investigations specially connected with the Departments. Even having regard only to the current wants of the State, additional appliances are necessary.

Three distinct ways have been suggested in which the State might assist in providıng the Aids to Investigation which are required by private Individuals. It has been proposed: first, that competent Investigators should receive Grants in Money enabling them to provide themselves with means for conducting their Researches; secondly, that Laboratoiies, designed primarily for the Service of the State, and those, of Universities and other similar Institutions receiving Aid from the State, should be placed, under proper conditions, at the disposal of such Inquirers; thirdly, that Laboratories should be erected by the Government specially designed for the use of private Investigators, though, of course, also available for the service of the State. Wherever the first of these methods can be conveniently and economically adopted, we are disposed to consider that it is the simplest and the best ; but it must be remembered that for many Researches apparatus of a costly, but durable character, are among the primary requisites; and that to provide these separately for each investigator would movolve a large and unnecessary expenduture It appears to us that the difficulty thus arising might be adequately met by the adoption of the second of the above suggestions. Our áttention has, indeed, been called to the inconveniences which might arise from the admission of independent workers into University or State Laboratories. But, notwithstandıng this difficulty, we thunk the experiment 18 one which ought to be tried, and till it has been tried we should hesitate to recommend the erection by the State, for the especial use of private Investigators, of Laboratories which would certainly be, costly, and might possibly, be only imperfectly utilized.
2. Upon a Review of the whole of the Evidence relating to the subject of Astronomical Physics, we are of opinion that an Observatory for that branch of Science should be established by the State. In the study of Solar Physics, continuity of the observations is of the greatest importance; and owing to our varable climate, continuous observations of the sun in this country are subject to peculiar difficulties which should be duly considered in the choice of the site for such an Observatory. The neighbourhood of London is less favourable to Physical Observations than many other sites which, might be found, and for this reason we should prefer that a Pbysical Observatory should be placed elsewhere than at Greenwich. Ou other grounds, also, we think that the Observatory for Astronomical Physics should be an Institution entirely distinct from any of the National Observatones for Mathematical Astronomy. The subject of Mathematical. Astronomy is vast enough to occupy adequately the whole energies of a Director, and If is especially important that Astronomical Physics should have the undivided attention of the Head of an Observatory, because its methods, which aie of very recent invention, are as yet incompletely developed, and because, depending, as they do, on a continual comparison of celestial phenomena with the results of expermments in the laboratory, they are entirely different from those of Mathematical Astronomy.

Our opinion as to the desirablity of such an Institution is confirmed by the example of Foreign Nations ; Observatories for Astronomical Physics being already at work in various parts of Italy, and their immediate erection having been determined on at Berlin and at Paris.

We venture to express the hope that similar Institutions may before long be established in various parts of the British Empire. The regularity of the climatic conditons of India, and the possibility of there obtaining favourable stations at consuderable heights, render it especially desirable that arrangements should be made for carrying on Physical Observations of the Sun in that country.
3. With respect to Meteorology we are of opinion that the operations of the Meteoro logical Office have been attended with great advantage to Science and to the Country. The subject of Meteorology is a very vast one, and any seheme for its proper cultivation or extension must comprise - (1) Arrangements for observing and registering Meteorological Facts; (2) Arrangements for the reduction, discussion, and publication of the Observations; (3) Researches undertaken for the purpose of discovering the Physical Causes of the Phenomena observed. The resources placed at the dasposal of the Committee are inadequate to cover the whole of this wide field; and, baving due regard to all the circumstances of the case, we believe that in selecting certain parts of it, as the objects of their special attention, they have been guided by a sound discretion.

We are also disposed to consider that although, as we have already said, the Meteorological Committee occupies an anomalous position, no other form of organization could -advantageously have been adopted under the actual conditions. We think, however, that if, as we shall herein-after recommend, a Ministry of Sclence should be established, the Head of the Meteorological Office should be made re-ponsible to the Minister. We fully concur
with the opinion expressed by the Witnesses that many branches of Mebeorology can only be effectually promoted by an organization having the support of Government; and we would draw especial attention to the consideration that, if Meteonology is to take rank as a branch of Terrestrial Physics, the ohservations must be made at stations widely dispersed oyer all parts of the earth's surface, and those taken by Observers of different Nations must be so arranged as to 'be cormparable with'one another: It in bbvious that the intervention of Government would greatly facilitate the attainmend of both these objects.

We are vely unwilling that any Scientific Observations'which can adequately be carried ${ }^{1}$ on by Individuals, or Associations of Individuals, should be undertaken by a Department of 'the Government.' So 'far as the local' interests' connected with. Climatic Meteorology suffice to ensure due attention being paid to that branchiof science, we should prefer to see it left mainly to Scientific Societies, any assistance the Government might afford being merely subsidiary; That useful results may be obtained by voluntary effort is evident from' the work carried on under the direction of Ma Glaisher, and from the case of the Scottish Meteorological Society, which has succeeded, with very narrow means, in organising a valuable System of Observations on the Meteorology of Scotland. It is, however, important that any Grants for the promotion of Meteorological Observations' in aid of 'voluntary efforts should be made "on 'some systematid principle ; and the attainment of this sobject would be furthered by making them subject to the Control of a 'Minister, who would be cognizant of all the facts relating to the expenditure of the Government upon Meteorology.

We may point out that the returns furnished by the Scottish Meteotological Society and Mi. Glaisher, are adopted by the Registrars General, and are recognized by Committees of Parliament in idscussions affecting the Public'Health, the Supply of Water, and other matters of the same kind. The value of Observations undertaken, as in this case, by priyate Individuals or voluntary Associations, must vary from' time to time, according to the efficiency of the persons principally concerned in their superintendence., 'We'feel, therefore, that the question how far it is proper that such Observations should receive official sanction, cannot be decided d priori, and must 'be left to 'the judgment of 'the responsible Minister for the tume being.
4. With regard' to Tidal Observations, it will be seen that, in the opinion" of the Witnesses, these have not hitherto been conducted and reduced aystematically. Considering the agencies which the Goverament can, employ for the purpose of making these Observations, the importance of providing proper superintendence for, them, and of securitig their Reduction, we think it dessrable that they should be carried, on, under Government control. The expense involved would chiefly consist in the Establishment at proper points, and Verification, of Tide Gauges, and in the Reduction of the Obser vations; these being entrusted to officers of Government alteady,stationed at the ports and on the tarions coasts of the Empire.،
"5. The Witnesses bave expressed themselves strongly as to the Justice and Policy of Remuneration to Investigators' for 'their 'Time ' and Trouble, 'and the Evidence blso shows by implication how great must have been the sacrifices of those who without private fortune have hitherto devpted theit 'great talents 'and' 'their váluable time 'to such work without any demuneration whatever.
It pas hitherto been a rule in the granting of Governmènt'Aid to' 'sientific Tnvestigators, subject,'s so far as we have been able to ascertain, to but very few exceptions, that such Aid should be limited to what was necessary to meet the' expenditure actually incurred on instruments, materials, and assistance.
To grants made under these conditions we think that ponsiderable extension might be given.
It is hardly necessary to assert the principle that when Scientific Work is undertaken at the request of the Government, the State is not only justified in paying, but is under obligation to pay for what is done on its behalf and for its service ${ }_{\text {a }}$ But we desire to express our belief that there are many instances of unremunerative Research in which the benefit conferred on the Nation by those who have voluntarily engaged in it establishes a claim upon the State for compensation for their time and labour. Without such compensation much important work must remain unperformed, because it must be expected that many of the hest men will not be in circumstances enabling them to devote long periods of time to unremunerated labour.
It is a matter of course that State Aid shall only be given to Investigators whose capacity and industry have been placed beyond a reasonable doubt.

IV.-The Central Organizätion which is best calculated to enable the Government to determine its action in all Questions affecting Science,

The functions of the Government with regard to science may be summed up under the three following heads:-74 an, 3
"First. "The' Treatment of the Scientific Questions thcident to"the Busiress of the Pubuc Departments.

Second. The Direction of Scientitic Instruction, when given under the Superincendence or Control of the State.
Third. "The Consideration of "all"questions involving State"Aid towards"the"Ad"ancement of Science, and of Administrative Questions axising out" of such "Aid", ",
It would be difficult to enumerate exhaustively all the various topics comprehended under these three Heads, ind it will be sufficient for the purpose of showing how wide is the field of àction of the State in tegard to Science, if we point out that'under one br other of, these heads axe included all, Scientific questions, affecting the Army, the Nary, the Public Healthy the Mercantle Marine, iPublio, Works, Government, Scientific Establishments; the Elementary Instruction in' Science under the 'Department'of' Education in Primary Schools, in the Science Classes connected with the Sclence and, Art Pepartment, and in Secondary Schools so far as they are subject to Government control; the Aid which is now, given, or which it is desirable, should be given, to Universities and other, Bodies tot directly and the Control which the State either does or should exercise over them 'Sin' virtue' of such Aid or otherwise; the Appointments to all Scientific Offices in ither gift. of the Crown ; Grants to Museums anditheir Control by the State s Aid to iScientific Expeditions of every kind ${ }^{\prime}$ the Lstablishment and Direction of State Laboratories and Observatories;
 Research; and generally the allotment and, control of Public, Funds, for similar Purposes\because The majority of the Witnesses who aave given evidence ma relation to this branch of the Inquiry, express 'dissatisfaction 'with the 'manner "in which 'questions etindet' the

In most cases the Witnesses recommend that such a Minister should, in regard to Science, be advised by a Council. Others, however, are of opinion that the Frictions of

Before continuing our remarks on thas subject wé beg leave to lay before Your wajesty extracts from the Evidence which has been placed before us regarding the"A'ppointinent of a Ministem of Science.

We bave received a large ampunt of Evidence in favour of the Appointment" ${ }^{\circ} \mathrm{fl}^{\mathrm{v}}$ a "Minister of" Science, "There has" been almost complete unatimitit among the, Wiénesses on this point, "We gixe the following extracts:-

[^29]"I concerve that the reqommendatian , by Beaptham in the last eentury of such an minister cosp hardyy faul to Qu. 11,537. be practically adopted before the close of the present century, and that the necesaty of having $\$$ minister for such a purpose will be reoognised."
". "Sir Wromson:"
"Would you contemplate that a new department of the State should be consintuted for durectug the seientuic Qu. $10,747$. wark of the Government ? "ganarally felt that a manater of science and scientafic zonstruction as a nocessity."
, it Not a minsster of other instruction ? SHecisily of screntific instruction, and not under any national educe- Qu. 10,748. tion board, but a monister of science and scientific instruction. The minister would necessarily be in Parluament and a political man, but, it would he veiy rare that he could also be a scientific man, and perhaps not desurable that he should be a scientific man, but he must have able scientrfic advisers always at hand."
"Could, anyiauoh duties, be pell assugned to any existing department of the State?-I believe not".
"You spoke of the necessity for having a mmaster of science, do you conceive that it would be requisite to have a cabinet minister for edncation and a second cabinet minister for science, or would you contemplate have g cabinet minister for edncation and a second cabinet minister for science, or would you contemplate
that the minister for education should be the minister for stience? I I do not wish absolutely to fix it before-
 hand; on the whole I thank i_{1} however, that the tatle of minster of education would not suffice. If there as to
be a minister, it must be a minister of science and education. There might be a minister of science and education, with a chief secretary or under minister for national and elementary education, and another for "the advancement of seience and for the higher scientific instruction. . But naturally the minister of eduastion must act for the masses; that must be hus great duty and however moch he might wish to act for science, he has still a great duty to the masses. ' On the whole, I think that it would be preferable to have a dustinel mimaster D 2
of scrence and screntific instruction. A mpister of science and serennfic instruction, as a subordinato to a chnel munster of science and education, mught probably be a vary good arrangement."
Qu. 10,764.
"The minister of sciencs administers knowledge to the whole country."
Col. Strange -
Qu. 10,980, "It seems to me that in the first place there should be some mbans of bringing science fully before the nation through Parliaments I know of no means of doing this that is in accordance with our constatutional procedure, except through a minster of state; and therefore assuming ecience to be a matter of enormons national importance, I think it is essentlal that it should be all brought onder one minister of state, who national importance, 1 think it is essential that it ahould be all brought onder one minister of state, who
should be responsible to Parliament for everything which is done in the name of the nation to further acience, should be responaible to Parliamant for everything which is done in the name of the nation to further acience,
and who should frame his own estimates and keep them distmet from those of departments which have hittle or nothing to do with science. I I thint that there should be an eatimate for science just as there 18 an estimate for the army and for the nayy." " "
Qa. 10,982.
"What I should be glad to see would be a minister for science, but I dareasy that if proper assistanoe were
iven to such o minster, he might supermtend other departments an well; for instauce, as on the oontinent, given to such e munster, he might supermtend other departments as well; for instauce, es on the oontinent, only. I think there is quite enough for him to do in England, for it to be done thoroughly; but rather than have no minister I would assign to him also education and the fine arts."
Qu. 10,988,
"There would be a dufficulty, would there not, in definng the boundsries between the dutses of the minister for science and the minister for education ?-I think not. I think one would relate to education, which is quite a distmet thing from national research, and I think that they should be kept as distinct as pasable. I think one grent evi now existing is the mixang up of those two things. Throughout my endence 1 have here and there expressed the same opinion that they should be kept distinot, one being the means, the other the end; instruction I cencerve to be the mode of growing a certan number of persons fit to investigate."

Mr. De La Rue :
"I think that science ought to be recognized in the ministry by the appointment of a science minister, in order that all matiers relating to science might come properly under the cognazance of the Government, and that whenever the Government fought the aid of scientific men it should be through the intervention of the scrence minister."

Mr. John Ball :

Qu. 7222.

* "If scrence is to be aided effectually, and at the same time controlled effectually, there should be some permanent officer in the departnent of the Government that has its relation with science, whose duty it should be and who should be responsible for making humself generally aware of the state of acience and the doings of its cultuyators, and who should be the proper person to advise the Government, not as to the best mode of deciding a strictly scientific question, but as to where the means for solving it are to be had. I look upon it at present as beng a wholly haphazard matter how quastions of science or connected with science and affecting the progress of scrence are decided in the public offices, and I speak from fome alight personal acquarntance with the matter during the short time that I was in the public service in Parliament.;
"You stated, did you not, that you thought it desurable that there should be some permanent official to represent and advise the Government in its relations to scrence ?-Decidedly,"

Mr. Gore :
"I think there should be a scientafic department of the State, which should have the control of the money expended by the State upon scientific matters."

General Strachey:

Qa. 11,875. "The first conclusion that I arrive at is, that all questions relating to acientific mattors that arise in the operations of the Government should be dealt with by one of the chief manisters of the Crown, and the officar at the head of the Education Department seems to be the most sutable of such ofllcera. It bas been, I knowz suggested by some persons that it would be better if there were a aeparate department for science. That I

Qu. 11,876.
" Under such an education and science deparhment there would be a natural division of the duties, which would probably lead to the appontment of come permaneat officer in the position of an under secretary of state, who would have specufic charge of the scientific duties of the deparment as distingurshed from the educational duties, which constitute a distinct branch of admanistrative work." * *
Qu. 11,878. "The princıpal officers in the proposed scientific branch of the department should be, by thicir scientific

Dr. Sclater:

Qu. 12,043. "Do you agree with [Col. Strange's] vews as to the creation of a Mmaster of Science nad a Conncil of Science? -Yes, I agree generally whith his views, I think that it would be very desurable for the intereat of scrence."
Qu. 12,044.
the contro think at would be desirable that the existing State screntric ivatitutaons should be removed from the control of the Admiralty, the Office of Works, and other departments ninder which they are now placed ? -I thunk it would be a very great advantage that they should be removed from those departments and placed ander one minister."
Qu. 12,045.
"Have you any opinion as to whether the work could be done by a minister of education, supposing such a science, and as $\frac{1}{2}$ belreve it is the it would hardly be expecies that that departanent is given to the mintater of education, I think that we could not follow a better example here."

