Census of India, 1931

Actuarial Report

on

The Age Tables and Rates of Mortality

with
Life Tables for India and Provinces
by
L. S. Vaidyanathan, F.I.A.

DGLEI: MANAGER OF PUBLIOATIONS
خic 1933

REPORT ON THE ESTIMATED AGE-DISTRIBUTION OF THE INDIAN POPULation as recorded at the census of 1931 and the rates of MORTALITY DEDUCED FROM A COMPARISON OF THE CENSUS RETURNS FOR 1921 AND 1931.

$\therefore \quad$ I had the honour to be invited by the Government of India to make an investigation into the estimated age distribution of the Indian population as indicated by the Census figures of 1931 and to prepare Life Tables as deduced by a comparison of the Census records of 1931 with one or more of the preceding Census enumerations; and now beg to submit the results of my investigation.

This is the sixth of a series of investigations into the Mortality of the Indian population conducted in connection with each decennial Census from 1881 onwards. The first three were made by the late Sir George Hardy, the fourth by the late Mr. T. G. Ackland and the fifth in connection with the 1921 Census by Mr. H. G. W. Meikle, the then Actuary to the Government of India.

PROVINCES DEALT WITH IN THIS REPORT.

The larger Feudatory Indian States that conduct separately their own Census operations were not included in any of the previous investigations. The areas dealt with in these investigations were mainly British Provinces and the smaller Feudatory States under the direct political control of the Provincial administration. I decided, however, to conduct the present investigation on the Census Statistics available for the whole Indian Empire including all the Feudatory States whether small or large. The Indian Subcontinent, covering an area of more than $1,800,000$ square miles and containing a population of almost 353 millions, was divided for the purpose of my enquiry into the following ten large geographical units :
(1) Sind, Baluchistan and North-West Frontier Province.
(2) Punjab, Delhi and Kashmir.
(3) Rajputana, Ajmer-Merwara, Gwalior and Central India Agency.
(4) The United Provinces.
(5) Central Provinces, Berar and Hyderabad State.
(6) Bihar and Orissa.
(7) Bengal and Assam.
(8) Bombay Presidency (excluding Sind), Baroda State and the Western India States.
(9) The Madras Presidency, Coorg, Mysore, Travancore and Cochin States.
(10) Burma (Burmans only excluding foreign born).

Each British Province includes the small State or States, if any, in direct political relationship with it.

Though Sind is politically a part of Bombay, in view of its great distance from Bombay and the greater affinity of the population of Sind to its immediate neighbours, it was decided to amalgamate it with Baluchistan and North-West Frontier Province:

The data supplied to me for the purpose of my investigation included :-
(1) The Census Returns of 1931 showing in each Province and for each sex the numbers living at the ages of $0,1,2,3$ and in alternate ternary and septenary groups 4-6, $7-13,14-16,17-23$, etc., with one large group at the end of 74 and over.
(2) Specimen Schedules, in connection with the 1921 Census, showing out of a selected number, usually about 100,000 of each sex in each Province, the numbers recorded as living at each individual age last birth-day throughout life.
(3) Birth-place Returns showing-
(a) the number of emigrants born in each Province or State and enumerated elsewhere, and
(b) the number of immigrants enumerated in each Province or State and born elsewhere.
(4) The Provincial and All-India Census Reports on the 1921 Census.
(5) The Actuarial Reports based on the 1921 and the preceding Censuses.

No returns at individual ages, except those at the very early ages from 0 to 3, and no specimen schedules showing the distribation of the population at each age, except in the case of the Punjab and Madras ont of a sample of 100,000 in each sex, were available in connection with the 1931 Census. This has proved to me a very great handicap* and I could not apply to the 1931 Census certain lines of investigation I made with the aid of the specimen schedules available in the Actuarial Reports of the earlier Censuses, especially in connection with the enquiry whether the very large errors in the Age Returns in India show a tendency to diminish or increase. Nor are their uses confined to the study of errors in age as there are bound to be other lines of Statistical Research in which individual Age Returns of the population will be of great help. By the time the Government of India requisitioned my services in connection with the Actuarial Analysis of the 1931 Census, 1 learnt to my disappointment that only ternary and septenary groups above referred to were available. I do not think it should entail any great expense if Tables are given for each Province showing the distribution of the population according to individual ages in each sex. The population statistics of England and Wales are available for each age. If, however, for one reason or other, this is considered impracticable for the next few decades in the Census history of India I cannot too strongly recommend that specimens showing distribution of the population at each age should be collected in each Province and in each State that conducts its own Census operations. The characteristics of the specimen are summarised in statistical language in the words "Representative Random Sample ". A sample of 100,000 may be a representative one for a small area but may not be so for a large one. The magnitude of the sample should, therefore, depend on the area dealt with. Where again a large:ares is concerned, the sample should be taken from two or more localities widely separated from one another; otherwise the sample will neither represent the entire area nor be a random one.

SECTION I.

Characteristics of the Decennium 1921-193I.

1. The method to be adopted in the Actuarial Analysis of the Census material of India is very largely influenced by the economic and hygienio conditions prevailing in the decade preceding the Census. A population of which 90 per cent. or more is rural, subsisting mainly on the produce of the soil and cattle, leading ${ }^{\text {a }}$ practically insular life in the village of its occupation, with its needs necessarily brought down to the barest minimum, should be extremely sensitive to the caprice of nature. If the rainfall is seasonal and sufficient a good harvest is reaped and the population, remunerated in most cases in kind, moves in harmony with the season. With bountiful harvest, a feeling of optimism permeates the entire atmosphere and conditions are conducive to health and abundant supply of babies. On the other hand, a lean harvest, engendered by the failure of the monsoon, leads to undernourishment and to contamination of any available scanty water sapply which makes epidemies of the nature of Cholera, particularly connected with the bowels, break out. The death rate soars very high claiming a very large toll from the very young and the very old and underfeeding due to scarcity usually gives the people, under such circumstances, very little stamina to withstand the attack. The fall in the birth rate, combined with the very high mortality affecting childhood, leaves a deep chasm in the age curve noticeable in the Age Returns of several subsequent decennial Censuses just as a permanent scar from a deep wound..
2. If the next few years after a famine happen to be good or even normal monsoon years, the surviving population consisting mainly of those that have weathered the storm is known to have more than made up for the children lost

[^0]durintg' he famine years. By the side of the deep chasm in the age curve above referred to, there would usually appear a big hump and as it very rarely happens that any Province in India is uninterruptedly immune from these seasonal disturbances for a decennial period, the age curve is generally full of undulations at successive short ranges which are either accentuated or masked by the preference for particular digits and the systematic errors in the ages returned by the population. To bring out the true or nearly true age curve from such irregular data, the Actuarial microscope has to be used rather very minutely and the method adopted is made to suit the nature of the statistics presented to the Actuary which in its turn is primarily influenced by the conditions obtaining in the decennium under consideration.
3. In illustration of the point made out, in the last two paragraphs, the following Table showing the number of children under 5 per 10,000 of the total population in India in each of the Census enumerations may be found of interest. Corresponding figures for some representative countries in Europe and the United States of America are given which bring out in relief the very large fluctuations in the Indian birth rate due to the effect of famines and the rapidly recuperative nature of the population during normal or sumptuous years.

TABLE I.
Number of children under 5 per. 10,000 of population.

Country.		1880-81.	- 1890-91.		1900-01.*	1910-11.	1920-21.	1930-31.
England and Wales	..		1,356	1,225		1,143	1,068	877	.
Germany ..	.		1,365	1,300		1,308	1,206	634	-
Swoden	\cdots		1,232	1,218		1,147	1,121	.955	. \cdot
Belgium ..	- $*$		1,237	1,159		1,171	1,024	694	.
France ..	-•		923	872		862	888	618	..
Switrerland ..	-.		Not ava	able.		1,140	1,076	848	-
United Statee	-		1,379	1,222		1,210	1,156	1.095	.
Indis . .	\ldots		1,369	1,468	--	1;297	1,379:	1,258	1,529

4. The deficiency in the number of young children in the 1881 enumeration is to be traced to the famine of 1876-78 which affected the Provinces of Madras and Bombay. It will be noticed that, in spite of the large reduction of the young shown in the returns of two very large Provinces; the total for India was appreciably in excess of several European countries and was only slightly in defect of the number for the United States of America. The 1891 Census followed a period of general prosperity which is evidenced in the very large proportion of children in the age distribution of the population. The widespread nature of the famine of 1899-1901 is reflected in the very small number of children under 5 returned at the 1901 Census which low record has been beaten only by the 1921 enumeration. The conditions obtaining in the decennium preceding the 1911 Census, though generally free from scarcity and consequent famine, were less favourable than those of the period 1881-1891 as reflected in the number of children under 5 which; though appreciably in excess of the other countries brought in the comparison, is very much in defect of the high level reached in 1891.
5. The particularly low figure for 1921, lower than any previous famine record, bears eloquent testimony to the fact that the young ages were subject to a twofold depletion due to the selective incidence of the Influenza mortality of 19181919. The first wave was particularly fatal to children, while the second and the more virulent one, by claiming a very large toll from the adult ages and proving particularly fatal to women in pregnancy, had struck a heavy blow at the very source of child supply.
6. As against the large fluctuations in the number of children in India with the normality or otherwise of the conditions obtaining during the decade preceding the Census can be set the steady trend towards fall of the number of children in the Western countries due purely to sociological reasons.
7. Where the decade preceding the Census was subject to dire visitations such as famine and pestilence, the method adopted by the renowned Actuaries, who wrote the Reports in connection with the earlier Censuses, was to estimate average rates
of mortality by combining the data of the Census on hand with those of a few earlier Censuses thereby eliminating, as far as this could be done, the effects of the disturbances above referred to.
$\because 8$. Thus with respect to his 1881 Report, the late Sir George Hardy obtained average rates of mortality, firstly because the earlier Census enumeration was known to be extremely defective and secondly because of the famine of 18761878 which affected the two Provinces of Bombay and Madras. Since, however, the decennium ending with the 1891 Census was practically free from famine or epidemic that usually follows in the trail of a famine, he limited his investigation to a comparison of the 1881 and 1891 Census figures. The 1901 Census closely followed on the heels of the severe famine of 1899-1901, which affected extensive tracts in India, and also an epidemic of Plague. Sir George, therefore, deduced average rates of mortality by combining the Census figures of 1881, 1891 and 1901 by giving double weight to the 1591 Return. The decennium pleceding the 1911 Census was, in spite of disturbances of moderate intensity in certain localities, taking the country as a whole, generally free from any calamitous visitation, and the late Mr. T. G. Ackland deduced rates of mortality relating to the decennium by combining the 1891 and the 1901 Census figures only.' The conditions attending the 1921 Census were, however, exceptional. The population had not by then fully emerged from the devastating effects caused by the great Influenza epidemic which was estimated to have claimed as its victim nearly 7 per cent. of the total population of India. Mr. H. G. W. Meikle, the Actuary to the Government of India, who wrote the Report with the 1921 Census, with the view to deduce average rates of mortality, combined all the previous enumerations from 1881 onwards with the 1921 figures.
8. Though the decennium under consideration opened and closed in gloom, it has been on the whole a prosperous one. In the opening years of the decennium the effects of the Influenza epidemic that prevailed at the close of the last decade and the bad monsoon of 1920 were still evident. This position rapidly altered and a series of good monsoons followed interrupted only by floods notably in Bengal, Gujarat, Sind and South lndia. Famines were practically local and not very serious and the advancement in Medical Research minimised to a great extent deaths from Tropical diseases such as Cholera, Plague and Kialaazar. These favourable conditions are naturally reflected in the very large increase (10.6 per cent.) in the population which the decennium has witnessed. The closing years of the decennium, however, brought the position practically back to that of the opening ones, with this difference that towards the close there was considerably larger number of mouths to feed than at the commencement on practically identical economic conditions. Trade was depressed to an unprecedented level and the prices of agricultural products fell so low as to be entirely unremunerative to the cultivator. The consequent distress to a population of which nearly four-fifths live directly by agriculture could be easily imagined. Whether the prosperity of the few middle years of the decennium has been of such magnitude as to justify the very large increase of $10 \cdot 6$ per cent. of the population or in absolute figures $33,895,298$, an increase which, in the words of Dr. Hutton, the Census Commissioner for India, is "a figure approaching equality with that of the total population of France or Italy and appreciably greater than that of such important European Powers as Poland and Spain" is a subject on which I shall have something to say in another section of this Report. Here I am mainly concerned with the fact that in the decade under consideration the population did contribute a very large-almost abnormally large-increase, apparently both by saving in deaths and ly abundant supply of babies and on this account 1 felt justified in making use of the 1921 and 1931 Census figures only thereby confining my attention solely to the conditions olvtaining in the decennium.

SECTION II.

On the peculiar nature of the Methods to be adopted in constructing Mortality Tables from Indian Census Returns.

1. In the preceding section of this Report attention was directed to the characteristics of the decennium under consideration being the main factor influencing the decision of the Actuary as to whether the mortality Table to be constructed should be an average one embodying the experience of more than one decennium or
should be confined only to that of the decennium preceding the Census. In this section I shall consider the peculiar novelty and difficulty of the problem of mortality Table construction as applied to this country caused by the fact that the records of vital occurrences are entirely undependable, which makes it necessary to discard the usual methods of construction of mortality Tables and adopt special ones as I explain below.
2. Where a reasonable amount of reliance can be placed on the ages and numbers returned at the Census enumeration and the records of deaths during the intercensal period, the method almost invariably employed to obtain the rate of mortality at each age of a given population is to compare the living at the various ages as recorded in the Census Returns with the registered deaths at the corresponding ages. The task of the Actuary becomes, under such conditions, comparatively easy for the analysed material will practically tell its own tale and smoothing or graduation will be required only with the view, on the oue hand to arrive, very nearly, at that ideal flow of the rates of mortality from age to age that would have been obtained had the volume of statistics analysed not been limited in extent and to eliminate any small irregularities due to minor mis-statements of the age on the other. But the records of vital occurrences in India are yet deplorably undependable as will be evident from the following Table :-

TABLE II.

Comparison between enumerated and deduced population.

Province (British Territory only).			Variation 1921-1930 according to Vital Statistics (Excess of Births over Deaths+, Deficiency -). Total.		Variation 1921-1931 according to Census $\begin{aligned} & \text { (Excess }+ \text {, Defici- } \\ & \text { ency-). } \end{aligned}$ Total.	Difference. Excess or defect of column 3 over column 2.
1				2	3	4
Assam ..	-•	.	-	+450,854	+1,163,123	+712,269
Bengal ..	-•	*	*	+1,463,484	+3,411,695	+1,948,211
Bibar and Orissa	\cdots	-	.	+3,254,095	+3,682,158	+428,063
*Bombay ..	.	-	-	+1,728,161	+2,587,404	+859,243
Burms	-	-	\cdots	+715,458	+1,454,954	+739,496
C. P. and Berar	-	-	-	+1,423,608	+1,594,963	+171,355
Delhi	-	-	-•	+53,132	+147,794	+94,662
Madras	.	-	-•	+4,398,902	+4,421,122	+22,220
N. W. F, Province	.	-•	-•	+94,759	+173,736	+78,977
Punjab ..	\cdots	-	-	+2,428,382	+2,895,374	+466,992
United Provinces	-•	-•	.	+3,927,768	+3,033,694	-894,074
			\cdots	+19,938,603	+24,566,017	+4,627,414

* Exoludes Aden.

3. The natural assumption to be made, in drawing conclusions from the above Table, is that the censused figures are very nearly correct and all irregularities are traceable to records of Vital Statistics. As between the records of births and deaths, larger inaccuracies are naturally traceable to the former than to the latter. A study of the figures in the Table will show that Delhi, Assam and Bengal are almost in the vanguard of Provinces that maintain inaccurate vital records as the increases in the population of the decade in these Provinces traced through vital records are nearly 64, 61 and 57 per cent. respectively in defect of the increases revealed by the Census enumeration. Burma and the North-West Frontier Province closely follow with the respective deficiencies of 51 and 45 per cent. Bombay shows a deficiency of 35 per cent. The United Provinces show a large excess of 29 per cent. As this is an emigrating Province, the only explanation is that in this Province the records of deaths are more inaccurate than the MgCC
records of births. Madras alone, of all the Provinces, is remarkably accurate as the deficiency is only one-half per cent. It outpaces the second best Province-the Central Provinces and Berar-by a considerable distance as the deficiency in this Province is as much as 11 per cent. It might be possible to approach the censused population with very great accuracy through records of vital occurrences, even if the latter be inaccurately maintained and therefore subject to very large errors, provided such errors are of the same or nearly the same absolute magnitude. For, in arriving at the population on any date with the aid of the records of births and deaths, the numbers relating to births and deaths occcur with opposite signs and therefore the errors in these two records are of a compensatory nature. One is therefore forced either to assume that the records of vital occurrences in Madras are maintained up to a great degree of accuracy, or that both the records of births and deaths are teeming with inaccuracies and these inaccuracies happen by chance to be very nearly equal, so as to reproduce the censused population within an error of one-half per cent. As observed above, the records of births in all Provinces except the United Provinces are relatively more inaccurate than the records of deaths. With the Province of Madras, however, as between assuming that both the records of births and deaths are inaccurate or both of them are very accurate, I am inclined to the latter view which is also borne out by the relatively greater accuracy shown by that Province in the statement of ages as will be seen in the section on "Errors in Age". It may, therefore, be of interest to construct mortality Tables for the Province of Madras according to the usual method of mortality Table construction when the records of births and deaths are dependable and compare the results so obtained with those deduced by making use of Census enumerations only. As, however, I have not been supplied with the full statement of deaths in Madras occurring in the decennium according to each age, this investigation could not be taken up before the time my Report was expected to be ready.
4. With the records of vital occurrences teeming with inaccuracies in each Province, as shown by the above Table, the Actuary has no course open but to make as best an estimate as he could of the rates of mortality prevailing amongst the population by making use of the Census enumerations only, without any reference to the records of births and deaths.
5. For the convenience of the reader who will not take anything on trust, I have tried to set out in the next few articles the rationale of the method to be adopted when mortality Tables are constructed by making use of Census Returns only. As a hint, however, to such of the readers as would let anything in the nature of Mathematics alone, I have placed an asterisk to these articles which can safely be passed over. But they are requested to assume that for the construction of the mortality Table the Actuary requires a series of smooth numbers representing the mean population living from age to age in the period under consideration and also another set of smooth numbers denoting the rate at which the population has increased or decreased at each age in the same period.

Construction of Mortality Tables from Census Returns only.

*6. In countries where a reasonable degree of reliance can be placed on vital occurrences the only correct method of constructing a mortality Table is to make use of Census Returns along with the records of deaths. At the infantile ages, however, where the Census figures are subject to irregularities of a two-fold nature due to both overstatement of age and non-enumeration of infants, use has to be made of the records of births also in the quinquennium preceding the date of the Census to correct the Census figures relating to these early ages. If we are dealing with an ideal population where only as many die in a year as are born in the year, where there are no migration disturbances (called by Actuaries a Stationary Population) and where the adult population has come to such a high level of literacy as to give correct particulars at a Census, we shall arrive at the same results when constructing a mortality Table from Censuses alone as when we make use of both Census Returns and records of vital occurrences. If $\mathrm{P}_{x}^{(1)}$ persons are lecorded as having attained age x on their birthday preceding the Census date, their average age taking one with another can be assumed to be $x+\frac{1}{2}$. If at the Census taken 10 years later there are returned P_{-101}^{101} persons of
age $x+10$ last birthday, the latter will be the survivors from amongst the group of $P_{z}^{(1)}$ persons of age x last birthday recorded at the preceding Census and will be of average age $x+\frac{1}{2}+10$. Provided that the chief desiderata of a stationary population as to the constancy of birth and death rates as also immunity from migration disturbances are actually realized, the ratio $\int_{x+10}^{(10)} / P_{x}^{(1)}$ may be taken as very nearly equivalent to ${ }_{10} p_{x++}$ which is the probability of surviving 10 years at exact age $x+\frac{1}{2}$. It will, however, be necessary to find the probability of surviving one year, instead of 10 years for the construction of the mortality Table, which can be obtained as follows :-

Abstract

*7. Under the ideal conditions of a stationary population which we have assumed, it can be easily seen that the numbers returned at the latter Census at any age x will be identical with the numbers returned at the Census 10 years earlier at the same age. This equality will hold whatever may be the interval between the two Censuses. If two Censuses are taken with an interval of only one year separating then we shall obtain the equation $\dagger_{1} p_{x+\xi}=\mathrm{P}_{x_{+1}(2)} / \mathrm{P}_{x}^{(1)}$ where ${ }_{1} p_{x+1}$ is the probability of surviving one year at age $x+\frac{1}{2}$ and $\mathrm{P}_{x+1}^{(2)}$ represents the population returned as of age $x+1$ last birthday at the latter of the two Censuses. Since the numbers returned at the same age in any two Censuses are identical we have $\mathrm{P}_{x+1}^{(2)} / \mathrm{P}_{x+1}^{(1)}=\mathrm{P}_{x+1}^{(1)} / \mathrm{P}_{x}^{(1)}$ so that ${ }_{1} p_{x+\frac{1}{2}}=\mathrm{P}_{x+1}^{(1)} / \mathrm{P}_{x}^{(1)}$. It will be evident from an inspection of the above equations that given a stationary population the numbers returned at each age at one Census enumeration would easily supply the numerical values of the probabilities required for the construction of the mortality Table. But no community conforms to the rigorous conditions imposed for being called a stationary one and we shall have to modify our formula yielding numerical values of the probabilities of surviving at each age when the ideal requirements are relaxed one by one and we pass on from an imaginary stationary community to one actually met with subject to varying birth and death rates combined with disturbances due to emigration and immigration.

Varying Birth Rate with Constant Death Rate and no Migration Disturbance.

*8. Let us assume that the number of births has been increasing uniformly from year to year for a considerable number of years in geometrical progression while the death rate has been constant at each age and there has been no migration. On our assumptions, the number of births per annum increased from, say, l_{o} in that period of one year just preceding the first Census date to $\mathrm{r}^{111} l_{\mathrm{o}}$ in that period of one year just preceding the next decennial Census date. Let us denote the number of children of age less than 1 (age 0 last birthday) returned at the earlier of the two Censuses we are considering by L_{0}. These are the survivors out of the l_{\circ} births in the year preceding that Census. The population returned at age 1 last birthday will number $\frac{1}{r} \mathrm{~L}_{1}$, for, these are the survivors from amongst the $\frac{1}{7} l_{0}$ births in that period of one year which commenced exactly two years before the Census date on the basis of a geometrical increase in the number of births. We shall therefore have the total population at each age last birthday returned at the first Census given as follows :-

$$
\mathrm{L}_{0}, \frac{1}{r} \mathrm{~L}_{1}, \frac{1}{r^{2}} \mathrm{~L}_{2} \ldots \frac{1}{r^{10}} \mathrm{~L}_{10} \ldots \frac{\mathrm{l}}{r^{20}} \mathrm{~L}_{20} \ldots \frac{1}{r^{100}} \mathrm{~L}_{100}, \text { etc. On the same assump- }
$$ tion, the population returned at the next Census at each age last birthday will be as follows:-

$$
r^{10} \mathrm{~L}_{0}, r^{9} \mathrm{~L}_{1}, r^{8} \mathrm{~L}_{2} \ldots \mathrm{~L}_{10}, \frac{\mathrm{I}}{r} \mathrm{~L}_{11}, \ldots \frac{\mathrm{I}}{r^{10}} \mathrm{~L}_{20} \ldots \frac{\mathrm{l}}{r^{00}} \mathrm{~L}_{100}, \text { etc. }
$$

The L's in the two series with the appropriate suffixes denote the population in each age that would have been returned had the number of births not varied from year to year, that is, on the assumption that all the conditions of a stationary population had been satisfied.
*9. The mean population at any age, meaning thereby the population that would have been returned had a Census been taken at a date exactly at the middle
point of the two decennial Censuses, is given by $\frac{1}{2} \mathrm{~L}_{x}\left(\frac{1}{r^{x}}+\frac{1}{r^{x-10}}\right), \sqrt{\frac{L_{x}}{r^{2}} \cdot \frac{\mathrm{~L}_{x}}{r^{x-10^{x}}}}$ or $\frac{2 \mathrm{~L}_{x}}{r^{x}+r^{x-10^{\circ}}}$, according as we take the Arithmetic, Geometric or Harmonic Mean. Let us denote the expressions by $\mathrm{L}_{x}, \mathrm{~L}^{0}{ }_{x}$ and $\mathrm{L}^{\mathrm{H}}{ }_{x}$ respectively. It can easily be verified that $\frac{L_{x+1}^{A}}{L_{x}^{A}}=\frac{L_{r+1}^{a}}{L_{x}^{G}}=\frac{L_{r}^{B}+1}{L_{x}^{B}}=1 \cdot \frac{L_{x+1}}{L_{x}}=\frac{1}{r} y_{x+i}$ That this result should be true whatever may be the mean population we are taking could have been foreseen inasmuchas it is true for the populations enumerated at each of the two Censuses we are considering. I could not take it for granted since it may not be evident to one and all of the readers. I have, however, assumed in the case under consideration the death rate to be the same as in the case first considered but only the birth rate to vary. The probability, therefore, of surviving one year at age $x+\frac{1}{2}$ is even now ${ }_{1} p_{x+1}\left(=\frac{\mathrm{L}_{x+1}}{\mathrm{~L}_{x}}\right)$ being identical with its value when all the conditions of a stationary population are satisfied. The natural conclusion to be drawn is that, whereas when a population has attained an absolutely stationary condition the number at any age of one Census enumeration, or, what is the same thing, of the intercensal (mean) population between two Censuses, divided by the number at the age next below yields the probability of surviving one year at the half age midway between the two ages, when one of the conditions, namely, constancy of births from year to year, is relaxed, the ratio above described no longer gives the required probability of survivorship, but we shall have to take into account the rate of increase of the population and multiply by this rate the ratio of the mean numbers at consecutive ages to obtain the probabilities of survivorship at each half age from which the mortality Table can be easily constructed.
*10. Since the population at age x of one Census becomes by survival that at age $x+10$ at the next decennial Census and both of them are the survivors to ages x and $x+10$ in the two Censuses respectively out of births occurring in the same year, we can, by dividing the number returned at any age $x+10$ at a Census by the number returned at age x at the preceding decennial Census, obtain the value of ${ }_{10} p_{x+i}$ (the probability of surviving 10 years at age $x+\frac{1}{2}$) and thereby eliminate any necessity for bringing into account the rate of merease in the population. From the values of ${ }_{10} p_{x+i}$ those of ${ }_{1} p_{x+i}$ can be obtained by a suitable method of interpolation. Before, however, this method could be adopted, one has to be absolutely certain that the only cause contributing towards a return of varying numbers at the same age from one Census to another is variation in birth rate, of which the magnitude is exactly ascertainable, and the rate of mortality has been practically invariable and the population has also been immune from disturbances due to migration. Such conditions are ideal and are not true to populations that are usually met with. It might be observed in passing that with ouly varying birth rate, if Census-taking be an annual function, we shall obtain the value of $p_{x_{i+}}$ at each central age by taking the ratio $P_{x+1}^{(2)} / P_{x}^{(1)}$ where $\mathrm{P}^{(1)}$ represents the population at the earlier Census and $P^{(2)}$ at the Census taken one year later, and thereby avoid the necessity for ascertaining the rate at which the population has been varying due to variation in birth rate.
*11. With the view to make it easy for the general reader I have assumed the variation in the population to be brought about by the number of births increasing in a geometrical progression of constant common ratio r. The arguments will still hold if the variation be not at the uniform rate from year to year but at varying rates r_{1}, r_{2}, r_{3}, etc., and some of these r 's may be greater and others less than unity so that the number of births may be increasing in some and decreasing in other years.

Varying Death Rate and Constant Birth Rate and no Migration Disturbance.
*l2. I have so far considered the construction of a mortality Table from Census Returns alone firstly when the population satisfied all the conditions necessary for its being called a stationary one and secondly when only one of the conditions, viz., constancy of the number of births from year to year, was relaxed. We can now assume the births to remain constant from year to year while the
death rate varies. When the birth rate alone varies, either uniformly at a constant rate r or at rates changing from year to year, the force or forces that bring about variation in the population returned at the same age in the several Census enumerations all act at one particular point of age, namely, at birth. When, however, variation in population is a result of continuously varying death rate only, the other conditions of a stationary population holding, these forces act at all age points and the variation at any age between two Census enumerations represents the cumulative effect of these forces from birth up to the age in question. In spite of this apparent complication, since on our assumption the variation in the Census material is introduced by an irregular flow only in rates of death from year to year and from age to age and the assignment of a numerical value of this factor (rate of death) being the object of our enquiry, we shall yet be able to obtain the average value of ${ }_{10} p_{x+t}$ by the ratio $P_{x+10}^{(1)} / P_{x}^{(1)}$ as evidently the population numbering $P_{x+10}^{(0)}$ at the later Census at age $x+10$ are the survivors out of $P_{x}^{(1)}$ at age x at the earlier Census when the latter were subject to irregular incidence of mortality during the intercensal period. The quantity $1-\mathrm{P}_{x+10}^{(10)} / \mathrm{P}_{x}^{(1)}$ would give the average value of the probability of death within 10 years at age $x+\frac{1}{2}$ prevailing in the intercensal period and the probabilities of death or survival for one year at each half age will have to be obtained by interpolation though the resulting values might be very rough and require graduation due to the irregular incidence of mortality. The results of two annual Censuses will have to be made use of if interpolation is to be avoided as in the case when only the birth rate varied.
${ }^{*} 13$. If $\mathrm{P}_{x}^{\mathrm{m}}$ be the mean population at age x between two decennial Censuses, whether it is the Arithmetic, Geometric or Harmonic mean or mean computed in any other manner, the ratio $P_{x+1}^{\mathrm{I}} / P_{x}^{\mathrm{X}}$ does not yield the value of $p_{p_{x+t}}$ as it does when the population has been absolutely stationary. The cause is not far to seek if it is remembered that on our assumption P_{x+1}^{I} and $\mathrm{P}_{\mathrm{z}}^{\mathrm{M}}$ which represent survivors to the middle date of the intercensal period out of births in different, though consecutive, years have been depleted differently by varying incidences of mortality from birth up to age x in each case and the ratio $P_{x+1}^{\mathrm{y}} / P_{x}^{\mathrm{s}}$ instead of depending upon the mortality rate from age $x+\frac{1}{2}$ to $x+\frac{1}{2}+1$ is coloured by the varying incidences of mortality above referred to at all ages below age x. To make the ratio $P_{x+1}^{\mathrm{I}} / \mathrm{P}_{z}^{\mathrm{I}}$ yield the value ${ }_{1} p_{x+1}$ we must multiply it by a quantity r^{\prime} which represents the ratio of the cumulative effect of mortality from birth to age x for the mean population P^{M} to the corresponding effect of mortality for the mean population P_{x+1}^{x}. The problem in this case is analogous to that when only the number of births varied, for, it will be remembered in that case to obtain the value of $y_{\tau+1}$ it was necessary to multiply the ratio $\mathrm{P}_{x+1}^{\mathrm{y}} / \mathrm{P}_{土}^{\mathrm{st}}$ by r where r is the ratio of the number of births in that year of which P_{x}^{M} are the survivors to the births in the year of which P_{x+1}^{S} are the survivors.
*14. Where, however, it is not possible to ascertain and make allowance for the varying incidences of mortality in the two quantities $P_{z}^{M I}$ and $P_{i \neq 2}^{M}$ above referred to, due to the death registers not having been accurately maintained, the only method to be adopted is to ascertain for each age an average rate of increase or decrease in the population for the intercensal period and starting from the mean population between the two Censuses as base obtain the population that would have been returned six months anterior and six months posterior to the middle date of the intercensal period from which the values of p_{x+z} can be easily deduced.

Varying Birth and Death Rates.

*15. It can now be seen that when both the birth and death rates vary the equation $P_{x+10}^{(0)} / P_{\Sigma}^{(1)}={ }_{10} p_{x++}$ will yet hold. For $P_{s+10}^{(1)}$ and $P_{x}^{(1)}$ being persons at ages $x+10$ and x in the latter and earlier Censuses respectively are the survivors out of the births occurring in the same year and in taking the ratio of the one to the other the disturbing effect in the constant flow of population from birth to age $x+\frac{1}{2}$ due to variation in the birth rate (the r of the geometric increase or decrease) is eliminated. Again the same fact, namely, that the populations $P_{x+10}^{(10)}$ and $P_{x}^{(1)}$. relate to births in the same year, is responsible for eliminating in the ratio $\mathrm{P}_{x+10}^{(10)} / \mathrm{P}_{x}^{(1)}$ the rates of mortality from birth to age $x+\frac{1}{2}$ and making it depend solely on the rates of mortality for the и 9 co
period of 10 years after age $x+\frac{1}{2}$. From the values of ${ }_{11} p_{x+1}$ those of ${ }_{1} p_{x+1}$ and then of ${ }_{1} p_{x}$ can be obtained by interpolation.
*16. The question might naturally be asked at this stage as to why this apparently easy method of arriving at the values of ${ }_{10} p_{x+i}$ at each half age should not be adopted. The answer is not far to seek if it is remembered that all along we have assumed that the individuals composing the community have come to realize the importance of giving correct particulars both as to numbers and ages at the Census enumeration and do give them. But the necessity for employing the rather out of the way method of constructing the mortality Table by comparing two or more Census enumerations only, without any reference to the record of vital occurrences in the intercensal period, arose out of the fact that the latter were quite unreliable. It will, therefore, be entirely unjustifiable to assume that the ages returned at the Censuses are correct when the birth and death records are entirely undependable. What usually happens with every step taken forward in the scale of literary evolution of a community is that the accuracy of the ages recorded in the death registers precede that of Census Returns. Apart from the fact that Law, under. pain of penalties, compels the registration of births and deaths, the usual inducement for overstatement or understatement at particular periods of life which exist with respect to living persons at a Census enumeration is very nearly absent when giving the ages of the dead. That is why it is often said that the only correct method of constructing a mortality Table is to compare the living with the dead with further help from the register of births at infantile ages.
*17. It will hardly need any demonstration to show that, when the Census material is subject to variations due to the combined effect of irregular birth and death rates, the ratio P_{x+1}^{M} / P_{x}^{3} obtsined from the mean of the two Census enumerations will not yield the value of ${ }_{1} p_{x+t}$. It will be remembered that the ratio did not yield the value of this quantity even when only one of the two disturbing influences was present. To make the above ratio yield the value of p_{x+t} we shall have to isolate the disturbance caused to the uniform flow of population from year to year by irregular variation in births from the disturbance caused by irregular variation in deaths and multiply the above ratio by suitable factors which, in addition to being a complicated process, assumes accurate knowledge of vital occurrences, records of which are extremely defective with respect to the population we are dealing with.

Migration.

*18. The correction for disturbances caused to the censused population due to immigration and emigration is easy to allow for if statistics of the immigrant and emigrant population have been maintained according to age.
*19. If I_{x} and E_{x} be the number of immigrants and emigrants respectively at age x during the intercensal period and if out of the excess of immigrants over emigrants there have occurred D_{x} deaths in the period, we shall have to take for the population at age $x+10$ at the latter of the two Censuses $\mathrm{P}_{x+10}^{(10)}-(\mathrm{I}-\mathrm{E}-\mathrm{D})$ instead of $\mathrm{P}_{x+10}^{(10)}$ in each of the ratios given above yielding probabilities of surviving 10 years.
*20. The disturbance due to migration except in the cases of a few Indian Provinces is not very material. Further, Migration Statistics are not available according to age. The Actuary has, therefore, to make as good an estimate as possible of the age distribution of the migrant population. The deaths amongst the net immigrant population though comparatively of small significance will have to be allowed for by him in each age group by using his best judgment.
*21. I think a few words at summarising the results arrived at so far will, in view of the help it may give at clarifying the point under consideration, not be considered redundant. For the sake of simplicity I shall assume either that disturbances due to migration do not exist at all or if they do, appropriate corrections have been made to the censused population to eliminate as far as possible errors due to them. If correct ages are returned at the Census we shall obtain the following results :-
I. On the supposition that the population has been absolutely stationary for a long period so that the number of births in a year is equal to the number of
deaths we shall have $\frac{\mathrm{P}_{x+1}^{(10)}}{\mathrm{P}_{x}^{(1)}}=\frac{\mathrm{P}_{x+1}^{(2)}}{\mathrm{P}_{x}^{(1)}}=\frac{\mathrm{P}_{x+1}^{(1)}}{\mathrm{P}_{x}^{(1)}}=\frac{\mathrm{P}_{x+1}^{\mathrm{M}}}{\mathrm{P}_{x}^{x+1}}={ }_{1} f_{1+1 / \downarrow}$
II. If the variation in the populations returned from Census to Census be due solely to variation in birth rate the ratio $\frac{\mathrm{P}_{x+1}^{\mathrm{M}}}{\mathrm{P}_{x}^{\mathrm{I}}}$ will have to be multiplied by a factor r as explained above which will have the effect of eliminating irregularity due to varying flow of birth rate from year to year and make the product $r \frac{\mathrm{P}_{x+1}^{\mathrm{x}}}{\mathrm{P}_{x}^{\mathrm{I}}}$ yield the value of ${ }_{1} p_{x+\frac{1}{}}$ which we require for the construction of , the mortality Table.
III. Similarly when the population has been subject to varying death rate only, we shall have to multiply $\frac{\mathrm{P}_{x+1}^{M}}{\mathrm{P}_{x}^{\mathrm{M}}}$ by a quantity $r^{\text {I }}$ (explained above) to make the product equal to ${ }_{1} p_{x+4}$.
IV. When the population has been subject to irregular variation in both births and deaths we shall have to multiply by two different factors r and r^{1} the ratio $\frac{\mathrm{P}_{x+1}^{\mathrm{M}}}{\mathrm{P}_{x}^{\mathrm{M}}}$ to make the product equal to ${ }_{1} p_{x+y}$. The factor r eliminates variation due to the irregular flow of births and is obtained by an analysis of the records of births maintained for a long period in the past and the factor r^{1} eliminates variation due to irregular incidence of rates of death from birth to age x and is obtained by an analysis of the records of deaths. In all the four cases $P_{x+10}^{(10)} / P_{x}^{(1)}={ }_{10} p_{x+\frac{j}{}}$ from which the values of ${ }_{1} p_{x+\xi}$ can be obtained by interpolation.
*22. These methods are available if, and only if, both the desiderata given below hold:

- (1) that the ages returned at the Census are absolutely correct, and
(2) that accurate records of births and deaths, the latter according to correct ages, have been maintained in the past.
*23. Since the ages returned at the Indian Censuses (including the latest one) have been manifestly full of errors both of a major and minor nature, added to which is the proverbial inaccuracy of the records of Vital Statistics maintained by the Provinces, we shall have to adopt special methods and construct mortality Tables by using Census enumerations alone. The fact that the Census enumerations are full of errors rules out the method of decennial interpolation from the equality $P_{x+10}^{(10)} / P_{x}^{(1)}={ }_{10} p_{x+1}$. The fact that the records of Vital Statistics are not maintained accurately makes it impossible to find out the factors r and r^{1} (mentioned above) representing correcting factors for the irregular incidences of births and deaths.
*24. The question will naturally be asked as to what is the method to be adopted which will minimise the effect of the errors in the Census material and provide mortality rates on which reasonable reliance can be placed. The answer is naturally suggested by the equation $P_{x+10}^{(10)} / P_{x}^{(1)}={ }_{10} p_{x+4}$ when Census operations are undertaken once in 10 years or by the equation $\mathrm{P}_{x+1}^{(2)} / \mathrm{P}_{x}^{(1)}={ }_{1} p_{x+i}$ when Censuses are taken annually. Taking the former of the two equalitics it will be seen that if the numbers at each age returned at the two Censuses could be successfully graduated so as to remove errors we shall obtain the ralue of ${ }_{10} p_{x+t}$ at each age. The disadvantage of this method is due to the fact that methods of graduation are not entirely successful in removing major deliberate errors. Since the values of ${ }_{10} p_{r+3}$ are to be obtained from two sets of numbers $\mathrm{P}^{(10)}$ and $\mathrm{P}^{(1)}$ independently graduated and haring residual errors in themselves, the errors in the computed values of ${ }_{10} p_{x+1}$ will be accentuated or masked according as the residual errors in $P^{(10)}$ and $P^{(1)}$ are in opposite or in the same direction with the natural result that small errors in the graduated ralues of $P^{(10)}$ and $P^{(1)}$ may be magnified in the computed values of ${ }_{10} p_{x+j}$. With such errors magnified in them these values will not give as accurate a measure as desirable of the manner in which the number $P_{x}^{(1)}$ at the first M9C0

Census diminished to P_{x+10}^{10} at the next decennial Census due to the operation of mortality.
*25. The only other method that would to a large extent minimise this error is suggested by the equality $\left(r r^{1}\right) \mathrm{P}_{x+1}^{\mathrm{S}} / \mathrm{P}_{x}^{\mathrm{M}}={ }_{1} p_{x+4}$. According to this method we graduate the mean population of the intercensal period and by comparing the two Census' enumerations in suitable age groups obtain and graduate the rates of natural increase of the population which will provide smooth values of r_{z} the rate of natural increase or decrease of the population at each age x in the decennium due to the combined operation of varying incidences in the birth and death rates. By multiplying the graduated mean population at each age x, $\mathrm{P}_{x}^{\mathrm{m}}$, by
 been returned at each age had two Censuses been taken, one on a date six months anterior and the other six months posterior to the middle day of the decennial period. By this device, from the figures of two Censuses taken with an interval of 10 years between them, we obtain the figures of two Censuses with only one year separating them. The values of ${ }_{1} p_{x+k}$ at each half age are then obtained from the equality ${ }_{x+1}^{\frac{1}{20}} P_{x+1}^{M} / r_{x}^{-\frac{1}{20}} P_{x}^{M}={ }_{1} p_{x+1}$. This is the method that has been adopted in the construction of the mortality Tables for all the Provinces.
26. No apology, I hope, is needed for this lengthy description of the peculiar methods to be adopted in constructing mortality Tables from Indian Census Returns without which, I am sure, those for whose benefit Census publications are usually meant will find it difficult to appreciate why for instance the mean population should be calculated or, as a matter for that, what has the rate of increase in the population to do with the rate of death. The average man of letters is afraid of anything in the nature of statistics on the ground that "it is all dull stuff ". It might take several years before the average reader realizes that statistics are nothing but numerical expression of facts a knowledge of which is essential to enable one to be prepared for difficulties which might occcur. They are more inclined to swear at statistics whereas they should swear by them. It will therefore be necessary, in the language of my esteemed friend, Mr. S. V. Mukherjea, Census Commissioner for Baroda, "to humanise the document". Talking of the general apathy of the public towards Census publications, Mr. Mukherjea in his characteristic style writes: "My experience has been that a Census Report, although intended for the general benefit of students and officers, is rarely read. Officers and publicists like to get a complimentary copy-for it is the thing to do so-look at its opening pages and then relegate it to their shelves, resorting to it most occasionally as an inducement to sleep when all other "drowsy syrup" of the doctors failed. What destiny is reserved for these humble pages, their author will be the last person to know".
27. If this is the language in which Mr. Mukherjea deplores the lack of interest of the public to a Census Report, my lot has been cast with a drier subject and the lengthy description given above is an humble attempt to "humanise my document".