Professor Balfour Stewart:

Qu. 11,505. "I think it [the munistry of science] might form a division, perhaps, of the ministry of education."

Mr. Farrer :

Qu. 12,673. "I dislike very much the rdea of estabhishing new departments of tho Govemment, If it were possible that this business could be placed upon the Minuster of Education, who is becoming more and more impertanth I think that Fould be puich better than estpblishing a separate department for the purpose":

Sir George Airy does not appear to be convinced of the advantages likely to be derived from the creation of a Science Minister, so far as it would affect the Scientific Departments.
"Do you see any inconvenience arising from the several scientific instrtutions that are more or less connected Qu. 10,528 with the Government beung under different departments "- Not that I am aware of."
"You are content that the Royal Observatory at Greenwich should remann under the Board of Admiralty. Qu. 10,524 You do not require to have a Munster of Science, or a Minister of Education ? ${ }^{\text {- }}$-No ; we are naturally connected is those respecte with the Admiralty."

The proposal to establish a Council of Science.

A proposal to establish a Council of Science was brought before the Government by the Royal Society in 1857, upon a Report from the Government Grant Committee of that Society.

The object of the Committee was (Evidence of Sur E. Sabine, qu. 11,117) to determine "whether any measure could be adopted by the Government which would improve the Position of Science or its Cultivators in this, Country."

The report, as quoted by Sir E. Sabine (Qu. 11,119), was as follows:
"With regard to the question of which the consderation was referred to the Government Grant Committee Qu. 11,119. on the 11 th of July 1855, namely, whether any measures could be adopted by the Government or Parhament that would improve the position of science ol its cultivators in this country, the Committee beg leave to recommend the following resolutions.-
"1. The Committee regand with much satisfaction the steps already taken in the Universaties for advancng the atudy of physical science by including several branches of it in the public examunations, and express their hope that the improvements thus introduced may recesve the extension which the interests of science require, and that the public schools may be thereby induced to make physical science an integral part of ther course of education.
"2. The Committee recommend that the establishment of classes in metropolitan and provincial schools, where those who have not the means or opportunity of studying at the Unversines may be taught the elements of physical science on a systematic plas, be promoted by grants from. Government in ard of such funds as may be lacally contributed fol that purpose.
" 3 That the formation of provincial museums and libraries be encouraged in like manner, and that provincial lectures, accompanied by examinations, be establushed in Great Bratain in towns whech request this assitance, and engage to provide a part of the expense, such lectures to be in and of the schools above-mentroned, so that by means of the two combined a sound knowledge of the principles and applucation of science may be aystematically taughti
"4. That duphcate specimens from the British Musemm and other institutions, supported at the publec expenae, be distributed to provincial museums.
" 5. That national publications bearing on science be more extensively circulated than they are at present by additional donations to societies and indivaduals engaged in the cultivation of scences.
"6. That the sum placed annually by Parlament at the disposal of Government for the reward of Civil Services, 'useful discoveries in science and attanments in literature and the arts,' be augmented, that the portion to be appropriated to science be defined, and that it be sufficiently large to admit of the graat of annuities of the nature of good service pensions as rewards of emunent scientific ment.
" 7 That the sum placed at the disposal of the Royal Society for the advancement of science be not necessarily limited to the annual grant of $1,000 \mathrm{l}$., when on any occasion special reasons may be assigned for an, additional sum.
"8. That scientific officers be placed more nearly on a level in respect to selary with such other civil appointmonts as aro objects of ambition to educated men.
"9. The Committee regard with much satisfaction the steps already taken for the concentration of the primeipal scientific societies in Burington House, and trust that the period is not far distant in which permanent accommodation will be afforded to the principal scientific societies in buidings to be erected near the same site, and in pursuance of the same general plan,
"10. While it may not be expedient to interfers in any way with the functions confided to the President and Council of the Royal Society in reference to the distribution of the Parliamentary grant, or with the ancient and recognued relations between the Royal Society and the Government, at the same time it appears to the Commitee that much benefit would arise from the formal recognition of some board which might advise the Government on all matters connected with seience, and especially on the prosecntion, reduction, and publication of scientific researches and the amount of Parliamentary or other grants in and thereof; also on the general principles to be adopted in reference to public scientific appointments; and on the measurea necessary for the more general diffusion of a knowledge of physical science among the mation at large; and which might be consulted by the Government on the grants of pensions to the cultivatore of science.
411. Assuming that the above proposal should meet with the approval of Her Majesty's Government, it will be desurable to ascertain what mode of oonstituting such a board would mspire them with most conildence in its recommendations, Two modes may be suggested in which such a board might be orgamised. Furst, the Government might formally recognise the Presudent and Counell of the Royal Society as its official adviser, imposung the whole responsibility on that body, and leaving it to them to seek advice when necessary in such quarters as it may best be found, according to the method now parsued in the dusposal of the Parin such quarters as it may best be found, bccording to the method now pursued in the dasposal of the Parhamentary grant of 1000 . The second method would be to create an entirely new board, somewhat aftur
the model of the old Board of Longitude, but with improvementa. The question as to which alternative shall the model of the old Boasd of Longitude, but with improvementa. The quen
be adopted is properly $\&$ subject for the consideration of the Government.
*12. Such of the above recommendations as involve the expenditure of monay, might be eventrally carried out by appropristing to this purpose a certain portion of the fees recenved from the grantees of patents, after -
providmg fot all expenses which ought to be defrayed from that soutce! ${ }^{\ominus}$ The Conmittee are antisfied that no
 encouragement of, abpstract acience, to whiph, practical art is under sa many and such important obligatrons,","

The proposal to establish a Council of Science has recently been revived by Cọlone Strange.
Amongst the Witnesses who recommend the Appointment of a Council, there is a great diversity of opinion as to its Constitution and Limits of Action. As regards its Constitution, it will be seen from the Summary of Evidence which we shall give subsequently, that while'some of the Witnesses'are in"favou't of a Council very limited in numbers, others would desire to have it sufficiently numerous to include Representatives of nearly every branch of Science, as well as Men bf known Adddinistrative Ability.
In regard to its Limits of Action, the main difference arises on the two questions, whether the Council should or should not have the power of Initiating Inquries, either directly or by suggestion to' the Minister, and whether or not it should itself undertake the actual work of Investigation required for State Purposes.

As to the Mode of Remuneration; the opinions vary between those which advocate annual payments to peraanent officials, and those which are in favour of payments for attendance at meetings.
'The Opinions of the Witnesses who are opposed to any such Council are based, in the main, upon one or more of the following objections:-

1. That Government can get the besst advice without it
2. That it would be liable to come into collision with Ministers.
3. That it would not work harmoniously with our General System of Administration.

The Evidence of "three" eminent Statesmen possessing great administrative experienceω^{ω} Lord Derby, Lord Salisbury, and Sir Stafford. Northcote,-is in strong contrast (so far as the proposal to establish a Council of Science is concerned) with that which we háve' received from many persons holding tofficial positions in various Branches of the "Public Service." The Opinions of 'these latter, as to the Inefficiency of the Organization of their Respective Services in, regard to questions affecting Science, we have already quoted in the First Part of this Report, and it will be seen, from the quotations we are now, about, to give, that' they in general consider the creation of a Council to be the proper Remedy.

Extracts from the Evidence in favoult of the Establishment of a Council of Science.

We fear that no mere extracts 'tromithe Evidence of Colonel Strange would represent in an adequate manner the views which have led him to recommend the formation of a large and highly-paid Council of Science. It would scarcely be fair to him, as the most prominent advocate of the proposed measure,' to do otherwise than refer to bis Evidence at length, pp . 75 to 92, and 125 to 135,'Vol. II.' of Evidence.
Sir /W, Thomson's Evidence with reference to the Establishment of a Council of Science is as follows:

10,677.
Qu. 10,678.
"Do you than' that a single body would be better than o number of small commitiess for edvising the Government, on the great vanety of questions whinch from time to time would be inkely to arise?-Yes, certainly." extend over a wade range, would they not?-Yes, but there would be an unity of desiga and action, with a multiplictry of knowledge and skall at command, secured by a angle cocmeid, sand those conditions cannot, in my opinron, be seciryed as all by cocastonal committees, or committees workmg separately and independenfly of each other.", , ", ",
Qu. 10,679.
Qu. 2694.

Qu. 2695.

Qu 2868.

Qu. 10,691. \therefore A iscientific connenl would reheve the Government of all iresponaibility in erch matters, and would be responsible itself in a genezal way for all its proceedngs to a politicad chief and to Perlisment." * *
"Hsve' you formed any opinion as to the constatution of ruch a committee as we have been refering to; how the members of it sbould be selected ?-I hawe no other opinion than that the men whose advice may be considered as most valuable and usefal to the Government ought to be raked, quite independently of their connexiou whth any mastatuin, whether under the Government or in the niversines, or in connexion with any publuc or private body in the countrys"
"You would contamplate, that committee being formed, by' the Government itaelf, and not that tha unversities of tha scientafic, pocieties should have the rught of nommation? Certanaly by the Government: but aided by aecommendstions from, the priversuries and scientific spactues, and from thus proposed acianalting committee after its first constitation."
"Would you have then a permanext, body, wath, it may be, a cartain number of members going out by rokation, or in the cexent, anppose, of a change of Government, would you throw over the whole body?-A non-political body, I think, woald, be necessary for good action.", :
u Would you leave the selection of each appointment to the Government of the day, or wonld you allow scientific socueties or other bodies to recommend, or would you propose that the Government should be obliged 'tpongult, guch vodies? ? \mathbf{I} would prefer that the Manister of Science should have the appointment"

Drw Frankland thus deals with"Colonel Strange's Proposal $s^{\prime \prime}$
"Are you aequainted wath Colonel Strange'a proposal for the estabishment of a consultaitve"council of Qu. 11,082. cience ? - Yes, I have heard from him some of the chuef ideas that he entertanns on that subject."
 say that it should be constituted exactly in the way that Colonel Strange mentioned, but a council of that descrrption would be exceedingly desirable, en many grounds, for fiurnishing the Government with truxtworthy ecientificioppriont in cases requring them;
"Are you of opmion that the advice of such a council, even on' 'matters to' which'the lart der 'proportion 'of', Qu. 11,086. the members of the councel hed not pard special attention, would 'be valuable ? - Yes; 'I think it would, becanse those members of the cooncul who were thoroughly actuanted' with the subjects' would 'be expressing theirt opmion to men conversant with scientific methods, and they would be able to convince their eolleagues with respect to' the opinnon that the council generally ought, to give upon the matter. ' It would be a'very dufferent thung from that of convincing a parluamentary committee, for mastance, upori'a scientific porif, because all the men upon the conncil would have received a scerentrfie tramng, and would anderstend the bearing of seientific argaments."
in. .4

- "Have you considered'at all how such a council' could beat bie appointed, whether'would fou'leave it to brie of the minaters to appoint and select the proper persons to serve on the council ?-I should think that it must ultumately fall upon the minustex; but he might be assisted by the presidents of different learned somenes br by the council of the Royal Societs, in whom I think everyone would have confidence. ${ }^{3 /}$

Mr., Farrer suggests the formation of a Council which might be closely connected. with the Royal Society.

 body of some kind to whom the Government departments could as a matter of course refer for the solution of such questions as this, it would be a great adrantage matich
${ }^{*}$ "I have looked at|the suggestions that have been made py Colonel Strange and otherrs, and I' do not "tbink that any Government 'department or its' professional officers would "listen to the dectation of any council of purely scientufic men; they would probably say, and say with justuce, that they knew more about' what was wanted than any such council could know". Frery now and then in the course of practice ith "those "cases"cy new scientufic question does arise; such, for instance, as the question concerning deviation of the compasses. In such a case as that we requrred the best scientufic assistance we gould get; pnd wr the case of sulphur magas, and water impurities, we now require $1 t$.
"I give with great hesitation a suggestion upon a pount upon which I really and scarcely' competent to Qux. 12,643. suggest anythmg, namely, whether you had not better make use of what you have at present, namely, the Rajal Society or a committee of the Royal Society, 1 ather than attempt to establash any new body. No new body that you conld establish would have the prestige, reputation, and influence that the Royal Society has. That is a matter not to be created; it is a matter which has grown with centuries, You have also m the Royat Society itself a scientitifc public to whose opinion any council or committee appornted by at would or might be made amenable; and my suggesuan would be that you should endeavour to create some committee or body out of the Royal Society whech should bear a fixed relation to the Government, which should meet regularly, and the members of which should be paid somethang, as the directors of a jomt stock company are paid for their meetings, to whom the Government should have a right to refer, who should feel that they had on the one hand a duty towards the Government ${ }_{2}$ and who on' the other hand should be bound to make publuc all therr proceedungs, so that they wrould be responsible to the public scientific opinion of the couptry. That is the best suggestion that I can make, but, as I say, I am vary ignorant upon the subject."

Admiral Richards is of opinion that the appointment of Minister of Science and of Qa. 11,585. a Council stand and fall together ;' and thinks "t that the one would not be of very much value without the other."

But, as regards the Admiralty, the Department which he knows best, he would prefer that it should be able to decide. Scientific Questions within itself. He saye.t
, "I think that the Admiralty requires the' aid' of'such n counel less, perhaps, than any other 'department of Qu. 12,591. the Government, for 'this reason, that there are not' very many questions,' purely questions of'somences, that come under the notice of the Admiralty; and then' we'have the Astronomer Royal to refer to, 'who is a host in humself, and yf may question avises which wo do not refer to the Astronomer Royal, we generally ask the President and Council of the Royal Soccety, and we have never found any difficulty in getting assistance. The only department of the Admiralty which mught requre such assistance beyond this, as perbaps the Constructors' Departoment, in the designe for ships of ward But as regards that, my opmon is thatint would be far better to have some scientitic designer attached to that department than it would be to refer such questions to w eouncil even."

As to the Admiralty deriving any advantage from the appointment of the, proposed Qu. 11,592. Council, he adds:
" There would be this advantage, I think, which, they would derive, that they would be freed from the political pressure which is brought frequently to bear upon the Admuralty upon questions of that kind. The whole responsiblity of deciding upon a measure would be thrown upon the counal "
"Do you think that would be a desirable result?" "I thunk that it would be desurable in all departmente of the Government; it would be very agreeable to the Government of any day, I should think, to escape the responability of deciding on scientufic questions on whach they may not be very intimate, but in which they may bo beheved to be interested parthes."
"Do you think that the work would be better done? "'" "I think it would. I should 'say there could be Qu. 11,594. no doubt, about that, but wuless the Government are prepared to wote a very conaderable sum every year for
the adrancement of science, which I am quite of opinmon that every Government ought to do, I think very hitile benefit would accrue from havigg sach a counchl"
Qu, 11,427.
u. 11,515.

11, $11,516$. \qquad and atake, for instance, succ a question as that which has been recently referred to a committee, the officiency rather than to a committee speavally appomted, as has been done on the occasion to which I refer? rather than
that if there were a councul of this kund, the councll would have power to associate other people with them in a case of that kund. Science is so ramiliei, that the councul would not be able of themselves to gettle all questions ; but upon particniar questions, such as you name, very likely they would aesociate other people With them."
"Do you think that they would be more likely to make a judicious selection of the persons to be consulted !a. 11,517. than the Minister of State would be, withont the advice of auch a council P-I think ro, because a Minuster of State is not likely to know the capsbilhtes of varions men. There are a number of man known to scientific bodies as profoundly conversant with particular branches of science, but their knowledge of those subjects doees not appeal to outsders, at only appoals to those who are cognizant with that particular subject." *** *

Dr. Roscoe is in favour of a Council, and would give a voice in its appointment to the Learned Societies:
24.7436.
${ }^{6 \prime}$ Can you make any suggestions as to the mode in which Government and could be beat carried into effect ?-I do this with the greatest diffidence; but it appears to me that the gystem of a consultative counchl, to advise the executive on matters of scientific instruction, 18 the true one. I believe it is a work which it is almost impossible that the executive can do properly whout advice received in some form, and that appears to me the form in which it 28 most likely to be ploductive of the greatest good."
2u. 7437.
"Have you any suggestions to make as to the constitution of such a councll ?-I should be inclined to think that a coumcil, formed on the same plan as this Commission, so far as regards the class of its membera, would be a very proper one to advise the Government."
"Would you think it advisable that the Government should name its own consultative council, or that some of the members should be nommated by the societies? -I should provide for a certan number of scientiis men being upon the council, and desire that the Government should nominate (for you may truat the Government to do it with farness), as well as the socreties ; that is, the lay members should be appointed by Government, and the professional ones by the various scientific societnes,"

Dr. Sclater agrees generally with Colonel Strange', views, and thinks that a Council
$20.12,04 \pi$.

Qu. 12,046.
"Have you formed any opinion as to the constatution of a consultative council to assist this minister?-My idea would be that the heads of the differeat acientific instatutions that are put under the control of the department of science and the minister of adacation might form a consnltative body and be called a counen of science, and that there might be certsin other members added to assist them in deliberation, if it wero thought necessary, such as representatives of the College of Physicians, the College of Surgeons, and of the scientric branches of the Army and Navy."
"Colonel Strange's proposed council would conssast of 30 members at least; do you think that that would be too numerous a body ? I I think that a less numerous body might auffice, because I see that, in many cases, however numerous the body was, it would be necessary to call in special assistance."
"If a council were constituted in the manner that you propose, should you contemplate that, as a rule, they would be capable of giving advice themselves on most questions that would arise, or would they generally find it desirable to call in further assistance? -I thmk, that in most cases, they would be quite competent to give an opinion to the Government ; but that sometimes on particular questions, it wonld be necessary to no elver where for advice, and that, in such cases, there would certanaly be somebody in the conncil who would know where for advice, and that, in such cases, there would certanaly be somebody in the council who would know
exactly where to pat his band upon the rught man for the purpose. For instance, a question might arise in exactly where to pat his hand upon the right man for the purpose. For instance, a question might anse in
some special deparment of Natural Eistory: in that case, the councl would naturally refer to the hesd of the State Museum of Natural Hzatory to know if he conld give an opionon himself, and if not to inform them who could give an opinion upon the point. Thus, I think that with the and of a amall conncil of science of, perhaps, 20 members, every question requiring solution by the Government as regards science might meet with very far consideration and be very easily settleci."
"Have you any misgivings as to whether such a council would command anfficient public confidence amongat men of science ?-I have no misgrings at all upon that subject. I should say that they would meet prith general support from men of scence. Most men of science, I think, see that momething of the sort in
comperatively required. All lament the precemesl woy in which scientific subjects are dealt with by Government, in consequence of their being subdivided amongst all these different offices, and of there being nobody to appeal to upon a question of science, and, therefore, I think the proposal to establish such a council wo appeal to upon a question of science, and, therefore, I
"Then, in the case of investigations which were required to be uadertaken, how do you conceive that they would be dealt with ?-I should say that the member of the council representing the particular braneh of science would be called upon to present a preliminary report of how he pioposed to set about any par ncular investigation. He would say, to do this I shall require the assistance of such and such persons for so many days, or for such and such time, br to send here or to send there, and, would bring these requarements in the shape of a preliminary report before the board, and, if this were approved, would carry out the investigation. Then he would present his report upon the result of the anvestagation, and the councl as a body would consider it, and recommend its adoption by the Governinent or otherpise."
"Then do I understand that you would prefer, as general rule at least, that the members of the Qu. 12,075. council should, themselves caily out such investigations as, might be requared from thme to tume, rather than that they should merely indicate to the minister the person, outside the council very probably, whe they thought was best competent to carry out the investigation? I do not think it would be necessary to drawn a hard and fast line upon such a question as that. I thank that in many cases it would be better that the counel, as a whole, should report to the Government on the, best, way in which any particular scheme might be carcied out. I do not think that it would be necessary to motroduce a rule that you should mpariably go to the member of the council representing that particular science of advice were wanted upon that branch. But the council would naturally turn to the representative of the parthcular sctence for an answer; they would naturally look to his advice first."
"I understand you to mean that'the duty of the 'members of the council should be to know where to go in Qu. 12,076 . order that partacular questions should be answered, whether it were to go outside the council or to got to ond member of the body ?-Yes, that is my opinion."

His remarks on the question whether there should be on the Councll men having Administrative Experience are as follows.
${ }^{*}$ "I'think that the heads of great scientaic ustatutions must have admustrative experience, If a man $\dot{Q u}$. 12,085 has to manage an mstitution like the Royal Observatory at Greenwich, or the State Museum of Natural History, he must have the command of a great many men ander him, and must be acquanted with the business of the instutution, and must have gained his admimstrative experience. : He could not fail to be a person of adramistrative experrence."
"But, takugg the application of scientifle laws to 'specific departments of the Government, the army Qu. 12,086. and navy, for example, would at not be important that there should likewise be on the councll some men of special knowledge of the mode of facilitating the adaptation of scleatric laws to those departments ?-I think, certamy, that the army and the navy, which are the branches of the service, perhaps, most requiring scientific assistance, should be represented by one or more members at the board, and no doubt the Government would take care to secure a first-rate man for what I should consider a post of the very highest hooour."

As to the numbers composing the Councll, he considers "that it would not be advi- Qu. 12,095. " sable to have a larger Council than was absolutely necessary," for the reason that a small body of men generally work better and do more work than a large body; at the same time he does not think that 20 would be a very large number.

Dr. Hooker, the President of the Royal Society," gives it as his opinion "That the Qu. 12,138. " general proposition, that the Government should be aided by scientific persons, is an " excellent one, both with respect to' the administration of the existung Government " Scientific Institutions, and with respect to the occasional giants which the Government " may be called upon to make for scientific objects." Like Dr. Roscoe, he thinks that the Council should not consist exclusively of Scientric men.

Mr. De La Rue thus gives his opinion r

"There ought to be a board of advisers which should consist of men eminent in dufferent departments of Qu. 13,03\%. science. I can only speak as to those branches of science to which I have pard some attention, and I should put in the first categrory that there ought to be on the board a chemist of eminence, there ought also to be a physucist, an astronomer, a mathematacian, particularly one who has paid attention to the application of mathematics to acience, and an engineer or two engineers, one who has given attention to the construction of great works, such as railroads and bridges, that is to say, civil engrnearing, the other a mechanical engineer. I do not speak of a biologist or a physiologist, because other witnesses are much more competent to speak as to the necessity for such men than I am."
" "But do you think that all branches of scrence ought to be represented on the council "-Undoubtedly,"
"Can you give the Commisenon any ides as to the number which you think it would probsbly be neceasary io Qu. $18,038$. provide for ? About 10 or 12 men, I iragine, would sufficiently repreaent science."

He would give some voice in the selection of the Members to certain Societies, Qu. 13,036and would not require the Members to "relinquish any other position that they might 13,041. already hold."

Qu. 13,050.
As to the numbers of the Council, he says that "If 12 men were not found to be " sufficient to include all branches of knowledge, it would be desirable to mocrease the " number." He proposes "that special advisers might occasionally be called in who " i would be remunerated according to their attendance."

He considers that the usual permanent staff of a Secretary and Assistant Secretaries, even if they were men of Science, would not be sufficient; urging as a reason that
\&Sciezce is really yow so extensive that 'one could hardly imagine any secretary so to be intimately acquannted whith every branch of accence as to be able, even with the aid of his asastant secretarias, to advisa, or to point out where to obtain epecuic information on every question which might be brought under cons sideration. I think, therefore, that there would be a very great advantage for the Scence Minister to have a sufficiently numerous Advising Councul."

He considers that promptness of action would be promoted by the appointment of a Councl:
" There ought to be a body of men who could be immediately called together, whose time was far at the dupposal of the State that they might be assembled on every ocoasion and at any time to advise the Soience Minister. Then we showld get prompt action, instead of questaons being allowed to drag over yeara and yearry whthout any practical solation being come ton,"
Qu. 13,131. - But even if a Council were appointed, he thinks that such branches of the Government as the Admiralty, the War Office, and the Public Health Office "should be specially " scientific, each in its own department."

In answer to the question, "Have' you no fear that there might be some collision, or, ${ }^{c}$ at any rate, considerable friction, between that Council and the Scientific Departmente "t of the Public Service ${ }^{\circ}$ ", he says:
" Probably at first there might be, but nultimately I beheve the confidence of those directors of the departments would be gained by the very sound advice which they would recerve from a body constituted as I conceive it ought to be."

He does not think the Government Grant Committee could be so modified as to render a Council unnecessary,
"Supposing 5,000L. or 10,0003 . Fere given to the Royal Socyety to and investagations, I do not think that that in any way ought to weigh in the considerstion of the establishment of seience mimeter whose functions would be altogether larger and much more important. We want science really cared for in England by the State, and we want all State questions relating to science properly considered by a body capable of dealing
prith them."

Professor F. Jenkin is in favour of an Elective Board :

"I thank that the judging of the apphcations for assistance, applications for the endowment of new chairs, and the application of Government patronage generally as regards acience might be managed by the followng system. Supposing that mstead of the grant being given sumply by the Department itself (speaking now of the Committee of, the Privy Councl) there were a representative board composed of men of science, romposed of professors who could advise-I wall not aay that they should have the power of deciding-I would rather leave that with the Government, but that they should have the power of reportung at any rate upon each of those apphcations, I thank that' Ghe Government would get better adrice than it can command at preaent. My idea 18 that this board should be an elected hoard, that each of the existing colleges (you could easily choose the colleges and universities) shonld apponnt one member at such a board as that; but however the choice was made, if there were something like a representative board of scientific men to advise the department, even if theur recommendations ware not necesearly acted upon, but that they were smply a reporting body, I think that the Government would be better able to decide on fuch subjects than they ean now do, and that ther decissons would give greater gatusfachon."
"I do not know how otherwise the Government is to decide who is really the best man, We cannot have competituve examinations for professorahpps, I think, and the日ystem of irxesponable teatimonials lass come to be in a monstrous state: A man really prepares a blue book; every man oqe has ever spoken to sende for a testimonial, and you, get a whole hbrary of those testmomals,",

Professor Martin Duncan points out an important way in wich the Council could be utilized:
Qu. 7704. "With' reference to any endowment that might be granted by the Government, have you formed any iden as to the control under which the administration of such endowment should be placed?-That is a matter which I have thought over, sand I see that it might lead to great dufficultines. The Goverument might wuht to nominate a Professor of Kung's College, and such a professor might be objectionable to the Connci of Kitag's College, and I think it would be more satisfactory to scientific men if all those apponntmente were placed nuder the care of a board of scientific men of poation, and who would be responsible to the Government for their nominations, and for the daties of the professors beng well carried out. There woald be no difficulty m obtaming such a board, because the presidents and officers of the learned societiea, which have charters, would make a suffliently good board, ard a board beyond doubt as regards therr scientsfic acquirements and their desure to mphold scence. To leave the matter entirely in the hands of the Government would, perhaps, not lead to very satisfactory results."
Mr. Spottiswoode considers Colonel Strange's suggestion the most complete and perfect that has yet been made, and states that he has "always looked upon it as an arrangement to the carrying out of which all others should be directed; "at the same time, however;
 consideration whether some intermediate' scheme for earlier "action should be 'proposed.",

His opinion on the Appointment of the Members is thas expressed ;

- "If any conncil (without at present gong into" its constitution) were appointed, in" whose hands do you think that appontment should be placed ?-TI thuk it clearly should, be in the, hands of the Manster with Qu. 11,974. whom it would be in direct relation."
 -There might very well be certain ex-officuo members, such, for instance, as the Astronomer Royal for the time being, the President of the Royal Society for the time being, and perhaps others."

aHow would you advise the minister to proceed in order to act wiselywn that appointment ?-I should sappose Qu. 12,014 that be would obtain advice from the leading men of science of the day, and'with their advice it would not be difficale to form, at all events, the elements of auch a councel, although he'maght not be able at once to complate a very fully organzed body. If those first appointments' were' made, he would have the full gdvantage of the advice of those members in completing the enture list."
"If such a consultative conncil were appointed, you would probably'contemplate that it would be mainly' Qu. 12,038 composed of persons now to be found on the council of the Royal Society, or' on the commuttee of 'recom mendations of the Bntish Association ? Y Yes, I should imagine that it would be mainly composed of Fellows of the Royal Socrety:"
"How would it work if there were some arrangement by which the council of the Royal Siociety should Qu. 12,039. propose a certan number, two or three persons ont of whom the Government mught select one on any vacancy ?-II see no objection whatever to that proposal:"
"That would secure, as a genersl rule, the eppointrant of persons of the highest scientrfic ,qualifications Qu. 12,040. on the council? I thunk it would."

Sir Henry Rawlinson thinks that the Council should be 'merely consultative. ' He regards the nomination of a Permanent Council of Science as the natural remedy for the Qu. 12,562. "spasmodic " action on the part of the Government, and adds: , . .
"It appeare to me that the chief and most important point in' this matter has 'reference to the appointiment Qu. 12,552. of a Council, rather than to the tromuation of a Munster:' I think with 'ch Consultative Council of Science there would be a corresponding uniformity of action."
"In the Councll of Indra, we bave no power of initiation. The initiative reats with the Minster, or, practr- Qa. 12,562 cally, whth the executive officers, acting, I may say, on'the inspration of 'the Minister', and' the measures are only brought before the Councul, in a subsequent stage, for therr approval or disapproval.", "1
We have already quoted the Evidence of this, Witness as to, the difficulties which the Government Departments, and more especially, the Indian Council, meet with for want of authoritative Scientific Advice. In answer to question 12,564, he goes on to say :
4. I may mention to the Commission, in reference to this subject, that the desirabulity of such aureunchl 19. Qu. 12,564. constantly brought to my observation through another chamel, namely, thxough my dutios in the Coumcil of Indis, where we perpetually have references before us, which' we are really uable to deai wrth. These references recall most foreably to usj and very frequently, the necessity fow ther existence of such e councul as I have proposed. ${ }^{3}$. ${ }^{\circ}$.
"Should you apprehend that a minister would find it a very difficult task' to constitute a council in such a Qu. 12,0837 manner as to command the confidence both of the pubhe and of scientife persons? No, F should think not I should think a mmaster, with the latitude of selection which he would have in a country like this, would, have no difficulty in bringing together a council of 10 or 15 gentlemen whose qualuications and reputation would command the respect of the world, and whose opmion, would fortify hum in his decisions, and be of great national benefit."