SECTION III.

Errors in age.

1. The huge magnitude and the very wide range of the errors in the ages returned at the Indian Censuses constitute another important contributing factor, towards making the task of the investigating Actuary particularly difficult. So much has been said in the past by successive Census Commissioners and Census Superintendents of each Province and State of the errors that abound in the ages returned at the Indian Census that any lengthy description by me of the psychological factors that lie at the root of these errors would be to emphasise the obvious. A large part of the Actuarial Report in connection with the 1921 Census is devoted to a consideration of the question of errors in age.
2. Before I consider the actual nature and extent of the errors in age one special characteristic of vital importance more or less peculiar to Indian Census 'has to be mentioned, namely, that people have no clear notions as to the distinction between age last birthday and age next birthday and always mix up the two. This was proved beyond doubt by my predecessor by reference to the 1891 and the 1901 Censuses of the Punjab. Curiously enough, in the former of the two Censuses,
the people of that Province were asked to state their age next birthday whereas in other Provinces the age asked for was the age last birthday. In the subsequent Census, however, the age asked for in the Punjab as well as in the rest of India was age last birthday. In the former of the two Censuses, to bring the Punjab figures in conformity with the figures for the rest of India, conversion was effected from age next birthday to age last birthday by scheduling the number returned at each age opposite the next younget age.
3. A part of the full Table appearing on page 7 of Mr. Meikle's Report on the "Age Distribution and Rates of Mortality" relating to the two Censuses of the Punjab is given below.

TABLE III.

Numbers recorded at each age in 1891 and 1901 out of 100,000 persons in the Punjab.

Age.				1891.			1901.	
					Males.	Females.	Males.	Females.
27-28	.	\cdots	.	..	1,491	1,500	801	656
28-29	348	400	1,665	1,661
29-30		\cdots	..	.	5,511	6,180	373	374
30-31	\cdots	.	.-	..	219	148	5,257	6,039
$31-32$.	.	\cdots	..	1,830	1,567	200	148
32-33	\cdots	465	281	1,971	1,748

It will be seen that the large number 5,511 appearing in column 1 was the total population out of 100,000 males returned at age 30 next birthday and is, therefore, scheduled opposite to age 29 last birthday. This number 29 is really a very unpopular one as is evident from the smail number 373 returned at that age last birthday at the 1901 Census: Successive Censuses have revealed that nombers, relatively large as compared to the adjoining ages, have been returned at ages ending with 2 and 8.* This is evident from the comparatively large numbers entered opposite age periods 27-28 and 31-32 in the 1891 Census as these were returned for ages 28 and 32 next birthday respectively. In the subsequent Census, however, numbers more or less equally large were returned for ages 28 and 32 last birthday respectively. A study of the full Table to which reference has been made will show that this characteristic is repeated round about all ages which end in 0 or 5 . It is, therefore, evident that people fixed their attention only on the number indicating the age to be returned and were not influenced in the least by the age asked for being either the age last birthday or next birthday. Mr. Meikle states that it may, therefore, be assumed that the ages returned are the nearest birthday. What, however, appears to me to be the reasonable conclusion to draw is that the numbers returned at each age would have been the same whether ages next birthday or last birthday or nearest birthday had been asked for. A confusion similar to the one between age last birthday and age next birthday in India affected also the returns as to duration of marriage asked for in the 1911 Census of the United Kingdom as was pointed out by Sir Alfred Watson in the discussion on a Paper submitted by Dr. Stevenson on the "Fertility of the various Social Classes" to the Royal Statistical Society in April 1920.
4. The change made in the 1931 Census of recording age nearest birthday instead of last birthday appears to be one in the right direction on the primary ground that the greater care and thought necessary in giving an age to the nearest birthdsy taking into account the number of completed months after the last integral age, are more conducive to correct ages being returned when age nearest birthday is asked for than when age last birthday or next birthday is asked for. This appears to have been the main idea at the back of the mind of the Census Joint Committee in the United Kingdom when at the Census of 1921, for the first time, ages were required to be given in years and months though the change was made not with the intention of tabulating ages in years and months.
5. Taking up now the actual errors in the statement of ages at the Census it is said that an investigation into these errors is a study in idiosyncrasy. It would, however, give some consolation if it could be proved that each succeeding Census,

[^1] examination and is dealt with lower in this seotion.
showed that idiosyncrasy was slowly yielding place to sanity. It was, however, impossible for me to make any investigation in this direction with the 1931 Census Returns as by the time Government announced their intention to have the Actuarial Report in connection with this Census written by me the only available statistics were the ternary and septenary groups into which the individual Age Returns were straightaway sorted. Whether the ternary and septenary groupings could be modified so as to secure a more accurate balance of errors in each group is a subject which I shall take up under the head of "Grouping" in this section, but I cannot help observing here at the risk of repeating it that it will be undesirable to make the Census Analysis forego the demographic and psychological study which the distribution at each age out of a representative and random sample of 100,000 persons of each sex in each Province provides.
6. The principal sources of error in Census Statistics are of two kinds, namely, (a) Minor Errors of short range, unbiassed in character, and (b) Major Errors of a biassed nature and wide range that produce considerable distortion of the age curve.
7. Minor Errors.-The minor errors are attributable mainly to ignorance. Many people, in a country predominantly illiterate, are so indifferent as regards their age that, when questioned by the enumerator, they return round numbers which are primarily the nearest decennial ages and secondarily the nearest quinquennial ages. These errors are cyclical in character affecting ages which are multiples of 10 and 5 and recur, therefore, in cycles of ten-year age periods.
8. It has been held, by an examination of the relatively large numbers returned at ages ending in 2 and 8 as compared with the respective adjoining ages, that these digits are minor centres of attraction, meaning thereby that the numbers returned at these ages are more than the correct numbers at them. It is true that the preference for age 12 is so marked as to throw in the shade the general preference for a multiple of 5 in the age period $10-20$ and 8 is very often preferred to age 5 in the period 0-10. A reference to the row "Deviation" in Tables IX, X and XI will show that, beyond the partiality above indicated, preferences for ages ending in 2 and 8 are not so very pronounced in the other sections of the decennial age periods. As a matter of fact, in most provinces, except Bengal, 8 is a centre of repulsion* to a certain extent. All the other digits are repulsed in the order 6, 4, 7, 3,9 and 1 as is evident from the results of the tbree Census Returns analysed in Tables IX, X and XI above referred to. The method of construction of these Tables, the conclusions to be drawn from a study of them regarding the magnitude of the attraction or repulsion for ages ending in the several digits from 0 to 9 and the order in which the various digits have been preferred are taken up in greater detail in a few paragraphs of this section occurring later. These minor mis-statements of age are removed by a good method of graduation and disappear if the population is grouped in suitable decennial age periods.
9. Major Errors.-The major errors, that affect population statistics producing serious distortion of the age curve and of the rates of mortality deduced therefrom, consist primarily of the transfer of persons from one age period to another and secondarily of substantial omissions in the Census Records especially in ages of infancy and childhood.
10. If accurate records of deaths and migration are maintained according to each age it might be possible to identify the magnitude and locate the position of these major errors to a certain degree of accuracy, by comparing the number returned at any age, say, x at one Census with that returned at age $x+10$ at the next decennial Census by making suitable allowance for deaths and disturbances due to migration to which the first number had been subject in the intercensal period. It is hardly necessary to add that such an investigation is nextto impossible with the present condition of death and migrationrecords in India. These wilful mis-statements are generally due tovanity especially in the case of old persons who generally give themselves the advantage of a few more years. There mightalso be financial reasons for overstatement at the old ages if the laws of the country provide for an old age pension. In a certain number of cases these misstatements are also due to resentment against the personal nature of the questions

[^2]and suspicion of their motives. Whatever may be the causes for these d eliberate mis-statements they are ultimately traceable to ignorance; not ignorance of age itself to which the minor errors are due but to ignorance of the fact that the Census Analysis does not deal with individuals but only with groups and the individuals are merged unidentifiably in the groups dealt with.
11. At the appropriate place in this section comparisons will be effected between the extent and magnitude of the errors in age in India and those of some other countries where the level of education is decidedly higher than in India. The errors in the ages returned at the Censuses in India do not show any tendency to diminish and will not do so, so long as illiteracy permeates the population to the extent it is now doing. We cannot expect better results till education spreads and as a natural result the ignorance of the people in matters relating to the Census is substantially minimised. Talking of this ignorance Mr. G. H. Knibbs in a Paper read before the Royal Statistical Society in 1920 said :-
"It would be easy to publish primers showing the purpose of a Census or of the greater branches of Statistics. Such primers could readily be prepared so as to be supplied to primary and other schools-in such a form as to serve the purpose of a systematic and most useful instruction in Statistical Method-instruction which would be of business value. In this way a popalar recognition of the utility of Statistics could readily be created and the work of securing accurate data greatly facilitated."
12. One would entirely agree with Mr. Knibbs' view that education relating to statistical enquiries of all kinds, which, to make them serve their high purpose, should be presented in an interesting form devoid of all dull series of numerical Tables, should form a compulsory part of the education, in his boyhood, of the future citizen. This will to a large extent mend the no more than a dilettante interest shown even by a person of more than average education in matters relating to the Census.

On the Nature and Extent of the Errors in Age in Census Returns.

13. In his Actuarial Report in connection with the 1911 Census the late Mr. T. G. Ackland illustrated the preference for particular digits of age by the following Table :-

TABLE IV.

Showing in each of the six Provinces undermentioned the numbers out of a total of 1,000 returned in respect of each digit of age; also the mean values for the six Provinces and the order in which the several digits were recorded.

14. This Table was intended to show not only the magnitude of concentration at ages ending in certain favourite digits but also the order in which the digits were preferred. Mr. Ackland drew his conclusions on the assumption that had correct ages been returned the number with respect to each digit shown in the Table would have been 100 being a tenth of the total population which was reduced to 1000 for the purpose of this enquiry. In his Actuarial Report with the 1921 Census, Mr. Meikle did not publish any figures based on a similar analysis of the

1921 Census material but evidently indicated his acquiescence with the argaments and conolusions of Mr. Ackland by quoting the order of preference for each particular digit as deduced by the latter for the whole of India.
15. There is however some fallacy in this method. The count evidently commences at age 0 and a cycle is complete at age 9 . At age 10 another cycle commences which is completed at age 19 and so on. Each age, therefore, ending with the digit, say, 9 is nine years lower down the scale than age 0 of the same cycle and has therefore been depleted by deaths occurring in these nine years of lifetime. Had there been no preference for particular digits of age, that is, if people had returned their correct ages, even then the total number returned at ages having 9 in the unit's place would have been considerably smaller than the number returned at ages ending in 0 . There would have been a progressive and smooth diminution as we go downwards from age 0 to age 9 . The method of analysis adopted at the 1911 Report does not make allowance for this progressive diminution due to mortality and therefore loads the scales against ages at the lower half of the cycle in favour of those at the upper half.
16. In illustration of the case in point, I have taken Mr. Ackland's graduation of the specimen schedule of 100,000 males of the Province of Bombay. The graduated numbers are smooth and do not exhibit any preference for any particular digit of age but only diminish smoothly from age to age due to the operation of mortality. The results are set out in the following Table :-

TABLE V.

Distribution of 100,000 Males of the Province of Bombay according to the digit of age. in the unit's place.
1911° Census.

		Unit figare in age last birthday.									
		0	1	2	3	4	5	6	7	8	9
A.	..	12,225 1.45	11,400 1.35	$10,8.15$ 1.28	10,382 1.23	9,987 1.18	9,638 1.14	8,318 1.10	9,017 1.07	8,732 1.03	8,456 1.00

17. In the row A the graduated numbers are given while row B shows the ratio which the number at each digit bears to that at digit 9 . The latter figures indicate that, without showing any preference for ages ending in particular digits, the total population returned at ages ending in 0 should be 45%, those at ages ending in $1,35 \%$, at $2,28 \%$, etc., in excess of those returned at ages ending in 9 . Hence, before conclusions are drawn, allowance should be made for this natural excess at all other digits as compared with the number at digit 9 .
18. A method that eliminates this fallacy is to obtain for each digit the ratio of the sum of the ungraduated to that of the graduated numbers at that digit and compare these ratios. It is not claimed that the graduated numbers represent absolute truth. A good method of graduation would produce figures which deviate, if at all, from the true figures within the limits of errors due to random sampling. It can, therefore, be claimed that, where the original statistics are manifestly full of errors, the graduated figures represent as near an approach to the true figures as possible; the greater the reliability of the original statistics the closer will be the graduated to the true figures.
19. The three Tables IX, X and XI appearing on pages 128-130 show for the six main Provinces of India in each of the three Censuses (1911, 1901 and 1891) the numbers returned in respect of each digit of age out of a total male population of 1,000 in each Province, the corresponding graduated numbers and the ratios of the ungraduated to the graduated total for each digit. The deviations (excess + , deficiency-) of the ungraduated from the graduated numbers are given in the next row and the row following shows the order in which the different digits have been preferred while returning ages obtained by a comparison of the ratio of the ungraduated to the graduated numbers. The last row gives the rank allotted to each digit by the method adopted at the 1911 Analysis by a comparison of the size of the ungraduated numbers only without making any allowance for their progressive diminution due to the operation of mortality as explained above. I could not carry this enquiry down to the 1931 Census as with that Census, with which my work is intimately connected, no returns at individual ages either of the
whole population or of samples, as I have several times said in this Report, are available, while with respect to the 1921 Census, though the numbers at individual ages of specimens are available, the graduated numbers are available only in groups.
20. It should be observed at the outset, at the risk of repeating it, that digits should be allotted their rank in the order of record only by a comparison of the ratio of the ungraduated to the graduated numbers and not by a comparison of the magnitude of the absolute numbers representing deviation. In illustration of this point, we can take the digits 1 and 9 for the United Provinces at the 1911 Census. The ratio for the former digit is $\cdot 4196$ and for the latter $\cdot 3837$ which shows that out of every 10,000 males whose ages had 1 in the unit's place only 4196 returned correct ages and the remaining 5804 other ages. As for the digit 9 the ratio shows that only 3837 out of 10,000 whose ages ended with 9 returned correct ages. It is now evident that, as between the two digits, ages ending with digit 9 were repelled by the U. P. males in 1911 more than ages ending with digit 1. If we had drawn our conclusions from the relative magnitude of the deviation for each digit we would have inferred that 9 was more popular than 1 in that Province. The deviations have their own use in giving a numerical measure of the magnitude of the error at each digit out of each sample of 1,000 of the population having the same age distribution as the total population. For instance, in such a sample of 1,000 persons in the United Provinces in 1911, as many as 112 persons would have been found at ages ending in the digit 1 of which only 47 returned correct ages and the remaining 65 returned incorrect ages. The ratio of 65 to 112 is smaller than the ratio of 53 to 86 showing that the unpopularity of 1 in U. P. at the 1911 Census was less than that of 9 though the absolute figures of deviations for these digits are 65 and 53 respectively. The "total deviation irrespective of sign" gives the total number of males out of each representative sample of 1,000 persons that returned incorrect ages.
21. It will be seen, from a scrutiny of the figures in Tables IX, X and XI, that ages ending with the digits 0,5 and 2 proved centres of attraction. Confining first our attention to the figures relating to All-India in Table IX, it will be seen that as many as 141 per mille of the total population whose ages did not end with the digit 0 returned ages ending with that digit at the 1911 Census. This is the average figure-for the whole of India and varies from a maximum of 175 in the United Provinces to a minimum of 68 in Burma. The magnitude of the plumpings at ages 0 in the other Censuses can be obtained similarly from the figures for these Censuses appearing in Tables X and XI. The next popular digit is 5 though in the age period $10-19$ age 12 has a greater degree of concentration than age 15. Next in rank in the order of preference comes the digit 2, followed by 8. From an examination of the All-India ratios for these two digits in all the three Censuses, it will be seen that the numbers returned at these ages are very nearly accurate. The former is the centre of a small attraction though it has been consistently repelled by Burma, and by Madras in two out of the three Censuses analysed. The latter is, if anything, a small centre of repulsion. In the 1891 and 1901 Censuses 1 per mille and 5 per mille respectively of the total population who were of an age ending witb digit 8 repelled their true ages and returned other ages. At the 1911 Census, however, 1 per mille of the total population whose age did not end with the digit 8 returned an age ending with that digit. Bengal alone, of all the Provinces, appears to have consistently shown a great partiality for these two digits. I feel it essential to emphasise the fact that the errors at ages ending in digits 2 and 8 are not very material, except at the single age 12 and the single age 8 , as it appears to me that it has been assumed in the past that at ages ending in these two digits there has been a substantial overstatement of numbers.
22. The other digits are definite centres of repulsion as in every one of them the actual numbers returned are less, in some considerably less, than the expected or graduated numbers. The same fact is confirmed by the ratios applicable to these digits either for the Provinces or for the whole of India as these ratios are in every case substantially less than unity, which, by the way, would have been the value of the ratio for any digit had correct numbers been returned at that digit.
23. What might, however, prove of interest is the fact that the unpopularity of digits $6,7,8$ and 9 appearing in the lower half of the cycle has been accentuated and that of digits 1,3 and 4 in the upper half masked by the method of comparison
adopted at the 1911 Report which omitted to make allowance for the influenc of mortality above referred to. For a similar reason the popularity of ages endin in 0 has"ween further magnified and that of ages ending in 5 not fully brought ou by the inherent fault in the old method which compared the several digits as regard: their popularity by the absolute magnitude of the crude figures returned at the Census. To take an example, it would appear, by paying attention only to the numbers returned at the Census, that in the Province of Bengal at the 1911 Census as many as 153 per mille of the total population who were not of ages ending witl 0 returned such ages whereas the correct number as given by "Deviation" should be only 129. The ungraduated figure for digit 5 would indicate that the clustel round ages ending in 5 was only 87 per mille whereas the correct number is larges being 91. This method of basing conclusions from the magnitude of the crude figures only returned at the Census without allowing for the fall in numbers due tc mortality from age to age did perhaps the greatest injustice to digit 5 as against digit 0 at the 1901 Census in the two Provinces of Bombay and Madras. I am not aware if it had been realised that in these two Provinces at the 1901 Census the cluster round ages ending in 5 was proportionately larger than that round ages ending in digit 0 . The ratios (which alone give the correct method of assessing the popularity of different digits) relating to these digits show that in the Province of Bombay at the 1901 Census the numbers returned at ages ending in 5 were 208 Fer cent. of the correct number whereas for digit 0 they were only 192 per cent. The corresponding percentages for Madras were 142 and 141. Since the absolute magnitude of the numbers returned at 0 is considerably larger than that at 5 it is very likely that the fact, that at the 1901 Census in the Provinces of Bombay and Madras, ages ending in digit 5 were more popular than ages ending in digit 0 , thereby reversing the usual order of preference of these two digits, was overlooked.
24. The method of comparing ungraduated Census figures has also reversed the relative positions of digits 1 and 9 and the latter has come in for a meassure of unpopularity rather undeserved. It will be seen from a reference to Table IV that digit 9 has been given the last rank in the order of record for all the Provinces and naturally for the whole of India and digit I the next higher rank in almost all Provinces and for the whole of India, while in the United Provinces this digit was given as high a rank as the 7 th. It will, however, appear from a comparison of the sizes of the ratios that at the 1911 Census in all the Provinces and in the whole of India 9 was more popular than 1 except in the United Provinces where the order was reversed. A reference to all the three Tables IX, X and XI will show that except in two instances (1901 Burma, and 1911 U. P.) digit 9 always secured the 9th rank and 1 the last, viz., loth rank, thereby proving clearly the greater popularity of ages ending in digit 9 as compared with ages ending in digit 1 . The other incorrect ranks allotted by the old method are all indicated in Table IX.
25. Exigencies of space and time forbid my making any further elaboration on this subject relating to the order in which ages ending in the different digits were preferred at the three Censuses that have been analysed for this study. It is, however, necessary to state in closing this topic that the other odd numbers excluding 5 were preferred in the order 3, 7, 9 and 1 and not in the order 3, 7, 1 and 9 , as made out in the older Reports. As between digits 3 and 7 it is not quite decisive which of the two is the more popular. Each is repelled practically to the same extent as is evident by the extreme closeness of the ratios relating to these two digits in all the three Censuses for the whole of India.
26. As regards how far these errors show a tendency to diminish, I fear, I am not in a position to make any statement that would show a satisfactory state of things. Information in this respect is given by the numbers called " total deviation irrespective of sign " in Tables IX, X and XI. For the whole of India about 522 per mille of the male population returned incorrect ages at the 1891 Census which happily dwindled down to 376 at the 1901 Census but at the 1911 Census the number rose again to 466 . If we examine particular digits the same tendency is reyealed. For instance, the concentration at age 0 at the 1891 Census was 166 per mille which diminished to 108 at the 1901 Census and again rose to 141 in 1911. It will be found that in the case of all Provinces except Burma there has been a set-back in this respect from the 1901 to the 1911 Census. It is not possible to say how far Burma has been consistent.
in the tendency for improvement it has shown, as this Province, for reasons explained by Sir George Hardy, was not included in the 1891 Actuarial Analysis. Madras which showed a very large deviation of 562 at the 1891 Census was remarkably accurate at the 1901 Census, for, at that Census only 180 per mille of the total male population gave incorrect ages. At the 1901 Census the accuracy shown by Madras was substantially superior to that of all the other Provinces including Burma. But it has since taken fast strides in the retrograde direction as will be evident from the large number, 450 per mille, that returned incorrect ages at the 1911 Census. This figure, though significantly smaller than the figures of the other Provinces excluding Burma, is almost double that of Burma and shows Madras as exactly two and a half times worse off in this respect as judged by the standard set up by Madras itself at the 1901 Census. It is not, I hope, necessary to make further comments as the figures of 'ratios ', ' deviation' and 'total deviation irrespective of sign ' tell their own tale. The general conclusion to be drawn from a scrutiny of these figures is that the tendency towards improvement shown by all the Provinces from 1891 to 1901 practically vanished in 1911, Burma alone being an exception. What has happened since 1911 I am not in a position to pronounce any opinion upon backed by Statistical Analysis, as, for reasons I have already explained more than once, it has not been possible for me to make any investigations in this direction with the 1921 and 1931 Census materials.
27. It has often been held, not without justification, that the magnitude of these errors is directly correlated with the percentage of illiteracy in a country. It might, therefore, be instructive to compare in this respect India with some representative countries of the world., An easy method of comparison is obtained by using the "Index of Concentration" devised by the United States Census Bureau. By this method the number of persons between 23 and 62 years whose ages are returned as multiples of 5 is compared with one-fifth of the total number between the two ages. The method is based on the justifiable assumption that had there . been no concentration on multiples of 5 these two figures would be "about equal". The limits 23 and 62 were selected as they covered the period in which the concentration under investigation was most marked. The method suffers, to a certain extent, from the same disadvantage as attaches to that adopted at the 1911 Actuarial Analysis in proving the order of preference for particular digits of age. Since, however, numbers ending in 5 and 0 are symmetrically placed in each cycle that commences with 3 and ends with 2 , any bias in favour of 5 introduced by the method is neutralized by the bias contrariwise against 0 . Again, since the small error yet attaching to the method affects more or less equally all the countries, comparison of one country with another is not vitiated by this method. The following Table effects such a comparison in which the total for multiples of 5 is expressed as a percentage of the total for all ages from 23 to 62 and is taken from the 1921 Report for the Province of Bombay by Mr. Sedgwick. It should, however, be stated that 100 would mean no concentration at all and 500 , the maximum value of the index, would mean that all ages returned between 23 and 62 were multiples of 5 .

TABLE VI.

Region.						Index		ion.
Bombay-Males.		area 1	\cdots	-	-	.		25
Bombay-Males.		area 2	\cdots	.	-	.		14
Bulgaria	-	.		45
Russia	\cdots	-	\cdots	-		82
Hungary	-	\cdots	.	.	\cdots	.		33
United States	.	\cdots	.	-	-	\cdots		20
Canada ..	.	-	\cdots	.	.	-		10
France ..	.	\cdots	\cdots	-	.	-		06
Germany	.	\cdots	\cdots	\cdots	-	\cdots		02
Sweden ..	.	-•	-	..	\cdots			1
England and Wale		-	-	.-	-	\cdots		00
Belgium	-		00

28. Another method of indicating the tendencies of people to concentrate at ages ending in certain digits and avoid others is to find the ratio of the total number returned at ages ending in particular digits to the corresponding graduated total which was also explained earlier in this section. The following Table, compiled by Mr. G. H. Knibbs, gives for males and females of Australia the ratio described above for the three Censuses taken in 1891, 1901 and 1911.

TABLE VII.
Ratio of number recorded to adjusted number. Censuses-1891, 1901 and 1911Australia.

A Table similar to the above, with respect to the male population only of the whole of India for the same three Censuses, is given below :-

TABLE VIII.
Ratio of number recorded to adjusted number. Censuses-1891, 1901, and 1911-All-India-Males.

29. It need hardly be stated that unity for any digit would mean that ages ending in that digit have been correctly returned. A cursory scrutiny of the above Tables will make it evident how very slight the bunchings are in Australia at ages ending in 0 and 5 as compared with the pronounced cluster round these ages in India. The same characteristic might also be noted at ages which are centres of repulsion. The chief reason why these Tables are given here is to show that, whereas in-Australia there is a pronounced tendency for the ratios relating to each digit to approach unity, that is, for the errors in age, already very small, to show a definite tendency towards diminution, no such tendency is exhibited by the figures relating to India. I have only to repeat what I have already observed that though 1901 Census figures showed some improvement on those of 1891, the figures relating to the 1911 Census indicated a definite move in the retrograde direction as is also evident from Table VIII.

Grouping.

30. Germane to the subject of errors in age is that of the groupings to be adopted to minimise the effect of the accidental errors that affect Age Returns. This is, however, a topic on which opinion is divided and whether one particular method or another is to be preferred will depend on the certainty with which it will be possible to say how far the statistics collected are afflicted with errors of overstatement or understatement and whether the range of these eirors is short or long. The central idea underlying all methods of grouping is that groups should be formed as far as possible containing the popular age along with the adjoining ages from which the former has drawn numbers so that, though returns at individual ages may be incorrect, the total of the group may be considered reasonably correct and the group totals are used as the basic data for any subsequent investigations. The most satisfactory grouping is that which makes the deviations between the total in each group and the ideal total in that group that would have been evident had correct
ages been returned a minimum. We are then faced with the problem of giving due weight to the rival claims of two considerations each acting contrary to the other. With the view to minimise the errors left over in them it is desirable to form large groups ; on the other hand, large groups may have the effect of obscuring peculiar conditions prevailing in the decennium affecting only short range or ranges in the age curve.
31. Had the plumpings been confined only to ages ending in 0 , groups $5-14$, 15-24, etc:, would deal effectively with such errors on the assumption that the concentration at ages ending in 0 is only drawn from the adjoining four or five ages on either side. The records of deaths of England and Wales were presented in this form for many years. Since; however; ages ending in 5 are also secondary centres of disturbance, the decennial groups above referred to will have to be abandoned in favour of quinquennial groups. Had there been concentrations of equal intensity at ages 0 and 5 , groups 3-7; 8-12' etc., wherein the digit of concentration occupies the central position in each group would have been satisfactory. Indian Census Returns have, however, indicated concentration of greater intensity at all decennial ages than at quinquennial ones. This is the main point of criticism against this method added to which is the fact that ages ending in 2 which are also favoured to a certain extent occur at the end of alternate groups. In what follows this will be referred to as the 3-7 group. Had the concentrations at the two favourite digits been due to systematic over-statements of ages only, groups $1-5,6-10$, etc., would have eliminated them. Similarly groups $0-4: 5-9$, etc., would have satisfactorily dealt with understatements. Except, however, at particular short periods of life there is no reason why systematic over-statement or under-statement alone should affect the Age Returns. The former method ($0-4$ group) had been adopted in the past as the standard one for grouping and presenting Census figures. This was condemned by my predecessor, Mr. Meille, as the least accurate of all the methods of grouping and I find myself in entire agreement with his condemnation of the method as I shall show lower down in the course of this enguiry. I should also make special mention here of the great service rendered by Mr. Meikle to the cause of Indian Census by focussing attention on this important subject of grouping. The recommendations made by him, though in my opinion could be improved upon, were decidediy in the nature of improvements on the old methods. There are two more groupings, namely, $2 \cdot 6$, $7-11$, etc., and $4-8,9-13$, etc. Five different.methods of grouping have altogether been mentioned respectively designated as $0-4,1-5,2-6,3-7$ and $4-8$ groups. We can also call 0-4 grouping as the 1st place method-designating the method of grouping by the position of the most popular age of the group relative to it. For a similar reason 4-8 group will be called 2nd place method and $3-7,2-6$ and $1-5$ will respectively be called 3rd, 4th and 5th place methods. Each of these methods of grouping could be associated with either age last birthday, next birthday or nearest birthday thereby giving rise to 15 different methods. In India, however, since people do not make any distinction in returning ages between age last birthday, next birthday or nearest buthday, there are only five different methods to be taken into account.
32. For adoption in connection with the 1931 Census Mr. Meikle recommended a method of grouping in alternate ternary and septenary groups 4-6, 7-13, etc., to be used in conjunction with the age nearest birthday. This method of grouping, according to my analysis, is a decided improvement on the old $0-4$ method. There is, however, an inherent defect in the method in so far as it exaggerates bunchings in ages which are multiples of 10 and does not give full weight to those at ages which are multiples of 5 . Ages of the former type occupy the central place amongst seven ages while those of the latter type occupy the ceniral place amongst three ages only. It will, therefore, be evident that this method of grouping is based on the assumption that the concentration at ages ending in 0 is very nearly three times that at ages ending in 5. By reference to the ratios in Tables IX, X and XI it will be seen this is by no means the case. It wasalso pointed out earlier in this section that in two instances (Bombay and Madras, 1901) the actual proportion of concentration at ages ending in 5 was in excess of that at ages ending in 0.
33. It will, therefore, be desirable to slightly diminish the number of ages grouped along with an age ending in 0 and increase correspondingly the number grouped along with an age ending in 5 . Since there is markedly greater concentration about ages ending in 0 than about 5 , the number of ages in the former group should be. Jarger than at the latter very nearly in proportion to the relative concentrations. I have, therefore, considered the claim for recognition of the following quaternary M8CO
and senary groupings in conjunction with age last birthday at the date of Census. A quaternary group is formed about an age ending in 5 which is placed centrally with an age and a half on either side of it. A senary group is formed about an age ending in 0 placed centrally with $2 \frac{1}{3}$ ages on either side of it. The earliest quaternary group comprises all persons whose ages are 3,4,5 and 6 last birthday. The next higher quaternary group is composed of persons of ages 13, 14, 15 and 16 last birthday and so on. The earliest senary group is formed of persons of ages from 7 to 12 last birthday, the next higher from 17 to 22 and so on. It would appear that these groups could easily be formed if the age asked for at the Ceosus is last birthday. It will, however, be desiable not to sacrifice the greater accuracy secured, if any, in the ages returned by asking for the nearest age. If as at the 1931 Census groups are to be formed from the nearest age, the suggested quaternary and senary method of grouping will only necessitate dividing into two equal halves the numbers returned at all ages ending in 3 and 7. One haif of the number at an age ending in 3 will be taken with the upper senacy group and the other half with the lower quaternary group. Similarly half of the number returned at an age ending in 7 will be taken with the upper quaternary group and the other half with the lower senary group.
34. We have now to consider the relative accuracy of seven different methods of grouping which are described as follows:-
(1) 0-4 group called also lst place method.
(2) 4-8 group called also 2 nd place method.
(3) 3-7 group called also 3rd place method.
(4) 2-6 group called also 4th place method.
(5) 1-5 group called also 5th place method.
(6) The Ternary and Septenary method.
(7) The Quaternary and Senary method.

TABLE IX.

1911 Males.

TABLE X.