General Strachey has given us some important Evidence as to the Appointment and Functions of a Council of Science:
"The persons whe are employed 'in the public administration are certainly as a class not amongst those Qua 11,879 . who have anything deserving the name of scientufic education; therefore, for is long tume to tome, it is not to be expected that the members of the Government, or theur chiaf subordunates, will have any such general knowledge of scuence as would ensble them at all satisfactorily to deal with the scientric questions which come before them. Therefore, I conclude that it is absolutely essential for the Government, under any circumstances, to get advice from outside; and then comes the question as to how this advice is to be got, circumstances, to get advuce from outside; and then comes the question as to how this advice is to be got,
If there as no recognised and regularly organsed body whose busunss it is to give advice to the Government If there as no recognised and ragularly organsed body whose busunass it is to give advice to the Government
on such subjects, then the only thmg that a minister can do $2 s$ to get his information from unrecognised and irresponsible authonties, persons whose opinions, perhaps, may be very valnable, but still persons of whom the publie never can have any cognizance ; and private advice given un that way seems to me given in the worst possible form. If, then, that form of advice is bed, how can you obtain advice of proper intrinsic value on the multufarions subjects on whroh it is certan to be needed by an admunstration really striving to advance science to the utmost, and how can you secnre its being given under a sufficient sense of responsibility, and in such a way as to carry the greatest weight possible to the mind of the mimster who is expected to act upon it if And here I would repeat that any specific proposal to give effect to zuch'an idea must be made to fit into the ganeral form of the admunistration; and I, therefore, consider that the best course would be to adopt the proposal that has been made by many persons, that'there shall be some sort of council constituted to adpise the reaponaible Goverament departuant as to its proceedungs in connection with acience,

This Witness objects to the proposal that the Council should be elected by, or selected mainly from Scientific Bodies, or Educational Establishments, and considera that-
Qu. 11,879, "The only way to lead a Government in the proper course which they should puraue in relation to science is, to give them advisers whom they have agreed to accept, and whom they are, therefore, forced to admut as trustworthy and satisfactory gardes. The only way in which that sort of relaraon between them can be established, I think, is to put a specific responsiblity upon the Government to nominate. I think, too, that thare. would be, onder such an arrangement, an action of a similar character in the other direction, and that a person Who was specifically nommated by the Government to perform those particular duties would have a much stricter responsibility put upon hum, so to act and so to advise the Government as to produce satisfactory resulta, than if he were merely developed, so to speak, by the operation of some external body."
"I think that in order to put propositions in a practical form and in an acceptable form before the minister, it is desirable that there should be persone in the adrising body who have a certain amount of adminutrative experience. Also, I think' that, as society is constituted now, there should be in it persons of what is commonly called suparior social position, such persons having certain advantages in getting access to the minister, and 12 guiding public opinion, which others have not. What should be aimed at, mu short, ia a practically useful body rather than an eminently theoretical scenentific body; and I should say that a body not differing materially from this present Commission has the sort of constitution which would secure the best exercise of the mifluence which I conceive that this advising body should exercise I thank that at thint would be necessary to enable it to do all that could possibly be required of it, would be to entrust it with suitable power, whexe the occasion requred, for making specific references, or for calling into ita councils persons specially qualified to advise $1 t$, who were not permanently apon the Commassion. I think that an persons specialy quainied to advise 1 lt , who were not permanently thon the
arrangement of that sort could be carried put without any particular dufficulty."

He thinks that the body should not be very numerous, suggesting nine as a sufficient number; on the ground that the larger the body the more divided is the sense of responsibility, and also on the ground that under certain circumstances the larger the body the less is the weight that is attached to its opinon.

He would give considerable Initiative Powers to the Council :

"Would you propose that this council ahould initiate proposala ittelf, as well as consider sabjects on which' its adrice was asked ?-Yes, I think so. I think that the greatest freedom of action should be given to the Council ; that it should be in a position to make any representation that it thought desirable to the minister on the subject of science." " * *

He disapproves of the suggestion that the Council of the Royal Society should perform the Functions of a Councal of Science:
${ }^{6}$ Would such body as you are proposing supersede the Government Grant Committee i-Yes, certanly; and I would take the opportunity of sayng that it is a question that is open, and which I believe 'has been diseussed," whether the Connel, for instance, of the Royal Baciety, with or without eny adition, might not be made to parform setisfactoryly some or all of the functions which it has been suggested should devolve upon this Commission. But I think not. And the principal reason that L have for thinking that such a body as the Conncil of the Royal Gociety is not naitable for the purpose is, that it cannot have that specific responsibulity put upon it which ehould be put upon a body such as I have apoken of, and that it is got together for totally different purposes and objects. The council of the Royal Socsety has to mapage the busineas of the Boyal Society, end is not at all selected to advise the Government on matters connected with the advancement of meience, or the: application of scuence in the operations of the public departments."
"And one-half of thelr number is changed every sear ?-Yes.",
"'You could not make the minister responsible for the action of the council of the Royal Society, or of its committes? -Not at all."
"Because the nommation of the councll and of the commettee is by a body of constituents over whom the minusler has no control ?-Quite so, the minister would have a perfeet right to repudiate any scheme Which they put forward, or any advice they gave; I mean that he would be pastified in doing so on the ground that be was not responsible for theur selection."

He is in favour of the advice of the Council being made public, as a rule, but subject to the discretion of the Minister.
(bu. 11,889.
"There would be cases, for instancc, in which the minister might ask a question as to the relative qualufications of two scientific men for some post, and the commissioners would give an opinion, and their reasons for thit opinion, but it would not be right that the grounds on which chey formed it ahould be made public; still, 88 a rule, the more complete the responsibility put upon everybody connected with the commission for the opmon thaf he gave on any subject that came before it, the better would it be",

With regard to the Financial Duties of such a Council, he would wish it to prepare stimates with reference to any expenditure they might propose.
Qu. 11,890.
a They ahould place any proposals that they had to make in definite form before the monister, but I woald not hand over any inmp sum to them as is done now in the case of the Royal Society. I maderotand that the Treasury give a thousand pounds a year to the Royal Socrety, to spend in their own way on scientific objects. I think myself that thus system is essentially vicious, to make s homely comparison, it is as thongh I desured to absolve myself from all responsibility in connection with the sufferipg and poorer class of the community, by giving the fres beggar I mot dixpence. The Chancallor of the Exchequer hands over a
thousand pounds to the Royal Society, and thinks that he has done all that is necessary for the promotion of Science."

He does not propose that the Council should supersede the Scientific Branch of any Public Department; but is of opinion that a Councll would strengthen the hands of the responsible Chiefs of such Departments :
"I think that the ides of placing such matters as the constraction of ships for the Navy, or the form $\mathrm{Qu}, \mathbf{1 1 , 8 9 0}$. of guns, or of amall arms, or of projectiles, and so forth, upon a body of this sort ts altogether a mistake; that is not a function that should be put upon such a body; it is not really what is wanted a Tho departments of the Government that have to carry out those particular duties are responsible for possessing the necessary knowledge, for instance, the department that buids ships has within its own body all the necessary means of acquiring the information requisite for designing proper shaps and for building proper ships, or, at all events, if it has not, it ought to have; and if there is a defect in the organuzation of those bodtes, they ought to remedy the defect themselves; they ought to introduce amongst ther officers proper people "
"There is not the slightest reason to doubt that the responsible officers in the Controller's Department know, Qu, 11,890. perfectly well that the "Captan"" was not a safe ship, but their opmon was overridden, and if Admual Robinson and Mr. Reed had had a body of this sort to lefer to, uf they could have challenged the Admuralty board to take a scientufic opinion from thrs body as to wheiher their views were right or wrong, great good would have resulted."

As regards the special use of the Council in reference to the Administration of India, the evidence of this Witness is so full and so important that we must refer to it in extenso at pages 213 and 214, Vol: II. of Evidence.

Captain Galton would desire to see a Council whose duties should be principally administrative.
"I should not advocate the formation of such a council unless that council could be given duties other $\mathrm{Qu} .12,980$ than those of a consaltative nature. I do not beheve in mere consuitatipe councils. If a councl is to be appointed, it must be a councll for some other objects, and I think there is quite sufficient reason for the appontment of a scientufic counch or commssion, or whatever you like to call it, for certan other purposes, and that when it was constituted for those other purposes, which are practically administrative purposes, the councl might be advantageously consulted upon other subjects by the Government."
" You have pointed out that there are a very considerable number of Institutuons connected with Science Qu. 12,984, Which are supported by the State ; do you consider that there is sufficient system in the present arrangements a -I think that the institutions which ara manntaned by the State for scientific purposes are manntaned upon no promeple whatever whth regard to their administration. You have got the British Museum under Trustees, you have got South Kensington under the President of the Councl, you have Kew under the Office of Works, you have the Botanc Gardens at Edinburgh, I think, under the Queen's Remembrameer: You have the Cbservatory at Edinburgh as part of the University of Edinburgh, and you have the Observatory at Greenwich under the Admiralty, besides several others. You have every possible variety of jurisdiction, and, consequently, it seems to me that you have a great waste of, power; there is the School of Chemistry, and the School of Mines, and the Museum at Edinburgh, all under South Kensington Museum, and the Meteorological Department, which is partly under the Royal Society and partly under the Board of Trade. There 18 no possibility of getting any correlation between those different scientific bodies, and if you are to get proper unsty of adminstration you must bring them all under one head, or to one focus. I should recommend placing them all under a scientific commission or councll, and I should place that conncal probably under the Privy Council; but I should make it a body for administering all questions connected whth all the scientifie instatutions, or all grants made by the Government for scientufic purposes in the country, and I should give to this Councl the same status, with regard to ats admunstration, or very much the same, that the Indian Council have." *The parliamentary heed of the Department, if he differed from them in opinion as to their recommendations upon the scientific questions connected wath those institutions, or any other that might be founded, should record his differences of opinion in a minute."
', Have you considered what would be the best mode of constituting such a counchl?-I should keep it Qa. 12,988. to as himited a number as would represent sufficiently the different branches of scuence. I do not think that you could possibly have a amaller number than five or aix. I thunk they would want a secretary, and, of course, they would have to meet tolerably frequently for the admunistration of these mattters."

The Council, in his opinion, should be nominated by the Minister of the Department, Qu. 12,989. or the Prime Minister.

He further considers that all questions as to grants of public money for purposes con- Qu. 13,000. nected with Scrence should be referred to the Council, instead of beng granted or refused "hap-hazard."

Dr. Sienens would "assemble the Heads of Departments at frequent intervals for the Qu. 11,796. " discussion of general questions, and would propose to add to their number such
"s men as the President of the Royal Society, the President of the Institution of Civil
"Engineers, and at least one Representative of the two great Universities. This Board
"would decide general questions appertaining to the Advancement of Science."
He would regard the opportunities of meeting together, thus given to Heads of 2a. 11,857 . Departments, as one of the great advantages of such a Council.

Qu. 11,800.
Qu. 11,801.
Qu. 11,802.
Qu. 11,803. 2. P thinks that the number of the Council should be about 20 , and that the greatar part of its members, being Heads of Departments, should not receive payment as members of the Council. The four additional members whom he proposes, he considers would probably decline remuneration,
The Functions, of the Council of Science, with regard to Research, would, according to this Witness, be very limited:
"Would it be desirable, in your opinion, that this Council, or any scientific Government department," should undertake experimental researchis-I think not ; my mpression is that schenthic research should be loft an free and open as posenble. If gentlemen were specially instructed to make experimental research they would be, I consider, in a somewhat false position. Ihey would be morally obliged to produce results in order to satisfy the public mind that they ware doing therr duty, and science or scientific research cannot be measured, by such, a standard of cesulta. I consuder that a man should always have some absoluto duty to perform, some drudgery work, which maght be made as light as possible; but my impression is that he would not be in asatisfactory position, either to himself or as regards the public, if discovery were his only duty."
" Your opinion was that the Government should not direct scientific research, but I think I understood You to say that it was desirable that they should direct mquiries to be made m reference to subjects of direet nationd importance?-Yes."
"A And those you think shonld be carried ont chiefly by commissions in each case appointad for the purpose? -Yes, by tommssions apponted for the purpose. I think that there should always be durect practicat object in vow.:
"If those indquiries were directed by' a Government council of the nature of the one which you have sketched, do yeu think that they would be more likely to be sucaessful than if they were left to make their investigations in a more mdependent way $?$-I think I would as much as possible leave inveatigations in the hands of individuals. I would make inquiries through committess or commasions, because they have the means at their disposal for collectuag informatipa which private indaviduals have not."

There should be a Ministry of Science and Education, which would constitute an ims portant. Department of itself, the Minister being the Head of the Council. "There are ${ }^{6}$: Political Men of highly cultivated minds, or even with a great knowledge of Science, "who would' be quite çapable of taking such a positiou."

Mr. Anderson appears not to be, thoroughly convinced of the advantage of a Council; He thinks there is at present more, sound Scientific. Knowledge in the Government Departments and at the disposal of the Government than is generally supposed, but that if a Council should be appointed, a small number would be better than a large one." He considers that seven would be sufficient, and admits that without the assistance of some such Council' as ,this, he, sees no "symptom at the present time", of the Governmept causing such inquiries ta be made as he thinks desirable, ne,
Professor Jellett thinks that every science should be represented on the Council: , it
$k_{\text {S }}$ Supposing there were no person' in the comneit wha was quallied to judge ; for 'example, supposing thê subject were a medical subject, and you had no medical man upon your council, I thmk that when you camd to discuss the report you would find yourself in some dufficulty, You would pe almost entriely at the marcy of the irresponable anduridual outside who had given the edvce.
"Of course I could not carry on the subdivnsion, to any very great 'length. For 'example, take the subject that I am myself most conversant with, appled mathematics. I do not want to have g representativy of acoustics, or a representative of optics ;, pone representatupe of appled mathematics would do."

Mr. Mine-Home would have a local Council for the encouragement ofy Research in Scotland.
 solely.
"I thank that of the board ' wére formed 'in England, with 'sub-commitiees in Ireland and Scotland, it might answer the purpose, but 1 do ${ }^{\circ}$ not see how it is possible that gentlemen in London, unconnected with Scotland, can have that knowledge which is desurable with regard to individuals applyng for grants. If thers were no board of that kund, the London board world' require to make inqury through fidy ivduals, selected by themselveg and who would not have the same responsibility as persons offically appomted."

Mr. Justice Grovej. whd was unable to attend before the Commission, has stated his opinion in an mteresting letter which we have given in our second volume, Appepdix XVI. He is "not very sanguine as to the working of such a Council, but thinks the experiment worth trying."

He fears that "a large or highly paid permanent Scientific Council * * would lead "to political intriguing for place; and not the best men of science but the ableat merr of "the world would succeed," and, that "f scientific men, moreover, are not, as a body, suited for the work."