1901 Males.

官	f. Ungraduated		-	189	74	96	89	78	155	81	86	77	55
	. Graduatod		.	119	113	108	104	100	97	94	91	88	86
	Ratio	.	.	1.6723	-6549	-8889	-9519	-7800	1-5979	-8817	-9451	-8750	-6396
	Deriation		-	+80	-39	-12	-5	-22	+58	-13	\rightarrow	-II	-11
	Order of record			(1)	(9).	(5).	(3).	(8).	(2).	(7)	(4)	(6)	(10)
	Total deviation irreapeotive of aign 276												
	\int Ongraduated	\cdots	-	169	104	100	93	90	138	81	77	76	78
	Graduatod	.	\bullet	120	113	108	104	100	97	94	91	88	85
	Ratio		.. ${ }^{\prime}$	1.4083	-9204	. 9259	-8942	-9000	$1 \cdot 4227$	-8817.	-8468	-8630	-8471
	Devintion-			+49	-0	-8	-11	-10	+41	-13	-14	-18	-18
	Order of record .			(2)	(4).	(8)	(6)	(5)	(1):	(8)	(10)	(7)	(3)
(Total doviation irreapective of aiga 18j													
$\underline{40 c O}$													p9

	Unit figure in age last birthday．											
			0	1	2	3	4	5	6	7	8	θ
盛			274 122 2.2459 +152 (1) 3ign 530	$\begin{array}{r} 40 \\ 114 \\ -3509 \\ -74 \\ (10) \end{array}$	$\begin{array}{r} 119 \\ 108 \\ 1 \cdot 1018 \\ +11 \\ (3) \end{array}$	$\begin{array}{r} 57 \\ 104 \\ \cdot 5481 \\ -47 \\ (7) \end{array}$	$\begin{array}{r} 67 \\ 100 \\ \cdot 6700 \\ -33 \\ (6) \end{array}$	$\begin{array}{r} 198 \\ 98 \\ 2 \cdot 0625 \\ +102 \end{array}$ (2)	$\begin{array}{r} 74 \\ 93 \\ \cdot 7957 \\ -19 \\ (5) \end{array}$	$\begin{array}{r} 49 \\ 90 \\ \cdot 5444 \\ -41 \\ (8) \end{array}$	86 88 .9773 -2 4$)$	$\begin{array}{r}36 \\ 85 \\ \hline 4235 \\ -40 \\ \hline(9)\end{array}$
	Ungraduated ．．． Graduated Ratio Deviation Order of record ．． Total deviation irr		262 119 $2 \cdot 2016$ +143 (1) ign 428	$\begin{array}{r}58 \\ 112 \\ -5179 \\ -54 \\ \hline(10)\end{array}$	$\begin{array}{r} 113 \\ 107 \\ 1 \cdot 0561 \\ +6 \\ (3) \end{array}$	$\begin{array}{r} 65 \\ 104 \\ \cdot 6250 \\ -39 \\ (8) \end{array}$	$\begin{array}{r} 78 \\ 100 \\ \cdot 7800 \\ -22 \\ \hline(6) \end{array}$	$\begin{array}{r} 182 \\ 97 \\ 1 \cdot 6701 \\ +65 \\ (2) \end{array}$	$\begin{array}{r} 80 \\ 94 \\ \cdot 8511 \\ -14 \\ (5) \end{array}$	$\begin{array}{r} 56 \\ 92 \\ -6087 \\ -30 \\ (7) \end{array}$	$\begin{array}{r} 81 \\ 89 \\ \cdot 9101 \\ -8 \\ \hline(4) \end{array}$	$\begin{array}{r} 45 \\ 86 \\ -5233 \\ -41 \\ \hline(9 y) \end{array}$
	$\left[\begin{array}{ll}\text { Ungraduated } & . \\ \text { Graduated } & \text { ．．} \\ \text { Ratio } & . . \\ \text { Average deviation } \\ \text { Order of record ．} \\ \text { Total deviation irre }\end{array}\right.$	．． . . ．． －． ive of	229 121 1.8925 +108 （1） ign 376	63 113 -5575 -50 (10)	114 108 1.0556 +6 (3)	$\begin{array}{r} 72 \\ 104 \\ \cdot 6023 \\ -32 \\ (8) \end{array}$	$\begin{array}{r}76 \\ 100 \\ .7600 \\ -24 \\ \hline(6)\end{array}$	$\begin{array}{r} 170 \\ 06 \\ 1.7708 \\ +74 \\ (2) \end{array}$	78 94 .8298 -16 (5)	$\begin{array}{r}65 \\ 91 \\ .7143 \\ -26 \\ \hline(7)\end{array}$	$\begin{array}{r}83 \\ 88 \\ .9432 \\ -6 \\ \hline(4)\end{array}$	$\begin{array}{r}-50 \\ 85 \\ -6888 \\ -35 \\ \hline 9\end{array}$

TABLE XI．
1891 Males．

感	［ Ungraduated	．		249	49	122	61	70	170	79	61	94	45
	Graduated	．．		122	114	108	104	100	97	93	90	87	85
	Ratio			2.0410	－4298	1－1298	－ 5865	－7000	1.7526	． 8495	－6778	1.0804	－ 5294
	Devistion			＋127	－65	＋14	－43	－30	＋73	－14	－29	＋7	－40
	Order of record	．．		（1）	（10）	（3）	（8）	（6）	（2）	（5）	（7）	（4）	（9）
	Total deviation irrespective of aign． 442												
	［ Ungraduated	．．		288	37	116	51	66	213	67	44	78	40
	Graduated	．．	．．	122	114	108	104	100	97	93	90	87	85
	Ratio	．	．	2．3806	－3246	1.0741	－4904	－6600	2－1059	－7204	． 4889	－8906	－4708
	Deriation	..		＋166	－77	＋8	－53	－34		－26	－46	－9	－45
	Order of record	l..		（ 1 ）	（10）	（3）	（7）	（6）	（2）	（5）	（8）	（4）	（9）
	（Total deviation irrespeotive of sign 580												
	Burms	\cdots	．．	＊	－•	－	－•	－•	－•	－•	．	－	－•
易安	［ Ungraduated	－		310	33	102	59	68	185	77	44	92	30
	Graduated	．．	．	121	113	108	104	100	97	83	91	88	85
	Ratio	－．	..	2.5620	－2920	． 9444	－ 5673	－6800	1－9072	－ 8280	－4835	1.0456	－3529
	Deviation	．．		＋189	－80	－6	－45	－32	＋88	－18	－47	＋4	－55
	Order of record	．．		（1）	（10）	（4）	（7）	（8）	（2）	（5）	（8）	（3）	（9）
	［Total devintion irrespective of aigh 562												
	Punjab	．．	．－	\dagger	．	＊	－•	．\cdot	－	－＊	＊	－	－•
	Ungraduated	．		301	45	114	56	67	177	78	47	80	35
	Graduated			120	113	108	104	100	97	94	91	88	85
	Ratio	．		2.5083	－3982	1.0555	－ 5384	－6700	1．8247	－ 8298	． 8165	． 9001	－4118
	Deriation	．．		＋181	－68	$+6$	－48	－33	$+80$	－16	－44	－8	-50
	Order of record	．．		（1）	（10）		（8）	（6）	（2）	（5）	（7）	（4）	（9）
	（Total deviation irrespective of sige 534												
	Ungraduated	－	＊	287	41	114	57	68	186	75	49	86	33
	Graduated			121	114	108	104	100	97	93	90	88	85
	Ratio	\cdots		$2 \cdot 3719$	－3506	1.0550	． 5481	－6800	1.9175	－8085	． 5444	－9773	－4471
	Average deviati	ton	－	$+166$			－47	－32	$+89$		－42		－48
	Ordor of record	．．	．	（1）	（10）	（3）	（8）	（6）	（2）	（5）	（7）	（4）	（9）
	（Total doviation irrespective of sign 522												

＊For reasone explained by him Sir George Hardy did not make any investigation with the Burma figurea．
\dagger It was not possiblo to include the Punjab in the 1891 Analyais as tho ages noxt birthday were tabulated for er hat Province at that Consus．
35. It will be desirable here to say a few words about the two criteria by which the suitability of any method of grouping is generally tested. The first criterion is what is called "goodness of fit". According to this criterion that method of grouping is the best which yields values at individual ages which deviate the least in the aggregate from the originally observed values. The second criterion relates to "smoothness" and helps to single out that method of grouping as the best which makes the values progress smoothly from one group to another.
36. Each of the first five methods of grouping was the subject of more than one severe test in the past with the view to find out which of them gave the most satisfactory result. In that gigantic work in connection with the preparation of Life Tables for the United States of America for 1890, 1901, 1910 and 1901-1910, Mr. James W. Glover, Professor of Insurance in the University of Michigan, conducted elaborate investigations with the statistics relating to the male population in the State of New York estimated as of July 1910 and the deaths of the three-year period 1909-1911.
37. In testing "goodness of fit" his first method was to obtain the rates of mortality for all ages from 15 to 85 by a method of osculatory interpolation when the population and the deaths were combined according to each of the five quinquennial age groups. These rates were compared with the rates of mortality obtained from the average of these five sets of graduated populations and statistics of deaths. The smallness of the deviations and the frequency with which these deviations changed sign were made the criterion by which to judge which method of grouping gave the most satisfactory result. By his second method he obtained the deviations of the expected from the actual deaths for each of the five methods of grouping. His third criterion was to consider that method of grouping the best which made the weighted squared deviations of the graduated values from the observed values a minimum. Each of the three methods detailed above can only be of theoretical interest to us in India so long as the. records of Vital Statistics are in the present state of unreliability.
38. Instead of comparing the rates of mortality as deduced by every one of the methods of quinquennial grouping with the average for all groupings or with the observed rates of mortality as Professor Glover did because the data supplied to him comprised inter alia dependable statistics of deaths, I had, in the absence of this desideratum, no other option but to compare the actual numbers in each group for each method with the corresponding expected (or what is the same thing graduated) number. Whatever may be the actual groups in which the original statistics are collected they have to be finally transformed to the 0-4 groups (lst place method). This is more or less essential as the Age Statistics of most other countries and of India itself have all been published in this form and if any other method of grouping be adopted for the final presentation of population figures, comparisons with other countries and with past Censuses of India itself, which are always of very great value in Census study, would be practically impossible. The three Tables XV, XVI and XVII appearing at the end of this section show for the All-India Males in each of the three Censuses, 1891, 1901 and 1911, the deviations between the actual numbers returned at the Censuses and the graduated numbers in 5-9, 10-14, etc., groups for all the methods of grouping. It will be seen that, according to all the other methods except the first, the original statistics are not collected in 0-4 groups (i.e., according to the lst place method). All the other six methods.were transformed from their respective groups to the 0-4, etc., groups which, as observed above, is desirable with the view to effect useful comparisons with other Census Statistics.
39. A word of explanation as to how this transformation from the original grouping to the 0-4 grouping should be effected may be necessary. Taking for instance the 2nd place method, the group, say, 4-8 should part with a fifth of the total ungraduated number in that group to the previous group and obtain a fifth of the total ungraduated number from the following, namely, $9-13$ group. The result can very nearly be taken to be the 5-9 group and so on for transforming other groups. Similarly the 3rd place method of grouping should cede the population relating to ages ending in 3 and 4 to the preceding group and obtain the population relating to ages ending in 8 and 9 from the succeeding group. Each group should therefore cede two-fifths of its number to the preceding group and M900
obtain two-fifths of the number in the succeeding group. The adjustments to be made to the 4th and 5th place methods of grouping to transform them to the Ist place method should now be evident.
40. The assumption is made in this process of transforming one group into another that the numbers in all the ages in a quinquennial group are equal and no allowance is made for the progressive diminution of the population from age to age in that group. I have, however, satisfied myself that except at the ages of infancy and childhood and at the extreme old ages (say, above 70) the resulting error is of small magnitude. At the early ages, however, statistics of population should be tabulated according to single age periods and at the very old ages the statistics are usually combined into a single group, say, 70 and over. It will, therefore, be evident that at those age periods where the grouping device is adopted to minimise the effects of minor mis-statements of age the error introduced by the above assumption is of no great moment. The ternary-septenary and the quaternary-senary methods of grouping are transformed easily into 0-4, etc., groups by the dichotomous process explained by Mr. Meikle with respect to the former method of grouping which he advocated. By this method groups are formed by taking the sum of one-half of any two consecutive groups and the restliting new groups are of the 0-4, 5-9, etc., type.
41. The smallness of the number called "total deviation without sign" is the basis by which to judge each of the seven methods for the first criterion, namely, "goodness of fit".* This number shows the sum of the deviations (whether in excess or in defect) of the recorded numbers from the graduated numbers when the former in each of the six methods of grouping (except of course the first which is in the required form) are finally transformed into $0-4,5-9$, etc., groups by processes of which full explanation was given above. The alyebraic sum of the deviations does not provide the criterion by which to judge the methods, as two deviations, one very large and positive and another negative and equal or very nearly equal, would produce a small algebraic sum of the deviations in spite of the large error of the observed number in each case from the ideal number. Judged by the criterion of the smallness of the "total deviation without sign" it will be evident that the 4th place method (2-6, 7-11, etc., groups) is foremost in rank of all the seven methods considered. The sum of the deviations irrespective of sign is the smallest for this method in each of the three Censuses considered. Second in rank as regards accuracy is the "Quaternary and Senary" method explained in detail earlier in this section though the "Ternary and Septenary" method shows itself as slightly superior at the 1891 Census, but this is more than compensated for by the very large differences in the other two Censuses in favour of the former method. It will be of interest to note that the lst place method ($0-4$, etc., groups) shows the largest deviation of all the seven methods in all the three Censuses. This is the method of grouping of the population that had been adopted in the past and Mr. Meikle was quite justified in condemning this method as the least accurate of all the methods of grouping population statistics in India.
42. I felt it might be of interest to ascertain which of the seven methods gave the least deviation between graduated and ungraduated numbers in their original groups themselves before the transformation into $0-4$, etc., groups was effected. The results are set out in the following Table :-

TABLE XII.
All-India-Males.

Year of Census.		Total devistion without sign.							
			1st place method. '0-4.'	2nd place method. '4-8.'	3rd place mothod. '3-7.'	4th place method. '2-6.'	6th placo method. ' $1-5$.'	Ternary and Septenary method.	Quaternary and Senary method.
1891	-.		49,062	51,348	67,473	43,373	50,470	30,227	46,083
1901	..	.	66,580	61,227	81,085	51,174	55,504	59,503	62,122
1911	.	.	58,531	67,874	73,915	47.487	62,561	52,148	52,798

43. It will be seen from an examination of the figures of deviations in the above Table that ' 2-6' method shows the least deviation between ungraduated and graduated numbers before the original groups in which the population statistics are

[^3]summed are alterad to produce the ' $0-4$ ' groups. In one instance (1891) when the errors in age were very large in magnitude, the Ternary and Septenary method shows a deviation smaller than the '2-6' method. But this is more than compensated for by the large difference between the deviations of the two methods in favour of the '2-6' method at the other two Censuses. The deviations appearing in the above Table do not provide a very important criterion by which to judge the methods as ultimately all the six methods (except the first) are altered to the groupings of the first one.
44. As for the second criterion, namely, "smoothness" by which to judge the methods of grouping, it is satisfactory to be able to say that I have been able to adopt the same method of analysis as was adopted by Professor Glover with the population statistics relating to the United States of America above referred to. The smoothness of a series of values gronped in five ages is tested by the regularity of progression of the ratio $\frac{G_{x}}{G_{x-5}+G_{x+5}}$ where G_{x} is the total for ages from x to $x+4$ inclusive. Such ratios were formed from ' $0-4$ ' groups for each of the seven methods of grouping considered. As when testing the methodsfor "goodness of fit", the groupings in such of them, six in number, as were not originally in the ' $0-4$ ' groups were transformed to these groups. Where the earliest age in a quinquennial group in the numerator of the above ratio is a multiple of 10 the ratio is called ${ }_{0} \mathrm{M}_{x}$ and where the earliest age is a multiple of 5 it is called ${ }_{5} M_{x}$. For instance, the ratio - $\frac{G_{20}}{G_{15}+G_{25}}$ is called ${ }_{0} M_{20}$ and the ratio $\frac{G_{25}}{G_{20}+G_{30}}$ is called ${ }_{5} M_{25}$. The three Tables XVIII, XIX and XX give the values of ${ }_{0} M_{x}$ and ${ }_{5} M_{x}$ for each of the seven methods of grouping in each of the three Censuses 1891, 1901 and 1911. The average values of ${ }_{0} \mathrm{M}_{x}$ and ${ }_{5} \mathrm{M}_{x}$ and the difference between the average values of these quantities are given below each method of grouping. To make it easy to understand that the method which gives smooth progression of the grouped values is that for which the difference between the average value of ${ }_{0} \mathrm{M}_{5}$ and ${ }_{5} \mathrm{M}_{3}$ is a minimum, the values of ${ }_{0} M_{2}$ and ${ }_{5} M_{x}$ for the graduated population in each Census are also given. The graduated numbers of the population progress smoothly from age to age and therefore the quinquennial groups formed from them should also progress smoothly. That they do so is demonstrated by the extremely small magnitude of the difference between the average value of ${ }_{0} M_{x}$ and ${ }_{5} M_{x}$ for the graduated population in each of the three Censuses considered. The seven methods of grouping population statistics under consideration are arranged in each Table according to the smoothness of progression of the grouped values judged by the criterion of the smallness of the difference between the average value of ${ }_{o} M_{x}$ and ${ }_{5} \mathrm{M}_{5}$.
45. The first rank of the ' $2-6$ ' method amongst all the seven methods considered will be evident. The "Quaternary and Senary" method secures the second rank and the "Ternary and Septenary" method the third. It is not by a narrow margin that the ' $2-6$ ' method secures the first rank. Even at the 1911 Census where the "Quaternary and Senary", method which is always second in rank makes the closest approach to the ' $2-6$ ' method, the difference between the average ${ }_{0} M_{x}$ and ${ }_{5} M_{x}$ according to the former is more than 50 per cent. larger than the corresponding difference of the latter. What may be of interest is that the ' $0-4$ ' method (the method of grouping population statistics adopted so far) in addition to occupying uniformly the last rank in all the three Censuses shows at each Census a figure of difference several times larger than that of the ' $2-6$ ' method and in the 1901 Census it was very nearly 20 times as large. The method, therefore, so far adopted in grouping population statistics has been the least accurate of all the methods considered from every point of view.
46. As a result of his analysis, Prof. Glover rejected the ' $0-4$ ' and ' $1-5$ ' methods as unsuitable and was not able to pronounce as decisive an opinion in favour of one of the other three methods, ' $2-6$ ', '3-7' and ' $4-8$ ', as it has been possible to do with the analysis on Indian Age Returns for the main reason that the mis-statements of age in the American Census Returns are not so pronounced as in the case of the Indian Returns. He ultimately decided in favour of the ' $4-8$ ' method and his arguments for so doing may be quoted in his own words. "However, the decision as to groups ' $2-6$ ', ' $3-7$ ' and ' $4-8$ ' still remains a problem. As between these three groups it will be observed that groups '2-6' and '3-7' M9CO
contain both the ages ending in the digits 0 and 8 in the same quinquennial age group while the adjacent five-year groups contain the ages ending in the digit 5. This tends to exaggerate unduly alternate quinquennial age groups in these sets. With the group ' 4-8', however, the ages ending in the digits 5 and 8 are in the same quinquennial group and the ages ending in the digit 0 are in the adjacent five-year groups. Since the exaggeration for ages which are multiples of 10 is undoubtedly greater than for ages which end in the digit 5, the group ' $4-8$ ' would 'seem to furnish a better balanced grouping than the group '2-6' or ' 3-7'."
47. It will be evident from Prof. Glover's arguments that the chief reason why he decided in favour of the ' ±-8 ' grouping is the fact that in U. S. A. Age Returns ages ending in digit 8 formed definite centres of attraction next in popularity after the two digits 0 and 5. To secure, therefore, a better balance of the errors between two consecutive quinquennial groups he decided to keep the most favoured digit 0 in ane group and the next two favoured digits 5 and 8 together in the adjacent quinquennial group. The late Mr. George King who analysed the population of England and Wales with the 1911 Census also pronounced in favour of the ' $4-8$ ' method as his analysis also revealed that ages ending in digit 8 were nearly as favoured as ages ending in 5 which is shown by the following Table :-

TABLE XIII.

Enqland and Wales, Males-1911. Ages 10-89.										
Digit of age.	0	1	2	3	4	5	6	7	8	9
Ratio of recorded to graduated number on basis of 100,000 graduated at ench age	$1 \cdot 0887$.9230	1-0094	. 9687	. 9941	I-0032	$1 \cdot 0016$	-9681	I-0320	-9901
Ratio to digit 9 as shown by Mr. King	1-080	-924	$1 \cdot 010$.970	. 995	1-004	1-003	.967	$1 \cdot 083$	1.000

48. The results of three Australian Censuses appearing in Table VII also indicate concentration at ages ending in 8 of an intensity next only to ages 0 and 5.
49. Apart from the fact that the results of the analysis to which the three Censuses have been subjected have indicated the decided superiority of the ' $2-6$ ' method of grouping over all the other methods taken in the comparison, we could have, on precisely the same arguments as indaced Messrs. Glover and King to decide in favour of the ' 4-8' method, pronounced in favour of the ' $2-6$ ' method. Their chief argument was that the second and third favoured digits, 5 and 8, should appear in one quinquennial group to balance the pronounced concentration at digit 0 which is the first favourite. Tables IX, X and XI appearing in this section have clearly indicated that in India digit 2 is the third favourite after 0 and 5 and not digit 8.
50. We should, therefore, include digits 2 and 5 in the same quinquennial group. The ' $2-6$ ' and the ' 1-5' methods are the only two that satisfy this condition but the latter having an age of pronounced concentration at the end of a group can be prima facie rejected as unsuitable, leaving the choice only on the ' 2-6' method.
51. We are now in a position to see why the ' $2-6$ ' method gives results, judged by any criterion, markedly superior to all the other methods. Any two consecutive gtoups of this method are formed from the two sets of digits, $2,3,4,5,6$ and $7,8,9,0,1$. It was shown earlier in this section that as between the two digits 3 and 7 it was not quite decisive which was repelled the more. These two digits appearing one along with digit 5 in one group and the other along with digit 0 in the other introduce, in so far as they are concerned, balancing errors in two adjacent groups. The marked concentration at digit 0 as compared with digit 5 should then be neutralized by combining with the former digits relatively unpopular as compared with those combining with the latter. The ' $2-6$ ' method of grouping is able to effect this as digits 1 and 9 which are the least liked of the ten digits are grouped along with 0 as against 4 and 6 grouped with 5 . The combination of 2 with the 5 group and that of 8 with the 0 group serve as the final correcting factor
in this respect. in this respect.

Recommendalions for adoption at the 1941 Census.

52. (a) Grouping.-They say that figures speak more emphatically and convincingly than words and if that is so, it can be claimed that the unique position of the ' $2-6$ ' method of grouping amongst all the seven methods considered, in minimising the effects of mis-statements of age in population statistics, has been established beyond any pale of doubt. I, therefore, very strongly recommend its being adopted at the 1941 Census.
53. (b) Age.-The method of grouping recommended is particularly easy to adopt if age last birthday is asked for at the Census. The change made in the 1931 Census of asking people to return their age on nearest birthday, though theoretically expected to diminish significantly the errors in the ages returned, does not appear to have had the desired effect. This is evident from the distribution according to each age at the 1931 Census of a sample of 100,000 persons of each sex of the Presidency of Madras and the Punjab which alone were forwarded to me as the available statistics showing the distribution of any sample at individual ages. Amongst the larger Indian States the Census Commissioner for Baroda has given age distribution of the population at individual ages. These samples indicate the same degree of concentration, as in the earlier Censuses, at the usual favourite digits. Had the change made in this respect at the 1931 Census any effect at all, the concentration at ages ending in 0 should have been more or less equally divided between ages ending in 0 and 1 , for, if a person returas his or her completed age as a favourite ingure, say, 30 , it is as likely that the person has passed more than six months since completing age 30 as less than six months. If, therefore, all those persons, who usually give ages clustering round numbers ending in digits 0 and 5 when age last birthday is asked for, were to give a moment's thought to the change in the age to be returned because what is asked for is no longer age last birtladay but nearest birthday, very nearly one half of them would have returned nearest ages ending in 0 and the other balf those ending in I. This would have had the effect of very nearly levelling up the concentration at digits ending in 0 by dividing it more or less equally between ages ending in 0 and 1. For a similar reason the concentration at ages ending in 5 should have been more or less equally divided between ages ending in 5 and 6 . The statistics to which reference has been made do not exhibit any such tendency as the following Table for Madras clearlv indicates thereby confirming the statement made at an earher part of this section that people were not in the least influenced by the age asked for being last birthday, nearest birthday or next birthday.
table XIV.
Madras-Jales.
Numbers returned at each digit of age out of a total population of 1000.

Date of Census.		Digit of age.									
		0	1	2	3	4	5	6	7	8	9
1891 ..	-	310	33	102	59	-68	185	77	44	92	30
1901	169	104	100	93	90	138	81	77	76	22
1911	.	264	48	113	64	73	171	89	48.	90	10
1931	253	53	108	64	62	203	68	52	9	37

The large deficiencies noticed in ages ending in 1 and 6 do not show any tendency to close up as a result of the change made in the 1931 Census in recording the age. On the other hand, the deficiency at 6 has been the largest at 1931 of all the four Censuses.
54. It has beeh observed in other countries that the form of the age enquiry has an appreciable influence on the accuracy of the Age Returns. Dr. A. A. Young, in his Report on ages at the 12th U.S. A. Census, applied a test to the dateof several countries some of which obtained ages in years, others in years and months and a third set actuaily called for the date of birth. He concluded, as a result of his test, that the statistics were most dependable when the date of birth was called for.
55. To call for the date of birth will be an impossibility for several decades in the Census history of India. At the same time, while returning ages to the enumerator, people's minds should be set about thinking for a while instead of
returning any age at random. I should, therefore, recommend ages being called for in completed number of years and months. The enumerator should write in his form the number of completed years and months. While grouping, however, according to the ' $2-6$ ' plan recommended, the months should be ignored. We shall thereby get the age last birthday which is best suited to the method of grouping recommended without in any way sacrificing the accuracy, if any, that might accrue to the Age Statistics by calling for something more than mere age last birthday. In those cases where the number of months passed since the last birthday cannot be obtained it is immaterial as the grouping is according to the completed number of years (that is, age last birthday) only. I do not make myself bold to say that the suggested method of asking for age last birthday and the number of months completed since last birthday will have any metamorphic effect at the 1941 Census. It might, however, have some effect of slowly curing the Age Returns of its ills as decades pass on, as otherwise, with the existing system of calling only for ages whether last birthday, next birthday or nearest birthday, the malady shows no signs of coming under control. If, however, it is considered too early in the Census history of India to burden the schedule with ages and months (though the latter are to be ignored in the grouping) the age last birthday with the suggested ' $2-6$ ' method of grouping could be depended upon to give the best results of all the other methods of grouping.
56. In adopting the ' $2-6$ ' method of grouping, returns for ages $0,1,2$, etc., up to 6 last birthday should be scheduled separately and groups should be formed of ages 7-11, 12-16, 17-21, etc., to 67-71 with a last group of 72 and over. Table XXI gives a practical example of how the population supposed to have been straightaway sorted in the above groups are further transformed into $5-9,10-14$, etc.,......65-69, 70 and over groups, with the returns at ages $0,1,2,3$ and 4 stated individually.

TABLE XV.
1891-All-India-Males.
Deviations.

Age group.	1st place method. '0-4'.	2nd place method. '4-8'.	3 rd place method. '3-7'.	4th place method. '2-6'.	5th place method. '1-5'.	Ternary and Septenary method.	Quaternary and Senary method.
5-9	+6,254	+7,956	+8,348	+6,086	+7,253	+3,312	+5,479
10-14	-382	-1,488	-296	+405	$\underline{-2,810}$	+1,276	-664
15-19	-8,901	-6,209	-7,626	-4,635	-2,269	-7,907	-7,437
20-24	-5,448	-5,508	-1,508	-1,466	-584	-1,952	-1,968
25-29	+1,393	+2,773	+1,822	+2,757	+3,888	+1,924	+2,118
30-34	+4,947	+3,013	+3.103	+1,718	-1,079	+2,387	+2,005
35-39	-488	+548	' +838	+3,023	+4,718	+1,013	+1,217
40-44	+5,058	$+3,600$	+2,482	+110	-1,761	+1,268	+1,119
45-49	-2,029	-1,013	-626	+832	+1,704	-325	-234
50-54	+4,519	+2,507	+1,088	-902	$-3,207$	+81	-33
55-59	-2,678	-1,822	-1,027	$+199$	+1,164	-634	-586
60-84.	+4,024	+2,6-43	+1,404	-106	-1,481	+ 66%	$+609$
65-69	-1,327	-1,158	-1,021	-757	-605	-1,049	-1,004
70-74	+036	$+535$	+195	-207	-597	+15	-23
75-79 ..	-78	+5	+76	+238	+288	$+97$	+106
	$\begin{array}{r} +27,731 \\ -21,331 \end{array}$	$\begin{aligned} & +23,670 \\ & -17,198 \end{aligned}$	$\begin{array}{r} +19,309 \\ -12,104 \end{array}$	$\begin{array}{r} +14,428 \\ -8,163 \end{array}$	$\begin{array}{r} +19,016 \\ -14,393 \end{array}$	$\begin{aligned} & +12,033 \\ & -11,867 \end{aligned}$	$\begin{aligned} & +12,653 \\ & -11,449 \end{aligned}$
Total deviation without sign.	49,062	40,808	31,473	22,591	33,408	23,900	24,002

TABLE XVI.
Deviations.

Age group.	lat place method. '0-4'.	2nd place method. '4-8'.	3rd placo mothod. '3-7'.	4th placo method. '2-0'.	5tla place method. ' $1-5$ '.	Ternary and Septenary method.	Quaternary and Senary method.
6-9	+11,543	+12,417	+12,513	$+9,085$	+12,265	+8,821	+10,485
10-14..	+8,718	+6,151	+6,106	+6,980	+5,109	+8,125	+5,655
15-19 .	-10,505	-0,680	-7,219	-4,387	-4,034	-10,341	-0,024
20-24 .	-9,752	-0,111	-6,524	-5,142	- 4,517	-5,418	-5,661
25+-29	-407	+892	-60	$+162$	+1,700	-464	-71
30-34 ..	+3,361	$+1,537$	+2,264	+1,490	-866	+2,084	+1,398
35-39.	-1,771	-618	-459	+1,437	$+2,215$	-1,259	-809
40-44...	+3,539	+1,700	$+827$	-747	-1,360	$+198$	-158
45-49 ..	-1.535	$+146$	+1,124	+1,245	$+1,905$	-223	$+21$
50-54.	+5,201	+3,118	+2,447	-214	-2,065	+ 916	$+699$
55-59 ..	-2,029	-1,089	-2,157	$+860$	+1,860	+391	+223
60-64 ..	+4,750	+3,021	+1,553	-112	-579	$+843$	$+684$
65-68 ..	$-1,500$	$-1,216$	-1,102	-841	- 893	$-1,331$	-1,236
70-74 .	+1,645	+877	+407	+17	-370	$+317$	+199
75-79..	+334	$+444$	+ 525	$+636$	$+680$	$+342$	+414
	$\begin{array}{r} +38,091 \\ -27,589 \end{array}$	$\begin{array}{r} +30,166 \\ -19,169 \end{array}$	$\begin{array}{r} +27,766 \\ -16,521 \end{array}$	$\begin{array}{r} +22,308 \\ -11,443 \end{array}$	$\begin{array}{r} +25,810 \\ -16,200 \end{array}$	$\begin{array}{r} +21,646 \\ -19,427 \end{array}$	$\begin{aligned} & +19,555 \\ & -17,182 \end{aligned}$
Total devintion without sign.	68,580	49,335	44,287	33,835	41,100	41,073	30,737

TABLE XVII.
1911-All-India-Males.
Deviations.

Deviations.							
Age group.	$\begin{aligned} & \text { Ist place } \\ & \text { method. } \\ & { }^{3} 0-4^{\prime} . \end{aligned}$	$\begin{aligned} & \text { 2nd place } \\ & \text { mettiod. } \\ & 4 \text { 4- } 8^{\prime} \text {. } \end{aligned}$	3rd place method. '3-7'.	4th place method. '2-6'.	5th place method. 1	Ternary and Septenary method.	Quaternary and Senary method.
5-9 ${ }^{\text {- }}$	+6,619	+8,489	+8,760	+4,883	+8,501	+4,167	+6,351
10-14.:	+3,268	+1,038	+2,053	+2,651	-802	+3,574	+1,270
15-19 ..	-10,130	-6,428	-7,928	-3,925	-843	-9,303	-8,310
20-24 ..	-6,483	-6,279	-880	-774	-465	-1,235	-1,431
25-29 ..	$+2,540$	+4,519	+2,714	+3,563	+5,285	+2,283	+2,603
30-34 \cdots	+5,275	+3,031	+4,182	+2,792	-744	+3,558	+2,949
35-39 ..	+388	+1,219	+1,298	+3,798	+5,648	+1,114	+1,432
40-44 . ${ }^{-}$	+6,794	+4,399	+3,047.	+513	-1,582	+1,827	+1,551.
45-49...	-1,253	-237	+101.	+1,796	+2,772	+278	+436
50-54 ..	+6,261	+3,590	+1,883	-687	-3,596	+684	+487
65-59 .	$-3,338$	$-2,109$	$-1,384$	-198	$+842$	-1,140	-1,053
60-64 .	+4,530	+2,802	+1,501	-89	$\div 1,352$	+719	+651
65-69 \ldots.	-861	-940	-1,103	-2,704	-1,085	-1,529	-1,396
70-74 ..	+262	-219	-586	-1,069	-1,708	-714	-832
75-79 ..	-529	-418	-262	-10	+184	-231	-211
. .	$\begin{array}{r} +35,937 \\ -22,594 \end{array}$	$\begin{array}{r} +29,087 \\ { }_{16,630} \end{array}$	$\begin{array}{r} +25,539 \\ -12,143 \end{array}$	$\begin{array}{r} +19,996 \\ -9,456 \end{array}$	$\begin{array}{r} +23,232 \\ -12,065 \end{array}$	$\begin{aligned} & +18,204 \\ & -14,152 \end{aligned}$	$\begin{aligned} & +17,820 \\ & -13,233 \end{aligned}$
Total devistion without sign.	58,531	45,717	37,682	29,452	35,297	32,356	31,053

TABLE XVIII.

1891 Census-All-India--Males.
Values of ${ }_{0} M_{x}$ and ${ }_{5} M_{x}$.

TABLE XIX.

1901 Census-All-India-Males.
: Values of ${ }_{0} M_{x}$ and ${ }_{5} M_{x}$.

TABLE XX.
1911 Census-All-India-Males.
Values of ${ }_{0} M_{x .}$ and ${ }_{\sigma} M_{x}$.

Age group in whioh Popalstion in originally summed.																		
Tranaformed Aga Groupa.			Gradustod.		'2-8'.		Quatornary and Senary mothod.		Ternary and Scptenary method		'3-7'.		'4-8'.		'1-6'.		'0-4'.	
			$\xrightarrow[\text { oMrx: }]{\text { and }}$	${ }_{6} \mathrm{M}_{5}$		$\mathrm{sMx}^{\text {c }}$.		sMx_{x}		MM_{x}	$\mathrm{OMI}^{\text {c }}$	${ }_{s M_{x}}$	$\mathrm{OM}^{\text {M }}$.	$\stackrel{B M x}{ }$	${ }_{0} \mathrm{Ma}_{\text {c }}$	${ }_{B} \mathbf{M}_{\mathbf{r}}$	OM\%.	$B M_{x_{1}}$
(1)				2)		(3)		(4)		(b)		(6)		7)		8)		9)
10-14	-	-	-487	0	- 618	$\ddot{3}$	- 513	435	. 543	-is	-609		-497	209	-684	.001	-68	
15-19	\because	\because	. 801		. 408	363	-.6i4	. 435	- 522	-418	-6i7		. 452		-477		-478	
25-29	\because	\because	\cdots	-600	\cdots	- 525	0	-519	0	-6il	\because	-6io		-864	.	-860	\cdots	-682
30-34	\because	\because	-499	. 498	-490	.827	-609	-488	-520	-478	-623	. 970	. 501	-488	-435	- 684	8	. 438
$40-44$	\because	\because	-487		-483		. 607		-sio	-	.634	\cdots	-860	-	- 414	-	-6i8	
+85-49	..	\because	.493	-495	. 157	-533	-6̈13	-48	-621	-478	-0.59	$\cdot 452$	- 09	-428	.80s	-614	.737	872
80-69	\because	\because		-491	- 0	-497	$\cdot{ }^{-6}$. 438	-621	-433	-659	-400	-620	-348	-203	-6\%0		-290
60-64	-	\cdots	- 488	-30	-688	-388	-683	-09	-693	-	-687	\because	-714	\cdots	-488	-6is	-856	$\ddot{81}$
-80-69	\because	\because	. 402	- ${ }^{-8}$	- 90	-326	. 4151	${ }^{-3} 8$	-476	-379	-468	- 384	-814	-357	-310	. 811	-876	
	8.488	2.865	8.460	2.771	8.590	2.767	3-690	$2 \cdot 695$	3.737	2.649	8.858	2.628	2.900	3-400	4.338	2.899
$\Delta \mathrm{verag}$	-•	-	. 491	. 494	-495	-462	. 513	. 460	. 527	. 449	. 534	. 412	. 651	. 438	. 414	. 567	- 619	-396
Difforen $0 M 2 .$				03		.033		. 053		.078		. 082		-113		. 163		\%

TABLE XXI.

Age group.			Original population as sorted straight according to groupe stated in (1).	-4×5 year groupe of Col. (2).	$\overline{\text { Col. (3). }}$	(4) $+(2)=$ - adjusted popalation in '5-9' eto., groupa.	Age groap.
(1)			(2)	(3)	(4)	(5)	(6)
0	-	-	1,179	.	-	-	-
1	-	.	2,513	-	-	.	-
2	-	-	2,519	-	-	1,179	0
3	-	-	2,700	-	-	2,513	1
4	-	-	2,425	-	-•	2,519	2
5	-	-•	2,718	-•	-	2,700	3
6	-	-	2,295	-•	-	2,425	4
7-11	-	-	10,951	4,380	-4,380	11,584	$5-0$
12-16	-	-	10,835	4,374	+ 6	10,941	10-14
17-21	-	-	9,641	3,856	+ 518	10,159	15-19
22-26	-	-	10,133	4,053	-197	9,936	20-24
27-31	-	-	9,085	3,626	+ 427	0,492	25-29
32-36	-	-	8,086	3,234	+ 302	8,478	30-34
37-41	-•	-	7,471	2,888	+ 248	7,717	35-39
42-46	\cdots	-•	5,119	2,048	+ 940	6,059	40-44
47-61	.	-•	4,332	1,733	+ 315	4,647	45-49
52-56	.	-	2,442	977	+ 768	3,198	50-54
67-61	-•	-	2,568	1,026	- 49	2,517	55-59
62-06	-	-•	1,200	480	$+548$	1,746	60-64
67-71	*	-	899	360	+ 120	1,019	65-69
72 and over	\cdots	-•	811	0	+ 360	1,171	70 and over
			100,000	-•	-•	100,000	.

SECTION IV.

1. In this section I shall attempt a brief description of the methods adopted in the construction of mortality Tables for the various Provincial groups detailed in the opening pages of this Report with some discussion on topics relevant thereto.
2. It was explained in an earlier section of this Report, that, in view of the conditions prevailing in the decennium 1921-1931, the Table of mortality of each area was to embody the experience of this decennium only. The statistics of population used therefore were only those relating to the 1921 and 1931 Censuses without any reference to earlier enumerations. The population of each area at the 1931 Census is available for nearest age on Census day-this having been the age asked for according to instructions to enumerators-for ages $0,1,2$ and 3 stated separately and in alternate ternary and septenary groups 4-6, 7-13, 14-16, 17-23, etc., to 67-73 with one large group at the end of 74 and over. The passage from ternary and septenary groups to the ordinary quinquennial age groups 0-4, 5-9, etc., is effected very easily by taking half the sum of two consecutive age groups. For instance, the age group 5-9 is obtained by taking the sum of one half of the ternary group 4-6 and one half of the septenary group 7-13. It should also be noted that the resulting quinary group $\overline{5}-9$, on the assumption that the ages returned were the ages nearest birthday, would include all persons whose ages were $5,6,7,8$, and 9 last birthday. In this way the statistics of the population returned at the 1931 Census were arranged in quinquennial age periods 0-4, 5-9, etc., to $65-69$ with one large group at the end of 70 and over, according to age last birthday in conformity with the method of grouping adopted at the previous enumerations in India to facilitate comparison. The numbers in each age group were reduced by a constant ratio so as to produce a total of 100,000 for all ages.

Correction for Mortality.