He looks upon General Strachey's proposal, "a continuation of the present, Commission, permanent as a body but changed as to individuals," as the most hopeful.

He sees no reason "why the members should not be paid a reasonable salary for " their time and trouble, but would not put this "too high, because, if obtained, it
"would lead to the political-interest-making system."
The extracts which follow have more especial reference to the Functions which the varions Witnesses propose the Council should fulfil.

The late Professor Phillips:
"I think, first of all, it would deal with all questions such as are now presented to the Government Grant Qu. 3138, Committee:"

Qu. 3139.
"And would 14 sid in durecting résearch "-Yes, "The Government Grant Committee has very limited means of mauntaining anything of a permanent character', and 'I think, therefore, that thas new' board would recommend, in a cass of that kind which we are discussing with regard to the formation of speriad observatories, some grant for the purpose of research requing many years to be contmued, and for which apparently it woalo be very difficult, or next to mposable, to find any other successful mode at present:" \therefore
"Do. you consider that any questions regarding the scientufic education" of the country would ceme under Qu. 8140. such a board ?-Ne doubt they wonld ; there would be, I conceive, a very natural alliance between such a great subject as that and the definte prosecution of physical research, but I have lumited my own views' un the first unstance to subjects connected with the teaching, experimenting, and contunually observing of physical phenomena."

"If such a board" were establushed and got into full work, do you not thunk that a large part of the time of the Qu. 3141. members of the board wonld be occupied in those dutieq?"-I do, indeed."

'Sir W. Thomson':

${ }^{+}$aThe main object of such a council would, in my opinion, be to advise the Govermment ion all, bcientific Qu. 10,675. questions which might come under the attention of the Govermments, and on all scientific works actually undertaken."

Another object of the councll would be to advise the minster of science in all applications for the expendrture $\mathbf{Q u} \mathbf{~ 1 0 , 6 8 9 .}$ of money to promote scientyic mvestgations. Apphcations are frequently made to the Government of a singular character which could not be classed; some of thoser applications may be thoroughly deserving of support, atd others may be of a most frivolous charecter. All such apphcations should be referred to one responsible conncl.' At present the Government must be very much annoyed by occasional applications, and I have no doubt that the want of a permament responsible and trustwerthy adviser or body of advisers, to whom all such applications cani be confidently referted, mast bel seriously felt. I may mention as am matance of applications of that kind, the applicationssmade by the Brtush Association for funds for the late and previous solar echpses. The testimony of the Royal Society and the British Association to the umportance of the object was no doubt in this case accepted mmedrately by the Government as a sufficient certificate that the object was a suitable one for the expenditure of puble money. But there are many other applications even by the British Association itself which the Government feel must be referred to some competent adviser.: Then there are many applications made altogether by private undividuals for assistance in some department of scientific mvestigation, those would naturally fall to be all summarily rejected at present, bat it would be advisable that they should be handed over to a council of responsible adnsers, who would take each case on itd own merit."
would
"Would you be so good as to inform us whether you have formed any opinions as to the best system: of appointing such a council? - The council ought to represent the dufferent branches of scaence, and the practical apphoations of science. Pure mathematics ought to be represented in the councll ; mixed or applied mathematics according to the old-fashioned nomenclature as generally understood ought also to be represented; chemistry cannot be shut outt ; phyeics must of course be represented and ought to be represented separately; astronomy, both what was formerly called physical astronomy and of course the new sceence of astronomical physics, ought to be represented I do not beheve that astronomy could be properly represented ander one head; estronomical physics must, in my opmion, be separately represented. Geology should be separately represented, and also the varions branches of natural history ; plyysology also, and meducal practice in general, should be represented. I have spoken of applied mathematics, I meant rather mathematical dynamics than applications to art and mechanical operations. Then practical appheations should be represented, mechanics and mechanical enguneering, then again cival engueermg and geodesy, mmong engmeerng, statistical uquuries, and the 'scientufic branches of Her Majesty's service ought to be thoroughly represented. Engueer and artillery officers and the navy' should be represented both in its navigatior department and im the department of sesmanshup, and the departraent of gunnery. The mercantule interests of the country and the agriculture of the country ought certainly to be represented. The nuversities ought to be represented amply-the English universities, the Scotch universities, and the Irish universities. Also practical telegraphy, which is a very diatnet branch of engineerng, civil engneering or'mechamical enguneerng would not anfficiently represent it." "Da you think that the functions which are propesed to be assiguded to the serentific councol would not interfere in any way with the existing scientufic departments of the Government'; for example, the Medieal Department of the Privy Council, or some of the other Government scientafic depertments ?-I think it would relleve the departments from pieces of scientific work at present given to them, becauser there as no other body to whom they can be given, and for which they are by their organisation and personvel almost . necessarily ill fitted and msufficiently competent."
"You would leave to these departments their siministrative functions, but give them the advantage of Qu. 10,751. consulting with the council upon higher questions of science on which they desured mformation ?-Yes, certanlys every question of science that falls under, the notuce of any department of the Government would naturally be referted to the scaentific councl.")

Captain Galton :

* I should make it [the Council]' a body for administering all questions conneoted whth all the scientific Qu. 12,984. institutions, or all grants made by the Government for scientufic purpases th the country, and I should give to this council the same status with regard to ite admunstration, or very much the same, that the Indian Council have; that is to say, that the parhamentary head of the department, af he duffered from them un opimon as to their recommendations upon the scientrific questions connected wnth those anstitutions, or any other, that migh be founded, ahould record his dufferences of opision im a minater Of course at he would, be finally reeponsible io Parlament he must have the final power ! but I should pot the anme check oper bum that \mathbf{y} pute over th, Searetary of State for India, that he mast reoord has dufferances of opinion, :and has objections to their recommendations, or rather his ressons for not sdoptang the recommendations of this councul, in 2 writtan

[^30]E 4
inate which would be capable of being produced in Parliament if neceesary. Of conrse the remunemation for those accentific gentlemen who would have to give a consuderable part of their time to this council, onght to be of a sufficient nature."
Qu. 12,985.
of this conncil ?-I should place the to the different Government departm ade to those gentlemen on all expenditure of money, on changes, and olher matters of that sort. All their estamates would come up through this council, and all their expenditure would be sanctroned through ith and any questions ariging in their admmistration, for instance, changes recommended, or naw regulations, would be admunstered by this scientific councl, zastead of being administered by the separate heads of the departmenta who now administer them,"

Dr. A. W. Williamson

"Could you enumerate what you consider would be the principal duties of this council, supposing it to be established ?-I should pat the specific duty upon them of preparing a complete report of the natnonal resources avalable for scientific instruction and research, according to the gense of the word publio which I am just now descrabing it, namely, thuse which are available for that parpose, and not for the promotion of the profit of andividuals; and then that such a report should be reedited annually, so that one ahould be able, by referring to it, to know what the funds of the insutution are, and what they are doing respectively. I think that it would be of immense value that there should be one general source of information upon that point, and then I have no doubt they wonld be apphed to for many improvements, which wuild be needed in those mstatutions; Bnd they would have to investigate the question so brought before them or referred to them by the Secretary of State for that department. I should think it likely that it mught be found desuraole to refer to this council for advice in the selection of committees to investigats practical matters; for instance, the matter of gunners, or other matters which are not matters of pure science, and that they would be able to recommend the choice of suitable persons for any work of that kind in which scientific principles wrould have to be applsed to some practical parpose. In fact, the number of questions relating to science which come before the Government now, drectly or mdirectly, are, I suppose, considerable; and from what I have been able to learn of late ou that matter, 1 should think that a good many people must be incudentally employed, to the extent of a great part of their time, by giving advice upon such matters,"
Qu. 12,694.
*s Then you would not propose that the Government, if it wanted advice upon such subjects, should go to the council of scrence in order to obtem it ? - I concerve that the Government might with edventage go to the council of science in order to find the individuals most competent to advise them upon auch a practical point ; but I think that the Govermment ought not to expect advice on such matters from the councli itself. I do not see how the conncil could naclade matters of that sort with the really important questions of science itself withour losing their homogenerty and unity of action. That would melude all human actavity aimost, for scientafic principles can be applied, to all kmds of doings."

Dr. Roscoe:

Qu. 7438.
"The great duty of such a permaaent body would be to lay down some sort of system, according to which Government and to science must be given, and to prevent (if possible) the expenditure of national moneys upon ill-considered or one-sided schemes. The results of a cystematic Government effort is seen in the cass of the German universities, in which, for comparatively small amonts of national expenditure, great results are obtaned, whilst, I fear, that with us (for want of aystem) the opposite condation of thmge more nearly holds good."
Q1. 7439. "You would not Jesire that it should consist solely of men of acience i-No, certandy nut. I am of opinion that the presence of the lay element is essential, because many questions will occul which are not purely -scientufic, such as the necessaty for establishing new colleges, or ading existing onea, and on these points the opinions of experienced (perhaps local) non-professional men would be of the greatest value."

Mr. De la Rue:

Qu. 13, 19 i.
"Supposing that there had been such a Consuitative Council as you propose, wonld it not have been advantageous to take their advice upon the expediency of such a proceeding $\mathrm{f}-1$ think that it would be one of the functions of such a councilundoubtedly to advise the Government upon questions of that nature [the purchase of the College of Chemistry by the Government], and whth regard to all other scientific matiers, grants of money, or the establishment of fresh teaching establushments."
"Then one adrantage would be that the puble would know on whose advice any such step had been taken by the Government?-Yes"

Dr. Siemens:

Qu. 11,798. "What do you consider would be the principal duties of anch a Council ?-To name commisanomers for special inquiry, to discuss generally the amounts of the grants to be given to learned societies, for special inquity, to discuss generally the amounts of the grants in Governmens departments. Take, for example, an invention of ordnance; if auch a quesion, after a preliminary examination by the department concerned, were brought before the general body, it conld there be discussed for the guidance of the Minister of Science, to ascertain whether gach an monovarion was based apon sonid scientafic prnaciples, und what course of experiments should be pursued to lead to the beat results. By referring it to the Minister, and having it duscussed before such a Councul, a great deal of unacessary expenditure mught often be aaved where, through the want of sufficient information, the experiments are condacted by the departments in a somewhat unscientific manner. Another duty of the Conncil wonld be gemerally to durect the publication of the scientafic information obtamed through the dufferent departnents."
Qu. 11,799. "Do you consider that it wrould be the duty of such a Councsl to initiate proposals on matters connected with Science, or mercly to give adnce whea asked for? -Only to give advice when asked for, but the departments shoald be held to commumicate with the Minister all inportant questions brought before them, departments shonld be held to commumicate with the Minister all important questions brought before them,
who, with the advice of the Council, would durect inquiries to be pintitated in many cases where the department would have simply rejected the proposal."

Mr. Reed:
4 If a department of the Government were contemplated as an advismg department only, I belreve it would Qu. 12,711. be an zmpracticability. But it has been auggested to this Commission, I believe, or at any rate I have heard it euggested, that a scientific depariment raight relieve certan existing departments of the State of some of the duties in connection with science and art. If that were so, if a department of the State had positave executive duties to perform, and were to have the promotion of those independent inquires and the giving of advice to other departments attached to it as a branch of its duty, and not as its primary duty, I am disposed to think other departaents auch a department mught work exceedingly well.'
"Do you think that the other departments would be willing to defer to the opnifor" of this speciali department? ?-I should be afrand that thoy would be willing to defer a little too often, and that the risk of such a department would be an a branch like the Admiralty, for instance, refusing to do some of the things which it now does, without first referring to this independent department, and that I am afiad would be an obstruction to the executive officers of the Admiralty; and unless the depaitment were exceedingly well worked, it might operate as a disadvantage on the whole.
"I should prefer myself to see a much smaller council with a larger power of reference than Colonel Strange cems to contemplate."
${ }^{*}$ By a power of reference, you mean that of obtaining advice outside itself ?'Yes."

Extracts from the Evidence against the Appointment of a Council.

We now proceed to give extracts from the Evidence of those Witnesses who object, on various grounds, to the creation of a Council.
The late Professor Rankine objects to a Permanent Council. He is "afraid of abuses' Qu. 9557. arising if there were a permanent tribunal. I am doubtful how it would work." But he thinks that "if the Councl of the British Association or the Council of the Royal Qu. 9558.
"Socrety were selected, there would be as little objection to those bodies as to any
"' body that can be thought of."
Sir G. Airy thinks a paid Consultative Council could not do very much to assist the Government.
"There have been bodies of that kund from tume to tume. The Board of Longitude was a very useful body for a time, when the struggle was rising about accepting the theory of gravitation and generally introducing it, especially into the formation of lunar tables for the aid of nautical astronomy, and also the subjects connected with it and that Board of Longitude undoubtedly did good service for a tume, but somehow or other it deed away ; it became an object of contempt; there appemed no reason for keepng it up at any expense and $1 t$ was abolished, and nobody seemed to regret it. Then the Admuralty bad an mstitution of three scientufic advisers, but I believe the scientific advisers perished in nearly the same way after a tume ; and I think that so far as the experience of those bodies has gone it supports the idea that it will be better for the Government, when occasion requres $1 t$, to get the best advice that at can."

He considers that the Council of the Royal Society would be "the best body to which the Government could have recourse in any matters of that kind."

Professor Owen is in favour of a Minister of Science, with a permanent UnderSecretary and Administrative Staff; but adds,-
"Wrth regard to the Consultative Councl, several objectionsoccurred to me in considering that matter. The consultative councll would, no doubt, be formed with the full concurrence, and in complete harmony with the views of the Permanent Under-Secretarys You may take it either way; a consultative councll, if it were established, would hardly get on with its work, unless it found a permanent officer in harmony with its views. Assuming the Permanent Under-Seoretary with a consultative council established, what would be the probability of the Minister going beyond such machinery in reference to any niformation or adnce which he might require with regard to any movement or change in reference to science? I doubt very much whether he would go outside or beyond that body for advice and moformations And what do you find? You find, for example, in reference to my own especial science, one Naturalist on the recommended Counci. Now there are, and 1 suppose there always will be, three or more naturalusts who mught each severally thank that they were entitled to a seat and a word on that Council. You would find two naturalsts, at least, who are respectuvely at the head of some public Natural History Establishment; one might have a buas toward zoology, another toward botany, a thard, perhaps, toward goology. Supposing a question were to come before the Science Mumster with regard to the assignment of Government collections of Natural History made an Government Voyages, where would the determination be? - In all probability with that naturalist who was a member of the consultative councl, and such position would give him, in my humble opmion, an undue adrantage".
"Supposug that a single naturalst were a member of that council, the question would be whether, in a Qu. 11,538. case of thas kind, he would deal quite mpartially between Mr_{r}, * ${ }^{*}$. and Mr. * ** *, and so with regard to any other analogous case; it 18 always uncertain how far social relations of friendship, and intimacy, and so on, might not have ther effect in guch a question."

He does not approve of the present state of things, but he thinks that a Minister and Qu. 11,551. a permanent Secretary, who could obtain Advice when thought necessary, would be a better remedy than a consultative Council. He adds, "I think that a body, representing " a consultative Council, would do its duty much better if selected by the Minister of Qu 11,558. "Science, or the Minister of State for Science, for the special question before him," and also suggests :-
"There would be the power of applying to the counclls of the dufferent scientific societies, the councl of $\mathbf{Q u} .11,559$ the Linnman Society for one, the counchl of the Gealogical Socrety for another, and the cónncil of the Zoological Society for a third class of questions in natural history, to say nothing of the comncil of the mother of all our learned societies, vis, the Royal Society; in these we have already a guarantee aganst any dictatorship or arbitrary decision."