3. The method described above of redistributing the original ternary and septenary age groups into quinary groups introduces an error-though not very material-due to the fact that in the process of redistribution the assumption has been made that the numbers relating to each age in cach septenary and ternary group are equal to one another and no allowance has been made for the progressive diminution of these numbers as age increases in each group due to the operation of mortality.
4. To allow for this error Mr. Meikle recommended certain percentages being transferred from groups like $10-14,20-24,30-34$, etc., to the respective carlier groups, $5-9,15-19,25-29$, etc. I have, however, to state with regret that I have not been able to satisfy myself as to how quinquennial groups with the earliest age a muitiple of 10 like $20-24,30-34$, etc., alone have to part with certain percentages to the respective earlier groups. Taking, for instance, the transformed quinary group 30-34 one can easily see that this age group is made up of the lower half of the septenary group 27-33 and the upper half of the ternary group 34-36. In so far as it is made up of the lower half of the septenary group 27-33 it owes a certain number to the upper half of the same septenary group which is amalgamated with the quinary group 25-29. Again in so far as this age group $30-34$ is made up of the upper half of the ternary group 34-36 it took rather less than its correct quota from that group when it was bisected and the upper half taken with the $30-34$ group and the lower half with the 35-39 group. I think therefore any aga group like $30-34$ owes a certain number to the previous age group $25-29$ and has to get another number from the succecding age group $35-39$. This is the case with respect to all transformed quinary groups. It is true that age groups like $80-34,40-44$ and so on with the earliest number in the group a multiple of 10 owe to the respective preceding quinary groups more than what they have to get from the succeeding ones with the result that on final adjustment they have to meet with a net diminution. But if we deal with the net diminution only and transfer this net amount entirelv to the upper age group we shall be, what in common parlance is called, "robbing Peter to pay Paul" and our final adjustments will not be quite correct in transferring numbers from one age group to another to that degree of approximatiou which it is desirable to liave if mortality correction is to be given effect to.
5. I have, on the same assumption as made by Mr. Meille which is accurate enough for our present purpose, calculated this mortality correction to be applied
to each group. I shall represent by the symbol s_{30} the total number in the septenary group of which 30 is the middle age and so on for other septenary groups. Similarly t_{25} represents the total in the ternary group of which 25 is the middle age and so on for other ternary groups. The total number s_{30} in the septenary group 27-33, for instance, can be assumed approximately to be distributed at each. of the seven ages in that group as follows :-

$$
\begin{aligned}
& \frac{s_{30}}{7}\left(1+3 q_{30}\right) \text { as of nearest age } 27, \\
& \frac{s_{30}}{7}\left(1+2 q_{30}\right) \text { as of nearest age } 28, \\
& \frac{s_{30}}{7}\left(1+q_{30}\right) \text { as of nearest age } 29, \\
& \frac{s_{30}}{7} \\
& \frac{s_{30}}{7}\left(1-q_{30}\right) \text { as of nearest age } 31, \\
& \frac{s_{30}}{7}\left(1-2 q_{30}\right) \text { as of nearest age } 32, \\
& \frac{s_{30}}{7}\left(1-3 q_{30}\right) \text { as of nearest age } 33 .
\end{aligned}
$$

The upper half of the above distribution relating to the age group from exact age $26 \frac{1}{2}$ to exact age 30 should contain (the q 's denoting rates of mortality throughout) $\frac{s_{30}}{7}\left(1+3 q_{30}\right)+\frac{s_{30}}{7}\left(1+2 q_{30}\right)+\frac{s_{30}}{7}\left(1+q_{30}\right)+\frac{1}{2} \frac{s_{30}}{7}$ which is equal to $\frac{1}{2} s_{30}+$ $\frac{6}{7} s_{30} q_{30}$.

Instead, therefore, of taking $\frac{1}{2} s_{30}+\frac{6}{7} s_{30} q_{30}$ as relating to the upper half of the septenary group 27-33 and $\frac{1}{2} s_{30}-\frac{6}{7} s_{30} q_{30}$ to the lower half, the method of bisection takes $\frac{1}{2} s_{30}$ to both the halves. It will therefore be evident that age group $30-34$ has to cede $\frac{6}{7} s_{30} q_{30}$ to the group 25-29. Considering similarly the ternary group 34-36 it can easily be seen by a similar analysis that the group $30-34$ has to get $\frac{1}{3} t_{35} \eta_{35}$ from the group $35-39$. The whole scheme of correction is given in the following Table:-

Quinquennial age group.				Should give to the preceding quinquenninal group.	Should get from the sucoeeding quinquennial group.
0-4	\cdots	-	-	\cdots	${ }_{1}^{1} g_{5} t_{5}$
5-9	*	**	-	${ }^{+} 9_{5} t_{5}$	$\stackrel{A}{4} q_{10} s_{10}$
10-14	-	-	-	$\frac{\square}{7} q_{10} s_{10}$	$\frac{1}{8} q_{25} t_{15}$
15-19	-	-	-	\$ $q_{15} t_{15}$	- 920.820
20-24	-	-	-		t $q_{25} \mathrm{t}_{25}$.
25-29	-	-	-	$\frac{1}{1} 925 t_{25}$	$\bigcirc q_{30} 8_{30}$
30-34	-.	-	-	$\frac{\pi}{4} q_{80} \quad s_{30}$	$\frac{1}{8} q_{85} t_{35}$
35-39	-	-	-		$\frac{n}{7} q_{40} 8_{40}$
40-44	-	-	-	${ }^{+1} 940{ }^{8} 0$	$\frac{1}{2} 945 i_{45}$
45-49	-	-	-	19945 t_{45}	$)^{+} q_{50}{ }^{8} 50$
50-54	..	-	-.	${ }_{\frac{4}{7}} q_{50}{ }^{8} 8_{50}$	\$ $9555 t_{58}$
$55-58$	\cdots	-	-	$\frac{1}{1} 955 t_{55}$	$79_{60}{ }^{860}$.
60-64	-	-	-		$1{ }^{1} 908 t_{B 6}$
65-09	-	*	-	$\frac{1}{2} q_{65} t_{05}$	${ }_{\frac{7}{7} 9_{70}{ }^{8} 70}$
70 and		-	-	$\mathrm{f}^{4708} 870$..

To give effect to the mortality correction in each Provincial group I adopted the rates of mortality from the 1911 Actuarial Report relating to the Province. Where any Provincial group is dealt with for the first time the rates of mortality relating to the whole of India were taken.
6. The population of each area according to the 1921 Census is available in the usual $0-4,5-9$, etc., groups according to age last birthday. With the view, however, to bring the population statistics of 1921 in conformity with those of 1931, ternary and septenary groups were formed from the sample of 100,000 for each sex available in respect of each area. These samples are available for each Census unit: To obtain samples applicable to each of the ten large geographical groups for which separate mortality Tables were to be constructed, the distribution according to each age in each Census unit was weighted according to the population in that unit and a new sample applicable to the geographical area dealt with was formed.
7. For instance, the Madras group is composed of the following Census units:-
(a) The British Province of Madras (including the small States of Pudukkottah, Banganapalli and Sandur).
(b) Mysore State.
(c) Travancore State.
(d) Cochin State.
(e) Coorg.

The sample age distribution out of a total of 100,000 for each sex in each of the above areas was weighted at each age according to the population (taken to the nearest million) in that area and the sum of the products thus obtained was divided by the sum of the weights. In this manner was formed the sample distribution at each age out of a total population of 100,000 in each sex for each of the ten large areas into which the whole of India (including Burma) was divided for the purpose of this analysis. I have also made suitable adjustments to transform each ternary and septenary age group of the 1921 population in each area from age last birthday to age nearest birthday. From the ternary and septenary age groups, quinary groups $0-4,5-9$, etc., for ages last birthday were formed in the same manner as with the 1931 Return.

Migration.

8. Allowance was made at this stage for the disturbance caused by migration in the case of those Provincial groups where it was of such magnitude as to affect the rate of increase of the population or its age distribution. Taking India as a whole, for its size and the magnitude of its population, immigration and emigration, as observed by the Census Commissioner, Dr. Hutton, are practically unimportant. The direct effect of dividing India into ten large sections including British Provinces and the adjoining States has been to neutralize the large movement of population between contiguous political divisions where these are grouped together. The grouping has rendered ineffective, for instance, making any allowance for the presence of the large number of Bengalis in Assam and Madrasis in Mysore, Travancore and Cochin States and vice versa. In the Provincial groups of Madras and the United Provinces and in the group Bengal and Assam, migration, in spite of the neutralizing force above referred to, was too significant to be ignored. In the case of the first two groups the balance of migration was adverse in each of the two Censuses taken in 1921 and 1931. The total number of net emigrants per 100,000 of the total population at the respective Censuses in the case of each of these two Provincial groups was added to the quinquennial groups above referred to representing age distribution per 100,000 of total population in each sex. The age distribution of the migrant population was taken to be the same as was estimated by Sir George Hardy in 1891 by reference to the three Provinces, Coorg, Berar and Lower Burma where the immigrant population was relatively very large. Sir George has given full explanation of the methods followed by him in his 1891 Report. In the case of the Provincial group, Bengal and Assam, the balance of migration was in favour. The disturbance caused in the case of Burma by the presence in that Province of a large immigrant male population was eliminated by confining my investigation to Buddhists only who form almost entirely the indigenous population of that Province engaged almost exclusively in agricultural pursuits and of a non-migratory temperament. In this respect my investigation has fallen in line with all the earlier ones and
it is desirable that it should do so from another point of view. The Burman Buddhists have been observed in the past, as has also been confirmed by my investigation, to experience mortality markedly superior to that of Hindus or Muhammadans. To have combined the Buddhists of Burma with those following other religions would have introduced an element of heterogeneity in the investigation very much andesirable. The assumed age distribution of the emigrant population in the case of Madras and the United Provinces and of the immigrant population of Bengal and Assam enabled the correction due to migration disturbances being easily applied in each age group to the population of these Provincial groups in 1921 and 1931 respectively. The corrected population in each Census was again proportioned for in each quinary group relative to a total of 100,000 and the arithmetic mean of the two corrected populations was obtained in each age group.

Graduation.

9. It is now necessary to graduate or adjust the figures in each quinary group of the mean population, obtained by processes described above, with the view to remove or at best reduce to a minimum the effect of major and minor errors (referred to in detail in the last section) inherent to population statistics particularly in India. With this end in view it was decided to adopt a mathematical formula which, while producing a smooth progression of numbers from one quinquennial group to another, provided also a law by which the number at each age could be easily obtained.
10. The method of graduation adopted was with reference to a standard Table recommended by the late Mr. Alfred Henry in the discussion on a Paper submitted to the Institute of Actuaries by Mr. Ackland in connection with his 1911 Report to the Government of India. Mr. Meikle also adopted this method though that of Mr. Ackland was curve fitting and Sir George Hardy made use of a formula of graduation based on a modification of Makeham's Law. The choice of the Table to be used as the standard was a matter that required some investigation. The standard chosen has to be perfectly smooth and should preferably have been graduated by a mathematical formula. A first attempt was made by using the English Life Table No. 9. A suitable addition was made to the age in the ungraduated Indian population statistics to allow for the higher mortality prevailing in India as compared to England. Several trial graduations were made and the number of years added to the age in each quinary group of the Indian population before effecting comparison with the English population in corresponding age groups was varied from trial to trial. It was ultimately found that a rating up of between 10 and 11 years to the Indian age gave a smooth progression of the population from age to age, which, combined with the graduated rates of increase to be described later, gave satisfactory rates of mortality from only about age 35 onwards. It would therefore have been necessary to modify the Proclaimed Clans experience, more than half a century old by now, not only to supply the rates of mortality at the ages of infancy and childhood up to age 12, at which that experience stopped, but also to fill up the large gap between ages 12 and 35 by a smooth junction at both ends. This would have been entirely unsatisfactory. Mr. Meikle rejected, quite rightly, the l'roclaimed Clans experience as entirely unsuitable for his purpose. They are still more so now. Mir. Ackland had made suitable adjustments to the Proclaimed Clans experience, on the basis of the rates of mortality derived by him at the older ages, to make it yield rates which would approximately reflect the mortality at the ages of infancy and childhood. One advantage, therefore, in adopting the Indian Life Table for 1911, which was also graduated by a mathematical formula and therefore satisfied the condition of being perfectly smooth, was to have on hand a Table in which the experience relating to the very young ages has been brought up to comparatively recent times. Another advantage, which is in my view rather substantial, is the fact that comparisons could be made and the requisite ratios-the subject of graduation-could be formed without making uny addition to the age of the ungraduated population. I have found that in comparing with English Lite Table the addition to the age which was necessary to produce a good fit at ages, say from 30 to 65 or 70 was too large at the very young and the very old ages. I therefore adopted the Male Life Table preparcd for the whole of India by Mir. Ackland as the standard Table for the graduation of the male experience in each of the ten areas dealt with by me.
11. The mean in each age group, relative to a total of 100,000 of the population for each area corrected for migration in certain cases as explained above, was summed from the bottom upwards to produce the population aged 0 and upwards, 5 and upwards, etc. These were denoted by the respective symbols $\mathrm{T}_{0}, \mathrm{~T}_{5}, \mathrm{~T}_{10}$, etc., to T_{70}. Corresponding sums for the standard Table adopted were denoted by the symbols $\mathrm{T}_{0}{ }^{\prime}, \mathrm{T}_{5}{ }^{\prime} \mathrm{T}_{10}{ }^{\prime}$, etc., to $\mathrm{T}^{\prime}{ }_{70}$. The ratio $\frac{\mathrm{T}}{\mathrm{T}}$ was made the subject of graduation. A cubical parabola given by the equation $y=1+a x+b x^{2}+c x^{3}$ was fitted to the observed ratios of $-\frac{\mathrm{T}}{\mathrm{T}^{2}}$ in each case. It is not necessary to go fully into the technical details of this process of graduation. I desire, however, to state that I have found the process of fitting a curve by the method of "Least Squares" particularly suitable not only for its easy application but also for the facility this method afforded for discarding the ratio at any age if due to gross mis-statement in age it was found to be entirely undependable. The graduated ratio multiplied by the population according to the standard at any age yielded the graduated mean population at that age.

Rates of increase.

" A Nation ought to devote its best energies to the self-imposed task of carrying out in its manifold details the following general programme:-
(i) of steadily raising the natural level of successive generations, Morally, Physically and Intellectually by every reasonable means,
(ii) of keeping its Numbers within approximate limits,
(iii) of developing the Health and Vigour of the people. In short, to make every individual efficient both through Nature and by Nurture."

Francis Galton.
12. To deduce, from the graduated mean population obtained by processes explained in the last few paragraphs of this section, the fundamental column of the mortality Table showing the number of survivors at each age out of a fixed number of births, say, 100,000 , it is necessary to determine the average rate of increase of the population in each of the various Provincial groups during the period taken into account which in the present case is the decennium 1921-1931. The following Tables taken mainly from Mr. Marten's Report for 1921 show the average rate of increase, both real and actual (the latter based on Census figures only), in each decennial period since the first general Census of India in 1872.

TABLE XXII.

13. The rates of increase shown in Table XXII are not of any practical interest as they have been coloured substantially by artificial increases due to inclusion of new areas and to progressive increase in the accuracy of the enumeration from Census to Census.
14. It will be seen that the real rate of increase has been the largest in the decennium 1921-1931 of all the periods. It may not be out of place at this stage to make some observations as to the desirability or otherwise of the very large rate of increase in the population which the decennium has witnessed, applied particularly to this country where the standard of living is proverbially low. Otherwise, the poignant words of Francis Galton, inscribed in bold characters on the walls of the Biometric Laboratory of University College, London, by Galton's worthy and famous disciple. Prof. Karl Pearson and quoted at the beginning of this topic, would be irrelevant.
15. The rate of increase of the population has always remained a matter of absorbing interest during the one hundred and thirty-five years since Malthus in his Essay on Principle of Population expressed real alarm at the rapid rate at which population was increasing and presented a very vivid and horrid picture of the results of indiscriminate multiplication. He enunciated a law which in mathematical language can be stated thus: If the population of a confined area increases in geometrical progression, while the food production increases only in an arithmetical progression, the former must inevitably overtake and surpass the latter and within a short period there will be several people without any food. A few sentences may be quoted from Malthus ' Essay in illustration of his graphic description:-
"The population of the island (Great Britain) is computed to be about 7 millions and we will suppose the present produce equal to the support of such a number. In the first 25 years the population would be 14 millions and the food being also doubled, the means of subsistence would be equal to the increase. In the next 25 years the population would be 28 millions and the means of subsistence only equal to the support of 21 millions. In the next period the population would be 56 millions and the means of subsistence just sufficient for half that number. And at the conclusion of the first century the population would be 112 millions and the means of subsistence just only equal to the support of 35 millions which would leave a population of 77 millions totally unprovided for.".
16. Malthus has been the subject of a certain amount of criticism on the score of having depicted too horrid and too gruesome a picture. He might have indulged in a little bit of exaggeration of which he should have been quite conscious. It should, however, be remembered that he was practically the pioneer amongst the great thinkers of the world who directed their attention to this great problem relating to population and its increase. Just as in the realm of Literature a Tragedy is considered to inculcate a moral better than a Comedy, so also, in this case, Malthus having felt bimself to be in the role of a teacher of the moral regarding population and its uncontrolled growth had to depict a shocking picture to impress on the imagination of the public the consequences if the moral was disobeyed. He has also been criticised for making the starving millions breed and multiply in each period. The surplus population would not be straightaway wiped out but the immediate effect of population overtaking the means of subsistence would be a fall in the standard of living for the majority in the area which would give an impetus to indiscriminate multiplication making the standard of living fall still lower thereby completing what is called the vicious circle, of which India provides a good example. That birth rate is very highly and inversely correlated with status in the social scale, that is, with the standard of living, is illustrated by the following Table relating to England and Wales appearing in Mr. Carr-Saunders' book on Population.

TABLE XXIV.

The number of births in the year 1911 per 1,000 married men under 55 years of age in England and Wales grouped according to the occupation of the father.

Occupation of the father.					Number of births.	
(1) Upper and middle classes	119	
(2) Intermediate'	132
(3) Skilled workmen	153
(4) Intermediate	158
(5) Unskilled workmen

17. Let us now examine the truth of the Malthusian proposition enunciated at the end of paragraph 15.

Let r be the common ratio of the geometrical progression in which population is increasing.

If P_{0} be the population in the area under consideration at the commencement of an epoch and P_{t} the population at time t measured from the beginning of the epoch we shall have $\frac{d P_{t}}{d t}=P_{t} r$, giving $\frac{1}{\bar{P}_{t}} \frac{d P_{t}}{d t}=r$ or $\frac{d \log P_{t}}{d t}=r \quad$ leading to $\log \mathrm{P}_{t}=r t+$ constant, or $\mathrm{P}_{t}=\mathrm{P}_{\mathrm{o}} e^{r^{r}}$ since when $t=0, \mathrm{P}_{t}=\mathrm{P}_{0}$. Therefore the population at any time t measured in years is $P_{o} e^{r t}$.

If the means of subsistence increase in an arithmetical progression at a rate K times the rate at which the population is increasing so that the common difference of the arithmetical progression of increase of foodstuffs and other necessaries of life is $K r$, we shall, on the supposition that the available amount of the necessaries of life at the commencement of the epoch was just sufficient to support the population then existing in the area, viz., P_{0}, obtain for the number of people which the resources of the area then available can support at the end of time t the quantity $\mathrm{P}_{\mathrm{o}}(1+K r t)$. If on Malthus' assumption the population, increasing in geometrical progression, were to overtake the means of subsistence increasing in an arithmetical progression, though at a rate several times larger than the rate at which the population is increasing, we should have a value of t satisfying the equality

$$
\mathrm{P}_{0} e^{t t}=\mathrm{P}_{0}(1+\mathrm{K} r t)
$$

or $1+r t+\frac{r^{\circ} t^{2}}{2}+\frac{r^{3} t^{3}}{2 \cdot 3}+\ldots \ldots \ldots \ldots \ldots=1+K r \ldots \ldots$ (A).
The values of t given by the equation (A) give the period at the end of which population would overtake means of subsistence and there would subsequently result a shortage of food. One value of t is 0 corresponding to the commencement of the epoch, when the assumption was made that population had just sufficient for subsistence. Another value of t, if one exists, would give the critical number of years at the end of which the food problem in the community would come to tell. Practical values of r are never greater than -03. Only undeveloped countries like Canada and New Zealand show anything near this rate. Even for Australia the value of r is about $\cdot 02$. For all practical values of r and practical values of K (the number of times food supply exceeds the needs of population) it is possible to find value of t by a process of successive approximation so well known to students of Actuarial Science. The values of t, the number of years at the end of which the population would overtake the food supply for practical values of r and K, have been called "Malthusian equivalent intervals". These values have been calculated by Mr. G. H. Knibbs and are exhibited in the following Table.

TABLE XXV.

Malhusian equivalent intervals corresponding to various rates of increase.

Number of times food supply exceeds needs of population.	Number of years (t) before population overtakes food-supply, the former in- creasing in a geometrical progression of ratio r and the lattor in an arithmetical progression of common difference $\mathrm{K} r$			
K	$r=0.01$	$r=0.015$	$r=0.02$	$r=0.03$
2	126	84	63	42
4	234	156	117	166
8	332	221	211	141

18. The annual rate of increase of population in India which the decennium under consideration has engendered is very nearly 1%. The above Table shows that if population continues to increase at this rate and if the food supply were to increase at double this rate, i.e., at 2% (on the supposition that the present food supply in India is just sufficient for supporting the present population, which is far from being the case), food shortage would come to tell at the end of 126 years. MeCC

If food supply increases at 4% while popalation increases only at 1% the critical period will be reached at the end of 234 years. For 8 and 16 per cent. increases in food supply, population and food supply will attain equality at the end of 332 and 423 years respectively. These are small as compared with historical and geological periods. Thus the truth of the Malthusian proposition is established beyond doubt.
19. The adage " Population begets Population " naturally points at a geometrical progression as the law governing the rate of increase of population. If, however, we proceed on this assumption, we are faced with incongruous results. Mr. Knibbs, several times referred to by me, has computed the average rate of increase of the population of the world weighted according to the population of each country during the quinquennium 1906-1911 to be $1 \cdot 159$ per cent. per annum. The largest annual rate of increase of 2.98% was shown by Canada. Ireland was the only one of all the countries that indicated an annual rate of decrease of $\cdot 006 \% \cdot$ Amongst countries that showed an increase, France exhibited the lowest rate per annum being $\cdot 016 \%$. Referring to the average rate of increase of the population of the world of $1 \cdot 159 \%$ per annum, Mr. Knibbs has some very interesting observations to make which I am quoting in extenso:-
" Either this rate of increase must be enormously greater than has existed in the past history of the world or enormous numbers of human beings must have been blotted out by catastrophes of various hinds from time to time. For, putting the present population (of the world) at $1,649,000,000$ at the average rate of increase, this number would be produced from a single pair of human beings in about 1,782 years, that is to say, since A. D. 132 or since Salvius Julianus revised under Hardian the Edicts of the Praetors. Even the rate given by the world-populations 1804 and 1914, viz., ($0 \cdot 0086$) gives only 2,397 years, carrying us back to only B. C. 483 , or since the days of Darius I of Persia.
"The profound significance of this fact, accentuated also by the extraordinary increase in the length of life (expectation of life at age 0) which has revealed itself of recent years, is obvious when the correlative food requirements are taken into account. The resources of Nature will have to be exploited in the future more successfully than in the past to maintain this rate of increase (0.01159) which doubles the population every $60 \cdot 15$ years and would give for 10,000 years the colossal number 22,184 with 46 noughts (10^{46}) after it.
"This number is so colossal that it is difficult to appreciate its magnitude. Assuming the earth to be a globe of 3,960 miles radius, of a density $5 \cdot 527$ compared with water, that water weighs about $62 \frac{1}{2}$ lbs. per cubit foot, and that a human being tweighs on the average, say, 100 lbs . (7 st .2 lbs .) the actual mass of the earth would be equivalent only to say, $132,265 \times 10^{18}$ persons; that is, it would require $16,771 \times 10^{28}$ times as much " matter" as there is in the earth. Or, to consider it as a question of surface, allowing $1 \frac{1}{2}$ square feet per person, the earth's entire surface area would provide standing room for only $36,625 \times 10^{11}$ persons. That is, the population would be $60,570 \times 10^{30}$ times as great as there would be standing room if the whole earth's surface were available. . It is evident from this that the rate of increase of human beings must have been more approximate to the rate for France at the present time if the earth has been peopled for 10,000 years : the French rate, $0 \cdot 0016$, would require 12,842 years to give the present population from a single pair. This rate, however, would give a population of only $17.55 \mathrm{mil}-$ lions in 10,000 years.

[^4]20. From the above vivid description, it will be evident that the power of population just as the power of compound interest over a period measured in centuries is just as to shock the imagination. While solving problems in compound interest, how many of us did not regret the fact that a great-great-grand-- parent of ours of a couple of centuries back did not invest a few rupees at a small rate of interest, compounding annually, so as to amount to several lakhs for our present use. With increasing experience, however, we realize that in the realm of practical finance this is an absurdity. Similarly it is absurd to try to forecast the population in-a given area, say, a thousand years hence, on the basis that the present rate of increase will continue to progress in a geometrical ratio. Correcting factors will
be at work to keep down the rate of growth. Malthus indulged purposely in some exaggeration when he omitted to make mention of the correcting factors.
21. If geometrical progression is to be ruled out, the question might naturally be asked as to what the law underlying population growth is. Quetelet's brilliant analogy between the growth of population and the motion of a body through a resisting medium suggests a rational solution. In the case of such a body when the velocity is small, the force to impede the velocity is also small. As the velocity increases, the resistance also increases till the body cannot move in the medium at a velocity greater than a particular one, called the limiting velocity, whatever may be the magnitude of the force acting on the body making it move forward. Similarly, when the resources of a country and the amount of space available are large as compared to the population, very little impediment will be felt to the growth of population and it may actually increase at a rate approximating to the geometric progression. As density increases, and as the ratio of the undeveloped resources of the area to the population diminishes, the rate of growth will be arrested and will slowly diminish, attaining the value 0 when the population in the area will attain a stationary or constant value beyond which it cannot increase.
22. To evolve a mathematical formula for the law of population growth on the above analogy was, however, left first to Verhulst and then, quite independently of him, to Pearl and Reed. It is not necessary to give in detail here the mathematical processes by which the equation to the curve of population growth is obtained. The reader is referred to either "Studies in Human Biology " by R. Pearl or to the Presidential address delivered by Mr. G. Udny Yule before the Royal Statistical Society and appearing in Volume 88 of the Journal of that body.
23. The rate per unit of time at which the population in a given area increases at any moment depends upon the absolute magnitude of the population in the area at that moment subject to a retarding influence or, in mathematical language, a reducing factor depending on the difference between the maximum population which the area can support and the population at that moment. This leads to a differential equation for the law of population growth of the form $\frac{d y}{d!}=\frac{y}{\infty}\left(1-\frac{y}{i}\right)$ which when solved leads to the equation, $y=\frac{\mathrm{L}}{1+\frac{\beta-x}{e^{t}}}$

- where y is the population at any time t and L is the limiting value of the population which is approached when t becomes infinitely great. The form of the curve given by equation (B) representing a rational law of population growth is given by the accompanying diagram.

Time is measured along the X axis and the population along the Y axis. The part ABC of the curve of population growth is convex to the X axis (the axis of time) showing that in this section the increase of population in any year is larger than in the preceding year. Up to the point C corresponding to time β, the density of population in the area is not very large and the impediment to growth of population is not very intense. When the population already existing in the area is small compared with the limiting population L, we can prove that the rate of increase in the population is very nearly in a geometrical progression. For, in the differential equation to the curve, namely, $\frac{1}{y} \frac{d y}{d u}=\frac{1}{\infty}\left(1-\frac{y}{L}\right)$ by making y very small as compared with L we obtain the simplified equation $\frac{1}{y} \frac{d y}{d y}=\frac{1}{\alpha c}$ or $y=A e^{t / \propto}$ which is the same as a logarithmic curve, or the curve of a geometrical progression.

- 24. At the point C, the density of population in the area is one-half the limiting density and this is a point of inflexion at which the curve changes from convexity to concavity. Over the section CDE of the curve the increase of population in any year is smaller than in the preceding one and goes on diminishing from year to year till the increase vanishes and the population attains a limiting value based on the area available for occupation and the capacity of the area to provide means of subsistence. That this curve for the law of population growth very nearly fits in with the observed facts with respect to several countries has been proved by Messrs. Yule and Pearl in the Papers by these authors referred to above.

25. It appears, from the above analysis, it is reasonable to assume that in those countries such as for instance Canada, Australia, etc., where the available resources are not fully mobilized and the density is small as compared with the area fit for human habitation, population would continue to increase very nearly in conformity with the law "Population begets Population", that is, in a geometrical progression. That this rate of increase will in course of time be compelled to slow down by such methods as modern civilization would tolerate and vanish when the population would attain its limiting value appears to be the only rational assumption.
26. In those countries, where the level of education is high, this final or limiting value of the population will be reached by a voluntary and deliberate limitation of the birth-rate which will bring as a natural reward a fall in the death-rate thereby minimising misery. That most of the countries in Europe did substantially restrict the size of their families is proved with all the force of statistical analysis. The fall in the French birth-rate is proverbial. In England the fall practically synchronised with the famous Bradlaugh Case (1877) which served to attract with an extraordinary force public interest to a pamphlet giving information on birth-control written by Dr. Knowlton of which Bradlaugh and Mrs. Besant were the publishers. The Germans were rather late in taking interest in the subject. But when once they did they were systematic and thorough and flooded their country with literature on the subject. The fall in the German birth-rate in the years just before the Great War was phenomenal.
27. In other countries, of which India is a good example, where due to lack of, imagination which education inculcates and the consequent laissez faire attitude of the people towards matters of vital importance, actions are not intelligently directed towards safeguarding the happiness of the future, but by adopting a policv of drift pinning faith on the proverb " with every mouth God sends a pair of hands" the limiting population will be reached by a high birth-rate bringing in its trail a ligh death-rate and the inevitable physical and mental suffering which a high death-rate would naturally entail. The following Table comparing England and Wales and India over a quinquennium shows that in England and Wales where the birth-rate is low, due to a larger fall in death rate, the survival rate is really larger than in India where the effect of a larger birth-rate is neutralized by a heavy death rate.

TABLE XXVI.

28. The statistics relating to most other countries of Western Europe go to confirm what was observed with respect to England and Wales, that the fall in the birth-rate synchronised with a larger fall in the death-rate as the following Table taken from the journal of the Royal Statistical Society, Volume 88, page 33, clearly indicates.

TABLE XXVII.

Decreases in the death-rate and the birth-rate between 1871-80 and 1901-10 in certain States of Western Europe : points per 1,000 of the population.

29. Those countries that restrict their birth-rate help Nature in her task of keeping the numbers within the bounds of the capacity of the area; while others that allow the birth-rate to soar high will have to pay large penalties in the shape of heavy death rates, for, Nature is a relentless task-mistress and will always have her own way.
30. One can judge whether or not a country is suffering from the effects of over-population by the standard of living obtaining in the country as economists H9CU
hold that low standard of living is a sure index of over-population. When the number of mouths is considerably larger than the capacity of the soil to provide food for them, the standard of living should naturally fall. Let me quote from what Carr-Saunders says in this connection with particular reference to India and China.
"Infanticide was employed in India and China until recently; it has now been abandoned and no other method of keeping the size of the families small has taken its place. An examination of the social conditions suggests that the people are not living as well as they might ; famines are not uncommon and are never far off. The symptoms point to over-population, of which the cause would seem to be the failure to replace the custom of infanticide by some other method odregulation."
31. No greater proof is required of the fact that what primarily ails India is over-population than the low, miserably low, standard of living of the masses. This would indicate that the actual position of the Indian population in the Logistic curve of population growth given in page 147 is in the section CDE of the curve, possibly very near E round about which point, if Nature's Law is to be obeyed, any further increase in the population should be practically nil. In other words, there should be, very nearly, only as many babies born as there is wastage due to deaths. To subject the soil to increased pressure due to the addition of nearly 34 millions in a decade when the standard of living is proverbially low is a situation that should cause real alarm in the minds of well-wishers of India. Without an addition in real wealth of, at least, the same extent, of which there has been no very large indication, the existing low standard of living is sure to be depressed further, leading, as has already been indicated, to further over-population and consequent increase in the loss of the spirit of enterprise. For, successive generations of life on less than bare margin of subsistence and the natural indolence and despondency which such a state engenders have probably made the majority of Indians abstain from making any strenuous efiort to raise their standard of living, which could be achieved in the first instance by limiting the size of the families. Being itself both the cause and effect of over-population the low standard of living of the average Indian completes what is called the " vicious circle".

+ 32. That the primary cause of the abnormally heavy mortality experienced by the masses in India is traceable to very low economic status is illustrated by the difference between the rates of mortality and the expectations of life relating to males between the experience of the Oriental Government Security Life Assurance Company embracing the period of two decades 1905-1925 and those of the male population of India ascertained after the 1931 Census as clearly shown by the following Tabie :-

TABLE XXVIII.

		Age.			Oriental-Males Ultimato 1905-1925.			All India Males 1031.	
20	-	-•	*	-•	\cdots	$\cdot 725$	$37 \cdot 16$	$1 \cdot 27$	29.57
25	-	\cdots	*	*	-	-817	$33 \cdot 53$	1.53	$26 \cdot 50$
30	*	-	.	-	\cdots	-887	$29 \cdot 89$	1.93	$23 \cdot 60$
35	-•	-	-	-	-	1.001	26.22	$2 \cdot 41$	20.99
40	-	*	-	-•	-•	$1 \cdot 263$	22.58	2.94	$18 \cdot 60$
45	-	-	-	\cdots	-	$1 \cdot 743$	$19 \cdot 11$	$3 \cdot 49$	$16 \cdot 40$
50	-	\cdots	-	-	-	$2 \cdot 513$	$15 \cdot 95$	$4 \cdot 10$	14.31
55	\cdots	-	\cdots	-	**	$3 \cdot 663$	$13 \cdot 18$	4.81	$12 \cdot 27$
60	\cdots	-	-•	-	-	$5 \cdot 097$	$10 \cdot 86$	$5 \cdot 79$	$10 \cdot 25$
65	-•	-•	-	-•	\cdots	6.685	8.88	$7 \cdot 27$	$8 \cdot 26$
70	-•	-	-•	-•	-	8.643	$7 \cdot 15$	$9 \cdot 76$	$6 \cdot 35$
75	-*	-	**	-•	-	11.254	$5 \cdot 60$	$14 \cdot 27$	4.01
80	-	-	*	*	-	$15 \cdot 145$	$4 \cdot 25$	21.80	3-13
85	-	-	-	-	-	$20 \cdot 351$	3-12	36.08	$1 \cdot 95$
90	**	-	-	-	-*	26.890	$2 \cdot 14$	$57 \cdot 70$	1-12
95	-•	\cdots	\cdots	-•	-	$54 \cdot 300$	- 48	\checkmark	**

33. It need hardly be stated that the economic status of the policy holders of the Oriental must necessarily be much higher than that of the general population in India. The rates of mortality of the latter are more than 100 per cent. heavier up to the middle age of life than those of the former. The low economic status of the masses in India is firstly the direct cause of heavier mortality through undernourishment and secondly it helps to maintain mortality at a very high level by depressing the standard of living which brings about a very large increase both in birth and death rates.
34. The remedy, in short, lies in Birth Control among families of poor economic status. In the Census Report for Mysore State, just to hand, one is pleased to find the following sentence: "By an order issued a year ago Government instituted in the Maternity Hospital at Bangalore a Birth-Control clinic for advice and supply of contraception appliances to married women who, for reasons of health or household economy, wish to restrict conception." India's primary need is the opening of several centres of the type of the Bangalore Birth-Control Clinic covering its entire area. If this is done, the second in rank amongst the three self-imposed tasks which, according to Galton, a nation ought to devote its best energies to will be directly achieved and, as a by-product, the other two will naturally follow.
35. The populations returned at the two Censuses, after having been corrected for migration in the cases of certain Provincial groups, as explained above, were compared in decennial age groups 0-9, 10-19, etc., and rates of increase of the population applicable to each of these groups were obtained. The logarithms of the rates of increase $\left(\log r_{x}\right)$ were made the subject of graduation. The graduating curve was in this case also a cubical parabola and the process of fitting the curve was, as in the case of the graduation of the population, the method of " Least Squares".
36. In this manner were obtained the graduated values of $r_{\boldsymbol{x}}$ (the rate of increase at age x) in each Provincial group. The graduated population L_{x} at age x multiplied into $r_{x}^{\frac{1}{20}}$ (that is, $r_{x}^{\frac{1}{20}} \mathrm{~L}_{x}$) gave the population that would have been returned had a Census been taken six months posterior to middle date of the decennium. Similarly $r_{z}^{-\frac{1}{90}} \mathrm{~L}_{x}$ gave the population on a date six months anterior to the middle date of the decennium. The values of $p_{x+\frac{1}{}}$ (the probability of surviving one, year at age $x+\frac{1}{2}$) were obtained from the ratio $\frac{r_{x+1}^{\frac{1}{20}} L_{x+1}}{r_{x}^{20}} \frac{L_{x}}{2}$ from which the values of p_{x} and q_{x} were obtained. The methods adopted for obtaining the rates of mortality q_{s} relating to females were identical with those adopted in the case of the males, except that to allow for the mortality correction above referred to and for the standard Table made use of in the graduation corresponding female Tables of the 1911 Census were adopted.
37. The method detailed above yielded the rates of mortality from age 1 onwards to the end of life in each Provincial group. The important problem of allotting a value to the rate of mortality at age $0\left(q_{0}\right)$ remained. Sir George Hardy graduated the Proclaimed Clans figures available for infantile ages up to 12 for the years from 1876 to 1891 by a formula of the type

$$
\begin{equation*}
l_{x}=\mathrm{A}+\mathrm{H} x+\mathrm{BC}^{x}+\frac{m}{n x+1} \tag{1}
\end{equation*}
$$

Students of Actuarial Science will easily see that according to Makeham's modification of Gompertz's law for the Force of Mortality the following equality holds :-

$$
\begin{equation*}
\log l_{x}=\mathrm{A}+\mathrm{H} x+\mathrm{Bc}^{\boldsymbol{c}} \tag{2}
\end{equation*}
$$

Sir George, evidently, made two modifications to the Makeham formula. Firstly he dealt with l_{x} instead of $\log l_{s}$. This appears to have been adopted mainly for the facility the l_{x} form gave to obtain the values of L_{x} (the population at each age) at the young ages by integration and not from the more easy and approximate formula $L_{x}=\frac{l_{x}+l_{x+1}}{2}$ applicable to adult ages which due to the rapid fluctuation of mortality rates at the ages of infancy and childhood is inapplicable at these ages. The principle of "uniform seniority" which is obeyed by the formula when $\log l_{x}$ is equated to the right-hand side of equation (2) will naturally be sacri-
ficed when l_{x} is equated to the same quantity. This is immaterial while constructing mortality Tables not mainly intended for financial operations and even if they are, the sacrifice of the conveniences derived from this principle at the very young ages is not of any consequence. The second modification made by Sir George was the addition of the term $\frac{m}{n \pi+1}$ to provide for the higher mortality and the consequent faster decrement of the numbers surviving to each age at the infantile ages and ages of childhood as compared with the adult ages. This term has its maximum value at age 0 and diminishes rapidly as age increases.
38. The rate of mortality at age $0\left(q_{0}\right)$ of Burma males was first obtained as follow :-From the graduated values of $q_{1}, q_{2}, q_{3}, q_{4}$, etc., the fundamental column of the mortality Table showing the numbers surviving to each age up to $4\left(l_{2}, l_{3}, l_{4}\right.$, out of a fixed number commencing age $1\left(l_{1}\right)$ were calculated. The values of the constants appearing in equation (1) were obtained from these values of l. The resulting equation took the following form :-

$$
\begin{aligned}
& l_{x}=97191 \cdot 335-1762 \cdot 505 x+30178 \cdot 684(\cdot 45)^{x} \\
&+\frac{13488 \cdot 550}{29 \cdot 8125 x+1}
\end{aligned}
$$

39. Having found the value of l_{0} from equation (3) the constants in this equation were proportionately reduced so as to make $l_{0}=100,000$, the usual convenient radix of a mortality Table. The modified equation is given below.

$$
\begin{aligned}
l_{x}=68999 \cdot 235-1251 & \cdot 259 x+21424 \cdot 812(\cdot 45)^{x} \\
& +\frac{9575 \cdot 953}{29 \cdot 8125 x+1}-(4)
\end{aligned}
$$

The resulting value of the function l_{x} at the young ages provided the value of q_{0} for Burma and the values of this quantity for the other Provincial groups were obtained graphically using the values for Burma for the first five ages as base.
40. For constructing the mortality Table for each sex relating to the whole of India, an average age distribution applicable to each of the two Censuses 1921 and 1931 out of a total of 100,000 in each sex was obtained by weighting the numbers in each age group in each area by the total population in that area taken to the nearest million. Having thus obtained the age distribution in each Census, applicable to the whole of India out of a total of 100,000 in the usual quinary age groups $0-4,5-9$, etc., the construction of the mortality Table followed identically on the lines of the method adopted for each Provincial group.
41. The mortality Tables for each sex and for each Provincial group including those for All-India, constructed by methods detailed above, are given in pages 173-194 and called A, B, C, etc., to V.

Explanation of the Columns of the Mortality Table.

42. It is usual to say a few words at this stage explaining the fundamental columns of the mortality Table. The column, headed "Living at age x ", usually I denoted by the symbol l_{x}, represents the number of persons alive at the beginning of each age interval out of 100,000 persons born alive. The words "born alive" are used with the view to call attention to the fact that still-births are excluded and the column refers only to survivors of living births. It should also be particularly noted that the meaning of the heading "Living at age x " is living at the beginning of the age interval x to $x+1$, that is, at the precise moment of completing the integral number of years of age x. It may also be added that the 100,000 persons under obsertation from birth are not assumed as having been born at the same moment. The main point to be stressed is that the flow of lives from age to age in this column is based on the assumption that every one of the 100,000 births is kept under observation from the moment of birth and a regular record is maintained as to how many are alive at exact age one year, how many at exact age two years, and so on to the end of life. The total number counted as alive at exact age one year is entered opposite to age 1 in this column and so on for other ages. This is the fundamental column of the mortality Table and shows the decrement of life from age to age throughout the whole range of life. Taking, -for example, Table A, relating to All-India Males, we see that out of 100,000 chil-
dren born alive only 52,439 attain age 18 , the age of majority in India. The original number is reduced to one half at about age $21 \frac{1}{2}$. The proverbial "threescore and ten years " is attained cnly by 7,036 out of every 100,000 born.
43. The next column 3 headed " Dying between ages x and $x+1$ " shows the number dying after attaining the age shown in column 1 but before attaining the next higher age out of 100,000 persons born alive. It is merely the decrement of the numbers in column 2 and is obtained by taking the difference between successive numbers in that column. The number of deaths, very high for the age interval 0 to 1 , diminishes rapidly till about age 10, 11 or 12 (there being minor variation from Province to Province) which is the most favourable period in life. From this point onwards the number of deaths increases till it attains a maximum more or less in the neighbourhood of age 40 for males and then slowly tails off to zero. In countries where the rates of mortality till about middle age are not so heavy as in India this maximum appears much later in life, that is, after age 70. Since this column indicates the number of deaths occurring in each age interval amongst a diminishing number of persons alive at the beginning of that age interval, it cannot give an adequate idea of the rate of mortality at each age. This is however given by the next column.
44. The next column headed " Mortality per cent." shows the number dying in each age interval among 100 alive at the beginning of the interval. Just as in the case of the preceding column relating to the number dying between the ages x and $x+1$ the mortality per cent. which is very large for age 0 rapidly diminishes to age 11 or 12. From this point onwards it increases slowly at first and more rapidly from and after age 50 and towards the end of the Table the rate of increase is extremely rapid.
45. Column 5 with the heading "Living between ages x and $x+r$ " has to be particularly distinguished from column 2 headed "Living at age x ". It might be of interest here to mention that the Life Table or mortality Table under explanation shows the number of persons surviving to each year of age and the number of persons dying between two consecutive integral ages in a stationary population undisturbed by migration and where only as many are born as die during the year in all the age periods. In other words, in the construction of the mortality Table, disturbances due to migration and irregular flow of births and deaths from year to year over the period considered are eliminated and rates of mortality obtained as applicable to the population when freed from these disturbing influences. This column shows the number of persons that would have been enumerated at each age last birthday in a stationary population supported by 100,000 births had a Census been taken at any moment during the year. In other words, the total number opposite to age 25 , say, is the population between ages 25 and 26 at all fractional ages between these two integral ones.
46. The number in column 6 recorded opposite to any age shows the total population that would have been returned as of that age and all older ages to the end of the Table at a Census taken at any time. It is obtained by adding the population in the preceding column from the current age to the end of the Table. The number in this column opposite to age 0 represents the total population maintained by 100,000 births per annum in a community subject to the rates of mortality given in column 4. This column is of particular interest in so far as it enables two countries or two communities subject to different rates of mortality to be compared as regards their age distribution. Due to the heavy rates of mortality - to which Indian population is subject, we find on reference, for instance, to the All-India Male Table A that about half the population is under age 24 and the other half aged 24 and above and only about a quarter of the population fives aged 40 and above, whereas, in countries subject to lighter rates of mortality these proportions occur at ages substantially later. For instance, in the United States of America (1910 experience) half the population is over 31 years of age and about one-fourth over age 50. The corresponding ages for England and Wales (1911 experience) are 33 and 51. The numbers appearing in this column can also be interpreted in another way. The number appearing, for instance, opposite to age 25 not only represents, as explained above, the total population aged 25 and upwards but also the total number of years of future life-time that would be lived by those alive at the beginning of age 25 given in column 2 , namely, 47,787 .
47. The next and the last column headed " Mean after life-time at age x " is also commonly known as the " expectation of life". Being, as is more or less explained by the heading itself, the mean or average future life-time lived by all persons attaining a particular age x, the number in this column opposite to any age, on the basis of the explanation given towards the end of the last paragraph, is obtained by dividing the number in column 6 by the number in column 2 appearing opposite to the same age. This expression " expectation of life" is associated in public minds with not a little confusion due to the unfortunate choice of the word " expectation" which has however come to stay. It is much better to call it " mean after life-time" or " average after life-time". People usually consider the expectation of life at any age to represent the number of years any individual of that age may " reasonably expect" still to live. This is, however, not the case. Given a large number of individuals, say, aged 30 not chosen by any selective process, we shall find persons in all states of health. The expectation of life at age 30 means only the average life-time lived by all persons of that age in the future, some living very long and others having only a short span of life. In the process of averaging we take the excess from those who live long and distribute it among those who die early, so as to place all on an equality. As applied, therefore, to any particular individual, the expectation of life has no significance whatsoever. If he is in a very bad state of health his future life-time may be far shorter and if he be in sound health it may be far longer than the expectation of life. The chief importance of this function lies in the fact that it affords a ready means of comparing two mortality Tables for the cumulative effect of mortality at all ages above any particular age.

Comparisons.

48. It will be essential before concluding the Report to compare the results arrived at by my investigations with the earlier ones. Before, however, this is done, it is necessary to stress that a few important points should be borne in mind. The essential difference between my investigation and those of my predecessors is traceable to the fact that, whereas I included in each area the British Province and the adjoining Feudatory Indian States, their investigations were confined to British Provinces only. A certain amount, therefore, of the difference between the rates of mortality a's deduced by me and by my predecessors with respect to each Provincial group can, naturally, be traced to the variations in the areas dealt with. In the absence of mortality Tables constructed separately relating to the larger Indian States, it will not be possible to say how far their inclusion has tended either to increase or diminish the aggregate mortality of the respective British Frovince with which each of them has been grouped. It was, however, felt that the vitality of the Indian Empire should be appraised in suitable geographical groups without omitting any area and on the Census Commissioner expressing his opinion in favour of this procedure, I agreed very gladly to conduct my investigations on these lines as I was also very strongly in favour of adopting this course.
49. Another point to bear in mind, when comparing the mortality of the same Province in two difierent Censuses, is the fact that the rates of mortality may appear as having improved, whereas they may have deteriorated, due to improved efficiency in methods of Census enumeration showing artificially a very large increase. In illustration of this point I have only to refer to Tables XXIX and XXX showing the rates of mortality and Tables XXXI and XXXII showing expectations of life for males and females respectively in the Provincial group, Central Provinces and Hyderabad. By referring to either of these Tables, it will be evident that the mortality in this area is considerably superior in 1931 as compared with what it was in 1881. The Hyderabad State has returned at the 1931 Census a total population which is nearly $15 \frac{3}{4} \%$ in excess of the population returned at the 1921 Census, Whereas the rate of increase for the whole of India is only about $10 \frac{1}{2}$ per cent. The very large increase in the population, shown by the Hyderabad State at the 1931 Census, has been attributed by the Census Commissioner to increased efficiency of the Census staff and there can be no other convincing explanation. Since the rates of mortality depend on the rates of increase, the very large increase in population shown by the Hyderabad State should have lightened significantly the mortality rates relating to the Central Provinces, Berar and Hyderabad group. A substantial part, therefore, of the improvement in vitality shown by the Central Frovinces between 1881 and 1931 might be traced to this cause.
50. There is yet a third point to be borne in mind consequent u'pon the deduced rates of mortality being to a certain extent sensitive to the methods of graduation adopted both with respect to the population and the rates of increase. With respéct to the latter, whether a constant rate of increase at all ages or a variable one from age to age has been adopted (after graduation) also affects the results to a certain extent. Where, however, the collected statistics are subject only to minor errors due to the paucity of the data, different methods of graduation will have very little effect upon the deduced rates of mortality. With respect to the Indian Census Returns, where the errors are of very large magnitude, smoothing formulas of very great power have to be adopted with the result, above mentioned, that the calculated rates of mortality depend to a significant extent upon the smoothing formula or the formula of graduation. This is particularly so at the ages of infancy and childhood where, even in countries which place a substantial reliance on the statistics at the other ages, help has to be derived from the records of births and deaths to correct irregularities relating to them. We are without any guide whatsoever in India with respect to the flow of vital occurrences at the very young ages. The only small material on hand is nearly half a century old and therefore quite obsolete for our present purpose. It also refers only to a limited area which, as compared to the size of the Indian Subcontinent, is entirely unrepresentative of parts distant from itself. All these factors have to be borne in mind before comparisons are effected between either the results of one Province from one Census to another or of one Province with another in the same Census. If, therefore, in effecting comparison on the above lines the differences traced are only very small, it will be unsafe to attach any large significance to them.
51. The task of comparing the results brought outt by me with those of my predecessors appears a hage one as I have constructed as many as twenty-two Tables for both the sexes after dividing India and Burma into ten large geographical areas. The mortality Tables corresponding to three of these areas, namely, Bihar and Orissa : Rapurana, Ajmere-Merwara and the Central India States and Agency group ; Sind, Baluchistan and N. W. F. Province, have been constructed by me for the first time. With respect to these areas, therefore, in the absence of mortality Tables relating to the earlier Censuses, it will not be possible to say in what direction variation in mortality lay. As regards the other Provinces, I propose to draw conclusions relating to the trend of mortality on broad and general lines only.
52. The obvious way of comparing two Tables of mortality either with respect to the same locality at different epochs or of two different localities or communities at the same epoch is to compare the'rates of mortality, that is, the numbers appearing in the column headed "Mortality per cent." in the Life Tables A to V. Though this method provides an effective way of comparing the trend of mortality at individual ages without the comparison being vitiated by variations at all other ages betreen the Tables compared, it suffers from the disadvantage of being too laborious as every age has to be compared individually. Where, therefore, it is considered desirable to eliminate minor fluctuations at individual ages, Tables could be compared in large groups of quinquennial or decennial age periods by computing what is called the probability of dying over 5 or 10 year age periods. Tables XXIX and XXX give for each sex the rates of mortality at all quinquennial age points, $0,5,10$, etc., in each Province from the 1881 to 1931 Censuses wherever these are available. Though a general tendency may be discerned in the case of some Provinces for the rates of mortality at the adult and older ages to diminish, this is, however, subject to such large fluctuations as to make any statement to this effect devoid of its emphasis. Burma, however, shows itself to have slightly deteriorated even at these ages. A substantial improvement in the rates of mortality at the very young ages is, however, apparent in each Province. It would have been unsafe to place too much reliance on the lighter mortality, exhibitel at the young ages as a result of the present analysis, due to the great unreliability of the data relating to these ages but for the fact that the available statistics of deaths pertaining to these ages have gone to confirm this inference. These statistics of deaths are, of course, not dependable but they are no more so now than formerly and, on the supposition that the amount of error has remained constant, there is room for drawing the conclusion that the mortality at the very young ages, notably in the first year after birth, has improved to a certain extent. It would,
therefore, appear that the several Babv-Week Exhibitions and other propaganda relating to the proper bringing-up of children carried on frequently during the last decade have come to bear some fruit. The Nation, therefore, should feel grateful to the organisers of these exhibitions.
53. Another point of great importance which must cause concern to workers in the cause of public welfare, especially in connection with minimising the perils attendant on maternity revealed not only by the 1931 Actuarial Analysis but also by the earlier ones, is the heavier mortality of females as compared with males practically from about age 12 to about age 45. In the other sections of the Table, female mortality is lighter than that of males. It will be of interest in this connection to refer to the rates of mortality of both the sexes with respect to England and Wales given in Tables XXIX and XXX. It will be observed that in England female mortality is, in the major part of the Table, substantially lighter than male mortality and between ages 10 and 15 where female mortality rises relatively to male mortality it only approaches the latter without exceeding it. A reference to the Life-Tables relating to other countries notably the United States of America also indicates that female mortality is throughout lighter than male mortality. The heavier mortality of females as compared with that of males from about the age of adolescence to the age when capacity for child-bearing may be expected to cease appears to be a feature of the mortality experience of Indian females. A considerable part of the heavy mortality of girls in their teens can naturally be traced to immature maternity if correct statistics are maintained according to age and cause of death. That noble piece of Legislation called by the name "Sarda Act" has not been sufficiently long on the Statute Book for its effects to make themselves evident in the decennium considered. The salutary restriction imposed by this Act against the marriage of immature boys and girls combined with increasing knowledge on matters relating to maternity and to pre-natal and post-natal ailments, will, it is hoped, make considerable part of the excess mortality of females at the reproductive ages diminish.
54. Another method of comparing mortality Tables that has been very largely adopted in the past is to compare what has been called "the mean after life-time" which is also commonly known as "the expectation of life" the method of calculation of which from the fundamental column, showing the number of survivors from age to age, of a mortality Table was explained in an earlier paragraph. The chief advantage of this quantity lies in the fact that by its use one is able to compare mortality Tables for the cumulative effect of mortality over its entire length from any given age. For instance, comparing two mortality Tables by their expectations of life, say, at age 25 , one would be able to judge which of the two Tables shows in the aggregate lighter mortality from age 25 up to the end of the mortality Table. This method of comparison by expectation of life has, therefore, the advantage of not giving prominence to minor fluctuations in mortality rates at particular ages. Where, however, it is desired to compare mortality Tables over short ranges, the function called temporary expectation of life can be made use of. Tables XXXI and XXXII give the expectations of life for all the Provincial groups from 1881 to 1931 for males and females separately. By comparing the expectation of life at age 0 for two Provinces or for two different Censuses of the same Province, one is able to compare the mortality rates to which the populations of the two Provinces are subject in the former case and the variation in the mortality of the Province from one Census to another in the latter. It need hardly be mentioned that the larger the expectation of life the lighter is the mortality. It will be seen that the expectation of life at age 0 shows a substantial improvement at the 1931 Census over the other four Censuses brought in the comparison excluding that of 1921 with respect to which no expectation of life was calculated. Since the rates of mortality relating to the very young ages in India are not entirely dependable, one would rather be inclined to draw conclusions by eliminating these ages, that is, by comparing the expectation of life at age 5 or preferably age 10 .
55. I shall make a few observations relating to the trend of mortality in each Province by comparing the expectations of life at age 10. These observations will be mostly confined to the male Tables. It will however be easy for any one to draw his own conclusions from the experience of female lives from a study of Table XXXII on more or less identical lines. The mortality in the Province of

Bengal does not show any decided tendency to improve substantially. Though the expectation of life at age 10 in 1931 is somewhat larger than in 1901 and in 1911, it is to a certain extent smaller than in 1891 and substantially so as compared with 1881. Bihar and Orissa, which have been dealt with separately in one group for the first time after the 1931 Census, exhibit expectations of life up to age 50 markedly superior to those of the adjoining Province of Bengal. Bombay and Madras have substantially improved as compared with 1881 but it will be remembered that they had to bear the brunt of the 1876-78 famine which accounted for the very heary mortality and the consequent low expectations of life of these two Provinces in 1881. The expectations of life at age 10 in these two Provinces in 1931 are smaller than in 1891, the decade 1881-1891 having been one of comparative prosperity for them. Bombay shows substantial improvement in 1931 as compared with 1901 and 1911. As regards the main cause of the low expectation of life shown by Bombay in 1901 it should be observed that this Provirce along with Central Provinces was affected by the 1899-1901 famine though Madras was unaffected by it. The expectation of life at age 10 for the province of Madras has been keeping more or less steady from 1911 onwards. Burma has always been noted for its lighter mortality as compared with other Indian Provinces in the past which reputation it yet maintains though the expectation of life of this Province does not indicate any decided tendency to increase but is keeping more or less steady. The first Life-Table with respect to the Central Provinces was constructed after the 1881 Census and the second one after the 1931 Census. The latter, however, includes the experience of the very large population contained in H. E. H. The Nizam's Dominions. It will be seen that the Central Provinces show substantial improvement in mortality in 1981 as compared with 1881. As has already been observed, a large portion of this improvement should naturally be traced to the improved machinery of Census-taking set up by the Hyderabad State at the 1931 Census. The Punjab group, comprising the British Provinces of the Punjab and the adjoining smaller Indian States together with Kashmir, the biggest in area of all the Indian States, shows in 1931 an improvement in mortality which is decidedly substantial. In 1911, however, this Province showed the heaviest mortality of all the Indian Provinces except perhaps the United Provinces. The improvement noticed in 1931 has been such as to bring the position practically back to the 1891 level when the experience of the Province as to mortality was the lightest of all the decennial investigations. It is highly probable that a part of the improvement has been due to combining the Punjab with Kashmir noted for its highly salubrious and temperate climate. It is, however, not possible to make any definite statement to this effect before proving by Actuarial analysis that the people in Kashmir are subject to lighter mortality than those in the Punjab as other factors may be at work, for instance, low economic status, neutralising the effect of the salubrious climate. Rajputana and Ajmere-Merwara as also Sind, Baluchistan and North-West Frontier Province are two Provincial groups with respect to which mortality Tables have been constructed for the first time at the 1931 Census. The former group has indicated the heaviest. mortality for males of all Provincial groups dealt with. The United Provinces show some improvement in mortality in 1931 though it is not very substantial as indicated by the small inerease averaging about a year as compared with 1891 in the expectation of life up to about age 40. The improvement in mortality for the male population of the whole of India in 1931 is indicated by the value of the expectation of life at age 10 which is very nearly one year in excess of the highest value of this function which was reached in 1891. Generally speaking, it can be said that the influence of the hygienic and economic factors that prevailed in the decennium 1921-1931 was such as to bring the condition of the Indian population as to its mortality experience nearly back to the 1891 position.
56. Amongst all the Provincial groups analysed, Burma shows the lightest mortality. As a matter of fact, it has been keeping up the first rank in this respect in all the three Censuses analysed with respect to this Province. Madras which used to keep always the second rank appears to have lost a little bit of ground, as the Punjab, judged by the value of the expectation of life at age 10, has superseded it in 1931. Whether the grouping of the British Province of Madras with the adjoining Indian States has proved a disadvantage to it and the grouping of the Punjab with Kashmir has proved an advantage to the Punjab group is a matter
which requires further detailed analysis. It is, however, somewhat significant that the two Provinces, Burma and Madras, which have been indicating substantially lighter mortality than that of the other Indian Provinces, have been the least inaccurate in returning ages. Bihar and Orissa for which a Life Table has been constructed for the first time in connection with the 1931 Census indicate mortality at all ages up to 50 substantially lighter than the adjoining Provincial group, Bengal and Assam, which exhibits the worst vitality of all the Provinces except perhaps Rajputana and Ajmere-Merwara group. The difference between the vitalities of these two Provincial groups is not, however, very substantial.
57. The comparative statements detailed above have been made with special reference to the expectations of life relating to male lives of the various Provincial groups and for All-India appearing in Table XXXI. The corresponding expectations of life relating to females are given in Table XXXII. Here again Burma females show the lightest mortality. As between Madras and the Punjab females, the former show lighter mortality at all young ages up to 30 and after this age the position is reversed. The heaviest mortality amongst females is shown by the Sind, Baluchistan and North-West Frontier Province group. This is very probably due to the strict ' purdah 'observed by the females in this group of which the population is predominantly Muhammadan. Vitality, only superior to that of the Provincial group just considered but inferior to the rest of India, is shown by Bengal and Assam, and Rajputana and Ajmere-Merwara groups. The former shows heavier mortality than the latter upto about age 40 after which the position is reversed. Taking female mortality as a whole it can be stated that the deterioration which set in from 1901 onwards has not yet taken a definite turn towards improvement. Whereas in the case of males the position in 1931 with respect to vitality was such as to bring it back very nearly up to the high level reached in 1891, the female vitality, however, does not indicate any recovery of the lost ground.
58. So far I have compared either the same Province at different Censuses or one Province with another at the same Census. It will, however, be interesting to compare Indian mortality with that of the other countries of the world. It has often been said that the Indian population exhibits the worst vitality of all the countries of the world which have analysed their mortality experience but, except perhaps for Tables comparing India with England, no statistics have been published so far to indicate the force of the statement that India exhibits the heaviest mortality of all civilised countries. Believing in the truism that figures speak more forcibly than words, I have taken advantage of the publication in Prof. Glover's admirable volume, "United States Life-Tables 1890-1910" of the mortality Tables relating to no less than thirteen representative countries of the world including India. These are exhibited in the six Tables from XXXIII to XXXVIII three of which relate to males and the other three to females. Prof. Glover has given in his volume extensive figures for all the functions of the mortality Tables and for each age to which none, interested in studying the comparative mortality of the countries of the world, can help referring. I have, however, chosen only three of these mortality functions and have also further condensed my Tables by giving values only at quinquennial ages. Tables XXXIII and XXXIV give for males and females respectively the number of persons that die in a year out of 1,000 observed at each quinquennial age. The very heavy rate of mortality experienced by the Indian population as compared with all the other twelve countries will be evident. It will also be observed that the ratio of the mortality in India to the mortality of the other countries is very large at the younger ages and at some age points the mortality in India is more than nearly seven times as heavy as that of countries which exhibit light mortality. As age advances there is a tendency for the ratio to diminish; yet the Indian mortality keeps substantially heavier than that of the other countries. Tables XXXV and XXXVI, showing for the two sexes how rapidly the numbers surviving to each quinquennial age out of 100,000 children born diminish, might be considered as affording a better basis for comparative study by some people. It will be seen that, in India, before age 5 is reached nearly 45,000 young lives out of 100,000 children born are lost, whereas even the country that exhibits the lowest survivorship amongst the other twelve brought into the comparison shows a wastage of only about 27,000 and Norway noted for its very light mortality loses only something less than 12,000 in the first 5 ages. Survivors to age 10 are only about half the number of children born in India and the very large number surviving
to this age in other countries will be evident from a study of the Tables. The two Tables afford a ready means of making such comparisons at all quinquennial ages and the appallingly heavy toll claimed by death in India will be evident even ffom a cursory scrutiny of them. Tables XXXIII and XXXVIII give the values of the expectations of life for all the countries and the small values, as compared with other countries, of this function relating to India as a sure indication of the very heavy mortality experienced by it will be evident.
59. In bringing this Report to a close, I have to draw the special attention of the authorities in charge of the registration of the vital occurrences in India to the extreme desirability, nay necessity, of focussing particular attention on a limited area in each Province with the view to obtain complete statistics of births and deaths in the locality, the latter either according to individual ages or quinquennial age periods grouped in the same manner as recommended by me for the 1941 Census enumeration. As many as six Actuarial analyses undertaken in connection with Indian Censuses have been performed by metheds more or less in the nature of makeshifts and it will be extremely desirable to make the seventh and subsequent ones, at least, follow the normal and, therefore, comparatively more easy method of mortality Table construction. I know it will be practically impossible to expect the records of vital statistics with respect to the entire area in each Province in India to come up to the requisite degree of accuracy within a decade. That is why I am recommending a representative small area in each Province being subject to special scrutiny so that it may provide, by the time of the next Census, dependable records of vital occurrences. The relatively great accuracy of the records of vital statistics in the Presidency of Madras have been commented upon earlier in this Report. If this accuracy is maintained and further improved upon, we shall have by 1941 sufficient material on hand with respect to one very large Province supplying a long felt want.
60. Just when this Report is nearing completion, practically at the very moment I am writing these lines, I have received from the Census Commissioner a Table showing the deaths in the Presidency of Madras that occurred during the ten calendar years, 1921 to 1930, both inclusive. It will, therefore, not be possible for me to make any investigations making use of the statistics of deaths, in such time as to enable the results to be incorporated in this Report. This will, however, be done in a Paper I propose to submit to the Institute of Actuaries, London. The infantile deaths, i.e., deaths below age one, are divided in this Table into four useful categories as follows: "under one week", "over one week (and under one month)", "over one month but not exceeding six months" and "over six months but not exceeding twelve months". With respect to higher ages, however, up to age 20. one finds the orthodox quinquennial groupings ' $1-4$ ', ' $5-9$ ', ' $10-14$ ' and ' $15-19$ '. From age 20 onwards the groupings are decennial with one large group at the end of 60 and over. The groups could preferably be modified to be in conformity with those to be adopted in collecting population statistics at the 1941 Census. It will be essential, if the Life Tables to be constructed after the 194 I Census are to include the Indian States in the same way as the Life Tables constructed now do, that the Indian States should also make efforts to supply reliable statistics of vital occurrences in the inter-censal period between now and the date of the next Census. If this is not done and if reliable records of births and deaths are only available for British Provinces there will be no other alternative but to revert to the old method of constructing Life Tables only with reference to the British Provinces in India.
61. The situation' takes a different aspect altogether when we come to consider the ages of infancy and childhood. Here without exaggeration we are simply groping in the dark and it has only been repeated too often by my predecessors and myself that the Proclaimed Clans experience of nearly half a century ago is entirely useless as giving any basis to deduce mortality rates at the very youns ages applicable to the present generation of children. If the recommendations made in the previous paragraph are given effect to from now there would be sufficient statistics on hand by about the next Census date which would provide reliable basis to the investigating Actuary to deduce mortality rates not only at the ages of infancy and childhood but also at the older ages. If, however, it is found not possible just yet to give immediate effect to them in their entirety, steps should be taken to maintain accurate records of births and deaths up to MSCC
age 15 at least in representative small areas in each Province. This will provide the Actuary at the next Census with sufficient material to deduce reliable rate of mortality at the very young ages. Recommendations to this effect were made by Sir George Hardy after the 1901 Census, repeated by Mr. Ackland after 1911 Census and emphasised by Mir. Meikle after the 1921 Census, but, one has to state with regret, to no purpose. Mr. Ackland said in this connection "The record and investigation of these statistics (Proclaimed Clans statistics) apparently ceased in 1904 and. as explained earlier in the present Report and in Mr. Hardy's 1901 Report, the data furnished between 1891 and 1904 were so limited as to age as to be practically useless for the purposes desired. It is clear that results based on statistics referring to the period 1876-1890, could not properly be employed in any future investigation of C'ensus Returns; and it is therefore most desirable, and indeed essential, if complete Life-Tables are to be deduced in future, that some eflort should be made to secure trustworthy data as to the births in the several Provinces, and the deaths at the ages of infancy and childhood". Ackland's words expressed in the above terms twenty years ago, will hold even more emphatically by the time the next Census falls to be taken. It is, therefore, earnestly hoped that the Government of each Province will take the necessary steps to give effect to the recommendations in this respect at least.

Acknouledgments.

62. It is now my pleasant duty to acknowledge help from vacious persons which I received not only in the preparation of this Report but also in making the very elaborate calculations which the construction of the twenty-two Life Tables had involved, of which only those that have had any experience in conducting statistical inrest cations in all their various details would have an adequate idea. I had raturally to be in constant correspondence with Dr. Hutton, the Census Commissioner for India, and his replies to my various enquiries were prompt, full and narked by an extreme measure of courtess which is gratefully acknowledged. I found his intimate knowledge of the conditions obtaining in the different parts of Irdia and of Indian sociology of particular help in forming my Provincial groups. I have to express my indebtedness to my friend and colleague in the Oriental Life Office, Mr. Douglas Forrest, F.F.A., who read the Report in manuscript and gave suggestions of a useiul character. As regards the help I received to complete the laborious work in connection with the preparation of the Life Tables I have been rarticularly fortunate, for, what I received was not help of a purely clerical nature. but help from young men aspiring for Actuarial honours and therefore imbued with the desire to learn the work. It was a pleasure to see these young men from day to day ever ready to take up with a cheerful countenance the large quantity of laborious work they were called upon to do. To one and all of them I express my gratitude and do hope that the training they received will stand them in good stead, when in the fullness of time some of them at least may be called upon to undertake investigations of a similar nature. My sincere thanks are also due to Mr. Ninocher J. S. Khras, F.S.S., a friend and colleague of mine whose very long association with the Royal Statistical Society extending over a period of more than a quarter of a century was particularly helpful in placing at my disposal the vast store of Statistical knowledge carefully preserved in the pages of the Journals of that body to which and to the pages of the Journals of the Institute of Actuaries-that storehouse of knowledge on Actuarial matters-I had constantly to refer to derive inspiration when the work was in progress.

Ł. S. VAIDY ANATHAN,

M.A., F.I.A.

Oriental Bumbings,

Comparative Rates of Mortality $\left(100 g_{\mathrm{x}}\right)$ at quinquennial ages, as deluced from the results of the 1881, 1891, 1901, 1911, 1921 and 1931 Censuses respectively in the several Provinces specifed and over the combined area, with corresponding values for England.

Malit Lives.

TABLE XXIX-(contd.)
Comparative Rates of Mortality $\left(100 q_{r}\right)$ at quinquennial ages, as deduced from the results of the 1881, 1891, 1901, 1911, 1921 and 1931 Censuses respectively, in the several Provivces specifi2d and over the combinel area, with corresponding values for England.

Male Lives.

Age.	Punjab.						Rajputana and AjmerMerwara.	Sind ${ }^{8}$ N. W. F. Provinces.	United Provinces.							All India.						England.	
	1881.	1891.	1901.	1011.	1921.	1931.	1931.	1931.	1881.	1801.	1901.	1911.	$\overbrace{\text { Hindus. }}^{18}$	1. Maho- medans.	1931.	1881.	1801.	1001.	1011.	1021.	1931.	1911.	1921.
0	28.27	26.35	29.79	29•79	\cdots	23.98	27.39	20.01	$28 \cdot 44$	$26 \cdot 3 \overline{5}$	$20 \cdot 81$	$29 \cdot 79$	\cdots	\cdots	27.80	$28 \cdot 41$	27.26	28.0.4	29.00	..	24.87	12.04	$0 \cdot 00$
5	$2 \cdot 29$	2.58	$2 \cdot 81$	$2 \cdot 81$	$2 \cdot 50$	$2 \cdot 07$	$2 \cdot 47$	1.89	$2 \cdot 43$	$2 \cdot 58$	$2 \cdot 33$	2.81	$2 \cdot 64$	$2 \cdot 18$	2.37	$2 \cdot 41$	2.68	$2 \cdot 67$	$2 \cdot 75$	2.52	1.03	. 49	$\cdot 42$
10	$1 \cdot 0.4$. $1 \cdot 10$	$1 \cdot 26$	1.22	$1 \cdot 36$. 77	1.30	.00	1.14	1. 10	1.03	$1 \cdot 26$	1.27	1.06	1.05	$1 \cdot 11$	$1 \cdot 14$	1.24	$1 \cdot 25$	1.22	$\cdot 79$	- 19	-18.
15	$1 \cdot 41$	$1 \cdot 02$	$1 \cdot 24$	1.77	1.38	. 91	1.22	1.09	1.56	$1 \cdot 15$. 95	1.27	1.36	$1 \cdot 32$	$1 \cdot 11$	1.68	$1 \cdot 13$	1.17	1.32	1.20	. 98	. 23	-22
20	$1 \cdot 65$	1.12	1.52	$2 \cdot 04$	$1 \cdot 48$	1.25	1.29	1.35	1.87	$1 \cdot 40$	$1 \cdot 13$	1.03	$1 \cdot 68$	1.63	$1 \cdot 34$	1.85	1.39	$1 \cdot 43$	1.69	1.42	1.27	$\cdot 35$	$\cdot 3$
25	1.85	1.36	1.86	$2 \cdot 30$	1.67	1.53	1.67	1.61	$2 \cdot 11$	1.88	1.46	$2 \cdot 52$	2.03	1.01	$1 \cdot 66$	$2 \cdot 00$	$1 \cdot 60$	1.69	2.03	1.08	$1 \cdot 03$	-40	-40
30	$2 \cdot 05$	$1 \cdot 67$	$2 \cdot 16$	$2 \cdot 62$	$2 \cdot 01$	1.78	$2 \cdot 33$	$2 \cdot 11$	$2 \cdot 33$	2.28	1.91	$2 \cdot 84$	$2 \cdot 37$	$2 \cdot 29$	1.91	$2 \cdot 18$	$2 \cdot 04$	$2 \cdot 02$	$2 \cdot 37$	$2 \cdot 10$	1.93	-48	-43
35	2 -26	$2 \cdot 04$	$2 \cdot 46$	3.04	$2 \cdot 40$	2.07	$2 \cdot 02$	$2 \cdot 82$	$2 \cdot 50$	2.72	2.50	$3 \cdot 30$	$2 \cdot 87$	$2 \cdot 72$	$2 \cdot 40$	$2 \cdot 38$	$2 \cdot 43$	$2 \cdot 49$	$2 \cdot 77$	$2 \cdot 67$	$2 \cdot 41$	-62	- 55
40	2.51	2.49	2.76	$3 \cdot 61$	$3 \cdot 07$	$2 \cdot 42$	3.51	3.52	$2 \cdot 85$	$3 \cdot 10$	$3 \cdot 23$	3.65	$3 \cdot 60$	3.24	$2 \cdot 09$	$2 \cdot 66$	$2 \cdot 85$	$3 \cdot 01$	$3 \cdot 24$	3.33	$2 \cdot 94$. 81	-69
45	$2 \cdot 85$	3.02	$3 \cdot 00$	$4 \cdot 18$	3.58	$2 \cdot 82$	$4 \cdot 10$	$4 \cdot 17$	$3 \cdot 31$	$3 \cdot 72$	4.06	4.00	4.27	3.78	3.01	3.05	3.37	$3 \cdot 64$	3.72	4.00	$3 \cdot 49$	1.09	. 88
50	$3 \cdot 34$	$3 \cdot 62$	$3 \cdot 43$	$4 \cdot 62$	4.07	$3 \cdot 32$	$4 \cdot 71$	$4 \cdot 76$	4.04	$4 \cdot 36$	4.00	$4 \cdot 62$	5.08	4.41	$4 \cdot 30$	3.68	3.98	4.30	$4 \cdot 28$	4.72	$4 \cdot 10$	$1 \cdot 48$	$1 \cdot 18$
55	$4 \cdot 10$	$4 \cdot 36$	$3 \cdot 09$	$5 \cdot 14$	$4 \cdot 61$	4.08	5.51	$5 \cdot 36$	5.22	5.21	$5 \cdot 77$	$5 \cdot 41$	6.00	$5 \cdot 12$	5:16	4.61	4.78	$5 \cdot 00$	4.98	$5 \cdot 46$	$4 \cdot 81$	$2 \cdot 11$	1.78
60	$5 \cdot 35$	$5 \cdot 22$	$4 \cdot 98$	5.80	$5 \cdot 28$	$5 \cdot 24$	8.65	6.08	7.01	6.41	6.98	6.52	7.20	$0 \cdot 12$	6.34	$6 \cdot 12$	5.03	6.25	6.00	6.31	$5 \cdot 79$	$3 \cdot 04$	$2 \cdot 56$
65	7.30	0.47	6.70	$6 \cdot 68$	$8 \cdot 30$	$7 \cdot 17$	$8 \cdot 43$	$7 \cdot 37$	$9 \cdot 80$	8.21	9.05	8.05	8.83	7.68	8.05	$8 \cdot 50$	7.64	8.14	7.57*	$7 \cdot 43$	7.27	4.38	3.98
70	10.32	$8 \cdot 42$	9.62	$8 \cdot 76$	-	10.34	11.22	11.05	14.22	10.89	$12 \cdot 28$	10.27	.	-	10.77	12.18	$10 \cdot 16$	11.36	10.17	..	$8 \cdot 76$	6.47	$0 \cdot 00$
75	14.95	11.30	14.35	14.15	..	15.63	16.05	17.62	20.71	14.92	17.26	13.52	-	-	15.37	17.68	13.93	18.12	14.71	..	14.27	9.75	$9 \cdot 38$
80	21.47	15.62	21.59	22.04	..	24.30	24.15	20.50	30.05	20.06	24.00	10.54	-	\bullet	23.18	25.28	10.58	23.55	22.55	.	21.80	14.30	$14 \cdot 00$
85	31.47	22.07	$32 \cdot 12$	30.23	-	$37 \cdot 10$	37.37	38.24	42.00	30.01	$35 \cdot 14$	33.04	-	-	37.30	30.17	28.03	33.88	30.35	.	36.08	19.91	$19 \cdot 97$
90	90,0.00	31.77	40.72	68.39	-.	54.05	57.58	$52 \cdot 70$	$100 \cdot 00$	$43 \cdot 60$	50.80	$58 \cdot 64$.	.	$60 \cdot 10$	62.50	40.62	47.88	57.20	..	57.70	27.40	26.75

TABLE XXX.
Comparative Rates of Mortality $\left(100 q_{x}\right)$ at quinquennial ages, as deduced from the results of the 1881, 1891, 1901, 1911, 1921 and 1931 Censuses respectively, in the several Provinces specified and over the combined area, with corresponding values for England.

Female Lives.