The Earl of Derby would like to be more satisfied as to the reality of the grievance:
any Got, as at present sdvised, see whall the any Government department chooses to call for It. As a matter of fact the bames of the most eminent men in every department of science are perfectly well known, and they have always, as far as I am aware, been very creditably ready to give their assistance when it has been asked for; and I should be melined to think that if there are cases where a Govermment department has not had the benefit of that assustance, It has rather been because it was not asked for in tme than because there was any difficulty in obtaining it."

Qu, 18,515. "" as to the successful working of such a Council."
"One objection to it is thast if mattera for which the heed of a department is responsible are to be referred to the councl, and if upon those matters the council is to pronounce an authoritative oppmion, you wull very materislly lessen the responsibility of the one person who ought to be responable to Parligment. I may take an unstance: I have seen it stated in mome of the evidence which has been given before the Commission that if the Admiralty had had proper advice as to the construction of slups, a great diester which is fresh in all our memornes would not have occurred. It seems to me imposible to suppose that you would get any competent person to advise the Admiralty in the master of shipbulding if he were to be under two mastera, any in to say, if hus plans were to go, on the one hand, to a scientufle council to be approved hy them, they that in to say, , it his plans were to go, on the one hand, to e scientiflic council to be approved hy them, they
having nothing to do wrth the question of expense, and, on the other hand, to go to the hexd of that depariment and to Pariament to be approved again by those two parthes, they having nothing to do with the ciecice of the mastor, but looking princupally to the expense. I thank that that would entrraly destroy the reeponsibility of the executive officer, and would destroy that independence whach he ought to have in the performance of his functions. If you'want scientafle adrice an a matter of that kmed I would piace it in the department rathor than outtonde, or, which is practically the sume thing, I would refer the eppecfic quastion upon which the opinion is wanted to one or more of those persons who could bring the highest sclentfice suthority and ablity to bear upon it. It atrikes me forther that if you are to have a councll including all the departmenta of science, and if that councul is to pronounce its opimon collectively upon all matters submit ted to ith, yon will in fact have every question decided by a great majornty of persons who, however eminent in their own department of science, know very little of the particular matter in question."
Qu. 13,517.
to aply the State to the cownci] would probably be " to advise the State as to the application of money for the higher teaching of science and a for'scientific research, and also to advise the Government' with respect to any applica"tions that may come before it for grants of money connected with acience," Lord Derby thinks that "is a matter which falls strictly within the province of the Minister of cation; "and although he is quite aware of the fact that "if one man is selected as " the general adviser of some particular department of the Government upon a matter " of science, it is not improbable that there may be some jealousy in the minds of certain " other people who think that they could give quite as good advice, or possibly better ;" it seems to him that "unless the proposed Council is to be unlimited in number, pre" cisely the same difficulty will arise under that system. There will be a large number of "persons outside it who will think that they. have a better claim to be in it than those "who' actually are there; and precisely the same feeling of jealousy would then exist, " and would produce the same amount of inconvenience."
In reply to qu. 13,521, he adds, "you may be quite sure that any Minister who "wants an opinion upon a scientific matter will try and get the very best opinion that " he can. He has no possible interest in doing otherwise; on the contrary, he has the " greatest possible interest in doing that. And, on the whole, I think that a man in that " position, with what I may call an unlimited command of assistance and advice, is quite " as likely to make a good selection as anyone else could do for him."
He does not admit the analogy of the Indian Council, and as regards the argument from the alleged uncertainty of Government action in respect to Science, more especially as to Grants of Money, he thinks this arises chiefly from considerations depending upon the state of the Revenue in each year, and expresses his opinion that "it might be " quite legitimate to grant $4,000 \mathrm{l}$. or 5,000 . for exploration in Africa at a time when the " finances of the country were-prosperous, and to withhold a similar grant at a time " when the nation was economizing to the utmost."

He admits that, even apart from financial considerations, a great deal of nncertainty "pervades the whole of our administrative system;" and is "an inevitable condition of " living under a popular government."
He further urges the following objection to the proposal of a Scientifia Council on a large scale:
cs I believe that yow would have a great deal of heartburaing and jealousy on the part of man dewining and failing to get into it; and I think that if you brought together 25,30 , or 40 of the mont emanent man in science, it would be found that the practical durection of that body would very lakely be m the hands of men Who are by no means the highest scientific authonities. The conduct of admmistrative busines and the management of maen is san entrrely drfferent thing from the conduct of scientafic research, and it might very possibly be that those who would take the lead in managing the affairs of sach a comecil would be those Whose tme and attention-were the least devoted to purely santifie work, and who although they might posseas a good deal of edmunastrative ability might possibly not by any means stand at the heads of their respective branches of science."

Vith regard to the proposal to constitute the Council of the Royal Society the recognised advisers of the Government, he expresses the opinion that it would not'be Qu. 13,551. possible to refer " matters concerning all branches of sclence to a more, competent body: "of men than the Council of the Royal Society; constituted as it generally is." But he adds, "My objection to giving to that body an offically recoguised position as the " permanent Advisers of the State is this, that you thereby take at out of the power of " the Government to say who their advisers are to be, because the members of council . " are appointed by a process with which the Government has nothing to do."

Lord Salisbury is opposed to a Council because he has "never seen anything to lead Qu. 13,560. him to believe that such a Council of Science would have anything to do."

He further thinks "that the Government would always get better opinions, on any " scientific point that arises, by' applying to the most distimgushed scientific man in that "paxticular branch at the time, than it would by having a set of permanent officers to "give advice on such subjects." * * *.*
In answer to qu. 13,563, he says that "it could hardly be contemplated that any such " Council could give a stabiity to the Policy of the Government in matters connected " with Scrence, because, of course, the stablity of the polley of the Goverment depends "upon the stability of our whole poltical arrangements;" and' (qu. 13,564) "the " House of Commons would never feel itself prevented from reversing the decision of a "Council of Science of that kind."
Lord Salisbury agrees with Lord Derby, in not considering the Council of India a case in point; be explains that "a veto has been lodged with this Councll, enabling them to " prevent any expenditure of' which they disapprove. But no simular difficulty arises in " questions of science. There are na large sums of money arising from the taxes of a "distant people that have to be expended, and, therefore, no special check is required "upon Ministers with regard to that matter. *** Besides that, the Induan Council, "beyond its checking power, is redly simply a bureau of administrators. The councllors " act as under-secretanes."
He thinks that on many points on which a Mnister might refer to the Council for advice, there might be reason to apprehend "a series of minority reports."
"Supposing a councal of 12 or 16 scientific men: allthough undoubtedly upon a great number of mattors they would be unanumous mo opmion when they were dealung with that which is known and accepted as scientific frett, yet on all the border points between kenowledge and speculation theorr opinions woald most probably differ, and the postion of a manstea who had before hum two or three sets of opmions, in enturely opposte drections, would not bo much more hopeful than that of a munstor at present who has no opmions at all. ${ }^{\text {p }}$
"Whatover errore there may be in the opinions of one undivdual, at least they have an unity and a courage which is very often wantugg to the compound opinion of a dozen men."
He attaches no importance to the supposed advantage arising from the advice of a Council being subject to public'opmion to a greater extent than that of indrviduals; considering tnat the admission of reporters would be a hindrance to business, whle without their presence "the public at large would know very little of its proceedings;" and in reply to qu. 13,600 , "I thunk that what has 'oeen proposed by the Watnesses who "recommend a Council is, that in every case in which an opinion is asked they should
"furnish a Report of the reasons for the advice which they give?" he expresses fears,
"that if the Council were constructed on that princuple, the Ministers, who usually have
" their tume very fully occupied, and are destrous to avold work as much as possible,
" would consult the Council as little as possible."
So far as the mere Administration of Funds granted by the State for Scientitic Purposes is concerned, he as of opmion that no better channel than the Government Grant Committee of the Royal Society could be found.
"Therv is no body whoch is so thoooughty well constituted for the purpose of representing the scientufic world se the Commuttee of the Royal Society,"
" You pref would be pretty sure to go on working as well as it does now."

The Evidence of Sir Stafford Northcote is to the same general effect as that of Lord Derby and Lord Salisbury :
"My own leaung would be to throw the responsibilty, as now, upon the heads of the dufferent departments, leanng tham to get the best scienufict assastance they could, bot providung for the manatenance of such relauons between the Government and some sceentuic body external to the Government, such as the Royal Sociery, perhaps, as would enable the Government to take advice from that society as to the best mea to consult, and also as to the possiblity of the work that was proposed to be undertaken."
"I should have thought that some kind of paymant mght ce made to the saciety, which the society might Qu. 15,636 . expend, and by employing such officers as it thought proper to keep all the correespondence, and to refer it to the proper persons ; aud then, my idea would be, that supposing at the Board of Trade, for nestance, some 3486. G
new question arose upon which scsentific information was wanted, the President of the Board of Trade would write to the Council of the Royal Society, and would asy, such and such basinose has to be done, and I want such and such advice. Then the seeretsry, or whoever it might be, would bring the subjeot before his councel, and would wnte back, What you propose appears to be feasible; you ought to consult Mr. so-and-sa, or professor somebody, and you would then be placed by an independent anthontty in drect relations with the proper man to deal with the aubject. Then it would be a question of remunerating that gentleman by a fee as you would remunerate a lawyer by'a fee, for the service which he was to render."

He thinks that a Council "would cause jealousy on' the part of the Departments; and "that it would also very likely cause jealousy on the part of other men of Science."
"I feel sure that there would be a great deal of jealousy on the part of the departments if any" council Fere appointed to regulate the conscience of the Government in scientufic matters, and to say how money ought to be spent, what money ought to be spent, and what ought to be done, and what ought not to be done. ${ }^{\text {w }}$ oug ${ }^{\circ}$
 great jealougy at, that tme. The organzation of, that, councal, Fas thus -A cortain number of erainent architects, sealptors, and painters, and other persons were put upon [the Council], and they partly' fell out among' themselves, and then it wras necessaty for the President of the Board of Trade, who was responsibla for the spendung of the money, to side with/one party or the othery and to deende.what, meate to he donp, which he was, of course, not very competent to do. Then came a great deal of external jealousy, on the part of the other artists whose views were set aside, and there was, at the same tume, a good deal of jealousy on the part of the Board of Trade, t , being 'told that beeause these' artista held this and that, thereforg Ahoy were to spend. the pablic money an this way or the other waysw,
'Atd hé speaks of similar' jeald'usies' as 'having arisen tretween the Committee of Military Sanitary Organizatiot and the Military Methbers of the Indian Council :--
" Sumilarly, I might mention as an instance in" which I'saw the' 'germs of "jealousy", the Committee of Mnitary' Sanitary Organization, which is referred to, I see, by Captan Galtot in his cvidence. Whist I I whe git thé Induar Offico-it was sperfectly true that-a great many questions Nwere reforred to that Combuttes, and thay gave
 the military members of the Councul of Indin of the anterference, as it was sad, of thas Sanitary Committee. The military mémber's snid', 'We are the people whò are responsible for the spending of the money and for - dontrg what is to be done' we do not 'see why'those gentlemen, who have-nothing to do with that, are to
 remonstrances, and they would say, 'We have specal kngwledge of this subject; it ws what we are paying 'attention to; and we think at very wrong, that you should not attend to our sutggestions, and that you should - spoil what we' are doing.'

At the same time he does not agree with Lord Salisbury in his approval of direct reference by the 'Minister "óran individual.'
"I do not luke the present syétem of applyng to "rresponsibile adpisers, and I should desire to see somé morb systematuc mode of procesding adopted."

In reference to one of the proposed functions of the Council, that it should advise the Government on the 'Management 'of Institution's like the Meteorological Office, the British Museum, "and the Boyal Gardens, at Kew, he would still prefer the advice of a body not appointed by the Government.
Qu. 13,654. "I doubt whether \&qch a council wopld sither, command puble, confidence very long, or command the respect whech it should thave from the Government itself, if it were s creation of the Government. "Fou mught appoint in the firat instance sométyery émineint men:' Probably you wouth not get a great mainy of the mom erinemt men to give a great deal of "tme to whork of that gort, mad you would have to take thote wha wore willing tor-spare the timo necessary far the dischargevof, the datues of the souncil, They would contunue, for some tyme in office, sad they wopld adopt certann qdepg and, thex constant contact with the Government would
 rather lead them to say; 'This gort of thing cannot be done, because they would talke intor consideration
idminustrative points, and would not give' purefy scieriticic advice. They would, therefore, cease to possess the

 on the, other, hand, they would, pot have the same advantageous independent position for offering adrice or makng suggestions to the Government which a body recruted at' extra from 'the screntufic wotld would have."

Upon the suggestion that a Cquncil advising on the Adyancement of Science should also gdyise on Scientifig Education, he reparks:
"I think that it would be very desurable thatiche Comacil of Education, or, the Mupister of Education, should have the advice of good scientific persons to assist him in directing the scientific education of the country; büt "I ahould' donbt its 'being' very advantageovis to max ap that work with the other knd of duthes to which you haye referred.",

Dr. Carpenter's Evidence is also in favour of recourse to "thé Council of "the' Royal Society whenever the Government requires advice on subjects involving questions of Science.
Qu. 10,931.' : "I think that there "is" a great advantage in 'haviug any question of 'that kind discussed, not merely by the representatives of one department of science, but by the representatives of the sccentific body generally -the corps screntyfigue of the nation. Under the present constitution of the Royal Socmety, the Council of the Royal Society may be regarded as a very true representative of the scientufic life, so to speak, of the nation. It would doubtleas, if it saw occasion, seek the adrice (as it does at present in the adminustration of the Goversment Grant) of competent men outsnde its owni body."

But he considers that "the present state of things" is unsatisfactory in so far as Qu. 10,93. "there is no Systematic Arrangement for'the Promotion of Science."
Sir E: Sabine, President of the Royal Society for many'years, appears, on the whole, to incline to the opinion that it would be best that the Royal Society should remann the official adviser of the Government in scientific matters;' suggesting, however, that in particular cases "Specal Committees might be appointed with such emoluments as it Qu. 11,122. " might be proper to recommend." 'His Evidence contains some "interesting statements relating 'to the Board of Longitude', which formerly existed, and which he acknowledges to have rendered "valuable services to the country during the period of it's existence," Qu. 11,129. matters being frequently referred to it which it was admirably adapted to judge off.

Remares on the forbgoing Evidence relating to taz Establishment of a Ministry and Council or Science.

We have given careful consideration to this part of the Inquiry entrusted to us; and, in the course of 'our deliberations, we have been led to attach much importance to the facts stated in the First Part of our Report, which show that the 'Scientific Work of the Government is at present carried on by many different Departments.
There is nothing to prevent analogous, if not actually identical, investigations being made in each of these, or to secure to one department an adequate knowledge of the results obtained, and the circumstances under which they were obtained, by another.
Investigations admitted to be desirable, nay, practical questions, the solution of which is of the greatest importance to the public administration, are stated by the witnesses to be set aside because there is no recognised machinery for dealing with them; while, in other cases, investigations are conducted in such a manner as to involve a needless outlay of time and money, because they were originally planned without consultation with competent men of Science.
Passing to the question of the Advancement of Science, we have arrived at the conclusion that much has to be done which will require continuous efforts on the part of the Administration unless we are content to fall behind other Nations in the Encouragement which we give to Pure Science, and, as a consequence, to incur thé danger of losing our pre-eminence in regard to its Applications.

These considerations, together with others which have come before us in the course of our Inquiry, have impressed upon us the conviction that the Creation of a Special Ministry dealing with Science and with Education is a Necessity of the Public Service.*

This Ministry would be occupied (1) with all questions relating to Scientific and General Education, so far as these come under the notice of Government; (2) with all questions incidental to the application of National Funds for the Advancement of Science; and (3) with all Scientific Problems in the Solution of which the other Departments may desire external Scientific Advice or Information. It would also be desirable that the Department should receive Information as to Scientific Investigations proposed by other branches of the Government, and record their progress and results.
It is not within our pronnce to express an Opinion as to whether the subject of Art should be included among the Functions of this Department; but we are satisfied that the Minister's attention should not be distracted by any immediate Responsibility for affairs which havve no connexion whth Science, Education, or Art.
We have considered whether the Official Staff of such a Ministry, however carefully selected, could be expected to deal satisfactorily wrth all the varied and comphcated Questions which would come before the Department. We have given full weight to the Objections which have been raised against the creation of a Special Council of Science, and to the Arguments in favour of referring Scientific Questions to Learned Societies, or to Special Committees appointedfor the purpose, or to private Individuals; but nevertheless we have arrived at the Conclusion that an additional Organization is required through which the Minister of Science may obtain Advice ón questions involving Scientific considerations, whether arising in his own Department or referred to him by other Departments of the Government.
Such questions have from time to tume been referred to the Council of the Royal Society, in which the best Scientific Knowledge of the time is fairly represented. The Committee chosen by that Council for the Administration of the Government Grant of 1,0006. per annum in Aid of Scientific Investigations has performed its work to the satisfaction of the Government, of men of Science, and of the Public. But if much more is to be done for the Advancement of Scrence than at present, und if the Departments in conducting their Investigations are to have the benefit of the Scientific Advice which appears
now to be frequently wanting, the Councl of the Royal Society, chosen as it is for other purposes, could scarcely be expected to take upon itself Functions which, it is true, are not dufferent in kind, but which would involve increased Responsibility and the Expenditure of additional time and trouble. Moreover, amongst the questions on which the Departments would require Scientific Advice, there would no doubt be many requiring a Knowledge of the pęcular exigencies of the Public Service, which would be more readily understood and solved if some persons in direct relation with the Departments formed a part of the body to be consulted. It is obviously of great importance that the Council should be so constituted as to possess the confidence of the Scientifie World, and we believe that this confidence would be extended to a Council composed of men of Seience selected by the Council of the Royal Society, together with Representatives of other important Scientific Societies in the Unted Kingdom, and a certain number of persons nominated by the Government. We also believe that such a Body would deserve and recerve the confidence of the Government; and that it would be well qualifed to administer Grants for the Promotion of Pure Science.
The general opinion we have expressed as to the proper Remuneiation of Scientific Work would be applicable to the Members of this Council, but the degree and manner in which the principle should be apphed in this instance must be so largely dependent on circumstances that we cannot make any specific Recommendation on the subject.

It would be impossible that the Council should in all cases undertake the direct solution, by itself or even by Sub-Committees, of the problems submitted to it. In many instances, especially when experimental investigations are required, its duty would be accurately to define the problem to be solved, and to advise the Minister as to the proper persons to be charged with the Investigation.

We are of opinion that the Council should not have the power of intiating Investigations; it should, bowever, not be precladed, in exceptiond cases, from offering to the Minister such suggestions as it may have occasion to make in the Public Interest.

We believe that Reference to such a Council would be found to be so useful and convenient that it would become the usual cburse in cases of difficulty, but we would not diminish the Responsibility or fetter the Discretion of any Minister by makng such Reference obligatory, on by preventing, \% Reference to Committees or to Individuals -chosen by him, whenever that course might appear to him to be uore desirable.

Conclusions and Recommendations.

I. The Assistance given by the State for the Promotion of Scientific .Research is Inaclequate, and it does not appear that the Coricession or Refusal of Assistance takes place upon sufficrently well defined Principles.
II. More complete means are urgently required for Scientific Investigations in connexion with certain Government Departments; and Physical as well as̃ other Laboratories and Apparatus for such Investigations ought to be provided.
III. Important Classes of Phenomena relating to Physical Meteorology, and to Terrestrial and Astronomical' Pb ssics', require Observations of such a character that they cannot be advantageously' carred on otherwise than under the Direction of the Government.
Institutions for the study of such Phenomena should be maintained by the Government; and, in particular, an Observatory should be founded specially devoted to Astronomical Physics, and an Organization should be established for the more complete Obselvation of Tidal Phenomena and for the Reduction of the Observations.
IV. We have tated in a previous Report that the National Collections of Natural Fourth History are accessible to Private Investigators, and that it is desirable that they should be Report. made still more useful for Purposes of Research than they are at present. We would now express the opinion that corresponding Aid ought to be afforded to Persons engaged in important Physical and Chemical Investigations; and that whenever practicable such. persons should be allowed access, under proper limitations, to such Laboratories as may be established or aided by the State.
V. It has been the practice to restrict Grants of Money made to Private Investigators for Purposes of Research to the Expenditure actually incurred by them. We think that such Grants might be considerably increased. We are also of opinion that the restriction to which we have referred, however desirable as a general rule, should not be maintained in all cases, but that, under certain circumstances and with proper safeguards, Investigators should be remunerated for their time and labour.
VI. The Grant of $1,000 \mathrm{l}$., administered by the Royal Society, has contributed greatly to the Promotion of Research, and the amount of this Grant may with advantage be considerably increased
In the case of Researches which involve, and are of sufficient importance to deserve, exceptional expenditure, Direct Grants in addition to the Annual Grant made to the Royal Society should be made in Aid of the Investigations.
VII. The proper allocation of Funds for Research ; the Establishment and Extension of Laboratories and Observatories ; and, generally, the Advancement of Science and the Promotion of Scientific Instruction as an essential part of Public Education, would be most effectually dealt with by a Ministry of Science and Education. And we consider the creation of such a Ministry to be of primary importance.
VIII. The various Departments of the Government nave from time to time referred Scientific Questions to the Council of the Royal Society for its Advice; and we believe that the work of a Minister of Science, even if aided by a well-organized Scientific Staff, and also the work of the other Departments, would be materially assisted if they were able to obtain, in all cases of exceptional importance or difficulty, the Advice of a Council representing the Scientific Knowledge of the Nation.
IX. This Council should represent the chief Scientific Bodies in the United Kingdom. With this view its composition need not differ very greatly from that of the present

Government Grant Committee of the Royal Society. It might consist of men of Science selected by the Council of the Royal Society, together with Representatives of other Important Scientific Societies, and a certain number of persons nominated by the Government. We think that the Functions at present exercised by the Government Grant Committee might be advantageously transferred to the proposed Council.

All of which we humbly beg leave to submit for Mour Majesty's Gracious Consideration.
(Signed) DEVONSHIRE. 'LANSDOWNEF'. JAMES P. KAY-SHUTTLEWORTH. BERNHARD SAMUELSON. W. SHARPEY.

THOMAS H. HUXLEY.
G. G. STOKES.

HENRY J. S. SMITH.

J. Norman Loceyer, Secretary.

June 18th, 1875.

APPENDIX TO EIGHTH REPORT.

APPENDIX .
Extracts from the Estomates for the Financiki Year 1874-75.

EYDEOMRAPEICAS BURVIT.

[* In addition to this aum, there are the salaries of [* In eddition to this aum, there ame the salaries of
two Third Class Clerke and two Supplementary Clerky,
at present employed in this Department]

[^0]: " amount of culture had been insured, I should be disposed to allow that." From his

[^1]: *The Woodwardian Professorahp of Geology, Whoh became vacant by the death of Professor Sedgwiek, is now filled by

[^2]: * Modes of appointment of Professora in the University of Oxford :-

 1. Regius Professorshup of Medicine - The Crown.

 2, 3. Savilian Professorships of Geometry and Astronomy-The Archbishop of Canterbary, the Lord High Chancellor of Great Britain, the Chancellor of the Unireraty, the Bishop of London, the Shecretary of State for the Home Department, the two Chief Justices, the Chuef Baron of the Exchequer, the Ueas ot the Arches, and the Warden of New College, talsing moto their counsel the Vice-Chancellor of the University.
 4. The Sedieian Professorship of Nataral Philosophy.-The Vice-Chancellor, the Provost of Quean' College, the President of the Royal Society, the Astronomer Royal, and, alternately, the President of Magduler College and the Warden of All Sonls' College.
 5. The Professorship of Botany and Rural Economy.-The College of Physicians.
 6. The Professorship of Botany and Raral Economy-The College of Lhysicians. 6. The Professorship of Expermental Philosophy- The Vice-Chancellor, the Warden of Wainam Coblry of Chemistry.
 7. The Ctnical Professorshup-The Convocation of the Unireraty.

 8, 9. The Professorskups of Geology and Mmeralogy--The Vice-Chancellor; no mode of appointment beins provided in the Statate
 10. The Inacre Professor of Physiology,-The Visitor and the Wardes of Merton College, the Prensdebif
 of the College of Physicuans, of the College of Surgeons, and of the Boysa Society.

[^3]: 11. The Hope Professorship of Zoology -The Hope Curstors, viz., the Vice-Chancellor, the two Proctors, he Regrus Professor of Medicine, the Keeper of the Ashmolean Museum, and two co-opted members.
 12 Waynflete Professorshup of Chemistry.-The Chancellor of the University, the Visitor and the President of Magdalen College, and the Presidents of the Royal Society and of the College of Physicians.

 * Modes of appointment of the Mathematical Professors in the Univergaty of Cambridge.

 The Lucastan Professor is elected by the Heads of Colleges. The Boards for the other three are: For the Pluman, the Vice-Chancellor, the Masters of Trinity, Christ's, and Caius Colleges, and the Lucasua, Lowudeun, and Sadlerian Professors-if either of the Masters be Vice-Chancellor, the Master of St. John's acts in hils stead. For the Lowndean, the Vice-Chancellor of the Unversity, the President of the Royal Society of London, the Prusident of the Royal Astronomeal Society of London, the Astronomer Royal, end the Lueusun, Pluman, and Sadlorian Professors. For the Sadlerian, the Vice-Chancellor of the Unversity, three Hexuds of Colleges, to be elected by the persons on the Eleatoral Roll, and to hold office as long as they continue to be Heads of Colleges, and the Lecasian, the Plumian, and the Lowadean Professors.
 \dagger The Archbishop of Canterbury, the Bishop of Ely, the Members of Parhament for the University, and the Presidents of the Royal Society and of the College of Physicians are also electors in the case of the Woudwardun krafessorslup.

[^4]: Oxford, May 7, 1873
 "Dear Mr. Vice-Czancellor,
 "My knowledge of the active interest which you have or many years taken in the promotion of the study of the Natural Sciences, has made me think that a statement of the present position and requirements of Biology m Oxford might with some approprateneas take the form of a letter addressed to you
 "I wish, in the first place, to give a sketch of the plan in conformity with which the work done in my Depariment of the Univererty Mnseum is carried on at present, and whth this aketch I will combine a statement of the cost at which that work is accomplished Having done this, I propose, in the second place, to point out in what durections the plan in question admuts of, or rather calls for, expansion, and at what increase in expenditure. Thirdly, I propose to give an outhne view of what mn my opinion should ultimately be the azrangement of the Department of Biology, noluding under this term Hu
 omy, Zoology, and Physuology
 "I. At the present tume the principal work done in the Department of the University Museum which is entrusted to the Linacre Professor, consists in the provision of the means, materral and other, required for the adequate preparation of Students for the Honour Examination in the Natural Sclence School A large part of the Vacation-trme of the Senior Demonstrator and the Prolessor us taken up Students, that is to say, to the procurng and preparation fadenca, hat is the say of about thirty Studente, in the way of Lectures Practical or about thury shadenta, in the way or Leciures, Pre little lersure for anything else to their Teacherg In sddition, lersure for anythang else to their Ceachars however, to Students preparing 1 School, we have from Term to Terin Students working in Oxford for the purpose of further study, and moostly for the Oxford for the purpose of further study, and mostiy for the spacial purpose of quabfying themseives to beoome Medicad
 Practitoners For such Students means for learning Anthropotomy have from time to time, as for example during the past year, been provided. Finally, e certain during the past year, been provided. Finally, a certain and others working in the Anatomeal Department, and employng the means there made available for purposes of researoh The earliest paper of this kind was one written by Dr Church, formerly Leee's Reador in Anatomy at Ch Ch, shortly after the opening of the Anatomical Depart ment in the Unverssty Museum; and the latest us one hortly to be published in the Royal Society's Transactions, written by Mr H W Moseley of Exeter College, now one of the Naturalists on H M S 'Challenger' Thus it may be seen that there are tiryee dustinct lines of work carred on in the Anatomucal Department of the Umversity Museum; the first and the most engrossung of wheh aums at meenng the requrements of Students for the Natural Science School, whulst the second is intended to help men who, having passed that School, wish to prepare themselves by the practice of Humen Dissection for the Medical Profession; and the third terminates in the production of Original Memors.
 "The enture cost at which the work of the Biological Department is carried on 18, exclusively of coal and ges in the way of outgonggs, and of the fees of Students in the way or is pasd by the Univergtor The socount of the Buolagical Depertment sith the University stonds thus: for 'the Department with the University stands thus: for 'the neluding haren the wages of a serpent 2251 is on an neluding herein the wages of a servant, 2251 . is on an manntenance of Collections,' that is to say, for the procuring and preparing of specimens, and is pard ont of the cuinquennal grant of specumens, and is praid out of the quinquennial grant of 1,0001 made to the Museum for a servant, and is pard out of the annual grant of 5454 pasd annually from the Unversity Chest to the Museum for annually from the , Genversity Chest to the Museum for sum of 75 s . per annum has been sasigned by a grant, of date July 8, 1871, to the Lanacre Professor for 'Assistances'
 and this sum is pard away by him partly to an Assistant Demonstrator for turtional work during Term-time, and partly to a second servant, in the proportions of $45 l$ and $30 l_{\text {. }}$ respectively Thus the sum of $300 t$ pand annually by the University is accounted for Another sum of 2006 from the Aldichian-Tominsian Fund, whech is charged with and pand over as the stipend of the Demonstrator of Anatomy, Mr Charles Robertson, makes up the total of 5001 specried above The Semor Demonstrator recerves, in addition to the stipend from the Aldrichian-Comlinsian Fund, one third of all the fees pand by students, the Junior Demonstrator recerves, in addition to the $45 l$ perd to hum from the Fund of 752. allowed by the University for 'Assastance," another thard of the Students' Fees, whilst the remaming thrrd is pard to Mr E Ray Lankester of Exeter College, for the delrvery of an extra course of Lectures The Aldrichian-Tomlinaian Fund of about $200 l$ per annum and the $45 l$ just specried, in all $245 l$, are all the means avallable from public sources for the payment of Demonstrators in Blology at Oxford; whist at Cambridge as much as 4001 is paid by the University alone for the same purposes The sums pand at enther Unuveraty as stipends to teachers stand thus ${ }^{\circ}$,
 "At Cambindea
 "From the Unversity Chest.
 "For a Demonstrator of Human Anatomy - $=E 150$
 "For the Supermtendent of the Museum of Zoology
 and Comparative Anatomy, who holds an office analogous to that of Mr Charles Robertson at
 F For the Dënonstrator of Comparative Anatomy $=150$ 2400
 "AT Oxpord.
 "From the Unvoersity Chest
 "For a Second Demonstrator - in - 245
 "From the Aldrrehsan-Tomlinssan Fund.
 "For the Semior Demonstrator = -. $\quad .200$ \&245
 "The annual expenses incurred at Cambndge in the Departments of Humas and Comparative Anditomy for 'general maintenance' and servants' wages are, on an ave rage of the list eeven years, 441719 s 8 d
 ${ }^{4}$ The entrue snmual cost of the Biological Department at Oxford, exclusively, as above stated, of certain items in the way of outgongs and of income severally, stands thus in a tabular form
 "From the Unsversty Chest

 | "By special Annual Grant of 75% | For a second
 Demonstrator
 For second
 Servant | 45 30 |
 | :---: | :---: | :---: |
 | "From Museum Quinquennual | | |
 | Grant for ' mantaning Collections" | For maintaining Collections | 145 |
 | "From Museum Grant for general purposes | For Corrent expensee and Servant | 80 |
 | "From the Aldrichan-Tomlnnsan Fund. | | |
 | For Demonstrator | - - | |