Ago,	Bongal.							$\begin{aligned} & \text { Bihar } \\ & \text { snd } \\ & \text { Orisea. } \end{aligned}$	Bombay.							Burms. -				$\begin{gathered} \text { O. P. } \\ \text { and } \\ \text { Hyderabad. } \end{gathered}$		Madrae.					
	1881.	1891.	1801.	1911. Hin	$\overbrace{\text { ndus. }}^{1921}$	1. Maho- medans.	$1831 .$	$\text { 1931. } 18$	$\text { 1881. } 188$		901.1		$\overbrace{\begin{array}{c} \text { Hin. } \\ \text { dus. } \end{array}}^{1021}$			1801.	$1911 .$	$1921 .$	1931.	1881.	1931.	1881.	1891.		1911.		1831.
0	24.12	25.36	26.05	29.76	.	..	23.36	23.23	20.292	23.1925	25.852	29.58		23	23.45	19.08	22.07		20.30	24.29	.7	. 60	. 19	. 60	25.70		$1 \cdot 48$
5	2.08	$2 \cdot 80$	3.15	$2 \cdot 00$	2.81	3.43	1.98	1.42	2.22	2.53	2.85	$2 \cdot 48$	$3 \cdot 38$	8.35	2.08	1.89	1.42	2.00	1.23	2.22	1.24	2.50	$2 \cdot 63$	$2 \cdot 45$	$2 \cdot 34$	2.04	$1 \cdot 12$
10	1.06	1.39	1.71	1.44	1.65	1.93	1.07	. 60	1.16	1.25	1-39	. 98	1.88	1,84	1.08	. 85	. 53	1.08	. 52	1.16	. 63	1.27	1.25	1.21	$1 \cdot 34$	1.25	. 60
15	1.70	1.67	1.84	1.69	1.61	2.00	1.42	1.15	1.81	1.45	$1 \cdot 61$. 94	1.45	1.30	$1 \cdot 30$	1.17	. 66	1.09	. 89	1.81	1.20	1-82	1.44	$1 \cdot 32$	1.24	1.27	. 94
20	2.05	2.01	$2 \cdot 11$	1.92	1-78	$2 \cdot 31$	2.01	1.84	$2 \cdot 22$	1.69	1-62	1.56	1.69	1.60	1.71	1.68	1.12	1.16	1.69	2.24	I.83	$2 \cdot 35$	1.59	1.44	1.25	1.40	1.49
25	$2 \cdot 13$	2.25	$2 \cdot 50$	$2 \cdot 11$	$1 \cdot 94$	$2 \cdot 49$	$2 \cdot 52$	2.26	$2 \cdot 40$	1-88	1.72	$2 \cdot 18$	$2 \cdot 04$	2.00	$2 \cdot 02$	1.97	1.58	1.57	1.06	$2 \cdot 42$	2.24	$2 \cdot 47$	1.68	1.58	1.37	1.59	1.85
30	2-19	2.60	$2 \cdot 74$	$2 \cdot 36$	$2 \cdot 29$	$2 \cdot 83$	3.00	2.51	2.55	1.80	1.88	$2 \cdot 68$	2.45	$2 \cdot 42$	2.28	$2 \cdot 11$	1.83	1.82	$2 \cdot 18$	2.59	$2 \cdot 63$	$2 \cdot 67$	1.77	1.73	$1 \cdot 64$	1.02	$2 \cdot 17$
36	$2 \cdot 26$	2.75	2.75	$2 \cdot 70$	$2 \cdot 74$	3.26	$3 \cdot 45$	2.72	2.68	2.00	$2 \cdot 39$	3.09	3.00	2.99	$2 \cdot 56$	$2 \cdot 10$	$2 \cdot 02$	1.84	$2 \cdot 35$	2,78	2.77	2.65	1.83	2.05	2.05	2.32	2.51
40	$2 \cdot 40$	3.01	2.72	$3 \cdot 16$	3.31	$8 \cdot 79$	$3 \cdot 88$	3.02	2.82	$2 \cdot 31$	2.99	$3 \cdot 48$	3.60	3.59	$2 \cdot 92$	1.96	2.09	2.06	$2 \cdot 56$	2.97	3.02	2.75	2.11	2.67	$2 \cdot 60$	2.85	2.94
45	$2 \cdot 61$	3.28	$2 \cdot 89$	3.65	3.85	4.30	4.25	3.53	3.04	$2 \cdot 69$	8.63	$3 \cdot 93$	$4 \cdot 17$	$4 \cdot 11$	8.81	1.04	$2 \cdot 31$	2.44	$2.78{ }^{\text { }}$	8.21	3.23	2.85	2.29	3.23	3.01	3.25	$3 \cdot 38$
50	2.96	3.65	3.28	4.20	4.42	$4.81{ }^{\text { }}$	$4 \cdot 60$	4.23	3.48	8.27	4.29	4.60	4.77	4.73	3.82	$2 \cdot 20$	$2 \cdot 66$	$2 \cdot 95$	$3 \cdot 07$	3.62	3.47	$3 \cdot 10$	2.55	3.88	3.48	3.71	3.88
65	$3 \cdot 65$	$4 \cdot 18$	8.88	$4 \cdot 92$	$5 \cdot 02$	5.32	4.94	$5 \cdot 14$	4.35	$4 \cdot 11$	5.24	5.23	5.33	4.87	$4 \cdot 48$	$2 \cdot 59$	3.12	3.51	3.60	4.55	3.84	3.74	3.04	$4 \cdot 48$	4.03	4.25	4.47
60	$5 \cdot 11$	$5 \cdot 27$	$5 \cdot 12$	6.09	$5 \cdot 76$	5.97	$5 \cdot 48$	6.32	5.95	5.45	8.40	0.21	6.33	5.78	5.47	8.25	4.36	4.28	4.27	6.21	4.45	5.07	4.08	$5 \cdot 16$	4.75	4.87	8.30
65	$7 \cdot 48$	7.00	7.18	8.11	6.87	6.98	6.49	8.03	8.56	7.42	$8 \cdot 36$	$7 \cdot 66$	6.83	6.56	7.02	4.44	6.41	5.45	8.72	8.96	5.7	7.24	5.75	6.52	5.8	$6 \cdot 1$	6. 68
70	11.21	9.68	10.68	11.63	8.67.	. 10.58	12.65	10.29	11.79	9.80	..	.	9.54	6.87	$8 \cdot 20$	-	8.40	18.19	8.05	10.66	8.24	9.26	7.63	-	8.99
75	16.84	18.44	16.13	17.71	.	-	12.65	14.77	18.76	14.41	17.07	13.29	.	-	18.88	10.89	13.41	.. .	12.98	19.54	12.43	18.11	1.98	3.78	10.47	-•	8.24
80	24.74	19.19	24.20	28.21	-	-	20.98.	. 20.98	27.54	20.60	24.88	819.60	..	-	21.6	17.18	19.62	..	20.22	28.79	$22 \cdot 69$	24.33	17.57	$20 \cdot 4$	16.19		$1 \cdot 02$
85	88.00	27.78	35.71	44.74	-	-	34.85	30:65	43.85	29.80	$85 \cdot 80$	31.08	..	-	35.02	26.45	28.49	.-	30.05	43.66	38.80	35.02	25.82	29.38	7.08		$2 \cdot 84$
00	67.14	40.60	50.34	65.69	.	-•	67.14	47.03	100.00	43.28	49.00	48.67	-	.	58.14	439.11	$140 \cdot 43$	\cdots	42.49	$100 \cdot 00$	65.01	60.00	38.38	40.29	45.64		48.78

TABLE XXX-(contd.)

Comparative Rates of Mortality (100q.) at quinquennial ages, as deduced from the results of the 1881, 1891, 1901, 1911, 1921 and 1931 Censuses respectively, in the severul Provinces specified and over the combined area, with corresponding values for England.

Female Lives.

Age.	Panjab.				Rajputann and Ajner Merwara.	 N.-W. F. Pro. vincos.	United Provinces.							All India.						England.	
	1881.	1891.	1921.	1931.	1031.	1931.	1881.	1891.	1901.	$1911 .$	$\overbrace{\substack{\text { Hindus. } \\ m}}^{1021}$		1031.	1881.	1891.	1801.	1911.	1921.	1931.	1911.	1921.
0	24.12	23-19	..	$23 \cdot 65$	24.26	$25 \cdot 66$	$24 \cdot 20$	23.19	27.28	20.75	-	-	$25 \cdot 38$	24.26	23.99	25.88	28.40	..	23.23	8.77	6.94
5	$2 \cdot 08$	$2 \cdot 53$	3.17	$2 \cdot 02$	1.81	1.65	2.22	$2 \cdot 53$	2.02	2.79	$2 \cdot 40$	$2 \cdot 57$	$2 \cdot 14$	2.20	$2 \cdot 63$	$2 \cdot 91$	$2 \cdot 62$	2.78	1.65	-48	-42
10	1.06	1.25	1.80	1.04	-82	1.24	1.16	1.27	1.35	1.28	1.25	1.40	. 88	$1 \cdot 14$	1.31	1.49	1.20	1.55	. 81	-20	- 18
15	$1 \cdot 60$	$1 \cdot 43$	$1 \cdot 90$	1.29	$1 \cdot 13$	1.50	1.75	$1 \cdot 60$	$1 \cdot 18$	1.29	1.65	1.56	1.23	1.75	1.56	1.48	1.34	1.57	1.15	-24	. 23
20	1.94	1.53	$2 \cdot 05$	1.75	$1 \cdot 66$	1.88	$2 \cdot 16$	1.04	1.37	1.80	1.81	1.81	$1 \cdot 76$	$2 \cdot 14$	1.81	1.72	1.70	1.73	1.76	-28	-31
25	$2 \cdot 12$	1.67	$2 \cdot 19$	$2 \cdot 13$	2.09	$2 \cdot 30$	$2 \cdot 38$	$2 \cdot 21$	1.76	$2 \cdot 41$	2.03	$2 \cdot 02$	2.20	2.27	$2 \cdot 01$	$2 \cdot 00$	2.00	1.92	2.16	-34	-35
30	$2 \cdot 25$	1.83	$2 \cdot 63$	2.44	2.61	$3 \cdot 00$	2.63	$2 \cdot 46$	2.07	$2 \cdot 80$	$2 \cdot 38$	$2 \cdot 36$	$2 \cdot 56$	$2 \cdot 37$	$2 \cdot 21$	$2 \cdot 24$	$2 \cdot 31$	$2 \cdot 24$	2.51	. 41	$\cdot 39$
35	$2 \cdot 35$	2.07	$2 \cdot 89$	$2 \cdot 70$	$2 \cdot 94$	$3 \cdot 88$	$2 \cdot 65$	$2 \cdot 75$	2.44	$3 \cdot 11$	2.84	$2 \cdot 78$	$2 \cdot 86$	$2 \cdot 47$	$2 \cdot 48$	$2 \cdot 46$	$2 \cdot 66$	$2 \cdot 72$	2.03	. 52	. 45
40	2.45	2.38	$3 \cdot 40$	2.01	3.43	4.59	2.70	3.04	$2 \cdot 87$	$3 \cdot 40$	$3 \cdot 38$	3.27	$3 \cdot 17$	2.69	2.71	$2 \cdot 77$	3.08	$3 \cdot 28$	3.45	-68	. 53
45	2.50	$2 \cdot 68$	$3 \cdot 88$	3.01	3.95	5.22	3.05	$3 \cdot 32$	$3 \cdot 30$	$3 \cdot 94$	3.01	$3 \cdot 82$	$3 \cdot 45$	$2 \cdot 79$	2.09	8.21	3.63	$3 \cdot 81$	3.80	. 85	-67
50	$2 \cdot 83$	3.04	4.36	$3 \cdot 32$	$4 \cdot 53$	5.74	3.53	$3 \cdot 71$	4.05	4.50	4.68	4.44	3.78	$3 \cdot 15$	$3 \cdot 37$	$3 \cdot 76$	4.08	$4 \cdot 40$	$4 \cdot 31$	1.14	- 92
65	3.37	3.57	4.88	3.84	5.27	6.18	4.51	$4 \cdot 33$	4.87	6.27	5.51	$5 \cdot 17$	$4 \cdot 21$	3.88	3.07	$4 \cdot 49$	4.74	5.01	$4 \cdot 75$	1.61	1.32
60	4. 58	4.35	5.53	4.67	6.26	6.95	6.23	$5 \cdot 47$	$6 \cdot 12$	8.34	6.56	6.14	4.90	$5 \cdot 35$	5.05	$5 \cdot 59$	5.78	$5 \cdot 77$	$5 \cdot 43$	2.31	1.90
65	6.53	5.81	6. 58	6.00	7.75	8.38	9.08	7.29	$8 \cdot 16$	7.80	$8 \cdot 12$	7.70	0.31	7.73	8.77	$7 \cdot 50$	7.44	6.99	6.06	$3 \cdot 34$	$2 \cdot 89$
70	$9 \cdot 56$	7.57	..	82.47	10.33	11.67	13.47	10.00	11.40	10.02	-	-	8.75	11.42	9.32	10.67	$10 \cdot 12$	-	8.88	$5 \cdot 26$	4.65
75	14.30	10.50	..	$12 \cdot 38$	14.63	18.85	19.98	14.07	16.44	13.36	-•	-	13.90	17.02	13.13	15.79	14.60	.	13.01	8.08	7. 59
B0	21.00	14.87	-	19.48	22.35	32.03	29.43	$20 \cdot 16$	23.04	19.41	-.	-.	22.24	24.93	18.83	23.24	22.49	-	20.66	$12 \cdot 42$	11.77
85	31.13	21-37	-	32.75	35.85	53.13	41.67	$20 \cdot 30$	$34 \cdot 40$	32.95	\cdots	-	33.77	36.84	27.36	33.26	36.28	. \cdot	34.78	17.34	17.47
90	48.84	31.16	.	51.82	$56 \cdot 14$.	100.00	$42 \cdot 03$	48.22	68.60	.	..	48.50 -	63.63	40.08	45.23	59.07	.	56.67	$\underline{23.83}$	23.86

TABLE XXXI.
${ }_{8}^{8}$ Comparative Expectations of Life at decennial ages, as deduced from the results of the 1881, 1891, 1901, 1911 and 1931 Censuses respectively, in the several Provinces specified and over the combined area, with corresponding values for England. Male Lives.

TABIE XXXII.
Comparative Expectations of Life at decennial ages, as deducul from the rosillts of the 1891, 1891, 1901, 1911 and 19.31 Censuses respsctively, in the several Provinces specificd and over the combinal area, with corresponding values for England.

Female Lives.

TABLE XXXIII.

Foreign Countries-Males-Annual rate of Mortality per thousand.
Taken from the piblished Life Tables of various countries, based on their official population and Death Statistics and exhibited here in tabular form so that a comparison may be made at each age.

Age.	$\begin{aligned} & \hline \text { Australig. } \\ & \text { 1901-1910. } \end{aligned}$	Denmark. 1906-1910.	$\begin{aligned} & \text { England. } \\ & \text { 1901-1010. } \end{aligned}$	$\begin{aligned} & \text { France. } \\ & \text { 1898-1003. } \end{aligned}$	Germany.	Holland.	$\begin{aligned} & \text { India. } \\ & \text { 1901-1910. } \end{aligned}$	$\begin{gathered} \text { Italy. } \\ \text { 100 } 1-1910 . \end{gathered}$	$\begin{aligned} & \text { Japan. } \\ & \text { 1898-1903. } \end{aligned}$	$\begin{aligned} & \text { Norway. } \\ & \text { 1001-1910. } \end{aligned}$	$\begin{aligned} & \hline \text { Sweden. } \bar{S} \\ & \text { 1001-1910. } \end{aligned}$	witzerland. 1001-1910.	nited States. 1001-1910.
(1) Males.	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
0	$95 \cdot 10$	$120 \cdot 67$	144.34	- 103.26	202.34	$140 \cdot 46$	280.98	$167 \cdot 71$	158.86	81.45	92.65	138.40	127.38
5	$2 \cdot 81$	2.85	$5 \cdot 42$	6.35	$5 \cdot 28$	4.86	27.50	7.68	7.87	4.38	5.02	$4 \cdot 13$	5.24
10	1.79	1.81	1.82	3.03	$2 \cdot 44$	$2 \cdot 26$	12.50	$2 \cdot 26$	3.31	2.98	3.22	$2 \cdot 25$	$2 \cdot 61$
- 15	2.55	$2 \cdot 48$	$2 \cdot 61$	3.75	$2 \cdot 77$	$2 \cdot 60$	13.20	$4 \cdot 12$	4.75	4.08	3.22	$2 \cdot 70$	$3 \cdot 19$
20	$3 \cdot 70$	3.86	3.78	6.99	$5 \cdot 04$	5.07	16.80	6.19	$8 \cdot 30$	9.07	6.41	$5 \cdot 16$	$5 \cdot 46$
25	$4 \cdot 48$	4.04	4.54	7.52	$5 \cdot 13$	4.82	20.30	6.85	8.38	$8 \cdot 78$	6.28	6.56	6.22
30	$5 \cdot 19$	$4 \cdot 47$	5.68	7.86	5.56	4,75	23.50	6.67	7.87	$7 \cdot 57{ }^{\circ}$	6.04	6.20	7.31
35	. 6.33	$5 \cdot 28$	7.32	$0 \cdot 42$	6.97	$5 \cdot 37$	27.80	7.08	. 8:69	$7 \cdot 35$	6.37	7.54	$9 \cdot 14$
40	$8 \cdot 16$	6.89 \%	$0 \cdot 31$	11.04	$0 \cdot 22$	$6 \cdot 79$	$32 \cdot 30$	8.48	$10 \cdot 40$	$7 \cdot 78$	$7 \cdot 57$	9.83	$10 \cdot 40$
45	$10 \cdot 83$	8.38	12.23	13.63	12.44	8.88	37-20	10.31	13.28	$8 \cdot 02$	9.25	13.08	$13 \cdot 10$
50	13.95	11.87	16.57	17.01	16.93	11:77	$42 \cdot 80$	13.45	17.75	$11 \cdot 11$	11.24	17.88	15.28
65	$18 \cdot 16$	17.07	23.08	21.53	23.67	18.86	40.80	17.73	24.48	$14 \cdot 16$	15.26	24.85	21.38
80	25.84	23.89	32.62	30.84	32.60	24.20	59.80	26.62.	35.08	$19 \cdot 14$	20.68	35.43	29.00
65	38.50.	34.03	-45.57	44.30	. 47.06	37.20	75.50	$30 \cdot 83$	51.21	28.80	30.04	50.42	42.82
70	61.62	53.63	67.08	68.32	60.36	57.43	101.70	64.49	74.45	$42 \cdot 78$	46.40	78.83	59.00
75	96.10	80.79	100.62	108.70	108.40	80.21	148.00	102.82	107.50	68.91	74.60	108.89	90.15
80	137.95	131.97	141.83	167.80	157.87	137.00	228.70	169.78	155.80	108.34	$120 \cdot 81$	168.92	133.68
85	107.01	191.64	203.15	230.50	231.60	204.00	$366 \cdot 30$	251.60	225.80	104.09	192.27	$232 \cdot 16$	195.04
80	$277 \cdot 36$	$290 \cdot 48$	205.68	270.80	820.02	290.00	$545 \cdot 50$	358.74	327.20	235.78	286.09	$317 \cdot 20$	261.48
95	381 -11	..	300.68	341.50	413.09	600.00	-	$517 \cdot 41$	474.00	329.32	398.02	$425 \cdot 31$	338.81
100	525.36	.	$449 \cdot 69$	460.00	496.68	.	. \quad.	.	686.90	$458 \cdot 00$	495.00	675.97	436.52

TABLE XXXIV.

Foreign Countries-Females-Annual rate of Mortality per thousand.
Taken from the published Life Tables of various countries basel on their official population and Death Slatistics and exhibited here in tabular form so that a comparison may be made at each age.

Age.	Australia. 1901-1910.	$\begin{gathered} \hline \text { Denmark. } \\ 1906-1910 . \end{gathered}$	$\begin{gathered} \hline \text { England. } \\ \text { 1901-1910. } \end{gathered}$	$\begin{gathered} \text { France. } \\ \text { 1898-1903. } \end{gathered}$	Germany. 1901-1910.	$\begin{gathered} \hline \text { Holland. } \\ \text { 1900-1009. } \end{gathered}$	India. 1001-1910.	Italy. 1901-1910.	$\begin{aligned} & \text { Japan. } \\ & \text { 1898-1003. } \end{aligned}$	Norway. 1901-1010.	Sweden. 1901-1010.	Switzerland. 1001-1010.	$\begin{gathered} \text { United } \\ \text { States. } \\ 1901-1010 . \end{gathered}$
(1) Females.	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)	(12)	(13)	(14)
0	97.53	97.71	117.43	136.49	170.48	117.69	284.60	$152 \cdot 11$	140.92	66.79	$75 \cdot 98$	112.58	105.51
5	2.58	$2 \cdot 57$	$5 \cdot 53$	6.49	$5 \cdot 31$	$4 \cdot 63$	28.20	$8 \cdot 50$	$8 \cdot 10$	$4 \cdot 28$	$5 \cdot 16$	4.08	$5 \cdot 00$
10	1.59	2.08	1.99	$3 \cdot 28$	$2 \cdot 56$	$2 \cdot 28$	12.00	2.80	$3 \cdot 77$	$3 \cdot 19$	$3 \cdot 25$	$2 \cdot 26$	$2 \cdot 36$
15	$2 \cdot 19$	$2 \cdot 91$	$2 \cdot 58$	$4 \cdot 47$	3.02	3.21	13.40	4.89	6.38	4.58	4.19	3.81	3.09
20	$3 \cdot 29$	$3 \cdot 78$	$3 \cdot 25$	6.27	$4 \cdot 22$	$3 \cdot 84$	17.00	$0 \cdot 48$	$9 \cdot 64$	6.13	5.26	$5 \cdot 40$	4.90
25	$4 \cdot 30$	$4 \cdot 44$	3.86	7.35	$5 \cdot 37$	4.48	20.00	7.33	9.92	6.66	5.98	$6 \cdot 18$	5.81
30	$5 \cdot 19$	$4 \cdot 87$	4.84,	7.69	$5 \cdot 97$	$5 \cdot 17$	$23 \cdot 10$	7.58	9.98	6.93	6.12	6.63	6.87
35	6.17	$5 \cdot 50$. $6 \cdot 17$	$8 \cdot 20$	6.86	$5 \cdot 97$	26.60	7.89	$10 \cdot 67$	$7 \cdot 43$	6.50	7.22	7.77
40	7.18	6.23	$7 \cdot 66$	8.79	7.71	7-10	$30 \cdot 80$	$8 \cdot 54$	11.38	7.73	7.00	8.22	8.54
45	8.07	$7 \cdot 34$	$9 \cdot 70$	10.03	$8 \cdot 54$	7.64	$35 \cdot 30$	8.80	11.49	8.06	$7 \cdot 68$	9.07	10.27
50	$0 \cdot 56$	8.97	$12 \cdot 67$	12.44	11.26	10.09	$40 \cdot 60$	10.66	13.80	9.46	9.11	12.34	12.78
55	12.77	11.87	17.98	16.32	$16 \cdot 10$	$13 \cdot 37$	$47 \cdot 40$	14.44	18.62	11.94	11.98	17.53	18.08
60	19.20	17.44	25.39	24.36	24.73	20.75	57.80	23.26	20.50	16.11	16.60	27.01	25.53
65	29.98	28.20	$35 \cdot 34$	36.64	39.60	32.38	74.40	37.54	30.87	24.12	24.92	43.27	37.33
70	47.77	46.18	56.43	58.50	62.08	51.74	101.20	64.07	60.72	$37 \cdot 13$	40.32	67-14	54.72
75	77.79	72.08	88.43	94.54	98.31	81.62	146.00	103.74	82.00	60.72	67.02	104.03	81.13
80	113.33	119.06	124.29	$146 \cdot 70$	146.50	127.80	224.00	168.42	137.20	98.29	109.48	$154 \cdot 71$	122.14
85	$164 \cdot 69$	170.35	182.03	206.70	217.39	188.30	362.80	$247 \cdot 27$	204.50	150.31	173.55	$220 \cdot 16$	$178 \cdot 61$
90	'242-21	257.06	257.81	$240 \cdot 60$	295.68	270.00	$690 \cdot 70$	356.02	304.80	218.48	$252 \cdot 73$	300.20	246.87
95	$341 \cdot 45$	-	330.96	$275 \cdot 70$	368.57	560.00	..	521.88	$454 \cdot 40$	$311 \cdot 60$	360.75	$402 \cdot 96$	$324 \cdot 90$
3.00	500.73	\cdots	$405 \cdot 44$	320.00	$420 \cdot 77$	$1000 \cdot 00$	-	\cdots	$677 \cdot 30$	396.00	440.00	590.07	393.81

TABLE XXXV.

Foreign Countries-Males-Number of survivors out of 100,000 born alive.
Taken from the published Life Tables of various countries based on their official population and Death Statistics and exhibited here in tabular form so that a comparison may be made at each age.

Age.	Auntralia. 1901-1910.	$\begin{gathered} \text { Denmark, } \\ \text { 1000-1910. } \end{gathered}$	$\begin{gathered} \text { England. } \\ \text { L001-1010. } \end{gathered}$	France. 1898-1903.	Germany. 1901-1910.	Holland. 1000-1909.	$\begin{aligned} & \text { India. } \\ & 1901-1910 . \end{aligned}$	$\begin{gathered} \text { Italy. } \\ 1001-1910 . \end{gathered}$	Japan. 1898.1808.	Norinny. 1801-1010.	Swedan. 1901-1010.	Switzorland, 1901-1910.	United States. 1801-1910.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(0)	(10)	(11)	(12)	(13)	(14)
${ }_{0}^{\text {Males. }}$	100,000,	100,000 ${ }^{\circ}$	100,000.	100,000.	100,000.	100,000	100,000.	100,000	100,000	100,000	100,000	100,000	100,000
5	87,685	85,229	79,398.	77,692.	74,211	80,243	65,308	72,816	78,887-	88,366	86,491	82,409	82,105
10	86,622	84,240	78,083	75,944	72,827	78,850	60,212	71,325.	74,891.	88,760	84,782.	81,201	80,605
- 16	85,789	83,461	77,297	74,818	72,007	78,010.	47,213,	70,264.	78,602	85,475.	88,588:	80,385	79,544
20	84,493	82,205	76,118	72,048	70,647	76,612	43,833	68,579	71,810	82,817:	81,638.	78,797	77,887
25	88,802	80,623.	74,646.	70,280	68,881	74,684	80,873	66,303	68,304.	-79,068	79,087	76,718	78,679
30°	80,844,	78,862,	72,741	67,858	67,092	72,907	85,831	64,108	66,596	75,866.	76,819.	74,508.	73,229
35	78,607	78,888	70,472	64,839	65,104	71,155	81,533	01,062	62,076	73,104	74,331	72,060	70,342
40.	75,887	74,773	67,668	61,041	68,598	68,090	27,136	60,609	60,101	70,408	71,897	69,100	68,996
46	72,479.	71,879	64,230	88,033	69,405	68,532	22,803	86,962	86,743.	67,679	60,050	65,364	63,304
50	68,221	68,284	50,803	63,818	56,340	68,265	18,658	63,798	82,629	04,356.	66,702	60,682	68,983
68	68,107.	68,780.	54,436	49,004	50,186	69,107	14,787	49,838	47,523	60,607	61,602.	54,708	64,076.
60	68,782	67,639	47,564	43,109	43,807	63,651	11,229	44,002	41,160	65,862	60,548	47,298	47,701
65	48,670	50,114	38,278	35,998	86,079	- 46,287	8,002	38,108	33,384	49,827	50,040	38,402	30,996
70	38,275	40,684	29,898	27,465	27,136	86,866	5,124	20,835	24,619	41,911	41,680	28,306	31,000
75.	25,962	29,870	19,754	17,816	17,586.	28,800.	2,736	18,782	16,570.	82,206	31,227.	18,014	21,647
80	14,380.	17,388	10,608	8,774	8,087	14,681	1,032	10,079	7,804	21,083	19,350	8,928	12,295
85	8,995	7,373	4,949	8,087	8,212	6,085	202	8,246	2,918	10,610	8,732	3,088	6,214
90	1,062	1,068	1,117	728	683	1,636	11	580	631	8,056.	2,380	645	1,482
08	244	-	149	122	74	111	-	88	67	747	832	78	208
100	15	-	18	11	4	\cdots	\cdots	\cdots	1	72	20	2	25

TABLE XXXVI.

Foreign Countries-Females-Number of survivors out of 100,000 born alive.
Tuken from the published Life Tables of various countries based on their official population and Death Statistics and exhibited here in tabular form so that a comparison muy be made at each age.

Age.	Australia. 1901-1910.	Denmark. 1906-1910.	$\begin{aligned} & \text { England. } \\ & \text { 1901-1910. } \end{aligned}$	France. $1898-1903$.	Germany. 1901-1910.	$\begin{aligned} & \text { Holland. } \\ & 1000-1909 . \end{aligned}$	India. 1901-1010.	Italy. 1901-1910.	$\begin{gathered} \text { Japan. } \\ 1898.1903 . \end{gathered}$	Norway. 1901-1910.	Sweden. 1901-1910.	Switzerland. 1901-1910.	United States. 1901-1910.
(1) Females.	(2)	(3)	(4)	(5)	(8)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
0	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000
5	89,285	87,558	82,178	80,400	77,334	82,600	56,608	73,935	78,339	80,922	88,285	85,054	84,688
10	88,305	86,563	80,756	78,016	75,845	81,314	51,450	72,136	70,245	88,308	86,509	83,760	83,143
15	87,619	85,596	70,898	77,248	74,887	80,341	48,304	70,830	74,568	86,726	85,040	82,686	82,120
20	88,459	84,180	78,756	75,246	73,564	78,037	44,828	68,801	71,652	84,459	83,053	80,778	80,581
25	84,875	82,500	77,391	72,732	71,849	77,320	40,901	66,545	68,186	81,788	80,771	78,489	78,437
30	82,909	80,598	75,779	70,068	69,848	75,501	30,745	64,103	64,874	79,084	78,382	70,025	76,009
35	80,618	78,585	73,769	67,377	67,679	73,433	32,471	81,079	61,032	76,279	76,007	73,456	73,295
40	78,001	76,341	71,308	64,583	65,283	71,109	28,139	69,215	58,308	73,449	73,498	70,706	70,383
45	75,103	73,818	68,359	61,661	62,717	68,550	23,839	56,673	55,085	70,607	70,878	67,768	67,235
50	71,945	70,990	64,742	58,385	60,812	65,733	19,714	54,007	61,794	67,660	68,005	64,362	63,538
55	68,190	67,428	60,179	54,452	55,984	62,092	15,813	50,804	47,898	64,224	64,039	59,931	59,053
60	63,247	62,958	54,157	49,441	50,780	57,299	12,165	46,638	42,908	60,032	60,387	53,897	53,104
65	56,250	56,545	46,716	42,694	43,540	60,471	8,747	40,310	30,608	64,552	64,733	45,607	45,654
70	46,703	47,405 ${ }^{\circ}$	37,646	34,053	34,078	41,243	5,637	31,742	28,745	47,135	46,043	34,822	36,512
75	34,479	35,651	26,418	23,464	23,006	29,770	3,022	20,007	19,745	37,350	36,453	22,944	26,163
80	21,350	22,300	15,545	12,789	12,348	17,659	1,159	10,667	11,106	25,413	23,715	11,903	15,831
85	10,527	10,437	7,094	5,037	4,752	7,818	231	3,409	4,585	13,698	11,564	4,308	7,265
90	3,566	3,309	2,158	1,452	1,131	2,317	12	642	1,148	5,195	3,854	1,023	2,307
95	687	\cdots	303	334	157	245	-•	42	122	1,181	653	329	450
100	56	\cdots	43	59	13	\cdots	\cdots	\cdots	3	144	55	5	51

TABLE XXXVII

Foreign Countries-Males-Complete expectation of life in years.
Taken from the published Life Tables of various countries based on their official population and Death Statistics and exhibited here in tabular form so that a comparison may be made at each age.

Age.	Australib. 1901-1910.	$\begin{gathered} \text { Denmark. } \\ 1900-1910 . \end{gathered}$	England. 1001-1910.	$\begin{gathered} \text { France. } \\ 1898-1903 . \end{gathered}$	$\begin{gathered} \text { Germany. } \\ 1901-1910 . \end{gathered}$	$\begin{gathered} \text { Holland. } \\ 1900-1909 . \end{gathered}$	$\underset{1901-1910 .}{\text { India. }}$	$\begin{aligned} & \text { Italy. } \\ & 1901-1010 . \end{aligned}$	$\begin{gathered} \text { Japan. } \\ 1898-1903 . \end{gathered}$	$\begin{gathered} \text { Norway. } \\ \text { 1001-1010. } \end{gathered}$	$\begin{gathered} \text { Sweden. } \\ 1001-1910 . \end{gathered}$	Switzerland. 1901-1910.	$\begin{aligned} & \text { United States. } \\ & 1901-1910 . \end{aligned}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(8)	(10)	(11)	(12)	(13)	(14)
Males.													
0	55.20	54.9	48.58	$45 \cdot 74$	44.82	51.0	22.59	- 44.24	43.97	54.84.	64.53	$49 \cdot 25$	$49 \cdot 32$
5	57.91	59.4	55.80	53.57	$55 \cdot 16$	$58 \cdot 3$	35.01	55.32	51.80	56.92	57.80	54.52	54.82
10	53.53	$55 \cdot 1$	51.81	49.75	51.16	54.3	33.36	51.44	$48 \cdot 23$	52.92	54.03	50.34	50.86
15	49.03	50.5	47-31	$45 \cdot 45$	46.71	49.8	80.32	$47 \cdot 17$	44.02	$48 \cdot 69$	40.78	45.86	46.50
20	44.74	. 46.3	43.01	41.53	42.56	$45 \cdot 7$	27.48	$43 \cdot 27$	40.85	45.16	45.88	41.70	42.39
25	$40 \cdot 60$	42.2	38.80	39.03	38.59	41.8	24.88	39.60	$37 \cdot 02$	42.18	42.31	37.76	38.69
30	36.52	38.0	$34 \cdot 76$	$34 \cdot 35$	34.55	37.8	22.44	35.84	$33 \cdot 44$	38.86	38.57	38.80	34.80
35	32.49 ,	38.9	30.79	30.71	$30 \cdot 58$	$33 \cdot 6$	$20 \cdot 16$	32.09	29.73	35.24	34.08	29.87	31.12
40	28.56	$29 \cdot 7$	26.86	27.15	26:64	29.5	18.02	28.23	26.03	31.49	30.77	26.03	27.55
45	24.78	25.9	$23 \cdot 27$	23.64	26.04	25.6	15.97	24.45	22.42	27.70	26.83	22.37	24.01
50	21.16	$22 \cdot 1$	19.76	20.28	$19 \cdot 43$	21.8	13.97	20.73	18.97	23.08	$23 \cdot 17$, 18.80	$20 \cdot 69$
55	17.07	18.5	16.48	16:95	16.16	18.1	11.89	17.18	$15 \cdot 73$	$20 \cdot 32$	19.54	$15 \cdot 68$	17.21
60	14.35	15.2	13.49	13.81	$13 \cdot 14$	14.7	10.00	13.78	12.76	16.79	18.08	12.73	14.17
65	11.31	$12 \cdot 1$	10.80	10.06	$10 \cdot 40$	11.6	8.04	10.74	10.14	13.51	12.81	10.09	11.40
70	8.67	$8 \cdot 3$	8.39	$8 \cdot 42$	7.09	8.8	6.17	8.02	7.89	$10 \cdot 57$	$9 \cdot 85$	$7 \cdot 78$	8.96
75	6.68	6.8	6.41	6.34	$5 \cdot 97$	0.7	4.47	5.82	6.00	7.98	7.29	$5 \cdot 81$	8.79
80	$4 \cdot 88$	$5 \cdot 1$	4.86	$4 \cdot 87$	$4 \cdot 38$	$4 \cdot 8$	3.04	4.06	$4 \cdot 44$	$5 \cdot 86$	5.22	$4 \cdot 27$	5.07
85	3.65	3.7	3.53	3.91	$3 \cdot 18$	8.5	1.94	2.80	3-19.	4.26	$3 \cdot 66$	3-18	3.79
00	$2 \cdot 64$	$2 \cdot 6$	$2 \cdot 56$	$3 \cdot 29$	$2 \cdot 35$	2.2	1.23	2.01	$2 \cdot 22$	8.11	$2 \cdot 60$	$2 \cdot 38$	2.90
05	1.88	-	2.07	2.66.-	1.80	1.0	-•	1.20	$1 \cdot 48$	$2 \cdot 24$	1.89	$1 \cdot 63$	$2 \cdot 21$
100	1.18	\cdots	1.53	1.83	$1 \cdot 50$	\cdots	\cdots	-	- 50	1.50	1.45	$1 \cdot 00$	$1 \cdot 68$

TABLE XXXVIII.
Foreign Countries-Females-Complete expectation of life in years.
Taken from the published Life Tables of various countries based on their official population and Death Statistics and exhibited here in tabular form so that a comparison may be made at each age.

Age.	Australia. 1901-1910.	$\begin{aligned} & \text { Denmark. } \\ & 1906-1910 . \end{aligned}$	$\begin{gathered} \text { Fingland. } \\ 1901-1910 . \end{gathered}$	$\begin{aligned} & \text { France. } \\ & \text { 1898-1903. } \end{aligned}$	$\begin{gathered} \text { Germany. } \\ 1001-1910 . \end{gathered}$	Holland. 1900-1009.	$\underset{1001-1010 .}{\text { India. }}$	$\begin{aligned} & \text { Italy. } \\ & 1001-1010 . \end{aligned}$	Japan. 1898-1003.	$\begin{aligned} & \text { Norway. } \\ & 1801 \text {-1910. } \end{aligned}$	$\begin{gathered} \text { Sweden. } \\ 1901-1910 . \end{gathered}$	Switzeriand. 1801-1919.	$\begin{aligned} & \text { United Statee } \\ & \text { 1901-1910. } \end{aligned}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Females.											-		
0	58.84	57.9	52.38	49-13	48.33	53.4	23-31	44.83	44.85	67.72	56.08	$52 \cdot 15$	52. 54
-5	60.80	$61 \cdot 1$	58.53	55.75	67.27	59.4	$35 \cdot 40$	55.20	61.97_	59.08	59.40	58.15	56.89
10	56.39	56.7	54.53	52.03	53.35	55.4	$33 \cdot 74$	51.53	48.34	55.09	55.58	51.88	62.89
15	. 51.80	52.4	50.08	47.90	49.00	51.0	$30 \cdot 78$	$47 \cdot 43$	44.36	51.05	51.48	47.62	48.51
20	47.52	$48 \cdot 2$	45.77	44.02	44.84	40.9	27.98	43.69	41.08	47.35	47.68	$43 \cdot 69$	44.39
25	43.36	$44 \cdot 1$	41.54	$40 \cdot 61$	40.84	42.8	$25 \cdot 40$	40.14	38.02	43.81	43.93	39.89	$40 \cdot 53$
30	$38 \cdot 33$	$40 \cdot 1$	87.36	36.83	36.94	38.8	22.98	36.58	34.84	$40 \cdot 24$	40.20	36.10	36.75
35	$35 \cdot 37$	38.1	33.31	33.29	33.04	34.8	$20 \cdot 69$	32.92	31.54	36.61	36.38	32.27	33.01
40	31.47	32.0	29.37	29.60	29.16	30.8	18.49	$20 \cdot 18$	$28 \cdot 19$	32.93	32.53	28:43	29.28
45	27.59	28.1	25.53	25.86	25.25	28.9	16.38	$25 \cdot 38$	$24 \cdot 71$	29.15	28.64	24.55	25.53
50	$23 \cdot 60$	$24 \cdot 1$	21.81	22.14	21.35	22.8	14.28	21.47	21.11	$25 \cdot 31$	24.74	20.71	21.86
65	19.85	20.2	18.27	18.52	17.64	$18 \cdot 1$	12.20	17.65	17.61	21.53	20.90	17.05	18.33
60	16.20	16.5	15.01	15.08	14.17	15.5	$10 \cdot 11$	14:02	14.32	17.85	17.19	13.67	15.09
65	$12 \cdot 88$	13.0	11.99	11.97	11.09	$12 \cdot 3$	8.10	10.81	11.35	$14 \cdot 38$	$13 \cdot 69$	$10 \cdot 67$	12.13
70	9.88	10.0	9.25	9.21	8.45	9.4	6.22	8.02	8.77	11.23	10.53	8.15	$9 \cdot 52$
75	7.59	7.5	$7 \cdot 10$	7.00	0.30	$7 \cdot 0$	$4 \cdot 52$	5.83	6.61	8.49	7.81	6.09	7.29
80	$5 \cdot 73$	$5 \cdot 5$	$5 \cdot 36$	$5 \cdot 38$	4.85	$5 \cdot 2$	3.00	$4 \cdot 11$	4.85	6.29	$5 \cdot 64$	$4 \cdot 61$	$5 \cdot 43$
85	$4 \cdot 19$	4.0	3.94	4.39	$3 \cdot 40$	3.7	1.93	$2 \cdot 94$	$3 \cdot 45$	$4 \cdot 67$	- 4.02	$3 \cdot 34$	4.05
90	$2 \cdot 89$	$2 \cdot 8$	$2 \cdot 94$	$3 \cdot 84$	$2 \cdot 59$	$2 \cdot 4$	$1 \cdot 10$	$2 \cdot 01$	$2 \cdot 36$	$8 \cdot 31$	$2 \cdot 91$	$2 \cdot 45$	$3 \cdot 05$
95	2-10	-	$2 \cdot 32$	$3 \cdot 33$	$2 \cdot 10$	$1 \cdot 1$	-	1.31	$1 \cdot 55$	$2 \cdot 43$	$2 \cdot 10$	1.76	$2 \cdot 37$
100	$1 \cdot 24$	\cdots	$1 \cdot 80$	$2 \cdot 59$	1.87	\cdots	\bullet	\cdots	-83	1.81	$1 \cdot 70$	$1 \cdot 10$	$1 \cdot 90$

TABLE-A:
LIFE TABLE-ALLINDIA.
Males.

Age	Living at age s. $^{\text {. }}$ $\rightarrow 1 x$	Dying between mgan sad $x+1$	Mortality per coat:	Kiving between agter and $x+1$.	Living mbove mow.	Moan alter Hifotime : ego 20
(i)	(2)	(3)	(4)	(5)	(8)	(7)
0	100,000	24,874	24.87	85,44	2,690,882	28.91
1	76,128	6,896	${ }^{2} .18$	81,358	2,690,882	28.01 34.68.
8	68.230	3,850	$8 \cdot 6$	66,174	2,634,086	37.14.
8	64,380	2,524	8.98	63,037	2,487,918	38.33
8	61,858 60,161	$\mathbf{1 , 6 0 5}$ $\mathbf{2 , 1 5 9}$	2.74 1.92	80,954	2,404,875	38.88
e	89,002	853	1.45	58.576	2,084,370	
7	88,149	869	1.15	67,874	2,284,370	$38 \cdot 78$ 38.28
8	67,480	839	-94	87,211	2,167,980	${ }_{87} 78$
${ }^{\circ}$	86,941	474	-83	50,704	2,110,769	37.07
30	86,467	47	-79	86,243	2,054,085	30.38
11	86,020	452	-81	55,704	1,897,823	35.68
18	55,568	455	-4	65,336	1,942,028	3 St 95
18	65,103	484	-88	64,861	1,888,698	\% 2.24
16	84,619	807	-98	54,385	1,831,83	35.54
15	54,112	532	-98	63,846	1,777,468	38.85
16	63,580	${ }^{658}$	1.04	63,801	1,723,620	32.17
17	53,029	683	1.10	62,731	1,670,319	31.50
18	62,439	607	1-18	52,135	1,617,588	20.85
19	81,832	629	1.21	${ }_{8}^{81,518}$	1,565,458	30.20 89.57
20	81,203	649	1.27	80,878	1,513,935	29.57
21	80,554	688	1.38	60,220	1,463,057	28.96
28	49,886	684	1.37	49,544	1, 112,837	28.38
23 24	49,208 48,508	700 715	1.48	48,852 48,145	1,363,203	27.71 87.10
24 25	48,508 47.887	715 730	1.58	48,145 47,483	$1,314,441$ $1,266,290$	27.10 28.50
28	47,057	747	1-50	46,683	1,218,874	25.90
27	46,310	767	1.68	45,927	1,172,191	25.31
28	45,543	782	1.74	45,147	1,126,284	24.73
29 30	44,751 43,931	820 850	1.83 1.93	$4,3,41$ 43,508	1,081,117	24.16 23.60
31	43,081	878	12.03	42,643	993,270	23.08
32	42,208	807	$2 \cdot 13$	41,758	951,627	22.52
33	41,309	915	$2 \cdot 22$	40,851	903,869	22.00
3	40,394	933	$2 \cdot 31$	39.928	858,018	21.49
35	38,461	950	8-41	28,936	828,090	20.89
25	38,511	965	2.51	38,028	789,104	20.48
37	37,546	980	$2 \cdot 61$	37,056	751,076	20.00
38	38,566	995	$8 \cdot 78$	36,069	714,020	19.63
39	35,571	1,008	$2 \cdot 83$ 2.4	35,067	677, 151	18.06 18.60
0	34,563	1,017	$2 \cdot 94$	34,054		18.60
4	38,646	1,023	3.05	33,035	608,830	18.15
48	32,523	1,026	3.15	32,010	${ }^{575,795}$	17.70
43	31,497 30	1,029	3.27 3.38	30,982	543,785 812,803	17.26 16.83
4	30,48 29,439	1,027	3.49	28,925	482,849	18.40
46	28,418	1,096	3.61	27,800	453,024	15-98
47	27,357	1,020	3.72	26,877	426,024	15.56
48	26,357	1,013	$\mathbf{3} 8.81$ 8.97	25,880	399,147 373,287	$15 \cdot 14$ 14.72
49	25,354	$\begin{array}{r}1,006 \\ \hline 988\end{array}$	8.97 4.10	24,881 $\mathbf{2 3 , 8 4 9}$	373,287 348,436	14.72
80	24,349	993	4.10	23,848	54,430	
61 62	28,350	988 976	4.23 4.38	22,886 21,875	524,587 301.731	13.90 13.49
63	21,387	96%	4.50	20,908	279,856	13.09
84	20,425	949	$4 \cdot 65$	19,950	258,950	12.68
56	19,476	938	4-81	19,003	239,000	12.27
56	18.540	938	4.98 5.18	18,079	219,992 201.913	11.87 11.45
${ }_{68}^{57}$	17,617 16,708	8809	$5 \cdot 18$ 5.38	17,162	201,913 184,761	11.45 11.06
68 59	16,788	${ }_{880}$	$5 \cdot 57$	15,373	168,490	10.68
60	14,958	884	6.79	14,601	163,117	10.25
61	14,069	848	6.08 6.29	18,645	138,816 124,971	9.85 9.45
68	13,231	832 816	6.89	11,981	119,166	8.05
64	11,573	800	6.91	11,173	100,185	$8 \cdot 68$
65	10,773	788	7.27	10,381	89,018	8.28
88	9,090	788	7.67	8.607	78.631	7.87
67	0,224	748	${ }_{8.111^{\circ}}$	8,850	60, 69.08	$7 \cdot 48$ 7.10
68	8478	730 710	8.61 9.17	7,391	60,063	6.72
69 70	7,746 7,036	687	4.78	0,693	44,672	6.35
71	0,349	665	$10 \cdot 47$	${ }^{8,016}$	57,079	5.98
\%	6,684	. 640	11.28.	5,364 4,738	31,063	5.68
73	6,044	-618	18.08 18.16	4,738	28, $\mathbf{2 1 , 8 6 1}$	6.27 4.93
74	4,431	688 649	18.16 14.87	3,674	17,722	$\cdots \cdot 61$
25	3,448	649				
78	2,299 $\mathbf{2} 787$	819 470	16.88	2,568	11,105	3.98
78	2,787 $\mathbf{2 , 3 1 7}$	485	- $\begin{array}{r}18.34 \\ \hline\end{array}$	2,104	8.553 8,449	3.69
79	1,892	378	10.98	1,708	8,749	3.41
80	1,514	330	21.80			
88	1,184	2888	23.90	1,048 788	3,354	2.87 2.61
${ }_{83}$	601 683	198	20.41	885	2.579	$3 \cdot 37$
8	468	- 158	39.48 38.08	3982 89	1,007 815	2.15
8	316	114	36.08	268	356	1.95
${ }_{88}^{88}$	${ }_{218}^{208}$	${ }_{80}^{80}$	$58 \cdot 44$ 43.29	168 $-\quad 96$	194	1.76 1.69
87 88	$\underline{69}$	(83	67.61	- 0	${ }^{98}$	1.48
80	36	19	58.41	88	${ }^{48}$	1.28
90	17	10	87.70	18	10	1.15
91	7	4	68.45	8	1	1-00
${ }_{98}^{98}$	1	1	78.408	"	\cdots	\cdots

TABLE-B.
LIFE TABLE-ALL INDIA.
Females.

Age.	Living at agox	Dying between ages as and $x+1$.	Mortality por conk	Living between agos x and $x+1$.	Living abovo age x.	Mcan afterlifo-timest agox.
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0	100,000	23,234	23.23	86,437	2,658,400	28.56
1	76,766	6,639	8.65	73,114	2,569,903	33.48
2	70,127	3,551	$5 \cdot 06$	68,202	2,406,849	35.60
3	66,578	2,262	$3 \cdot 40$ 2.33	-65,368	$2.428,627$ 236359	36.48 38.75
4	64,314 62,817	1,497 1,038	$2 \cdot 33$ 1.65	63,519 62,271	$2,363,259$ $\mathbf{2 , 2 0 0 , 7 4 0}$	$38 \cdot 75$ 36.61
6	61,779	773	1.25	61,393	2,237,469	38.22
7	61.008	616	$1 \cdot 01$	60,698	2,176,076	35.67
8	60,390	531	.88	60,125	2,115,378	35.03
9	69,859	490	-82	60,614	2,055,253	$34 \cdot 33$
10	69,309	481	-81	59,128	1,905,639	33.01
11	68,888	494	-84	58.641	1,936,511	32.88
12	68,384	511	-88	58.139	1,877,870	$32 \cdot 16$
13	${ }^{67,883}$	${ }_{5}^{540}$	-93	67,813 57050	1,819,731	31.44
14	67,343 66,767	686 655	$1 \cdot 02$ 1.15	67,150 80,429	$1,769,118$ $1,705,068$	30.73 30.04
16	86,102	731	$1 \cdot 30$	55\%37	1,648,639	29.39
17	65,371	795	1.44	64,973	1,092,002	28.77
18	64,576	849	1.56	64,152	1,637,020	98.18
19	63,727	894	$1 \cdot 66$	63,280	1,483,777	27.62
20	62,8334	931	1.78	62,367	1,430,407	27.08
21	61,902	961	1.85	51,422	1,578,130	26.55
22	50,9+1	985	1.93	50,448	1,320,708	26.04
23	49,036	1,003	2.01	49,454	1,270,260	25.65
24 25	$\begin{array}{r} 48,952 \\ 47,939 \end{array}$	1,020 1,033	$2 \cdot 08$ $2 \cdot 16$	48,442 $\mathbf{4 7 , 4 1 6}$	$1,2020,806$ $1,178,364$	25.06
26.	46,899	1,044	2.23	40,377	1,130,948	24.11
27	45,855	1,053	$2 \cdot 30$	45,328	10.84.671	$23 \cdot 65$
28	44,802	1,060	$2 \cdot 37$	44,272	1,030,243	$23 \cdot 20$
29	43,742	1,067	$2 \cdot 14$	43,209	994,971	$22 \cdot 75$
20	42,675	1,073	$2 \cdot 51$	42,138	951,762	$22 \cdot 30$
31	41,602	1,078	$2 \cdot 59$	41,063	909,604	21.86
32	40,524	1,088	$2 \cdot 67$	39.483	868.561	21.43
33	89,472	1,086	$2 \cdot 75$	38,899	828,578	21.01
24	38,356 37,268	1,090 1,093	2.84 2.93	37,811 38,720	780,679 751,868	20.59
35	37,266	1,093	2.93	36,720	751,868	$20 \cdot 18$
36	30,173	1,096	3.03	35,625	715.148	19.77
37	35,077	1,008	8.13	34,528	670.523	19.37
${ }^{28}$	33,979	1,101	8.24	33,429	644,005	18.88
39	32,878	1,100	$3 \cdot 35$	32,328	611,568	18.60
${ }^{6}$	31,778	1,096	8.45	31,230	679,238	18.23
41	30,682	1,087	3.54	30,138	648,008	17.86
42	29,595	1,076	$3 \cdot 64$	20,057	617.870	17.50
43	28,519	1,063	3.73	27,987	488,813	17.14
4	27,456	1,047 1,029	8.81 3.00	26,933 25,894	460,826 433,803	16.78 16.43
48	25,380	1,010	3.88	24,875	407,999	16.08
47	24,370	990	4.06	23,875	383,124	15.72
48	23,380	969	$4 \cdot 14$	22,896	359,949	15.37
49	22,411	947	4.23	21,037	336,353	16.01
80	21,404	925	4.31	21,002	314,416	14.65
51	20,539	903	$4 \cdot 40$	20,087	293,414	14.29
62	10,638	880	4.48	19,198	273,327	13.82
63	18,758	857	4.57	18,328	254,131	1255
64 65	17,899 17,065	${ }_{811}^{834}$	4.68 .76	17,482 16,659 16859	235,803 $\mathbf{2 1 8 , 3 2 1}$	$13 \cdot 17$ 12.79
68	16,254	790	4.86	15,859	201,662	12.41
57	15,464	769	4.97	15,030	185,803	12.02
58	14,605	751	$5 \cdot 11$	14,319	170,723	11.62
69	13,944	734	5.26	13,677	186,464	11.22
6	13,210	718	6.48	12,851	142,827	10.81
61	12,492	703	$5 \cdot 68$	12,141	120,976	10.40
62		889	5.84	11,444	117,835	10.00
63	11,100 10,424	676 863	6.09 6.36	10,742 10,093	106,391 95629	${ }^{8.58}$
${ }_{65}^{64}$	10,424 0,761	663 650	6.36 6.06	10,093 0,438	95.629 85,536	9.17 8.76
68	0,111	639	7.01	8,791	76,100	8.35
87	8,172	627	-7.40	8,159	${ }^{67,300}$	7.94
68	7.8 .5	615	$7 \cdot 84$	7.537	69.150	7.54 ,
89	7,230	603 889	$8 \cdot 33$ 8.88	6,332	51,613 44,684	$7 \cdot 14$ 6.74
70	6,627	889	$8 \cdot 88$	6,332	44,684	6.74
71	6,038	574	0.51	5,761	38,359	6.35
72	5,464	${ }_{8} 859$. 11.23	6,185 4,634	35,601	5.07
73	4,905	642 822	$\xrightarrow{-11.04}$	4,634 4,102	27,416 29,782	8.59 5.22
75	3,841	800	13.01	3,591	18,680	4.86
76	3,341	474	14.18	3,104	15,080	4.62
77	2,567	445	$15 \cdot 53$	2,644	11,085	$4 \cdot 18$
78	2,422	414	17.10 18.78 ,	$\underset{1,820}{2,215}$	0,341 7,126	3.813 3.85
79 80	2,008 1,631	337 337	$18 \cdot 78$ 20.68	1,820 1,462	7,126 8,306	3.85 3.95
81	1.294	288	$22 \cdot 85$	1,146	3,844	$2 \cdot 97$
82	998	253	$25 \cdot 30$	872	2,608	$2 \cdot 70$
83	745	210	28.18	040	1,826	$2 \cdot 45$
84	835	168	$31 \cdot 31$	451	1.188	$2 \cdot 22$
85	967	128	34.76	303	735	$2 \cdot 00$
88	239	82	38.51	193	- 432	4.81
87	147	63	42.68	116	239	$1 \cdot 63$
88	84	39.	48.97	${ }^{65}$	124	1.48
89	45	23	${ }^{51} 6.68$	33	${ }^{60}$	1.31
90	22	12.	86.07	10	23	1.18 1.00
91	10	8	61.09 67.63	7	10 3	1.00 .75
93		1	73.67	*	-	\cdots

LIFE TABLE-BENGAL, ASSAM AND SIKKIM.
Males.

Age.	Living at age m:	Dying between sgen 2 and $x+1$.	Mortality per cent.	Living between agea $\%$ and $x+1$.	Liviog abovo age x.	Mean alterlifo-timo at ago x.
(1)	(2)	(3)	(4)	5)	(6)	(7)
0	100,000	24,956	$24 \cdot 96$	85,397		24.92
1	75.044	6,954	9.27	71,248	2,405,874	32.08
8	68,090	3,960	$5 \cdot 82$	65,978	2,334,026	34.29
3	64,130	2,635	$4 \cdot 11$	62,732	2,268,648	35.38
4	61,405	1,826	$2 \cdot 97$	${ }_{60} 60.532$	2,205,418	35.87
5	50,669	1,323	$2 \cdot 22$	58.976	2,146,384	35.85
6	68,346	1,008	1.73	57,842	2,098,408	35.76
7	57,338	812	-1.42	56,932	2,028,606	35.38
8	56.526	890	- $\begin{array}{r}1.22 \\ \hline 10\end{array}$	56,181	1,971,634	34.88 34.30
10	85,836 56,220	${ }_{672}^{616}$	1.10 1.04	56,528 54,934	1,015,463	34.30 83.68
	64,648	650	1.01	54,373	1,804,991	33.03
12	64,098	548	1.01	53.825	1,750,618	32.38
13	53,552	552	1.03	53,276	1,696,793	31.68
14	53,000 52.438	564 580	${ }_{1}^{1 \cdot 08}$	58,718 52,146	$\begin{array}{r} 1,643,517 \\ 1,590,789 \end{array}$	31.01 30.54
15	52.438		$1 \cdot 11$			
18	81,856	699	1.15	51,557	1,538,653	29.67 20.01
17	61,257	620	1.21	50,947 50,317	1,487,096	20.01 28.36
18	50,637	640	1.28 1.32	60,317	1,385,832	28.72 28.
19 20	49,997 40,337	660 681	1-38	48,996	1,336,165	27.08
21	48,656	703	1.45	48,305	1,287,169	26.45
22	47,953	728	1.52	47,589	1,238,864	25.93
23	47,225	777	1.60 1.70	46,846 46,073	$1,191,275$ $\mathbf{1 , 1 4 4} \mathbf{4} \mathbf{4}$	26.23
24	46,468	791	1.70	48,073 45.268	1,1498,429	24.63 24.05
85	45,677	829				
20	4,848	867 903	1.93 2.05	44,415 43,529	$\begin{aligned} & 1,053,094 \\ & 1,008,679 \end{aligned}$	23.48 22.93
27	43,081 $\mathbf{4 3 , 0 7 8}$	${ }_{938}^{903}$	2.17	49,610	965,150	22.40
28 29	43,078 42,142	968	$2 \cdot 29$	41,659	922,640	21.89
90	41,176	992	$2 \cdot 41$	40,680	880,881	21.39
32	©0,184	1,017	$2 \cdot 53$	39,678	8800,201	20.91
38	39,167	1,039	$2 \cdot 65$ 2.77	38,647 $\mathbf{3 7 , 6 0 0}$	800,525 761,878	20.4 10.98
33	38,128	1,057	$2 \cdot 77$ $2 \cdot 89$	38,634	724,278	19.64
34.	37,071	1,073 1,087	$2 \cdot 89$ $3 \cdot 08$	35,455	687,74	19.11
35.	35,998	1,087			652,289	18.68
98	84,911	1,097 1,106	3.14 3.27	33,201	617,827	18.27
37 88	33,814 32,708	1,111	$3 \cdot 40$	${ }_{320} 153$	584,668	17.88
39	31,597	1,114	3.58 3.65	31,040 29,926	652,613 521,473	17.11
0	80,483	1,113	$3 \cdot 65$	29,826	62,	
41	20,370	1,108	3.77 3.89	28,816	$\begin{array}{r}491,547 \\ \hline 62,731\end{array}$	16.74 16.37
02	28.262	1,100		26,617	435,019	18.08
43	27,163	1,090	$4 \cdot 13$	25,534	408,402	15.68
4	26,072 $\mathbf{2 4 , 9 9 6}$	1,076 1,081	+2.25	24,466	382,868	15.32
45	24,896	1,061			358,402	14.87
48	.93,935	1,044	4.36 4.48	22,380	334, 089	14.63
48	'22,891 ${ }^{21,869}$	1,000	4.57	21,368	312,609	14.29
48	20,869	978	4.60 4.81	10,413	270,860	13.68
80	10,891	958				
	18,935	934	4.93 5.08	18,468	251,447 232,979	13.28 12.94
52	18,001	910		16,648	215,433	12.61
53	17.091	886 860	5.18 5.31	15.775	198,785	12.27
${ }_{65} 5$	16,205	883	$5 \cdot 43$	14,983	183,010	21.98
85	15,315	853		14,109	168,088	11.58
68	14.512	888	${ }_{5}^{5.69}$	13,316	153,973	11.25
57	13,706	780	5.83	12,549	140,657	10.88
88 89	12,928 12.178 1	759	5.99	11,808	128,108 116,300	10.58 10.16
60	11,443.	706	6.17	11,050	12,30	
61	10,737	684	6.37 6.59	10,935 9828	105,210	9.80 9.43
62	10.053	668 640	${ }_{6.88}^{6.69}$	9.071	85,093	9.09
63	9.391	640	$7 \cdot 06$	8.442	70,028	$8 \cdot 66$
64	8,751 8,138	618 598	$7 \cdot 35$	7,834	67,580	$8 \cdot 31$
65	8,153	688	$7 \cdot 67$	7,246	69,746	7.93
68	7,585	578 558	8.08	8,678	52,500	7.85
67	8,957	${ }_{638}$	$8 \cdot 41$	8,130	45,893	7-16
68	${ }_{8,861}^{6,399}$	638 520	8.87	${ }_{5}^{5,601}$	39,693	6.77
69 70	5,341	503	$8 \cdot 48$	6,089	34,091	$6 \cdot 88$
		488	10.05	4,596	29,002	$5 \cdot 98$
78	4.358	469	10.78	4,658	20,2¢9	6.61 5.23
73	3,883	453	12.67	3,212	16,633	4.85
74	3,450	437 421	14.07	2,783	13,481	4-48
76	2,993	21		2,972	10,639	$4 \cdot 14$
76	2,578	401	17.23	1,984	8,267	3.81
77	2.171	384	19.03	1,606	${ }_{6}^{6.283}$	3.50
78	1,797 1,455	3807	21.10	1,501	4,657 3,356	3.20 8.98
80	1,1485	269	23.48	1,014	3,356	8.98
81	879	290	26.06 28.98	764 858	2,348 1,578	$2 \cdot 86$ 9.3
82	650	188	${ }_{38} 26.03$	388	1,028	$2 \cdot 1$
83	462	118.	35.03	259	634	$2 \cdot 08$
84	${ }^{314}$	${ }_{78} 110$	\$3.43	165	375	1.86
85	204			100	210	$1 \cdot 67$
86	128	${ }_{83}$	- 45.85	56	110	1.51
87	73	33 80	40.88	30	54	1.35
88	40 20	11	84.18	${ }^{15}$	24	1-20
880	20 9	5	58.67	6	9	$1 \cdot 00$
		3	63.24	3	3	-73
92	1	1	68.12	*	-	\cdots
						-

TABLE-D.
LIFE TABLE-BENGAL, ASSAM AND SIKKIM.
Females.

Age.	Living at agex.	Dying hotwoen ages x and $x+1$.	Mortality per cento	Living betwcen ages x and $x+1$.	Living sbove age x.	Mean aftor lifortion age.
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0	100,000	23,350	23.36	86,324	2,479,720	24.80
1	76,844	6,438	$8 \cdot 40$	73,126	2,393,306	31.28
$\frac{8}{8}$	70,2.16	3,036	5.18	69,205	2,320,270	33.05
3	66,570	2,405	$3 \cdot 61$	60,292	2,252,005	33.83
4	64,165	1,655	$2 \cdot 58$	63,293	2,186,713	
6.	62.510	1,209	1.93	61,880	2,123,420	33.97
6	61,301	950	1.55	60,806	2,061,540	33.63
7	60,351	783	$1 \cdot 30$	60,460	2,000,714	33.15
8.	50,508	${ }^{696}$	1.17	60,2:0	1,040,754	32.68
9.	58,872	6.9	1.11	58,547	1,881,531	31.98
10.	68,223	624	1.07	57,911	1,822,087	31.31
4	87,599	828	1.09	57,285	1,765,076	
12	58,971	652	1.14	50,045	1,707,791	2 P -83
13.	86,319	688	1.22	56,975	1,651,146	29.39
14	65,631	733	1.32	65,265	1,695,171	28.67
15	64,898	782	$1 \cdot 42$	64,507	1,639,400	28.05
16	54,116	833	1.54	53,099	1,485,399	27.45
17.	53,293	884	1.68	52,841	1,431,760	26.87
18	62,309	932	1.78	51,033	1,378,859	26.31
19	51,467	975	1.90	50,980	1,3ะ6,020	25.78
20.	80,402	1,013	$2 \cdot 01$	40,485	1,275,446	$25 \cdot 27$
21	49,479	1,045	$2 \cdot 11$	48,057	1,225,981	
22	48,434	1,073	$2 \cdot 21$	47,897	1,177,004	24-30
23	47,381	1,098	$2 \cdot 32$	40,812	1,120,107	23.84
24	40,203	1,120	$2 \cdot 42$	45,703	1,082,295	23.39
25.	45,143	1,138	$2 \cdot 52$	44,574	1,033,542	22.96
28	44,005	1,152	$2 \cdot 68$	43,420	902,018	22.54
27	42,853	1,164	$2 \cdot 72$	4,271	948,589	$22 \cdot 14$
28	41,6090	1,172	2.81	41,103	906,318	21.74
${ }_{30}$	40,517 39	1,178	2.91	39,928	884,215	21.35
30				38,749	805.287	20.98
31	38,159	1,180	3.09	37,569	786.538	20.61
32	36,978	1,177	$3 \cdot 18$	30,301	748,969	$20 \cdot 25$
33	35,802	1,171 1,163	3.27 3.36	35,216	712,578	19.90
34 35	34,631 33,468	1,163 1,163	3.36 $\mathbf{3 . 4 5}$ $\mathbf{3 . 6 5}$	34,150 32,391	687,30\%	119.58
36	32,315	1,141	3.53	31,745	$010,421$	19.22
37	31,174	1,128	3.62	31,645 30,610	010,421 678,678	18.88 18.56
38	30,016	1,114	3.71	20,489	648,006	18.24
39	28,032	1,098	3.80	28,383	518,577	17.92
40	27,834 .	1,080	$3 \cdot 88$	27,244	490,194	$17 \cdot 61$
41	26,754	1,060	$3 \cdot 46$	26,224	402,000	17.30
12	25,694	1,038	$4 \cdot 04$	25,175	430,678	17.00
43 44	24,656 23,642	1,014	$4 \cdot 11$ 4.18	24,149 23,147	411,501	16.69
45	22,653	963	4.25	22,172	334,205	16.38 16.08
46	21,690	937	$4 \cdot 32$	21,221	32,033	
47	20,753	911	$4 \cdot 39$	20.298	320,812	15.48
48	19,842	885	$4 \cdot 46$	19,399	300,514	15.15
49	18,957	859	4.53	18,528	281,115	14.83
50	18,098	833	4.80	17,681	262,587	14.51
81	17,265	806	4.67	16,802	244,1008	14.19
62	10,459	770	$4 \cdot 73$	16,070	248,044	13.86
63 54	15,680 14,928	762 727	4.80 4.87	15,304	211,074	13.52 13.17
${ }_{65}^{54}$	14,928 14,201	727 702	4.87 4.94	14,564 13,850	106,670 184,106	13.17 12.88
68.	13,499	678	8.02	13,160	168.258	
67	12,821	655	$5 \cdot 11$	12,494	155,093	$12 \cdot 10$
68.	12,166	${ }_{614}^{634}$	5.21	11,849	142,603	11.72
${ }_{60}$	11,532	614	$5 \cdot 32$ 5.46	11,225	130,753	11.34
60.		696	$5 \cdot 46$	10,620	119,528	10.95
${ }_{62}^{61}$	10,322 9 9,742	680 564	5.62 5.79	$\begin{array}{r} 10,032 \\ 0.460 \end{array}$		$10 \cdot 55$
${ }_{63}^{62}$	9,742 $\mathbf{9 , 1 7 8}$	684 650	6.79 6.00	0.460 8,903	08,870 80,416	10.15 9.74
84	8.628	637	6.22	8,359	80,513	9.33
65.	8,091	525	6.49	7,829	72,154	$8 \cdot 62$
${ }_{67}^{66}$	7,506	514	6.78	7,309	64,325	
${ }_{68}^{67}$	7,052	504	7.16	6,800	67,018	8.09
${ }_{69}^{68}$	${ }_{8,052}^{6,548}$	408	7.67 8.05	6,300	50,216	$7 \cdot 67$
${ }_{70}^{69}$	8,052 6,565	487	8.06 8.57	5,808	43,016	7.28
70	6,665	477	8.57	8,327	38,108	6.85
71	6,088 4,621	467 468	9.18 9.87	4,854 4,393	32,781	6.44
73	4,165	445	10.68	4,393 8,943	23,927	6.04 8.65
74	3,720	432	11.61	3,604	10,591	$5 \cdot 27$
75.	3,288	416	12.85	3,080	16,087	$4 \cdot 89$
78 77	$\mathbf{2 , 8 7 2}$ $\mathbf{2 , 4 7 3}$	309 378	13.88 15.29	2,672 2	13,007	4.63
77	2,473 $\mathbf{2 , 0 9 5}$	378 354	15.29 16.90	2,284 1,018	10,335 8,051	4.18 3.84
79	1,741	327	18.78	1,678	8,031 8,133	$3 \cdot 84$ $3 \cdot 62$
80	1.414	208	20.93	1,268	4,655	8.22
81 82	1,118		23.35 25.00	987	3,280	$2 \cdot 94$
82 83 88	857 635	222	25.00 28.08	746 544	2,302 1,550	2.69
84	463	144	${ }_{31} \mathbf{2 8}$		1,012	$2 \cdot 45$ 2.23
85	309	108	34.95	265	${ }^{631}$	$2 \cdot 04$
86 87	201	76	37.81	163	978	$1 \cdot 87$
87 88	125 75	50 33	40.00 44.00	100	213	$1 \cdot 70$
88 88	42	33 21	44.00 80.00	59 31	113	1.51
${ }_{90}$	21.	12	$60 \cdot 14$	16.	54 23	1.29 1.10
91	9	6	60.67	6	8	
92	3	2	75.84	2	8	
92.	1.	1	97-00	\cdots	\cdots	\cdots

TABLE-E.
LIFE TABLE-BIHAR AND ORISSA.
Males.

TABLE-F.
LIFE TABLE-BIHAR AND ORISSA.
Females.

TABLE-C.
LIFE TAELE-BOMBAY.
Males.

MrSO_{3}

TABLE-H:
LIFE TABLE-BOMBAY.
Fenales. -

TABLE-I.
LIFE TABLE-BURMA.
Males.

TABLE-J.
LIFE TABLE-BURMA.
Females.

Age.	Living at age .	Dying between agea x and $x+1$.	Mortality per cont.	Living botween ages x and $x+1$.	Living above agox.	Meac after lifotime at ago 2.
(1)	(2)	(3)	(4)	(5)	(6)	(7)
θ	100,000	20,300	$20 \cdot 30$	88,207	3,009,900	31.00
1	79700	8,187	7.78	76,205	3,011,783	37.79
2	73,613	3,275	$4 \cdot 45$	71,750	2,935,488	38.98
3	70,238	2,017	$2 \cdot 87$	69.154	2,803,738	40.77
4	68,221	1,265].88	67.543	2,794,584	40.06
5	68,956	822	1.23	66,519	2,727,041	40.73
6	66,134	567	-86	65,848	2,000,522	
7	65,667	424	-65	65,353	2,594,674	39.57
8	65,143	352	-64	64,967	2,520,319	38.83
9	64,791	329	. 51	64,696	2.464,352	38.04
10	64,462	335	0.62	04,293	2,390,728	37.23
11	64,127	365	-57	63,045	2,335,431	38.42
12	63,762	414	-65	63,550	2,271,488	35.62
13	63,348	478	-75	63,110	2,207,938	$34 \cdot 85$
14	62,872	546	-87	62,590	2,144,816	$34 \cdot 11$
15	62,320	619	-89	62,017	2,08:227	33.41
16.	61,707	692	$1 \cdot 12$	61,381	2,020.210	32.74
17	61,015	762	$1 \cdot 25$	60,634	1,958,849	$32 \cdot 10$
18	60,263	827	1.37	69,840	1,888,215	31.60
19	59,426	884	1.49	58,984	1,833,375	30.94
20	58,542	933	1. 69	58,078	1,779,391	$30 \cdot 40$
21	67,609	970	1.68	57,124	1,721,315	29.88
22	56,639	999	$1 \cdot 76$	56,140	1,664,191	$29 \cdot 38$
23	555,640	1,022	1.84	65,129	1,603,151	28.90
24	54,618	1,039	$1 \cdot 90$	64,093	1,502,922	28.43
25	53,579	1,051	1.96	63,433	1,493,823	27.97
26	52,528	1,057	$2 \cdot 01$	61,999	1,445.770	27.52
27	51,471	1,060	$2 \cdot 06$	50.941	1,3313,771	27.08
28	50,411	1,060	2. 10	49,881	1,342,839	23.64
29.	40,351	1,057	$2 \cdot 14$	48,803	1,992, 0,99	23.20
30	48,204	1,052	$2 \cdot 18$	47,763	1,244,126	$25 \cdot 76$
31	47,242	1,046	$2 \cdot 21$	48,719	1,190,358	$25 \cdot 32$
32	46,196	1,038	$2 \cdot 25$	45,077	1,149,639	24.89
33	45,158	1,030	$2 \cdot 28$	4.643	1,103,902	24.45
34	44.128	1,022	$2 \cdot 33$ 2.35	43.617	1.030 .319 1,015702	$24 \cdot 01$
35	43,106	1.014	$2 \cdot 35$	42.599	1,015,702	$23 \cdot 06$
${ }^{36}$	42,002	1,006	$2 \cdot 39$	41,589	973,103	23-12
37	41,086	090	$2 \cdot 43$	40,587	931,514	22.67
38	40,087	091	$2 \cdot 47$	30,592	890,927	22.23
39	39,006	984	2.51 2.58	38,644	851,335	21.78
40	38,112	977	$2 \cdot 56$	37,624	812,731	21.33
41	37,135	067	2.60	36,648	775, 107	20.87
42	36.168	968	$2 \cdot 65$	35,634	738,461	20.42
43	35,210	949	$9 \cdot 69$	34,736	702,777	$19 \cdot 60$
44	34.261	938	$2 \cdot 74$	33.702	608,041	$19 \cdot 50$
45	33.323	027	$2 \cdot 78$	32,800	634,249	19.03
46	32,3nG	917	9.83	31,938	601,389	18-56
47	81.478	006	$2 \cdot 87$	31,006	609,451	18.09
48	80,573	897	2.93	30,125	638,425	17.61
49	29,676	889	8.00	29,232	608,300	17.13
60	28,787	883	3.67	28,346	479,048	16.64
${ }_{61}$	87,004	877	$3 \cdot 14$	27,466	450,722	16-15
${ }_{52}$			3.22	26,591	423.236	15.68
83	26,156	865	$8 \cdot 31$	25.723	306.685	$15 \cdot 17$
54	25,291	889	8.40 3.60	24,802	370,942	14.67
${ }_{68} 6$	24,432	855			346,080	$14 \cdot 17$
		852 850	3.61 3.74	23,151	322,075	$13 \cdot 66$
67 68	21,875	885	3.74 3.89	24, 21.440 100	288,024 276,624	13.15
59	21,023	855	$4 \cdot 07$	20,508	265,175	$12 \cdot 65$ 12.14
60	20,168	861	4.27	19,738	34,879	11.63
${ }_{62}$	19,307	888	4.49	18.873	214,841	$11 \cdot 13$
62	18,439	874	4.74	18,002	105,068	$10 \cdot 63$
${ }_{64}^{63}$	17,565 10,682	883 893	5.03 5.35	17,124 16,235	177,068 160,842	10.13 8.64
65	16.789	904	6.72	15,337	144,007	$9 \cdot 64$ 9.16
${ }^{68}$	14.885	914	6.14	14,428	120,270	
${ }_{88}^{87}$	13,871 13,049	922 929	6.60 7.12	13,510 12585 12	114,843	8.29 8.27
68 69	13,049 12.120	929 935	7.12 7.71	12,585	101,333 88,747	7.77
70	11,185	930	8.40	10,716	87,004	7.32 $\mathbf{6 . 8 9}$
71	10,246 0,313	933 093		8,770	68,379	6.48
72	0,313 8,310	003	9.90 10.82	8,852 7,937	66,600 47.748	6.48 $5 \cdot 08$ 5.68
74	7,483	888	11.85 11	7,039	47.48 30,811	$5 \cdot 69$ $5 \cdot 32$
75	6,596	857	12.98	6,108	32,772	4.97
76 77	6,739 4,023	816 768	14.23 15.57	5,331 4,540	26,604	4.64
78	4,923 4,157	768 707	$15 \cdot 57$ 17.02	4,540 3,804	21,273 10,733	4.32 4.03
${ }_{80}^{79}$	3,450	641	18.57	3,813 3,130	16,83 $+2,890$	4.03 375
80 81	2,809 $\mathbf{2 , 2 4 1}$	868	20.22	2,025	-7,780	3.49
81 82	$\begin{aligned} & 2,241 \\ & 1,748 \end{aligned}$	493 417	$21 \cdot 68$ $23 \cdot 84$	1,056 1,540	$\mathbf{7 , 2 7 4}$ $\mathbf{8 , 2 7 9}$	3.35 3.08
83 84	1,331	3174	25.81 27.88	1,159	$\mathbf{8 , 2 7 9}$ 3,739	S.08 $\mathbf{2 . 8 1}$
84 85	987 712	275	27.88 30.05	860 605	2,580	$2 \cdot 81$ 2.61
88	712 498	214 101	30.05 32.33	605	1,730 1,125	$2 \cdot 43$
87 88	313 220	117	$32 \cdot 33$ $34 \cdot 72$	417 879	1,125	
88 80	220 $1: 8$	82 85	3.720 37.20 39.80	179	420	2.10 1.05
89 80 1	138 83	55 35	39.80 $\mathbf{4 2} \cdot \mathbf{4 9}$	111	250 130	1.81
91	48	22			130 73	1.08
92	26	13	48.10	20	30	1.68 1.39
43 94	13 6	7 3	61.20 64.20	8	16	1.23
9.7	3	2	${ }_{67.43}$	$\stackrel{8}{8}$	7	$1 \cdot 17$
96.	1	1	00.74	..	.	-67

TABLE-K.
LIFE TABLE-CENTRAL PROVINCES, BERAR AND HYDERABAD.
Males.

Ags.	Living at age $\mathrm{I}_{\text {I }}$	Dying between agea x and $x+1$.	- Mortality per conti	Living botweon agos x and $x+1$.	Living above ago x:	Moan after life-timo at agis
(1)	(2)	(8)	(l)	(5).	(6)	(7)
0	100000	24,805	24.90	85,440	2,809,528	$28 \cdot 10$
1	75,105	6,915	9.21	71,302	-2,724,088	38.27
2	68,190	3,082	$5 \cdot 40$	66,209	2,030,783	38.20
8	64,509	2,280	3.53	63,284	2,586,577	$40 \cdot 10$
4	62,298	1,437	$2 \cdot 31$	61,459	2,523,203	40.65
8	60,791	928	1.53	60,296	2,461,834	40.60
		626	1.05	69,050	2,401,539 -	40.12
7	69,237	455	. 77	59,010	2,341,988	30.54
-88080	58,788 88,415	367 330	-62	58,598	2,282,978	38.84
¢ 10	88,415 58,085	330 825	-56 .58	58,250 57,023	2,224,330	38.08 $\mathbf{3 7} .26$
10	57,760	343	. 69	57.588	$2.108 .207$	38.60
11	57,417	378	-68	57,228	2,050,619	25.71
13	${ }^{87,039}$	$4{ }^{92}$,	-74	56,828	1.093,301	84.95
14	86.617	469	-83	56,383	1,936,563	34.20
15	86,148	515	-92	56,800	1,880,180	$23 \cdot 6$
16	85,633	560	1.01	65,353	1,824,290	32.79
17	65,073	603 639	1.09	54,773	1.768,037	32.12
18	54,470 63,891	639	1.17 -1.24	54,150 53,497	$1,714,185$ $1,060,015$	31.47 20.84
19 20	63,839	669 693	$\xrightarrow{-1.24}$	53,487 $\mathbf{6 2 , 8 1 5}$	$1,060,018$ 1,606518	30.84 30.22
91	52,469	714	1.38	62,112	1,553,703	29.61
22	51,755	730	$1 \cdot 41$	51,390	1,501,591	29.01
23	81.025	745	1.48	50,653	1,450,201	28.48
24	50,280	759 773	1.51	49,900	$1,399,548$ $1,349,648$	27.84 27.25
25	40,621	773	1.56	49,135	1,349,648	
28	48,748	787	$\xrightarrow{1.61}$	48,354 47,562	1,300,513	$28 \cdot 68$ 26.11
27	47,901 47.162	799 812	${ }_{1}^{1.72}$	46, 4 4,58	1,204,597	25.54
28	47,162 46,350	825	1.78	40,937	1,157,841	24.98
90	45 585	888	1-85	45,104	1,111,904	24.42
	44,683	859	1-92	44,254	1,066,800	23.87
32	43,834	880	$2 \cdot 01$	43,384	2,020,646	23.33
33	48,944	${ }_{905}^{909}$	$2 \cdot 10$	42,493 41,579	936,669	22.80 22.28
84	41,117	951	2-31	40,612	895,090	21.77
86	40,168	977	$2 \cdot 43$	39,677	854,448	21.27
87	39,189	999	2.55	38,690 37,680	${ }_{776,081}$	20.79
88	38,190 $\mathbf{3 7 . 1 7 1}$	1.019	$2 \cdot 67$ 2.78	38,654	738,401	19.88
49	38,137	1,044	2.89.	35,615	701,547	19-15
41	35,003	1,050	2.89	34,568	666,133	$18.93{ }^{\circ}$
4	34.043	1.059 1.050	3.09 8.18	32,468	698,047	18.13 18.13
48	39,901	1,044	3.27	31,419	565,58]	17.71
4	\$0,897	1,036	3-35	30,379	634,163	17.29
48	29.861	1,005	$3 \cdot 43$	29,340	803,783	16.87
47	28,836	1,011	$3 \cdot 51$ $3 \cdot 58$	27,327	446,104	18.03
48	27,825	988	${ }_{3}^{3 \cdot 68}$	26,339	418,777	$15 \cdot 61$
80	26,889 $\mathbf{2 5 , 8 4 8}$	985	3.73	25,385	392,438	$15 \cdot 18$
5	24,883	948	3.81	94.409	367,073	14.75
61	23,035	930	3.88	${ }_{09}^{23,470}$	342,664	$14 \cdot 37$ 13.87
88	93,005	${ }_{89} 91$	4.00	21,648	296,64	13.43
${ }_{84}^{54}$	22,094	874	$4 \cdot 18$	20.765	274,998	12.97
∞		857	4.22	19,889	254,231	12.51
${ }_{86}^{86}$	20,328	841	$4 \cdot 38$	19.051	234,339	12.03
68 68	18,630	898	4.43 4.67	17,217	215.281 197.004	11.56
${ }_{80} 89$	17,804	8818	4.73	16,580	179,667	10.57
60	16,981		4.94	15,788	168,078	10.07
${ }_{68}^{61}$	16,187	790	$5 \cdot 19$	14,088	147,290	9.67
${ }_{68}^{62}$	14,589	802	5.50 5.88	14,188	118,114	8.67
84	13,787	810 882	6.88 6.34	12,068	104,732	$8 \cdot 07$
65	12,977	- 83		11,737	日2,166	7.58
68	12,156	${ }_{851}^{886}$	7.62	10,894	80,429 60.535	7.11
67 68	11,468	865	8.26 9.13	10,035 9,165	60,500 59,500	6.64 6.20
69	8,603	876 883	$9 \cdot 13$ 10.11	8,286	50,335	5-77
70	8.727		11.22	7,404	48,049	5.36
71	${ }_{8,804}^{7,844}$	${ }_{868}^{880}$	12.48	6,530	34,645 $\mathbf{2 8 , 1 1 5}$	4.97 4.61
78	${ }_{8,006}$	843	- 13.82	${ }_{4}{ }_{4}$, 814	22,441	4.97
74	5,253	804 758	$15 \cdot 31$ 16.92	4,073	17,590	3.95
55	4.449	769	18.68	- 3,351	13.517	3-65
78	3,608	6817	18.68 20.68	2,697	10.168	3-88
78	3,006 2,380	688 688	23.50	2,120 1,603	7,469 $\mathbf{6 , 3 4 9}$	3.13
78 78	2, 1,881	458	24.62	1,603 1,208	3,726	$2 \cdot 67$
80	1,595	875	20.86	871	2,518	$2 \cdot 67$
81	1,080	${ }_{298}^{208}$	-39.70	607	1.647	8.88
88	${ }_{403}$	169	34.31	409	1.1040	$2 \cdot 11$
88	403	120	57.05	$\underline{264}$	${ }_{3} 63$	1.95
${ }_{85}^{84}$	204	81	30.91	163	307	180
88	128	${ }_{89}$	48.80 46.01	54	107	$1 \cdot 68$
87	70	${ }^{38}$	$48 \cdot 04$ 49.94	98	65	1-39
${ }_{89}^{88}$	38 30	10	55.61	14	11	1.84
${ }_{00}^{89}$	${ }_{8}^{14}$	8	66.09	7	1	1.98
01	4	8	59.70	3	1	${ }^{1.60} 0^{\circ}$
$\begin{aligned} & 02 \\ & \text { 日2 } \\ & \text { U3 } \end{aligned}$	2	1	67.30	\cdots	\bullet	\bullet

TABLE-L.
LIFE TABLE-CENTRAL PROVINCES, BERAR AND HYDERABAD.
Females.

TABLE-M.

LIFE TABLE-MADRAS.
Males.

TABLE-N.
LIFE TABLE-MADRAS.
Females.

Age.	Living at ago ${ }^{\text {a }}$.	Dying between agas z and $x+1$.	Martality per cent.	Living botween ageas and $x+1$.	Living abore ago $\mathrm{s}^{\text {. }}$	Mead after lifortimo st ago x.
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0	100,000	21,458	21.48	89,272	3,003,486	50.04
1	78,544	6,198	7.89	75,445	2,014,214	$37 \cdot 10$
2	72,346	3,186	$4 \cdot 40$	70,753	2,838,769	39.24
3	69,100	1,893	$2 \cdot 74$	68,214	2,768,016	40.02
1	67,267	1,143	$1 \cdot 70$	66,605	2,693,802	40.14
5	66,124	743	1-12	66,763	2.633,107	39.82
6	65,381	514	-79	65,124	2,567,354	39.27
7	64,807	385	-59	64,674	2,502,230	38.57
8	64,488	823	- 50	64,321	2,437,558	37.80
${ }_{0}$	64,159	317	. 50	64,000	2,373,235	38.89
10	68.848	323	- 50	63,631	2,300,235	$38 \cdot 17$
11	63,519	346	- 54	63,346	2,245,564	$35 \cdot 35$
12	63,174	381	-60	62,984	2,182,208	34.54
15	62,793	444	$\cdot 71$	62,571	2,119,224	33.75
14	62,349	510	-82	62,094	2,056,853	32.99
15	61,839	579	-94	81,549	1,994,659	32.25
16	61,260	649	1.06	60.936	1,933,010	31.56
17	60,611	714	1.18	80,254	1,872,074	30.89
18	60,897	770	1.29	69,511	1,811,820	$30 \cdot 25$
19	60,125	828	1.39	68,714	1,752,309.	29.64
20	68,303	871	$1 \cdot 49$	67,867	1,693,505	$2 \mathrm{D} \cdot 05$
21	57,432	903	1.67	66,981	1,635,728	28.48
22	60,529	829	1-64	86,064	1,578,747	27.87
23	65,600	958	1.71	65,124	1,522,683	27.39
24	54,648	974	1.78	84,161	1,407,659	26.85
25	63,674	990	1.85	53,179	1,413,308	26.33
26	62,684	1,005	1.91	82,182	1,360,219	25.82
27	51,679	1,022	1.98	51,168	1,308,037	25.31
28	60,057	1,034	$2 \cdot 04$	50,140	1,256,869	24.81
29	49,623	1,045	$2 \cdot 11$	49.100	1,206,729	24-32
. 50	48,578	1,054	$2 \cdot 17$	48,051	1,157,629	23.83
31	47,524	1,062	$2 \cdot 24$	48,993	1,109,578	23.35
32	46,462	1,070	$2 \cdot 30$	45,027	1,062,685	22.87
38	45,392	1.076	$2 \cdot 37$	44,854	1,016,658	$22 \cdot 40$
34	44,316	1,081	$2 \cdot 44$	43,776	971,804	21.93
580	43,235	1,086	2.51	4,692	928,028	21.47
39	42,149	1,092	$2 \cdot 59$	41,603	885.338	21.01
37	- 41,057	1,097	$2 \cdot 67$	40,508	843,733	20.65
38	39,060 38,858	1,102 1,106	2.76 2.85	89,409 38,305	803,225 763,816	20.10 19.66
40.	37,752	1,108	$2 \cdot 94$	37,198	725,611	19.68 10.22
41	36,644	1,109	8.04	30,090	688.313	18.78
42	35,535	1,109	$3 \cdot 12$	34,980	652,223	18.35
43	24,426	1,102	3.20	33,875	617,243	17.93
4	33,324	1,095	3.29	32,777	683,368	17.51
45	32,229	1,088	$3 \cdot 38$	31,685	850,591	17.08
46,	31,141	1,080	3.47	30,601	518,006	18.66
47	30,001	1,072	8.57	29,625	488,305	16.24
48 48 48	28,089 $\mathbf{2 7 , 9 2 6}$	1,063 1,004 1	8.67 3.77	28,457 27,399	458,780 430,323	15.83 15.41
59	20,872	1,043	$3 \cdot 88$	26,351	402,024	14.09
51	25,829	1,032	$4 \cdot 00$	25,313	876,573	14.58
62	24,797	1,018	$4 \cdot 11$	24,288	351,260	14.17
58	43,779	1,003	¢.22	23,277	326,072	13.75
54	22,778	${ }_{873}^{888}$	4.34	22,282	303,095	13.33
65.	21,788	973	$6 \cdot 47$		281,413	12.82
86	20,815	959	4.61	20,336	260,111	$12 \cdot 50$
67	19,856	945	4.76 4.92	19,384	239,778	12.08
68	18,911	931	${ }^{4.92}$. ${ }^{\text {b }}$.	18,445	220,302	11.65
69	17,830	9005	5.11 6.30	${ }_{16,610}^{17,621}$	201,047	11.23
60	17,062			16,610 16,710	184,426 187816	$10 \cdot 81$
${ }_{62} 61$	16,157	883 881	6.63 6.77	16,710 14,824	167,816 102,108	10.39 9.97
63	14,383	869	6.04	13,948	137,282	9.54
64	13,614	857	6.34 8.68	13,088	123,334	$9 \cdot 13$
65	12,657	845	$6 \cdot 68$	12,234	110,248	8.71
66	11,812	833	7.05	11,306	88,014	8.30
${ }_{88}^{62}$	10.079 10.160	819 804	7.48	10,669	86,018	7-89
68 67	10,160 8,354	804 $-\quad 788$	7.01 8.42	0,757 8,080	76,049 66,292	$7 \cdot 49$ 7.09
70	8,566	770	8.69	8,181 .	67,332	6.69
71			9.63	7,421	40,161	6. 30
72	7,045 $\mathbf{6 , 3 1 5}$	730	$10 \cdot 36$ 11.20	6,680 5,061	41,730 35050	6.92 5.55
73	6,315 5,608	707	11.20 12.16	5,061 8,267	35,050 $\mathbf{2 0 , 0 5 9}$	5.55 5.10
76	4,026	652	13.24	4,600	23,822	4.84
76	4,274	618 578	14.49 15.81	3,065 3,367	19,222	$4 \cdot 50$
77	3,858 $\mathbf{3 , 0 7 8}$	578 638	15.81 17.32	3,367	15,257 11,800	4.17 3.89
78	2,545	485	19.08	2,302	11,800 9,078	3.86 8.57
80,	2,060	439	21.02	1,844	6,776	3.29
81	1,027 1,250	377 318	28.17 25.44	1,438	4,932	8.08
${ }_{83}^{82}$	1,200	288	27.68 28	1,091 803	3,404 $\mathbf{2 , 4 0 3}$	2.80 2.88
84	874	202	29.97	${ }^{573}$	1,606	- $2 \cdot 58$
85	472	156	$32 \cdot 84$	396	1.033	2.19
86	317 204	113 78	35.05 38.24	260 165	638 378	$2 \cdot 01$
87	${ }_{126} 20$	78 58	38.24 41.27	105	378 213	$1 \cdot 85$
88 89	74	34	45.05	68	113	1.57 1.58
${ }_{80}^{89}$	41	20	¢8.78	80	${ }_{85}$	1.68
91.	20	11	55.00 88.63	15	25	$\underline{1.25}$
92	9	5 2	56.63 60.61	8 3	10	1.11
93	2	1	64.67	1	1 -	1.00 .80
05	3.	1	68.09	-	\cdots	- \sim

TABLE-O.

LIFE TABLE--PUNJAB.

Males.

Aga	Living at ago :	Dying betweon ages x $\operatorname{and} x+1$.	Mortality per cent.	Living between ages x and $x+1$	Living above ago min	Moan attor Ilfo-time al agber
(1)	(2)	(3)	(4)	(5)	(b)	(7)
0	100,000	23,975	23.08	88,009	2,804,680	28.05
1	76,005	6,950	9.14	72,233	$2,718,641$	$\begin{aligned} & 55 \cdot 76 \\ & 50 . \end{aligned}$
2	69,075 65,111	3,064	8.74 8.02	66,960 $63 \% 19$	$2,646,408$ $2,679,448$	$38 \cdot 31$ $39 \cdot 62$
8	65,111 62,491	2,620 1,784	- $\begin{array}{r}4.02 \\ 2.86\end{array}$	63,919	2,679,448 $2,516,729$	39.62 40.26
5	62,491	1,784	2.86 2.07	60,048	2,454,182	40.43
6	89,452	913	- 1.54	88,905	2,394,138	40.27
7	58,639	697	1.19	58,191	2,333,141	$39 \cdot 89$ 39.38
8	87,842	563 482	.97 .84	87,560 57.038	2,270,950	39-75
10	57,279 80,797	488	.84	67,038 56,579	$2,189,358$ 2,162	38.47
11	58,300	418	$\cdot 74$	56,151	2,105,773	37.58
18	85,942	422	-75	${ }^{55,731}$	2,049,622	350.64
13	65,520	441	-79	85,209 54848	1,993,891	$35 \cdot 98$ 35.29
14	85,079	487	-85	54,846 04,383	1,9383,592	34.40
16	84,812	498	-91	64,383		
16	54,114	650 563	-988	53,849 83,302	$\begin{aligned} & 1,829,383 \\ & 1,775,634 \end{aligned}$	$33 \cdot 81$ $33 \cdot 14$
17	${ }_{5}^{53,021}$	563 594	1-120	62,724	1,722,232	-32.48
18	53,021	${ }_{629}^{694}$	$\stackrel{1}{1 \cdot 19}$	60,116	1,069,508	31.84
20	51,805	647	1.25	51,488	1;617,392	31.28
21	51,158	689	1.31	50,823	1,565,910	$30 \cdot 61$ 30.01
22	60,489	689 707	1.36 1.42	50,145 49,446	1,515,984	-29.48
23	49,800 40,093	707	1.42	49,446 48,732	1,415,496	28.88
24	48,093 48,370	723 738	1.47 1.53	48,001	1,366,764	28-24
20			1.58	47,267	1,318,763	27.68
28	47.632 46.881	762	1.63	46,500	1,271,508	27-12
28	46.119	773	1.68	45,733	1,225,008	20.01
29	45,366	783	1.73 1.78	44,167	1,134,319	25.45
30	44,563	793		43,369	1,000,152	24.91
31	43,770 42,968	808	1.83 1.89	42,562	1,046,783	24.38
${ }_{33}^{32}$	42,157	820	$1-95$	41,747	1,004,291	23.88
34	41,337	829	$2 \cdot 01$	40,923	${ }_{9262,571}$	22.78
35	40,508	838	$2 \cdot 07$	40,089		
36	30,670	846	2.13	38,247 3897	842,215	21.68
37	38.584	884	2.20 2.27	38,538	603,818	21.17
88	37,070	888	$2 \cdot 34$	36,673	766,279	20.65
${ }^{39}$	37,108 36,238	878 878	$2 \cdot 42$	35,799	729,608	20.18
	35,380	885	$2 \cdot 50$	34,918	693807	19.68
4	34,475	891	2. 88	34,029 $\mathbf{3 3 , 1 3 7}$	624,850	$28 \cdot 61$
48	33,584	8897	$2 \cdot 67$ 2.74	33,241	691,723	$18 \cdot 10$
4	32,889 31,798	897 888	- $2 \cdot 88$	31,343	659,482	17.60
4	31,02			30,445	628,139	17-18
46	30,804	899	$3 \cdot 00$	29,544	497,604	16-59
47	29,995	903	3.11	28,643	468, 150	16.09
48	28,191	905	$3 \cdot 21$	27,739 28888	431,708	15.69 15.09
80	27,286	907	3.38	28,833		
51	26,379	910	3.45	25,994	359,011	14.10
58	25,469	918	3.68 8.73	24,098	333,098	13.60
${ }_{54}^{63}$	24.556 $\mathbf{2 3 . 6 4 0}$	916 919	${ }_{3} 8.89$	23,180	309,900	13.11
54	23,640 $\mathbf{2 2 , 7 2 1}$	919 928	4.08	22,260	286,720	
56	21,799	928	4.25	21,338 20,408	264.460 243,124	$12 \cdot 18$ 11.65
57	20,873	${ }_{935}^{930}$	$4 \cdot 46$ $4 \cdot 69$	20,478	222,716	11.17
58	19,943	${ }_{948}^{935}$	4.98	18,537	203.940 184.703	10.63
89	19,008 18,066	947	5.24	17.593	184,703	10.2\%
${ }^{60}$		951	5.56	18.6441	167,110 150,468	$9 \cdot 78$ $9 \cdot 31$
${ }_{60}^{61}$	16,188	${ }_{953}^{955}$	$5 \cdot 88$ 6.98	15,691.	134,775	$8 \cdot 86$
6s	15,215	${ }_{958}^{955}$	6.28 0.70	13,788	120.037	$8 \cdot 48$
64	14,260	${ }_{958}^{958}$	$7 \cdot 17$	12,827	106,256	7-99
65	13,304	954 950	7.69	11,875	${ }^{88,428}$	7.57 7.15
68	12,350 11,400	950	$8 \cdot 26$	10,929	81,653	7.18
${ }_{68}^{67}$	10,458	029	$8 \cdot 88$ 9.57	9,994	60,630	6.38
69	9,529	${ }_{891}^{912}$	$9 \cdot 57$ 10.34	8,172	81,657	.5-98
70	8,017	891		7,294	43,385	$5 \cdot 68$
71	7,728 6,562		$12 \cdot 13$, 6.446	30,091 99.645	$5 \cdot 98$ 4.98
78	8,3,30	704	13.17 14.34	5.633 4.880	24.018	4.59
74	5,238	751	$14 \cdot 34$ 15.63	4,135	19,158	4.27
75	4,485	2015		3,461	15,017	$3 \cdot 97$
76	3,784	685	18.68	2.847	11,556 8,709	3.68 3.4
77	3,39 $\mathbf{2 , 5 5 4}$	600	20.35	$\mathbf{2 , 2 9 4}$ $\mathbf{1 , 8 0 3}$	6,416	3.15
78	2,034	458 384	$29 \cdot 24$ 24.30	1,390	4,607	$2 \cdot 81$
80	1,658	384	24.30 20.63	1,039	8,217	2.08
81	1,188	318 255	26.92 28.98	-753	2,178 1,495	2.48 2.98
88	880	195	31.48	627 855	1,428	2.10
83 86	488	$146{ }^{\prime}$	$34 \cdot 31$ 37.10	229	613	1.93
85	288	105		148	314	1.77
86	177	${ }_{48}$	$40 \cdot 16$ 4.38	83	178	1.68
87	106 60	48 98	46.77	48	89 48	1.48
888	60 38	16	80.33,	12	19	1.10
89	10	9	64.05 57.94	5	2	$1 \cdot 0$
91	7	4	68.00	8	2	-6
02	8	1	68.뵤	-	*	\bullet
93	1	1				

TABLE-P.
LIFE TABLE-PUNJAB.
Females.

TABLE-Q.

LIFE TABLE-RAJPUTANA.
Maks.

TABLE-R
LIFE TABLE-RAJPUTANA.
Females.

TABLE-S.
LIFE TABLE-N. W. F. P., SAND AND BALUCHISTAN.
Males.

$\Delta \mathrm{gea}$.	Living atage $\mathrm{z}_{\text {- }}$	Dying between ages x and $x+1$.	Mortality per cents.	Fiving betweer agtac nand파.	Living abovo agoar	Monnalterlifo-timast age x
(1)	(2)	(3)	(4)	(5)	(6)	(7).
0	100,000	26,013	26.01	80,994	2,542,761.	25.48
1	73,987.	6,012	8.34	${ }^{70,531}{ }^{1}$	2,465,7631	$33 \cdot 19$
2	67,075	3,805	5.67	${ }^{65,172}$	2,335,236	35.56
$3:$	63,270 60.844	2,426.	$3 \cdot 83$ $2 \cdot 64$	62,057 60,040	2,320,004	$36 \cdot 67$ 37
${ }_{6}$	$\begin{aligned} & 60,844, \\ & 89,236 \end{aligned}$	$\begin{aligned} & 1,608 \\ & 1,117 \end{aligned}$	$1 \cdot 89$	${ }_{58,678}^{60,040}$	2,197,967.	$37 \cdot 11$
6	68,119	826	1.42	57,708	2139,289	${ }^{36}$.81
7	57,293	678	$1 \cdot 18$	86,954	2,081,593	${ }^{36} \cdot 33$
8	86,015	598.	1.06	${ }^{56,316}$	2,024,029	35.76
9	86,017	533.	-95	65,750 65,235	1,068,313	35.14
10	65,484	$488{ }^{-}$	-90	65,235	1,912,563	
nt	64,986	488	-89	54,742	1,857,328	33.78
12.	84,498'.	${ }_{502} 502$	-92	544,247.	1,802,580.	33.08 32.38
13	${ }_{53,475}{ }^{53,}$	${ }_{651} 82$	-1.03.	53,109	${ }_{1,604,603}$	${ }_{31} \mathbf{3}$. 69
15:	63,474 62,924	578	1.09	62,635	1,641,404	31.01
16.	62,346	802	$1 \cdot 15$	52,045	1,588769.	330.85
17.	61,744	624	1.21.	51,432	1,536,724	29.70
18.	$51,120$.	643 859	1.26 1.33	50,799	1,485,292	29.08 28.42
19.	50,477.	${ }_{673} 68$	1:35	49,482	1,384,346	27.78
		$634 \cdot$	1-39:	'48,804	1,334,864	27.18
21.	48,462	697.	1.43.	48,114	1,288,060	26.54
23	47,765.	${ }_{726} 71{ }^{\circ}$	1.4.54	46,409 4609	$1,237.948$ $1,190,537$	$\stackrel{25}{25 \cdot 39}$
24:	47,054.	${ }_{746} 78$.	${ }_{1}^{1.61}$	-45,995	1,143,848	24.69
20:		767.	1-68.	45,199	1,007,891	24.09
28	44,688	792	1.77	44,419	1,052,692	23.49
28	44,023	824.	1.87)	43,611 42,722	1,009,273	${ }_{22 \cdot 33}^{22.80}$
29	43.199	${ }_{894} 8$	${ }^{1-98}$	42,772 41,898	921,800	21.77
30	42,345		2.25	40,984	879,99\%	21.23
31	41,451.	${ }_{971}$	$2 \cdot 40$	40,031	830,008	20.71
82:	80,548	1,004	$2 \cdot 64$.	39.044	798,977	20.20 19.78
33,	38,542	1,033	$2 \cdot 68$ 2.82	36,026	721,907	19.72 19.25
38	37,509	1,058	$2 \cdot 2$.			
38.	38,451	1,078	2.96 3.10	- $\begin{array}{r}35,912 \\ 34,624 .\end{array}$	649,927	18.78 18.35
37	35,373 4.276	$1,113$.	$3 \cdot 25$.	33,720	614,191	17.92
${ }^{38}$	${ }_{33,163}$	1,123.	3.38	32,601	580,471	17.50
${ }_{40}^{99}$	32,040	1,129	$3 \cdot 58$:	31,476.	547,870 -	17-18
- 41		1,131	3.68	30,345	516,394	${ }^{16} \cdot 7$
48	29,780	1,129	3.781	29,216	486,049	$\xrightarrow{16.32}$
43	28,651	1,123	3.92 4.05.	28,089	498,744	15.52
4	27,528	1,102	$4 \cdot 17$ -	25,863.	401,773	15.21
45	26.414		429.	24,769	375,910	14.85
48	24,322	1,068:	4.41	23,692	351,141	14.48
47	23,158.	1,048	4.53	${ }^{22}, 634^{\circ}$	${ }^{327,449}{ }^{\text {30, }}$	14.14 13.79
48	22,110.	1,027.	4.65 .	21.587	304.815	13.79 13.48
490,	21,083	1,004	4.76	20,681		
	20,079	880	4.88:	19,689	262,637.	13.08 12.73
${ }_{62}$	19,099		${ }_{5}^{5.12}$	17,080	224,427.	12.37
53.	18,144.	908:	${ }_{5.24}$	16,764	206,747	12.01
64	17,215	874 i	$5 \cdot 38$	15,876	189,983	11-65
60		846	5.48:	15,016	174,107	11.28
${ }^{60}$	14,593	818 -	$5 \cdot 61$.	14,189	159,091	10.50
88	13,771	791	5.75 5.89	12,598	131,534	10.13
89 :	12,980		6.08 ,	11,845	118,036.	9.74
60	12,916			11.118	107,091	8.53
${ }^{61}$	11,475 10.762	694	6-48:	10.415	85,973	8.82 8.50
68:	10,068	672	${ }_{8.88 .}$	9,733	85,826	8.07
${ }_{68}^{63}$	8,396.	655	6.88 7.87	8,069 8,419	68,752	$7 \cdot 64$
685	8,741.	64			68,338	7.90
	8,097	639.	8.85	7,141	${ }_{80,661}$.	6.78
67.	7,458	631.	9.25.	${ }^{6,507}$	43,420.	6.98
${ }_{69}^{68}$	6,192	625	$10 \cdot 09$.	5,858 5,889	36,033	8.67
70.	5;567	615 :	11.05.			5.20
71	4,952.	${ }_{509} 601$	$12 \cdot 14$	4,069	21,122	4.85
72	4,351.	579 552	14.83	3,406	17,061.	4.52
78	3,772:	5518	16:09	2,961	13.666.	4.81
74	3,220 $\mathbf{2 , 7 0 3}$	476.	17.68	2,464	10,604	3.98
78			19.14	2,018	8.440.	$\mathbf{3} \cdot 68$ 3.40
78		374	20.78	1,018	${ }_{4}^{6,127}$	3.17
77	${ }_{1,486}^{1,46}$	3×28	- $\begin{array}{r}99 \\ \hline 24.48 \\ \hline\end{array}$	$\begin{array}{r}1,265 \\ \hline 09\end{array}$	${ }^{4049}$,	$2 \cdot 96$
78	1,104.	270 280	$24 \cdot 48$ $\mathbf{2 6 . 6 0}$	724	2,280	$2 \cdot 73$
89	834:	275		E25	1,566	2.54
81	018	176	280.96	370	1,031	2.35
88	4380	100	33.21	258	${ }^{601}$	$2 \cdot 19$ 2.05
83	202	78	35.67	108	243	1.67
88	130	60	38.24:	105	188	1.73
86	80	33	40.92,	38	7	1.57
87	47 26	${ }_{18}^{21}$	$46.59{ }^{\circ}$	20	- 88	1.45
88 88	26 14	7	40.69.	11	18	1.07
${ }_{80}^{88}$	7	4	68.70.	2	8	-
	3	2	${ }_{60.15} 6$	$\stackrel{\square}{\text { a }}$	-	0
${ }_{62}^{91}$	2	1	89.13^{\prime}	-	-	E

TABLE-T.

LIFE TABLE-N. W. F. P., SIND AND BALUCHISTAN.
Females.

TABLE-U.
LIFE TABLE-UNITED PROVINCES.
Males.

TABLE-V.
LIFE TABLE-UNITED PROVINCES.
Females.

Age.	Living at agez	Dying between agenas and $x+1$.	Mortality par coatr	Living between agosea and $x+1$.	Living abovo ageate	Mean aftarlifotime at ago x.
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0	100,000 .	25,389	25.39	85,113	2,500,376	25.09
1	74,011 ,	6,856	9.19	70,884	2,424,963'	32.49
2.	97,756-9	3,864	$5 \cdot 70$	65,694	2,353,399	34.73
3	63,892--	2,560.	4.01.	$62,533$.	2,287,705	35.81
4.	61,338	1,764	2.88.	60,401.	2,225,172	38.28
5.	50,508	1,272	2.14	68,008	2,164,731	38.34
6	58,208.	967 '	$1 \cdot 66$	67,813	2,105,869	36.18
7	57,329.	773	$1 \cdot 35$.	66,942	2,048,058	35.72
8	86,558	658.	1-15	68,230	1,891,114	35.21
9.	65,004	888	1.0s:	55,613	1,034,884	34.61
10.	65,322	844.	-98.	65,050	1,879,271	33.97
11	64,778.	538.	-97	54,512	1,824,221	
12.	54,245	548	1-001	63,073	1,760,709	$32 \cdot 68$
13.	63,702.	668	1.081	63,418	1,715,736	31.95
14	53,134.	604	$1 \cdot 14$	62,838	1,662,318	81.29
36	62,630	647	I.231	62,207	1,609,A86:	80.64
16	51,883.	695	1.33	51,539	1,557,279	30.02
77	51,100	740	1-45:	60,820	1,506,743	29.41
18.	50,450	789	1.65 ,	50,059	1,454,023,	28.86
$\begin{aligned} & 101 \\ & 20 \end{aligned}$	49,689 48,845	8883.	$1.68:$ 1.761	49,257 48,414	$1,4,4,864$ $1,356,807$	28.29
21	47,084.	891	1.85	47,539	1,30,00.	
22.	47,093.	916.	1.95 :	47,635	1,207,054.	27.24 26.75
23.	48,177	939	2-03:	45,707	1,213,019	26.76 29.27
24:	45,238	959.	$2 \cdot 12$	44,758	1,167,312	25.80
25.	44,279	975	$2 \cdot 201$	43,782	1,122,554.	$25 \cdot 35$
26 28	43,904.	${ }_{906}^{987}$		42,811		24.91
28.	42,317 41,321		$2 \cdot 35$ 2.43:	41,819	1,035,951	$24 \cdot 4$
28:	41,321 40,319	1,009 1,005	2.43:	40,820 30,816	994,132 953,312	24.06 23.64
301	39,314	1,000	2.60.	38,818 38,812	913,408	23.64 23.24
31	38,309	1,004	$2 \cdot 62$	37,807	874,684	22.83
32.	37,305	1,000	2-68;	36,805	836,877	22.48
$33:$	30,305 $\mathbf{3 5 , 3 1 0}$	${ }_{089}^{988}$	2.74	35,808 34	8900.072	22.04
$\begin{aligned} & \mathbf{3 4} \text { : } \end{aligned}$	35,310 34,321	989	2.80 2.86	34,816 3383	764,284	21.64
				3,80	229,448	21.25
37.	32,365	${ }_{868}^{974}$	2.82	$\mathbf{8 2 , 8 5 2}$ $\mathbf{3 1 , 8 8 2}$	695,018 662788	20.88
38	31,399	956	$3 \cdot 05$	30,021	630,884	20.09
39	30,443	946	$3 \cdot 11$	29,970	609,963	19.71
0	29,497	935	$3 \cdot 17$	29,030	569,993	19.32
41	28,562 27.640	922	3.23 3.28	28,101	641,096	- 18.94
48	28,640 26,732	908 894	3.28 3.34	27,188	512.802 485,676	18.56
44.	25,838	878	$3 \cdot 40$	25,399	459,391	18.17 17.78
45.	24,960	862	$3 \cdot 45$	24,529	433,992	17.39
46 47	24,088.	846 831	3.51	23,675	400,463	16.89
47	23,262	881	3.57 3.64	22,837	385,788	16.50
48	22,421 $\mathbf{2 1 , 6 0 8}$	816 801	3.64 3.71	22,013	362,951	16.18
60	20,804	788	3.78,	20,411	310,738.	$15 \cdot 78$ 15.37
81	20,018	768	3-84	10,634	299,322	
62	19,250	754	$3 \cdot 93$	18,873	270,688	14.63
63	18,496		$4 \cdot 01$	18,125	260,815	$14 \cdot 63$ 14.10
54 56.	$\begin{aligned} & 17,754 \\ & 17,024 \end{aligned}$	730	411.	17,389	242,690	-18.67
65.	$17,024$		4.21:	16,668	225,301.	18.93
86	18,307	705	4.31	15,955	208,035	12.79
68.	15,602 14.908	${ }_{686}^{694}$	4.45	16,256	192,680	$12 \cdot 35$
68. 56	14,908 14,222	686 878	4.60 4.77	14,566 13,883	177,425	11.00
60	13,644	${ }_{672}$	C.98,	13,883 13,208	162,860 148,977	11.45
81	12,872	687	5.18	12,638	135,769	10.55
88	12,205	661	5.42	11,876	123,231	$10 \cdot 55$ 10.10
63	11,544	656.	5.68	11,216	111,356	10,10 9,65
84	10,888	651	5.08	10,683	100,140	9.60 0.20
85	10,237	646	$6 \cdot 31$.	9,914	89,577.	8.75
68 67	8,591 8,849	${ }_{635}^{642}$.	6.69	9,270	79,663	- 8131
68	8,314	635 629	7.10 7.56	8,632 8,000	70,393	7.87
69	7,686	628	$8 \cdot 11$	7,373	61,761:	7.48
70	7,062	818	$8 \cdot 76$	6,783	83,761.	7.00
71	6,444	614	9.63,	6,187	30,635	
78	5,630	608	10.43	8,626	33,498	6.15 8.75
78	6,222 4,623	${ }_{689} 8$	11-46:	4093	27,072	6.78 6.38
74	4,623 4,040	583 562.	$12 \cdot 61$ 18.90	4,331	28,049	$4 \cdot 89$
75	4,040	562.	18.90.	3,769	18,718	4.63
76 77	3,478	683 498	16.31. 16.85	3,212 2,607	14,989 11.747	$4_{6}^{1}, 30$
78	2,449	454 :	18.62:	2,222	11,747 9,000	\$. 90 8.70
79	1,995	$40{ }^{\circ}$	20.32 ;	1,793	8,829	8.70 8.48
80	1,690	354	22.24	1,418	6,035	317
81	1,238 036	300 248	24.29.	1,088	8,622	$8 \cdot 93$
88	986. 688 808	248 198	$26 \cdot 47$. 28.78.	812 689	2,1588 1,724 12	$2 \cdot 93$ 8.71
84	400	153	81.21 .	418	1,135	2.51 2.32
86	837	114	33.77	280	772	2.31 2.14
88	223	81	30.46.	183	442	1.98
87	142	${ }^{56}$	30.28.:	114	259	1.82
88	${ }_{80}^{86}$	38	42.22 45.30.	68	145	$1 \cdot 69$
89 80	80 27	23 18	46.30. 48.50.	39 20	77	$1+54$
90	14	18 7	68.60. 51,83,	20 11	38 18	1.4
92	7	4	55.28,	8	7 7	1.00
88 94	3 1	1 -1	88186 62.89	$1 \quad 4$	2	${ }^{\circ} 68$

[^0]: * It is usual to have 100,000 individuals of eash sex sorted by individual ages for each province This was not done in 1931 as the Actuary to the Government of India advised that it would not be neceesary if Mr. Meikh's method of grouping were adopted.-J. H. H.

[^1]: * Whether the two digits are really centres of attraction or repulsion is a matter that requires detailed

[^2]: * A digit is a centre of ropulaion when the number returned as of that digit is lose than the correot number

[^3]: * This test is usually adopted to judge the closeness of fit of the graduated numbers to the observed ones. Here, however, it has to be used contrariwise.

[^4]: "The foregoing analysis of the effect of the rate of increase, with which we are familiar, established the fact that the rate must have passed through great changes, and could not have been maintained for any long period, either at its present average, or that characteristic of the last century. It is not improbable that the rate of the last quinquennium will not be long maintained; and it is certain that however great human genius or effort may be, in enlarging the world's food supplies, that rate cannot possibly be maintained for many centuries. The contention of Malthus is thus placed beyond question, from a different point of view."