 "I wish, in the second place, to define the drections in Which the objects professedly sumed it in the wrorking of the Biological Department of the Museum are noompletely atramed, and to apeafy the means by which, and the minimam cost st which, they could be mare thoroughly comp G 4

[^5]: Dr. Hooker's
 Memo-
 randum,
 Appendix II.
 38. The Gardens at Kew were unprovided with any' public herbarium or scientific library when Sir William Hooket took charge of them. As Dr Lindley's "Report"

[^6]: - 98. The Royal Dubln Society act as Trustees of the Museum of Natural History (including Mineralogy and Geology), of the Botanic Gardens and Botanical Museum, Glasnevin, and of the Library, and are responsible for their Administration. These establishments are wholly supported by public funds, provided for annually in the Estimates of the Science and Art Department. The Agricultural Museum is supported by the Royal Dublin Society out of its own funds.
 The Institution in St.' Stephen's Green, formerly known as the Museum of Trish Industry, has ceased to exist under that name; and the School of Science applied to Mining and the Arts, which was attached to it, has been converted into a Royal College of Science. All the Collections of the Industrial Museum (with the' exception of the Portlock Collections of Irish Flora and Fauna, which have been transferred to the Royal Dublin Society) are still retained, and, with the Collections of the Geological Survey, are exhibited in the building in St. Stephen's Green. The Collections comprise objects illustrative of building materials, mining, metallurgy, and fuel; of ceramic and glass manufactures; and of vegetable and chemical products. These Collections are in charge of the Curator of the Museum. The Director of the Geological Survey of Ireland has charge of the Palæontological and Rock Collections - the former has been made by the 'Geological Survey; the latter purchased; out of the funds of the Museum, to illustrate Lectures and for the use of the Officers of the Survey.

[^7]: "The professors of civil engineering and mechanical enguneering require, at regular intervals, essays on some practical subjects from third year students."
 "In addition to one lecture in each week during the first two sessions, the professol of mechanical engineering takos the students in his classes to visit manufactories in the neighbounhood of London. The average time is thus two hours a week fol each session."
 "In addition to, or anstead of certan parts of this, the regular course, the second and third years' students can, and frequently do, attend and recerve instruction min the ehemical or the physical laboratones, which are open to them and to others (occasional students) for several hours daily, on payment of an extra fee of from 4l. 4 s . to 8 l . 8s. a term, or 10 l . 10 s . to 21 l for three terms, and in which theie is always a professor or demonstrator to give instruction and assistance. The engineering drawing class is also open for three hours daily (except on Saturday), and the mechameal workshop (m which the first year's students do wood work, and the second and third years* students do metal work) is open for axr hours dally (except on Saturday; when it closes at 1 p.m.), and in each ease there is always some one to give instruction and assistance."

 Professor Adams adds: "We have every means at King's College that can be pro- Qu. 6892. 34604.

[^8]: With reference to this return, I have to observe that the fees denved from the Students workong in the Chemical and Metallurgical Laboratones are receerved by the respective Professors, with a distnct understanding that all the expenses of AsBistants, materrais, ,cc, whth the exception of gas and fuel, are paxd by those Professors. It and Mechamical Laboratories exceed the fees pand by the Students.
 June 2, 1874.
 Trenian Rebeg,
 Regustrar.

[^9]: "And to Scrence Commuesson, 6 , Old Palkee Yard, London, S.W.,
 Charman of this Commismon, to othate that the Convout

[^10]: (a) Senior boya
 (b) Junor boys (r) Laboratory practiee.
 (d.) Special papils

[^11]: - Subseripthous are allowed by eqchool rult to be charged mo the culvol bills, ss soon ss a note has beean brought to the President. gegrood in the bay's tutar to the las mencurred

[^12]: $\begin{array}{llll}\& & \text { s. } & d & \& \\ 5 & d\end{array}$
 I table blow-pipe, complete - $\quad \begin{array}{llllllll}5 & 0 & 0 & \text { to } & 6 & 6 & 0\end{array}$
 1 monochord on soundung box, with
 pull, 4 cwt - $-\quad$ - $\quad 20,7100$
 1 brass alarum bell
 A set of Chladnis plates with clamp, two
 bows = $\quad-\quad-\quad-\quad \begin{array}{llllllllll} & 2 & 0 & 3 & 3 & 0\end{array}$
 Brass bar clamped m centre, with sus-
 pended ivory ball (18 m long). For
 longitudnnal vibration 18 hoops of gutta percha, 18 im. diam.
 8 hoops of gatta percha, 18 m . diam.
 2 blaokened brass dusks, 1 ft in diam.,

 $\begin{array}{lllllll}\text { A double gas jet. (Sunging flames) - } & 0 & 12 & 0 & \text { " } & 110 & 1 \\ 2 & & 6\end{array}$

 $\begin{array}{lllllllll}6 \text { organ pipes corresponding with forks- } & 1 & 15 & 0 & " & 2 & 0 & 0 \\ \text { An organ ppe fitted with glass aide } & 2 & 2 & 0 \\ \text { Organ pipe fitted with gas side sell and } & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
 membrane (nodes) - - 1150 -
 1 pitch pipe
 3 reed pppes
 Dissected embouchure of organ pipe
 1 trumpet organ pipe
 $\begin{array}{lllllllll}\text { Dissected emboachure of organ prpe } & - & 0 & 15 & 0 & 1 & 5 & 0 \\ 1 & -0 & 5 & 0 & 1 & 5 & 0\end{array}$

 $\begin{array}{llllllll}\text { A single syren } \\ \text { An anatomical model of humas ear } & - & 4 & 0 & 0 & 1, & 4 & 4 \\ 4 & 4 & 0\end{array}$
 ", , Materata

 L.

[^13]: uroes sud molids gencraily,
 Srit turum -Chain rule
 wrietht leurt wriphte, ent Throughout the sematoth problemas.

[^14]: * Sinee thus acheme i, nas drawn ap, the laboratory has been buit, and some slight modrficationg bave been nade in the arrange ments. The general plau, however, remams malterel.

[^15]:

[^16]: - Serence Students - On Wednesday afternoons (after ondinary school hours) a lesson is given in Analytucal Chemustry, with practual work in the laboratory 1 to 2 hours
 If a soience Student wrihee to take up an additional subject, he oan do so on Tuesday and Friday afternoons In thrs case the necessary ture (3 h hours for inatraction, and $1 \frac{1}{2}$ hours tor preparation) is obtaned either by relinquashing German, or by reducing
 the time dequoted to Mathematios.

[^17]: - This soun 18 midependent of other emolmments which the Frofessor of Practical Astronowy neectres at Attwnomanas Eogal for Scotland; the two offices heng, by his Commission, comoneed.
 \dagger Conditional on the state of the Generral Universiry Fund, which is pricetpally made np from Matneulation and Graduation fees, and dependa, therefore, on the number of studeuts atteuding at the Unuversmy, and on the number griduating, There are many other mavandible charges on thas fund, sueh as the mantenance of the College buldings, malariea of librantamn, elerth, servironi, sco, \&ec., so the ampount availabie for acientrfic priposea is very madequate.
 I The selarnes of Assistants im the Chemical Departinent amount to 434 L , and ibe exeess of this over the 200 L allowed to pand by the Profesme.

[^18]: - This mam falls much below the angnal amome whoch the Profeasor as called apon to expend, in ordar to carry out, in an efficiant manner, Inatruction in Pracrisal Anatomy.

 35871.
[^19]: "We had a reason for giving it that title of Engingering Science; because we do not profess to teach pure practice, but the art of applying serentaic princuples to practice; and we did not want our certuficate to pass as a certaficate that the holder of it was fit to practise the profeasion, but only as a certaicate that he possessed the requisite scientific knowledge. As to the details of the course of study, certucate that he passessed the requisite scientific knowledge, As to the details of the course of study,
 there 18 , in the first place, Mathematics, which the student studies for one or two years, according to there 18, in the first place, Mathematics, which the student studies for one or two years, according to
 what his previous preparation seems to render necessary. If he has not passed through a prehminary exammation, he has to study Mathematics for two years at least. There is a prelimmary examination, by the passing of whoh the minumum time which he has to devote to Mathematics is reduced to one year. When I bay a year, I mean the University session for one year. Secondly, in Natural Philosophy or Physics, if he studies for the minimum period of one session, it may be moreased to two, according to the proficiency 85871.

[^20]: *These sums represent the additions to the Emoluments of the Chairs recommended by the Commusioners of 1858 .

[^21]: * This' Lecureship 苗 now held by the Assistant to Erasmas Smith's Profeseor of Mathematich,

[^22]: Clavso, rize, Laning Grone session on an four of the following serve

[^23]:

[^24]: University, St Andrew's,
 June 10 th, 1875 .
 I AM durected to acknowledge the recespt of your letter of the 3 lst ultmo, addressed to the Principal of the University, and to enclose, for the, u formation of your Commissioners, a "Schedule of the Lectures and Laboratory' Instruction," and a "Schedule of Payments," as requested by you.
 J. Norman Lrackyer, Esq,
 ecretary to the Commission on
 I have, \&c.,
 Roberit Waterit, Registrar.
 Scientific Instruction

[^25]: "References on all these subjects are constantly coming home, and we have no means of answering them in Qu. $\mathbf{1 2 , 5 6 5 .}$ our own body, while it if very unsatnsfactory to be oblged 'to' send out for gratutous unformation. We do sometimes, it 18 true, apply to mdividuals and sometumes to socheties, bat in very many cases, I am afrade, the questons are shelved, becanse there's no competent and authoritative body to refer to."
 Captain Douglas Galton, of the Óffice of Your Majesty's Works and Public Buildings, thinks that, as a rule;
 anquiry, and that they are very muç fonder of experuments made upon a large scale with no: defined system, than thoy are of experiments which have been broaght out as the result, of a carefully studied previouswirquiry. "I think that an enormous amount of money was 'wasted' 'mi' the case' of the inquiry into armour plates, both for shups and forts. In that case the Government apponnted a partly sciefrifice eommatter, but it was muxed up with other persons who were not, scientific; ; and mostead of commencuge, a, aeriee of experiments upon a amall and clearly defined scale, from which, they could have drawn conclusions for makung ther largen experiments, they began by firmg at any plates that were offered to them which had no relation one to another, either in theur relations to the guns or to the form of backing, or in any otherg way, and consequently df was dyficult to draw useful calculations from them.",

 - Mr. Froude', who was a promment member" of the Iate Committee on "Naval Designs, 'and who is now devating bis whole time without: remuneration to the investigation of the propen forms of ships, of war, states that if, at an earlien 'time, a laboratory had existed,' and 'proper 'experiments had' been 'made, 'enormous' sums 'would have' been saved which have been expended in the actual construction of ships, or, as he' terms $\mathrm{it}_{\mathrm{\prime}}$, in' " "experiments ' on the scale of 12 inches to a foot ${ }_{2}^{\prime \prime}$ " and that definite results would have been arrived at with less loss of time.

[^26]: * * "With a vast amount' of mechamcal work 'which is necessanly undertaken by the Government, and which is contirually in hand, questions involving scientific dufficaltres of an novel character frequently occur: 'questions requiring accutate knowledge' of screztific' truth hithertb' undeveloped are occurring every dny. In both respects the Government is' at present insufficiently bdvised,' dnd the result ís undoubtedly that mechamical works are sometmoes not done as well as they might be, done, that great inistakes are sometrmes made; and, again a very servous and perhaps even a more serious evil of the present system, in which there is not sufficient '\&cientific advice for the Gơvernment, is the undertaking' of works 'which ought hever' to be undertaken."
 "Are you able to point out any nstances which you have in your mind of mastakes which you think have occurred from the want of good advice on the part of the Goveriment? - One great mastake tridoubtedly was the construction of the "Captann," and I beheve that a permanent scientific councl advising the Government would have made it impossible to commit such a mistake. They would, in the very beginnug, have relieved the Government from all that pressure of ignorant public opinom which the Government could noṭ possibly, in the present state of things, withstand."

 The present system of Special Committees is objected to by Sir William Thomson, and by other competent Witnesses.

 Sir William Thomson thinks "that a singlé body would, be 'béter than a" pümber, of sinall Committees for advising the Government on the great variety of questions which Qu. 10,67\%. from time to time would be likely to arise."

 Admiral Richards, late Hydrographer of the Admiralty', is of opinion thatt:
 and The members of such committess mnst be selected more or less to' falfil certain political conditions, Qu', 11,589.' and that, as a rule, they would come new' to the'subject that they were goint ta consider, and I do not heleve that the Commission which sat on the Naval Designs the other day was'a 'very successful one' I do not know that any great advantages have arisen or are hikely to arise from it. ${ }^{\prime \prime}$

 Mr. Froude, in reply to the remark : "You do not cansider Committees of taat kind "to be a very satisfactory way of proceeding?" thus states.his objection to the present system:

[^27]: "I think that, in one way or another, where you have a man of very great emunence as a scientific digs Coverer, it is unquestionably the duty of the State to provide hum wrth means and leisure to carry on has work. Whether that as to be done by gaving him an office under the Brituch Museam, or in any rimilar institation, , or whether it is to be done by simply grantang hum a pension in recognition of eminent scientric service, or in whatever other way it is done, it seems to me to be immaterial, but I certainly conmder that it is a very important part of the public duty, to relueve men who have shown an eminent capacity for orsginal duscovery

 Sir W. Thomson, in a reply to which we have already referred, stated his opinion on

[^28]: " . . . I should strongly advocate that the present system abould be enlarged, so that the investigators should not merely be remmbursed for all that they have expended, but also paid in some measure for therr tume and labour, because each investigator-has to give up a profitable employment in order to find the time."

[^29]: Professor Owen :

[^30]:

