21680

PRODUCTION EMPLOYMENT AND PRODUCTIVITY

IN 59 MANUFACTURING INDUSTRIES

PART ONE: PURPOSE; METHODS, AND SUMMARY OF FINDINGS

*USA**
WORK PROGRAM \& WPA

WORKS PROGRESS ADMINISTRATION NATIONAL RESEARCH PROJECT

WPA NATIONAL RESEARCH PROJECT

Reports issued to date

```
General
G-1 Unemployment and Increasing Productivity (out of print)
0-2 The Research Program of the National Research Project
0-3 Summary of Findings to Date, March 1938
A-3 Seleeted References on Practices and Use of Labor on Farms (out of print)
Studies In Types and Rates of Technological. Change
Manufacture
M-1 Industrial Instruments and Changing Technology
M-2 Mechanization in the Brick Industry (in press)
B-2 Mechanical Changes in the Cotton-Textile Industry, 1910 to 1936 (Summary)
B-3 Mechenical Changes in the Woolen and Worsted Industries, 1910 to 1936 (Sumary)
B-5 Systems of Shop Management in the cotton-Garment Industry (out of print)
Mining
E-1 Technology and the Mineral Industries (out of print)
E-3 Mechanfzation Trends in Metal and Nonmetal Mining as Indlcated by Sales of
    Underground Loading Equipment
E-5 Fuel Efficiency in Cement Manuracture, 1909-1936 (out of print)
E-6 Mineral Technology and Output per Man Studies: Orade or Ore (out of print)
Agriculture
Changes in Farm Power and Equipment:
    A-2 Mechanical Cotton PIcker
    A-9 Tractors, Trucks, and Automobiles
Studies in Production, Productivity, and Employment
    Manufacture
S-1 Production, Employment, and Productivity in 50 Manuracturing Industries, 1919-30
Productivity and Employment in selected Industries:
    N-1 Beet Sugar
    N-2 Brick and rile
B-1 Labor Profuctivity in the Leather Industry (Nummary)
B-4 Effecty of Mechanization In Cigar Manufacture (Summary)
B-6 Labof Paroductivity in the Boot and shoe Industry (Summary)
```


WORES PROGRESS ADMINISTRATION

F. C. HARRINGTON Administrator

CORRINGTON GILL
Assistant Administrator

NATIONAL RESEARCH PROJECT

On
Reemployment Opportunities and Recent Changes
in Industrial Techniques
DAVID WEINTRAUB
Director

$$
\begin{gathered}
\times 9: 9-28 \cdot 73 \\
G 9
\end{gathered}
$$

$$
21680
$$

PRODUCTION, EKPLOYUENT, AND PRODUCTIVITY
 IN 59 MANUFACTURING INDUSTRIES, 1919-36
 With an Appendix on the Electric Light and Power and Telephones Industries

by
Harry Magdoff
and

Irving H. Siegel Milton B. Davis

PART ONE: PURPOSE, METHODS, AND
 SUMARY OF FINDINGS

works progress administration, national research project
Report No. S-1, Part One
Philadelphia, Pennsylvania
May 1939

THE WPA NATIONAL RESEARCH PROJECT ON REEMPLOYMENT OPPORTUNITIES AND RECENT CHANGES IN INDUSTRIAL TECHNIQUES

Under the authority granted by the President in the Executive Order which created the Works Progress Administration, Administrator Harry L. Hopkins authorized the establishment of a research program for the purpose of collecting and analyzing data bearing on problems of employment, unemployment, and relief. Accordingly, the National Research Program was established in October 1935 under the supervision of Corring ton Gill, Assistant Administrator of the WPA, who appointed the directors of the individual studies or projects.

The Project on Reemployment Opportunities and Recent Changes in Industrial Techniques was organized in December 1935 to inquire, with the cooperation of industry, labor, and governmental and private agencies, into the extent of recent changes in industrial techniques and to evaluate the erfects of these changes on the volume of employment and unemployment. David Weintraub and Irving Iaplan, members of the research staff of the Division of Research, Statistics, and Finance, wereapDointed, respectively, Director and Associate Director of the project. The task set for them was to assemble andorganize the existing data which bear on the problem and to augment chese data $D y$ fleld surveys and analyses.

To this end, many governmental agencies which are the collectors and repositories of pertinent information were invited to cooperate. The cooperating agencies of the United States Government include the Department of Agriculture, the Bureau of Mines of the Department of the Interior, the Bureau of Labor Statistics of the Department of Labor, the Railroad Retirement Board, the Social Security Board, the Bureau of Internal Revenue of the Department of the Treasury, the Department of Commerce, the Federal Trade Commission, and the Tarift Commission.

The following private agencies joined with the National Research project in conducting special studies: the Industrial Research Department of the University of Pennsyivania, the National Bureau of Economic Research, Inc., the Employment Stabllization Research Institute of the University of Minnesota, and the Agricultural Economics Departments in the Agricultural Experiment Stations of Callfornia, Illinois, Iowa, and New York.

WORKS PROGRESS ADMINISTRATION

WALKER-JOHNSON BUILDING 1794 NEW YORK AVENUE NW. WASHINGTON, D. C.

F.C. HARRINGTON

ADMINISTRATOR

May 23, 1939

Colonel F. C. Harrington
Works Progress Administrator
Sir:
The administration and planning of programs designed to aid the unemployed must be based on knowledge of trends in the volume of employment and unemployment in the Nation. A primary factor affecting the number of jobs and thus the size of the unemployment problem is the volume of output of the worker in industry. This subject is treated in the report submitted herewith. It gives a picture of production, employment, and productivity for 59 manufacturing industries. One-half of all the manufacturing employees in the country are covered in this investigation.

The importance of manufacturing as an employer of labor has changed in the last 20 years. Every census taken by the United States Government from the Civil War to 1919 showed an increase in the number of wage earners employed in manufacturing industries. Between 1919 and 1929, however, employment as reported by the census of Manufactures deciined slightly. Thus manufacturing ceased to play its traditional role as an absorber of the country's growing labor supply.

Another way to view the changing importance of manufacturing employment is by means of the percentages of persons gainfully occupied. In 1870 about 17 percent of the gainfully occupied were in manufacturing. By 1920 the figure had increased to 27 percent. But between 1920 and 1930 it declined to 23 percent.

Although the number of jobs in manufacturing did not increase during the 1920's, there was a considerable rise in production. Improvements in the productivity of labor made possible larger production with about the same number of employees. Nearly all of the
industries studied in this report showed increasing productivity between 1919 and 1929.

There seems to be no prospect for a change in the role of the manufacturing industries as an employer of labor. Output per man-hour continued to increase after 1929. About half. of the wage earners in the industries studied worked in branches of manufacturing in which labor productivity increased faster between 1929 and 1935 than in the period 1919-29. In general, it took one-fifth less labor time to produce manufactured goods in 1936 than was required in 1929.

Man-hours are one thing; jobs are another. It is a fact that the increases in output per man-hour have been largely offset by a big drop in the average hours worked per week. Average weekly hours were 48 in 1929 and 39 in 1936. Thus, although output per man-hour was much higher in 1936 than in 1929」 output per wage earner was actually a little less.

There is every indication that output per manhour in the manufacturing industries will continue to increase, and there is little likelihood that more jobs will be available in manufacturing, unless there is a substantial gain in production or a further decrease in working hours: Therefore our manufacturing industries are not again likeiy to serve as a reservoir of jobs for the growing labor supply of the Nation.

Respectfully yours,

Corrington Gill
Assistant Administrator

CONTENTS

Chapter Page
PREFACE xiii
ACKNOWLEDGMENTS. xvii
INTRODUCTION 1
I. THE PURPOSE AND DEVELOPMENT OF MEASURES OF PRODUCTIVITY AND PRODUCTION 3
The purpose of productivity measures 3
The development of measures of average unit labor requirements. 8
The development of measures of productivity 10
The development of production indexes suitable for measurement of productivity 11
Use of the alternative measures for economic analysis. 12
II. SCOPE OF SURVEY, SOURCES, AND GENERAL METHODS 20
The NRP industry and group titles. 21
Comparability of production and labor indexes. 24
Production indexes 28
Time coverage 28
Sources of production statistics 28
Definition of a product and formula for the production index. 29
Census production series 30
Completion of census-year indexes. 35
Weights used in construction of NRP production indexes 36
Value coverage of the NRP production indexes. 40
Employment indexes 42
Time coverage 42
Definition of employment 42
Census employment series and their completion 43
Adjustment of employment series for comparability with production 48
Man-hours indexes. 49
Tine coverage 48
Available statistics and the method of computing indexes 49
Average-actual-hours series. 51
Adjusted and unadjusted prevailing-actual hours series 54
Adjustment of man-hours series for comparability with production 56
Factors to be considered in the evaluation of NRP indexes 57
Chapter Page
III. SUMMARY OP FINDINGS. 60
Coverage of the NRP manufacturing industries 80
Combined indexes for NRP sample. 61
Changes in productivity for the 1829 production composite 64
Changes in productivity for the changing production composite 68
Average annual rates of change for individual industries. 69
Average annual rates of change between 1919 and 1929 71
Production 71
Wage earners 72
Man-hours. 72
Output per man-hour. 72
Output per wage earner 73
Average annual rates of change between 1929 and 1935 74
General considerations in productivity movement during production decline 74
Productivity, 1929-35. 75
Productivity, 1929-33. 78
Productivity, 1933-35. 80
Conclusions. 81
CHARTS
Figure
I. Combined indexes of output per man-hour for NRP manufacturing industries: 19_9-36 68
Summary indexes:

1. Agricultural implements: 1920-36. 84
2a. Beet sugar: 1918-36 85
2b. Beet sugar: campaign and intercampaign months, 1918-36. 86
2. Boots and shqes: 1919-36. 87
3. Bread and other bakery products group: 1923-36. 88
4. Biscuit and ćrackers: 1923-36 89
5. Bakery products other than biscuit and crackers: 1923-36. 90
6. Cane-sugar refining: 1919-36. 91
7. Canning and preserving group: 1919-36 92
8. Canned and preserved fruits and vegetables:1919-36.93
9. Canned and cured fish: 1919-36 94

CHARTS-Continued

Pigure PageSummary indexes:
11. Cement: 1919-36 95
12. Chemicals: 1919-36. 96
13. Clay products (other than pottery) and nonclay refractories: 1919-36 97
14. Coke group: 1919-36 98
15. Beehive coke: 1919-36 99
16. Byproduct coke: 1919-36 100
17. Confectionery: 1925-38. 101
18a. Cotton goods: 1919-36 102
18b. Cotton goods, by region: census years 1919-35 103
19. Electric lamps: 1920-31 104
20. Fertilizers: 1919-36. 105
21. Flour and other grain-mill products: 1819-38. 106
22. Furniture: 1919-36 107
23. Glass group: 1919-36. 108
24. Window glass: 1919-36 109
25. Plate glass: 1919-36. 110
26. Glass containers: 1918-36 111
27. Pressed and blown ware: 1919-36 112
28. Ice cream: 1919-36. 113
29. Iron and steel group: 1919-36 114
30. Blast furnaces: 1919-36 115
31. Steel works and rolling mills: 1919-36. 116
32. Knit goods group: 1919-36 117
33. Hosiery: 1919-36. 118
34. Underwear: 1919-36 119
35. Outerwear: 1919-36. 120
36. Knit cloth: 1919-36 121
37. Leather group: 1919-38 122
38. Sole and harness leather: 1919-36 123
39. Side and upholstery leather: 1919-36. 124
40. Calfisin: 1919-36 125
41. Kid leather: 1919-36. 126
42. Sheep and miscellaneous leather: 1919-36. 127
43. Lumber and timber products group: 1919-36 128
44. Log8ing camps: 1910-36. 129
45. Sawmills and saw-plane mills: 1919-36 130
46. Manufactured gas: 1919-35 131
47. Manufactured ice: 1918-35 132

CHARTS-Continued

Figure Page
Summary indexes:
48. Motor vehicles: 1919-36 133
49. Newspaper and periodical printing and publishing: 1919-36. 134
50. Nonferrous metals group: census years 1919-35 135
51. Primary smelters and refineries: 1919-36. 136
52. Secondary smelters and refineries: census years 1919-35. 137
53. Alloyers, rolling mills, and foundries: 1919-38. 138
54. Paints and varnishes: .1919-36 139
55. Paper and puip group: 1919-36 140
56. Paper: 1919-36. 141
57. Pulp: 1919-36 142
58. Petroleum refining: 1919-38 143
59. Planing-mill products: 1919-36. 144
60. Rayon: 1919-37. 145
61. Rubber products group: 1921-38. 148
62. Rubber tires and inner tubes: 1821-36 147
63. Other rubber goods: 1921-38. 148
64. Silk and rayon goods: 1919-36 149
65. Slaughtering and meat packing: 1919-36. 150
66. Tobacco products group: 1919-36 151
67. Cigars: 1919-36 152
68. Cigarettes: 1919-36 153
69. Chewing and smoking tobacco and snuff: 1919-36. 154
70. Woolen and worsted goods group: 1919-36 155
71. Woolen goods: census years 1919-31. 156
72. Worsted goods: census years 1919-31 157
TEXT TABLES
Table
I. Illustration of differences in unit-labor- requirement indexes derived from production indexes constructed with value and man-hour weights, cigars and cigarettes, 1919-36 7
II. Illustration of differences in productivity indexes based on fixed and changing production composites. 15
III. Distribution of 32 manufacturing industries by change in production and in output per wage earner between 1899 and 1814 18

TEXT TABLES-Continued
Table Page
IV. NRP manufacturing industries and groups and corresponding census designations in 1929 23
V. Distribution of 55 manufacturing industries and their wage-earner employment according to value coverage of the production index: 1929. . 41
VI. Coverage of BLS wage-earners samples. 47
VII. Coverage of BLS and NICB man-hours samples. 53
VIII. Average number of wage earners employed in manufacturing industries for which NRP indexes have been constructed: 1929. 61
IX. Percent of each census industry group accounted for by NRP industries: 1929. 62
x. Percent of wage earners and value of products of all manufacturing industries accounted for by NRP industries, by census industry group: 1929 83
XI. Combined indexes of production, employment, man-hours, and productivity (with base-year man-hour weights) for NRP manufacturing indus- tries: 1919-36 65
XII. Average hours worked per weekin NRP manufacturing industries: 1920-36. 68
XIII. Combined indexes of production, employment, man-hours, and productivity (with changing man-hour weights) for NRP manufacturing indus- tries: 1919-36 67
XIV. Distribution of 49 manufacturing industries and their 1929 employment according to average annual rates of change of production, employ- ment, and man-hours between 1919 and 1929 71
XV. Distribution of 48 manufacturing industries and their 1929 employment according to average annual rates of change of output per wage earner and output per man-hour between 1919 and 1920 73
XVI. Distribution of 49 manufacturing industries andtheir 1929 employment according to averageannual rates of change of output per wageearner and output per man-hour between 1929and 1935. 75
XVII. Classification of 49 NRP manufacturing industries by relationship of average annual rates of change during the periods 1919-29 and 1929-35. . 76
Table PageXVIII. Distribution of 49 manufacturing industries andtheir 192θ employment according to averageannual rates of change of production, employ-ment, and man-hours between 1929 and 1935. . 77
XIX. Distribution of 49 manufacturing industries and
their 1929 employment according to average
annual rates of change of output per wage
earner and output per man-hour between 1929
and 1933. 79
XX. Distribution of 49 manufacturing industries and
their 192θ employment according to average
annual rates of change of output per wage
earner and output per man-hour between 1933
and 1935. 80
NOTE: Tables of contents for Parts Two and Three appearin their
respective volumes.

PREFACE

Several studies conducted by the National Research Project, for example, the report on the manufacture of brick and tile ${ }^{1}$ or that on phosphate-rock mining, ${ }^{2}$ have dealt intensively with the technological changes that have taken place in selected industries and their effects on employment opportunities in those industries. These studies were based either on detailed data especially collected for the purpose or on similar data available in the files of various Government agencies. They represent not only contributions to our knowledge of the incidence of changes in technology and labor requirements in individual industries, but case studies of economic factors that affect the relationship between production, productivity, and employment changes; as such they throw light on the way these factors operate in different industries according to the economic characteristics of those industries and their role in the economy as a whole.

There is also, however, a need for extensive information on the degree to which the increased productivity of labor has in recent jears reduced the amount of labor required to produce a given quantity of goods and on how widespread these reductions have been. The present report represents this second type of study. It is based on secondary statistical data and measures the changes in production, employment, and productivity that have occurred in 59 manufacturing industries during the postwar years. ${ }^{3}$ Besides adding to our knowledge of the degree to Which productivity has increased, the data presented in this report provide a major element in the eventual construction of more inclusive productivity measures that will reflect changes for a broader aggregate of industries, including mining, agriculture, transportation, and communication as well as the manufacturing section of the economy.

Our approach to the problem of measuring productivity is that the method of measuring must be made dependent on the purpose

[^0]which the measure is to serve. One of the principal objectives of the National Research Project was to inquire into the relationship between reemployment opportunities and changes in productivity. The methods used for the present study were developed out of specific questions formulated in the light of this objective. For the first time, so far as we know, formulas for constructing index numbers of production and productivity were specifically designed for use in inquiries on employment opportunities. The formulas developed are presented in chapter I; there also an attempt is made at an explicit formulation of the underlying assumptions and of the economic meaning of these special-purpose measures.

The mere computation of changes in a ratio of quantity produced to labor time consumed does not, of course, establish a significant economic relationship between production and employment. Measures of the type presented in this report do, however, permit the gauging of trends in employment opportunities. Despite the fact that changes in the degree of plant capacity utilization are known to affect labor productivity, that the incidence of changes in industrial techniques differs according to the size of plants, or that computed changes in output per unit of labor may reflect changes in the relative quantities of different products, the conclusion which must be drawn after a careful, examination of the data for a large number of manufacturing industries is that the observed trend in labor productivity reflects principally the effects of the continuous changes in industrial techniques on the amount of labor required per unit of output. The annual figures for each industry must, of course, be approached with caution; not only the factors mentioned above, but many others besides technological change may have influenced the level of any industry's productivity figure for a particular year.

In the less than 2 decades covered by the data in this report, output per man-hour in manufacturing increased by more than 75 percent. The increase has been gradual. Aside from the irregular short-time fluctuations, the course of output per man-hour has been steadily upward. The same was true of output per wage earner between 1919 and 1929 when the average and full-time hours worked remained fairly constant. During the years 1930-34 output per worker declined, chiefly in response to the large amount of part-time work before 1933
and to the shortening of the workweek since then. The contiauing increases in output per man-hour have, however, turned output per worker upward again, and the 1929 level is rapidly being approached.

The construction of adequate measures of productivity was a considerable statistical task since the data that were available had originally been compiled for other purposes. An attempt was made to canvass as completely as possible all data on production, employment, and hours of work that could be discovered in published and unpublished sources. The two most serious problems were the attainment of comparability between the production and labor series and the derivation of adequate measures of hours worked; data on the latter were especially scarce. Because of these problems of measurement and the degree to which it was necessary to resort to estimating, we have presented in great detail in this report the sources, underlying assumptions, and the specific methods used in constructing the series for the individual industries. These details should be of value not only because they enable the technical reader to evaluate the material but also because they make possible the continuation of these indexes in the future and permit the construction of series for additional industries and thus the extension of the coverage of this sample.

The reader who is interested primarily in the findings of the study will find a summary in Part One, chapter III, followed by charts presenting graphically the indexes for each industry. Tables incorporating the indexes are presented industry by industry in Part Two at the end of each section describing the methods used for the particular industry. The reader interested in the underlying theory is referred to Part One, chapter I, and the reader wishing to investigate still further will want to see chapter II of Part One and Parts Two and Three.

The study was planned and executed by Harry Magdoff. Irving H. Siegel and Milton B. Davis supervised the construction of the indexes and participated in the development of the specific statistical techniques used; they prepared Parts Two and Three and participated in the preparation of Part One. Clement Winston participated in the planning of the study and in the development of the basic techniques; in the early stages he also supervised the construction of the indexes. The study as
a whole was under the supervision of Irving Kaplan, in his capacity as Associate Director of the Project. Ruth Eisner aided in the administrative supervision of the work and made a number of special investigations. The completed manuscript was prepared for publication under the supervision of Edmund J. Stone.

The construction of the indexes contained in the report could not have been accomplished without the cooperation of many individuals outside of our own organization. Isador Lubin, United States Commissioner of Labor Statistics, and Lewis E. Talbert of the United States Bureau of Labor Statistics, as well as W. L. Austin, Director of the United States Bureau of the Census, and LeVerne Beales, T. J. Fitzgerald, and H. H. McClure of the Bureau of the Census, have patiently answered innumerable questions, communicated essential information, supplied unpublished statistics, and prepared special tabulations for a number of industries. Some unpublished material was also made available by 0. E. Kiessling and W. W. Adams of the Federal Bureau of Mines; Edgar B. Brossard, Oscar B. Ryder, and Raymond B. Stevens of the United States Tariff Commission; and R. C. Hall and H. B. Steer of the United States Forest Service; in addition, O. E. Kiessling gave us the benefit of his valuable criticism.

The following individuals and private organizations also cooperated by complying with requests for statistics or information: Paul Ryan of the American Gas Association, C. E. Wright of Iron Age, F. E. Gorell of the National Canners Association, Grafton Whiting of the National Paperboard Association, and E. L. Drew of the Tanners' Council of America.

Grateful acknowledgments are due to Solomon Fabricant, who kindly read and criticized a large section of the manuscript and offered helpful advice; to A. G. Silverman, E. E. Lewis, Arthur F. Burns, Miriam E. West, and Raymond T. Bowman for reading and criticizing chapter I of $t h i s$ report; and to Edgar Z. Palmer for reviewing a preliminary draft of Part Two.

The uses to which the data obtained were put and the conclusions contained in this report are, of course, solely the responsibility of the National Research Project.

David Weintraub
Philadelphia
May 19, 1939

ACKNOWLEDGMENTS

The authors wish to acknowledge the work done by members of the staff who assisted in various phases of the preparation of this report.

In particular they are indebted to Jacob Grauman, who made the studies of the Agricultural Implements industry and, with the aid of Nathan Spero, of the Iron and Steel and Tobacco Products industries; Joseph Lehner, who participated in editorial and technical decisions, made the study for the Lumber and Timber Products industry, and contributed to the studies of the Cotton Goods, Glass, Knit Goods, and Woolen and Worsted Goods industries; and Vivian E. Spencer, who made the studies of the Bread and Bakery Products and, with the aid of Fred L. Karpin, the Cement, Coke, Leather, Nonferrous Metals, and Petroleum industries. Leo Genzeloff, Bernard Mandel, Max Lipowitz, Abraham Kavadlo, and Joseph P. Cohen did the economic and statistical research for, and participated in the construction of, many of the industry indexes shown in this report. Hans H. Landsberg and Myron Schmittlinger, assisted by Sidney Ginsburg, verified the indexes in the later stages and assembled the materials required for chapter II of Part One, the charts of the NRP measures, and Part Three; in addition, they participated in the statistical research and in the construction of index numbers. Others who contributed to the construction of the indexes in the earlier stages of the work are: Panline Abrahams, Sybil Applebaum, Irving Cheskin, Albert Kuzminsky, Donald M. Landay, Rudolph Sukonick, Herbert Unterberger, and Sidney Wagman.

In the early stages of the study the bulk of the collection, tabulation, and analysis of the statistical materials used was carried on under the supervision of Sydney Feldman. Julins M. Balick aided in this early work and also, at later stages, supervised verification of, and edited, the industry studies and appendix tables. The work involved in the compilation and checking of the statistical data was performed by Alexander Herskovitz and T. Stanley Gallagher. Valuable clerical assistance was contributed by Edward Kelly, Sadye Jacobs, William B. Podolsky, and Nellie Bunn.

INTRODUCTION

This report is devoted to the presentation and discussion of indexes of production, employment, man-hours, and productivity for 59 manufacturing industries which account for about half the number of wage earners in all manufacturing. It also presents similar measures for 13 combinations or groups, comprising 35 of the 59 industries, and for 2 nonmanufacturing industries, Electric Light and Power and Telephones. These indexes are the product of intensive research into available secondary materials. In the course of their construction, a study was made of relevant published statistics; unpublished statistics in the files of private and Government organizations were also consulted.

Since productivity indexes may serve various purposes and since the method of measurement in each case depends upon the purpose of the analytical inquiry or the social policy to be formulated or administered, the first task is the formulation of our problem and the development of the appropriate types of production and productivity measures. Because of the nature of the available data, it was usually not possible to develop measures that fully satisfy the desired formulas. However, the formulas served as standards for the selection and treatment of these data. The integration of the statistical data around a single viewpoint provided a basis for a critical evaluation and investigation of the validity of the indexes actually constructed.

This report is divided into three parts. Part One consists of three chapters and the summary charts. The first chapter is devoted to the definition of the problem and the development of types of production and productivity measures which meet the defined purposes. Chapter II presents the sources of the statistical data and the general technical methods used in the construction of the indexes, together with a commentary on these indexes in the light of the purposes and methods presented in the first chapter. Chapter III contains a summary of the movements of production, employment, man-hours, and productivity of the 59 individual industries. This is followed by charts showing the indexes for the individual industries. Part

Two comprises 37 sections, of which 24 refer to individual manufacturing industries and 13 to industry groups (these groups include the remaining 35 industries). Each section consists of a definition of the industry (or group), a description of the sources and methods used in the construction of the NRP indexes of production, employment, man-hours, and productivity, and a summary table (or tables) showing the NRP measures. Part Three consists of two appendixes. The first is a compendium of the statistics used in the construction of the NRP indexes for the 59 manufacturing industries presented in Part Two. The second appendix contains the NRP indexes for the Electric Light and Power and Telephones industries, a description of the methods of constructing these indexes, and statistical tables similar to those in the first appendix.

The report does not concern itself with reasons for the changes that have occurred since 1919 inproduction, employment, man-hours, and productivity for the 59 manufacturing industries surveyed. The movements of production and productivity may be due to a number of factors arising from the economics and techniques of an industry. For example, productivity may change as a result of changes in technology, plant lay-out, managerial technique, efficiency of individual or groups of workers, degree of utilization of capacity, raw materials, or the quality of the products manufactured; productivity may also change as a consequence of the mortality of inefficient and old plants and the entrance of new and more efficient ones, or as a consequence of the shift in production between plants producing at different productivity levels. An analysis of the effects of changes in productivity on employment opportunities and the relationship of changes in production to changes in productivity requires intensive studies of individual industries, strategic sections of the economy, and the conditions and development of the economy as a whole. This report, while planned in such a way that the results may be utilized in inquiries of this type, is itself confined to the task of measurement. As such, it is concerned primarily with the construction of measures which are pertinent to and useful in a study of production and productivity changes and their bearing on employment prospects.

CHAPTER I

THE PURPOSE AND DEVELOPMENT OF MEASURES OF PRODUCTIVITY AND PRODUCTION

THE PURPGSE DF PRADUCTIVITY MEASURES

The central question concerning unemployment today is whether the current unemployment problem is of a different nature from the problem in the past. The question is, in part, one of the changing structure of the economy and the relationship of this factor to the prospects of future employment. Within this context the bearing of the changing productivity of labor on the total volume of labor utilized is of particular interest. The effect of changes in productivity on the total volume of labor time employed depends on the total volume of production as well as on the types of goods produced. It is therefore necessary to construct measures of production and productivity for each of the several commodities produced.

Formulas for the measurement of productivity and unit labor requirements were developed to find answers to questions like the following: How much employment would there be if we again attained the production levels of 1929 ? How much production is necessary in order to employ the same number of wage earners as were employed in 1929 ? In more generalized form these questions are of the following two types:
(1) What relative volumes of labor time are required to produce a given composite of products at different times?
(a) What relative volumes of production of a given composite of products are obtainable at different times with a given amount of labor time?
Answers to these questions are of use in estimating (1) employment requirements for different levels of production and (2) future production under various conditions of availability and utilization of labor. In the generalized form presented above these two questions in turn define the desired statistical measures of unit labor requirements and productivity. The statistical data necessary to answer these questions are (2) the quantities of each product made and (2) the corresponding numbers of man-hours utilized in their production.

The answer to the first question can be obtained by computing a ratio of the aggregate labor requirements for a given composite of products at different times. The result is a measure of average unit labor requirements. ${ }^{1}$

The second question refers to the production that can be obtained at different times with a given volume of labor time and defines the desired statistical measure of labor productivity. ${ }^{2}$ The assumption implicit in the use of this question is that there exists a sufficiently large and diverse unemployed labor supply which could be reemployed if production increased. Hence interest centers only on volumes of employment and unemployment; qualitative differences in skills, occupations, and efficiency of the individual employees need not be taken into consideration. From this viewpoint, labor may be considered as homogeneous, and its unit of measurement as an hour of undifferentiated labor. The measure of the volume of labor time is, therefore, the total number of manhours utilized.

Since the question is to what extent the unemployed would be reemployed under conditions of rising production and increasing productivity, the output of individual commodities is significant only insofar as more or less labor is required to produce them. Since labor time may be considered homogeneous, it is possible to measure quantitatively the relative changes in the volume of a specified group of diverse products in terms of man-hours. This approach is analogous to that adopted in the construction of measures of production and prices for the purpose of analyzing fluctuations in the volume of trade. For that purpose the ultimate unit for measuring production

[^1]is a pecuniary one. 8 Since we, on the other hand, are interested in the volume of production as related to the volume of labor time utilized, the logical measure of production for our porpose is in terms of labor time.

If it is granted that for the purposes here set forth labor may be regarded as homogeneous, then the measures of relative volumes of labor time employed and relative average unit labor requirements are conceptually simple and readily deducible. They provide answers to specific questions concerning volumes of labor time actually utilized or required under varying conditions in terms of ratios of aggregates of labor time. The fact that the output of different products is measured in diverse physical units precludes, however, a similar direct measurement of aggregate production or of aggregate production per unit of labor. The only meaningful measure of production for any one period would be an inventory, or listing, of the physical output of each product. To measure relative changes of the total output of different products it is first necessary to select an economic or physical attribute common to all products. Reduced to this common additive unit the aggregate volume of production is hardly meaningful unless compared with aggregates of other years similarly obtained. Since the total volume of production in absolute terms for any one period has no independent meaning, the measurement of its movement must be related to changes in the aggregates of the selected attribute.

It has already been seen that the criterion for comparing the relative importance of different products is, for a study of employment fluctuations, the number of man-hours required to produce a unit of each product. However, the method of using these man-hours as weights and the type of average must be determined with relation to more specific definition of the purpose. Thus, while the measure of production of diverse physical products must be measured as relatives, the measure should have meaning in terms of aggregates of labor time and should satisfy the questions posed on page 3. Hence the necessary index of production is one which, when divided into the relatives of total man-hours, will gield an index of unit

[^2]labor requirements which is expressed in terms of ratios of aggregates of labor time and which measures the relative volume of labor time required to produce a given composite of products. The same measure of labor requirements for a given composite of products should be obtained either by (i) aggregating the labor requirements for the individual items of a given composite of products and reducing these aggregates to relatives or by (a) dividing the relatives of total man-hours by the proper index of production. That is, $L=\frac{M}{\ell}$, where L represents the index of unit labor requirements, M the relatives of total man-hours, and Q the production index.

Similarly, the same measure of productivity (which is the reciprocal of the measure of unit labor requirements) should be obtained whether (1) the relatives of productivity for the various products are averaged with appropriate weights or (2) the index of production is divided by the relatives of total man-hours. That is, $\Pi=\frac{Q}{M}$, where Π represents the index of productivity.

The necessity for clearly defining the criterion for measuring changes in the volume of diverse products may be seen in the following illustration for the Cigars and Cigarettes industries (table I). The index of average unit labor requirements for the two industries combined derived from a production index with value weights is higher in 1926 than the unit-laborrequirements index for either industry; after 1929 the index of average unit labor requirements for both industries is lower than that for either. The index of production with value weights results in a measure of unit labor requirements which understates the amount of labor required after 1929 to produce the 1929 volume of cigars and cigarettes. On the other hand, the unit-labor-requirements index obtained from the production index with man-hour weights measures the percentage of the labor time utilized in 1929 that would have been required in any year to produce the 1929 output.

Changes in the labor requirements per unit for a group of products arise out of the joint operation of two factors: changes in the labor requirement per unit of output. of the several products and changes in the relative volume of output of the several products. Thus, in order to analyze changes in the unit labor requirements for a group of products, it is

Teble i.- ILLuStration of dipferences in unit-labor-reduirement indexes derived from phoduction indexes constaucted WITH Value and man-haur weights
Clgare and cigafatios, 1918-3B

Year	Index of unit labor requirements (1929 $=100$)			
	Cigars	Cigarettes	Cigars and Cigarettes combined, based on a production index with ${ }^{\text {a }}$ -	
			$\begin{aligned} & \text { Value } \\ & \text { weights } \end{aligned}$	Man-hour weights
1919	122.8	323.3	222.0	150.8
1920	110.0	348.2	233.1	143.2
1821	125.8	259.2	214.6	144.3
1922	123.7	227.4	200.5	138.1
1823	121.7	182.4	176.4	130.1
1924	116.4	184.5	158.2	123.1
1925	116.1	145.7	144.8	120.3
1826	109.8	123.8	128.1	111.7
1927	112.5	129.4	127.3	114.8
1928	109.2	129.7	117.8	112.1
1829	100.0	100.0	100.0	100.0
1930	101.5	95.0	94.5	100.7
1931	88.7	92.6	80.2	87.6
1032	85.4	89.8	81.3	84.6
1933	88.2	81.6	70.9	87.3
1834	79.2	98.3	64.3	81.9
1035	86.5	88.6	52.8	69.6
1936	63.9	73.3	47.9	65.2

AThe production index for Cigars and Cigarettes with man-hour weights was constructed 80 that the measure of unit labor requirements obtained by dividing this production index into relatives of man-hours would indicate the volume of labor required to produce the 192θ quantities of cigare and cigarettes in each year as compared with the volume of labor actually utilized in 182θ. The formula for this production index is presented later; the index with vaiue weights is of the same form.
necessary to eliminate the factor of changing composition of production and to formulate questions only in terms of a given composite of production.

The term "composite" or "production composite" is used here to mean a specific distribution of productive activities, that is, fixed quantities of specified products. In this study it refers to the production schedule of a manufacturing industry or group of industries. The selection of a "given composite"
for which average unit labor requirements are to be measured does not represent a statistical problem alone but one which depends primarily upon the purpose of the economic analysis. Two alternative types of production composite have been selected for this study. One, which refers to the base year, is used throughout the period for which the index is constructed; it is designated here as a "base-year" or "fixed" composite. The other, which refers to each of the years for which the index is constructed, is different for every comparison with the base year; in other words, the index number for each year involves the composite of that year. This composite, which refers to every year of the period in turn, is designated in this report as a "changing" composite. The usefulness of measures based on the alternative composites will be discussed later in this chapter.

the development of measures of average unit Labor heouirements

The first question posed on page 3 assumes two forms. What relative volumes of labor time are required to produce the base-year composite of products at different times? What relative volumes of labor time are required to produce the changing production composite at different times?

The first form of this question describes a measure of the relative volumes of labor time that would have been required if the same quantities of each product had been produced in each year as were produced in the base year. If the index number of unit labor requirements is 90 , then we may say that 10 percent less labor is required to produce the quantities of the base year. The measure of average unit labor requirements for the base-year production composite should indicate the ratio of (1) the volume of labor required to produce the base-year quantities of the several products with the unit labor requirements of each year to (2) the actual volume of labor utilized in the base year. This measure is therefore an aggregative index of the unit labor requirements for the several products weighted by the corresponding quantities manufactured in the base year. An equivalent form of this index is an arithmetic mean of the relatives of unit labor requirements for the several products weighted by the corresponding
volumes of labor time utilized in their production in the base year. ${ }^{4}$

The second form of the question describes a measure of the relative volumes of labor that would have been required if the same quantities had been produced in the base year as were produced in each year. The index of average unit labor requirements for the changing production composite should indicate the ratio of (1) the volume of labor actually utilized in each year to (2) the volume of labor necessary for the same production composite with the unit labor requirements of the base year. The desired index is therefore an aggregative index of the unit labor requirements for the several products weighted by the corresponding quantities manufactured in each year. An equivalent form of this index is a harmonic mean of the relatives of unit labor requirements for the several products weighted by the corresponding volumes of labor time utilized in each year. ${ }^{6}$
 $q^{1}, q^{\prime \prime \prime} q_{11 \prime}^{\prime \prime \prime}, \cdots=$ the quantities of a, b, c, \cdots produced; and
$\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime \prime}, \mathbf{m}^{\prime \prime \prime}, \cdots=$ the man-hours utilized in the production of $q^{\prime}, q^{\prime \prime}, q^{\prime \prime \prime}$, -•••
Then the volume of labor required to produce the quantities of the base year (indicated oy the subscridt o), assuming the unit labor requirements of any other year (indicated by the subscript i) =

$$
l_{i}^{\prime} q_{0}^{\prime}+l_{i}^{\prime \prime} q_{0}^{\prime \prime}+l_{i}^{\prime \prime \prime} q_{0}^{\prime \prime \prime}+\cdots=\sum l_{i} q_{0}
$$

and the volume of labor required in the base year to produce the quantitias of the base year =

$$
l_{0}^{\prime} q_{0}^{\prime}+l_{0}^{\prime \prime} q_{0}^{\prime \prime}+l_{0}^{\prime \prime \prime} q_{0}^{\prime \prime \prime}+\cdots=\Sigma l_{0} q_{0} .
$$

The ratio between these two volumes or labor is the desired index of unit labor requirements for the base-year production composite:

$$
\begin{equation*}
\frac{\Sigma l_{i} q_{0}}{\Sigma l_{0} q_{0}}=L_{1} \tag{1}
\end{equation*}
$$

Expressed as a mean of relatives of unit labor requirements the aggregative Index (1) becames

$$
\begin{equation*}
\frac{\Sigma\left[\frac{l_{i}}{l_{0}} m_{0}\right]}{\sum m_{0}}=L_{1} \tag{1a}
\end{equation*}
$$

$5_{\text {The }}$ volume or labor utilized in any year $=$

$$
l_{i}^{\prime} q_{i}^{\prime}+l_{i}^{\prime \prime} q_{i}^{\prime \prime}+l_{i}^{\prime \prime \prime} q_{i}^{\prime \prime \prime}+\cdots=\sum l_{i} q_{i} ;
$$

and the volume of laoor required to produce the same composite, assuming the unit labor requirements of the base year,

$$
l_{0}{ }^{\prime} q_{i}{ }^{\prime}+l_{0}{ }^{\prime \prime} q_{i}{ }^{\prime \prime}+l_{0}{ }^{\prime \prime \prime} q_{i}{ }^{\prime \prime \prime}+\cdots=\sum l_{0} q_{i} .
$$

The ratio between these two volumes of labor is the desired index of average unit labor requirements for the changing composite:

$$
\begin{equation*}
\frac{\sum l_{i} q_{i}}{\sum l_{0} q_{i}}=L_{2} \tag{2}
\end{equation*}
$$

Expressed as a mean of ralatives of unit labor requirements, the aggregative Incez (2) becomes

$$
\begin{equation*}
\frac{\Sigma m_{i}}{\Sigma\left[\frac{l_{0}}{l_{i} m_{2}}\right]}=L_{2} \tag{2a}
\end{equation*}
$$

THE DEVELOPMENT OP MEASUAES DP PRODUCTIVITY

The first type of index of unit labor requirements measures the relative volumes of labor time required to produce the base-year composition of production. The reciprocal of this index, or the index of productivity, measures the relative changes in the volume of the base-year production composite obtainable at different times with the base-year expenditure of labor time. This index of productivity is equivalent to a harmonic mean of the productivity relatives for the several products weighted by the corresponding volumes of labor time utilized in the base year. ${ }^{6}$

This formula indicates the change in the output of each product obtainable with the labor expenditure of the base year and the productivity of each year. Thus, if the productivity index ($1929=100$) were 120 in 1936, one could say that, because of productivity changes, 20 percent more of each product would have to be produced in 1936 in order to employ the same number of man-hours that was employed in 1929.
The index of productivity which measures the relative changes in the volume of the production composite of each year obtainable at different times with the current-year expenditure of labor time is the reciprocal of the index of unit labor requirements for the changing composite of production. It may also be computed as an arithmetic mean of productivity relatives of the several products weighted by the corresponding volume of labor time utilized in each jear. ${ }^{7}$ If in 1936 the

6

$$
\begin{equation*}
\frac{1}{L_{1}}=\frac{\Sigma l_{0} q_{0}}{\Sigma l_{i} q_{0}}=\Pi_{1} \tag{3}
\end{equation*}
$$

where Π_{1} is the inder of productivity.
Expressed in terms of productivity relatives for the individual products, the inder (3) becomes

$$
\frac{\Sigma m_{0}}{\sum\left[\frac{\pi_{0}}{\pi_{i}} m_{0}\right]}=\Pi_{1}
$$

where π (the productivity of a single product) $=\frac{1}{l}$.

$$
\begin{equation*}
\frac{1}{L_{2}}=\frac{\sum i_{0} q_{1}}{\sum l_{i} q_{i}}=\Pi_{2} \tag{4}
\end{equation*}
$$

Expressed in terms of productivity relatives ror the individual products, the Indez (4) becomes

$$
\begin{equation*}
\frac{\Sigma\left[\frac{\pi_{i}}{\pi_{0}} m_{i}\right]}{\sum m_{i}}=\Pi_{2} \tag{4a}
\end{equation*}
$$

productivity index were 110 ($1929=100$), one could say that to employ the 1936 man-hours in the base year with the base-year productivity it would have been necessary to produce 91 percent (100 $\div 110$) of the 1936 output of each product.

the deyelopment df phoduction indexes guitable for measurement af productivity

The production index for a group of products suitable for the measurement of productivity is one which, when divided by the man-hours series, will yield the same index of productivity that could be obtained by averaging the relatives of output per man-hour for the several products.

As we have seen, the index of productivity measures changes in the volume of a given production composite obtainable at different times with a constant labor expenditure. Multiplication of the index of productivity by relatives of man-hours yields a measure of production that reflects (1) changes in productivity and (2) changes in labor expenditure. Thus if the changes in productivity are such that so percent more of each product can be made by the same labor, and if in addition twice as much labor is used, then the total output will be three times as great (1.5×2.0) as before. The index may also be interpreted in a different fashion. A threefold increase in production may indicate that if productivity did not change, three times as much labor would be required. If, however, during the same period productivity increased 50 percent, then only twice as much labor ($300 \div 150$) would be used.

Changes in unit labor requirements (or productivity) between two years are measured in terms of the same production composite and expenditure of labor, and in a complementary fashion production changes between two years are measured in terms of the same unit labor requirements (or productivity) for each product. The first index of productivity presented above measures productivity changes for the base-year production composite and labor expenditure. Multiplication of this productivity index by the index of man-hours yields an index of production measured in terms of the unit labor requirements of each year. This production index may be computed directly from the quantity series for individual products either by aggregating quantities and reducing them to relatives or by averaging relatives of these quantities. The two equivalent
formulas are (1) an aggregative index of the quantities of the several products weighted by their respective unit labor requirements in each year and (2) a harmonic mean of the production relatives for the several products weighted by the corresponding volumes of labor utilized in each year. ${ }^{8}$

The second index of productivity measures changes in productivity in terms of the changing production composite. This index when multiplied by an index of man-hours yields an index of production which is measured in terms of the base-year unit labor requirements. The two equivalent formulas for this measure of production are (1) an aggregative index of the quantities of the several products weighted by the corresponding unit labor requirements in the base year and (2) an arithmetic mean of the production relatives for the several products weighted by the corresponding volumes of labor utilized in the base year. ${ }^{9}$

USE OF TKE ALTERNATIVE MEASLRES POR ECONOMIC ANALYSIS

For both unit labor requirements and productivity, two alternative measures have been presented, one for the base-year and the other for the changing production composite. The selection of the composite to be used depends principally upon the economic characteristics of the period under consideration. Thus the use of a base-year composite has greater significance under relatively stable conditions of production and is usually
${ }^{8} Q_{2}=\frac{M}{L_{1}}$, where Q_{2} is the index of production consistent with L_{1} (or Π_{1}) and N is
the index of labor time utilized in the industry. Then

$$
\begin{equation*}
Q_{2}=\frac{\sum l_{i} q_{i}}{\sum l_{0} q_{0}} \div \frac{\sum l_{i} q_{0}}{\sum l_{0} q_{0}}=\frac{\sum l_{i} q_{i}}{\sum l_{i} q_{0}} \tag{5}
\end{equation*}
$$

The aggregative index (5) expressed as a mean of relatives becomes

$$
\begin{equation*}
\frac{\sum m_{i}}{\sum\left[\frac{q_{0}}{q_{i}} m_{i}\right]}=Q_{1} \tag{5a}
\end{equation*}
$$

${ }^{9} Q_{2}=\frac{M}{L_{2}}$, where Q_{2} is the index or production consistent with L_{2}. Then

$$
\begin{equation*}
l_{2}=\frac{\sum l_{i} q_{i}}{\sum l_{0} q_{0}}+\frac{\sum l_{i} q_{i}}{\sum l_{0} q_{i}}=\frac{\sum l_{0} q_{i}}{\sum l_{0} q_{0}} \tag{6}
\end{equation*}
$$

The aggregative incex (8) expressed as a mean of relatives becomes

$$
\begin{equation*}
\frac{\sum\left[\frac{q_{1}}{q_{0}}\right]}{\sum m_{0}}=Q_{2} \tag{8a}
\end{equation*}
$$

more appropriate in dealing with relatively short periods of time. There are, however, certain times when the use of a base-year composite may be significant even in periods characterized by shifts in the composition of production. For instance, if the objective were to determine how much labor would be required if we again attained the 1929 volume and composition of production, the base-year (in this case 1929) production composite would have to be used. Despite the changed relative importance of the consumers'-goods and capital-goods sections, one may nevertheless assume that when 1929 volumes of production are again attained the composition of production would revert to one similar to that of 1929 . Such an assumption would then permit the construction of measures for the 1929 production composite. Should, however, analysis of present conditions indicate that today's composition of production, rather than that of 1929 , is likely to be typical of the future, then the questions would have to be formulated in terms of the composition of production in a more recent year, or in terms of a changing composition of production. When the changing composition of production is in a definite direction, not random, then the question posed in terms of the changing composite is a more appropriate one. The use of a base-year composite has the advantage of permitting comparisons between any two years, since the changes in the required volume of labor in each year are measured relative to the same base-year composite.
The use of a changing composite does not, however, theoretically permit year-to-year comparisons and can only be used to measure the change between the base year and any other gear. Such an index has analytical value particularly in periods of major shifts in the composition of production, and is usually more suitable for studying relatively long periods. ${ }^{10}$

It is of interest to compare indexes of average unit labor requirements and productivity for both the changing and fixed composition of production. The difference in any year between indexes for changing and fixed composites reflects the effects

[^3]of changes in the composition of production with respect to the base year. The greater the difference between the two composites, the greater the divergence between the indexes. Index numbers constructed for either composite will give the same result (i) if the percentage change of the quantity of production of each product as measured from the base year is the same ${ }^{11}$ or (2) if the percentage change in labor requirements (or productivityl of each product is the same. ${ }^{12}$ The difference in the results given by the two formulas for the same period reflects the joint changes in the unit labor requirements (or productivity) and the output of the various products. ${ }^{13}$
${ }^{11}$ If each $q_{i}=k q_{0}$. then
$$
L_{2}=\frac{\sum l_{i} q_{i}}{\sum l_{0} q_{i}}=\frac{\sum l_{i}\left[k q_{b}\right]}{\sum l_{0}\left[k q_{0}\right]}=\frac{\sum l_{i} q_{0}}{\sum l_{0} q_{b}}=L_{1} . .
$$
${ }^{12}$ If each $l_{i}=c l_{o}$, then
\[

$$
\begin{aligned}
& L_{2}=\frac{\sum l_{i} q_{i}}{\sum l_{0} q_{i}}=\frac{\sum\left[c l_{0}\right] q_{i}}{\sum l_{0} q_{i}}=c \\
& L_{1}=\frac{\sum l_{i} q_{0}}{\sum l_{0} q_{0}}=\frac{\sum\left[c l_{0}\right] q_{0}}{\sum l_{0} q_{0}}=c .
\end{aligned}
$$
\]

${ }^{13}$ Generalized formulations or these relationshids may be presented in mathematical terms. For example, the percentage difference between the two indexes of unit labor requirements $\left(\frac{L_{2}-L_{1}}{L_{2}}\right)$ may be expressed as the product of three factors:
(1) The ratio of the weighted standard deviation of the unit-laborrequirement relatives $\left(\frac{l_{i}}{l_{0}}\right)$ to L_{i},
(2) The ratio of the weighted standard deviation or the production relatives $\left(\frac{q_{i}}{q_{0}}\right)$ to Q_{2}, and
(3) The welghted coefficient of correlation between the unit-laborrequirement relatives $\left(\frac{l_{i}}{l_{0}}\right)$ and the production relatives $\left(\frac{q_{i}}{q_{0}}\right)$, where the deviations are measured from L_{1} and Q_{2}, respectively.
The weights in each case are the man-hours utilized for each product in the base year. Since all the lactors but the coefflcient of correlation are necessarily Dositive, the sign of this coefricient determines the sign of the difference. If r is zero, the two inderes are equal: if it is positive, the inder for the changing composite is greater; and if it is negative, the index for the fixed composite is greater. Similar analyses can be made for the productivity and production formulas.
See H. Staehle, "International Comparison of Food Costs, "International Comparisons of Cost of Living, "Studies and Reports: Series N (Statistics) No. 20" Geneva: International Labour office, 1934), pp. 14-6; L. von Bortkiewicz, "Die Kaufkraft des Geldes und inre Messung, " Vordic Statistical Journal, Vol. 4 (1932). Parts 1-2. Dp. 1-68; L. Von Bortkiewicz, "Zweck und Struktur einer Preisindexzahl," Hord isk Statistisk Fidskrift. Vol. \& (1923), Part 3-4, DD. 389-408; Vol. 3 (1924). Part 2-3, pp. 208-51; Pert 4, pp. 494-516. See also Lewis, op. cit., pp. 29R-3 and W. M. Persons, Ihe Construction of Index Mublers (Boston, Mass.: Houghton Miffin C0. . 1928), Dp. 33-6.

It is possible that even when there are changes in the composition of production and even when the productivity relatives diverge sharply, the two formulas for productivity will not differ appreciably. The differences will be pronounced when there is a distinct correlation in the relative

Tebla il.- Lllustantion of dipferences in phoductivity indexes BASED DN FIXED AND CHANBINE PRODUCTION COMPOSITES

Item	Year		Percentage change
	First	Second	
CASE 1			
Production (units)			
Product A	100	200	+100
Product B	50	80	+ 20
Man-hours			
Product A	200	200	0
Product B	75	72	- 4
Output per man-hour			
Product A	0.50	1.00	+100
Product B	0.67	0.83	+ 17
Index of productivity in second year (first year=100) for production composite of -			
Base (first) year			
Second year - - - - - - - - - - - - - - 180.			
CASE 2			
Production (units)			
Product A	100	120	$+20$
Product B	50	100	+100
Man-hours			
Product A	200	120	-40
Product B	75	120	+ 80
Output per man-hour 0 l 1.00			
Product A	0.50	1.00	+100 +17
Product B	0.87	0.83	
Indez of productivity in second year (first year=100) for production composite of -			
Base (first) year - - - - - - - - - - - - 171.			

changes of production and productivity of the individual products. Thus, if productivity increases more rapidly for those products showing a more rapid rise in production, the productivity index for the changing composite will be higber than the index for the base-year composite. A hypothetical illustration for two products is shown in table II. In case 1, since the percentage rise for both production and productivity is greater for product A, the index of productivity for the changing composite is higher than the index for the base-year composite. In case 2 , however, since the percentage rise in production is higher for product B, which has a smaller percentage increase in productivity, the index of productivity for the base-year composite is higher than for the changing composite.

A practical illustration of the analytical value of the two formulas when used in conjunction with each other follows. This illustration is based on quinquennial series for output per wage earner in 32 manufacturing industries from 1899 to 1914. ${ }^{14}$ Two indexes of average productivity were constructed from these series, one for the 1899 (base-year) composite and one for the changing composite:

Year	Index of output per wage earner for 32 industries $(1899=100)$	
	Fixed (base-	
year) composite.	Changing composite	
1899	100.0	100.0
1904	104.1	105.4
1809	103.5	110.0
1914	111.7	127.9

The significant differences, which occur in the gears 1909 and 1914, reflect major changes in the structure of the manufacturing economy. As may be seen from the following indexes computed for all 32 industries except Motor Vehicles, one of these major changes was the phenomenal rise of the Motor Vehicles industry after 1909:

[^4]| Year | Index of output per wage earner
 for31 industries
 $(1899=100)$$\quad$Fixed (base-
 year) composite | Changing
 composite |
| :---: | :---: | :---: |
| | 100.0 | 100.0 |
| 1989 | 104.1 | 105.4 |
| 1909 | 103.5 | 110.0 |
| 1914 | 111.6 | 118.8 |

The index with base-year weights was changed only 0.1 unit by the exclusion of the Motor Vehicles industry. Since the Motor Vehicles industry was insignificant in 1899 (o.1 percent of total employment of the industries in this compositel, this index, which presents relative changes in productivity for the composite of production for 1899 , does not reflect the effect of the growth and rapidly increasing productivity of the Motor Vehicles industry. When, on the other hand, the index with changing weights includes the Motor Vehicles industry, it reflects the effect of the rapidly rising production in this industry between 1909 and 1914; the industry was given its 1909 weight in the average when 1899 was compared with 1909 , and its 1914 weight when 1899 was compared with 1914.

Even when the Motor Vehicles industry is excluded there is a considerable difference between the indexes given by the two formulas. The difference reflects the fact that production generally increased more rapidly in those industries with the higher rates of productivity change. This may be seen in table III, in which the industries represented in the above indexes are distributed according to their rates of increase in production and productivity.
Here, then, the value of using both fornulas together may be seen clearly. Each answers a specific question. Together they give added significance to the analysis of productivity changes, since they reflect the influence of the changing composition of production.

Taken together the measures have still another use. There is often a practical value in selecting one measure in describing a given period. The selection of this measure will depend upon the extent of dispersion in the fluctuations of production and productivity. The difference between the two measures affords a good test of the effect of these dispersions. Should

Table Ill.- DISTRIBUTION OF 32 MANUPACTURINE INDUSTAIES BY change in production and in output per wabe earner BETWEEN 1898 AND 1914°

Percentage	All indus tries	Percentage increase in production						
increase in output per wage earner		Less than 10^{b}	$\begin{gathered} 10- \\ 10.9 \end{gathered}$	$\begin{array}{\|c} 20- \\ 49.8 \end{array}$	$\begin{gathered} 50- \\ 90.9 \end{gathered}$	$\begin{gathered} 100- \\ 149.9 \end{gathered}$	$\left\lvert\, \begin{aligned} & 150- \\ & 199.9 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 200 \\ \text { or } \\ \text { over } \end{gathered}\right.$
All industries	32	5	3	3	7	6	3	5
100 or over	7	1			2	1		3
50-89.8	4					2	1	1
30-49.9	6	1			1	1	2	1
20-29.9	4		1		2	1		
10-19.9	5			2	2	1		
Less than $10^{\text {c }}$	6	3	2	1				

a $_{\text {derived from Frederick C. Mills, Econowic Fendencies in the Onited States }}$ (New York: National Bureau of Economic Research, 1832), pp. 30, 33.
${ }^{6}$ includes three industries in which production decreased.
${ }^{c}$ Includes five industries in which productivity decreased.
the proportional difference between these two measures be small, we would know that the effect of shifts in the composition is small. Should, however, large differences exist between these two which reflect significant changes in the production pattern, the questions with reference to the changing composite would have further significance.

It might be suggested that "compromise" formulas, such as a geometric average, could overcome the "paradox" of two different measures for the same concept. Such a compromise formula has been avoided for a definite reason. The position taken here is that no "true" measure of productivity or production can be obtained for a group of diverse products, since no such thing exists in reality. The measures of production and productivity should not be considered approximations of an ideal reality. Implicity or explicitly, different measures for the same concept answer different questions. The usefulness of quantitative measures of dynamic, diverse economic elements depends upon a clear understanding of the questions they answer. The more clearly the purpose, meaning, and applicability of measures of production and productivity are understood, the greater their usefulness. The measures developed here answer two variants of the same question, but they have
distinct meanings and meet different purposes. A compromise formula is not a more correct measure but rather the answer to a different question. One might likewise select another definition of the composite, as, for instance, an average of the base and any other year or an average of several years. The selection of the composite would depend, naturally, upon a more concrete definition of the purpose or the conditions of the period to be analyzed. If the basic purpose of measuring productivity and production is to use these measures for studies other than employment and unemployment (such as a study of the utilization of national resources, of changes in potential productive capacity, or of national-income movements), the questions asked and the development of methods to be used to answer these questions would, naturally, be different.

CHAPTER II

SCOPE OF SURVEY, SOURCES, AND GENERAL METHODS

In the development of the production and productivity measures in chapter I the problem of obtaining the required statistics was not considered. Since the available data were collected for purposes other than ours, numerous compromises and adjustments were necessary in adapting these data for use in the construction of the indexes of production, employment, man-hours, output per wage earner, and output per man-hour shown in Part Two. ${ }^{1}$ These indexes represent the closest approximations to the formulas that could be derived with the available statistics.

This chapter is devoted to a discussion of the common sources of the statistics, the problems confronted in the construction of indexes conforming to the standards developed in chapter I, and the general methods of treating the data. Since the nature of the available statistics varied from industry to industry, the sources, problems, and methods peculiar to each are described in detail in Part Two.

In general, although fairly detailed production data can be obtained, the available employment ${ }^{2}$ statistics refer to workers engaged in the manufacture of aggregates of more or less related products. Consequently the productivity index can in almost every instance be constructed only as the quotient of a production index for a group of products and the corresponding labor index. The only weights which could usually be estimated for this production index, furthermore, represent approximations to the relative labor requirements for the base gear. This does not mean, however, that the (fixed) weights were always derived from statistics for the base year. Series of such substitute weighting factors were not used as changing weights, however, since there was no reason to believe that

[^5]they reflect the year-to-year changes in the relative labor requirements of the various products. ${ }^{3}$

The discussion hereafter will be devoted principally to the methods of constructing the NRP production and labor indexes for the 59 manufacturing industries and the 13 industry groups. ${ }^{4}$ Unless otherwise indicated, the productivity indexes are quotients of these. All the NRP measures are annual. Most of them extend from 1919 to 1936, but, as will be seen later, not all are continuous. The base year is 1929. This year was selected because it is a natural dividing point of the post-war period and because practical questions concerning changes in productivity lor unit labor requirements), employment, and production usually involve comparison with 1929.

the nap industry and group tities

Since labor statistics could not usually be obtained for individual products, an attempt was made to construct comparable production and labor indexes for the smallest possible combination of products. This combination of products or the aggregation of establishments manufacturing them was designated an NRP "industry." The Bureau of the Census (United States Department of Commerce) collects and publishes the most comprehensive production and employment statistics which are more or less comparable in scope; the industry definitions selected by NRP are therefore, with few exceptions, the same as or modifications of the industry definitions in the biennial Census of Manufactures. ${ }^{5}$ Indeed, the Census provided the basic production and employment statistics for some or all of the odd-numbered years for 41 of the 59 NRP manufacturing industries. It also provided the basic employment statistics

[^6]for nine of the remaining industries and the basic production statistics for five others. ${ }^{6}$

The Census definition is based on the establishment as the reporting unit. Thus an industry usually embraces establishments whose products of chief value (intended for sale) are either the same or related. ${ }^{7}$ It should be noted that the types of establishments and the number and degree of detail of the primary products are not uniform for all the industries which the Census distinguishes.

A "group" or "industry group" refers to a combination of two or more NRP industries which either consume similar raw materials or manufacture related products. It should be distinguished from the same Census term, which connotes 1 of the 16 categories in which the 300 -odd manufacturing industries canvassed biennially are classified. An NRP group originates in (1) the subdivision of a Census industry into units of smaller area, (a) the explicit recognition of well-defined subdivisions of a Census industry for which supplementary

[^7]Talle IY.- KRP ManUPACTURImg industries and groups and Cormesponding census desidnations fm isega

Mumber and Mrp industry or droup titie	Census industry title
1. Afrlealtaral Inglementa	Sane
2. Beet Susar ${ }^{\text {b }}$	Sane
9. Boote mat Bhows	Boots and Showe, Other than Robber
4. Broad and Other Bakery Producta Group	Same
6. Biacait and Crackera	Same
C. Bakary produeta Other thap Blacult and Crackert	Game
7. Cme-sugar giflnind	Same
6. Canplat and Preaerving Group	Same
0. Canned and Preserved Frults mad Vegotiblee	Caynizi and Prosorving - Prutis and Veserobles, Picklas, Jellles, Preserves, 'and saces
10. Camed and Cored Pish	Camind and Preserving - Fioh, Crabs, Bhrimps, Oysters, and Clan
11. Coment	Same
12. Cheatenis	$\left\{\begin{array}{l}\text { Chemicals, Mot Elsewhere Clasified } \\ \text { Compressed asd Liquofled Gases }\end{array}\right.$
19. Clay Producte (0thor Than Pottery and Monclay Refractorles	6ame
14. Coke areup	$\left\{\begin{array}{l}\text { Coke, Mot Ineluding Gea-House Coke } \\ \text { Byproduct planta of eley gae companien In Gas, } \\ \text { Manu factured: Illuninating and Henting }\end{array}\right.$
15. Beehsve coke	Same
10. Approduct Coke	411 byproduct ovens claselfied in \{Colre, Hot Inciuding Ges-House Coke lGas, Manufactured: Illuninuting and Heatlag
17. Camfeetionery	sene
18. Cottos Goode ${ }^{\circ}$	Same
10. Electric Lempa	```Included in - Gleas Elactricel Hachlnery, Apparseus, and Supplies```
20. Dertilizert	Sume
21. Diour and Dther Gritamill Produces	Same
22. Paraiture	Samo
23. Glasa Group ${ }^{6}$	same
24. Hindow 61 an	-
25. Plate glant	-
20. Oleas Containers	
27. Preased and Blown Mere	
99. Ica Cream	Same
30. Irom and Eteel orong	sene
80. Blaet taramees	Bame
31. Breol Morke end Rolling Mille	Same
22. Kuit coode Group	Sme
88. Howiery	Sane
8. Underwe ${ }^{\text {a }}$	Same
85. Onterwear	Same
96. Knit Cloth	
6\%. Feother Group	Leather: ranmed, Curried,
83. Sole and Harman Lether	
80. - Elde mad Uptolatery Leather	
*. Calfitia	
42. Lld leethar	
49. Shaep and Miseellaseons Leather	6sang
	cmo
66. Envillie and gam-plane Mille	Gas, Manufatured: Illunlantiof and heathay
6. Momafacturad gee	Ben
48. Mamafackarsa Lee	(Motor Vohl cies
48. Motar Vehicles	\Motor-Vehicle Bodios and Kotor-Vebleld Parts
49. Havipapar asd Fertodical Printing and pablichind	Game
00. Yanferrove Metile Oroup	Gme
81. Prianry Butiters and Reflnerien B4. Socomaliry anetvers mad Refinerien	galting and Refining - Coppor, Lasd, and zinc gimelting end Refining - Ketale other Than Bold,
88. Allofern, Mollin! Millm, and Youndrlea	silvar, or platinus, Wot From the Ore Monferroum-Notel Alloy, and Producte, Mot Ineluding Alumidue Producte
84. Patnke and Forstabes	Sane and pulp (Wood and other fiber)
66. Puper and Poip Group	gaper and prap (Wood and olker Tiber)
60. Paper	Pulp (Wood and orber Piber)
58. Fetrolem metinimd	
E9. Plealad-Mili Products	Bame and Allied Products
0. Payan Protucte Group	Bane
	Band Boote and 8hoat
3s. ornee mabber Goods ${ }^{4}$	$\left\{\begin{array}{l} \text { Rabber Boots and Bhoes } \\ \text { Rubber Goods, Other Than Ylres, Inner Tubes, } \\ \text { and Boots and shoes } \end{array}\right.$
84. Sily and mayon Cooda 08. Blamatorint and Menf Peakiad	

Table IV.- NRP MANUPACTURINE IMDUBTAIES AND GROUPS AND CORRESPONDING CENBUS DESIGNATIONS IN 1929^{a} - Continwed

Number and MRP industry or group title*	Census Industry title
eA. Tobaceo Products Group	Tobscec Manufacturea
67. Cigars ${ }_{\text {el }}$ Cisarettes ${ }^{\text {d }}$ \}	Clgars and Cigarettes
68. Chewing and smoking Tobateo and Snuff ${ }^{\text {d }}$	Same
70. Moolen and Worsted Goods Group	Same
71. Woolen Goods ${ }^{\text {d }}$	Same
72. Worated Goods ${ }^{\text {d }}$	Same

 Iguations hate been changed atince 1920.

Chree sets or indexes are shonin tor cotton ooods in part two

statistics are obtainable from other sources, or (3) the combination of industries defined as such by the Census. ${ }^{8}$

The names and numbers assigned to the 59 manufacturing industries and the 13 groups, together with the corresponding Census designations in 1929 are shown in table IV.

COMPABABILITY OF PRODUCTION AND LABOK INDEXES

The formulas presented in chapter I require that the production and labor indexes be strictly comparable in scope. Such comparability, however, is difficult to achieve because of the form of the available production statistics and the Census' use of the establishment as the basis for industry definition. A brief review of the difficulties and the attempts made to overcome them follows. ${ }^{9}$

First, the establishments classified in any industry are engaged not only in the manufacture of the products normally belonging to that industry but also to a greater or lesser degree in the manufacture of products normally belonging to other industries. While the Census reports employment

[^8]for only the establishments within an industry, it includes in the detailed quantity and value statistics any amounts of the primary products made elsewhere. In some instances it was possible to increase the degree of correspondence between the production and employment statistics by redefining a Census industry so that it refers not to establishments but to the total output of the products normally belonging to it. In the instances where no adjustment could be made, it is very likely that a negligible net distortion results from the inclusion in the production index of primary outpot contributed by other industries and the inclusion in the employment index of the wage earners engaged in the manafacture of products not normally belonging to the industry in question. 10

Second, the Census sometimes reports the combined value rather than the specific quantities of the minor products of an indnstry. The omission of the quantities of such products from the production index may result in distortion of the relationship between the production and employment measures (i. e., productivity) if they tend either to increase or decrease in importance throughout the period or where there are sharp fluctuations in the importance of these products. The available statistics permitted an adjustment only on the basis of an assumption which was not considered tenable in most industries, viz, that the year-to-year changes in relatives of the aggregate value of the excluded products reflect changes in quantity only rather than changes in both quantity and unit valne. ${ }^{11}$ Similarly, the Census publishes only the aggregate value of custom, contract, and repair work. This item, however, is usually unimportant. Finally, some establishments either reported their aggregate production in terms of value only or were requested by the Census to do so in 2933, but the quantities for the entire industry could usually be estimated. ${ }^{12}$

[^9]Third, the establishments in any particular industry are not necessarily homogeneous with respect to the degree of integration (which may, furthermore, vary from year to year). Thus; although all the wage earners in a highly integrated establishment are consistently accounted for, the quantity statistics may be defective since part of the production for consumption in further manufacture on the premises - is generally not reported. The quantities of the same goods produced for sale by less integrated establishments, however, are always reported. Consequently a varying percentage of the total output of each product may be reported by each establishment, and hence by the whole industry, from year to year. A similar difficulty might still exist if the total output were reported for each product since the fluctuations in the volume of nonmanufacturing wage-earner labor (packing, shipping, power generation, etc.l, which cannot be excluded from the reported employment figures, need bear no relation to the fluctuations in the reported quantity statistics. ${ }^{13}$ In some instances the available data permitted redefinition of a Census industry for the purpose of minimizing the effects of changes in integration on the comparability of the production and labor indexes. By subdivision of a Census industry greater representation was given in the group production index to various important manufacturing stages; ${ }^{14}$ by the combination of two Census industries the effect of transfers of establishments from one to the other (as changes in integration gave a different character to the reported products of chief value) was somewhat mitigated. ${ }^{15}$ It was not possible, however, to give representation in the production index to nonmanufacturing workers (since no quantitative measure of their specific

[^10]output is obtainable) or to exclude them altogether from the reported employment.
Fourth, the problem arises in seasonal industries of giving adequate representation to the activities characteristic of different parts of the year. Available statistics usually permitted the inclusion of the output of only the season of peak activity. ${ }^{18}$
The achievement of comparability between the production and employment indexes is often dependent upon the achievement of chronological comparability within each. This is so particularly when the Census redefines an industry without revising the statistics reported for earlier years. In such cases an attempt was made either to retain the old definition or extend the new one back to the earlier years. ${ }^{17}$ The Census ${ }^{\prime}$ request for the sales, rather than the production, of establishments in 18 of the 59 industries in 1929 gives rise to a similar difficulty. There is reason to believe, however, that the difference between sales and production in this year is not very great. ${ }^{18}$ As has already been indicated, the Census collected total-value statistics but not detailed quantity statistics for establishments in some industries in 1933. These establishments, however, generally accounted for less than 10 percent of the value of the output of the respective industries, and satisfactory estimates for all establishments could be made. Finally, the scope of the

[^11]Census canvass was reduced slightly in 2921 by the exclusion of establishments whose annual output was valued at less than $\$ 5,000$; the minimum in 1919 and earlier years was $\$ 500.19$ Although the comparability between the production and labor indexes is maintained, a slight upward bias may be imparted to the productivity measures between 1919 and 1921 since the small establishments excluded in the latter year were probably less efficient than the average. That the bias is negligible, however, is indicated by the fact that in 1919 establishments with products valued at $\$ 5,000$ or more employed 99.5 percent of the reported number of wage earners in all manufacturing industries and accounted for 99.8 percent of the total value of products.

production ingexes

Tima Cavaraja

NRP production indexes for 44 of the 72 industries and groups ${ }^{20}$ extend over the period 1919-36. Almost all of the remainder, moreover, begin by 1920 and do not terminate before 1935. Within the terminal years 24 of the 72 indexes are not continuous; 12 of these are incomplete for all the even-numbered years.

Surace ef Praducian Siatifites

The production indexes for 48 of the 59 manufacturing industries and for 11 of the 13 groups are based principally on Census quantity figures - at least for the odd-numbered years. The primary sources for five other manufacturing industries and one group (Coke) are publications of the Bureau of Mines, viz, Mineral Resources of the United States and Minerals Yearbook. Statistics from a variety of Government and private organizations supplemented the Census series for the odd-numbered years. The Census itself, frequently in cooperation with other agencies, collected production statistics for even-numbered years which were used for 12 industries. Other supplementary

[^12]statistics were obtained from such Government publications as Yearbook of Agriculture, Agricultural Statistics, Survey of Current Business, mimeographed releases of the Federal Reserve Board, and reports of the Bureau of Labor Statistics, Tariff Commission, Burean of Internal Revenue, and National Recovery Administration. Some of the trade associations whose periodicals or annual reports were consulted are American Iron and Steel Institute, Automobile Manufacturers Association, National Pertilizer Association, and Textile Economic Bureau. Other periodicals, such as Rubber Age and Chemical and Netallurgical Engineering, also supplied supplementary production data.

Deftaftian of fradet and formin for the Pradution ladax

For each industry the definition of a product is usually predetermined by the classification used by the agency collecting the quantity statistics. In general, such agencies request the quantities of "economic" products only, i. e., of products intended either for consumption in further fabrication within or outside of a particular industry or for sale to dealers or ultimate consumers. "Uneconomic" output, like waste, is usually not reported, but salable byproducts are reported. ${ }^{2}$ The criteria probably used in distinguishing products are physical characteristics and composition, function or use, process of manufacture, unit and aggregate values as compared to those of other recognized primary products of the same industry, and trend of quantity production. ${ }^{22}$ For the construction of the NRP indexes an additional criterion is the difference in labor requirements. The more detailed the product classification, the greater the likelihood that differences in labor requirements will be reflected. Hence the most detailed classification consistent with the achievement of chronological comparability was usually preferred in the construction of the NRP indexes. 23

[^13]In nine of the NRP production indexes only one (unweighted) series was used. This series usually represents all of the significant output, which may sometimes properly be regarded as a single product and sometimes as heterogeneous. In a few instances experimental indexes with weights which are not entirely satisfactory were constructed for comparative purposes; these differed little from the corresponding unweighted NRP measures. In others, however, neither a more detailed classification of the products nor an adequate weighting system was available. ${ }^{24}$

For 47 of the 50 remaining manufacturing industries more than one product series were incorporated in the principal part of the index lusually for the odd-numbered years when the Census of Manufactures was the source). ${ }^{25}$ In these instances the formula for the basic index or, if there was a change in classification, for the constituent segments is almost without exception of the weighted-aggregative type. ${ }^{28}$ This formula was not employed, of course, for the three industry indexes which are not based primarily on statistics for the physical quantity of production. ${ }^{27}$

Ceneve Produatian Serias

Since, as has already been noted, the Census supplied the basic production statistics for 48 of the 59 industries and since these statistics usually refer to the odd-numbered years only, the most important problems confronted in the construction of the NRP indexes of production were the derivation

[^14]and completion of Census series. The derivation of the Census series is discussed here and the completion of these series in the section which follows.

The reported quantity and value statistics usually represent production for sale and interplant transfer (i. e., to plants under same ownership) and exclude products consumed in further fabrication in the same establishment and commodities purchased for resale in the same condition. ${ }^{28}$ For some industries which include establishments of different degrees of integration, however, products consumed in further fabrication in the same establishment are also reported. ${ }^{2 \theta}$ No distinction is made by the Census between products destined for sale to other establishments in the same industry and to establishments or customers outside the industry.

Although it would have been desirable to base the production indexes on the total output of each product, no alternative to production for sale was usually available. Such production, furthermore, probably does not have uniform significance throughout the period in some industries, since there doubtless are lluctuations in the percentage of total production made for sale and in the percentage of production for sale destined to establishments or consumers outside the industry. For example, a varying proportion of the total output of sulphuric acid and sodium hydroxide, two of the most important products of the Chemicals industry, may be consumed from year to year in the manufacture of other chemicals in the same establishments; of the amounts made for sale, moreover, a changing percentage may be purchased by establishments in other industries, such as Fertilizers (sulphuric acid) and Pulp (sodium hydroxide). This does not mean, however, that properly weighted indexes for both types of production would necessarily disagree. ${ }^{30}$

It was pointed out in the discussion of the comparability of the production and labor indexes that, although primary products are reported in terms of both quantity and value, products not normally belonging to an industry and custom,

[^15]contract, and repair work are usually reported in terms of value only: ${ }^{31}$ Consequently the quantity series incorporated in the NRP measures refer to primary products only ${ }^{32}$ and of ten (when the Census does not publish separate figures) include the amounts, if any, made in other industries. ${ }^{33}$ The percentage of the total value of an industry's output represented by custom, contract, and repair work and secondary products is usually small. ${ }^{34}$ In a few instances the primary output of some establishments was reported in terms of value only; an adjustment was made to include this output on the assumption that the relation between the (weighted) quantity production of the entire industry and the (weighted) quantity production reported was the same as between the corresponding value figures. ${ }^{35}$

The difficulties of achieving chronological comparability which resulted from the following were indicated earlier: The reporting of sales instead of production for at least 18 of the manufacturing industries in 1929 ; 38 the reporting of total output in 1933 in terms of value only by the smaller establishments in 19 industries; ${ }^{77}$ the change in 1921 in the minimum value of output of establishments included in the Census canvass; and changes in Census industry definitions. The method of adjusting the 1933 production quantities for 18 of the 19 industries involved the use of detailed Census statistics for 1931 for the output of (1) all establishments in the industry and (2) only those classes of establishments from which detailed quantity statistics were requested for

[^16]1933. ${ }^{38}$ The reported output of each product in 1933 was raised on the assumption that the relationship between the two quantity figures for the same product was the same as in 1931.

The achievement of chronological comparability was also obstructed by changes in the scope or degree of detail of the Census quantity figures. In several instances the output of primary products within a given industry only was reported for some years and the output of the same products in all industries was reported for others; ${ }^{39}$ in other instances the product classification was extended or revised either by the addition of new items or by a thorough change in the categories previously reported. 40 The statistical device commonly employed in such cases involved (1) the construction of overlapping, internally consistent segments of weighted aggregates of the products reported in the successive intervals (or relatives of such aggregates) and (2) the "linking" or "splicing" of these segments (i. e., joining by successive multiplication by the ratios in the common years) so as to obtain a chronologically comparable series of weighted aggregates lor relatives). ${ }^{41}$ Variants of this method were employed where adjustments were required for isolated years. ${ }^{42}$ The indexes for odd-numbered years for 25 manufacturing industries and 2 groups include more than one segment. ${ }^{43}$ Absolute discontinuity resulted only rarely from changes in the manner of classifying production. 44

It was frequently necessary to distribute items reported in combination and to combine items reported separately for

[^17]the purpose of maintaining the chronological comparability of individual product series. The segregation was usually accomplished on the basis of the relationship between the figures for the separate items in the nearest year for which they were available. Sometimes no adjustment could be made, but the resulting error in the production index is likely to be small. ${ }^{45}$

The quantity statistics for certain products were not reported in identical physical units from year to year. Conversion to a single unit, however, could usually be effected by means of either standard factors or the observed relationship between the different units in years for which production was reported in both. 46

A more serious difficulty which usually cannot be overcome arises from the reporting of quantities in units inappropriate for our purposes. Sometimes the difficulty may be traced to the use by the collecting agency of a classification which is insufficiently detailed. An example is the absence of a distribution of the total number of doors or other definable millwork by dimensions; the result is that changes in the character of the output which may affect the production index

$\left(C_{1}\right)$ and (C_{2}) represent the estimated weighted aggregates or relatives for years 1 and 2.
${ }^{42}$ See Part Two, Agricultural implements (1033 and 1035), Canned and Cured Fish (1833), and Chemicals (1835).

43 or these 27,17 have two segments, 8 have three, 1 has four, and 1 has five.
${ }^{44}$ Changes in classification of Woolen Goods (No. 71), Worsted Goods (No. 72),
snd mitt Cloth (No. 36) in 1833 resulted in the termination of the corresponding NRP indexes in 1931 . The group indexes could, nevertheless, be extended beyond this year.
${ }^{45}$ No attempt was made to separate products reported together if the combination was considered to have no serlous consequence.
${ }^{4} \mathrm{G}_{\text {For }}$ example, chemicals reported in aifferent concentrations were often reduced to the same basis by the application of standard factors. An empirical relationship. on the other hand. was used to convert "actual cases or canned fruits and vegetables to nstandard cases 1 , and linear yards or certain silk goods to square yards.

Abstract

are obscured. In other cases the quantities may be reported in units which are not the most satisfactory ones available for a production index to be used in the derivation of a productivity measure. The output of rubber tires is reported by the Census in terms of number, a unit less likely than weight to reflect differences in labor requirements; it was possible in this instance to convert number to weight. Similarly the output of coke, reported by weight, was converted to thermal equivalents. Finally, when a product is very complex or lacks uniformity, its ontput may not be measurable in a more satisfactory u nit than number or weight. This difficulty occurs in the construction of indexes for motor vehicles and agricultural implements, the various kinds of which have also undergone considerable change in quality. Although no quantitative adjustment for such qualitative changes within each product series is possible, it is widely believed that the changes in the post-war years have been improvements le. g., in design, power, efficiency of operation, and durabilityl. Thus, if the NRP indexes of production and productivity could be corrected for such quality changes, they would probably be tilted upward. The indexes take account of changes in the proportions of the various grades of each product only insofar as the available classifications differentiate the significant grades.

Conpletion ef Comens-Year fadexes

The production index derived from Census quantity series was usually completed (i. e., interpolated and extrapolated) for the even-numbered years by means of a continuous auxiliary index derived from sources other than Census publications. ${ }^{77}$ The auxiliary index of ten includes more than one product series, comprises more than one segment; and refers to a smaller and somewhat different universe from that canvassed by the Census. It was selected even when it does not include production series, ${ }^{48}$ becanse it is at least qualitatively related to production and has the same general movement.

[^18]In the interpolation of the Census index (i. e., completion for the intermediate even-numbered years) the auxiliary relative for each even-numbered year was multiplied by the average of the ratios of the-Census relatives to the auxiliary relatives for the adjacent odd-numbered years. In the extrapolation of the Census index (i. e., extension beyond either terminal odd-numbered year) the auxiliary index was multiplied by the ratio between the Census and auxiliary relatives in the last common gear. ${ }^{49}$ Although the auxiliary index is usually based on series other than those included in the census-year index, it was sometimes derived by the combination of several Census product series which had first been rendered continuous. ${ }^{50}$

Wighte Ued in Genctruetian of NRP Production Indexie

As was indicated in chapter I, weights were necessary for the reduction of the several product series for each industry to a common (additive) unit. Whatever the weighting system, each weighting factor should correspond exactly to the quantity series; i. e., the sum of the weighted quantities in each year should represent - if the weights are unit labor requirements the total volume of labor required for the fabrication of the several products under assumed or actual conditions, as the case may be. ${ }^{51}$
$49_{\text {The }}$ processes of interpolation and extrapolation (referred to in Parts Two and Three as "completion" or simply interpolation") may be illustrated by the following scheme:

Year	Census Inder	continuous guxiliary index	Final index
1	c_{1}	A_{1}	c_{1}
2		A_{2}	$\left(C_{2}\right)=\frac{1}{2}\left(\frac{C_{1}}{A_{1}}+\frac{C_{3}}{A_{3}}\right) \times A_{2}$
3	C_{3}	A_{3}	c_{3}
4		A_{4}	$\left(C_{4}\right)=\frac{C_{3}}{A_{3}} \times A_{4}$

$\left(C_{2}\right)$ is an interpolated index number: $\left(C_{4}\right)$ is an extrapolated one.
50 This method was used for Boots and Shoes (No: 3), Chemicals (No. 12), 8teel Works and Rolling Mills (No. 31), Rubber Tires and Inner Tubes (No. 82), Other Rubber Goods (NO. 63), and slaughtering and Meat Packing (No. 65).
51 If each quantity series is reduced to relatives, the weights should be such that the averages of relatives give the same results as weighted aggregates (see chapter I).
Sometimes, the quantity series and the corresponding weights may refer to the same physical product at different stages - e.g.; gas produced and gas distributed.

It was also indicated in chapter I that the desired weights for a production index of the aggregative type are unit labor requirements, or the number of man-hours or wage earners required per unit of each product. ${ }^{52}$ But such weights are not available for each year and for each product, except in the case of a minor industry, Electric Lamps. ${ }^{63}$ The formulas presented in chapter I could, nevertheless, be used directly in the combination of industry indexes into group measures since proper weights - the number of man-hours and wage earners were available. Two NRP indexes of output are, therefore, presented for each group in Part Two; both are harmonic means lat least for some or all of the odd-numbered years), one with changing man-hour weights and the other with changing employment weights. 54 The former was used in determining output per man-hour and the latter in determining output per wage earner. These two indexes were preferred since we are particularly interested in measuring productivity for the 1929 (base-year) production composite. In accordance with the discussion in chapter I, arithmetic means with fixed (1929) labor weights were also computed for comparative purposes. In a1most every instance the four indexes (i. e., the two with changing and the two with fixed weights) show a remarkable degree of similarity. ${ }^{5 s}$ It would seem from these results that, at least for the period considered, fixed weights may generally be substituted for changing ones. But satisfactory labor weights for even one year were seldom obtainable for individual products. They could be derived for series entering into but six industry indexes. ${ }^{68}$ For

[^19]all the others it was necessary to use substitute weights. Since these were not considered sufficiently reliable to reflect changes from year to year in the relative unit labor requirements of the different products, they were used only as fixed weights (which are, by implication, proportional to unit labor requirements in the base year). Hence, most of the NRP production indexes are, at least in form, consistent with productivity measures for changing production composites. In our opinion, however, these indexes are generally equivalent to those for base-year production composites.

The best available substitute for unit labor requirements was unit value added, which could be used for but two industries. Unit-value weights, derived from Census statistics, were used for at least some of the odd-numbered years for 36 other industries. For 25 of those, the unit values refer to 1929; for the remaining 11 , they represent averages for a period of odd-numbered years. The unit values for 1929 were selected if the relative magnitudes were fairly stable throughout the period; averages were employed if the distribution of unit values varied or significant changes in classification, which necessitated the construction of several segments, occurred. Price was used in several instances where unit values were not available. ${ }^{57}$

Had a choice been afforded by the available statistics, the substitute weights would have been preferred in the following order, which probably represents the relative likelihood of their proportionality to unit labor requirements: ${ }^{58}$

1. Labor cost per unit
2. Value added per unit
3. Value per unit
4. Price

Labor cost per unit seems to be a satisfactory substitute since it is equivalent to labor time per unit translated into

[^20]value terms. Its use implies that the average hourly earnings for all the workers engaged in the manufacture of any product of an industry are the same as for all the workers making any other product of that industry. Value added per unit is somewhat further removed from unit labor requirements. It has, however, a fairly high labor-cost content and also does not include raw-material costs. It is particularly appropriate for (1) industries with establishments of varying degrees of integration reporting their output in full (for sale, interplant transfer, and consumption on the premises) and (2) industries making products whose raw-material costs differ considerably. With the exception of prices, unit values are farthest removed from unit labor requirements. In addition to labor cost, ${ }^{\boldsymbol{6 g}}$ unit value includes cost of raw materials, salaries, profits, rents, interest, depreciation charges, insurance, etc. Price includes not only these factors but also transportation and handling costs, discounts, etc.

Since value weights were used predominantly, an attempt was made to test their proportionality to the preferred labor weights. Usually the comparison could be made for only a few products classified otherwise than in the NRP index; frequently the comparative weights depended upon crude estimates which detract from the conclusiveness of the test. In all, comparisons of different weighting systems or indexes embodying them were made for 11 industries. ${ }^{60}$ In several instances the value weights were found to be fairly proportional to the preferred weights; even where they were not, the indexes based on the two sets of weights were similar. The reason may be that any weighting system would have little influence in the index for an industry where one product dominates, where the

[^21]several products have the same movement, where the dispersion of the weights is small, or where the number of products is large. It appears from experiments made in the course of the derivation of the NRP measures, furthermore, that weighted indexes of the same scope but dissimilar degrees of detail frequently have the same general movement and that unweighted indexes, which are tantamount to relatives of but one product, frequently exhibit the same general movement as weighted measures. ${ }^{11}$ These considerations lead us to believe that the substitution of unit-value for unit-laborrequirement weights results in satisfactory production measures for most of the industries. It should not be inferred that the problems of weighting and classification may therefore be neglected. On the contrary, the year-to-year differences in magnitude and direction may be sufficient to preclude the use of indexes based on less detailed classifications for the measurement of short-term changes in production and productivity. ${ }^{62}$

The product series included in the NRP indexes usually represent a large percentage of the total value of all primary output. ${ }^{63}$ Table V, which refers to 55 manufacturing industries representing over 90 percent of the wage earners in the NRP sample in. 1929 , shows that (1) value coverage is complete for 17 industries representing about 26 percent of the wage earners embraced in the NRP manufacturing sample, (2) over 95 percent of total value is included in the indexes for 30 industries

[^22]accounting for three-eighths of all the wage earners, (3) over 90 percent of total value is included in the indexes for 42 industries accounting for well over one-half of the wage earners, and (4) less than 70 percent of the total value is included in the indexes for but 5 industries, which together employed only 6 percent of the wage earners.

Table V.- disthibution of 5 g manupacturing industries and their wage-earnet emplayment according to value cayerage Of TKE PRODUCTION TMDEX: 1929^{8}

Percent of value of all primary products included in NRP inder	Number of industries	Wage earners	
		Number	Percent of number for 59 industries
Total	55	4,091,133	90.6
100	17	1,152,843	25.5
95.0-89.9	$13^{\text {b }}$	597,359	13.2
90.0-94.9	11	771.138	17.1
85.0-89.9	3	144,487	3.2
80.0-84.9	1	424,916	9.4
75.0-79.9	3	151,175	3.4
70.0-74.9	2	561,544	12.4
65.0-69.9	0	0	0
80.0-64.8	1	65,885	1.5
55.0-58.8	1	41,663	0.0
50.0-54.9	0	0	0
45.0-49.9	1	85.589	1.5
40.0-44.9	1	90, 134	2.0
35.0-39.9	1	24.400	0.5

The four industries onitted are Electric Lamps (No. 19), Sawmills and Saw-Plane Milis (No. 45). Newspaper and Periodical Printing and Pubilising (No. 49), and Primary smelters and Refineries (No. 61).
Dsince coverage could not be computed for the component industries of the Leather group (Nos. 38-42), the group percentage, 08.日, was assumed for each. This assumption seens to be reasonable; in fact, the coverage for some of the components may even be understated.

Failure to achieve complete coverage seldom in itself detracts from the reliability of the NRP production indexes. Certain minor products were sometimes deliberately omitted since their inclusion would neither have increased value coverage commensurately with the effort required nor have altered the indexes appreciably. The inclusion, if possible, of all the products of an industry would probably have a
significant effect on few of the indexes. ${ }^{64}$. The relation between changes in value coverage of the products included in the production index and the comparability of the production and labor measures has already been discussed.

EMPLDMMENT IMDEXES

Tima Cavorage

Of the 71 NRP employment indexes for manufacturing, 6550 were constructed for the period 1919-36. Between the terminal years 20 of the 71 are not continuous, and 10 of these 20 are incomplete for all the even-numbered years. Since employment is of interest in itself, employment indexes were often computed for gears for which no production relatives were available.

Dafinitian of Empleymait

The employment index for each manufacturing industry or group is restricted to wage earners. Salaried workers were excluded because they are not so directly engaged in the processes of production as are wage earners and no statistical series reflecting their specific output were available. ${ }^{6 B}$ According to the Census of Nanufactures, the basic source of the employment statistics, wage earners comprise "skilled and unskilled workers of all classes, including piece-workers employed at

[^23]the plant, and foremen and overseers in minor positions who perform work similar to that done by the employees under their supervision." This definition also embraces workers in the power plant and maintenance, shipping, warehousing, and other departments. In general, therefore, wage earners may be said to include all manual workers.

It has already been indicated that production and labor indexes constructed for the purpose of measuring productivity should, insofar as possible, be comparable in scope. The annual wage-earners series should represent averages of the number actually working on each workday of the gear; the number on the pay roll but not working (e. g., those ill, temporarily laid off, or on vacation) should be excluded since they contribute nothing to production. The available statistics, however, are rarely so comprehensive in time reference or representative of only those actually working. In fact, the NRP employment series are usually based on averages of 22 monthly figures, each of which refers to but one week or day which may, however, not be typical of the average daily employment for the entire month, especially in periods of sharp fluctuations. Since these figures of ten represent the number of names on the pay roll, they may exceed the average number actually working during the week or the number working on any one day. The overstatement may be considerable when labor turn-over is high and part-time employment is common.

The NRP indexes of wage-earner employment, which are not adjusted to represent full-time equivalents, are significant in themselves for the analysis of employment opportunities; it is desirable to supplement them, however, by measures which take account of the amount of time actually worked. The construction of such measures (i.e., indexes of wage-earner man-hours) will be discussed later in this chapter.

Coanes Emplaymal gafien and Theif Complotien

The employment statistics for most of the NRP industries were obtained for the odd-numbered years from the Census of Vanufactures; ${ }^{67}$ these represent annual averages of 12 monthly

[^24]figures. ${ }^{68}$ In 1933 the abridged schedule used in canvassing the smaller establishments in most of the NRP industries called for wage-earner emplogment in only four months (March, June, September, and December). The average reported for this year by the Census, however, takes account of the wage earners of establishments canvassed by means of both the abridged and unabridged schedules; they are, therefore, comparable with figures for other years.
Various adjustments were made in the reported Census statistics in order to achieve maximum chronological comparability in the employment index for each industry. ${ }^{68}$ Such adjustments were usually necessitated by changes in a Census industry definition, redefinition of an industry by NRP, or incompleteness of and changes in the scope of the Census canvass. ${ }^{70}$

The Census wage-earners series for the odd-numbered years were supplemented by others obtained from various sources, principally the Bureau of Labor Statistics (BLS) and the

[^25]National Industrial Conference Board (NICB). Both organizations publish continuous monthly employment indexes (base 1923-25 for BLS and 1923 for NICB) for many of the industries included in the NRP survey. ${ }^{71}$ BLS and NICB treat their series, which are derived from data for sample establishments, as comparable with the corresponding Census employment statistics for the same industries and usually adjust them so that the annaal averages conform to the trend shown by the biennial Census series. ${ }^{22}$ For this reason, the published indexes for many industries were, with slight alteration, ${ }^{73}$ shifted to the base 1929 and used as the NRP indexes.

The BLS monthly employment series, many of which begin in 1919, refer to all factory employees on the pay rolls of sample establishments for the week ending nearest the 15 th of each month. Factory employees, as defined by BLS, embrace the types of workers designated by the Census as wage earners. ${ }^{74}$ The establishments are canvassed either by BLS or by cooperating State agencies. These establishments (which are reporting units but not necessarily individual plants) are, as in the

[^26]Census of Manufactures, classified in industries on the basis of their chief product or products. Since the number of responding firms varies from month to month and new ones are often added, BLS constructs bimonthly links for groups of identical establishments in each industry and compounds these 1inks into chain indexes.

In all, BLS indexes were used to supplement Census statistics for 42 manufacturing industries and groups. ${ }^{75}$ More than twothirds of these indexes refer to at least the years 1923-36. As may be seen from table VI, the BLS employment samples are usually large. In December 1933 and September 1935 only six industry or group samples included less than 50 percent of the wage earners in the corresponding Census industry or group and 16 included 70 percent or more. In the former month 24 samples and in the latter month 22 samples included 60 percent or more of the total number of wage earners.

The NICB employment indexes (which, except for the last six months of 1922 , are continuous since June 1920^{78}) reflect changes in. the number of wage earners on the pay rolls of the canvassed establishments during the first full week in each month. NICB attempts to obtain data for a group of identical establishments in each industry, ${ }^{77}$ but since changes in the composition of the sample are inevitable, it endeavors to maintain chronological comparability by including new companies from time to time and by making appropriate adjustments before constructing the monthly relatives. In all, NICB indexes were used for several years for eight NRP industries and groups. ${ }^{78}$

Other supplementary employment statistics were utilized in addition to the regular BLS and NICB series. The results of special surveys published in BLS bulletins, for example, provided some figures for eight industries, and statistics

[^27]Table VI.- COVERA日E OP GLS WAGB-EARNERS SAMPLES ${ }^{8}$

$\begin{gathered} \text { map } \\ \text { Indusisy } \\ \text { muaber } \end{gathered}$	Cename induatry title in 1929	BLS industry title	Perceat of Census number of wage oarners repreatnted in ils wage-earders ample ${ }^{0}$	
			$\begin{aligned} & \text { Dec. } \\ & 1033^{e} \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 1935^{\circ} \end{aligned}$
1	Africaltural Implement:	Same		
8	Boote and Ghoes, Other Than Rubber	Bocts and sboes	38	60
4	Broad and Other Bakery Products	Baking	38	32
7	Caso-mugar Refining	Same	73	82
11	Cannipt and Prtserving Comant	Same	78	42
12	Chamicals, Mot girewhere Clessified	Chemicala	80	87
18	clay Producta lother Phad Pottery)	Chemicals	47	50
	Confectionery masy Refractories	Grlek, Plie, and Terra cotha	65	50
19	Confectionery	Same	70	67
18	Cotton Goods	Same	72	73
80	Pertilizers	Same	50	78
22	Plour and Other GrainmM11 Producte	Plour	${ }^{88}$	54
28.	Furaitury	Gase	44	44
28	Gleemer Crasm	Same	80	©
20	180er Furaneen, Steel Morks,	Same	60	59
	and Rolilind Mille	Sane	89	87
88^{80}	Kite gooke	Game	57	01
87	Leather: Faned, Curried, and Finished	Leather	89	86
48	Lumber and Timber Products	Lumber: Samills	48	31
	$\left\{\begin{array}{c} \left.\begin{array}{l} \text { Motor Vehlcles } \\ \text { Hotor-Velicle Bodies and Motor- } \end{array}\right\}, ~ V a h i c l e \text { Part: } \end{array}\right.$	Automoblles	81	82
49	Memapaper and Periodical frimeing and Pablishind	Same	47	45
81	Bandtay and refiaing - Copper, Lead, and 3ine	Sane	83	80
58	Monferroon-Metal Alloys and Product,			80
	Mot Including Aluminum Products	Brass, Eronze, and Coppar Products	82	88
84	painca and Varnishes	Same	71	72
85	Paper and pulp (Wood and Otber Fiber)	Paper and Pulp	85	82
86	Petroleun Refiniad	same	65	日
60	Planing-Mill Producte	Lumber: Millwork	53	50
+	Rapon and Allied Product:	Same	06	98
81	Rubber Producte	Sane	83	39
02	Rubber Firen and Inmer Pribey	Same	100	96
64	E115 and Rayon Kanufacturea	stly and Rayon Goods	59	40
8	Neat Peeklag, Moolesale	glaughtering and Meat packing	63	77
${ }^{0}$.	Tobseco Manufactures	same	62	63
07, ${ }^{\circ} \mathrm{es}$	Cligara and Cldarettes	Sane	59	-0
60	Cbewing and smoting tobaceo and Bnuff	8ane	81	97
70	Voolen and Woreted Good:	Gane	46	89

 Loc

collected in a field study by NRP in cooperation with BLS were used in making estimates for the five component industries of the Leather group. ${ }^{79}$ Burean of Mines series for man-shifts were used for three industries and State data for three others. Finally, group series were sometimes used for the completion of the series for component industries. ${ }^{80}$

[^28]
Adjustment of Employment Surieg for Comparability With Production

As has already been pointed out, the production and labor indexes are seldom exactly comparable in scope since, on the one hand, the employment reported for an industry usually includes workers engaged in the manufacture of products not normally belonging to that industry and, on the other, the production statistics often include the output of primary products of one industry contributed by workers in other industries. The value of output involved, however, is small in most cases. ${ }^{81}$ Although adjustments on a value basis for greater comparability between the production and labor indexes were usually not considered satisfactory, such adjustments were made for four industry groups: Glass, Rubber Products, Tobacco Products, and Woolen and Worsted Goods. The adjustment for the Glass group was made on the assumption that for each of the component industries the value of output per wage earner was the same for (1) products not normally belonging to the industry, (2) primary products made within the industry, and (3) primary products made in other industries. ${ }^{82}$ In each of the other three instances the adjustment was made on the assumption that two Census industries (corresponding to the two components of each group) (1) have the same value output per wage earner for primary products of the first and for primary products of the second, (2) together account for the total output of their primary products, and (3) produce

[^29]only these two types of primary products. Available evidence indicates that the second and third assumptions are justifiable in the three instances. The validity of the first cannot be ascertained. 83

MAN-HOURS InDEXES

Time Covaraga

Indexes of man-hours were computed for 47 manufacturing industries and all 13 groups. 84 The 12 industries for which indexes could not beconstructed are all components of groups. 85 Of the 60 series constructed, 45 embrace the period 1919-36 and 5 of the remainder extend from 1919 to 1935. Within the terminal gears 17 of the 60 indexes are not continuous and 7 of these 17 are incomplete for all the even-numbered years.

Avaliata gictistiss and the Mothed ef Comptiag ladexes

The methods employed in the construction of the 60 man-hours indexes varied according to the nature and reliability of the available statistics. It should be noted at the outset that statistics for total annual man-hours worked by wage earners or all employees, unlike those for production and employment, are rare and usually fragmentary. The NRP indexes for only three industries could be computed directly and independently from man-hours totals. ${ }^{88}$ The most common substitute method permitted by available statistics was the multiplication of the NRP employment indexes by relatives of weekly hours and division of the resulting products by 100. The man-hours indexes for 27 industries were computed in

[^30]this manner. A second method, employed principally for two industries, involved the division of pay-rolls relatives by an index of average hourly earnings of the wage earners. 87 Indexes for three other industries were derived from averages of annual man-hours totals yielded by the two methods. 88 Indexes for seven others were derived by the multiplication of production and unit labor requirements for by the equivalent method, division of production by output per man-hour). 89 Variants and combinations of the methods already mentioned were employed in the construction of indexes for the five remaining industries. ${ }^{00}$ Of the 13 group indexes, 5 were computed for all or most years from the sums of the man-hours for the component industries, and 7 were obtained independentiy from the products of employment and average weekly hours.

Since at least 34 of the NRP indexes of man-hours were constructed principally by the multiplication of employment and average weekly hours, the ensuing discussion will be restricted to the derivation of the series for average weekly hours. ${ }^{11}$ It should first be remarked that when indexes of man-hours could be computed in this manner, statistics for the deflation of pay rolls by hourly earnings were also frequently available. A comparison of indexes derived by both methods for 15 industries and groups reveals that, although differences in the magnitude of the relatives are sometimes pronounced, the year-to-year changes are usually in the same direction. The multiplication method was preferred in these instances,

[^31]however, for two reasons: (1) simplicity of computation from the NRP employment index and (2) the requirement of consistency between the two labor indexes. Whatever their accuracy, measures derived by the deflation method are sometimes incompatible with the NRP employment indexes since auxiliary employment and pay-rolls statistics from the same source (usually BLS) require different factors for adjustment to the levels of the corresponding Census series. For special technical reasons, however, the deflation method was employed in the derivation of several indexes even when average hours were available.

The nature of the desired weekly-hours series is conditioned by the nature of the employment index. The sole statistical criterion to be met is that their product should yield a correct index of the corresponding total annual man-hours actually worked. The hours series ought, therefore, to represent actual, not prevailing or full-time hours.

The best actual-hours series now available are compiled by BLS and NICB. Although these differ from the basic NRP employment figures in source and encompass somewhat smaller areas, they seem to give reliable results; they are usually close to even more satisfactory figures for 1933 and 1935 which could sometimes be derived from Census man-hours and incorporated in the NRP weekly-hours series. ${ }^{22}$

[^32]The BLS and NICB figures are simple arithmetic means of the monthly averages derived from man-nours and employment collected (with pay rolls) on the same schedules. ${ }^{3}$ (he BLS hours samples, however, are somewhat smaller than for employment since some establishments fail to report man-hours; the NICB employment and man-hours samples are apparently identical. The BLS series for most industries begin in 1932 ; the NICB series, on the other hand, extend back to 1920 and include an isolated initial figure for July $1914 .{ }^{94}$ The BLS series were usually preferred for 1932-36 even when NICB statistics were also available for the same industries and the same years. The reason for this preference is twofold: (1) The BLS series are derived from larger samples, as may be seen from table VII and (2) BLS is recognized, with the Bureau of the Census, as the most authoritative source of labor statistics in the United States. Consequently the BLS hours were customarily used for 1932 and later years (sometimes they were adjusted to the level of the Census weekly hours for 1933 and 1935) and the NICB figures for the earlier years. When the disparity between the two series in their common years was significant, an adjustment factor the ratio of BLS to NICB hours in 1932 or 1932-35) was applied to the NICB series for the earlier period; when the two series were close, the transition from one to the other was made without any adjustment. Of the 34 industry and group indexes computed principally by the multiplication method, 5 are based primarily on NICB hours and 12 on both the NICB and BLS series; of the latter 12,8 required no adjustment in the transition. BLS and

[^33]NICB statistics were also used to a greater or lesser degree in the construction of the man-hours indexes for many of the other NRPindustries.

The discussion thus far has concerned only the derivation of the hours series for 1920 and subsequent years. Actual hours

TaBle VII.- COVEMABE OF BLS AND MICE MAN-hOURS gAMPLES

		OLS Axtuetry titis ${ }^{\text {a }}$		Percent of Ceabua mumber of wade earners reprsaented in man-hours -naple of ${ }^{2}$.	
				BLS (Bopt. 1935)	$\begin{array}{\|c} \hline \text { WICB } \\ \text { 1Jone } \\ 2090)^{\circ} \end{array}$
1	Mrloultaral yplamerte Boote and ghoen, Ouher ytan mabber Braed and Other Bakery Producta Camoreader teflal ag Ceanlot and Procerrint Chinicale, Mot Bicoubere Cleanified Clar Producte (Ohher Than Politery) and moselay mefrectories Confectionery Cotion Goode Fortilisere Moar and Other Gralp-M111 Producte Buralture G1ens Ioe crem Blast Murnacea, Bteal Worte and Rolling hille mit Gooda	B	Africulturel Impleanente Marmfacturing Boot and Bhoe Mamfeoturind		
		Boote and Bbove Baktag 8en 8 ane Chealienle Drick, File, und Tarm Cotte		40	70 20
4				27	
\dagger				55	-
6				35	-
18			acal Meaufacturing	46	10
13				80	-
8		-		57	-
88			Cotton Manufectaring	97	12
9		geat.		78	-
81		$\begin{aligned} & \text { Blour } \\ & \text { Bemen } \end{aligned}$		51	-
22			Muraiture Mabufucturing	30	7
38		8ant		78	-
80		$\left[\begin{array}{l} \operatorname{sen} 6 \\ \text { gene } \end{array}\right.$		37	
40			Iran and Etees ManuPacturima	82	50
教		Bue	Honiery and mit Goode Manufactoring		7
\%	tenther; Yamad, Curried, and Binished	Feather	Leather Fanoling and Finiahing	02	10
48	Lamber and Tlmber Producta	Tumber: Smmalle	Gan (Production and DintriDution)	20	-
46	and Hoatind			-	$\begin{gathered} \text { B.A. } \\ 20 \end{gathered}$
48	and Hoatind $\left.\begin{array}{l}\text { Motor Vohiclea } \\ \text { Motor-vohicle godi an and Motor- } \\ \text { Vehicle Parte }\end{array}\right\}$ Movipapar and poriodical Primitiod and Pablishine	(f) Autonobllen	antenobile Manafectariad		
40			Hewn and Megestre Printind	29	2
61	 Land, and sime llanferroug-Metal alloys and Prod zesa, Mot Including Alvelate Prodacte	Bame Anst Brame, Bremse, and Copper Producta	-	70	-
60				60	
54	Painte and Varnichea Paper and Puly (Mood and Othor thber		paint and Veraiok Papar and Pulp Mamufacturing	70	11
66		Papor and Pulp		78	21
60		Paper and Pulp 8eme inmber: Millwork Band 8.4. seat BiLE and Rayon Goode 8laughtering and Ment Packing	Lungor and Maliwort	75	-
8	Pleanplmall Products			47	-
∞	Bayon and allied Produals			98	\cdots
61	Rubber Producta		Rubber Manufuturind	e5	4
4	gubler Plrea and Inner Yobee			01	-
64	silv and hayon Mmofactures		BAIL Manufncturling Ment pachiad	38	10
60	meat peolmint, molente			∞	22
${ }^{6}$	Citeres	6ame		4.e. 58	-
0\%. 0	Cligurs and cifaretes	8 ara			-
60 0	Choulint and brokint fobaces man flonfl Moolen Goode and Wormed Goods	\|exas	Wool Mumifectaring	$\begin{aligned} & \text { 68 } \\ & 80 \end{aligned}$	21

 eat mats eot anbialic.
for 1919 were derived in 11 instances by the multiplication of Census prevailing hours for this year (to be described below) by appropriate ratios of NICB actual to Census prevailing hours in one or more later years; in 6 other instances they were derived by other methods. ${ }^{95}$

Since NICB hours series were not available for several industries and groups included in the NRP survey, it was sometimes necessary to use Census prevailing weekly hours for 1919, 1921, 1923, and 1929 and estimates for the intervening years derived by straight-1ine interpolation. In seven instances it was possible, however, to adjust these prevailing hours to the level of actual hours by the application of the ratio for one or more years for which both figures could be ascertained; in eight other instances, representing about one-ninth of the employment in the NRP sample in 1929 , no adjustment could be made. ${ }^{\theta 6}$ In any case, the adjusted or unadjusted prevailing-hours segments were joined to BLS actual hours for $1932-36$ by means of straight-line interpolation.
The Census prevailing weekly hours for 1919, 1921, 1923, and 1929 were computed from tables showing the total number of wage earners in each industry distributed according to the length of the standard workweek in the establishments in which they were employed. There are eight frequency classes in the tables for 1919, 1921, and 1923 and five in the tables for 1929. The extreme classes have open ends: "44 hours and under" and

[^34]"over 60 hours" in 1919, 1921, and 1923 and " 40 hours and under" and "over 54 hours" in 1929 . For the computation of the averages used in the NRP study, a representative figure or concentration point was assumed for each hours interval.

Apart from defects inherent in the method of derivation, 97 unadjusted Census prevailing hours are not likely to be adequate substitutes for actual hours. They represent the norm, or the average of the scheduled hours of work for the various plants of an industry. Consequently they tend not only to be higner than actual hours worked but also to be rigid from year to year. Unlike actual hours, prevailing hours are insensitive to fluctuations in the volume of part-time work, overtime work, and the number of days of operation.

An endeavor was made to ascertain the effect of the substitution of prevailing hours (in adjusted or unadjusted form) for actual hours on the NRP indexes for the years prior to 1929 and the years following 1929.

First, NICB actual and Census prevailing hours were compared for a number of industries and groups for which both were available - 19 in 1921 and 18 in 1923 and 1929. As was to be expected, actual hours are lower than prevailing hours; in two-thirds of the instances they are lower by not more than 10 percent.

Since prevailing hours tend to be rigid prior to 1929 and actual hours show little variation in the same period except in 2921, it is likely that indexes of adjusted or unadjusted prevailing hours approximate the movement of actual hours, at least between 1923 and 1929 . In 1921 a proportionately greater number of industries have lower ratios of actual to prevailing hours. Consequently estimates derived by straight-

[^35]line interpolation for 1922, and perhaps for 1920 also, may be higher than actual hours by more than the usual percentage. The result of such an overstatement in hours would be an understatement in man-hour productivity for the years 1920-22.

The validity of the method of estimating prevailing hours for 1924-28 by straight-line interpolation was tested by a comparison of 20 series of NICB actual hours with estimates interpolated between the NICB figures for 1923 and 1929. This method appears to be satisfactory since in 80 percent of the instances the estimates are within 2 hours, or 4 to 5 percent, of the NICB figures.

The use of unadjusted prevailing hours for 1929 in conjunction with actual hours for $1932-36$ probably results in overstatement of the decline in man-hours after 1929 and, hence, in overstatement of man-hour productivity in each of the gears 1932-36. If the relation between the NICB actual and Census prevailing hours for 1929 is typical, the eight NRP indexes of man-hour productivity based on unadjusted prevailing hours ${ }^{98}$ may be too high by as much as 10 percent. Of the eight indexes, seven are above 100 in 1932 and subsequent years. The rise of six of these indexes of output per man-hour above the 1929 level is clearly not attributable to any upward bias resulting from the use of unadjusted prevailing hours; in 1932 and later years these indexes are above 110. It should be noted that the overstatement, whatever its magnitude, does not affect comparisons between 1932 and subsequent years.

An at tempt was made to ascertain the reliability of the estimates of actual hours for 1930 and 2931 derived by straightline interpolation between adjusted prevailing hours for 1929 and actual hours for 1932. A comparison for 19 NICB series similar to those for the years 1924-28 indicates that the estimates for 1930 are likely to be satisfactory while those for 1931 are probably less reliable.

Aduetment of Man-heve gefife for Cemperallity
 With Praduetion

The man-hours series for the components of three groups were, like the corresponding series for employment, adjusted for greater comparability with production on the basis of value. ${ }^{98}$

[^36]
factors to is considered in the evaluation ot map indexes

The NRP indexes are not all of the same quality despite the fact that in their construction a scrupulous endeavor was made to incorporate the best available statistics and to utilize the most appropriate methods. The relative merits of the several indexes cannot generally be determined because of the multiplicity of the statistical sources; the lack of uniformity of the statistics from any one source with respect to scope, coverage, and detail; and the dependence of the validity of the several measures for each industry on the degree to which they are mutually consistent. Certain factors which ought to be considered in any attempt at evaluation of the NRP indexes for individual industries and groups may, however, be indicated. Many of these have already been noted either explicitly or implicitly in the foregoing discussion.

Measures for an NRP group which is equivalent to a Census industry are usually more reliable than those for the component NRP industries. This is a consequence of the fact that production and labor statistics are readily available for such groups while relatively numerous estimates are necessary for the component industries. 100

The chronological comparability of an index is impaired by changes in industry definition, scope of canvass, or instructions to respondents, unless an adjustment could be made. A change in the degree of integration of an industry's establishments, however, results in indexes which do not have uniform meaning throughout the period, even when nominally comparable data are reported from year to year. Whatever the degree of integration of an industry, the index of productivity is more significant the more completely the production index represents the activities of the wage earners in the employment series.

A production or employment measure based on statistics from a single reliable source is more likely to be accurate than one based on series pieced together from several. Similarly, production and employment indexes computed from statistics

[^37]from the same source are likely to be chronologically more comparable than otherwise. Thus more comprehensive production data collected by an organization other than the Bureau of the Census were not preferred if the absence of comparable labor statistics nullified any advantage resulting from their use. The same principle applies to wage-earners and man-hours series. If the former is involved in the derivation of the latter, both are more comparable than otherwise. This fact, however, does not reflect on the accuracy of either. For reasons already mentioned, Census wage-earners statistics are more reliable than estimates made through the use of BLS or NICB indexes for intercensal years. BLS statistics for employment and average weekly hours, in turn, were considered as probably more dependable than those of NICB. Other things being equal, man-hours indexes based on continuous series of average actual weekly hours are preferable to measures based on statistics from different sources which may neither be continuous nor represent actual hours. In particular, the use of unadjusted prevailing hours in the same series with actual hours for 1932 and later years is likely to result in overstatement of the decline in man-hours.after 1929.

Caution should be exercised in the interpretation of the movement of indexes based entirely or in part on series other than those specifically required. Thus a consumption series used in the absence of data for production did not necessarily yield an adequate substitute for the desired index of output. 101 Index numbers based on statistics derived by interpolation are usually less reliable than those for other years. In particular, when the basic statistics are provided by the Census for the odd-numbered years, the relatives for the even-numbered years are less dependable. When estimates"are derived by straight-line interpolation, they are probably less accurate than others interpolated by means of auxiliary series.

Indexes having high coverage in terms of value of output, employment, or number of establishments are not necessarily

[^38]more trustworthy than others. The higher the value coverage of a production index, however, the more likely it is to be representative of the entire output - i. e., for consumption, sale, and interplant transfer. The smaller the percentages of secondary products made within an industry and of the primary products made elsewhere, the more satisfactory will be the productivity measure derived from Census production and emplogment data. 102

Provided that a suitable weight was available for each product class, the most detailed classification was preferred for a production index. Even though relatives of unweighted quantities often resemble weighted indexes of the same scope, the differences in some years may be considerable. When fairly satisfactory quantity series and weights are available, theoretical difficulties may, nevertheless, arise from the inappropriateness of the units in which the quantities are reported. The units may be so broad or complex as to obscure significant differences of both a qualitative and quantitative character. This problem is inherent in the nature of all production measures for certain kinds of products lsuch as machinery or clothing).

Comparison of arithmetic means of quantity relatives with fixed weights and harmonic means with changing weights reveals that both are generally in close accord. Conclusive tests could seldom be made to determine the degree to which an NRP production index deviates from either of these means. The use of value weights may sometimes result in an inadequate index if they deviate significantly from proportionality to unit labor requirements. On the other hand, an NRP index with fixed-value weights (which may or may not refer to the base year) is not necessarily less accurate than one constructed with estimated labor-requirement weights, since the statistics used for the computation of the latter were usually crude.

In conclusion it should be noted that, since the various statistical techniques employed in the construction of the NRP measures (such as splicing and interpolation) are designed to yield satisfactory indicators of year-to-year movements rather than absolute levels, many of the defects of the basic statistics in absolnte form are not characteristic of the indexes.

[^39]
CHAPTER III

SUMMARY OF FINDINGS

COVERAGE DF THE NRP MANUFACTURINB INDUSTRIES

The 59 manufacturing industries lof which 35 were combined into 13 groups of closely related industries) considered in this report employed over $4,500,000$ wage earners in 1929, or about 51 percent of the total number of wage earners reported by the Census of Manufactures. In the same year the products of the 59 industries were valued at almost $\$ 40,000,000,000$, or about 56 percent of the total.

All but 1 of the 16 Census industry groups, Railroad Repair Shops, are represented in the NRP sample. This group, however, comprises adjuncts to steam- and electric-railroad systems engaged to a greater extent in servicing than in the fabrication of new equipment; moreover, it accounted for only about 4.5 percent of the wage earners in manufacturing in 1929 and only about 1.8 percent of the total value of products. The NRP industries accounted for more than half the wage earners in each of 10 other Census groups and more than half the value of output in each of 11 (tables IX and X). For only one Census group (Machinery, not Including Transportation Equipment) does coverage in terms of wage-earner employment fall below onequarter and in terms of value of products, below one-third.

Throughout the period 1919-36 the NRP sample consistently represented about 50 percent of the number of wage earners in all manufacturing as reported in the Census of Manufactures. The proportion, as estimated for the various census years, ranged between 49 and 54 percent. The changes in coverage are in part explained by changes in the proportions of different classes of goods produced. During years of sharply declining production the proportion of nondurable goods, for which sample coverage is higher, increases and the proportion of durable goods, for which sample coverage (particularly in the Machinery, not Including Transportation Equipment groupl is lower, decreases. The net effect of such shifts is the increase in

Im manupactugine industaies for which mbp indexes MAYE BEEN CONSTRUCTEA: 1929

Induetry or dreup munber and kille	$\begin{gathered} \text { Mage } \\ \text { carnera } \end{gathered}$	Indumery or eroup number and title	$\begin{aligned} & \text { Wage } \\ & \text { earneray } \end{aligned}$
al2 cenan marnfecturbait isduatrien	0,038,743	34. Underwear	41,4e7
	4,524.518 ${ }^{\text {a }}$	35. Outerwear	28.988 0.491
411 Unp manurecturing induetries		37. Leether Group	
4. Agriculturel Implemante	41, 863	36. Sole and Haratas Lomiher	12.300
2. Beet Bugur	7,486	99. Side and Upholstery leather	12.100
a. Boote and shoen	205, 640	40. Calfekin	7.000
4. Broed and Other Bakery Products		41. Kld Leather	10,300
Group		12. Sheep and Miscellaneous Leather	7.700
5. Blacalt and Crackers	39,872	43. Lumber and mimber Products Group	
6. Babery Produet other than		44. Lodsine Canpi	153.200
7. Canemugar Rofiniag	186.870 18.812	45. Sawnilis and Buw-Plame Mille	265, 200 43,085
9. Cannimy and Pracerving Group		47. Manufactured Lee	32, 184
9. Canned and Preserved Frulta		4. Motor Vehicles	447.448
and Vetatablen	90,888	49. Nowapaper and Poriodical Printind	
10. Cenbed and Cured Find 11. Cement	13.012 39.889	50. Monferroua Matals Gr	129, 880
12. Chemicale	65,569	51. Frimary smelter and Refineries	50,981
23. Cley Products (ORher than potiery) and Monclay Mefraetoriak	09, 938	52. Secondary Smeltera and Rafineriea 53. Alloyers, Rolling Mills, and	4,134
14. Coke Group		Foundrles	79,183
15. Beabive Col	2. 700	54. Paints and Varnimhen	29,211
10. Brproduat cave	19.016	55. Paper and Puip Group	
27. Confeetlomery	63.501	50. Paper	103, 320
18. Cotion Goode	424,916	57. Pulp	24.729
18. Elacrile Lampa	8.709	56. Petroleum Refinind	80,586
90. Pertilliera	20,026	59. Pleaing-Mill Producti	00.134
21. Dlour and othar Grainmill	27.028	60. Rayon ${ }^{\text {en }}$ Rubber Producta Group	90,108
at. Puratzure	183, 309	62. Rubber fires and Inner Tubet	65,000
29. Glase Group		63. Other Robber Goods	84, 100
24. Window diant	6, 600	64. S11\% and Rayon Goods	130.407
25. Plate glame	12,100	68. Slaughtering and Ment Packing	128,402
46. Glayn Contaimera	22,000	B6. Tobacce Producta Group	
27. Pronsed and Blown Ware	24,400	67. Clgars	84. 200
20. Ice Cream	22,399	68. Cigarettes	15,800
29. Iron and steel Group		89. Chewtag and smoklag Tobaceo	
30. Bleat Furnece:	24,090	and Snuff	16,000
31. Steel Morks and Rolling Mills	394,574	70. Woolen and Worsted Gooda Group	
92. mis coode oroup		71. Woolen Goodu	80.089
39. Howiery	129,542	72. Horated Goods	86,860

the percentage of the total represented by the sample in years of low production. Another reason for the change in coverage is the decline in Shipbuilding (not included in the NRP sample), an industry which employed almost 400,000 wage earners in 1919 but only about 60,000 in 1923 and subsequent years.

COMBINED INDEXES POR NAP SAMPLE

The movements of the NRP indexes of production, employment, man-hours, output per wage earner, and output per man-hour may conveniently be summarized by means of combined measures for the NRP sample. Because of certain defects in the coverage of the NRP sample (particularly the insufficient representation of the capital-goods industries), such indexes are more likely to indicate the direction of the year-to-year percentage changes for all manufacturing than the correct magnitude of these

Table IX.- PERCENT DF EACH CENSUS INDUSTRY GROUP ACCOUNTED pOR BY NRP INDUSTRIES: $1929^{\text {a }}$

Census industry group	$\begin{gathered} \text { Wage } \\ \text { earners } \end{gathered}$	Value of products
All groups	51.1	56.3
Food and Kindred Products	80.7	70.8
Textiles and Their Products	53.3	43.1
Forest Products	80.2	77.3
Paper and Allied Products	54.9	63.7
Printing, Publishing, and Allied Industries	38.2	54.8
Chemicals and Allied Products	55.1	40.3
Products of Petroleum and Coal	98.8 ${ }^{\text {b }}$	97.8
Rubber Products	100.0	100.0
Leather and Its Manufactures	80.3	75.9
Stone, Clay, and Glass Products	58.6	55.5
Iron and Steel and Their Products, not Including Machinery	47.6	$58.0{ }^{-}$
Nonferrous Metals and Their Products	36.3	65.7
Machinery, not Including Transportation Equipment	3.8	3.9
Transportation Equipment, Air, Land, and Water	78.7	87.0
Rallroad Repair Shops	0	0
Miscellaneous Industries	27.8	36.4

$\mathbf{a}_{\text {Electric }}$ Lamps (No. 19), which employed about 8,700 wage earners in 1929, is exciuded since it is classifiable in both the tenth and thirteenth groups.
${ }^{\text {D Represents a }}$ slight overstatement since there is duplication of a small number of wage earners in Byproduct Coke (NO. 18) and Manufactured Gas (No. 48).
changes. An examination of the average rates of change in output per man-hour (which will be discussed later) shows distinct tendencies toward uniformity in direction of movement for the post-war period. Although for the years immediately following 1929 there are divergences, uniformity in the direction of movement for the large majority of industries is again exhibited if one considers the net change between 1929 and 1935. These characteristics warrant the belief that the indexes for the sample represent correctly the general movement of productivity. Better coverage of manufacturing industries would probably not change the direction of the over-all indexes, although a more reliable approximation to the magnitude of the changes for manufacturing as a whole would result.

Table X. - percent df wabe earneas and value of products of all manufacturing industhies accounted for ey nhp industries, BY CENSUS INDUSTRY BROUP: $1925^{\text {a }}$

Census industry group	Wage earners		Value of products	
	Census group	NRP industries	Census group	NRP industries
All groups	100.0	51.1	100.0	56.3
Food and Kindred Products	8.5	6.9	17.1	12.1
Textiles and Their Products	19.3	10.3	13.1	5.7
Forest Products	9.9	7.9	5.1	3.9
Paper and Allied Products	2.6	1.4	2.7	1.7
Printing, Publishing, and Allied Industries	4.1	1.5	4.5	2.5
Chemicals and Allied Products	3.2	1.8	5.3	2.5
Products of Petroleum and Coal	1.7	$1.6{ }^{\text {b }}$	5.2	5.1
Rubber Products	1.7	1.7	1.6	1.6
Leather and Its Manufactures	3.6	2.9	2.7	2.1
Stone, Clay, and Glass Products Iron and Steel and Their	3.7	2.2	2.2	1.2
Machinery	10.0	4.7	10.1	5.9
Nonferrous Metals and Their Products	3.6	1.3	5.1	2.6
Machinery, not Including Transportation Equipment	12.3	0.5	10.0	0.4
Transportation Equipment, Air, Land, and Water	6.6	5.1	8.6	7.5
Railroad Repair Shops	4.5	0	1.8	0
Miscellaneous Industries	4.7	1.3	4.9	1.8

${ }^{2}$ see tadle IX, ftn. A.
${ }^{6}$ see table IX, ftn. b.

Two sets of measures were constructed for the sample by the use of the formulas presented in chapter I: one is consistent with a productivity index for the base-year production composite; the other, with a productivity index for the changing production composite. These two sets will be discussed in turn. Only one production index, with man-hour weights, was computed for each set. ${ }^{1}$

[^40]
Changes in Productivity for the 1929 Praduction Compaste

One of the outstanding features of the decade of the twenties is the magnitude of the increase in output per wage earner and per man-hour. As may be seen from table XI, the sample index for the former rose 55 percent and that for the latter 57 percent. In other words, with the unit labor requirements of 1919 approximately 55 percent more wage earners and 57 percent more man-hours would have been necessary to produce the 1929 composite of products. During the same period production ${ }^{2}$ increased about as fast as productivity, but it is noteworthy that both output per wage earner and per man-hour continued to rise even in years during which production declined (1921, 1924, and 1927). Employment and man-hours remained below the 1919 level throughout most of this period. ${ }^{3}$

Thus it is evident that a major characteristic of manufacturing industries during the 10 years prior to 1929 was the production of an increasing amount of goods with a relatively stable or even declining volume of employment (witness the years 1925-28 as compared with 1923 and 1920). The average hours worked per week changed little during the period under consideration. While there are variations between years, and naturally from industry to industry, the average hours worked per week ranged between 46 and 48 during the entire period and the indexes of employment and man-hours are similar until 1929.

Between 1929 and 1932 production declined 47 percent, the number of wage earners 36 percent, and the number of man-hours 48 percent. In other words, output per wage earner declined as the average hours worked dropped, but output per man-hour

[^41]TAlIf XI.- COMBINED INDEXES DF PRDDUGTION, EMPLOYMENT, man-hours, and phoductivity (with base-year man-hour weights) PDR NAP MANUFACTURING INDUSTAIES: 1919-36a

Year	Production ${ }^{\text {b }}$	Employment	Man-hours	Output per -	
				Wage earner	Man-hour
1919	63.4	98.4	99.9	64.4	63.5
1920	67.3	100.5	100.5	67.0	67.0
1921	54.3	78.8	75.9	68.9	71.5
1922	70.4	91.7	91.5	76.8	76.9
1923	81.7	100.7	100.7	81.1	81.1
1924	77.4	94.8	92.1	81.6	84.0
1925	86.1	98.2	97.5	87.7	88.3
1926	90.2	98.8	98.7	91.3	91.4
1927	88.5	95.6	95.7	92.6	92.5
1928	93.0	96.3	96.0	96.6	96.9
1929	100.0	100.0	100.0	100.0	100.0
1930	80.8	86.3	80.1	93.6	100.9
1931	68.0	73.2	65:2	82.9	104.3
1932	53.4	64.4	51.8	82.9	103.1
1933	62.1	72.6	57.7	85.5	107.6
1934	67.1	84.0	60.5	79.9	110.9
1935	77.9	86.9	65.7	89.6	118.6
1936	89.3	90.9	73.3	98.2	121.8

$\mathrm{a}_{\text {For many industries data are lacking for some of the gears of the period 1010-36. }}$ Hence the index numbers were constructed by chaining links for identical industries.
Equivalent to an index whose component indexes were weighted with changing man-hour weights.
remained fairly stable and even increased slightly. By 1936 production had recovered to 89 percent of the 1929 level and employment to 91 percent, but the index of man-hours was still 27 nnits below. Output per wage earner was only slightly below. 1929, but output per man-hour had reached a point 22 percent above 1929. From table XII it may be seen that the average hours per week declined from 48 in 1929 to 38 in 1932 ; ${ }^{4}$ the

[^42]average was further reduced to 36 in 1934 , which no doubt reflects the influence of the NRA codes; although it rose thereafter, it was still only 39 in 1936.

Table XII. - AVERAGE HOURS WORKED PER WEEK IN NRP MANUPACTURING INDUSTRIES: 1920-36a

Year	Number of hours	Year	Number of hours
	48.2		
1920	46.3	1929	48.2
1921	48.2	1930	44.5
1922	48.4	1931	43.0
1923		1932	38.3
1924	46.8	1933	
1925	48.0	1934.	38.4
1926	48.2	1935	35.8
1927	48.3	1936	38.6
1928	48.1		38.7

arthe averages, computed with wage-earner weights, are based on 49 BLS, NICB, and Census series for 1933 and 1935, 44 for 1934 and 1938, and 28 for 1920-32. The averages for 1933 and 1935 represent the entire NRP sample with the exception of Beet Sugar and Electric Lamps; the averages for the other years were adjusted to the same level.

Changetin Productivity fop ihe Chaging Produciton Compolite

The use of the indexes discussed above for estimating future labor requirements involves the assumption that the 1929 composition of production remained constant. What difference would it make in the indexes if we took into account the changes which actually occurred from year to year in the relative importance of the products manufactured? In accordance with the methods outlined in chapter I, indexes of output per wage earner and output per man-hour with changing weights were constructed in order to examine the possible effect of changing composition of production.

As may be seen from a comparison of tables XI and XIII, output per man-hour ${ }^{5}$ for the fixed (1929) composite of production increased by a greater percentage between 1919 and 1929; it rose from 63 to 100 , while the index for the changing composite rose from 69 to 100 . This difference reflects the fact that, in general, production advanced at higher rates in industries registering the greater gains in productivity. In

[^43]other words, those industries which experienced a more rapid rise in production received relatively more weight in the 1929 composite than in the 1919 composite; since it was these industries which had the more rapid rise in output per man-hour, the greater increases in output per man-hour were weighted more heavily in the fixed-weight index with 1929 weights than in the changing-weight index with 1919 weights. Hence the index with 1929 weights shows a higher percentage increase in out put per man-hour from 1919 to 1929 than does the index with changing weights.

Despite the fluctuations in composition after 1929 , the differences between the productivity measures for the fixed and changing composites is not so great as might have been expected. Output per man-hour for the fixed composite rose 3 percent from 1929 to 1932 it rose 22 percent from 1929

Talla XIII.- COMBINED INDEXES OF PADDUCTION, EMPLDYMENT, MAN-MOURS, AND PRODUCTIVITY (WITK CHANBIME MAN-HOUR WEIBKTS) POR NAP MANUFAETURINE INDUSTRIES: 1919-35 ${ }^{\text {a }}$
$(1929=100)$

Year	Production ${ }^{\text {d }}$	Employment	Man-hours	Output per -	
				Wage earner	Man-hour
1919	69.0	98.4	89.9	70.1	69.1
1920	72.4	100.5	100.5	72.0	72.0
1921	58.6	78.8	75.8	74.4	77.2
1922	73.3	81.7	91.5	78.9	80.1
1923	83.4	100.7	100.7	82.8	82.8
1924	78.8	94.8	92.1	83.1	85.6
1925	87.1	98.2	97.5	88.7	89.3
1928	90.7	98.8	88.7	91.8	81.9
1927	89.2	95.6	95.7	93.3	83.2
1928	93.3	96.3	96.0	96.9	87.2
1929	100.0	100.0	100.0	100.0	100.0
1930	81.0	88.3	80.1	83.8	101.1
1931	69.3	73.2	65.2	94.7	108.3
1832	55.8	64.4	51.8	86.6	107.7
1933	85.5	72.6	57.7	90.2	113.5
1934	68.7	84.0	60.5	81.8	113.6
1935	80.4	86.9	65.7	82.5	122.4
1936	90.8	80.9	73.3	99.9	123.9

[^44]to 1936. The corresponding increases for the changing composite were 8 and 24 percent, respectively. The difference between the two indexes for the period 1929-32 is due to the association, in general, of declining output per man-hour in industries with the sharper deciines in production and increasing output per man-hour in industries with less severe reductions in output. While not true in every instance, the durable-goods industries not only suffered sharper declines in production between 1929 and 1932 but also were characterized by fairly stable or even declining output per man-hour. On the other hand, production in the nondurable-goods industries, in general, decreased less while output per man-hour rose. Since the indexes of output per man-hour for the latter industries were weighted more heavily in the production composite following 1929 than in 1929 , the productivity measure with changing weights is higher than the index with fixed weights in $1932 .{ }^{6}$ (See figure I.)

Figura l.- COMBINED INDEXES DP DUTPUT PER MAN-hDUR FOR NRP MANUPACTURINE INDUSTRIES: 1919-36

[^45]Estimates of the man-hour requirements based on either index would not differ greatly after 1929. True, the index for the changing composite was 6 points (or about 5 percent) above the other in 1933, but by 1936 the difference was only 2 points (or less than 2 percent).

AVERABE ANNUAL RATES DP GHANEE POR INDIVIDUAL INDUSTRIES

Useful as indexes for the entire sample may be, they nevertheless conceal differences in the movements of the indexes for the individual industries or groups. Study of the differences between the individual parts of the total is necessary for an inquiry into the relationships between changes in productivity, in technology, and in economic factors; it also serves to facilitate estimates of future employment opportunities. An intensive study of these factors would require a detailed analysis of strategic classes of industries in their relation to the changing structure of the economy and their behavior under varying economic conditions. Such studies were outside the scope of this report, but a statistical analysis of the movements of production, employment, and productivity of the individual industries constitutes a necessary preliminary step. The remainder of this chapter will be devoted to such an analysis.

A careful examination of the character of the period under consideration and of the fluctuations in the individual series resulted in the adoption of the following technique of summarization:
(1) The period $1919-35^{7}$ was first divided into two parts, 1919-29 and 1929-35. This was done because the indexes for productivity, and of course for production, employment, and man-hours as well, exhibit different characteristics before and after 1929. It is of special interest, moreover, to compare the rates of change in productivity for the recent prolonged depression with the previous period of rising production.
(2) A geometric average annual rate of change was used to compare changes in production, labor, and productivity for the individual industries. The comparison of average rather than of total percentage changes was desirable

[^46]because some indexes were not available for the earlier years of the period 1919-35. Also, the use of annual averages facilitates comparison of periods of different lengths. A geometric rather than arithmetic average was selected because the former indicates the rate of growth not only per unit of time but also from year to year. 8

Before the decision to use this mean was made it was necessary to determine whether the computed rate of change between the terminal years was characteristic of the actual movement throughout the period. This was found to be the case for the period 1919-29. In some instances there was some doubt as to whether the rates computed between the years 1919 and 1929 were characteristic of the entire decade. In these cases, however, the method used seemed as reliable as the use of a fitted trend line. It was also necessary to determine for those industries for which indexes were not available for the earlier years whether the average rate of growth between 1921, 1923, or 1925 and 1929 was typical of the entire period 1919-29. Analysis revealed that this was likely to be the case. Similar rates of change were computed for the period 1929-35 in order to facilitate comparisons with pre-1929 years.
(3) Geometric average rates of change* were computed for production, employment, man-hours, output perwage earner, and output per man-hour for as many individual industries and groups as possible. (Hereafter, all references to annual average rates of change will signify a geometric average of year-to-year changes.l These rates were then classified in frequency distributions. Employment in 1929. was selected as the criterion of the relative significance of the rates of change for the various industries:

Frequency distributions for production, employment, man-hours, output per wage earner, and output per manhour were constructed for 49 industries or groups.

[^47]When indexes of output per man-hour were available for all components as well as groups, the rates for the components were used. In cases where output per man-hour data were available for the group alone or only for some of the component industries, the group index was used. θ

Production.- It was pointed out earlier that production for the sample as a whole increased considerably in the decade 1919-29 and that it deciined only in the years 1921, 1924, and 1927. More striking, however, is the fact that for the period as a whole the average annual rates of change were positive for 42 of the 49 industries, representing 93 percent

```
Taise XIV. - DISTRIEUTIUN OP 49 MANUFACTURINE INDUSTAIES AND
    their 1929 Employment according to averabe annual rates
        of chanbe of phoduciidn, employment, and man-mouhs
                    BETWEEN 1919 AND 1929
```

Average annual rate of change	Production		Employment		Man-hours	
	Number of industries	Percentage distribution of 1929 employment	Number of industries	Percentage distribution of 1929 employment	Number of industries	Percentage distribution of 1929 employment
Total	49	100.0	49	100.0	49	100.0
Over -10.0	0	0	1	0.1	1	0.1
-7.6 to -10.0	1	0.1	0	0	0	0
- 5.1 to - 7.5	0	0	2	1.2	3	1.8
- 2.6 to - 5.0	0	0	8	4.1	6	3.2
- 0.1 to - 2.5	6	6.6	12	33.7	14	30.6
0	0	0	3	11.7	3	12.6
+ 0.1 to + 2.5	12	28.6	13	23.1	13	28.4
+ 2.6 to + 5.0	13	27.6	8	25.1	7	24.4
+ 5.1 to + 7.5	8	19.8	1	0.1	1	0.1
+ 7.6 to +10.0	4	1.6	0	0	0	0
+10.1 to +12.5	3	13.4	0	0	0	0
+12.6 to +15.0	0	0	0	0	0	0
Over +15.0	2	2.3	1	0.9	1	0.8

[^48]of the total employment in the sample in 1929^{10} (table XIV). Although the annual rates are concentrated in the class +0.1 to +7.5 percent, as many as 15 percent of the wage earners were engaged in industries having rates as high as +7.6 to +12.5 percent. Two industries, Rubber Tires and Inner Tubes and Rayor (the latter has been developed only since the war), have unusual rates of more than 15 percent. In but one industry, Beehive Coke, did production show a significant decline (10 percent per annum). This industry, however, accounted for only 0.1 percent of 1929 employment in the NRP sample, and the decline reflects the trend toward the use of the more efficient byproduct ovens rather than the absolute decrease of coke production. Only seven industries, together accounting for less than 7 percent of the number of wage earners, had negative rates of change, and six of these are concentrated in the interval -0.1 to -2.5 percent.

Wage Earners.- The distribution of the rates of change in employment during the period 1919-29 is unlike that of the changes in production. Of the 49 industries, 23 , representing 39 percent of the 1929 number of wage earners in the sample, showed negative rates of change; 20 of these were between -0.1 and -5.0. Three other industries, covering 12 percent of the wage earners, showed no net change in employment. In most of these instances production was increasing, and the relative rise in output per wage earner was even greater than the rise in production. It is also noteworthy that in each of the seven industries in which production declined the negative rate for employment was greater. Finally, in the industries where employment increased the rates were lower than for production (except in the Canned and Cured Fish industry).

Man-hours.-As may be seen from table XIV, the distribution of the rates of change in man-hours is similar to that for wage earners. This is to be expected in view of the stability of average weekly hours throughout the decade (table XII).

Output per Man-hour.- The concurrence of productivity increases with increases in production is characteristic not only of the sample as a whole but also of most of the industries or

[^49]groups. Only two industries, which account for less than 8 percent of the 1929 wage-earner employment in the sample, showed declining output per man-hour for the decade 1919-29 (table XV). Of the 47 industries with increasing output per man-hour, 11 , representing 30 percent of the employment, were concentrated in the interval +0.1 to +2.5 percent; 20 , representing 26 percent of employment, in the interval +2.6 to +5.0 percent; and 14 , representing 34 percent of employment, in the interval +5.1 to +10.0 percent. In two industries (Alloyers, Rolling Mills, and Foundries, and Cigarettes) output per man-hour increased at average annual rates of between +10.1 and +12.5 percent; together these two industries account for 2 percent of the 1929 number of wage earners in the 49 industries.

Output per Wage Earner.- The distribution of rates of change in output per wage earner is similar to the one for output per man-hour, except for a heavier concentration of rates of

Tale XV. - DISTRIBUTION OP 49 MANUPACTURING INDUSTRIES AND thein 1929 employment according to average annual mates ap change gp dutput per wage earner and dutput PER MAN-HOUR BETWEEN 1918 AND 1929

Average annual rate of change	Output per wage earner		Output per man-hour	
	Number of industries	Percentage distribution of 1929 employment	Number of industries	Percentage distribution of 1929 employment
Total	49	100.0	49	100.0
Over -10.0	0	0	0	0
- 7.6 to -10.0	0	0	0	0
- 5.1 to - 7.5	0	0	0	0
- 2.6 to-5.0	0	0	0	0
- 0.1 to-2.5	1	0.3	2	7.7
0	0	0	0	0
+0.1 to + 2.5	13	38.2	11	30.0
+2.6 to + 5.0	20	34.6	20	26.0
+ 5.1 to + 7.5	9	11.8	10	21.2
+7.6 to +10.0	4	13.0	4	13.0
+10.1 to +12.5	2	2.1	2	2.1
+12.6 to +15.0	0	0	0	0
Over +15.0	0	0	0	0

increase in the lower class intervals. In most of the industries studied the indexes of output per man-hour during 1919-29 are either close to or slightly higher than those for output per wage earner.

Average Amana fatos of Cheage leiwasa 1929 amd 1935

General Considerations in Productivity Movement During Production Decline.- There is no uniform behavior of productivity characteristic of all manufacturing industries under conditions of sharply fluctuating production. When the volume of production is declining there are factors affecting the change in productivity of labor in different directions. Each of these factors may affect different types of industries in varying degree, according to their organization and operating conditions. 11 There is little doubt, however, that depression stimulates efforts to reduce unit labor requirements, particularly by speeding up operations and introducing technical and managerial improvements which require little capital outlay. Furthermore, declining production volume may encourage, in some industries, the shift of production to plants producing at a higher level of productivity. This shift can be deliberate, however, only where there is centralized ownership of several plants, and in some industries such shifts are no doubt also limited by restrictions imposed by transportation costs of raw materials or finished products. During periods of declining output productivity in some industries may decline despite efforts to decrease unit labor requirements, depending upon the needs for maintenance and overhead labor. The need for such labor will, of course, vary according to the nature of the industry, the production techniques, and the policy of management. Declines in productivity owing to these factors

[^50]are particularly marked in industries which have a relatively high proportion of overhead and maintenance labor and which experience exceptionally sharp declines in output. These two conditions are frequently met in industries producing durable goods.

Whatever the immediate effects on man-hour productivity during depression may be, the fact is that when production recovers, output per man-hour in many industries tends to increase because plant capacity is atilized more efficiently than during the depression. This may, however, be partially offset by resumed operation in less efficient plants. Efforts at reducing unit costs and unit labor requirements during depression frequently result in increasing economies in the utilization of labor when production rises.

Productivity. 1929-35.- The outstanding characteristic of the period 1929-35 as a whole is the increase in man-hour productivity in the face of a general decline in production
feble xif.- distribution op 49 manupacturing industries and
thein $\mathbf{i g 2 9}$ employment accordime to average annual rates
df change dy output per wage earner and dutput
per man-hour between 1929 and 1935

Average annual rate of change	Output per wage earner		Output per man-hour	
	Number of industries	```Percentage distribution of 1929 employment```	Number of industries	Percentage distribution of 1929 employment
Total	49	100.0	49	100.0
Over -10.0	1	0.1	0	0
- 7.6 to -10.0	0	0	0	0
- 5.1 to-7.5	6	13.8	1	0.1
- 2.6 to-5.0	0	18.9	2	1.6
- 0.1 to-2.5	14	39.1	4	6.2
0	0	0	0	0
+0.1 to + 2.5	14	23.5	10	36.2
+2.8 to + 5.0	3	2.3	18	32.7
+ 5.1 to + 7.5	1	1.4	9	17.7
+ 7.6 to +10.0	1	0.8	3	3.2
+10.1 to +12.5	0	0	1	1.4
+12.8 to +15.0	0	0	1	0.9
Over +15.0	0	0	0	0

from 1929 to 1932 and the continued rise in man-hour productivity with the recovery of production after 1932. In table XVI it may be seen that the rates of change in output per man-hour between 1929 and 1935 increased for 42 of the 49 industries; these 42 accounted for 92 percent of the wage earners in the 49 industries. In sharp contrast, output per wage earner declined in most of the industries; only 19 industries, representing about 28 percent of the wage earners, have higher wage-earner productivity in 1935 than in 1929, and 14 of these are concentrated in the interval +0.1 to +2.5 percent.

The rates of increase in man-hour productivity are in general lower for this period than for the preceding decade; the concentration in the lower intervals is denser and the dispersion generally greater. Nevertheless, in 23 instances, representing 53 percent of employment, the rate of increase is higher for 1929-35 than for 1919-29 (table XVII). With few exceptions these 23 industries had attained higher production levels by 1935, relative to 1929, than had the 22 others which had lower

Table XVII.- CLASSIPICATION DP 49 NRP MANUPACTURINB INDUSTRIES by belationshif df average annual rates dp change DURING THE PERIODS 1819-29 AND 1929-35²

Smaller than during 1910-20 (22 industries having 45.7 percent of total sample enploymont)	Equal to that during 1810-za ${ }^{\circ}$ (4) industries havind 1.4 porcent of total ample employmont)	Groater than during 1910-29 (Rs induatriea havine $52 . \theta$ percent of rotal sample enployments
1. Agricultursi Implements ${ }^{\circ}{ }^{0} d$ 2. Beet Sugar 11. Cement 12. Chemicels 13. C2ay Products (Other Than Potteryl and Hovelay Refrectorion ${ }^{\text {d }}$ 15. Beeh1ve Cokid 16. Byproduct Coked ${ }^{\text {d }}$ 20. Fertilisers 21. Flour and Other Grain-Mili Productas 22. Puraiture 20. Iron and stoel Group 41. IId Leather 48. Notor Vehlelea 48. Newapaper and Porlodical Printing and Publiahing 51. Primary ginelters and Refineries ${ }^{\text {a }}$ 5s. Alloyera, Rollind Milla, and Foundries ${ }^{\text {d }}$ 56. Paper 57. Pulp 58. Petroleun Refining 50. Planing-Mil1 Productod 65. Slaughtering and Mene Pacling e8. Clqaretten	7. Cane-Sugar Refining ss. Eole ind Harness Leather 40. Calfakin 54. Painta and Yarnishes	3. Boots and Shoes 4. Brend and Other Bakery Products Groupe 9. Ganned and Preserved Fruits and Vegetables 10. Canned and Cured Pish 17. Confectionery ${ }^{r}$ 18. Cotton Gooda 29. Glase Group 28. Ice Crem 32. Knit Goods Group 39. Side and Opholptery Lenther 42. Sheep and Kiscellaneous Leather 44. Losgidg Camps 45. Sawille and Saw-plant M11s ${ }^{6}$ 46. Kanufnctured Gas 47. Manufnetured Ice 52. Secondury Sinelters and eo. Rayor ${ }^{*}$ Refinerlea 02. Rubber Tires and Inner 7ubes: 63. Other Rubber Goods ${ }^{4 \cdot} \mathrm{~g}$ 64. Silk and Rayon Goods 87. Clgara 89. Chowing and Smokial Fobseco and Snuff 70. Woolen and Worsted Goods Group
 $\varepsilon_{\text {tantelel pertod te } 1980-89 .}$ ${ }^{\text {a }}$ Raverual of direction of rete of chage. tialtial puriad te rees-ze. 		

rates of change in man-hour productivity for the later period. The industries with annual rates of increasing output per man-hour above 10 percent - Rubber Tires and Inner Tubes and Rayon - account for 2 percent of the 1929 wage-earner employment in the sample. Twelve industries, representing 21 percent of emplogment, are found in the interval +5.1 to +10.0 percent; 18, representing 33 percent of employment, in the interval +2.6 to +5.0 percent; and 10 , representing 36 percent, in the interval +0.1 to +2.5 percent.

These advances in man-hour productivity beyond the 1929 level were registered before the output of most industries had regained the 1929 level. Between 1929 and 1935, 35 industries, representing 78 percent of employment, had negative average annal rates of change in production (table XVIII). Furthermore, 36 industries, representing 79 percent of employment,

Table XVIII. - DISTRIBUTIDN DF 49 MANUFACTURINE INDUSTAIES AND THEIA 1929 EMPLOYMENT ACCORDING TO AYERAGE ANNUAL RATES OF CMANGE DP PRODUCTION, EMPLOYMENT, AND MAN-MDURS BETWEEN 1929 AND 1935

Average annual rate of change	Production		Employment		Man-hours	
	Number of industries	Percentage distribution of 1929 employment	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { indus- } \\ \text { tries } \end{gathered}$	Percentage distribution of 1929 employment	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { indus } \\ \text { tries } \end{array}\right\|$	Percentage distribution of 1929 employment
Total	49	100.0	49	100.0	49	100.0
Over -10.0	7	12.4	2	2.1	9	18.2
-7.6 to -10.0	3	9.4	6	14.2	8	18.3
-5.1 to - 7.5	6	13.6	5	8.7	13	31.2
- 2.6 to - 5.0	8	26.9	5	4.3	14	26.2
-0.1 to - 2.5	11.	15.7	18	50.0	3	4.9
0	0	0	1	2.3	1	0.9
+0.1 to + 2.5	11	18.6	9	15.2	1	0.3
+2.6 to +5.0	2	2.5	3	3.2	0	0
+5.1 to + 7.5	0	0	0	0	0	0
+ 7.6 to +10.0	0	0	0	0	0	0
+10.1 to +12.5	0	0	0	0	0	0
+12.6 to +15.0	1	0.9	0	0	0	0
Over +15.0	0	0	0	0	0	0

engaged a smaller force of wage earners in 1935 than in 1929 while 1 used a similar force. Of the 49 industries, all but 2 , accounting for 1 percent of the sample employment, utilized fewer man-hours in 1935 than in 1929 . The reduction in man-hours was more severe than the reduction in employment. Industries accounting for 29 percent of the 1929 employment in the sample showed annual rates of decrease in the number of wage earners ranging above -2.5 percent; 94 percent of the 1929 wage earners are included in the same range for man-hours.

Productivity, 1929-33.- Since the years 1929-35 are characterized by sharp fluctuations in production, it is of interest to examine the movements of productivity first during the period of decline, between 1929 and $1933,{ }^{12}$ and then during the period of recovery, between 1933 and 1935 . The decline in production aftér 1929 persisted in most industries until 1932. This decline was usually accompanied by a decline in output per man-hour in the years immediately after 1929. Between 1929 and 1930 man-hour productivity decreased in 15 industries, which employed half the total wage earners in the sample of 49 industries in 1929; the decrease was less than 7 percent in all but one instance. Although by 1931 man-hour productivity had risen above the 1929 level in many of these industries, new declines were registered in others. Between 1929 and 1931 industries which employed almost half the wage earners in 1929 suffered a decline in output per man-hour. The same is true for the interval 1929-32. These later declines, moreover, were more severe than those of 1929-30. In 1933, when production began to rise, output per man-hour was below the 1929 level in only nine industries, which employed 14 percent of the wage earners in the sample; two industries, which accounted for 12 percent of 1929 employment, showed the same output per man-hour in 1933 and in 1929 (table XIX). In the remaining 38 industries, however, output per man-hour was higher in 1933 than in 1929. In 24 of these, which employed 57 percent of the wage earners, the average, annual rate of increase between 1929 and 1933 was from:+0.1 to +5.0 percent; in 11 , representing 14 percent of the employment, the rate of increase was between 5 and 10 percent; and in the remaining 3 industries it was over 10 percent.

[^51]Table xix. - distribution of 49 manupacturing industries and fHEIR 1929 EMPLOYMENT ACCORDINE TO AVERAGE AKNUAL RATES df Change df dutput per Wage barner and dutput PER MAN-HDUR BETWEEN 1929 AND 1933

Average annual rate of change	Output per wage earner		Output per man-hour	
	Number of industries	Percentage distribution of 1929 employment	Number of industries	Percentage distribution of 1929 employment
Total	49	100.0	49	100.0
Over -10.0	4	12.0	2	1.0
- 7.6 to -10.0	2	4.7	0	0
- 5.1 to - 7.5	6	16.0	1	0.4
- 2.6 to - 5.0	9	23.8	1	1.8
- 0.1 to - 2.5	10	15.9	5	10.5
0	2	4.7	2	12.0
+ 0.1 to + 2.5	11	19.5	10	37.1
+2.6 to + 5.0	4	2.5	14	19.8
+5.1 to + 7.5	0	0	6	5.0
+ 7.6 to +10.0	0	0	5	8.8
+10.1 to +12.5	0	0	1	1.5
+12.6 to +15.0	1	0.9	1	1.4
Orer +15.0	0	0	1	0.9

The rise in output per man-hour may be overstated by some of the NRP indexes. In many consumers -goods industries there was probably a shift toward the manufacture of lower grade and. cheaper products requiring less labor per unit. Though an attempt was made, through the use of a productivity formula for a fixed production composite, to exclude the effect of clanges in the composition of production, this could not often be accomplished because of the lack of the necessary data. An upward bias in the indexes of output per man-hour for eight industries may also result from the assumption that full-time and actual average weekly hours were the same in $1929 .{ }^{13}$ Though the effect of this bias may well be to exaggerate the rates of increase in industries with rising output per man-hour, it probably does not result in the transfer of industries with declining output per man-hour into class intervals of-increasing productivity.

[^52]With the sharp drop in average weekly hours between 1929 and 1933, output per wage earner, of course, declined more rapidly than output per man-hour. The former declined in 31 industries which employed 72 percent of the wage earners in the sample in 1929 . Of these 31 industries, 8 , accounting for 21 percent of 1929 employment, showed average annual rates of decrease of from 5.1 to 10.0 percent; 4 others, which employed 12 percent of the wage earners in 1929, had rates of decrease greater than 10 percent.

Productivity, 1933-35.- With the increase in the volume of production between 1933 and 1935 , output per man-hour rose in 37 industries and groups, which together accounted for 85 percent of the wage earners in the sample in 1929. The average annual rates of increase, moreover, were greater than in the period 1919-29; in 22 instances, accounting for 65 percent of 1929 employment, the rates were from 2.6 to 7.5 percent.

> Table XX. - BISTRIBUTION DF 49 MANUFACTURING INDUSTRIES AND THEIR $192 S$ EMPLOYMENT ACCORDINB TD AYERAGE ANNUAL RATES DF CHANGE OF OUTPUT PER WAGE EARNER AND DUTPUT
> PER MAN-HOUR BETWEEN 1933 AND 1935

Average annual rate of change	Output per wage earner		Output per man-hour	
	Number of industries	Percentage distribution of 1929 employment	Number of industries	Percentage distribution of 1929 employment
Total	49	100.0	49	100.0
Over -10.0	0	0	0	0
- 7.6 tor. -10.0	2	3.0	1	0.1
- 5.1 to - 7.5	2	0.9	2	3.5
- 2.8 to - 5.0	6	12.8	2	1.8
-0.1 to-2.5	8	17.1	7	9.5
0	0	0	0	0
+0.1 to +2.5	12	21.3	4	5.1
+2.6 to + 5.0	6	6.5	10	31.0
+5.1 to + 7.5	4	14.7	12	34.2
+7.6 to +10.0	8	18.0	5	4.2
+10.1 to +12.5	0	0	3	4.8
+12.6 to +15.0	2	4.8	0	0
Over +15.0	1	0.8	3	5.7

A decrease in output per man-hour was recorded for only 12 industries, accounting for but 15 percent of the wage earners in 1929. (See table XX.)

Output per wage earner rose in this interval in 31 industries which employed 66 percent of the wage earners in 1929 . There were more cases of declining output per wage earner than declining output per man-hour between 1933 and 1935. Wageearner productivity decreased in 18 industries which accounted for 34 percent of 1929 employment in the sample.

Conalusiene

Output per man-hour rose considerably and almost without exception in the period of increasing production, 1919-29. Even in the gears of declining production which followed, the movement of man-hour productivity persisted upward in industries employing about half the wage earners. When production increased in 1933, output per man-hour rose also, and at a more rapid rate than in the immediately preceding years. By 1935 output per man-hour was above the 1929 level in industries or groups accounting for 92 percent of employment, even though production was generally below the 1929 level. Furthermore, in those instances where production was higher in 2935, the rate of increase in productivity was generally higher for 1929-35 than for 1919-29. In view of these facts it may be expected that even if production does not rise beyond the 1935 level output per man-hour will exceed the 1935 level, and that if production surpasses the 1929 level and continues upward, output per man-hour will probably advance at a rate comparable at least to that for the period 1929-35.
Reemployment prospects, however, have to be considered in terms of men rather than man-hours. In these terms it should be noted that because of the large reduction in the average hours worked per week between 1929 and 1935 the output per wage earner in most of the industries declined in spite of the fact that the output per man-hour rose. With the upturn of production after 1932, however, the output per wage earner for the sample as a whole began to rise again and it appears that the reattainment of 1929 production is likely to find the output per wage earner back again at or beyond the 1929 level. If this statement based on the NRP sample is generalized,
the same may be said for all manufacturing provided that the average number of hours worked per week remains as it was in 1936 and that the composition of production does not change significantly.
The probability for the future seems to be that there will be less rather than more employment in manufacturing industries. Should manufacturing industries reach and sustain the 1929 level of ontput within the next few years, the average number of wage earners required will not far exceed, if at all, the average number employed in 2929 , despite the 20 -percent reduction in the average number of hours worked per week that occurred between 1929 and 1936 . In the longer run, since output per man-hour seems certain to increase further, manufacturing employment will probably be below that of 1929. Only a great increase in production or a marked decline in hours worked per week could bring manufacturing employment to levels appreciably higher than 1929 . It is well to recall, however, that even the 50-percent increase in output between 1919 and 1929 left the average number of wage earners in manufacturing almost stationary.

SUMMARY CHARTS FOR INDIVIDUAL INDUSTRIES AND GROUPS

The 72 charts which follow present the summary indexes for production, employment, man-hours, and productivity for the 59 manufacturing industries and the 13 industry groups into which 35 of the industries were combined.

The indexes shown on the charts may be found in tables which appear at the conclusion of the discussion of the corresponding industries and groups in Part Two. The charts and tables bear similar numbers. All indexes have the base 1929.
figura 1.- Summary indexes for the agricultural implements InDUSTaY: 1820-38
$(1828=100)$

phgafe 2e.- sumphay indexes por the beet sugar thdustay: 1818-ze
$(1920=100)$

Pigura 2b. - sumary indexes for the beet gugar industry: campaign and intercampaign months, $1918-36$ $(1828=100)$

FIgrea 8. - SUMMARY INDEXES FOR THE BO日T AND SHOES INBUSTAY: 1919-38*

$$
(1929=100)
$$

PIgure 4.- SUMMARY INDEXES POR THE BREAD AND OTHER BAKERY PRODUCTS INDUSTAY BROUP: 1823-36

$$
(1829=100)
$$

Figere s.- sumpary ingexes for the giscuit and erackers - IMDUSTRY: 1823-36
$(1328=100)$

Piguse $5 .-$ sumary indexes por the gakery products other THAN BISCUIT AND CRACKRRS INDUSTRY: 1823-36
$(1828=100)$

Pigife 7.- sumary indexes por the cane-subar repiming Industry: 1818-36
$(1928=100)$

Pigura g.- Summary indexes for the canning and preserving INDUSTRY GROUP: 1518-38
$(1829=100)$

Pifura s.- sumpary indexes for the canned and pheserved PRUITS AND VEbETABLES INDUSTAY: 1919-36
$(1929=100)$

Pigura 10.- Summary INDEXES POR THE CANNED AND CURED PISH INDUSTRY: 1819-36

$$
(1829=100)
$$

FIgIfa 1t.- bympary indexes por the cement industay: 1919-3g
(1829 = 100)

figura l2.- summary indexes for the chemicals INDUSTAY: 1818-36

$(1829=100)$

Figera 13.- SUMARY INDEXES FOR THE CLAY PRODUCTS
(OTKER THAN PITTEBY) AND NOMCEAY REPRACTORIES
ImDUSTAY: 1819-36
$(1928=100)$

Pigura 14.- summary indexes por the coke INDUSTRX GROUP: 1919-36
$(1828=100)$

Pigure 15.- sumpary indexes por the beenive coke INDUSTRY: 1818-36
$(1929=100)$

Pigure 16.- summary indexes por the gypronuct coke INDUSTAY: 1818-38
$(1829=100)$

Pigese 17.- sumagy indexes for thb conpectionbay INDUETAY: 1825-86

$$
(1028=100)
$$

Figuze 18n.- SUMMARY INDEXES FOR TME COTTON gDODS INDUSTAY: 1818-88
$(1829-100)$

WPA - NATIONAL RESEARCH PROJECT

(1821-100)

figiri 19.- BUMMARY INDEXES POR TKE ELECTAIC. LAMPS
INDU8TAY: 1820-31
$(1828=100)$

Pigmet 20.- sumariy indexes for the pertilizers INDUSTRY: 1818-38
$(1928=100)$

Figura 21.- SUMMARY INDEXES FOR THE PLOUR AND OTHER GRAIN-MILL PRDDUCTS INDUSTRY: 1818-36
$(1828=100)$

Pigura 22.- sumpary indexes for the furniture INDUSTAY: 1918-38
$(1928=100)$

FIgure 23. - SUMMARY INDEXES POR TKE ELASS INDUSTRY BROUP: 1919-38

$$
(1923=100)
$$

Pigera 24.- sumpary indexes por the hindow glass
INDUSTRY: 1819-36
$(1929=100)$

Figura 25.- SUMMARY INDEXES POR TKE PLATE GLASS INDUSTRY: 1919-36

$$
(1929=100)
$$

Pignza 26.- SUMMARY INDEXES PDR tME GLASS CONTAINERS INDUSTRY: 1918-38
$(1929=100)$

PIGuze 27. - SUMMARY INDEXES FOR THE PRESSED AND BLDWN WARE INDUSTRY: 1948-3E
$(1928=100)$

FIgari 2e.- BUMQURY IMDEXES POR TKE ICE CREAM InDustry: 1818-8B
$(1828=100)$

Pigura 29.- summary indexes par the iron and steel INDUSTRY GROUP: 1818-36
$(1829=100)$

FIBEEA 30.- SUMMARY INDEXES FOR BLAST PURNACES: 1819-38

```
(1828 = 100)
```


figari 31.- summary indexes por steel works and folling mills: 1919-36
 $$
(1929=100)
$$

Pignea 32.- sumany indexes por the knit godos INDUSTAY GROUP: 1818-88
$(1820=100)$

PIfure 33.- SUMMART INDEXES POR THE KOEIERY INDUSTAY: 1819-36

$$
(1928=100)
$$

Pignte 34.- summaiy indexes for the underwear thdustay: 1919-3B
$(1829=100)$

Fignfe 35.- sumanary indexes por the outerwean INDUSTRY: 1818-36

$$
(1829=100)
$$

Fiferi 3e. - sumpany Indexes Fon the knit cioth INDUSTRY: 1919-35
$(1929=100)$

Figupa 37.- SUMMARY indexes for the leather INDUSTRY GROUP: 1918-36
$(1929=100)$

$(1928=100)$

WPA - NATIONAL RESEARCH PROJECT

FIGUR: 39. - SUMMARY INDEXES POR THE SIDE AND UPHOLSTERY LEATHER INDUSTRY: 1819-38

$$
(1929=100)
$$

PIgara 40.- SUMMARY INDEXES PDR THE CALFSKIN INDUSTAY: 1919-36
$(1828=100)$

Pigura 41.- Sumary indexes por the kid leather INDUSTRY: 1819-36
$(1929=100)$

Figepa 42.- SuMMARY tMDEXES PaR THE SKEEP AND MISCELLANEOUS LEATKER IMDUSTRY: 1915-36
$(1829=100)$

WPA - NATIONAL RESEARCH PROJECT

Figure 43.- SUMMARY INDEXES PDR THE LUMEER AND TIMBER PRODUCTS INDUSTAY GROUP: 1918-35
$(1928=100)$

WPA - NATIONAL RESEARCH PROJECT

FIEEFE 44.- SUMMARY IKDEXES FOR LOEBINB CAMPS: 1918-3G
$(1929=100)$

FIguzo 45. - SUMMARY INDEXES FOR SAWMILLS AND

 SAW-PLANE MILLS: 1818-3B```
(1929 = 100)
```



Figafe 46.- SUMMARY INDEXES FOR TKE MANUPACTURED BAS INDUSTRY: 1918-35
$(1825=100)$


Pignfe 47.- SUMMARY INDEXES FOR THE MANUPACTURED ICE INDUSTRY: 1819-35

$$
(1929=100)
$$



PIgefa 48.- gumarar indexes for the motar vehicles INDUSTRY: 1819-36
$(1929=100)$


Pigure 49.- SUMMARY INDEXES FOR THE NEWSPAPER AND PERIDDICAL PRINTINE AND PUELISKING INDUSTAY: 1918-3.
$(1828=100)$


Pigeza gi.- sumahy indexes par The nonperrous metals INDUSTAY BROUP: CENBUS YEARS 1s1s-35
$(1828=100)$


Pigura 51.- SUMMARY INDEXES FDR PRIMARY SMELTERS AND
HEPINERIES: 1819-36
$(1829=100)$


Fitura b2.- Summary indexes por secondahy smelters and hepineries: CEmsus years 1919-35
$(1820=100)$


Figure 53.- sumary indexes for alloyers, Rolling mills; and POUNDRIES: 1819-36
$(1029=100)$


FIEARE 54.- SUMMARY INDEXES POR THE PAINTS AND VARNISHES INBUSTAY: 1818-36
$(1829=100)$


Pigura 55.- Summary indexes por the paper and pulp INDUSTAY GROUP: 1818-3E
$(1929=100)$


WPA - NATIONAL RESEARCH PROJECT

```
(1825 = 100)
```



PIgEte 57.- SMMARY INDEXES POR THE PULP INDUSTRY: 1918-36
$(1828=100)$


Ficera 88. - EUMMARY INDEXES POR THE PETROLEUM REPININE INDUSTAY: 1918-88
(1928 = 100)


FIgura 5g.- Summary ingexes por the planing-mill products INDUSTAY: 1818-35
$(1828=100)$



Figura 6i.- SUMMARY INDEXES POR THE RUBBER PRODUCTS INDUSTAY $\mathrm{QROUP}^{1921-36}$
$(1829=100)$


Pignfe B2.- SUMMARY INDEXES PDR THE RUBEER TIRES AND INNER TUBES INDUSTRY: 1921-36
$(1829=100)$


PIgret 63.- SUMMARY INDEXES FDR TKE OTHER RUBBER EODDS INDUSTRY: 1821-36
$(1928=100)$


Figera 64.- sumany INDEXES FOR TKE gILK aND RAYON goods IMDUSTRY: 1918-8G
$(1929=100)$


PIGERA GS. - SUMMARY INDEXES FOR THE SLAUGMTERING AND MEAT PACKING INDUSTRY: 191g-38

$$
(1929=100)
$$



Pigira S6.- sumarahy indexes for the togacen products INDUSTAY GROUP: 1918-3B

$$
(1928=100)
$$



FIgEE GS. - SUMMARY INDEXES FOR THE GKEWING AND SMOKING TOBACCO AND SNUPP INDUSTRY: 1919-36

$$
(1929=100)
$$



Pigure 70.- Summary inaexes for the wodlen and WORSTED BOODS INDUSTRY GROUP: 1919-36
$(1929=108)$


Figura 71.- summary indexes for the woolen goods INDUSTHY: CENSUS YEARS 191s-31
$(1929=100)$


FIgurs 72.- SUMMARY INDEXES FOR THE WORSTED $\operatorname{tDODS}$ INDUSTAY: CENSUS YEARS 1818-3i

$$
(1929=100)
$$



## WPA NATIONAL RESEARCH PROJECT

## Reports issued to date

## (Continued from inotde front cover)

Studies in Production, Productivity, and Employment-Contirued

## Mining

E-2 Bnall-scale Placer Mines as a source of Gold. Employment, and Livelihood in 1935 (out of print)
E-4 Emplogment and Related statistics of Mines and Quarries, 1935: Coal
E-7 Technology, Emplegment, and Output der Man in Phosphate-Rock Mining, 1880-1937
E-8 Changes in Technology and Labor Requirements in the Crushed-Stone Industry
E- Mechanization, Employment, and output per Man in Bituminous-Coal Mining (in press)
E-10 Techaology, Employment, and Output per Man In Petroleun and Natural-Gas Production (in press)

Agriculture
Changes in Technology and Labcr Requirements in Crop Production:
A-1 sugar beets
A-4 Potatoes
a-5 Corn
A-7 cocton
A-10 Wheat and 0ats
A-0 Trends in size and production of the Aggregate Farm Enterprise, 1909mb
A-8 Trends in Employment in Agriculture, 1000-30

Studies of Effects of Industrial Change on Labor Markets
P-1 Recent Trends in Employment and Unemployment In Philadelphia
p-2 The Labor force of the philadelphia Radio Industry In 1936
Pa Employment and Unemployment in Philadelphia in 1936 and 1937 (in two parts)
P-4 Ten Years of Work Experience of Philadelphia Weavers and Loom Fixers
P-5 Ten Years of Wort Experience of philadelphia Machinists
P-0 Reemployment of Philadelphia Hosiery Workers After shut-downs in 1933-34
P-7 The Eearch for Hork in Philadelphia, 1032-36
L-1 Cigar Kavers - After the Lay-off
L-2 Decasualization of Longshore Work in San francisco
L-8 Employment Experience of Paterson Broad-811k Workers, 1926-30
L-4 Belective Factors in an Expanaing Labor Market: Lancaster, Pa. (in press)
L-6 Lebor and the Decilne of the Amoskeag Textile Mills (in press)

# PRODUCTION ${ }^{-}$ EMPLOYMENT AND PRODUCTIVITY IN 59 MANUFACTURING INDUSTRIES 

PART TWO: INDEXES FOR INDIVIDUAL INDUSTRIES AND METHODS OF CONSTRUCTION

WORKS PROGRESS ADMINISTRATION NATIONAL RESEARCH PROJECT

# WORKS PROGRESS ADNINISTRATION <br> F. C. HARRINGTON Administrator <br> CORRINGTON GILL <br> Assistant Administrator 

# NATIONAL RESEARCH PROJECT 

on
Reemployment Opportunities and Recent Changes
in Industrial Techniques
DAVID WEINTRAUB
Director

# PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY <br> IN 59 manufacturing industries, <br> 1919-36 <br> With an Appendix on the Electric Light and Power and Telephones Industries 

by<br>Harry Magdoff<br>and

Irving H. Siegel Milton B. Davis

# PART TWO: INDEXES FOR INDIVIDUAL INDUSTRIES AND METHODS OF CONSTRUCTION 

works progress administration, national research project
Report No. S-1, Part Two
Philadelphia, Pennsylvania
Kay 1939

## CONTENTS

Industry Page
NOTE ON PART TWO ..... xiii

1. AGRICULTURAL IMPLEMENTS ..... 1
Production ..... 1
Employment and man-hours ..... 3
2. BEET SUGAR ..... 5
Production ..... 5
Man-hours. ..... 5
3. BOOTS AND SHOES. ..... 10
Production ..... 10
Employment and man-hours ..... 12
4. BREAD AND OTHER BAKERY PRODUCTS GROUP ..... 14
5. BISCUIT AND CRACKERS ..... 14
B. BAKERY PRODUCTS OTHER THAN BISCUIT AND CRACKERS. ..... 14
Production ..... 15
Employment and man-hours ..... 17
6. CANE-SUGAR REFINING ..... 20
Production ..... 20
Employment and man-hours ..... 20
B. CANNING AND PRESERVING GROUP ..... 22
7. CanNed and preserved fruits and vegetables ..... 22
8. CANNED AND CURED FISH. ..... 22
Production ..... 22
Canning and preserving group ..... 22
Canned and preserved fruits and vegetables ..... 23
Canned and cured fish. ..... 25
Employment ..... 25
Canning and preserving group ..... 25
Canned and preserved fruits and vegetables ..... 28
Canned and cured fish. ..... 26
Man-hours ..... 27
9. CEMENT ..... 30
Production ..... 31
Employment ..... 32
Man-hours. ..... 33
Productivity ..... 33
10. CHEMICALS. ..... 30
Production ..... 36
Employment and man-hours ..... 42
Industry Page13. CLAY PRODUCTS (OTHER THAN POTTERY) AND NONCLAYREFRACTORIES44
Production ..... 44
Employment and man-hours ..... 46
Productivity ..... 48
11. COKE GROUP ..... 50
12. BEEHIVE CORE ..... 50 ..... 50
Production ..... 50
Coke group ..... 50
Beehive coke ..... 51
Byproduct coke ..... 51
Employment and man-hours ..... 53
13. CONFECTIONERY. ..... 56
Production ..... 56
Employment and man-hours ..... 57
14. COTTON GOODS ..... 59
Production ..... 59
Employment and man-hours ..... 61
Productivity ..... 63
15. ELECTRIC LAMPS ..... 66
Production ..... 66
Employment, man-hours, and productivity ..... 68
16. FERTILIZERS ..... 70
Production ..... 70
Employment and man-hours ..... 72
17. FLOUR AND OTHER GRAIN-MILL PRODUCTS. ..... 74
Production ..... 74
Employment and man-hours ..... 78
18. FURNITURE ..... 78
Production ..... 78
Employment and man-hours ..... 79
19. GLASS GROUP ..... 81
20. WINDOW GLASS ..... 81
21. PLATE GLASS. ..... 81
22. GLASS CONTAINERS ..... 81
23. PRESSED AND BLOWN WARE ..... 81
Production ..... 82
Glass group. ..... 82
Window glass ..... 82
Plate glass ..... 83
Glass containers ..... 83
Pressed and blown ware ..... 84
Employment ..... 84
Man-hours ..... 85
CONTENTS ..... vii
Industry Page
24. ICE CREAM ..... 89
Production ..... 89
Employment and man-hours ..... 89
25. IRON AND STEEL GROUP ..... 92
26. BLAST FURNACES ..... 92
27. STEEL WORKS AND ROLLING MILLS ..... 92
Production ..... 92
Iron and steel group ..... 92
Blast furnaces ..... 93
Steel works and rolling mills ..... 93
Employment and man-hours ..... 97
Productivity ..... 98
Blast furnaces ..... 98
28. KNIT GOODS GROUP ..... 101
29. HOSIERY. ..... 101
30. UNDERWEAR. ..... 101
31. OUTERWEAR. ..... 101
32. KNIT CLOTH ..... 101
Production ..... 101
Knit goods group ..... 101
Hosiery. ..... 102
Underwear ..... 103
Outerwear ..... 104
Knit cloth ..... 105
Employment and man-hours ..... 105
33. LEATHER GROUP ..... 110
34. SOLE AND HARNESS LEATHER ..... 110
35. SIDE AND UPHOLSTERY LEATHER. ..... 110
36. CALFSKIN ..... 110
37. KID LEATHER. ..... 110
38. SHEEP AND MISCELLANEOUS LEATHER ..... 110
Production ..... 111
Employment and man-hours ..... 113
39. LUMBER AND TIMBER PRODUCTS GROUP ..... 120
40. LOGGING CAMPS. ..... 120
41. SAWMILLS AND SAW-PLANE MILLS ..... 120
Production ..... 121
Loǵging camps ..... 121
Sawmills ..... 121
Saw-plane mills ..... 122
Lumber and timber products group ..... 123
Employment ..... 123
Man-hours ..... 124
1919-29. ..... 124
Sawmills and saw-plane mills ..... 124
Logging camps ..... 125
Industry Page
Lumber and timber products group ..... 125
1930-36. ..... 125
42. MANUFACTURED GAS ..... 128
Production ..... 128
Employment and man-hours ..... 132
43. MANUFACTURED ICE ..... 134
Production ..... 134
Employment and man-hours ..... 134
44. MOTOR VEHICLES ..... 136
Production ..... 137
Employment and man-hours ..... 142
Productivity ..... 143
45. NEWSPAPER AND PERIODICAL PRINTING AND PUBLISHING ..... 145
Production ..... 145
Employment and man-hours ..... 147
46. NONFERROUS METALS GROUP. ..... 149
47. PRIMARY SMELTERS AND REFINERIES. ..... 149
48. SECONDARY SMELTERS AND REFINERIES. ..... 149
49. ALLOYERS, ROLLING MILLS, AND FOUNDRIES ..... 149
Production ..... 149
Nonferrous metals group. ..... 149
Primary smelters and refineries ..... 150
Secondary smelters and refineries ..... 153
Alloyers, rolling mills, and foundries ..... 155
Employment and man-hours ..... 158
Nonferrous metals eroup. ..... 158
Primary smelters and refineries ..... 159
Secondary smelters and refineries ..... 159
Alloyers, rolling mills, and foundries ..... 160
50. PAINTS AND VARNISHES ..... 163
Production ..... 163
Employment and man-hours ..... 164
51. PAPER AND PULP GROUP ..... 166
52. PAPER. ..... 166
53. PULP ..... 168
Production ..... 168
Paper and pulp group ..... 168
Paper ..... 168
Pulp ..... 171
Employment ..... 173
Man-hours ..... 174
Productivity ..... 178
54. PETROLEUM REFINING ..... 181
Production ..... 182
Employment and man-hours ..... 183
Industry Page
55. PLANING-MILL PRODUCTS ..... 185
Production ..... 185
Employment and man-hours ..... 186
56. RAYON. ..... 187
Production ..... 187
Employment and man-hours ..... 189
57. RUBEER PRODUCTS GROUP. ..... 191
58. RUBBER TIRES AND INNER TUBES ..... 191
59. OTHER RUBBER GOODS ..... 191
Production ..... 191
Rubber products group. ..... 191
Rubber tires and inner tubes ..... 192
Other rubber goods ..... 194
Employment and man-hours ..... 195
Note on the method of segregating employment and man-hours for tires and tubes and for other rubber goods. ..... 196
60. SILK AND RAYON GOODS ..... 199
Production ..... 199
Employment and man-hours ..... 202
61. SLAUGHTERING AND MEAT PACKING. ..... 204
Production ..... 204
Employment and man-hours ..... 207
62. TOBACCO PRODUCTS GROUP ..... 209
63. CIGARS ..... 209
64. CIGARETIES ..... 209
65. CHEWING AND SMOKING TOBACCO AND SNUFF. ..... 209
Production ..... 211
Tobacco products group ..... 211
Cigars ..... 211
Cigarettes ..... 214
Chewing and smoking tobacco and snuff ..... 214
Employment: unadjusted. ..... 215
Man-hours: unadjusted ..... 217
Cigars ..... 217
Cigarettes ..... 218
Chewing and smoking tobacco and snuff. ..... 218
Adjustment of employment and man-hours for comparability with production ..... 219
Note on the method of segregating employment and man-hours for cigarettes and for chewing and smoking tobacco and snuff ..... 220
66. WOOLEN AND WORSTED GOODS GROUP ..... 223
67. WOOLEN GOODS ..... 223
68. WORSTED GOODS. ..... 223
Production ..... 223
Industry Page
Woolen and worsted goods group ..... 223
Woolen goods ..... 224
Worsted goods industry ..... 225
Employment and man-hours ..... 226
Note on the method of segregating employment and man-hours for woolen goods and for worsted goods ..... 228
tables
Table
Summary indexes:
69. Agricultural implements: 1920-36. ..... 4
2a. Beet sugar: 1918-38 ..... 8
2b. Beet sugar: campaign months, 1918-36. ..... 8
$2 c$. Beet sugar: intercampaign months, 1918-36 ..... 9
70. Boots and shoes: 1919-36. ..... 13
71. Bread and other bakery products group: 1923-36. ..... 18
72. Biscuit and crackers: 1923-36 ..... 18
73. Bakery products other than biscuit and crackers: 1923-36. ..... 18
74. Cane-sugar refining: 1919-36. ..... 21
75. Canning and preserving group: 1919-36 ..... 28
Ө. Canned and preserved fruits and vegetables: 1919-36. ..... 28
76. Canned and cured fish: 1819-36. ..... 29
77. Cement: 1919-36 ..... 35
78. Chemicals: 1919-36. ..... 43
79. Clay products (other than pottery) and nonclay refractories: 1919-36 ..... 49
80. Coke group: 1919-36 ..... 54
81. Beehive coke: 1919-36 ..... 54
82. Byproduct coke: 1919-36 ..... 55
83. Confectionery: 1925-36 ..... 58
18a. Cotton goods: 1919-36 ..... 64
18b. Cotton goods, by region: census years 1919-35 ..... 65
84. Electric lamps: 1920-31 ..... 89
85. Fertilizers: 1919-36. ..... 73
86. Flour and other grain-mill products: 1919-36 ..... 77
87. Furniture: 1919-36. ..... 80
88. Glass group: 1919-38. ..... 88
89. Window glass: 1919-36 ..... 87

TABLES-Continued
Table Page
Summary indexes:
25. Plate glass: 1919-36. ..... 87
26. Glass containers: 1919-36 ..... 88
27. Pressed and blown ware: 1919-36 ..... 88
28. Ice cream: 1919-36. ..... 91
29. Iron and steel group: 1919-36 ..... 99
30. Blast furnaces: 1919-38 ..... 99
31. Steel works and roliing mills: 1819-36. ..... 100
32. Knit goods group: 1919-36 ..... 107
33. Hosiery: 1919-36. ..... 108
34. Underwear: 1919-36 ..... 108
35. Outerwear: 1919-36. ..... 109
36. Knit cloth: 1819-36 ..... 109
37. Leather group: 1818-36 ..... 117
38. Sole and harness leather: 1919-36 ..... 117
39. Side and upholstery leather: 1919-36. ..... 118
40. Calfskin: 1918-36 ..... 118
41. Kid leather: 1919-36. ..... 119
42. Sheep and miscellaneous leather: 1919-36. ..... 119
43. Lumber and timber products group: 1919-36 ..... 126
44. Logeing camps: 1918-36. ..... 127
45. Sawmills and saw-plane mills: 1919-36 ..... 127
46. Manufactured gas: 1919-35 ..... 133
47. Manufactured ice: 1919-35 ..... 135
48. Motor vehicles: 1919-36 ..... 144
49. Newspaper and periodical printing and publishing: 1919-36. ..... 148
50. Nonferrous metals group: census years 1919-35 ..... 160
51. Primary smelters and refineries: 1919-36 ..... 161
52. Secondary smelters and refineries: census years 1919-35. ..... 161
53. Alloyers, rolling mills, and foundries: 1919-30. ..... 162
54. Paints and varnishes: 1919-36 ..... 165
55. Paper and pulp group: 1919-36 ..... 179
56. Paper: 1819-36 ..... 179
57. Pulp: 1918-36 ..... 180
58. Petroleum refining: 1919-36 ..... 184
59. Planing-mil1 products: 1919-30. ..... 186
60. Rayon: 1919-37. ..... 190
61. Rubber products group: 1921-36. ..... 197

## CONTENTS

## TABLES-Continued



# PART TWO: INDEXES FOR INDIVIDUAL INDUSTRIES AND METHODS OF CONSTRUCTION 


#### Abstract

This volume comprises 37 sections, of which 24 refer to individual industries and 13 to industry groups (these groups include the remaining 35 industries). Each section consists of a definition of the industry (or groupl, a description of the sources and methods used in the construction of the NRP indexes of production, employment, man-hours, and productivity, and a summary table (or tables) showing the NRP measures. The methodology for each industry or group should be considered in conjunction with the more general discussion in Part One, chapters I and II. The data from which the summary indexes have been computed will be found in Part Three, appendix A.


# INDEXES FOR INDIVIDUAL INDUSTRIES AND METHODS OF CONSTRUCTION 

## 1. AGRICULTUAAL implements

This industry, which employed almost 42,000 wage earners in 1929, includes all establishments whose principal products are classified in the following 8 groups:

1. Plows and listers
2. Harrows, rollers, pulverizers, and stalk cutters
3. Planting and fertilizing machinery
4. Cultivators and weeders
5. Harvesting machinery
6. Haying machinery
7. Machines for preparing crops for market or for use
8. Miscellaneous barnyard equipment and agricultural implements, such as hay forks, straw spreaders, and seed-potato cutters
In 1935 themanufacture of complete tractors, formerly included in the Engines, Turbines, Tractors, Water Wheels, and Windmills industry, was transferred by the Census to the Agricultural Implements industry. To make comparison withearlier years possible, however, the original Census definition was retained for 1935.

## Predection

Production statistics for items selected from the first 7 of the above-mentioned groups wereobtained for 1920 from Department of Agriculture Circular 212; ${ }^{1}$ for 1921-31 and 1933, from the Census of Manufactures; and for 1935 and 1936, from the annual Census reports on Manufacture and Sale of Farm Equipment and Related Products. No data were available for 1932 and 1934.

For the period 1920-31 series for 40 major products were used. Because of changes in classification, the relatives for 1933 and 1935-36 were based on $40^{2}$ and 26 products, respectively. The weighted aggregates for these products were divided by comparable aggregates for 1929, the base year, to obtain the index numbers for these years. Each quantity series was weighted by its unit value in 1929.

A report of the Federal Trade Commission ${ }^{3}$ supplies a basis for the belief that unit values tend to be proportional tounit labor

[^53]requirements. The stability of the ratio of "productive labor" cost to selling price for each of 22 products in 1916 and 1918 appears to be significantinview of the fact that the relationship between unit values in successive census years is also stable.

The products included in the index account for more than half of the total value of output of agricultural implements and unassembled parts and attachments: ${ }^{4}$

| Year | Coverage | Year | Coverage |
| :---: | :---: | :---: | :---: |
| 1923 | 50.2 | $1929^{5}$ | 56.5 |
| 1924 | 57.4 | 1930 | 54.4 |
| 1925 | 55.2 | 1931 | 43.4 |
| 1926 | 60.6 | 1932 | - |
| 1927 | 59.4 |  | 1933 |
| 1928 | 60.6 | 1934 | 30.7 |
| $1929^{5}$ | 59.7 | 1935 | - |
| $1929^{5}$ | 59.2 | 1936 | 50.9 |
|  |  |  | 54.6 |

In 1931 and 1933 value coverage was considerably lower than in other years. An adjustment on the basis of value (which presumes a.fixed relationship between the average price of the products in the sample and in the universe from year to yearl was not made, however, since it is not clear from available information whether the lower coverage in 1931 and 1933 is attributable solely to the quantity factor rather than to both the price and quantity factors of the products included in, and excluded from, the index. Below are presented, for comparative purposes, the NRP production index and the series obtained by dividing it by an index of value coverage:
$\left.\begin{array}{ccc}\text { Year } & \begin{array}{c}\text { NRP } \\ \text { production } \\ \text { index }\end{array} & \begin{array}{c}\text { Value-adjusted } \\ \text { production } \\ \text { index }\end{array} \\ 1923 & 57.0 & 67.8 \\ 1924 & 52.0 & 54.1 \\ 1925 & 56.2 & 60.8 \\ 1926 & 79.3 & 78.1 \\ 1927 & 76.2 & 76.6\end{array}\right]$

[^54]| [con.] | Year | NRP <br> production <br> index | Value-adjusted <br> production <br> index |
| :---: | :---: | :---: | :---: |
|  | 1928 | 87.2 | 85.9 |
|  | 1929 | 100.0 | 100.0 |
|  | 1930 | 74.2 | 81.4 |
| 1931 | 24.3 | 33.4 |  |
|  | 1932 | n.a. | n.a. |
|  | 1933 | 7.1 | 13.8 |
|  | 1934 | n.a. | n.a. |
|  | 1935 | 43.0 | 50.4 |
|  | 1936 | 72.7 | 79.5 |

It should be noted that the Census does not include the manufacture of tractors in the Agricultural Implements industry until 1935. However, because of their established position in agricultural operations and because some were produced by establishments within the industry, ${ }^{6}$ it is of interest to compare an index of tractor production ${ }^{7}$ with the NRP series:

| Year | NRP pro- <br> duction index <br> (agricultural <br> implements) | Index of <br> tractor <br> production |
| :---: | :---: | :---: |
| 1923 | 57.0 |  |
| 1925 | 56.2 | 40.5 |
| 1927 | 76.2 | 53.1 |
| 1929 | 100.0 | 100.0 |
| 1931 | 24.3 | 22.7 |
| 1933 | 7.1 | 9.5 |
| 1935 | 43.0 | 70.1 |
|  |  |  |

## Employmant and Manohoups

The index of employment, which conforms to Census trend, was constructed by splicing the NICB index for the years 1920-23 and the BLS series for 1923-36. The latter, as used in this report, was adjusted to Census totals, except for 1935, when the manufacture of complete tractors was transferred by the Census to the Agricultural Implements industry.

The employment and production indexes are not strict1y comparable in scope since some wage earners are engaged in the manufacture of such secondary products as carriages and wagons (excluded

[^55]from the industry by Census definition) and part of the output embraced by the production index is contributed from outside the industry. No adjustment in either of these indexes could be effected because the requisite statistics are not available. ${ }^{8}$ These 2 forms of noncomparability between the wage-earner and production statistics tend to offset each other, but it is not possible to determine the net effect.
The man-hours index was computed from the products of the BLS-NICB employment index and an annual series of average weekly hours obtained by splicing, in 1932, NICB figures for 1920-32 and BLS figures for 1932-36.

Table 1.- sumany indexes fon the aghicultuhal Implements industay: 1s20-3g
$(1929=100)$

| Year | Production | Employment | Man-hours | Output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1920 | 99.2 | 177.3 | 174.1 | 56.0 | 57.0 |
| 1921 | 51.1 | 73.1 | 61.0 | 69.9 | 83.8 |
| 1822 | 33.3 | 70.8 | 69.0 | 47.2 | 48.3 |
| 1923 | 57.0 | 74.4 | 74.3 | 78.6 | 76.7 |
| 1924 | 52.0 | 59.0 | 57.8 | 87.2 | 89.8 |
| 1825 | 58.2 | 68.9 | 89.3 | 81.8 | 81.1 |
| 1928 | 79.3 | 78.0 | 78.0 | 101.7 | 101.7 |
| 1027 | 76.2 | 80.1 | 79.5 | 95.1 | 95.8 |
| 1928 | 87.2 | 83. 2 | 83.8 | 83.8 | 93.0 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 74.2 | 74.8 | 85.5 | 99.2 | 113.3 |
| 1931 | 24.3 | 42.1 | 30.1 | 57.7 | 80.7 |
| 1932 | n.a. | 24.9 | 18.5 | - | - |
| 1933 | 7.1 | 28.8 | 18.3 | 26.5 | 38.8 |
| 1984 | n. a. | 46.5 | 34.4 | - | - |
| 1935 | 43.0 | 87.7 | 54.2 | 63.5 | 79.3 |
| 1936 | 72.7 | 76.5 | 81.6 | 95.0 | 118.0 |

[^56]
## 2. beet sugar

Establishments in the Beet Sugar industry are located in the beet-growing regions, particularly Colorado, Michigan, California, and Utah. The principal product, beet sugar, accounts for well over 90 percent of the value of the industry's output; its byproducts, molasses and pulp, contribute the remainder.

The production of beet sugar is highly seasonal. Beets harvested each fall are washed, sliced, and processed 24 hours daily during the short, intensive "campaign" period, which usually extends from October-November through January. In the other months, the sugar produced in the preceding campaign is packed and shipped, and the plant is prepared for the next period of production. The average number of wage earners employed in the calendar year 1929 was about 7,500.

## Produetion

The index of output is based on the quantities of beet sugar produced in the campaign periods beginning in calendar years 1918-36. Census statistics for 1918, 1920, 1922, 1924, 1926, 1928, 1931, 1933, and 1935 were supplemented by a continuous series which includes Department of Agriculture figures for 1918-34 and Lamborn and Company data for 1935-36. ${ }^{1}$

## Men-henss

Census andBLS employment data forcalendar years are not usable for the ultimate purpose of computing meaningful indexes of productivity ${ }^{2}$ since such a unit of time includes parts of 2 production (campaign) periods, each of which normally extends for 3 to 4 months from October-November of 1 year to January of the next. Thus, whea the Census reports sugar production from beets harvested in the preceding year (for the period 1919-29), only 1 of the accompanying monthly employment figures - for January refers to the proper campaign; and when the Census reports production from beets harvested in the same year (for the period

[^57]1931-35), only 2 or 3 of the monthly employment figures - for October-November and December - are relevant. BLS employment relatives are available monthly for only a few years; furthermore, they are adjusted to the trend of the Census calendar-year averages. ${ }^{3}$

The rejection of Census and BLS annual employment statistics did not, however, prevent the construction of a satisfactory man-hours index for either campaign seasons or annual periods embracing them. Data collected in an NRP-NBER field study were used to construct 3 indexes - 1 for a common fiscal year of the industry (March 1 to February 28) which includes 1 complete campaign; a second for the campaign only; and a third for the difference between the fiscal year and the campaign (viz, March to October-November and, in addition, the following February), which may be designated the "intercampaign."s The procedure followed was to multiply national output by corresponding campaign and intercampaign man-hour-requirement ratios to obtain campaign and intercampaign man-hours and then to add these products to obtain the fiscal-year totals.

The continuous man-hour-requirement series selected to represent the trend for campaign periods in $1919-35$ is based on a sample of 31 identical plants which represented 37 to 55 percent of total beet-sugar production. ${ }^{6}$ The ratio for each year was multiplied by corresponding total sugar output to estimate campaign man-hours.

Intercampaign man-hour requirements for sugar could not be determined for this same group of 31 plants, but a series for 27 plants including 21 of these 31 was available for 1928-35.6 This smaller group, which is composed of larger establishments, varied in coverage from 34 to 55 percent of total sugar production. To render the campaign and intercampaign ratios consistent in

[^58]level, the 27-plant series was adjusted on the assumption that the relationship between the intercampaign sugar-production and campaign beet-slicing ratios ${ }^{7}$ is the same in each year for the 27 plants as for the 31 . Multiplication of these adjusted figures Dy national beet-sugar output yielded intercampaign man-hours for 1928-35.

The next problem was to extend intercampaign man-hours back to 1919. This was done for alternate years of the period 1919-27 by multiplying the average number of wage earners reported by the Censusfor 7 intercampaign months (March-September) by the number of intercampaign hours per man, and then linking the resulting products to the 1928-35 series on the basis of the 1929 relationship. ${ }^{8}$ Intercampaignhours per man were estimated by multiplying intercampaign weeks in each fiscal year by 44 hours; ${ }^{9}$ intercampaign weeks were derived, in turn, by dividing the number of intercampaign days by 7 ; and finally, intercampaign days were obtained bysubtracting the number of days in the campaign period (as determined from the NRP-NBER samplel from 357, the probable number per fiscal year 1365 minus 5 holidays and 3 for factory delays).

To complete the series of intercampaign man-hours for intercensal years 1920-26, estimates of beet-slicing man-hour requirements computed from sample data were employed. First, the man-hours as determined above for census years 1919-27 were divided by national tonnage of beets sliced; ${ }^{10}$ these ratios were then interpolated by means of a similar series for the 27 -plant sample previously mentioned; ${ }^{11}$ and, finally, the new intercensal-year ratios were multiplied bycorresponding national totals of beets sliced.

[^59]8 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Tabla za. - SUMMARY INDEXES POR THE GEET SUGAR INDUSTIY: 1518-3E
(1929 = 100)

| Year | Production | Man-hours | Output per man-hour |
| :---: | :---: | :---: | :---: |
| 1918 | 70.3 | n. ${ }^{\text {a }}$ | - |
| 1819 | 66.9 | 156.6 | 42.7 |
| 1920 | 100.0 | 179.1 | 55.8 |
| 1921 | 102.2 | 158.6 | 64.4 |
| 1922 | 73.2 | 119.3 | 61.4 |
| 1923 | 90.3 | 115.5 | 78.2 |
| 1924 | 105.2 | 122.5 | 85.9 |
| 1925 | 68.6 | 124.6 | 71.1 |
| 1928 | 87.3 | 100.0 | 87.3 |
| 1927 | 107.0 | 107.5 | 98.5 |
| 1928 | 104.4 | 97.4 | 107.2 |
| 1929 | 100.0 | 100.0 | 100.0 |
| 1930 | 118.3 | 97.8 | 121.0 |
| 1931 | 113.0 | 80.6 | 124.7 |
| 1932 | 132.0 | 105.0 | 125.7 |
| 1933 | 158.8 | 121.8 | 130.5 |
| 1934 | 112.5 | 98.5 | 114.2 |
| 1935 | 115.2 | 80.7 | 127.0 |
| 1936 | 127.0 | n. a. | - |

Tahla 2b. - SUMMARY INDEXES FDR TKE EEET BUBAR IMDUSTMY: CAMPAI BN MONTMS, 1918-38
(1829 = 100)

| Year | Production | Man-hours | Output per man-hour |
| :---: | :---: | :---: | :---: |
| 1918 | 70.3 | n. a. | - |
| 1919 | 88.8 | 139.6 | 48.3 |
| 1920 | 100.0 | 189.6 | 59.0 |
| 1921 | 102.2 | 137.5 | 74.3 |
| 1922 | 73.2 | 102.2 | 71.6 |
| 1923 | 80.3 | 125.7 | 71.8 |
| 1924 | 105.2 | 122.4 | 85.8 |
| 1925 | 88.6 | 120.6 | 73.5 |
| 1828 | 87. 3 | 100.2 | 87.1 |
| 1827 | 107.0 | 110.6 | 88.7 |
| 1928 | 104.4 | 97.1 | 107.5 |
| 1929 | 100.0 | 100.0 | 100.0 |
| 1930 | 118.3 | 110.6 | 108.8 |
| 1931 | 113.0 | 92.6 | 122.0 |
| 2932 | 132.0 | 113.8 | 110.0 |
| 1939 | 158.9 | 124.0 | 128.1 |
| 1834 | 112.5 | 03.3 | 220.6 |
| 1935 | 115.2 | 21.8 | 125.5 |
| 1938 | 127.0 | n.a. | - |

Talle ze. - sumany indexis for the beet susah imdustay: intercampaigi manths,

| rear | Production | Man-hours | Output per man-hour |
| :---: | :---: | :---: | :---: |
| 1918 | 70.3 | n. ${ }^{\text {a. }}$ | - |
| 1019 | 68.9 | 189.2 | 95.4 |
| 1020 | 100.0 | 186.3 | 50.9 |
| 1021 | 102.2 | 197.0 | 51.9 |
| 1022 | 79.2 | 150.5 | 48.6 |
| 1823 | 80.3 | 80.9 | 93.2 |
| 1924 | 105.2 | 122.6 | 85.8 |
| 1925 | 88.6 | 131.8 | 67.2 |
| 1826 | 87.3 | 99.6 | 87.7 |
| 1927 | 107.0 | 101.7 | 105.2 |
| 1928 | 104.4 | 98.1 | 108.4 |
| 1929 | 100.0 | 100.0 | 100.0 |
| 1930 | 118.3 | 74.2 | 159.4 |
| 1931 | 113.0 | 86.9 | 130.0 |
| 1932 | 132.0 | 88.0 | 148.3 |
| 1933 | 158.9 | 117.8 | 134.8 |
| 1934 | 112.5 | 108.0 | 104.2 |
| 1935 | 115.2 | 88.8 | 129.7 |
| 1936 | 127.0 | n. ${ }^{\text {a }}$ | - |

## 3. BOOTS AND ShOES

The principal products of the establishments in this industry are boots, shoes, sandals, slippers, moccasins, allied footwear, leggings, and overgaiters made chiefly of leather but also of canvas and other textile fabrics. Boots and shoes made of rubber, however, are considered a part of the output of the Rubber Products industry group.

The fact that most of the establishments in the Boots and Shoes industry do not own their equipment (in 1935, approximately 90 percent of all the shoemaking machinery and equipment in use was leased, mainly from the United and the Compo Shoe Machinery Corporations) facilitates plant migration and makes it possible for producers with meager resources to enter and leave the industry. The chief shifts in location since 1919 are reflected in the increased proportion of production in Missouri, New York, and Illinois and the relative decline in Massachusetts. There have also been many changes in location of plants within Massachusetts and in the other New England States.

In 1929, the Boots and Shoes industry employed almost 206,000 wage earners. It is interesting to note that division of labor in large establishments has been carried to the point where each of the 200 or 300 operations required to produce a single shoe is performed by a different employee.

## Producitan

Output statistics for the following 5 classes of shoes are available in the Census of Manufactures for the odd-numbered years 1919-35 and for 1922 and 1924: Men's, boys' and youths', women's, misses' and children's, and slippers and all other footwear. These series, which account for the total production of boots and shoes, were completed for the even-numbered years 1926-36 by means of comparable statistics which are collected monthly by the Bureau of Census and published in the Survey of Current Business. No detailed quantity statistics were available for 1920. The 5 production series - for the years 1919 and 1921-36-were weighted by their respective unit values in 1929 and combined in an aggregative index. The index number for the year 1920 was obtained by extrapolation on the basis of the Federal Reserve Board index of boot-and-shoe production for 1920 and 1921 , which combines the 5 classes without weighting.

The relative unit values of 4 specific types of shoes in 1935 (welted and McKay men's and women's) compare as follows with their relative unit labor requirements in 1923 (men's welted shoes $=1.001$ : $^{1}$

| Type of shoe | Relative <br> unit value | Relative unit <br> labor requirement |
| :---: | :---: | :---: |
| Hen's | 1.00 | 1.00 |
| Welted | 0.58 | 0.67 |
| McKay |  |  |
| Women's | 1.08 | 1.21 |
| Welted | 0.65 | 0.96 |

Indexes of production employing these 2 sets of weights are in close accord:

| Year | Unit-value <br> weights | Unit-labor- <br> requirement <br> weights |
| :---: | :---: | :---: |
| 1919 | 90.5 | 86.2 |
| 1927 | 94.4 | 93.0 |
| 1929 | 100.0 | 100.0 |
| 1931 | 79.7 | 80.2 |
| 1933 | 78.6 | 77.8 |
| 1935 | 83.7 | 81.0 |

The NRP index takes account of quantity shifts among the several classes of shoes defined according to the age group and sex of the intended wearer. As might be expected, however, no serious shifts occurred among these groups over the period, for they reflect the age and sex distribution of the population. ${ }^{2}$ An index based upon a much more detailed classification of shoes - not only by age and sex of intended wearer but also by type of material, specific use, and method of manufacture ${ }^{3}$ - is slightly higher than the NRP index before 1929 and lower thereafter:

[^60]| Year | NRP production <br> index | Production index based <br> on more detailed <br> classification |
| :---: | :---: | :---: |
| 1919 | 88.0 | 93.4 |
| 1927 | 96.2 | 97.1 |
| 1929 | 100.0 | 100.0 |
| 1931 | 84.0 | 81.8 |
| 1933 | 94.1 | 92.5 |
| 1935 | 103.0 | 100.4 |
|  |  |  |

The index of employment, which conforms to Census trend, was constructed by BLS. The man-hours index was derived from this employment index and another for average weekly hours based, in all years except 1919 and 1922, on data published by NICB.

Average actual weekly hours in 1919 were estimated by applying to the prevailing-hours figure computed from Census data the average ratio of NICB actual to Census prevailing weekly hours in 1921 and 1923.

The weekly-hours figure for 1922 is an average of that published by NICB and another obtained by BLS in one of its biennial wage studies of the industry. NICB hours (an average for the last 6 months of the yearl are considerably higher than those of BLS (based on data collected mainly in April and May). Since both production and employment were higher in the latter half of 1922 than in the earlier months, it is probable that NICB hours are somewhat inflated, while the BLS estimate is too low. The 2 were, therefore, averaged to obtain the final figure for 1922.

[^61]Talle s. - sumany indexes for the hoots and shoes imdustry: $1919-38$
( $1525=100$ )

| Year | Production | Employment | Man-hours | output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1919 | 88.0 | 102.0 | 108.3 | 85.8 | 82.8 |
| 1820 | 82.7 | 96.7 | 96.5 | 85.5 | 85.7 |
| 1921 | 75.0 | 89.2 | 92.2 | 84.1 | 81.3 |
| 1922 | 85.1 | 88.7 | 98.5 | 88.2 | 88.4 |
| 1928 | 01.6 | 109.6 | 113.1 | 83.6 | 81.0 |
| 1924 | 82.1 | 100.0 | 99.8 | 82.1 | 82.3 |
| 1925 | 84. 2 | 100.6 | 104. 2 | 83.7 | 80.8 |
| 1926 | 87. 9 | 88.9 | 99.8 | 88.9 | 88.1 |
| 1927 | 96.2 | 08.8 | 101.2 | 87.3 | 95.1 |
| 1928 | 96.0 | 95.9 | 98.1 | 100.1 | 98.9 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 83.1 | 93.3 | 85. 3 | 89.1 | 97.4 |
| 1931 | 84. 0 | 88.2 | 88.8 | 95.2 | 94.6 |
| 1832 | 83. 1 | 87.4 | 81.3 | 95.1 | 102.2 |
| 1933 | 94.1 | 92.8 | 83.2 | 101.3 | 113. 1 |
| 1934 | 95.6 | 98.3 | 83.0 | 97.3 | 115. 2 |
| 1935 | 103.0 | 88. 3 | 82.5 | 104.8 | 124. 8 |
| 1936 | 111.1 | 97.2 | 80.1 | 114. 3 | 138.7 |

## 4. BREAD AND DTHER GAKEAY PRODUCTS GRDUP <br> 5. BISCUIT AND CRACKERS <br> 6. BAKERY PRODUCTS DTHER TKAN BISCUIT AND CRACKERS

The Bread and Other Bakery Products group consists of 2 industries: (1) Biscuit and Crackers and (2) Bakery Products Other Than Biscuit and Crackers. Although the establishments in both of these generally manufacture the same classes of products, they are classified in one or the other according to the composition of their primary output.
The Biscuit and Crackers industry includes establishments which operate on a factory basis and manufacture principally biscuit, crackers, machine-made cookies, pretzels, and similar products packed in containers to retain palatability for an indefinite period. This industry employed almost 34,000 wage earners in 1929.
The Bakery Products Other Than Biscuit and Crackers industry (which in 1929 employed 167,000 wage earners and included more establishments than any other Census industry) comprises bakeries engaged mainly in the production of bread, cakes, pies, and other commodities intended for consumption within a few days and distributed locally or within the radius of quick delivery. Bakeries operated in connection with restaurants, chain stores, and similar enterprises are included by the Census whenever the segregation of the bakery business from the other business is possible or, if segregation is impossible, when it is obvious that the income derived from the bakery business constitutes the greater part of the total income. The value of secondary products of such bakeries, however, amounts to less than 1 percent of the total value of the industry's output.
A considerable amount of bread is still baked in the home. The proportion of the total which is manufactured conmercially (mainly for urban consumption) is not known exactly but has been estimated at from 30 to 60 percent. The proportion probably declines in periods of depression, when more households produce their own bread.

The hours of work in the industry are very irregular. They are dependent upon such factors as the extent of unionization, the number of daily bakings, the methods of baking, the type of equipment used, and the character of the local market. The lastnamed factor also determines the nature of the products and the daily and weekly production pattern.

## Praduetian

The index of production for each component industry of the group was constructed for the odd-numbered years 1923 -35 from Census statistics for the same 4 classes of products: (1) Biscuit, crackers, and cookies; (2) bread, rolls, and coffee cake; (3) pretzels; and (4) doughnuts, crullers, and other fried cakes. While the establishments in the 2 industries are engaged primarily in the manofacture of either the first or second of these classes, they also produce the remaining $3 .{ }^{1}$ All 4 classes are therefore incloded in the index of production for each industry, which is composed of 3 segments laggregative indexes with 1929 unit-value weights) spliced in common years. The first segment, for 1923-25, includes the output of the first 2 classes of products; the second, for 1925-29, the first 3 classes; and the third, for 1929-35, all 4 classes. ${ }^{2}$

Some of the establishments do not report their outpat in detail, hence Census quantity statistics refer to a varying proportion of total production. To include all establishments, therefore, the index for each industry was divided by an index of the percentage of total value of products accounted for by firms reporting in detail. 8 Each index was then completed for the period 1923-36 by means of the composite index for the group.

The group production index for census years 1923-35 is a harmonic mean of the separate indexes for the 2 component industries weighted by wage earners in the given year. An almost identical

\footnotetext{
1rhe bignificance of products of secondary importance is indicated by the percentages they comprise of the value of all production in each industry:

| Year | Blscult <br> and <br> Crackers | Other <br> Bakery <br> Products |
| :---: | :---: | :---: |
| 1923 | 1.8 | 30.8 |
| 1826 | 2.7 | 88.7 |
| 1927 | 3.2 | 29.9 |
| 1929 | 6.6 | 32.1 |
| 1981 | 6.8 | 31.8 |
| 1983 | 8.2 | 25.1 |
| 1935 | 6.2 | 28.6 |

$Z_{\text {The }}$ products included in the index for the Biscuit and crackers industry comprise about 98 percent of the total value of this industry's output; value coverage for the other branch is about 76 percent. (These percentages were computed from the data for estabilshments reporting in detail.)
SIn 1928 these percentages for the Biscuit and crackers and the Bakery Prodnets other Than Biscuit and Crackers industries were 08.8 and 79.3, respectively. The detalled data for these years mere adjusted by the census to represent total production. The percentages for the Biscuit and crackers industry were $\theta 9.8$ in 1931 and 100 in all other years; those for the Bakery Products other Than Biscuit and Crackers industry were:

index is yielded by an arithmetic mean of the 2 industry indexes weighted by the number of wage earners in 1929:

Year \begin{tabular}{ccc}

NRP \& \begin{tabular}{c}
Weighted <br>
production <br>
index

 \& 

mean of <br>
production <br>
indexes
\end{tabular} <br>

1923 \& 78.3 \& 78.1 <br>
1925 \& 83.5 \& 83.4 <br>
1927 \& 92.8 \& 92.8 <br>
1929 \& 100.0 \& 100.0 <br>
1931 \& 91.2 \& 91.1 <br>
1933 \& 79.9 \& 79.9 <br>
1935 \& 91.7 \& 92.0
\end{tabular}

Interpolation for the intercensal years 1924-34 and extrapolation for 1936 were accomplished by use of a corresponding group index of wheat-flour consumption.

In constructing the consumption index, a Census series for wheat-flour production was first completed for the years 1923-36 by means of the index of wheat flour milled, which is published by the Board of Governors of the Federal Reserve System. ${ }^{4}$ The next step was to express wheat-flour consumption reported by the Census (adjusted for variable coverage $i^{5}$ as a percentage of wheat-flour production. Percentages for the intercensal jears 1924-34 and for 1933, when the Census did not report consumption data, were obtained by straight-line interpolątion; the 1935 percentage was assumed to apply in 1936. Finally, multiplication of an index of these percentages by the index of wheat-flour production yielded the annual index of wheat-flour consumption, which compares as follows with the NRP composite production index:

| Year | NRP <br> production <br> index | Wheat-flour- <br> consumption <br> index |  |
| :--- | :---: | :---: | :---: |
| 1923 " | 78.3 | $\mathbf{7 9 . 5}$ |  |
| 1925 | 83.5 | 85.1 | [con.] |

[^62]| [con.] | Year | NRP <br> production <br> index | Wheat-flour- <br> consumption <br> index |
| :---: | :---: | :---: | :---: |
|  |  | 92.8 | 94.7 |
|  | 1927 | 100.0 | 100.0 |
|  | 1929 | 91.2 | 95.8 |
|  | 1931 | 79.9 | 87.9 |
|  | 1933 | 91.7 | 91.9 |

The consumption series was not extended to the gears prior to 1923 since the Census does not report the quantities consumed before that date and it is believed that figures obtained for the post-war yearsbyextrapolation on the basis of the trend shown by the percentages for 1923 to 1935 would be extremely unreliable.

## Employmast and Man-hours

The employment index for the industry group, which conforms to Census trend, was constructed by BLS. Employment figures for the 2 component industries were available from the Census of Hanufactures for odd-numbered years; intercensal-year estimates were made on the basis of BLS data for the group and averages of the ratio of employment in each industry to group employment in adjacent census years. The estimates for 1936 were made through the use of the 1935 ratios.

The man-hours index for the group was derived from the group employment index and from a comparable annual series of average weekly hours compoted from Census data for prevailing hours in 1923 and 1929, BLS actual-hours statistics for 1932-36, and estimates for the remaining years obtained by straight-line interpolation.

Average weekly hours could not be ascertained for the a component industries. The average for the industry group is not applicable since the Biscuit and Crackers industry operates on a factory basis, while the Other Bakery Products industry includes many small shops, where the hours of work are long and irregular.

18 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Tabla 4. - sumary indexas por the bread and other sakery products INDUBTAY BRDUF: 1923-38

| Year | Production | Enployment | Man-hours | Output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1923 | 78.3 | 81.0 | 80.4 | 98.7 | 97.4 |
| 1924 | 86.0 | 81.8 | 81.3 | 105. 1 | 105.8 |
| 1825 | 83.5 | 79.9 | 79.4 | 104.5 | 105.2 |
| 1926 | 90.4 | 82.0 | 81.7 | 110.2 | 110.6 |
| 1827 | 92.8 | 85.7 | 85.5 | 108. 3 | 108. 5 |
| 1928 | 96.4 | 90.8 | 90.6 | 108.2 | 106. 4 |
| 1829 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 99.4 | 98.3 | 95.6 | 101.1 | 104.0 |
| 1931 | 81.2 | 91.1 | 85.9 | 100. 1 | 108.2 |
| 1932 | 82.7 | 86.4 | 79.1 | 95.7 | 104.6 |
| 1933 | 79.9 | 90.8 | 79.1 | 88.0 | 101.0 |
| 1934 | 87.3 | 105.7 | 83.9 | 82.6 | 104.1 |
| 1935 | 91.7 | 108.7 | 88.3 | 84.4 | 108.3 |
| 1938 | 98.0 | 112.4 | 93. 2 | 85.4 | 103.0 |

Tahle 5. - SUMMARY INDEXES TOR TKE EISCUIT AND CRACKERS INDUSTAY: 1923-36
(1829 = 100)

| Year | Production | Employment | Output per wage earner |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| 1923 | 82.2 | 103.7 | 79.3 |
| 1924 | 89.5 | 101.4 | 88.3 |
| 1925 | 86.2 | 95.6 | 90.2 |
| 1926 | 91.6 | 95.8 | 85.6 |
| 1827 | 92.2 | 97.4 | 94.7 |
| 1928 | 98.1 |  |  |
| 1929 | 100.0 | 97.5 | 98.6 |
| 1930 | 96.4 | 100.0 | 100.0 |
| 1931 | 85.7 | 94.4 | 102.1 |
| 1932 | 79.1 | 88.8 | 102.3 |
|  |  | 77.9 | 101.5 |
| 1933 | 88.8 |  | 80.2 |
| 1934 | 98.8 | 89.0 | 87.0 |
| 1935 | 101.1 | 88.3 | 89.4 |
| 1938 |  | 89.3 | 111.9 |

Table © - sumany imozes fon the maneay phoducts ofmen than Biscuit
AND CRACKERS IMDUSTRY: 1923-36

| Year | Production | Employment | Output per wage earner |
| :---: | :---: | :---: | :---: |
| 1923 | 77.3 | 78.4 | 101.2 |
| 1824 | 85.1 | 77.8 | 109.4 |
| 1025 | 82.8 | 76.7 | 108.0 |
| 1928 | 90.1 | 79.2 | 113.8 |
| 1827 | 92.9 | 83.3 | 111.5 |
| 1828 | 88.5 | 89.5 | 107.8 |
| 1829 | 100.0 | 100.0 | 100.0 |
| 1930 | 100.0 | 98.1 | 100.9 |
| 1931 | 92. 2 | 92. 7 | 99.5 |
| 1932 | 83.4 | 88.1 | 94.7 |
| 1933 | 80.3 | 93.0 | 86.3 |
| 1934 | 87.2 | 109.1 | 79.9 |
| 1935 | 91.1 | 113.3 | 80.4 |
| 1936 | 85.3 | 117.1 | 81.4 |

## 7. cane-subar repining

The establishments classified in this industry are engaged wholly or mainly in the refining of raw cane sugar, the greater part of which is imported. Almost 14,000 wage earners were employed in 1929.

## Productian

The index of production for the odd-numbered years 1921-35 is based upon the output of refined sugar, which accounts for about 99 percent of the total value of products of the industry. ${ }^{1}$ A series for raw sugar melted, ${ }^{2}$ which agrees with the trend of Census data for refined-sugar production, was used to complete the latter for the even-numbered years of the period 1919-36.

The 1919 Census figure for refined sugar produced was not used because it appeared to be an understatement. ${ }^{3}$ Although the ratio of refined sugar produced to raw sugar treated was over 0.93 in 1921 and subsequent odd-numbered years, it was only 0.82 in 1919. For this reason, the figures for 1919 and 1920 were obtained by extrapolation through the use of the series for raw sugarmelted.

## Emplormant and Man-houra

The index of employment, which conforms to Census trend, was constructed by BLS.

The man-hours index is composed of 2 segments which were linked in 1930. The first, for 1919-30, was derived by multiplying "the employment series by an annual index of prevailing weekly hours computed from Census and BLS data. Census tabulations of prevailing hours were available for 1919, 1921, 1923, and 1929; a BLS study ${ }^{4}$ provided a similar figure for 1930; and estimates were made for the intervening years by straight-line interpolation.

[^63]For the years 1930 and 1932-36, the man-hours relatives were obtained bydividing the BLS wage index by an index of BLS average hourly earnings. Barnings for 1930 were determined from the special studyalready referred to; ${ }^{4}$ and for 1931, by straight-1ine interpolation between 1930 and $1932 .{ }^{5}$

$(1929=100)$

| Year | Production | Employment | Man-hours | Output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1019 | 82.2 | 131.3 | 129.3 | 62.8 | 63.6 |
| 1820 | 85.2 | 124.1 | 123.7 | 68.7 | 68.9 |
| 1021 | 73.7 | 111.9 | 112.7 | 65.9 | 65.4 |
| Le22 | 105.9 | 130.0 | 127.1 | 81.5 | 83.3 |
| 1923 | 88.8 | 109.7 | 104.0 | 78.9 | 83.3 |
| 1924 | 93.9 | 104. 1 | 99.6 | 90.2 | 94.3 |
| 1925 | 105.8 | 104.3 | 100.6 | 101.4 | 105.2 |
| 1826 | 106.7 | 100.5 | 98.0 | 108.2 | 108.9 |
| 1927 | 100.2 | 100.6 | 98.0 | 99.6 | 101. 3 |
| 1928 | 97.7 | 94. 8 | 94.0 | 103.1 | 103.9 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 98.3 | 97.9 | 98.1 | 100.4 | 102.3 |
| 1931 | 88.6 | 85.2 | 86.5 | 101.6 | 100. 1 |
| 1932 | 78.5 | 78.4 | 73.5 | 100.1 | 108.8 |
| 1933 | 77.0 | 82.8 | 64.1 | 83.2 | 120.1 |
| 1034 | 76.9 | 97.6 | 61.0 | 78.8 | 126.1 |
| 1935 | 82.3 | 99.4 | 61.9 | 82.8 | 133.0 |
| 1936 | 83. 7 | 95.0 | 60.1 | 88.1 | 139.3 |

Fran-hours for 1930 and subsequent years could also de estimated by a method analogous to that employed for the period before 1930, namely, by multiplying BLB employnent by average actual weekiy hours. The method adopted was preBls eaploynent by average actual weekly hours. The method adopted was pre-
ferred because it ylelded an estimate or total man-hours which dirfered by ferred because $1 t$ yle tied an estimate or total man-h ours which anufered by
oniy 0.5 percent from the actual total (reported by the Census of Manfactures: 1933. Man-hour statistics for 32 selected Industries.), while the alternative method ylelded a result which was about 8 dercent higher.

## 8. CANNING and preservimg broup <br> g. CanNed AND PRESERVED PRUITS and VEgetables <br> 10. CANNED AND CURED FISK

The Canning and Preserving group is composed of 2 industries: (1) Canned and Preserved Fruits and Vegetables and (2) Canned and Cured Fish. The former, which employed almost 99,000 wage earners in 1929, includes establishments engaged primarily in the canning and preserving of fruits, vegetables, soups, preserves, jellies, fruit butters, pickles, and sauces. The latter, which employed about 13,600 wage earners in 1929 , includes establishments engaged primarily in the canning and curing of $f i s h$, shrimp, oysters, clams, and other sea foods. The following activities fall outside the definition but may constitute part of the secondary business of the canneriesin the group: Meat packing; the manufacture of condensed and evaporatedmilk, sweetening sirups, and peanut butter; the drying and packing of fruits on farms; and the shucking and shipment of fresh oysters in unsealed containers.

Seasonal variation in the Canned and Preserved Fruits and Vegetables industry is greater than in any other included in this study except Beet Sugar. The plants operate at capacity in but 3 months of each year, August to October, during which time employment may be 5 or 6 times as high as in the minimum month.

## Production

Canning and Preserving Group. - The indexes of production for the Canning and Preserving group are harmonic means of the relatives for the component industries; one, with changing employment weights, was used in computing output per wage earner, and the other, with changing man-hour weights, was used in computing output per man-hour. These 2 composites are practically identical not only with each other but also with arithmetic means of relatives weighted by 1929 employment and man-hours:

| Year | Changing weights |  | Fixed weights (1929) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Employment | Man-hours | Employment | Man-hours |
| 1918 | 64.3 | 84.2 | 65.1 | 64.9 |
| 1921 | 41.4 | 41.3 | 41.5 | 41.5 |
| 1923 | 70.7 | 70.7 | 70.7 | 70.8 |
| 1925 | 87.1 | 87.1 | 87.1 | 87.2 |
| 1927 | 82.2 | 82.2 | 82.2 | 82.2 |


| [con.] $\begin{aligned} & \text { [ } \\ & \\ & \\ & \text { Year }\end{aligned}$ | Index of production with - |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Changing weights |  | Fixed weights (1929) |  |
|  | Employment ${ }^{\text {I }}$ | Man-hours | Employment | Man-hours |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1931 | B4. 4 | 84.5 | 84.5 | 84.7 |
| 1933 | 86.6 | 86.7 | 86.7 | 86.7 |
| 1935 | 115.6 | 115.7 | 115.5 | 115.6 |

Canned and Preserved Fruits and Vegetables.- The index for this industrywas obtained by completing a seriesfor odd-numbered years, which was derived from Census data, by means of another, which was constructed for the whole period 1919-36 fromstatistics published by the National Canners Association. The Census index, consistently representing over 60 percent of the value of the industry's production, is composed in turn of 2 segments which were spliced in 1927, their first common year. One is based on the quantities of 19 products weighted by 1929 unit values; the other, available only since 1927, is based on 30 products similarly weighted. These 30 products consist of the original 19 and 11 additions (indicated by asterisks):

| Dried fruits |  | Canned fruits |
| :--- | :--- | :--- |
| Apples | Beets | Apples |
| Apricots | Corn | Apricots |
| Peaches | *Hominy | Berries |
| Prunes | *Graut | Cherries |
| Raisins | Peas | FFruits for salad |
| Other dried fruits | *pimentos | *Grapefruit |
|  | *Pumpkin and squash | *Olives, ripe |
| Canned vegetables | *Spaghetti | Peaches |
| Asparagus | Spinach | Pears |
| Beans | *Tomato Sauce | *Plums |
|  | Tomatoes | *Prunes |

Prior to 1927 the output of canned products was reported by the Census in terms of both "actual" and "standard" cases; since then their quantities have been quoted in terms of "actual" cases only. An actual case may consist of a varying number of containers of unequal volume; a standard case includes a fixed number of cans of a given size. The effect of a difference in case unit is illustrated by the following measures of output (2925=100) based on the 13 canned products entering into the NRP index in all odd-numbered years: ${ }^{1}$

[^64]|  | Index of production |  |
| :---: | :---: | :---: |
|  | Actual cases | Standard cases |
|  |  |  |
| 1919 | 66.2 | 70.1 |
| 1921 | 41.9 | 43.8 |
| 1923 | 74.7 | 81.0 |
| 1925 | 100.0 | 100.0 |

Standard-case quantities for these 13 products were used in constructing the NRP index for the census years prior to 1927; actual-case quantities for each product as reported thereafter were converted to standard-case equivalents on the basis of the average relationship between the 2 kinds of case totals in the earlier period. ${ }^{2}$ Actual-case quantities for the $1 i$ canned products included in the NRP index for the first time in 1927 could not be converted to standard-case units. Failure to do so, however, is not serious, for the 11 products are so unimportant in the weighted aggregates that they alter but slightly the index for the other 19:

|  | Index of production |  |
| :---: | :---: | :---: |
| Year | 30 products | 19 products |
|  | (NRP) |  |
|  |  |  |
| 1927 | 82.3 | 84.8 |
| 1929 | 100.0 | 100.0 |
| 1931 | 87.1 | 87.8 |
| 1933 | 88.7 | 87.3 |
| 1935 | 117.0 | 115.7 |

The interpolating index, by means of which the census-year series was completed, was constructed by linking 4 sets of weighted aggregates - for 3 products, 1919-23; 10 products, 1923-25; 13 products, 1925-33; and 18 products, 1933-36. ${ }^{3}$ The quantity data were supplied by the National Canners Association's publication, Canned Food Pack Statistics: 1936 (Parts 1 and 2); theweights, 1929 unit values, were adapted from the Census of Manufactures. As in the index for odd-numbered years, an attempt was made here to utilize standard-case totals only; 6 products were so quoted,

[^65]and 8 others could be converted on the assumption that the average ratio of standard to actual cases in 1933-36 was valid for earlier years.

Canned and Cured Fish.-Census quantity series for the following 8 classes of products, which constitute the entire output of the industry, were combined by means of 1929 unit-value weights into an aggregat ive index for all odd-numbered years for 1919-35, except 1933: Canned fish - clams, etc., oysters, salmon, sardines, shrimp, tuna, and all other canned fish - and cured fish. The lack of data for cured fish in 1933 necessitated the adjustment of the 7 -product weighted aggregate for this year by the average ratio of the 8 - to the 7 -product weighted aggregate in 1931 and 1935. All canned fish are consistently reported in standard cases and cured fish in pounds. ${ }^{4}$

Interpolation was accomplished by means of a continuous index for 1921-35 constructed from 6 series in standard cases reported in the annual publication of the Bureau of Fisheries, Fishery Industries in the United States: Salmon, oysters, pilchard sardines, herring sardines, shrimp, and tuna and tuna-like fishes. The weights for these series are 1929 unit values computed from the same source. ${ }^{6}$

## Emplayment

Canning and Preserving Group.- The composite employment index is based on the sum of the wage earners in the 2 industries. The wage-earner statistics for the odd-numbered years 1919-35 were supplied by the Census; those for 1926 and 1928 are sums of the interpolated figures for the 2 industries; and the relatives for 1924 and 1930-36 were derived from the BLS group index, which conforms to Census trend.

[^66]Canned and Preserved.Fruits and Vegetables.- The index for the Canned and Preserved Fruits and Vegetables industry is based on Census figures for the odd-numbered years; on an estimate for 1924 made by distributing the BLS group total in accordance with the average of the proportions in 1923 and 1925; and on estimates for the even-numbered years 1926-36 obtained by means of a continuous index for 3 States - New York, New Jersey, and California. ${ }^{6}$ The sample series for these States were first adjusted to conform to the movement of corresponding Census figures, which they already approximated fairly well, and then combined. ${ }^{7}$ After interpolation of the national census-year series by the 3 -State index, the relatives for the even-numbered years 1930-36 were rendered consistent with the totals indicated by the BLS group index for the same period. ${ }^{8}$

Canned and Cured Fish. - The employment index for the Canned and Cured Fish industry is based on Census wage-earner statistics for the odd-numbered years; on an estimate for 1924 derived by distributing the BLS group total in the manner described in the discussion of the Canned and Preserved Fruits and Vegetables industry; and on estimates for the even-numbered years 1926-36

[^67]obtained by successive interpolation of (1) Census data for California by means of a sample series for the same State and (2) national Census totals by means of the final California series. ${ }^{\circ}$ As in the case of Canned and Preserved Fruits and Vegetables, the national relatives for intercensal years 1930-36 were adjusted for consistency with the totals indicated by the BLS group index. ${ }^{\text {B }}$
The number of wage earners in the sample comprises about threefifths of the State total; the latter, in turn, has progressed from 27 to 36 percent of the total for the industry.

## Mas-houra

The man-hours index for the group and for each industry was constructed from the products of paired series of wage earners and weekly hours. Each of the 3 weekly-hours series is based on Census prevailing hours for the component industries for 1919, 1921, 1923, and 1929; on BLS actual hours for the group for 1932-36; and on estimates for 1924-28 and 1930-31 obtained by straight-line interpolation. Prevailing hours for the group were estimated by combining the figures for the 2 components intoweighted averages. Actual hours for the component industries were determined from the BLS group figures on the assumption that the mean relationship between the corresponding figures for prevailing hours in 1919, 1921, 1923, and 1929 was applicable. ${ }^{10}$
The production and labor indexes are not precisely comparable in scope. Some of the workers in Canning and Preserving establishments are engaged in the packing of meat and the canning of milk, products outside the compass of the group definition; on the other hand, workers outside the industry group contribute part of the production included in the detailed Census statistics. The effect on the NRP indexes is probably not significant, for secondary products account for about 2 to 8 percent of the total value of the output of the group, and canned and preserved products contributed from outside usually account for less than 2 percent of the total value of all such products.

[^68]Table B.- summary indexes for the canning and paeserving industry group: 1919-38

| Year | ```Produe- tion (employ- ment weights)``` | Employment | Output per wage earner | ```Produc- tion (man-hour welghts)``` | Man-hours | Output per manhour |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1918 | 64.3 | 79.9 | 80.5 | 64.2 | 81.9 | 78.4 |
| 1920 | n. a. | n. ${ }^{\text {a }}$ | - | n.a. | n.a. | - |
| 1921 | 41.4 | 53.1 | 78.0 | 41.3 | 53.6 | 77.1 |
| 1922 | n. a. | n.a. | - | n.a. | п.a. | - |
| 1923 | 70.7 | 72.6 | 97.4 | 70.7 | 73.7 | 95.9 |
| 1924 | 68.8 | 64.6 | 108.7 | 68.9 | 65.4 | 105.4 |
| 1825 | 87.1 | 85.8 | 101.5 | 87.1 | 88.7 | 100.5 |
| 1926 | 93.8 | 89.7 | 104. 3 | - 93.8 | 80.5 | 103.8 |
| 1927 | 82. 2 | 83.2 | 98.8 | 82.2 | B3. 5 | 98.4 |
| 1928 | 88.3 | 93.2 | 105.5 | 98.5 | 83.4 | 105.5 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 108.0 | 103.1 | 102.8 | 108.1 | 85.6 | 111.0 |
| 1931 | 84.4 | 78.8 | 107.0 | 84.5 | 87.1 | 125.9 |
| 1932 | 62.5 | 84.0 | 97.7 | 62.6 | 49.6 | 126.2 |
| 1933 | 88.6 | 83.8 | 103.3 | 88.7 | 60.3 | 143.8 |
| 1934 | 81.5 | 107.0 | 85.5 | 91.5 | 80.8 | 137.4 |
| 1935 | 115.6 | 115.2 | 100.3 | 115.7 | 78.2 | 148.0 |
| 1938 | n.a. | 109.4 | - | n. 8 . | 75.5 | - |

Table g.- summahy indexes for the canned and preserved fruits and vegetables INDUSTRY: 1918-3E
(1929 = 100)

| Year | Production | Employment | Man-hours | Output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1918 | 61.3 | 78.4 | 80.1 | 78.2 | 76.5 |
| 1920 | 68.3 | n. a. | n. $\mathrm{B}^{\text {. }}$ | - | - |
| 1921 | 40. 1 | 52.3 | 52.8 | 76.7 | 75.9 |
| 1922 | 60.1 | n. ${ }^{\text {a }}$ | n. A. | - | - |
| 1923 | 71.7 | 73.4 | 74.3 | 87.7 | 96.5 |
| 1924 | 70.6 | 65.3 | 68.0 | 108.1 | 107.1 |
| 1925 | 88.7 | 86.8 | 87.7 | 102.1 | 101.1 |
| 1926 | 100.6 | 80.4 | 91.1 | 111.3 | 110.4 |
| 1927 | 82.3 | 81.8 | 82.2 | 100.5 | 100.1 |
| 1928 | 102.5 | 93.5 | 93.7 | 109.6 | 109.4 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1830 | 108.0 | 108.8 | 98.6 | 102.1 | 110.3 |
| 1931 | 87. 1 | 81.1 | 68.8 | 107.4 | 126.6 |
| 1832 | 64.5 | 65.2 | 50.4 | 98.9 | 128.0 |
| 1933 | 88.7 | 85.2 | 61.2 | 104.1 | 244.9 |
| 1934 | 82.3 | 109.3 | 67.8 | 84.4 | 135.8 |
| 1935 | 117.0 | 117.6 | 79.7 | 98.5 | 148.8 |
| 1936 | 105.1 | 108.6 | 74.8 | 96.8 | 140.5 |

Tabia 10.- sumany imazass fan the cankey ans cunes fisk imdustay: 1819-36

| Tear | Production | Employment | Han-hours | Output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1918 | 92.5 | 01.4 | 95.2 | 101.2 | 97.2 |
| 1920 | n. ${ }^{\text {a }}$ | D. 2. | n. ${ }^{\text {a }}$ | - | - |
| 1921 | 52.2 | 58.4 | 60.1 | 89.4 | 88.9 |
| 1922 | 51.9 | n. ${ }^{\text {a }}$ | n. a. | - | - |
| 1923 | 63.4 | 67.2 | 68.9 | 94.3 | 92.0 |
| 1924 | 57.5 | 59.0 | 60.3 | 97.5 | 95.4 |
| 1925 | 75.7 | 77.4 | 78.8 | 97.8 | 98.1 |
| 1926 | 60.7 | 84.5 | 85.7 | 71.8 | 70.8 |
| 1927 | 81.3 | 92.9 | 93.6 | 87.5 | 86.9 |
| 1928 | 75.4 | 91. 3 | 91.7 | 82.6 | 82.2 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 82.8 | 76.4 | 70.9 | 108.4 | 116.8 |
| 1931 | 65.4 | 63.1 | 54.0 | 103.6 | 121.1 |
| 1932 | 49.6 | 55.1 | 43.2 | 90.0 | 114.8 |
| 1933 | 72.3 | 73.4 | 53.4 | 98.5 | 135.4 |
| 1934 | 84.9 | 90.0 | 56.7 | 94.3 | 149.7 |
| 1835 | 104.6 | 98.0 | 67.2 | 108.7 | 155.7 |
| 1936 | n. ${ }^{\text {a }}$ | 115.6 | 80.7 | - | - |

## 11. CEMENT

The establishments in this industry manufacture hydraulic cement from rock which they themselves usually quarry. The principal product is portland cement, which represents about 99 percent of the total volume of cement produced. Small quantities of natural, puzzolan, and masonry cements are also manufactured. Refractory cement, which is made by establishments classified in the Clay Products (Other Than Pottery) and Nonclay Refractories industry, is excluded from the industry. In 1929 the Cement industry employed about 33,000 wage earners.

Portland cement is made by grinding and burning a mixture of limestone, chalk, or marl; and clay, shale, or slag. It is a highly standardized product made under specifications approved by the American Society for Testing Materials. From 1920 to 1935 the quality of the product was improved, and the percentage of the total production that would pass through a 200 -mesh sieve increased from about 82 to over 92.

Cement plantsare almost unique among manufacturing establishments in that they usually extract their own principal raw materials. About 25 percent of the labor at cement plants is consumed in connection with quarrying operations. For this reason the production of cement is frequently considered an extractive rather than a manufacturing industry.

The rotary kilns of the Cement industry are among the largest pieces of moving machinery in all industry. In the period 1920-35 the maximum length of an installed kiln increased from about 260 to 400 feet; the average length, from 117 to 146 feet. Considerable power is required to grind the raw materials and the hard cement clinker. About half of the electric energy consumed is purchased, and the other half is generated at the plant, usually by means of waste-heat boilers attached to the kilns. In 1929 the rated horsepower capacity of prime movers and electric motors driven by purchased energy was higher per wage earner in the Cement industry than in any other manufacturing industry which reported to the Census, except Blast Furnaces.

Cement, like other building materials, is subject to a seasonal demand. To meet the production peak, which occurs in August, a large reserve of cliniker is usually accumulated, beginning in the preceding fall. The seasonal demand accounts in part for
the large percentage of unused capacity characteristic of the industry.

## Prodnction

The index of production was constructed from Bureau of Mines datafor the output of portland-cement clinker, finished portland cement, and finished masonry, natural, and puzzolan cements and for the shipments of portland and other cements. The basic statistics represent complete coverage.

Intermittent operation of a cement kiln is both difficult and costly, but portland-cement clinker may be stored and ground at the need or convenience of the operator. Finished cement may also be stored indefinitely before it is bagged or loaded in bulk and shipped. Consequently, the 3 series (portland-cement-clinker production, finished-portland-cement production, and portland-cement shipmentsl do not necessarily show the same movement fromyear to year. A measure of total portland-cement output (referred to below as "equivalent portland cement") was obtained by weighting the 3 series, which represent successive stages of production, by the estimated proportion of labor consumed in the operations associated with production of clinker, clinker grinding, and bagging and loading of cement, respectively. The weights used were 0.66 for portland-cement-clinker production, 0.15 for finished-portland-cement production, and 0.19 for portland-cement shipments. Since no data for clinker production were available for the years 1919-24, the output of finished cement was used to represent the production of both clinker and finished cement in these years and was assigned their combined weight.

The percentages utilized as weights in obtaining "equivalent portland cement" are averages of those computed from 2 studies of the industry, one by H. E. Hilts ${ }^{1}$ for 1919 and the other by B. H. Topkis ${ }^{2}$ for 1934 (the 2 labor distributions by departments are similarl. The labor in the various departments of quarrying, processing, and shipping (maintenance and mill overhead labor, which accounted for about 33 percent of the total, could not be distributed) was assigned to the 3 series as follows:

[^69]

The production of masonry, natural, and puzzolan cements ${ }^{4}$ was added to the output of "equivalent portland cement." This series, when converted into relatives, gielded the NRP production index.

In recent years there has been increasing emphasis upon the development of high-early-strength and other special cements with additional quick-setting, waterproofing, or color characteristics. The growing importance of these special cements may be gauged from the following tabulation, based on Bureau of Mines data, which shows the percentages that special cements were of all portland cement:

| 1927 | 1.8 | 1931 | 2.0 |
| :--- | :--- | :--- | :--- |
| 1928 | 1.4 | 1932 | 2.8 |
| 1929 | 3.0 | 1933 | 3.6 |
| 1930 | 3.1 | 1934 | 6.4 |

Additional burning or reburning and finer grinding are required to produce special cements. No data were available, however, from which estimates of the additional labor required to produce these cements could be made.

## Employmat

For odd-numbered years the employment index is based upon the average number of wage earners reported by the Census. This index was completed for the period 1919-36 through the use of the BLS index of employment.

The employment index is not strictly comparable with the production index since some wage earners are engaged in the manufacture of such secondary products as stone dust, crushed rock, fertilizer dust, limestone, hydrated lime, and concrete stones and blocks. In each of the census years 1923-29 the combined value of these

[^70]products was less than 1.5 percent of the total value of products of the industry. ${ }^{5}$

## Man-luens

The inder of man-hours, unlike that for most other industries, was not constructed independently bat was obtained by dividing the NRP production index by the index of output per man-hour, which is described in the following section.

## Fsodetivity

The index of outpot per wage earner is the quotient of the prodnction and employment indexes.

The following 4 productivity studies of portland-cement plants provided the data for production and man-hours which were used to construct the index of output per man-hour:

| Study | Available for- |
| :--- | :---: |
| H. E. Hilts ${ }^{6}$ | 1919 |
| Anerican Engineering Council ${ }^{7}$ | $1920-25$ |
| B. H. Topkis ${ }^{7}$ | $1925-34$ |
| Bureau of Mines ${ }^{9}$ | $1928-36$ |

The basic data used by the American Engineering Council and B. H. Toptis were collected by the Portland Cement Association. Man-hours consumed in shipping (estimated in 1919 and 1934 at 12.7 and 13.2 percent of the total number of man-hours $)^{10}$ are excluded from the Topkis study. Thus the productivity ratios in absolute units are not comparable with those computed from the other stndies, but there is no reason to believe that the relative movement of these ratios from year to year is affected significantly by this onission. The Topkis output-per-man-hour index and the one computed from American Engineering Conncil and Bureau of Mines statistics follow:

[^71]| Year | AEC-Bureau <br> of Mines | Topkis |
| :--- | :---: | ---: |
| 1925 | 86.3 | 77.7 |
| 1928 | 94.8 | 94.8 |
| 1929 | 100.0 | 100.0 |
| 1930 | 104.0 | 105.7 |
| 1931 | 120.5 | 114.2 |
| 1932 | 116.2 | 110.4 |
| 1933 | 117.2 | 111.8 |
| 1934 | 119.7 | 114.7 |

The Bureau of Mines receives annual reports from cement manufacturers on 2 schedules, one calling for production data, the other for employment and accident statistics. In making this study, the Bureau of Mines matched these 2 schedules for individual plants. Prior to 1932 the schedules called for the average number of men employed in an active pay-roll period, average number of days worked, and average length of the working day, and, after 1928, total man-shifts. In 1932 and later years the schedules called for the total number of man-hours.
Productivity ratios were computed from the data of each study by dividing production of finished portland cement by man-hours worked. For the years $1919-25$ and $1928-36$ the ratios obtained from the first, second, and fourth studies were used. Estimates for 1926 and 1927 were made by means of the ratios computed from the Topkis study. The index of these ratios was adjusted for variations in the amounts of clinker production and finishedcement shipments by multiplication by an index of the percentage that "equivalent portland cement" is of finished portland cement.

Although the productivity ratios are derived from a changing sample, it is probable that they are representative of the industry as a whole because of the high percentage of total finished portland cement produced by the establishments canvassed:

| Study | Years | Percentage |
| :---: | :---: | :---: |
| H. E. Hilts" | 1919 | 40.6 |
| American Engineering Council | 1920 | 63.5 |
|  | 1921 | 77.1 |
|  | 1922 | 74.0 |
|  | 1923 | 73.8 |
|  | 1924 | 79.8 |
|  | 1925 | 89.4 [Con.] |


| [con.] Study | Years | Percentage |
| :---: | :---: | :---: |
| B. H. Topkis ${ }^{11}$ | 1934 | 74.8 |
| Bureau of Mines | 1928 | 89.1 |
|  | 1998 | 89.1 |
|  | 1990 | 87.3 |
|  | 1931 | 88.9 |
|  | 1932 | 87.9 |
|  | 1933 | 89.0 |
|  | 1934 | 100.0 |
|  | 1935 | 99.5 |
|  | 1936 | 99.0 |

Tall: 11.- sumany impexes fon the cemzet industay: 1919-3s
(1829 = 100)

| Year | Production | Employment | Man-hours | Output per - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Wage earner | Man-hour |
| 1910 | 47.8 | 78.5 | 79.6 | 02.6 | 80.2 |
| 1920 | 58.3 | 91.3 | 84.0 | 89.9 | 62.0 |
| 1921 | 57.5 | 78.6 | 80.5 | 73.2 | 71.4 |
| 1922 | 67. 7 | 98.7 | 85.9 | 68.6 | 78.8 |
| 1923 | B0.7 | 105.2 | 104.1 | 78. 7 | 77.5 |
| 1924 | 87.5 | 111.8 | 110.3 | 78.3 | 79.3 |
| 1925 | 94.1 | 115.2 | 108.4 | 81.7 | 88.0 |
| 1828 | 96.4 | 113.1 | 111.4 | 85.2 | 86.5 |
| 1927 | 100.7 | 108.9 | 111.6 | 92.5 | 90.2 |
| 1028 | 103.0 | 102.5 | 109.0 | 100.5 | 94.5 |
| 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| 1930 | 94.7 | 93.7 | 90.7 | 101.1 | 104.4 |
| 1931 | 72.6 | 72.9 | 60.8 | 98.6 | 119.4 |
| 1932 | 44.8 | 50.7 | 38.5 | 88.4 | 116.4 |
| 1933 | 37.2 | 47.4 | 31.6 | 78.5 | 117.7 |
| 1934 | 45.5 | 59.5 | 37.9 | 76.5 | 120.1 |
| 1935 | 44.6 | 62.0 | 30.5 | 71.9 | 112.8 |
| 1986 | 68.4 | 68.4 | 51.6 | 87.1 | 128.7 |

${ }^{11}$ In the years other than 1934 only the productivity ratios are presented.

## 12. CHEMI CALS

The Chemicals industry as here defined includes the 2 Census industries "Chemicals, Not Elsewhere Classified" and "Compressed and Liquefied Gases." The products of the former are distinguished from those of allied Census industries by the fact that, with few exceptions, they are compounds - not physical mixtures manufactured principally for sale. Some of the exceptions are plastics, resins, aluminum abrasives, vitreous enamels, and ferroalloys. Establishments in other industries (Explosives, Paper and Pulp, Soap, Fertilizers, Tanning Materials, etc.l may also produce some chemicals forsale, but the Census usually excludes their quantities and values from the corresponding figures for "Chemicals, Not Elsewhere Classified." An exception is glycerin made for sale by the Soap industry.

In 1929 the Chemicals industry as here defined employed 66,000 wage earners. In 1936 the number of wage earners, 74,000, was higher than in any other year since the World War.

Systematic research in the Chemicals industry plays an important role in the development of new processes and products. In 1937 research in inorganic chemistry consumed 2.25 percent of the sales dollar; and organic research, 4.30 percent. It is interesting to note in this connection that the coal-tar branch employs a greater percentage of technically trained employees than does any other manufacturing industry. In 1918 the percentage was 8.2; in $1930,15.3$.

## Production

The index is based with few exceptions on production for sale or interplant transfer ${ }^{2}$ of chemicals selected according to relative

[^72]\mp@subsup{}{}{1
*Bulk
Count
Bars
*Chocolate-covered
*Other kinds

```
*Hard candy
 *Fancy Caramels and chewing
*Hard candy
Caramels and chewing
\(\quad\) candy
Gum work
*Pan work
Marshmallows
Lozenges

The index number for 1925 was derived from comparable aggregates in 1925 and 1927 for 6 of the above products (indicated by asterisks). No Census data are available for years prior to 1925.

Census quantity statistics represent confectionery production in all industries, except in 1925 and 1927, when not only was the canvass restricted to the Confectionery industry, but some establishments failed to report in detail. An internally comparable biennial series for the period 1925-35 was obtained by adjusting the aggregates of the weighted quantities for 1925 and 1927 on the basis of the proportion of the total value of confectionery made in all industries produced by establishments reporting in detail.
Figures collected and published by the Bureau of Foreign and Domestic Commerce were used to complete the production series for 1925-36 (except 1932). \({ }^{2}\) The Bureau tabulated the quantity

\footnotetext{
\({ }^{1}\) Chocolates (1. e., chocolate-covered candies other than chocolate-covered bars) are normal products of the Confectionery industry and should not be confused with chocolate, which is manufactured in the Chocolate and Cocos products industry. The latter classification also includes the chocolate departments operated by confectionery manufacturers for the production of coatings for their own use.
\(\mathscr{L}_{\text {The }}\) statistics, collected in cooperation with the National Confectioners' Association, the Nationsl Wholessle Confectioners 'Association, the Associsted Retail Confectioners of the United states, local confectionery associations, and the trade press". are published in Confectionery Distribution in the Onited States.
}
and value of 9 types of "candy"3 sold by identical establishments \({ }^{4}\) within each of the following series of years: 1925-28, 1927-29, 1929-30, 1933-34, 1934-35, and 1935-36. Since the number of establishments canvassed by the Bureau of Foreign and Domestic Commerce varied from survey to survey, it was necessary to construct a chain laggregativel index of the physical volume of sales. Each product was weighted by its value per pound in 1929. The resulting sales series for 1925-30 and 1933-36, which compared favorably in trend with the index for census years, was used to complete the latter.

The index number for 1932 was interpolated by means of estimates of total poundage of confectionery output reported by the Corn Industries Research Foundation. \({ }^{5}\)

\section*{Employment and Man-hours}

The index of employment, which conforms to Census trend, was constructed by BLS. The man-hours index was obtained from the product of this emplogment series and an index of average weekly hours based on Census prevailing hours for 1923 and 1929, on BLS actual hours for \(1932-36\), and on estimates for the remaining years obtained by straight-line interpolation.

It will be recalled that the production index refers to confectionery made in all industries. Employment and man-hours, on the other hand, correspond only to production within the Confectionery industry - and even some of this labor is devoted to secondary products. The resulting lack of comparability, however, is negligible.

\footnotetext{
\({ }^{3}\) Candy" includes certain items classified by the Census in the Chocolate and Cocos producta industry; "confectionery as defined by the Census includes certain specialty goods not considered in the sales surveys.
The \(\theta\) types of "candy" are: Plain package goods, fancy package goods, chocolate bulk candy, other bulk candy, molded chocolate candy bars, chocolatecovered candy bars, other candy bars, \(5-\) and 10 -cent packages, and penny goods. subsequent to the first survey, some of the items which had been included under "chocolate-covered bars" were classified as molded bars."
These establishments, evidently the larger ones in the industry, contributed approximately the following percentages of the total value of commercial oroduction":
\begin{tabular}{|c|c|c|c|}
\hline 1926-28 & ... 80 & 1933-34 & 75-00 \\
\hline 1027-29 & 87 & 1934-35 & 75 \\
\hline 1929-30 & 88 & 1935-36 & 70 \\
\hline
\end{tabular}
\({ }^{5}\) International Confectioner. March 1937, p. 22. The totals for 1931 and 1933 were read froil a bar graph; the actuel total was shown for 1932.
}

58 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table 17.- SUMGARY INDEXES POR THE CONFECTIONERY INDUSTAY: 1925-36
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Hage earner & Man-hour \\
\hline 1925 & 88.7 & 100.1 & 100.1 & 88.6 & 88.6 \\
\hline 1926 & 100.8 & 104.0 & 104.0 & 98.8 & 96.9 \\
\hline 1927 & 99.8 & 99.4 & 99.4 & 100.4 & 100.4 \\
\hline 1926 & 95.9 & 97.2 & 97.8 & 98.7 & 98.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 96.8 & 90.6 & 85.1 & 108.8 & 113.7 \\
\hline 1931 & 82.2 & 80.6 & 70.7 & 102.0 & 118.3 \\
\hline 1932 & 75.7 & 73.5 & 60.0 & 109.0 & 126. 2 \\
\hline 1933 & 79.8 & 79.6 & 58.5 & 100.0 & 138.1 \\
\hline 1934 & 90.5 & 81.2 & 58.2 & 111.5 & 155.5 \\
\hline 1935 & 98.8 & 82.0 & 59.5 & 120.2 & 185.7 \\
\hline 1936 & 108.3 & 79.3 & 61.9 & 134.0 & 171.7 \\
\hline
\end{tabular}

\section*{18. COTTON ROODS}

The Cotton Goods industry, which employed about 425,000 wage earners in 1929, embraces mills engaged primarily in any of the processes preparatory to the spinning, or in the actual spinning, of cotton yarn and in the weaving of cotton piece goods over 12 inches in width. Cotton goods of smaller width and cotton knit goods are treated by the Census as the principal products of other industries and hence are outside our definition.
Most of the national output is contributed by 2 regions, New England and the Cotton-growing States. \({ }^{1}\) Since the war the former has been declining; the latter, however, has advanced steadily. In 1919 the 2 regions were practically equal in wage-earner emplogment and value of products; by 1935 the Cotton-growing States were thrice as important as New England in each respect. The regional shift in the production of woven goods lover 12 inches in width) is equally striking: in 1919 New England produced 45 percent of the national total and the Cotton-growing States 51 ; by 1935 the former contributed but 19 percent and the latter 78 .

\section*{Pradeetian}

The NRP index of national production was computed for the oddnumbered years of the period 1919-35 from weighted aggregates for the following 30 Census products in 1919-33 and for 26 of these (the 4 omissions are indicated by asterisks) in 1933-35; the weight for each is its unit value in 1929:
\begin{tabular}{|c|c|}
\hline *Batting, wadding, and mattress felts & Lawns, nainsooks, cambrics, and similar muslins \\
\hline *Bedspreads and quilts & *Mosquito netting and tarlatan \\
\hline *Blanketa & Napped fabrics \\
\hline Corduroys & Numbered duck (except tire) \\
\hline Cottonades and cotton worsteds & Ounce duck (except tire) \\
\hline Cotton card laps, sliver, and roving produced for sale & \begin{tabular}{l}
Pillow tubing \\
Plushes, velvets, and
\end{tabular} \\
\hline Cotton table damask & velveteens \\
\hline Cotton waste produced for sale & Print cloth \\
\hline Cotton yarns produced for sale & Sheetings \\
\hline Denims & Shirtings \\
\hline Drills & Tapestries \\
\hline Ginghams & Thread \\
\hline
\end{tabular}

\footnotetext{
1The 6 New England 8 tates are Connecticut, Maine, Massachusetts, New Hampshire, Rhode island, and vermont; the 14 cotton-growing states are Alabama, Arkansas, California, Georgia, Kentucky, Louisiana, M1ssissipdi, Missouri, North CarCailíornia, okiahoma, south carolina, Tennessee, Texas, and Virginia,
}
```

Tickings
Tire fabrics
Tobacco, cheese, butter,
bunting, and bandage
cloths

```

Towels, towelings, and wash cloths
Twills and sateens Twine

This index, which accounts for about 80 to 90 percent of the value of cotton goods, yarns, etc. made in all industries, \({ }^{2}\) was completed for the even-numbered years of the period \(1919-36\) by means of the Federal Reserve index of raw-cotton consumption.

In an analogous manner, regional indexes for the New England and Cotton-growing States were also constructed from less detailed Census statistics for the odd-numbered years of the same period. The products entering into these 2 indexes account for about 70 to 85 percent of the value of cotton goods, yarns, etc. made in all industries. The 12 classes included in the main segment, 1919-33, were weighted by their respective unit values in 1929 ; and the 5 available for the shorter interval, \(1933-35\) (the reduction in the number of series represents consolidation, not a change in coverage), by average unit values for 1933 and 1935:

1919-33

Three otherindexes of national production were constructed for comparison with the NRP series. Two of these are means of the

\footnotetext{
ZValue coverage deciined throughout the period, probably reflecting, in part, a decilne in quantity coverage, too. The latter could not be appraised in any year, nor could any compensatory adjustment be made in the index, which may consequently overstate production somewhat in years prior to 1929 and understate it somewhat thereafter.
SIn addition to other items, this class inciudes the following: Tobacco, cheese, butter, bunting, and bandage cloths; ginghams; mosquito netting and tarlatan; drills; ounce duck (except tire); numbered duck (except tire); plushes, velvets, and velveteens; tapestries; corduroys; cot on table damask; draperies (except velvets and plushes): voiles; pajama checks, dimities, and similar faorics; crepes; rugs (except bath mats); pillow tubing; bath mats; and terry-woven fabrics (except towels, towelings, washcloths, and bath mats).
}
regional indexes - one harmonic with changing man-hour weights, the other arithmetic with 1929 man-hour weights. The third, Which has about the same value coverage as the NRP national index and also employs 1929 unit values as weights, is based on a less refined classification (18 classes of products). \({ }^{4}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Index of production} \\
\hline & \multirow[b]{2}{*}{NRP} & \multicolumn{2}{|l|}{Regional composite} & \multirow[b]{2}{*}{\[
\begin{gathered}
18 \\
\text { products }
\end{gathered}
\]} \\
\hline & & Harmonic mean & Arithmetic mean & \\
\hline 1919 & 85.2 & 81.6 & 89.4 & 80.5 \\
\hline 1921 & 78.3 & 82.3 & 83.3 & 76.2 \\
\hline 1923 & 99.6 & 102.9 & 101.8 & 87.0 \\
\hline 1925 & 97.3 & 97.6 & 98.2 & 84.6 \\
\hline 1927 & 104.9 & 104.8 & 104.8 & 102.5 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 73.4 & 74.1 & 74.1 & 74.8 \\
\hline 1933 & 85.1 & 83.1 & 83.2 & 84.2 \\
\hline 1935 & 76.7 & 74.4 & 73.8 & 75.2 \\
\hline
\end{tabular}

The wage-earner indexes for the United States and for the 2 principal regions were computed for the odd-numbered years from Census statistics. The first of these was interpolated and extended to 1936 by means of the BLS employment index, but the other 2 were not completed for the even-numbered years since satisfactory regional series were not available. \({ }^{5}\) Each relative for 1935 (and hence for 1934 and 1936) is too low as a result of the Census' transfer of workers in dyeing and finishing departments of cotton mills lexcept those engaged in dyeing raw stock and farn \(f\) or use in the same plant) to the newly established

\footnotetext{
"The 17 products, in addition to "Other woven goods" (see ftn. 3), are: Sheetangs; print cioth; tire fabrics; sairtings; napded fabrics; twilis and sateens; denims; plushes, velvets, and velvetenns; towels, towelings, and wash cloths; denims plughes, velvets, and velveteens; towels, towelings, and wash cioths;
drilis; ginghams; iawns, nainsooks, cambrics, and similar musilns; tickings; cottonades and cotton worsteds; cotton table damask; cotton yarns produced for sale; and cotton waste produced for sale.
\({ }^{\text {Ennual micB emplogment indezes are available for the North and the south }}\) (the letter onif through iqR9), but unilie the bls index for the whole country, they do not conform to Census trend. Furthermore, the NICB and Census regions donot correspond precisely: The North Includes 5 of the New England States, 8 Middie Atlantic states, and Illino1s, while the south inciudes Maryland and 8 of the 14 cotton-growing states. The NICB employment inderes compare as follows with those computed from Census statistics:
\begin{tabular}{|c|c|c|c|c|}
\hline Tear & \[
\begin{aligned}
& \text { North } \\
& \text { (NICB) }
\end{aligned}
\] & \[
\begin{gathered}
\text { New } \\
\text { England } \\
\text { (Census) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { south } \\
& \text { (NICB) }
\end{aligned}
\] & \begin{tabular}{l}
Cottongrowing states \\
(Census)
\end{tabular} \\
\hline 1921 & 136 & 147 & 91 & 71 \\
\hline 1028 & 148 & 164 & 108 & 87 \\
\hline 1026 & 128 & 180 & 104 & 80 \\
\hline 1027 & 121 & 128 & 116 & 108 \\
\hline
\end{tabular}
industry category Dyeing and Finishing Cotton, Rayon, andSilk. \({ }^{6}\) Productivity, conversely, is overstated in each of these years by an indeterminable percentage.

The 3 man-hours indexes are, with the exception of 1919 , relatives of the quotients of pay rolls and average hourly earnings. Like employment, wages were determined for the odd-numbered jears 1919-35 from the Census of Manufactures; and, again, only the national series was completed by means of a BLS index. \({ }^{7}\)

Average hourly earnings for the United States were supplied for the even-numbered years of the period \(1920-30\) by BLS studies; \({ }^{8}\) the figures for the odd-numbered years 1921-31 are unpublished BLS estimates based on the same studies and on supplementary information; and those for \(1932-36\) were furnished by the regular BLS canvass. The number of man-hours for 1919 was determined by multiplying national employment by estimated average actual weekly hours per man (i. e., by Census prevailing hours for 1919 adjusted by the average of the ratios for 1921 and 1923 of BLSNICB actual to Census prevailing hours) \({ }^{\circ}\) and by the estimated average number of weeks in the year (i. e., by the average quotient for 1920-36 of NRP annual man-hours totals and corresponding weekly man-hours computed from Census employment and BIS-NICB actual hours per man per week). \({ }^{10}\)
\(6_{\text {An }}\) adjustment, however, was made for a minor lack of comparability \(=v i z\), the inclusion in the regional statistics for 1935 of workers in the cotton Narrow Fabrics industry.
The total number of wage earners engaged in dyeing and inishing cotton fabrics in \(1835(48,819)\) could not be distributed between cotton mills and independent dyeing and finishing establishments. The uncorrected employment figure for the cotton Goods industry is 889,082. As a consequence of this understatement in emplogment, relative output per wage earner for the United States as a whole \(1 s\) overstated in 1935 by not more than 11.8 percent.
\({ }^{7}\) See ftn. 5. The pay-rolls indexes, like the employment series, are not in accord with those based on Census data (1929=100):
\begin{tabular}{|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { Norch } \\
& \text { (NICB) }
\end{aligned}
\] & \begin{tabular}{l}
New \\
England \\
(Census)
\end{tabular} & \[
\begin{aligned}
& \text { South } \\
& \text { (NICB) }
\end{aligned}
\] & Cottongrowing states (Census) \\
\hline 1921 & 118 & 146 & 97 & 68 \\
\hline 1823 & 157 & 187 & 121 & 87 \\
\hline 1825 & 127 & 133 & 104 & 88 \\
\hline 1827 & 122 & 130 & 120 & 108 \\
\hline
\end{tabular}
\({ }^{8}\) The results of the biennial BLs survejs are summarized in Hages and Howrs of Labor in Cotton-Goods Nanufacturing: 1910 to 1930 (Bull. No. E30). D. 2. The number of wage earners covered by the several survegs varies from it to 26 percent of the total in the industry.
9The 2 ratios are 0.853 and 0.877 . See itn. 10 for description of BLS-NICB series.
\({ }^{10}\) The everage number of weeks is 50.6. The BLS-NICB everage weekly nours series includes estimates for the even-numbered years 1920-80 derived from data in the BLS report (see ftn. 8), estimates for the odd-numbered years 1821-81 obtained by interdolation of these BLs figures by averages of NICB hours for the North and South weighted by employment in corresponding States (see following paragraph in text and ftn. E), and figures for 198\&-86 furnished by the regular blS surveys.

The regional earnings, supplied by NICB for roughly comparable areas, were considered adequate for the purpose of computing man-hours indexes for census years. \({ }^{11}\) The discontinuance of the NICB series for the South in 1929 , however, necessitated the use of another method to estimate man-hours for this region in later years: Man-hours for the 2 regions combined were first determined on the assumption that their average relationship to the national totals for 1919-29 \({ }^{12}\) was applicable thereafter; the computed man-hours for New England were then deducted from the estimated regional sums. Man-hours for 1919 were computed in a manner similar to that employed in the derivation of the national figure for the same year. \({ }^{13}\)

\section*{Praduetivity}

In addition to the final productivity indexes it was possible to compute absolute output and input (consumption) per man-hour in the 2 chief regions:
\(\left.\begin{array}{lcccc} & \begin{array}{c}\text { Output (lbsa) of woven } \\ \text { goods, yarns for sale, } \\ \text { and cotton waste per } \\ \text { man-hour }\end{array} & & \begin{array}{c}\text { Consumption (lbs.) of } \\ \text { raw cotton, purchased }\end{array} \\ \text { Year cotton waste, and }\end{array}\right)\)

\footnotetext{
11NICB hourly earnings, being averages, should be more reliable than the NICB regional employment and pay-roll figures, which are totals; they should be influenced less by the size of the sample. In any case, other regional statistics (see Monthly Lebor Review, May 1935 and January 1938) are less satisfactory since they are not continuous and refer only to the even-numbered yeare 1920-82 and to some aelected months thereafter (the NRP regional indexes refer only to the odd-numbered years).
\({ }^{12}\) The ratios renged from 0.80 to 0.87 .
\(13_{\text {The }}\) weekly man-hours Ifgures for each region ere products of census employEent and HICB weekiy hours for every Jear except 1919. In this Jear weekiy man-hours for the North and south combined were distributed between the 2 regions on the basis of the 1921 proportions.
14 Not precisely comparable with rates for preceding jears.
}

\section*{64 PRODUCTION, BMPLOYMENT, AND PRODUCTIVITY}

In interpreting these rates, cognizance must be taken of the differences in quality of the regional products. The higher rates for the South reflect the fact that it produces principally coarse- and medium-yarn fabrics, which, as staple commodities, may be made under mass-production conditions, while New England specializes in fine and stylefabrics. Census statistics indicate that in 1935, for example, the Cotton-growing States produced 93 percent of the total number of square yards of "narrow sheetings and other coarse and medium yarn fabrics", while New England contributed 73 percent of the total square yardage of "fine cotton goods."

Tabie 18e.- simpary Indexes for the cotron gonds industry \(1919-36\)
\((1928=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 85.2 & 101.4 & 100.2 & 84.0 & 85.0 \\
\hline 1920 & 84.3 & 101.8 & 94.1 & 82.8 & 89.6 \\
\hline 1921 & 78.3 & 97.0 & 94.5 & 80.7 & 82.9 \\
\hline 1922 & 80.8 & 97.7 & 95.6 & 92.9 & 85.0 \\
\hline 1923 & 98.6 & 111.0 & 104.8 & 89.7 & 95.0 \\
\hline 1924 & 84.5 & 98.3 & 88.7 & 87.7 & 95.3 \\
\hline 1925 & 97.3 & 104.8 & 101.0 & 92.8 & 96.3 \\
\hline 1928 & 98.3 & 105.9 & 108.1 & 93.8 & 91.9 \\
\hline 1827 & 104.9 & 110.0 & 117.8 & 95.4 & 89.0 \\
\hline 1928 & 94.0 & 89.4 & 88.2 & 94.6 & 95.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 74.3 & 84.1 & 78.8 & 88.3 & 96.7 \\
\hline 1931 & 73.4 & 77.7 & 78.1 & 94. 5 & 94.0 \\
\hline 1932 & 67.8 & 69.9 & 68.0 & 97.0 & 102.7 \\
\hline 1933 & 85.1 & 89.3 & 78.0 & 95.3 & 108.1 \\
\hline 1934 & 73.3 & 82. 5 & 64.6 & 79.2 & 113.5 \\
\hline 1935 & 76.7 & 88.9 & 62.8 & 88.3 & 122.1 \\
\hline 1936 & 95.6 & 92.0 & 72.1 & 103.9 & 132.6 \\
\hline
\end{tabular}
 Census years 1919-35
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline \multicolumn{6}{|c|}{Hew England States} \\
\hline 1910 & 154.3 & 160.3 & 141.1 & 98.3 & 109.4 \\
\hline 1921 & 132.9 & 147.2 & 147.9 & 90.3 & 89.9 \\
\hline 1923 & 145.8 & 154. 2 & 158. 1 & 94.6 & 92.2 \\
\hline 1925 & 127.5 & \(129 . \mathrm{B}\) & 130.9 & 98.2 & 97.4 \\
\hline 1827 & 118. 1 & 122.5 & 126. 1 & 96.4 & 93.7 \\
\hline 1829 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 85.8 & 71.6 & 89.4 & 91. 9 & 94.8 \\
\hline 1933 & 65.9 & 72.1 & 62.3 & 91.4 & 105.8 \\
\hline 1835 & 60.4 & 60.3 & 46. 1 & 100.2 & 131.0 \\
\hline \multicolumn{6}{|c|}{Cotton-growing states} \\
\hline 1919 & 58.4 & 70.4 & 75.8 & 80.1 & 74.4 \\
\hline 1821 & 58.0 & 70.5 & 68.5 & 82.3 & 84.7 \\
\hline 1923 & 78.4 & 87.2 & 80.0 & 81.1 & 99.3 \\
\hline 1925 & 83.8 & 90.0 & 91. 3 & 92. 6 & 81.2 \\
\hline 1927 & 08.0 & 102.5 & 105. 4 & 95.6 & 93.0 \\
\hline 1828 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 78.4 & 80.9 & 82.3 & 88.9 & 95.3 \\
\hline 1833 & 92.0 & 98.5 & 85.8 & 92.5 & 107.2 \\
\hline 1935 & 80.6 & 101.4 & 71.1 & 79.5 & 113.4 \\
\hline
\end{tabular}

\section*{19. ELECTRIC LAMPS}

The establishments in this industry employed about 8,700 workers in 1929 in the manufacture of parts (such as bases, lead-in wires, filaments, and bulbs) and in the assembly of lamps. Two important technological advances have been made in this industry in the present century: (i) The development of the group or unit system of manufacture, which synchronizes the operations in the assembly process so that the flow from raw materials to finished product is continuous; and (2) the supplanting of manual labor by such automatic devices as the Ohio bulb machine (introduced in 1930), which turns out as many as 4 dozen bulbs in each revolution.

\section*{Production}

Annual quantity statistics for 5 items - bases, large and miniature glass bulbs, and large and miniature lamps - are available for \(1920-31\) from a BLS study. \({ }^{1}\) Relatives of these 5 series were combined into 2 production indexes, both of which are harmonic means. The first, with changing employment weights, was used in determining output per wage earner; the second, with changing man-hour weights, was used in determining output per man-hour. These 2 indexes are not only almost identical with each other but also with arithmetic means of the 5 series of production relatives weighted by employment and man-hours in 1929 . The 4 production indexes are shown below:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Index of production with -} \\
\hline & \multicolumn{2}{|l|}{Changing weights} & \multicolumn{2}{|l|}{Fixed weights (1929)} \\
\hline & Employment & Man-hours & Employment & Man-hours \\
\hline 1920 & 58.3 & 58.2 & 57.8 & 58.3 \\
\hline 1921 & 39.8 & 40.3 & 38.8 & 39.2 \\
\hline 1922 & 50.0 & 49.9 & 50.5 & 51.1 \\
\hline 1923 & 84.7 & 84.7 & 64.6 & 65.0 \\
\hline 1924 & 87.1 & 67.0 & 68.9 & 88.9 \\
\hline 1925 & 71.9 & 72.0 & 71.8 & 72.0 \\
\hline 1926 & 75.8 & 75.9 & 75.6 & 75.8 \\
\hline 1927 & 86.3 & 88.3 & 86.1 & 86.6 \\
\hline 1928 & 86.2 & 88.2 & 86.2 & 86.1 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 86.1 & 86.5 & 88.5 & 88.8 \\
\hline 1931 & 78.8 & 79.1 & 79.7 & 80.3 \\
\hline
\end{tabular}

\footnotetext{
Irechrological Changes and Eeployment in the Electric-Lamp Industry (Bull. No. 593) by W. Bowden provides the only comparable production and labor statistics for this industry. Series for a few other minor products (such as lead-in wires) were also avallable, but these were not used since the labor engaged in their manufacture is negligible.
}

It is also of interest to compare the component series. As might be expected, the production relatives for large bulbs and large lamps are similar, as are also those for miniature bulbs and miniature lamps:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Index of production of -} \\
\hline & Bases & \[
\begin{aligned}
& \text { Large } \\
& \text { bulbs }
\end{aligned}
\] & Miniature bulbs & Large lamps & Miniature lamps \\
\hline 1920 & 60.5 & 85.9 & 43.4 & 64.7 & 45.3 \\
\hline 1921 & 26.3 & 51.5 & 28.6 & 44.6 & 28.8 \\
\hline 1922 & 48.9 & 88.4 & 35.5 & 56.8 & 37.4 \\
\hline 1923 & 62.0 & 79.5 & 54.1 & 88.4 & 55.4 \\
\hline 1924 & 61.1 & 62.9 & 84.3 & 69.4 & 65.2 \\
\hline 1925 & 64.9 & 77.2 & 84.9 & 75.5 & 65.9 \\
\hline 1926 & 68.4 & 84.4 & 70.0 & 77.6 & 71.4 \\
\hline 1927 & 79.2 & 97.4 & 72.0 & 93.9 & 72.8 \\
\hline 1928 & 80.3 & 88.3 & 88.2 & 86.4 & 88.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 78.3 & 82.9 & 78.3 & 82.3 & 77.6 \\
\hline 1931 & 71.8 & 89.7 & 62.3 & 80.0 & 62.8 \\
\hline
\end{tabular}

The Census classifies the manufacture of bulbs in the Glass industry \({ }^{2}\) and the assembly of lamps in the Electrical Machinery, Apparatus, and Supplies industry, but it does not segregate the corresponding employment. The quantities of large and miniature lamps reported by the Census compare favorably with BLS totals: \({ }^{3}\)
\begin{tabular}{ccc}
& \multicolumn{2}{c}{\begin{tabular}{c}
Ratio of BLS to Census \\
production
\end{tabular}} \\
\cline { 2 - 3 } Year & \begin{tabular}{c}
Large \\
lamps
\end{tabular} & \begin{tabular}{c}
Minlature \\
lamps
\end{tabular} \\
1921 & 1.043 & 0.945 \\
1923 & 1.087 & 1.044 \\
1925 & 1.029 & 1.025 \\
1927 & 1.018 & 1.081 \\
1929 & 1.030 & 1.033 \\
1931 & 1.021 & 1.086
\end{tabular}

The relatives of these quantities are, of course, also similar. It may be remarked that by 1935 the production of large lamps and hence probably of large bulbs, too, had risen above the 1929 level by 10 percent:

\footnotetext{
The production of buibs, included by the Census with apressed and blown ware, enounted in 1025 (the only year since 1919 for which it is reported separately) to 80,109 thousand dozen, as compared with 39,548 thousend dozen eccording to the BLS etudy.
\(\mathbf{S}_{\text {rat }}\) differences are partiy accounted for by the fact that the Census series does not include carbon-illament lamps, which in 1923, their peak jear, constituted less than 2 percent of the total.
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Index of production of large lamps} & \multicolumn{2}{|l|}{Index of production of miniature lamps} \\
\hline & BLS & Census & BLS & Census \\
\hline 1921 & 44.6 & 44.0 & 28.8 & 31.5 \\
\hline 1923 & 88.4 & 68.1 & 55.4 & 54.9 \\
\hline 1925 & 75.5 & 75.6 & 85.9 & 68.4 \\
\hline 1927 & 93.8 & 95.0 & 72.6 & 69.4 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 80.0 & 90.8 & 62.9 & 60.9 \\
\hline 1933 & n.a. & 86.8 & n. \(\mathrm{B}_{\text {. }}\) & n. a. \\
\hline 1935 & n. a. & 110.1 & n. \({ }^{\text {a }}\) & n. a. \\
\hline
\end{tabular}

Employmant, Man-houris, and Praductivity
The BLSstudy which supplied the production data also provided the only employment and man-hours series for the industry. Consequently the indexes of employment, man-hours, and productivity could not be extended beyond 1931.

The employment and man-hours indexes are relatives of the total number of wage earners and man-hours consumed in the manufacture of bases and bulbs and in the assembly of lamps. 4

The indexes of output per wage earner and per man-hour were obtained by dividing the proper summary-production indexes by the employment and man-hours series.
Man-hour productivity was also determined for each of the 5 products. The series for large and miniature lamps closely approximate the comoosite until 1929:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & NRP (composite) & Bases & Large bulbs & \[
\begin{gathered}
\text { Minia- } \\
\text { ture } \\
\text { bulbs }
\end{gathered}
\] & \begin{tabular}{l}
Large \\
lamps
\end{tabular} & Miniature 1 amps \\
\hline 1920 & 25.4 & 59.4 & 20.1 & 23.3 & 25.8 & 24.4 \\
\hline 1921 & 27.0 & 42.8 & 16.6 & 28.1 & 28.6 & 28.6 \\
\hline 1922 & 33.4 & 69.7 & 39.7 & 38.4 & 34.8 & 27.4 \\
\hline 1923 & 40.5 & 74.0 & 55.2 & 48.9 & 37.4 & 39.1 \\
\hline 1924 & 50.0 & 70.2 & 49.7 & 46.8 & 49.2 & 49.1 \\
\hline 1925 & 60.9 & 82.8 & 79.7 & 53.7 & 58.4 & 58.1 \\
\hline 1926 & 69.3 & 87.6 & 88.6 & 67.0 & 88.1 & 89.4 \\
\hline 1927 & 78.0 & 99.2 & 83.2 & 72.8 & 78.6 & 73.2 \\
\hline 1928 & 87.1 & 100.2 & 85.2 & 83.2 & 88.1 & 84.2 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 100.8 & 98.7 & 88.7 & 86.3 & 109.4 & 93.5 \\
\hline 1931 & 108.2 & 112.7 & 87.7 & 99.4 & 120.8 & 94.6 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{4}\) The employment statistics, which refer mainiy to wage earners, are partiy estimated by BLS on the basis of manufacturing methods" and other information. Furthermore, "in some of the minor details, the figures are not comparable for the entire deriod. For example, in the volume of labor employed in lamp-assembiy plants there is included a smail amount of lador used in making miniature bulbs before this work was completely transferred to separate plente." (Bowden, op. cit., D. 33.)
}

Falle 1s.- sumany ImDEXES FOR THE ELECTRIC LAMPS INDUSTMY: 1920-31
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Production (employment weights) & Employment & Ourput per wage earner & \[
\begin{aligned}
& \text { Produc- } \\
& \text { tion } \\
& \text { (man-hour } \\
& \text { weights) }
\end{aligned}
\] & Man-hours & Output per manhour \\
\hline 1920 & 58.3 & 240.0 & 24.3 & 58.2 & 229.4 & 25.4 \\
\hline 1921 & 39.8 & 185.8 & 24.0 & 40.3 & 149.4 & 27.0 \\
\hline 1922 & 50.0 & 162.8 & 30.8 & 49.9 & 149.4 & 33.4 \\
\hline 1923 & 84.7 & 168.0 & 38.3 & 64.7 & 159.8 & 40.5 \\
\hline 1924 & 67.1 & 136.6 & 49.1 & 67.0 & 134.1 & 50.0 \\
\hline 1925 & 71.9 & 118.8 & 60.0 & 72.0 & 118.3 & 60.9 \\
\hline 1926 & 75.8 & 113.2 & 87.0 & 75.9 & 109.5 & 69.3 \\
\hline 1927 & 86.3 & 110.8 & 77.9 & 86.3 & 110.6 & 78.0 \\
\hline 1928 & 86.2 & 100.2 & 88.0 & 86.2 & 99.0 & 87.1 \\
\hline 1829 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 86.1 & 91.0 & 94.6 & 86.5 & 85.8 & 100.8 \\
\hline 1931 & 78.8 & 83.2 & 94.7 & 79.1 & 73.1 & 108.2 \\
\hline
\end{tabular}

\section*{20. FERTILIZERS}

This industry, which in 1929 employed about 22,000 wage earners, is confined to the manufacture of commercial fertilizers, the principal classes of which are superphosphates and so-called mixed or complete fertilizers (combinations of superphosphates, potash, and ammoniates in various proportionsl. It does not include the merchandising of fertilizing materials for use in the natural state or of tankage from slaughtering and meat-packing establishments for use wi thout remanufacture.

The plants included in the industry show 3 distinct levels of integration. One group manufactures its own sulphuric acid, superphosphates, and mixed fertilizers; another purchases sulphuric acid to make superphosphates; and the "dry-mixing" plants, the largest group, purchase all the materials which go into the complete fertilizer. In 1935, for example, there were 100 plants of the first type, 96 of the second, and 772 of the third. The relative quantities of sulphuric acid, superphosphates, and complete fertilizers produced in the industry did not change significantly during the period of interest.

\section*{Producitan}

Census quantity statistics embracing all commercial-fertilizer production in 4 groups - complete fertilizers; \({ }^{1,2}\) superphosphates produced for sale; fish scrap; and potash superphosphates, \({ }^{2}\) bone meal, and other fertilizers - were combined into an aggregative index with 1929 unit-value weights. Thesestatistics referred to the odd-numbered years of the period 1919-25. In 1925 and subsequent census years separate statistics were reported for the 3 indicated components of the fourth group; a 6 -group index with 1929 unit-value weights was therefore constructed for odd-numbered jears of the period 1925-35. The 2 indexes were linked in 1925 and completed for the even-numbered years by means of a series of relatives of total tonnage of fertilizer consumption as estimated in the Fertilizer Review of the National Fertilizer Association. \({ }^{8}\)

\footnotetext{
\({ }^{1}\) To make the 1910 figure for "complete fertilizers" comparable with those for later years, the estimated amount of nammoniated fertilizers: Inciuded by the Census was deducted and transferred to "other fertilizers."
\({ }^{2}\) No correction was made for the amall year-to-year changes in the percentages of altrogen (\(\mathrm{NH}_{3}\)), phosphorus (\(\mathrm{P}_{2} \mathrm{O}_{3}\)), and dotassium (\(\mathrm{K}_{2} \mathrm{O}\)) in complete fertilizers and of phosphorus and dotassium in potash superphosphate.
\(S_{\text {The consumption series includes not only commercial fertilizers, to whicb }}\) Census production statistics are restricted, but also fertilizer materiais, a considerable quantity of which is imported. Nevertheless, the i indezes are in close accord in census jears.
}

It is of interest to compare this index with another which, in addition to the same products incensus years, includes sulphuric acid produced for sale. Although this secondary product represented little more than 2 percent of the value of all output of the industry in 1929, it was more important than 3 of the primary products included in the NRP index (viz, fish scrap, potash superphosphate, and bone meal). The expanded index (the quantity of sulphuric acid had to be estimated for 1933 and 1935\()^{4}\) is so close to the NRP index that the latter may be regarded as uniformly including sulphuric acid for sale:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
NRP \\
production \\
Index
\end{tabular} & \begin{tabular}{c}
Index of production \\
including sulphuric \\
acid for sale
\end{tabular} \\
1919 & 87.5 & 88.6 \\
1921 & 62.7 & 62.0 \\
1923 & 79.2 & 78.4 \\
1925 & 84.8 & 85.3 \\
1927 & 84.9 & 100.0 \\
1929 & 100.0 & 74.3 \\
1931 & 73.8 & 57.7 \\
1933 & 56.8 & 71.0
\end{tabular}

A second comparative index includes the total output of 3 groups of products - complete fertilizers, superphosphates, and sulphuric acid - each of which is weighted by the estimated number of manhours of direct labor required per unit in the departments or plants devoted specifically to its manufacture. \({ }^{5}\) Although such an index is logically preferable to the NRP series, the computed man-hour weights are crude and are available for a less-detailed

\footnotetext{
To estimate production for sale, total production in the industry was determined first by means of a similar series for a group of 64 to 75 superphosphate manufacturers, Dublished in the Survey of Current Business; the Quantity produced for sale was then aegregated from the estimated totais by quantity produced for sale was then segregated from the estimated totals by
the applifetion of extrapolated percentages derived by means of a series or the application of extrapolated percentages derived by means of a serles of
ratios of shipments (also pubilshed in the survey of Current Bus iness) to production sor the same groud of superphosphate manufacturers.
5 The weights were derived by dividing the total number of direct man-hours Morked in the sulphuric-acid, superphosphate, and dry-mixing departments or
863
ifms in January-June iozo by the totai output (Census) in \(192 \theta\) or sui803 riras in January-June 1020 oy the total output (Census) in ine of sul-
phuric scid, superphosphates, end complete fertiliers, respectively. The semple rirms, comprising 57 percent of the total number of estabilsnments in 1020 , accounted for \({ }^{7} 75\) percent of production. The first half of the year is sald to represent about 90 percent of the ennual fertilizer movement. The basic data, complied by the National Fertilizer Association, are incorporated in NRA code records for the Fertilizer industry.
For this inder the definition of complete fertilizers was extended to include potash superphosphate. The tonnage of the latter was segregated from "other forcilizors 1 A 1010 -2i on the Dasis of the 1025 relationship. Buiphuric-acid production in 1933 and 1036 was estimated by the use of statistics published in the Survey of Current Business (Bee fin. 4).
}
classification of products. \({ }^{8}\) This index is several units below the NRP series before 1925, reflecting the preponderance of the weight assigned to complete fertilizers, and slightly higher after 1929, in which period the output of superphosphates for sale represents a declining proportion of the total for sale and consumption:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Index of \\
production with \\
man-hour \\
weights
\end{tabular} \\
1919 & 87.5 & 82.5 \\
1921 & 62.7 & 56.8 \\
1923 & 79.2 & 75.1 \\
1925 & 84.8 & 85.3 \\
1927 & 84.9 & 87.5 \\
1929 & 100.0 & 100.0 \\
1931 & 73.8 & 76.7 \\
1933 & 56.8 & 57.7 \\
1935 & 69.3 & 72.7 \\
& &
\end{tabular}

The index of employment for the years 1923-36 was computed by BLS. Census wage-earner statistics yielded the relatives for 1919 and 1921. Estimates for the remaining years, 1920 and 1922 , were made by means of the NICB employment series.

The index of man-hours was derived from the employment series and an annual index of average actual hours per week, which includes adjusted Census prevailing hours for 1919 and 1929 , NICB and BLS actual hours for \(1920-24\) and 1932-36, respectively, and estimates made by straight-line interpolation for 1925-28 and 1930-31. Prevailing hours for 1919 and 1929 were reduced to actual by application of the average ratio of NICB actual to Census prevailing hours for 1921 and 1923.

The production and labor indexes differ somewhat in scope. The former includes fertilizers made in other industries; the latter include secondary activities not accounted for in the production index. The value of fertilizers produced in other

\footnotetext{
\(6_{\text {Unit }}\) values are not satisfactory as weights for total production when some of the output is consumed in further fabrication and the number of products is small. Such weights tend to be too nigh for the products of the later stages (superphosphates and complete fertilizers) in relation to the ifst product (sulphuric acid) and to introduce duplication into the weighted aggregates. Unit valueadded weights are preferable, but they cannot be computed from available statistics. In the NRP index the use of unit value weights results in ilttie duplication, if any, decause chequantities reprosent production for sale.
}
industries ranges from 4 to 9 percent of the total; the value of secondary products has advanced from 6.5 percent of the total for the industry's output to about 18 percent. \({ }^{7}\) The omission of sulphuric acidfor sale as a secondary product - it was pointed out in the preceding section that the NRP production index may be regarded asincluding it - would not appreciably reduce these percentages.

Table 20. - sumany indexes fon the fentilizens Imdustay: 1919-36
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 87.5 & 125.5 & 126.5 & 69.7 & 69.2 \\
\hline 1920 & 92.1 & 149.0 & 159.9 & 61.8 & 57.6 \\
\hline 1921 & 62.7 & 80.8 & 80.1 & 77.8 & 78.3 \\
\hline 1922 & 71.5 & 108.2 & 107.8 & 68.1 & 88.3 \\
\hline 1923 & 79.2 & 88. 6 & 90.0 & 89.4 & 88.0 \\
\hline 1924 & 81.5 & 82.1 & 82.4 & 99.3 & 98.9 \\
\hline 1925 & 84.8 & 93.8 & 94. 2 & 80.4 & 00.0 \\
\hline 1828 & 87.8 & 99.5 & 99.7 & 88.2 & 88.1 \\
\hline 1927 & 84.9 & 88. 9 & 89.1 & 95.5 & 95.3 \\
\hline 1828 & 98.9 & 94.9 & 94.9 & 104.2 & 104.2 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1830 & 98.4 & 97.9 & 93.3 & 100.5 & 105.5 \\
\hline 1931 & 73.8 & 69.5 & 69.0 & 106.2 & 117.1 \\
\hline 1932 & 50.7 & 49.8 & 42.8 & 101.8 & 118.5 \\
\hline 1933 & 56.8 & 62.3 & 52.0 & 91.2 & 109.2 \\
\hline 1934 & 63.2 & 84. 3 & 57.4 & 75.0 & 110.1 \\
\hline 1935 & 68.3 & 83.4 & 57.8 & 83. 1 & 119.9 \\
\hline 1936 & 78.0 & 77.5 & 62.2 & 98.1 & 122.2 \\
\hline
\end{tabular}

The extent of the lack of comparability between the production and labor Indexes may not be reflected adequately in these value percentages, which constitute the only measure available for the whole Deriod. According to other census statistics, the fertilizer output of other industries in terms of relative value is greater than in terms of relative tonnage - at least in 1920, 1933, and 1935:
\begin{tabular}{lcc}
& \multicolumn{2}{c}{ Percent oy- } \\
\cline { 2 - 3 } & Weight & Value \\
1929 & \(\mathbf{8 . 3}\) & 9.4 \\
1933 & 4.8 & 7.1 \\
1935 & 3.7 & 4.3
\end{tabular}

In 1936, furthermore, three-ifiths of the value of secondary products represented not production butmerely goods sold in condition in which purchased, presumably natural fertilizers and similar materials excluded by the census trom the definition of the industry.

\section*{21. FLDUR AND DTKER GRAIN-MILL PRODUCTS}

This industry is confined to establishments engaged primarily in the manufacture of flour, meal, and feed for livestock, from wheat, corn, and other grains. Mills engaged principally in the production of cereal preparations (breakfast foods, prepared flour, etc.) or prepared feed for livestock and poultry are classified in other industries.

The Census restricts its canvass to "merchant" mills, which purchase and grind the grain and sell the resulting flour and byproducts. "Custom" or "grist" mills, whichare engaged solely in milling grain owned by others, are not considered part of the industry; such mills accounted for only 5.9 and 4.4 percent of the combined output of merchant and custom mills in 1909 and 1919, respectively. Establishments which do both merchant and custom grinding are classed asmerchant mills even if the latter is their major activity.
Production and employment in the Flour and Other Grain-Mill Products industry have been declining since the end of the war. The number of wage earners in 1919 was 45,000 ; by 1929 it was only 27,000 and by 1936, 26,000 .

\section*{Productson}

An aggregative production index with 1929 unit-value weights was constructed for the odd-numbered years 1919-35 from Census statistics for 6 classes of products: Wheat flour; \({ }^{1}\) bran and middlings; feed, screenings, etc.; \({ }^{2}\) ryeflour; corn meal and corn flour; and buckwheat flour. These account for over 99 percent of the value of products normally belonging to the industry. Wheat flour alone represents from 70 to 80 percent.

Production in intercensal years was estimated through the medium of an annual wheat-consumption series (bushels of wheat ground), which is the equivalent of a series of unweighted aggregates of wheat flour and its byproducts, except for milling losses. The basic data (viz, monthly wheat-flour production of custom and merchant mills in 1925-36, semiannual production in 1919-21 and

\footnotetext{
\({ }^{1}\) Includes some self-rising or prepared \(f\) our. Although mills classified elsewhere are engaged chlefiy in the manufacture of such fiour, estabilshments In the Flour and other Grain-mill Products industry have consistentiy accounted for half or more of the total output.
\({ }^{2}\) To make the "feed and screenings" series internally comparable, it was necessary to estimate and deduct the tonnage of prepared feed for livestock and poultry in 1918 and 1921. For this purpose, the percentage which prepared pould comprised of the tonnage of feed and screenlngs in 1823 was assumed to be typlcal of the eariler years. See ftn. 8 .
}

1924, annual production in 1923, and average wheat requirements per barrel of flour for each crop year since 1918-19) were obtained from various issues of theat Studies, a publication of the Leland-Stanford Food Research Institute. \({ }^{3}\)

Wheat consumption was estimated for every year except 1922 by multiplying wheat flour milled by the corresponding wheatrequirement ratio. The Federal Reserve Board index of wheat flour milled for \(1921-23\) was used in making the estimate for 1922.

The consumption series closely resembles the value-weighted index of grain-mill production. The reason for the similarity is twofold: (i) Wheat flour andits concomitant byproducts dominate the outpot index; and \((2)\) since the joint yields of wheat and its byproducts are fairly proportional from year to year, \({ }^{5}\) weighted and nnweighted aggregates of these products are similar in movement.

The unit-value weights for theprincipal kinds of flour - wheat, rye, and corn - could be compared with corresponding man-hour weights (ignoring byproducts). \({ }^{6}\) Although labor expense constitutes only 3 to 4 percent of the value of the industry's products and unit valnes are fixed by indirect means, \({ }^{7}\) the 2 weighting

\footnotetext{
Sthe Food Research Institute'g estinates of total ilour production, which presumably include the output of all merchant and custom \(\mathrm{m}_{1}\) ils, are based on presumady include the output of all merchant and custon \({ }^{2} 1118\), are based on Milifig Products: Merchant and Other Milis: \(1 t 8\) wheat-requirement ratios were derived fron the latcer source.
Hederal Peserve Index of Indestrial Production (mimeo. . Apr. 1938), Dp. 19-20. Relstives of Pood Research Institnte consumpion and FRB production agree closely in both 1921 and 1923 . The FRB index is based on monthly data from the Census quarterly (sea itn. 3) as adjusted by Russelb's Comercial lews and aupplenented by material from forthwestern Milier.
5ine what accually ground since the end of the war has been so homogeneous that itmay be consicered auniform grade, the products of which are in invarm lant proportion. According to Theat studies, the nupber of bushels of wheat per barrel of flour averaged 4.6 in 16 crop years, A. 7 in only 2, and 4,5 in only 1 of the 18 ITcm \(1918-10\) to \(1938-37\). Ever Bince \(1922-23\) the wheatrequirement ratio to the neareat tenth-bughel has been 4.0 .
Changes in the relative amouncs of wheat ilour and its byproducts indicated Dy actistics in the Census of Markfacturgs reflect largely the lack of uniforin terininology and the absence of gufficientiy defined gtandards in seneral. Each illi has its own patent fiour, and the ilne or demarcation between low-grade flour and high-grade middings, for example, is tenuous and unstable.
\({ }^{6}\) Relative labor requirementa were deternined fromeatinates made in the course 01 i field study of flour milis, the resuits of which are sumarisedin a rea port (in preparation) by R. T. Boman, Productivity and bmploymentin selected Industries: Whest Fiour (WPA National Research project in cooperation with National Eurean of Economic Research). Bee itn. 10.
7The cost-accounting practice is to detergine the net cost of a barrel of flour by deducting tron the gross cost per baprel (estinated on che assumption that the cotal grain, elevator, willing, selling, and administrative cost is to be botne only by the principal product - high-grade flour) the probable sales yield of the concomitans byproducts. To the renainder, the niller adds pactaging cost and profit tofind the value of flour at the inill- the figure wich apparenciy, is multiplied by the total number of barpels produced wo obtain the total value reported to the cengus. Bee J. A. Dohr. B. A. to obtain the total value Feported to the censuse seo practice (2nd ed.i New Yori: Ronaid Press, 1935). Dp. 463-b.
}
systems (wheat flour = 1.00) are similar enough to yield indexes which are substantially the same:
\begin{tabular}{lcc}
Flour & \begin{tabular}{c}
Man-hours \\
per ton
\end{tabular} & \begin{tabular}{c}
Value \\
per ton
\end{tabular} \\
Wheat & 1.00 & 1.00 \\
Rye & 1.00 & 0.89 \\
Corn & 0.80 & 0.82
\end{tabular}

\section*{Employment and Man-hanra}

The employment index, which conforms to Census trend, was constructed by BLS. 8 The man-hours index is based on this employment series and on an index of average annual hours. The average-annual-hours series is composed of 2 segments which were spliced in 1926. The first, 1919-26, was rendered continuous by straightline interpolation of Census prevailing hours (weekly hours times 51雱 \({ }^{9}\) for 1919, 1921, 1923, and 1929. The second, 1926-36, was derived from BLS actual weekly hours for 1932-36 and the results of a field study of wheat-flour establishments made by the National Research Project in cooperation with the National Bureau of Economic Research. \({ }^{10}\) This study furnished a series of average annual hours worked in a sample of 15 to 35 establishments during the decade 1926-35. BLS average weekly hours for 1932-36 were raised to annual totals by multiplication by \(51 \frac{1}{9} ;^{11}\) the sample series for 1926-31 was then adjusted to the BLS level by multiplication by the average relationship between the 2 annual-hours series in 1932-35. \({ }^{12}\)

The production and employment indexes differ somewhat in scope. Some of the output included in the Census totals (less than 5 percent by valuel is contributed from outside the industry. On

\footnotetext{
\({ }^{B_{\text {No }}}\) adjustment was required in the number of wage earners for 1919-23 since the separation of prepared feed for animals from feed, screenings, etc. after 1923 (see ftn. 2) was merely a change in classification, not in industry definition. Even before 1925, prepared feed normally belonged to another industry.
OThe usual number of weeks in the flour-milling year, according to the NRPNBER field survey (see ftns. and 10).
\({ }^{10}\) The 50 establishments covered by the study (see ftn. 6) in 1929 comprised less than 2 percent of the total number in the industry. Nevertheless, during the period for which the hours data are used, the total sample accounted for a minimum of 14.4 percent (1927) of the vaiue of products of the industry and a maximum of 32.9 percent (1033).
11 The product of the 1833 estimate of annual hours per man and the Census number of wage earners \(1851,886,764\) or 97,8 percent of the man-hour total (52,828,781) computed from Census of Kanufactures: 1933, Man-Hour Statistics Ior 32 Selected Industries."
\(12_{\text {The }}\) ratios of the unadjusted NRP-NEER average annual nours to the (computed) BL8 Ifgures are:
\begin{tabular}{llllll}
\(1932 \ldots .\). & 1.028 & 1934 & \(\ldots .\). & 1.033 \\
1033 & \(\ldots .\). & 1.028 & 1935 & \(\ldots\). & 1.065
\end{tabular}
}
the other hand, some of the workers in flour mills are engaged in the manufacture of secondary products (about 6 percent of the value of total outputl, which arenot included in the production index.

Tabla zi.- sumany indexes pon the floun and othen ghain-mill paoducts INDUSTAY: 1915-3B
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 110.8 & 187.5 & 172.5 & 68.2 & 84.3 \\
\hline 1920 & D1. 2 & 151.0 & 154.9 & 60.4 & 58.9 \\
\hline 1921 & 86.3 & 130.8 & 133.3 & 79.7 & 72.2 \\
\hline 1822 & 100. 9 & 132.6 & 135.4 & 75.6 & 74.1 \\
\hline 1923 & 101. 1 & 130.1 & 132.8 & 77.7 & 76.1 \\
\hline 1924 & 103.4 & 123.7 & 125.8 & 83.6 & 82.2 \\
\hline 1925 & 90. 2 & 118.4 & 119.8 & 83.8 & 82.8 \\
\hline 1928 & 100.2 & 113.9 & 114.8 & 88.0 & 87.3 \\
\hline 1927 & 99.2 & 110.9 & 111.8 & 88.4 & 88.7 \\
\hline 1928 & 100.3 & 108.1 & 107.2 & 94.5 & 93.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 88.7 & 91.7 & 93. 5 & 107.8 & 105.6 \\
\hline 1931 & 93.1 & 84.5 & 83.7 & 110.2 & 111.2 \\
\hline 1932 & 85.9 & 81.5 & 79.4 & 105.4 & 108. 2 \\
\hline 1933 & 81.5 & 85.9 & 75.8 & 84.9 & 107.5 \\
\hline 1934 & 82.4 & 88.4 & 77.2 & 83.7 & 108.7 \\
\hline 1935 & 81.9 & 88.0 & 78.5 & 83.6 & 104.3 \\
\hline 1936 & 86.1 & 85.7 & 85.3 & 90.0 & 100.9 \\
\hline
\end{tabular}

\section*{22. PURNITURE}

The Furniture industry, which employed more than 193,000 wage earners in 1929, includes establishments engaged primarily in the manufacture of household furniture; furniture and fixtures for offices and stores; professional, laboratory, hospital, barber, and beauty-parlor chairs, tables, and cots; and furniture for public buildings. Plants manufacturing mattresses, bedsprings, and refrigerators are classified in other industries.

\section*{Produetion}

Since no quantity data are available, the production index was obtained by deflating a value series for furniture made in the Furniture industry (exclusive of secondary products and contract, custom, and repair work) by an index of wholesale prices. The small amount of furniture made in other industries, about 4 percent of the total value of all furniture, was omitted in order to achieve maximum comparability between the production and employment series.

The value data for odd-numbered years of the period 1919-35 were supplied by the Census. \({ }^{1}\) Estimates of value for intercensal years and for 1936 were made by means of the continuous BLS index of wages. \({ }^{2}\) Such an interpolating medium should give reliable results since (1) it is based on a large sample, (2) wages correspond to production in geographic distribution, and (3) wages constitute as much as 26 percent of the value of all products of the industry. The following tabulation shows the movement of wages and value relatives computed from Census data:
\begin{tabular}{lrrr}
Year & Wages & Value & \\
1919 & 59.0 & 81.1 & \\
1921 & 59.4 & 58.0 & \\
1923 & 84.2 & 81.8 & [con.]
\end{tabular}

\footnotetext{
\({ }^{1}\) The value of secondary products and of contract, custom, and repair work (estimated on the basis of their proportion of the total in 1923-3.9 percent) had to be excluded from the value flgures for 1919 and 1921. Adjustments were also made, when possidle, for minor changes in the Census definition of the industry.
\({ }^{2}\) The BLS wages and employment series were adjusted for revisions in industry definition (see ftn. 1). Another interpolating medium, besed on the value of furniture produced in pennsyivanla and Massachusetts through 1931 and in massachusetts alone thereafter, was also avallable (from annual issues of the Report on the Productive Industries, Public Utilities and Miscellaneous Statistics for the Commonwealth of Pennsylvania by the Dept. of internal Affalrs and the Annual Report of the Departaent of Labor and Industries of massachusetts). This series, however, covered oniy about 10 percent of the total through ig31 and only about 5 percent thereafter. The wages index, moreover, gives a better approzimation to the trend of census values.
}
\begin{tabular}{rrrr}
[con.] & Year & Wages & Value \\
& 1925 & 92.8 & 90.2 \\
& 1927 & 98.1 & 93.0 \\
& 1929 & 100.0 & 100.0 \\
& 1931 & 31.5 & 50.6 \\
& 1933 & 46.9 & 31.4 \\
& 1935 & & 45.5
\end{tabular}

The wholesale~price index was constructed by splicing 3 series of weighted averages of BLS relatives - one for 10 products from 1919 to 1936, the second for 12 products from 1925 to 1936, and the third for 17 products 1 rom 1926 to 1936. The weight for each relative is the 1929 value estimated from the Census of Manufactures. The 3 series are almost identical in coterminous periods.

\section*{Emplaymant and Man-haura}

The NRP employment index is the BLS series adjusted to conform to revised Census wage-earner totals. This index is not identical in scope with the deflated value series since it includes wage earners engaged in the manufacture of secondary products and in custom, contract, and repair work. The number of such wage earners could not be ascertained, but the effect of their inclusion on the comparability of the production and employment indexes is probably small since the value of their output constitutes only about 4 percent of the total.

The man-hours series was derived from the employment index and from an annual series of average actual weekly hours based on adjusted Census prevailing hours for 1919, on NICB actual hours for 1920-31, and on similar BLS statistics for 1932-36. The correction factor applied to the Census figure for 1919 is the 1923 ratio of actual to prevailing hours.

80 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table 22.- bumany indexes fon the funmitune imnustay: 1819-3E
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 55. 1 & 72.5 & 75.8 & 78.0 & 72.7 \\
\hline 1920 & 48.0 & 80.0 & 79.8 & 80.0 & 60.2 \\
\hline 1921 & 45.1 & 64.3 & 60.9 & 70.1 & 74.1 \\
\hline 1822 & 50.9 & 78.4 & 78.8 & 78.4 & 78.0 \\
\hline 1923 & 68.7 & 88.9 & 89.3 & 79.1 & 78.8 \\
\hline 1924 & 73.8 & 85.2 & 85.5 & 88.6 & 86.3 \\
\hline 1925 & 84.9 & 93.6 & 94.8 & 80.7 & 89.0 \\
\hline 1926 & 92.2 & 88.2 & 100.5 & 93.8 & 91.7 \\
\hline 1927 & 92.2 & 97.3 & 89.0 & 94.8 & 93.1 \\
\hline 1928 & 90.8 & 95.4 & 95.2 & 85.2 & 05.4 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 70.3 & 79.5 & 71.9 & 88. 4 & 87.8 \\
\hline 1937 & 53.8 & 65.9 & 55.9 & 81.6 & 96.2 \\
\hline 1932 & 36.6 & 51.3 & 37.8 & 71.3 & 96.8 \\
\hline 1939 & 38.8 & 54.5 & 42.1 & 71.2 & 92.2 \\
\hline 1934 & 43.5 & 88.2 & 43.0 & 74.7 & 101.2 \\
\hline 1935 & 50.5 & 67.6 & 56.0 & 83.6 & 100.9 \\
\hline 1938 & 68.5 & 75.2 & 68.0 & 88.4 & 97.8 \\
\hline
\end{tabular}
```

25. GLABS GROUP
26. WINDDW GLASS
27. PLATE blass
28. BLASS EDNTAINRRS
29. PrESSED aND ELaWN Ware
```

The Glass group, as here defined, is restricted to the output of the following classes of products: (1) Windowglass (including obscured glass); (2) plate glass (including polished plate and rough and polished wire glass); (3) glass containers; and (4) pressed and blown ware (e. g., tableware, ovenware, tumblers, lenses, lamps, and bulbs for electric lamps). The 4 industries in the Glass group correspond to the total output of these 4 classes of products.

The Glass group is a modification of the Census "Glass" industry, which includes establishments engaged primarily in the manufacture of glass and glass products from raw materials but not those engaged primarily in the production of glassware from purchased "blanks." In 1929 the Glass group employed about 65,700 wage earners, or 97 percent of the total reported for the Census industry. In this year Window Glass accounted for about one-tenth of the wage earners in the group, Plate Glass for about two-tenths, Glass Containers for about three-tenths, and Pressed and Blown Ware for about four-tenths.
Significant technological progress has been made in all these industries since the beginning of the century. The Lubber (semiautomatic) cylinder machine formaking windowglass was introduced in 1905; it was followed by the Colburn (automatic) cylinder machine in 1917 and the Fourcault (automatic) sheet machine in 1921. By 1926 only 2 percent of the total output of window glass was still produced by the old hand process. Many of the operations in the Plate Glass industry were completely mechanized early in the century; the most important innovation, the continuous process (from casting to grinding and polishing), was made in 1921. Semiautomatic machines were substituted for the hand-blowing of wide-mouth glass containers as early as 1898; between 1905 and 1917 these machines and similar ones for small-mouth ware were superseded by the Owens automatic machines. Between 1917 and 1924 feed-and-flow devices were installed. Semiautomatic and feed-and-flow devices are used in pressed-ware production, although extensive mechanization has been impeded by the multiplicity of products. In the manufacture of blown ware, however, the processes have been mechanized to a greater degree. For
example, prior to 1917 the hand process was used exclusively in making electric-light bulbs, but as a consequence of the introduction of the Empire E (semiautomatic) and the Empire F and Westlake (automatic) machines the hand process was almost completely displaced by 1929.

\section*{Production}

Glass Group.- The group production index, whichincludes about 80 percent of the value of the group's output, was constructed in the following manner from relatives for the 4 component industries: First, the indexes of production for the 4 industries for 1919 and the odd-numbered years 1925-35 were combined in a harmonic mean with changing employment weights; the resulting series was then rendered continuous for the period \(1919-36\) by the use of an annual index which is a similarly weighted harmonic mean of relatives for the Window Glass, Plate Glass, and Glass Containers industries for 1919, 1923, and 1925-36 interpolated by a harmonic mean for the first 2 of these industries.

The NRP group index compares as follows with an arithmetic mean of the 4 component series weighted by employment in 1929:
\begin{tabular}{ccc}
& \multicolumn{2}{c}{ Index of production with - } \\
\cline { 2 - 3 } Year & \begin{tabular}{c}
Changing \\
weights
\end{tabular} & weights (1929) \\
1919 & 65.1 & 67.3 \\
1925 & 89.4 & 90.2 \\
1927 & 98.8 & 99.0 \\
1929 & 100.0 & 100.0 \\
1931 & 74.9 & 75.0 \\
1933 & 75.6 & 75.7 \\
1935 & 105.7 & 106.4
\end{tabular}

Window Glass.- The index for this industry was computed for the odd-numbered years 1919-35 from Census series for window and obscured glass, which were weighted by averages of unit values for the same years. 1 It was completed by means of statistics supplied by \(H\). Jerome for the years \(1919-23\) and \(1925,{ }^{2}\) figures

\footnotetext{
\({ }^{1}\) Obscured and wire glass (the latter is a primary product of the Plate Giass industry), reported in combination in 1933, were separated on the basis of their 1931 proportions.
\(2_{\text {The data }}\) were collected in the course of preparation or Nechanization in Industry (New York: National Bureau of Economic Research, 1934).
}
reported by the \(U\). S. Tariff Commission for \(1926-36,3\) and an estimate for 1924 obtained by straight-line interpolation. The products included in the index for census years represent the total output of the industry.

Plate Glass.- The index for this industry was constructed for the odd-numbered years 1919-35 from Census series for polished plate glass and for rough and polished wire glass weighted by averages of unit values for 1919-35.4 It was completed by means of a continuous plate-glass-production series compiled by the Plate Glass Manufacturers of Anerica and published by the U. S. Tariff Commission (1919-20)5 and the Survey of Current Business (1921-36). The products included in this index in each oddnumbered year represent the total output of the industry.

Glass Containers.- The index for Glass Containers for the oddnumbered years 1927-35 includes series for the following 9 classes of products weighted by averages of unit values in the same years: \({ }^{6}\)
```

Contalners for medical and
toilet preparations
Frult jars
General-purpose containers
Mllk bottles

```

> Narrow-neck bottles
> Nonpressure ware
> Pressed ware (packers')
> Pressure ware
> Wide-mouth bottles

The relatives for 1919, 1923, and 1925 were obtained by splicing this index and a series for the unweighted total number of glass containers' in their first common year, 1927; the relatives for the remaining years, except \(1920-22\) and 1924 , were estimated by the use of 2 other unweighted series (compiled by the Glass Container Association and published in the Survey of Current

\footnotetext{
3 Plat Glass and Related Glass Products (Red. No. 123, 2d ser., 1937), p. 144. The flgures for 1926-30 were obtained by the Tariff commission from manupacturersi records; those for later years, from the Window Glass Manufacturers Association.
\({ }^{4}\) The quantity of polished plate glass for 1933 was interpolated by means of the plate-glass series pubilshed in the Survey of Current Business; its value was segregated from the total for "plate glass and other glass products" by application of the 1931 retio to the corresponding total. For the 1933 estimates of the value and groduction of wire glass, see ftn. 1 .
\({ }^{5}\) Cast Polished Plate Glass (1929), D. 3.
 binstion in several years; in such instances they were separated in accordance with their proportions in the preceding census year.
7This series of totals, complled by the Census, was reported in a BLS study by B. Stern, Productivity of Labor in the Glass Industry (Bull. No. 441), D. 15.

The unweighted and weighted Indexes compare as follows:
\begin{tabular}{lcc}
Year & Weighted (NRP) & Unweighted \\
1927 & 100.6 & 96.8 \\
1929 & 100.0 & 100.0 \\
1931 & 93.9 & 89.5 \\
1933 & 98.8 & 97.8 \\
1935 & 188.4 & 114.8
\end{tabular}
}

Business), one for a sample of 31 manufacturers for 1926-33 and the other for 42 manufacturers for \(1933-36 .{ }^{8}\) As in the indexes for the 2 preceding industries, the series entering into this index in the odd-numbered years represent the total value of the industry's output.

Pressed and Blown Ware.- The production index for this industry was constructed for 1919 and the odd-numbered years 1925-35 from 5 series weighted by averages of unit values. \({ }^{9}\) Four of these series - for chimneys, lantern globes, tubing, and pressed tumblers and goblets - were obtained from the Census of Manufactures; the fifth, for electric-lamp bulbs, was obtained from a BLS survey (for 1925-31), from the Census of Manufactures (for 1919), and by extrapolation (for 1933 and 1935). 10 In contrast with the production series for the other industries of the group, the index for Pressed and Blown Ware includes only about one-third of the total value of the industry's output.

\section*{Emplayment}

The NRP employment series for the 4 component industries (and hence for the group alsol correspond exactly in scope to the production indexes. They do not include wage earners engaged in the manufacture of either secondary products or of "other glass products" which, reported only in terms of total value, could not be distributed.

The first step in determining the number of wage earners in each industry of the group was to make preliminary estimates which include workers producing secondary and "other" glass products. For the odd-numbered years 1929-35 use was made of detailed statistics supplied toNRP in a special Census tabulation; for 1923

\footnotetext{
\(8_{\text {According to the Survey of Current Business, the } 31 \text { manufacturers represented }}\) 83 percent of the total productive capacity; the 42 accounted for 95 percent of all glass-container output in 1933.
\({ }^{9}\) The average unit values refer to the odd-numbered jears 1925-35 for all but 1 product (electric-lamp bulbs), the unit value for which could be computed for 1925 only. The quantity and value of pressed tumblers and goblets were estimated for 1935 -from totals which also included blown tumblers, goblets, and barware on the basis of the 1931 value ratio. No unit-value flgures could be computed for 1918 since value statistics were not avallable.
\(1^{10}\) The BLS study, fechnological Changes and Employment in the glectric-Lamp Industry (Bull. No. 593). by W. Bowden, reports annual production and labor statistics for lamps and parts for the period 1920-31. Extrapolation to 1933 and 1935 was accomplished by means of a series for incandescent-filament lamps (Included by the Census as a normal product of the electrical Machinery, Apparatus, and Supplies industry); the incandescent-filament lamp ilgures Apparatus, and supplies industry ; the incandescent-rilament lamp ingures numbered years 1921-31 of the BLS to the census series.
}
and 1925 similar data were obtained from a BLS bulletin; \({ }^{11}\) and for 1927 the total reported in the Census of Manufactures was distributed in accordance with averages of the proportions in 1925 and 1929. In order to render these 4 preliminary series comparable with the corresponding production indexes, an adjustment was made to exclude the employment associated with secondary and "other" glass output. This adjustment was made on the assumption that for each of the component industries the value of output perwage earner was the same for (i) products not normally belonging to the industry, (2) primary products made within the industry, and \((3)\) primary products made in other industries. The adjustment factors applied to each series are ratios of (a) the value reported by the Census for the primary products of the industry of the same name, wherever manufactured, to (b) the total value of the industry's output as indicated in the special Census tabulation. These ratios were computed for each of the odd-numbered years 1929-35; their average was used for the oddnumbered years 1923-27. The employment index for Glass Containers was then completed for the even-numbered years of the period 1923-36 by means of an employment series supplied in a special BLS tabulation; no satisfactory data were available for the completion of the employment indexes for the other 3 industries. 12

The group employment index was obtained by interpolating and extending relatives of the total number of wage earners in the 4 component industries for the odd-numbered years \(1923-35\) by means of a continuous BLS index. 13

\section*{Man-hanfa}

The index of man-hours for the group was derived from the employment index and a series for average weekly hours based on

\footnotetext{
11B. 8tern. op, cit., D. 15. The Census is cited as the source of the data. The figures for the Window Glass and Plate Glass industries were raised in the 2 years to inciude employment for obscured and wire glass, respectively. The number of wage earners for each product was estimated by distributing the difference between the census total for the malassi industry and the total for the 4 components (as reported in this bulletin) ingccordance with Che ratio of the value of each product to their combined value.
I2gtatistics were also furnished for the Window Glass and plate olass industries in the special BLB tabuistion, but the derived indexes were not used because of the magnitude of the adjustments required to conform them to the trends of the NRP relatives for the odd-numbered years.
Although nons of the employment indexes could be rendered continuous for the entire period, percentage distributions for all years were nevertheless computed for use as weights in the group production indez. The 1923 percentsges were sssumed for 1919-22. The differences between the group totals and the figures for the olass Containers industryin the remaining intercensal yeers Were distributed among the other of industries in accordance with averages of the proportions in adjacent census years (the ig35 proportions were assumed for 1936).
18The BL8 Indez had to be adjusted for \(1919-21\) to conform to the movement of enployment in the Centus olassil industry.
}

Census prevailing hours for 1919, 1921, 1923, and 1929; on BLS actual hours for 1932-36; and on estimates for the remaining years obtained by straight-line interpolation.

Only fragmentary man-hours series could be computed for 3 of the 4 component industries and none for the fourth (index numbers, 1933=100):
\begin{tabular}{lrrc}
Year & \begin{tabular}{c}
Window \\
Glass
\end{tabular} & \begin{tabular}{c}
Plate \\
Glass
\end{tabular} & \begin{tabular}{c}
Glass \\
Containers
\end{tabular} \\
1932 & 68.3 & n.a. & 101.9 \\
1933 & 100.0 & 100.0 & 100.0 \\
1934 & 102.2 & n.a. & 116.1 \\
1935 & 108.4 & 150.5 & 127.8 \\
1936 & 102.4 & n.a. & 143.9
\end{tabular}

These estimates are relatives of the quotients of pay. rolls and average hourly earnings provided in the special Census and BLS tabulations. \({ }^{14}\)

Tahle 23.- mimany indexes fon the blass industay gaoup: 1919-se
(1829-100)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 85.1 & 210.7 & 109.8 & 58.8 & 59.3 \\
\hline 1920 & 77.7 & 115.3 & 114.1 & 87.4 & 88.1 \\
\hline 1921 & 53.3 & 78.2 & 77.3 & 88.2 & 69.0 \\
\hline 2922 & 81.9 & 94.0 & 93. 3 & 88. 6 & 87.8 \\
\hline 1928 & 88.4 & 104.7 & 102.8 & 84.4 & 86.0 \\
\hline 1824 & 82.2 & 94.8 & 93.5 & 88.7 & 87.8 \\
\hline 1925 & 89.4 & 98.2 & 97.0 & 91.0 & 92.2 \\
\hline 1926 & 103.3 & 202.8 & 102.0 & 200.5 & 101.3 \\
\hline 1927 & 98.0 & 93.8 & 93.0 & 105.8 & 106.0 \\
\hline 1928 & 200.2 & 83.9 & 93.7 & 106.7. & 108.8 \\
\hline 1929 & 200.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 81.3 & 85.5 & 78.3 & 95.1 & 103.8 \\
\hline 2931 & 74.9 & 71.8 & 59.8 & 104.3 & 125.3 \\
\hline 1932 & 56.2 & 59.4 & 44.5 & - 24.8 & 126.3 \\
\hline 1933 & 75.6 & 70.8 & 50.9 & 107.1 & 148.5 \\
\hline 1934 & 83.8 & 00.2 & 81.2 & 92.7 & 138.6 \\
\hline 1035 & 105.7 & 94.5 & 67.2 & 111.9 & 157.3 \\
\hline 1936 & 118.1 & 98.8 & \(\checkmark \quad 71.5\) & 119.9 & 182.4 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{14}\) Census pay-roll statistics for the Window Glass and Olass Containers industries for 1933 and 1935 were extended by means of corresponding bls aeries. The hourly. earnings are averages of the quotients of blS wonthiy day-rolls and man-hours figures for sample establishments.
}

Table 24.- sumany thdexes pon the winnow elass Imoustay: 1919-38
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1818 & 02.6 & n. B. & - \\
\hline 1820 & 99.4 & n.a. & - \\
\hline 1021 & 64.1 & n. a. & - \\
\hline 1022 & 126.4 & n. \(\mathrm{B}^{\text {. }}\) & - \\
\hline 1029 & 127.9 & 144.4 & 88.6 \\
\hline 2024 & 135.6 & n. a. & - \\
\hline 1026 & 143.2 & 165.8 & 86.4 \\
\hline 1826 & 132.0 & n. a: & - \\
\hline 1927 & 119.7 & 128.4 & 92.5 \\
\hline 1028 & 105.7 & n. a. & - \\
\hline 1929 & 200.0 & 100.0 & 100.0 \\
\hline 1950 & 68.3 & n. a. & - \\
\hline 1931 & 64.2 & 52.1 & 123.2 \\
\hline 1992 & 43.0 & n. \({ }^{\text {a. }}\) & - \\
\hline 1933 & 50.0 & 57.0 & 102.8 \\
\hline 1934 & 74.8 & n. a. & - \\
\hline 1935 & 97.4 & 80.5 & 121.0 \\
\hline 1938 & 84.6 & n. \(\mathrm{E}^{\text {. }}\) & - \\
\hline
\end{tabular}

Talla 25.- sumpany ImDExEs fon the plate dass industay: \(1919-38\)
(1929 = 100)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1019 & 88.1 & n, B . & - \\
\hline 1020 & 50.4 & n, B. & - \\
\hline 1921 & 37.3 & n. a. & - \\
\hline 1922 & 54.7 & n. B. & - \\
\hline 1923 & 64.5 & 81.0 & 79.6 \\
\hline 1924 & 63.5 & n. A. & - \\
\hline 1925 & 78.7 & 98.2 & 80.1 \\
\hline 1926 & B9.0 & n. B. & - \\
\hline 1027 & 78.4 & 87.0 & 90.1 \\
\hline 1928 & 8 8. 6 & n. B. & - \\
\hline 1020 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 69.5 & n.a. & - \\
\hline 1091 & 56.5 & 46.8 & 120.7 \\
\hline 1032 & 93.5 & n.a. & - \\
\hline 1033 & 54.3 & 38.0 & 147.2 \\
\hline 1934 & 88.9 & n. \(\mathrm{a}_{\text {. }}\) & - \\
\hline 1098 & 110.8 & 84.6 & 202.9 \\
\hline 1036 & 122.0 & n.e. & - \\
\hline
\end{tabular}

(1529 = 100)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Emplogment & Output per wage earner \\
\hline 1919 & 64.9 & n. a, & - \\
\hline 1920 & n. a. & n.a. & - \\
\hline 1821 & n. a. & n.a. & - \\
\hline 1922 & n.a. & n. a. & - \\
\hline 1823 & 82.7 & 101.0 & 81. 9 \\
\hline 1924 & n. a. & 87.9 & - \\
\hline 1925 & 75.8 & 91.3 & 83.0 \\
\hline 1926 & 97.2 & 97.9 & 99.3 \\
\hline 1927 & 100.6 & 91. 7 & 109.7 \\
\hline 1928 & 104.6 & 98.3 & 108.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 98.4 & 89.5 & 109.9 \\
\hline 1931 & 93.9 & 84.2 & 111.5 \\
\hline 1832 & 78. 7 & 75.8 & 103. 7 \\
\hline 1933 & 98. 8 & 85.1 & 116. 1 \\
\hline 1934 & 107.7 & 108.2 & 101.4 \\
\hline 1935 & 118. 4 & 113.2 & 104. 8 \\
\hline 1938 & 138.1 & 120.5 & 114.6 \\
\hline
\end{tabular}

Talle 27.- sumpany indexes fon the phessed and llown wane imdustay: isis-se
(1929 \(=100\))
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1919 & 77.1 & n. a. & - \\
\hline 1920 & n. a. & n. a. & - \\
\hline 1921 & n.a. & n.a. & - \\
\hline 1922 & n.a. & n. a. & - \\
\hline 1923 & n. a. & 109.4 & - \\
\hline 1924 & n.a. & n. a. & - \\
\hline 1925 & 95.0 & 88.5 & 109.8 \\
\hline 1928 & n.a. & п.a. & - \\
\hline 1927 & 102.2 & 80.2 & 114.6 \\
\hline 1928 & n. a. & n. a. & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & n. a. & n.a. & - \\
\hline 1931 & 69.5 & 77.9 & 89.2 \\
\hline 1932 & n. a. & ¢ . n. a, & - \\
\hline 1933 & 89.7 & - \(\quad 77.6\) & 89.8 \\
\hline 1934 & n. a. & n.a. & - \\
\hline 1935 & 95.8 & 100.6 & 95.0 \\
\hline 1936 & n. a. & n. a. & - \\
\hline
\end{tabular}

\section*{28. ICE CREAM}

The establishments included in this industry are engaged primarily in the manufacture of ice cream, ices, and related specialties. The manufacture of these products by hotels, restaurants, and retailers for use in their soda fountains is not considered part of this industry. The number of wage earners employed in the Ice Cream industry in 1929 was over 22,000 .

\section*{Praduetion}

The index of production for the odd-numbered years 1923-35 is based on the total number of gallons, reported by the Census, of ice cream, ices, and specialties made in all industries; it was completed for the even-numbered years of the period 1919-36 by means of a production series for ice cream compiled by the Bureau of Agricultural Economics. The latter agrees closely with Census statistics for the same product and concurs with the relatives of the unweighted aggregates for all 3.

\section*{Employmet and Man-houri}

The index of employment, which conforms to Census trend, is based on BLS series for 1923-36, Census wage-earner statistics for 1919 and 1921, and estimates for 1920 and 1922 obtained by straight-line interpolation.

The man-hours index was computed from this employment series and a series of average weekly hours. The latter includes Census prevailing hours for 1919,1 1921, \({ }^{1}\) 1923, and 1929; BLS actual hours for 2932-36; and estimates for intervening years derived by straight-line interpolation.

The labor and production indexes are not strictly comparable in scope since some of the wage earners in the industry are engaged in the manufacture of secondary products while others outside the industry are engaged in the production of ice cream, ices, and specialties. The only indication of the extent to which this situation prevails is given by \(|1|\) the percentage which secondary products constitute of the total value of the industry's output and (2) the percentage which ice cream, ices, and specialties made outside the industry comprise of the value of such production in all industries:

\footnotetext{
1prevaling hours for these gears were eatimated from combined statistics for the Confectionery and ice cream industries on the basis of the relationship between the figures for each industry in later years.
}
Year \begin{tabular}{ccc}
Secondary & \begin{tabular}{c}
Production \\
production \\
in industry \\
etce outside \\
industry
\end{tabular} \\
1923 & 6.6 & 11.7 \\
1925 & 6.3 & 10.5 \\
1927 & 6.3 & 9.5 \\
1929 & 6.9 & 7.9 \\
1931 & 5.6 & 6.2 \\
1933 & 7.7 & 8.0 \\
1935 & 8.0 & 10.2
\end{tabular}

A crude adjustment of the employment and man-hours indexes may be attempted on the basis of the above percentages. Such an adjustment implies that value productivity is the same not only for products included in the production index, wherever manufactured, but also for secondary products of the Ice Cream industry:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Employment index} & \multicolumn{2}{|l|}{Man-hours 1ndex} \\
\hline & NRP & Veluesdjusted & NRP & Valuesdjuited \\
\hline 1919 & 88. 6 & 89.5 & 85.1 & 88.1 \\
\hline 1921 & 90.2 & 94.4 & 80.4 & 84.0 \\
\hline 1923 & 103. 3 & 108.1 & 104.4 & 109.3 \\
\hline 1925 & 102.9 & 108.5 & 103.6 & 107.2 \\
\hline 1927 & 87.9 & 100.2 & 88.3 & 100.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 79.2 & 78.8 & 75.8 & 75.5 \\
\hline 1933 & 64.2 & 64. 5 & 85. 3 & 56. 6 \\
\hline 1935 & 77.3 & 78.4 & 63. 5 & 64. 4 \\
\hline
\end{tabular}

It is apparent that the value-adjusted labor series would gield lower index numbers of productivity for years prior to 1929 but almost identical ones thereafter.

Table 2a.- sumany imogxes fon the ice cneam industar: 1919-36
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Yoer} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 61.6 & 85.5 & 85.1 & 72.3 & 72.6 \\
\hline 1920 & 88.7 & 87.8 & 87.7 & 78.2 & 78.3 \\
\hline 1921 & 68.6 & 80.2 & 80.4 & 76.1 & 75.9 \\
\hline 1022 & 75.0 & 98.8 & 87.5 & 77.5 & 78.9 \\
\hline 1028 & 80.4 & 103.3 & 104.4 & 77.8 & 77.0 \\
\hline 1924 & 79.1 & 108.3 & 107.3 & 74.4 & 73.7 \\
\hline 1925 & 87.2 & 202.9 & 103.6 & 84.7 & 84.2 \\
\hline 1926 & 86.5 & 100.3 & 100.8 & 86.2 & 85.8 \\
\hline 1027 & 00.2 & 97.9 & 98.3 & 02.1 & 81.8 \\
\hline 1928 & 91.7 & 99.5 & 89.7 & 92.2 & 82.0 \\
\hline 2920 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 95.1 & 82.7 & 80.8 & 102.6 & 104.7 \\
\hline 1931 & 82.5 & 78.2 & 75.9 & 104.2 & 108.7 \\
\hline 2932 & 61.5 & 67.3 & 63.1 & 91.4 & 97.5 \\
\hline 1093 & 59.5 & 84.2 & 55.3 & 92.7 & 107.8 \\
\hline 1034 & 72.5 & 75.2 & 60.1 & 88.4 & 120.6 \\
\hline 2988 & 81.5 & 77.3 & 63.5 & 105.2 & 128.0 \\
\hline 1938 & 90.0 & 78.5 & 87.4 & 128.1 & 146.9 \\
\hline
\end{tabular}
29. ITON AND StEEL GROUP
30. BLAST PURNACES
31. 5TEEL WORKS AND ROLLINB MILLS

Establishments in the Iron and Steel group, which in 1929 employed almost 420,000 wage earners, are classified by the Census in 2 industries: (2) Blast Furnaces and (2) Steel Works and Rolling Mills. Blast Furnaces, which employed about 25,000 wage earners in 1929, produce pig iron, ferro-alloys, and various byproducts from ore and scrap. Steel Works and Rolling Mills, which employed 395,000 wage earners in 1929, make raw (ingot), semifinished, and finished steel. The following diagram represents a simplified scheme of the flow of products: \({ }^{3}\)

\section*{Prodecilom}

Iron and Steel Group.- The composite index for the Iron and Steel group is a harmonic mean of the production relatives for the 2 industries with changing employment weights. This index is almost identical with an arithmetic mean of relatives weighted

\footnotetext{
\({ }^{1}\) Adapted irom C. R. Daugherty, M. O. deChareau, and B. S. Stration, Fhe Economics of the Iron and Steel Indus try (New York: McOraw-Hill Book Co., Inc., 1037). I. 12; and J. M. Campand C. B. Francis, Kahing, Shaping and Preating of Steel' (P1ttsburgh, Pa.: Carnegie 8teel Co.. 1826), D. 479.
}
by 1929 employment becanse of the comparative insignificance in all years of the number of Blast Furnace wage earners (less than 10 percent of the group totall:
\begin{tabular}{ccc}
& \begin{tabular}{c}
Index of production with
\end{tabular} \\
\cline { 2 - 3 } Year & \begin{tabular}{c}
Changing \\
weights
\end{tabular} & \begin{tabular}{c}
Pized \\
weights \\
\((1929)\)
\end{tabular} \\
1918 & 61.0 & 61.2 \\
1921 & 35.4 & 35.3 \\
1923 & 78.0 & 77.8 \\
1925 & 78.6 & 78.6 \\
1927 & 79.0 & 79.0 \\
1929 & 100.0 & 100.0 \\
1931 & 48.1 & 48.1 \\
1933 & 43.7 & 43.7 \\
1935 & 64.1 & 64.0
\end{tabular}

Blast Furnaces.- The index for this industry is based on the aggregate tonnage of pig iron and ferro-alloys, which together represent about 97 percent of the value of products. Census data for the odd-numbered years of the period 1919-35 were interpolated and extended to 1936 by means of a continuous tonnage series obtained from the American Iron and Steel Institute's Annual Statistical Report. In no census year did thedifference between these a series exceed 1 percent.

Since the Census treats blast-furnace operations of steel works and rolling mills separately, the reported quantities of pig iron and ferro-alloys represent total production regardless of changes in integration. \({ }^{2}\)

Steel Morks and Rolling Mills.- The index for the odd-numbered jears 1919-35 is based on weighted aggregates for 31 products which represent abont 70 percent of the total value of this

Changes in integration in recent jears are illustrated by the following tabulation (Daugherty et al., op. cit., I, 382):
\begin{tabular}{ccc}
Tear & \begin{tabular}{c}
Percent of pig iron produced by \\
Merchant blast \\
furneces
\end{tabular} & \begin{tabular}{c}
Integrated \\
companies
\end{tabular} \\
1029 & 16.1 & 84.9 \\
1931 & 12.4 & 67.6 \\
1033 & 7.8 & 92.2
\end{tabular}

There are 4 tjpes of companies in the Iron and steel group: Merchant blastfurnace. integrated, seni-integrated, snd monintegreted. a merchant blastfurnse company operstes only blast furnaces. An integrated company hss blast furnsces, steel furnaces, and rolling ilis. A semi-integrited company bas eteel furnacea and rolling mills butno blast furnaces. A nonintegrated company has onis rolifigemill capacity.
industry's output. \({ }^{3}\) The weight for each product is the average of the estimated values added per unit for the census years 1921-35. This index was completed by means of another, which is a weighted aggregative index for 21 of the 31 products; \({ }^{4}\) each of the 21 series was rendered continuous by the use of comparable American Iron and Steel Institute data. The 21- and 31-product indexes compare as follows:
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Index of production of -} \\
\hline & 31 products (NRP) & 21 products \\
\hline 1919 & . 80.5 & 56.7 \\
\hline 1921 & 35.1 & 33.7 \\
\hline 1923 & 76.7 & 76.2 \\
\hline 1925 & 78.1 & 77.8 \\
\hline 1927 & 78.6 & 78.8 \\
\hline 1929 & 100.0 & 100.0 \\
\hline 1931 & 48.4 & 48.4 \\
\hline 1933 & 44.5 & 45.0 \\
\hline 1935 & 64.9 & 85.5 \\
\hline
\end{tabular}

The quantities of each product represent total output, i. e., the sum of production for sale, interplant transfer, and consumption on premises. There are a few exceptions in the reported statistics, however, but adjustments were made wherever possible. \({ }^{5}\)
It was appropriate to use unit-value-added weights since products of steel-rolling mills are obtained by shaping others made at earlier stages and almost every series represents total output. The estimates of unit value added, whichwere obtained by taking the differences between unit values at successive stages, are subject to a number of limitations arising from the defects of the basic statistics. It is believed that these computed weights,

\footnotetext{
\(3_{\text {These }}\) products are: Ingots; steel castings; rails - new and rerolled; rail joints and fastenings; structural shapes - heavy and ilght; concretereinforcing bars; merchant bars - iron, open-hearth and Bessemer, and crucibie and electric; wirerods; plates; sheets; sxelp; cotton ties, hoods, bands, and strips; oil-country casing, tubing, and pipe (wrought-welded); other black plpe (wrought-welded); galvanized plpe (wrought-welded); tin plate; seamless plpe and tube; blooms, billets, and slabs, except for forging; rolled blooms plpe and tube; blooms, billets, and slabs, except for forging; rolled biooms
and billets for forging; sheet and tinmpate bars; bolt and nut rods and spike and billets for forging: sheet and tin-plate bars; bolt and nut rods and spike
and chain rods; muck and scrap bars; axies, rolled or forged; car and locomotive wheels; armor plate and ordnance; scrapiron and steel; and torneplate. \({ }^{4}\) These are the first 21 ilsted in the, preceding footnote.
\(5_{\text {For example, production of each of } 2 \text { types of merchant bars ("open-hearth }}\) and Bessemer" and crucible and electric') was estimated for \(1825-35\) from combined total production and the respective amounts produced for sale and transfer; and since total production in 1935 was not reported separately for stainless-steel plates and sheets, their combined tonnage was distributed in accordance with the 1933 proportions. On the other hand, no adjustment could be made for the exciusion of consumption in the same estabilshment irom the quantities reported for rerolled rails nor for the restriction of the statistics for armor plate and ordnance to production for sale.
}
nevertheless, field a more satisfactory index than would unitvalue weights used in conjunction with production for sale. The limitations of the computed value-added weights may be summarized as follows:
(1) Census value data correspond to production for sale and interplant transfer, not total production.
(2) The values per ton at 2 successive stages are not strictly comparable as a consequence of losses from scale formation, spoilage, cropping, etc. Indeed, it has been estimated that an ingot yields only about 70 percent of its weight in finished product. \({ }^{6}\)
(3) The difference between successive unit values still includes the cost of fuel, electric energy, and any additional raw materials consumed in the manufacture of the more highly fabricated product. 7
(4) There may be a lack of strict correspondence between successive product classes. For example, since stainless-steel bars are rolled from expensive stainless-steel billets, blooms, or slabs, subtraction of the unit value of all billets, blooms, and slabs - the only figure which can be computed from Census data - from the unit value of stainlesssteel bars yields an excessive estimate of value added per ton. \({ }^{8}\)
(5) Many other factors, such as disproportionate changes in the price structure and differences in pricing systems, may distort the relationship between unit values at successive stages.

\footnotetext{
\({ }^{6}\) Daugherty et al., op. ctt., I, 322; Picture story of Iron and \(S\) teel (New Tork: Americen Iron and Steel Institute). \(D\). 21 ; and Yearbook of Industry, " Steel (Jan. 6, 1936), D. 206 make similar estimates.
7athough additional ran materiais are introduced almost exciusively in the pig-iron and ingot stages of production, the manufacture of tin plata and terneplate requires coating metal. Purthermore, acidbaths are used at some etages to remove scale.
\(8_{\text {That a }}\) aimiler problem arises in other cases is evidenced by the fact that hegetive unit ralues added were obtainedinie2i, 1933 , and 1935 , for blooms, billets, and slads, ezcept for forging and for sheet and tin-plate bars." Buch s result saems to be due to the unrepresentativeness of census data Buch result seems to be due to the unrepresentativeness or census data
for ingots for sale and interplant transfer (about i percent of the total Ior ingots for sale and interplant transfer (about i percent of the total
production), which refer almost exclusively to the more ezpensive alloy- or specisi-steel ingots. meremsining g9 percent, which consists primarily of relatively inexpensive carbon-steel ingots (cfiprices filed by manufacturers Ith the NRA 8 teel Code Authority and cited by Ironige). is consumed within reporting companies and hence 18 assigned no value in census returns. An stempt was made tominimize the exaggerstion by using the ingot unit values for interplent transiers, which are lower than those referring to production for sale. Negative unit-values added were, nevertheless, obtained for the 2 products in 1921 . 1938, and 1936 . (The weight for each product a an aver-

}

Strict proportionality between unit-value-added weights and unit labor requirements is not to be expected in view of the low labor content of value and value added \({ }^{9}\) and the limitations noted above. A comparison of the 2 sets of weights for 15 categories of products follows: \({ }^{10}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Product} & \multicolumn{2}{|l|}{Average value added per gross ton (1921-35)} & \multicolumn{2}{|r|}{Man-hours added per gross ton} \\
\hline & Dollars & Percentage distribution & Manhours & Percentage distribution \\
\hline Total, all products & - & 100.0 & - & 100.0 \\
\hline Steel ingots & 10.77 & 2.6 & 3.00 & 1.5 \\
\hline Billets and slabs & 3.09 & 0.7 & 5.65 & 2.8 \\
\hline Wire rods & 10.28 & 2.4 & 4.39 & 2.2 \\
\hline Structural shapes, rolled & 9.44 & 2.3 & 2.27 & 1.1 \\
\hline Plates, sheared and universal & 12.03 & 2.9 & 1.93 & 0.8 \\
\hline Concrete-reinforcing bars & 11.34 & 2.7 & 4.28 & 2.1 \\
\hline Standard rails and fastenings & 11.39 & 2.7 & 4.52 & 2.2 \\
\hline Bar steel & 23.53 & 5.6 & 5.09 & 2.5 \\
\hline Sheets, all grades & 39.00 & 9.3 & 18.50 & 9.1 \\
\hline Hoops and bands & 22.48 & 5.4 & 7.64 & 3.8 \\
\hline Pipes and tubing & 56.72 & 13.5 & 22.45 & 11.0 \\
\hline Steel car wheels & 87.59 & 16.2 & 20.83 & 10.3 \\
\hline Railroad axles & 45.75 & 10.9 & 18.52 & 9.1 \\
\hline Fabricated structural work & 21.93 & 5.2 & 43.74 & 21.5 \\
\hline Tin plate and terneplate & 73.84 & 17.6 & 40.34 & 19.9 \\
\hline
\end{tabular}

Indexes computed with these 2 sets of weights are similar. This resemblance, however, may not reflect the influence of the weights so much as the predominance of steel ingots and of billets and slabs in the weighted aggregates:

\footnotetext{
\(9_{\text {Wages in } 2929, ~ f o r ~ e x a m p l e, ~ c o n s t i t u t e d ~}^{26}\) and 5 percent, respectively, of value added and value of products of Blast Purnaces. The corresponding percentages for Steel Works and Rolling M111s are 47 and 20.
10 The man-hour ratios were computed from cumulative data for an undefined but recent period shown in B. H. Topkis and \(H\). O. Rogers, Man-Hours of Labor per Unit of Outdut in Steel Manufacture, Nonthly habor Review, May 1935, pp. 1168-9. Census products were regrouped to secura a comparable classifipp. 1168-8. census products were regrouped to secura a comparable classifi-
cation. In the computation of man-hours added, account was taken of conversion losses.
These figures, which refer to \(55-60\) percent of capacity utilization, may not be typical since utilization varies widely not oniy from product to product atanygiven time butalso from year toyear. (Cf. Daughertyetal., op. cit., II, 717.)
}
\begin{tabular}{|c|c|c|c|}
\hline Tear & Average valueadded weights (1921-35) & Man-hoursadded weights & ```
 Value-added
 weights
(ingots, billets,
 and slabs)
``` \\
\hline 1921 & 34. 8 & 35.7 & 34.7 \\
\hline 1923 & 79.0 & 80.7 & 80.8 \\
\hline 1925 & 79.7 & 80. 7 & 80.9 \\
\hline 1927 & 80.3 & 80.7 & 79.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 46.7 & 47.2 & 46.7 \\
\hline 1933 & 42.5 & 43.3 & 41.8 \\
\hline 1835 & 64.1 & 66. 0 & 62.3 \\
\hline
\end{tabular}

\section*{Emplaymont and Man-hanes}

The index of wage-earner employment for the industry group conforms to the trend of Census totals. It was constructed by extending the BLS index for the period 1923-36 back to 1919 by the use of month-to-month link relatives also supplied by BLS (Honthly Labor Review).
The wage-earner indexes for the component industries were derived from Census statistics \({ }^{11}\) for the odd-numbered years and estimates for the even-numbered years made by distributing the group totals through the use of averages of the proportions in adjacent census years.

The man-hours index for the industry group was constructed from the employment index and an annual series of average weekly hours. The latter is based on estimated actual hours for 1919, the NICB series for 1920-31, and BLS hours for 1932-36. The estimate for 1919 was made by assuming the same percentage change in actual hours between 1919 and 1920 as was indicated by average prevailing hours forselected occupations. \({ }^{12}\) Separateman-hours series could not be constructed for the component industries.

\footnotetext{
\({ }^{11}\) Despite changes in integration, employment in Blast Furnaces is comparable with production since the Census combines blast-rurnace employment and proaucti on of integrated companies with the corresponding statistics formerchant blast furnaces.
12Date for selected occupations were published in Jages and Hours of Labor In the Iron and steel Industry: 1808 to 1820 (BLB Bull. No. 305). The computed hours for 1910 are 63.7.
8everal alternative estimates were rejected because they appeared to be unreasonably low in the light or known facta. For example, an estimate of 45.4 hours, based on etatistics presented in Industrial survey in Selectea Industrics in the Jnited States: 1819 (BLS Bull. No. 266) is obviousiy an understatement aince (1) the 8-hour day wss not introduced until 1824, (2) the date refer toselected full-time pay rolls, and (3) the 1910 steel strike probadiy depressed average employment rather than average hours per week for the year. Another estimate, 51.4 hours, was obtained by dividing totai [Continued]
}

\section*{Produciivity \({ }^{18}\)}

Blast Furnaces. - Some productivity statistics are available by region, capacity of furnace, and type of company. From the following table, it may be seen, for example, that the pig-iron and ferro-alloy labor-requirement ratio for Chicago was about half as large as the one for Birmingham in 1929, despite the similarity of the rates of operation: \({ }^{14}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{District} & \multicolumn{2}{|l|}{1929} & \multicolumn{2}{|l|}{1931} & \multicolumn{2}{|l|}{1933} \\
\hline & ```
Percent
    of
capacity
    opera-
        tion
``` & Manhours per ton & ```
Percent
 of
capacity
 opera-
 tion
``` & Manhours per ton & ```
Percent
        Of
capacity
    opera-
        tion
``` & Manhours per ton \\
\hline Eastern & 70.0 & 1.65 & 36.9 & 1.59 & 28.6 & 1.48 \\
\hline Pittsburgh & 78.3 & 1.67 & 28.9 & 1.87 & 22.2 & 1.82 \\
\hline Youngstown & 80.8 & 1.59 & 31.2 & 1.83 & 32.8 & 1.88 \\
\hline Cleveland & 88.4 & 1.60 & 40.7 & 2.00 & 34.0 & 2.11 \\
\hline Detroit-Toledo & 104.1 & 2.40 & 58.2 & 2.49 & 32.2 & 2.33 \\
\hline Chicago & 82.9 & 1.38 & 35.0 & 1.56 & 22.1 & 1.44 \\
\hline Birmingham & 79.5 & 2.72 & 59.8 & 2.35 & 31.3 & 2.35 \\
\hline
\end{tabular}

Furnaces of less than 500 gross tons daily capacity have 2 to 3 times the labor requirements of higher-capacity groups. Furthermore, integrated companies require only about half as much direct labor per ton of pig-iron as do merchant producers. \({ }^{15}\)
\begin{tabular}{cc}
Capacity (gross tons \\
per day) & Man-hours of direct \\
labor per ton, 1933
\end{tabular}

\footnotetext{
12[Continued]
(Census) wages by average hourly earnings (BLS). Such earnings, however,
are probabiy not adequate since only half of the workers (all mechanical and maintenance) are paid hourly wage rates, while the other half (all production) are paid on a tonnage or piece-work basis and may, in addition, earn bonuses.
\({ }^{13}\) This discussion is confined to Blast Furnaces since avallable statistics for Steel Works and Rolling Mills were presented inthe production section
in the form of lador-requirement ratios.
\({ }^{14}\) Daugherty et al., op. cit.. I, 400-1. Computed by Bureau of Business Research (University of Pitisburgh) from special tabulations supplied by
the Census and Iron Age.
\(15_{15}\) id., D. 23.
}

Table 2s.- sumany tmoexes fon the Imon and stegh industay broup isigese
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 61.6 & 09.8 & 120.8 & 61.7 & 51.0 \\
\hline 1820 & 76.5 & 102. 3 & 117.8 & 74.8 & 84.9 \\
\hline 1921 & 35.4 & 60.6 & 59.7 & 58.4 & 59.3 \\
\hline 1922 & 62. 1 & 77.4 & 82.0 & 80.2 & 75.7 \\
\hline 1823 & 78.0 & 101.3 & 108.5 & 77.0 & 73.2 \\
\hline 1924 & 65. 3 & 94.1 & 87.9 & 69.4 & 74.3 \\
\hline 1925 & 78.6 & 85.3 & 93.1 & 82.5 & 84.4 \\
\hline 1926 & 84.2 & 97.8 & 96.9 & 88. 1 & 86.9 \\
\hline 1927 & 79.0 & 92.8 & 88.8 & 05.1 & 88.0 \\
\hline 1928 & 91.0 & 93.2 & 91.6 & 97.6 & 89.3 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 73.6 & 87.5 & 77.8 & 84.1 & 94.5 \\
\hline 1931 & 48.1 & 68.3 & 52.4 & 72.5 & 91.8 \\
\hline 1932 & 26.5 & 56.0 & 27.7 & 47.3 & 95.7 \\
\hline 1933 & 43.7 & 88.9 & 42.5 & 63. 4 & 102.8 \\
\hline 1934 & 48.8 & 82.8 & 47.9 & 58.9 & 101.9 \\
\hline 1935 & 64.1 & 89.3 & 58.1 & 71.8 & 108.5 \\
\hline 1836 & 89.1 & 101.8 & 79.0 & 87.5 & 112.8 \\
\hline
\end{tabular}

(\(1929=100\))
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1918 & 72.7 & 176.3 & 41.2 \\
\hline 1920 & 88.6 & 153.0 & 56.6 \\
\hline 1921 & 39.1 & 74.9 & 52.2 \\
\hline 1922 & 63.8 & 104. 1 & 81.3 \\
\hline 1923 & 94.5 & 147. 1 & 64.2 \\
\hline 1924 & 73.5 & 124.9 & 58.8 \\
\hline 1925 & 85.8 & 118.9 & 73.5 \\
\hline 1926 & 92.0 & 118.4 & 77.7 \\
\hline 1927 & 85.3 & 112.0 & 76.2 \\
\hline 1928 & 89.3 & 101.8 & 87.7 \\
\hline 1829 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 74.4 & 79.4 & 93.7 \\
\hline 1931 & 43.0 & 54.4 & 79.0 \\
\hline 1932 & 20.5 & 42.3 & 48.5 \\
\hline 1933 & 31.2 & 48.5 & 64.3 \\
\hline 1934 & 97.7 & 57.1 & 68.0 \\
\hline 1935 & 49.8 & 60.8 & 81.9 \\
\hline 1938 & 72.3 & 68.4 & 105.7 \\
\hline
\end{tabular}

100 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table si.- sumpary indexes for steel works and rolling mills: 1919-3E
(\(1829=100\))
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1810 & 60.5 & 85.1 & 63. 8 \\
\hline 1920 & 75.6 & 98.1 & 76.3 \\
\hline 1921 & 35.1 & 59.7 & 58.8 \\
\hline 1922 & 62.0 & 75.7 & 81.9 \\
\hline 1923 & 78.7 & 98.4 & 77.8 \\
\hline 1924 & 64.7 & 92.1 & 70.2 \\
\hline 1925 & 78.1 & 94.0 & 83.1 \\
\hline 1928 & 83.8 & 96.5 & 86.6 \\
\hline 1927 & 78.8 & 91.6 & 85.8 \\
\hline 1928 & 91.1 & 92.6 & 98. \({ }^{\text {c }}\) \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 73.6 & 88.0 & 83.8 \\
\hline 1981 & 48.4 & 67.1 & 72.1 \\
\hline 1932 & 26.8 & 58.9 & 47.3 \\
\hline 1933 & 44.5 & 70.2 & 69.4 \\
\hline 1934 & 49.4 & 84.5 & 58.5 \\
\hline 1935 & 64.9 & 91.1 & 71.2 \\
\hline 1936 & 90.0 & 103.8 & 86.6 \\
\hline
\end{tabular}
```

82. KNIT \&DODS ERDUP
83. MDSIERY
84. UNDERMEAR
85. OUTERWEAR
86. KNIT CLOTM
```

The Knit Goods group, which employed over 208,000 wage earners in 1929, embraces establishments whose principal products are knit by machine from various yarns, such as cotton, wool, silk, and rayon. The 4 component industries are named in accordance with the nature of their primary products. The approximate number of wage earners employed in each in 1929 was as follows:
\begin{tabular}{lrlr}
Hosiery & 130,000 & Outerwear & 29,000 \\
Underwear & 41,500 & Knit Cloth & 8,500
\end{tabular}

\section*{Proincilon}

Init Goods Group.- The production index for the group was constructed in the following manner: First, a harmonic mean of relatives for the 4 component industries was computed for the odd-numbered years 1919-31 with changing employment weights; this mean was then extended to 1933 and 1935 through the use of a similar average of relatives for Hosiery, Underwear, and Outerwear . \({ }^{1}\)

The NRP index agrees closely, except in 1919, with an arithmetic mean of the 4 series of production relatives weighted by the number of wage earners in 1929:
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Index of production with -} \\
\hline & Changing employment weights & ```
 Fixed
 employment
weights (1929)
``` \\
\hline 1919 & 80.8 & 06.9 \\
\hline 1921 & 65.2 & 67.2 \\
\hline 1923 & 79.2 & 81.9 \\
\hline 1925 & 82.5 & 84.4 \\
\hline 1927 & 85.2 & 85.0 \\
\hline 1929 & 100.0 & 100.0 \\
\hline 1931 & 92.6 & 93.7 \\
\hline
\end{tabular}

The disparity of the 2 index numbers for 1919 is a reflection of the great difference in level between the production and

\footnotetext{
\({ }^{1}\) Production relatives comparable with those for earlier years could not be obteined for knit cloch for 1933 end 1935 (see fin. 15). The NRP group inder number for 1036 ( \(1938=100\) ), however, differs by only 0.5 percent from an index number based on production relatives for all 4 industries. in any case, the NRP group inder differs by a mazimum of only 1.6 units from a harmonic mean of relativea for Hociery, Underwear, and outermear in the deriod 1919-81.
}
productivity relatives for the Underwear industry and those for the other 3 components of the group.

Hosiery.- The Hosiery production index was computed for the odd-numbered years 1919-35 from Census data representing about 99 percent of the value of all hosiery output; \({ }^{2}\) it comprises 3 segments, each of which is an aggregative index with unit-value weights. The first segment, for the odd-numbered years 1919-25, includes the following 19 products (indicated by \(x\) ) weighted by averages of unit values for the same years:

Type of yarn
```

All-cotton
All-wool
Cotton-wool mixed
Silk
Rayon
Silk or rayon mixed
with other fibers

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Hose} & \multicolumn{2}{|l|}{Half-hose} \\
\hline \begin{tabular}{l}
Full- \\
fash- \\
ioned
\end{tabular} & Seamless \({ }^{3}\) & \begin{tabular}{l}
Full- \\
fash- \\
ioned
\end{tabular} & Seamless \\
\hline \(\mathbf{x}\) & \(\mathbf{x}\) & - & \\
\hline X & x & - & \\
\hline \(\mathbf{x}\) & \(\mathbf{x}\) & & \(\mathbf{x}\) \\
\hline \(\mathbf{x}\) & x & X & x \\
\hline & x & & \(\mathbf{x}\) \\
\hline \(\mathbf{x}\) & x & x & X \\
\hline
\end{tabular}

The second segment, for the years 1925 and 1927, includes the same products classified in 6 categories according to type of yarn; these 6 series were weighted by averages of unit values for the same 2 years. The third segment, for the odd-numbered years 1927-35, includes 30 series weighted by 1929 unit values; these series (indicated by \(x\) ) are comparable in scope with those in the preceding segments, except for minor omissions which have a negligible effect on value coverage:


\footnotetext{
Pootnotes 2 and 3 appear on following page.
}


No satisfactory data were available for completing the index for the Hosiery industry for the even-numbered years. \({ }^{8}\)

Underwear. - The production index for Underwear was computed from Census data for the odd-numbered years 1919-35; it comprises 2 segments, each of which is an aggregative index with 1929 unitvalue weights. The first segment, for the odd-numbered years
\(Z_{\text {Before }} 102 \theta\) the detailed Census quantity statistics refer only to the output of establishments in the Knit Goods group; in 1029 and subsequent years, however, they refer to the output of estabiishments in all industries.
\(3_{\text {Principally seamiess ( }}\). e., includes some full-fashioned), except for allcotton.
\({ }^{4}\) Includes silk and cotton, silk and wool (except for 1935), and triple mixtures.
\({ }^{5}\) Includes silk and cotton, silk and wool, silk and rayon, rayon and cotion, and triple miztures.
\({ }^{6}\) Includes silk and cotion; silk and wool; s11k and rayon; rayon and wool; purethread allk with lisle or cotton tops, heels, and toes; all pure-thread 811k; and triple mixtures.
7includes all-wool; all pure-thread silk; pure-thread silk with lisle or cotion topa, heels, and toes; all-rayon; rayon with cotton tops, heels, and toes; cotton and wool; silk and rayon; silk and cotton; silk and wool; and triple miztures.
Trwo unweighted indexes of hosiery output, which could be computed for several jears from sample statistics, did not concur with the NRP inder. One of these, for the years 1923-30, is based on data compiled by the census and publishedin survey of Current Business, 1931 Annual supplement," DD. 130-1.
The other, complied by the NRA code Authority, is published in W. A. Gill, F. Pouder, W. H. Ray, and A. H. Barenboim, Fhe Enitting Industries (NRA, division of Review, Work Materials No. B0, Mar. 1936).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|c|}{Inder (1928=100)} \\
\hline & NRP & SCB & NRA \\
\hline 1923 & 60.6 & 106.8 & n. \(\mathrm{a}^{\text {. }}\) \\
\hline 1925 & 70.8 & 108.2 & n.a. \\
\hline 1927 & 01.4 & 104.6 & 104.5 \\
\hline 1029 & 100.0 & 100.0 & 100.0 \\
\hline 1031 & 91.7 & n.a. & 86.5 \\
\hline 1933 & 96.8 & n.a. & 80.2 \\
\hline 1935 & 110.0 & n.8. & 94.2 \\
\hline
\end{tabular}

1919-27, includes 8 products (indicated by asterisks in the following list) which represent about 98 percent of the value of underwear made in the Knit Goods group; the second segment, for the odd-numbered years 1927-35, includes 15 series (for all the products listed belowl which represent about 93 percent of the value of underwear made in all industries: \({ }^{0}\)
```

Shirts and drawers
*All-cotton
*All-wool
*Cotton and wool
mixed
Rayon
*Other }\mp@subsup{}{}{10

```
Union suits
*All-cotton
*All-wool
*Cotton and wool
mixed
Rayon
*Other

Bloomers and step-ins All-cotton
    Silk
    Rayon
    Other \({ }^{12}\)
Slips and petticoats

Available data were not considered satisfactory for interpolating or extending the NRP index. \({ }^{13}\)

Outerwear. - The production index for Outerwear, computed from Census data for the odd-numbered years 1919-35, is composed of 2 segments, each of which is an aggregative index with unit-value weights. The first segment, for the odd-numbered years 1919-27, includes the following 7 classes of products (which represent 90 percent of the total value of outerwear made in the groupli4 weighted by averages of unit values for the same years: •
```

Sweaters, sweater coats,
Headwear, except infants'
jerseys, cardigan Neckties
jackets, etc. Sueded cotton gloves
Bathing suits Gloves and mittens
Scarfs and shawls except sueded

```

The second segment, for the odd-numbered years 1927-35, includes 7 products (which account for about 86 percent of the value of

\footnotetext{
\({ }^{9}\) The census expanded the scope of its canvass in 1829 (see ftn. 2). Infants underwear, which is reported in terms of value only, is the only significant omission in all fears.
\({ }^{10}\) In addition to other fibers, includes silkfor all years and silk and rayon mixtures for 1927-33.
11 In addition to other fibers, includes silk and silk or rayon mixed with other plbers for all years and silk and rayon mixtures for 1927-33.
12Includes wool, cotton and wool, and silk and rayon for 1927-33 and cotton and wool and other miztures and fibers for 1935.
13 an unweighted index constructed from sample statistics published in Survey of Current Business, ("1981 Annual Supplement, " Dp. 130-1, and Mar. 1932, D. 42) does not concur with the NRP series:
\begin{tabular}{lrr} 
& \multicolumn{2}{c}{ Index \((1928=100)\)} \\
\cline { 2 - 3 } Year & NRP & SCB \\
1921 & 118.2 & 71.7 \\
1923 & 130.7 & 99.2 \\
1925 & 128.3 & 97.8 \\
1927 & 100.3 & 90.0 \\
1929 & 100.0 & 100.0 \\
1931 & 79.4 & 86.1
\end{tabular}

Footnote 14 appears on the following page.
}
outerwear produced in all industries) \({ }^{14}\) weighted by 1929 unit values; these 7 products consist of the first 5 listed above and "athletic and golf hose" and "dresses and suits."

No satisfactory data were available for completing the index for the even-numbered years.

Init Cloth.- The production index for Knit Cloth, computed from Census data for the odd-numbered years 1919-31, is composed of 3 segments, each of which is an aggregative index with unitvalue weights. The first segment, for the odd-numbered years 1919-27, includes 3 series weighted by averages of unit values for the same years: Jersey cloth (including milanese and tricot) and tricolette, sueded cotton cloth, and towels and toweling. The second segment, for the odd-numbered years 1927 and 1929, is based on 4 series weighted by averages of unit values for these 2 years: Wool jersey; other knit woolens; silk jersey, including milanese; and rayon tubing, including tricolette. The third segment, for 1929 and 1931, \({ }^{15}\) includes "other knit rayons", "cotton jersey", and "corset cloth" in addition to the products of the second segment; the weights are averages of unit values for the same years. The products in the first segment represent about 71 percent of the value of knit cloth made in establishments in the group, and those in the second and third account for about 82 percent of the value of knit cloth made in all industries. \({ }^{16}\)

\section*{Emplermest ad Mex-honfa}

The index of employment for the group was computed from Census statistics for the odd-numbered years 1919-35 and completed for the even-numbered years 1920-36 by means of the BLS index. The index of man-hours for the group was derived from the group employment index and a series of actual weekly hours which includes adjusted Census prevailing hours for 1919 and NICB actual hours for subsequent years. Census prevailing hours for 1919 were reduced to actual by multiplication by the average of the ratios of NICB actual to Census prevailing hours for 1921,1923 , and 1929.

\footnotetext{
\({ }^{14}\) The census expanded the scope of its canvess in 1920 (see rtn. 2).
\({ }^{15}\) The change (by the census) in the unit of measurement in 1933 irom square yards to pounds made it impossible to extend the third segment to 1933 and yards to pounds made it impossible to extend the third segment to 1938 and 1985. and estimate the effect in 1935 of the exclusion of Knit cioth from the group inder (see ftn. 1).
\({ }^{16}\) The census expanded the scope of 1 ts canvass in 1929 (see ftn. 2).
}

The employment index for each of the 4 component industries was computed for the odd-numbered years 1919-35, except 1921, from Census statistics; the 1921 relatives are based on estimates obtained by distributing the group total for this year in accordance with averages of the proportions in the 4 industries in \(1919{ }^{17}\) and 1923. The 4 indexes were completed for the period 1919-36, except 1920 and 1922, by means of corresponding unpublished BLS indexes. No satisfactory hours series was available for computing a man-hours index for any of these industries. \({ }^{18}\)

Although the labor indexes for the group are practically comparablewith the production index, \({ }^{19}\) the employment and production indexes for the component industries differ somewhat in scope. Some of the wage earners included in the employment index for each industry are engaged in making knit goods normally produced elsewhere in the group. This fact is indicated by the percentage which the value of such knit goods comprises of the value of all the output of each industry: \({ }^{20}\)
\begin{tabular}{ccccc} 
Year & Hosiery & Underwear & Outerwear & Knit Cloth \\
1919 & 3.6 & 10.3 & 15.9 & 18.0 \\
1923 & 4.9 & 17.6 & 11.8 & 10.3 \\
1925 & 5.1 & 16.3 & 7.8 & 13.0 \\
1927 & 2.4 & 17.5 & 7.7 & 16.0 \\
1929 & 3.9 & 19.1 & 6.9 & 16.0
\end{tabular}

On the other hand, some of the output included in the production index for each industry is contributed by wage earners in the others. This fact is indicated by the percentage of the total value of the primary output of each industry which is made in establishments in the other 3 industries of the group:

\footnotetext{
17For each industry, the number of wage earners in 1919 was assumed to be proportional to the number of spinners, knitterg, stitchers, loopers, and finishers reported by the Census. The number of wage earnersin these occupations comprised 63.8 percent of all wage earners in the group in 1918.
\({ }^{18}\) data in Buil. Nos. 328, 378, and 581 of the BLS Wages and Hours Series permit the computation of average weekiy hours for the Hosiery and Underwear industries for the even-numbered years 1928-32. Figures for the same 2 industries for 1932-35 are avallable in a study by NRA Division of Review (see ftn. 8). Census man-hours surveys provide statistics for all 4 industries In the group, but only for the years 1933 and 1836.
\({ }^{18}\) The value of secondary products of the Knit ooods group (including cotton yarns for sale, cotton waste for sale, old bagging and ties, etc.) constitutes less than 1.6 percent of the total value of the group's output. On the other hand, less than 1 percent of the value of all knit goods has been contributed by establishments outside the group since 1829. (Prior to this year the production index refers only to output of estabilshments within the group. See ftn. 2.)
\(20_{\text {The percentages are too }}\) high since the value of cotton yarns for sale, cotton waste for sale, old bagging and ties, etc. (aee ftn. 19) could not be eliminated from the value flgures for all the secondary products of each industry.
}
\begin{tabular}{ccccc} 
Year & Hosiery & Underwear & Outerwear & Knit Cloth \\
1919 & 3.2 & 5.2 & & \\
1923 & 2.0 & 6.6 & 6.4 & 17.6 \\
1925 & 1.1 & 3.3 & 10.1 & 12.6 \\
1927 & 1.7 & 3.8 & 9.8 & 11.0 \\
1928 & 0.7 & 9.6 & 8.4 & 9.8 \\
& & & &
\end{tabular}

The employment index for each industry could not be adjusted to correspond exactly to the production index. \({ }^{21}\)

\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Tear} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Nam-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 60.8 & 82. 8 & 81.0 & 73.4 & 75.1 \\
\hline 1920 & H. A. & 86. 1 & 81.6 & - & - \\
\hline 1921 & 65.2 & 77.6 & 76.3 & 84.0 & 85.5 \\
\hline 1922 & m. \(\mathbf{a b}_{\text {. }}\) & 92.8 & 91.2 & - & - \\
\hline 1823 & 79.2 & 93.2 & 90.6 & 85.0 & 87.4 \\
\hline 1924 & n. \(\mathrm{B}_{\text {. }}\) & 83. 3 & 76.5 & - & - \\
\hline 1925 & 82. 5 & 89.5 & 84.8 & 92.2 & 97.3 \\
\hline 1928 & 7. \(\mathrm{m}_{\text {. }}\) & 90.0 & 85.2 & - & - \\
\hline 1827 & 85.2 & 91.3 & 90.1 & 93. 3 & 94.6 \\
\hline 1928 & mas & 91. 3 & 88.8 & - & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & n. \(\mathbf{B}_{\text {. }}\) & 91.1 & 82.9 & - & - \\
\hline 1831 & 92.6 & 85.4 & 75.7 & 108.4 & 122.3 \\
\hline 1932 & n.a. & 83.4 & 67.5 & - & - \\
\hline 1933 & 100.4 & 91.0 & 74.9 & 110.3 & 194.0 \\
\hline 1984 & 7. 8. & 98. 1 & 71.3 & - & - \\
\hline 1935 & 111.0 & 105.4 & 76.4 & 105. 3 & 145. 3 \\
\hline 1038 & m.a. & 107. 5 & 00.9 & - & - \\
\hline
\end{tabular}
\({ }^{21}\) an adjustment fora fem yeara could be attempted on the basis of the assumpclons that:
(1) The value output per mage earner or (a) hos iery; (b) underwear, (c)
outerwear, and (d) mit cioth is the same in all 4 industries.
(2) All the secondary output of each industry constitutes a dart of the
(3) prinary output of the group.
(3) wo mit goods are produced outside the group.
(The method used in making these employment estimates is an extension to 6 industries of the method applied to \({ }^{2}\) industries of the Rubber products, robacco Products, and woolen and Worsted coods groups.)
The comparetive series are shown below with the NRP employment indexes:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{year} & \multicolumn{2}{|r|}{Hosiery} & \multicolumn{2}{|r|}{Underwear} & \multicolumn{2}{|l|}{Outermear} & \multicolumn{2}{|l|}{Knit Cloth} \\
\hline & MRP & \[
\begin{gathered}
\text { Compar- } \\
\text { ative }
\end{gathered}
\] & NRP & \[
\begin{aligned}
& \text { Compar- } \\
& \text { ative }
\end{aligned}
\] & NRP & \[
\begin{aligned}
& \text { Conpar- } \\
& \text { Bt1ve }
\end{aligned}
\] & NRP & \[
\begin{gathered}
\text { Compar- } \\
\text { ative }
\end{gathered}
\] \\
\hline 1919 & 01.7 & 64.3 & 139.8 & 136.0 & 100.1 & 93.1 & & 50. \\
\hline 1923 & 74.8 & 76.6 & 117.0 & 114.8 & 143.3 & 135.2 & 85.2 & 86.5 \\
\hline 1925 & 80.2 & 81.8 & 116.5 & 107.4 & 98.6 & 100.8 & 75.7 & 78.5 \\
\hline 1927 & 87.1 & 89.4 & 111.4 & 101.7 & 85.1 & 88.0 & 77.2 & 78.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline
\end{tabular}

The validity of the first of the 3 assumptions stated above cannot be tested. With respect to the second assumption, it should be noted that the small percentage of secondary products in the group (see ftns. 19 and 20) may, if concentrated in one of the industries, distort the est mates for all. The thira assumption is valid for every year prior to 1829 .

108 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table 33.- sumpary indexes fon the hogieny industay: igis-3s
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Production & & Employment & Output per wage earner \\
\hline 1919 & 43.7 & , & 61.7 & 70.8 \\
\hline 1920 & n. a. & & 65.4 & - \\
\hline 1821 & 48.9 & & 60.1 & 81.4 \\
\hline 1022 & n. a. & & 73.2 & - \\
\hline 1923 & 60.6 & & 74.8 & 81.0 \\
\hline 1924 & n. a. & & 70.4 & - \\
\hline 1925 & 70.3 & & 80.2 & 87.7 \\
\hline 1926 & n. a. & & 82.2 & - \\
\hline 1927 & 81.5 & & B7. 1 & 93.6 \\
\hline . 1928 & n. a. & & 88.5 & - \\
\hline 1829 & 100.0 & & 100.0 & 100.0 \\
\hline 1930 & n. \({ }^{\text {a }}\) & & 91.9 & - \\
\hline 1931 & 81.7 & & 86.7 & 105.8 \\
\hline 1932 & n. a. & & 85.6 & - \\
\hline 1933 & 98.8 & & 91.0 & 106.4 \\
\hline 1934 & n. \({ }^{\text {. }}\) & & 98.4 & - \\
\hline 1935 & 110.0 & & 108.5 & 103.3 \\
\hline 1936 & n. a. & & 109.9 & - \\
\hline
\end{tabular}

Table 34.- SUMMARY INDEXES FOR THE UNDERWEAR INDUSTAY: 1919-38
\((1925=100)\)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employnent , & Output per wage earner \\
\hline 1919 & 149.1 & 139.8 & 108.7 \\
\hline 1920 & n. \(\mathrm{a}_{\text {. }}\) & 136.3 & - \\
\hline 1921 & 118.2 & 114.3 & 103.4 \\
\hline 1922 & n. a. & 126.8 & - \\
\hline 1923 & 130.7 & 117.0 & 111.7 \\
\hline 1924 & n. a. & 103. 1 & - \\
\hline 1925 & 129.3 & 118.5 & 111.0 \\
\hline 1926 & n. a. & 119.0 & - \\
\hline 1927 & 100.3 & 111.4 & 90.0 \\
\hline 1928 & ת. \(\mathbf{a}^{\text {. }}\) & 102.7 & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & n. a. & 88.8 & - \\
\hline 1931 & 79.4 & 77.0 & 103.1 \\
\hline 1932 & n.a. & 72.4 & - \\
\hline 1933. & 92.2 & 88.6 & 108.5 \\
\hline 1934 & ת. A. & 84.8 & - \\
\hline 1935 & 80.2 & 84.2 & 107.1 \\
\hline 1936 & n. \({ }^{\text {. }}\) & 91.5 & - \\
\hline
\end{tabular}

(1529:100)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1918 & 59.6 & 100.1 & 59.5 \\
\hline 1920 & n. \(\mathbf{B}_{\text {. }}\) & 110.9 & - \\
\hline 1921 & 76.9 & 108.7 & 72.1 \\
\hline 1922 & n. \({ }^{\text {m. }}\) & 134.9 & - \\
\hline 1923 & 112.1 & 143.3 & 78.2 \\
\hline 1924 & n, e. & 117.4 & - \\
\hline 1925 & 87.4 & 96.6 & 80.5 \\
\hline 1926 & n. a. & 88.1 & - \\
\hline 1927 & 82.0 & 85.1 & 96.4 \\
\hline 1028 & n. a, & 91.9 & - \\
\hline 1829 & 100.0 & 100.0 & 100.0 \\
\hline 1830 & n. B . & 01.7 & - \\
\hline 1931 & 108.5 & 80.2 & 118. 1 \\
\hline 1932 & n. \(\mathrm{m}_{\text {. }}\) & 80.7 & - \\
\hline 1933 & 119.3 & 92.9 & 128.4 \\
\hline 1934 & n. \({ }^{\text {a }}\). & 104.4 & - \\
\hline 1835 & 131.4 & 122.4 & 107.4 \\
\hline 1836 & n. a, & 111.3 & - \\
\hline
\end{tabular}

Table 3g.- sumarat indexes fon the knit cloth industay: 1919-3s
(1929 = 100)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per wage earner \\
\hline 1819 & 43.0 & 67.1 & 84.1 \\
\hline 1920 & n. \({ }^{\text {a }}\) & 71.9 & - \\
\hline 1921 & 63.9 & 66.7 & 95.8 \\
\hline 1922 & n. a. & 82.0 & - \\
\hline 1923 & 65.4 & 85.2 & 76.8 \\
\hline 1924 & n. \({ }^{\text {a }}\) & 68.3 & - \\
\hline 1925 & 71.1 & 75.7 & 93.9 \\
\hline 1926 & n. a. & 72.8 & - \\
\hline 1927 & 74.7 & 77.2 & 96.8 \\
\hline 1828 & n. \(\mathrm{a}_{\text {. }}\) & 76.0 & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1030 & n. \(\mathrm{a}_{\text {. }}\) & 100.3 & - \\
\hline 1931 & 150.7 & 88.8 & 169.7 \\
\hline 1932 & n. \({ }^{\text {a }}\) & 80.6 & - \\
\hline 1933 & a.a. & 105.5 & - \\
\hline 1834 & n. A. & 123.6 & - \\
\hline 1995 & n. a. & 133.9 & - \\
\hline 1036 & n. \({ }^{\text {a }}\) & 136.6 & - \\
\hline
\end{tabular}

\section*{37. LEATHER GROUP}
38. SOLE AND HARNESS LEATHER
38. SIDE AND UPKOLSTERY LEATHER
40. CALPSKIN
41. KID LEATKER
42. SHEEP AND,MIBCELLANEDUS LEATKER

The Leather group, which employed almost 50,000 wage earners in 1929, includes tanneries manufacturing leather leither from hides and skins owned by them or on a contract basis from hides and skins belonging to others) and establishments engaged only in currying and finishing. For the purpose of this study, the group has been divided into 5 industries:
(1) Sole and Harness Leather. This industry, which has a lower ratio of wages to value of products than any other in the group, includes establishments engaged inthe manufacture of heavy leathers, mainly from cattle hides, such as sole, machinery belting, harness, bag, and case. Offal, an important byproduct consisting of the inferior and thinner parts of the tanned hide and accounting for almost half of its weight, is usually made into rough leather, which may be used for heels or shoe welting. All of the leathers produced in this industry are principally vegetable tanned. In 1929 this industry employed 12,300 wage earners.
(2) Side and Upholstery Leather. These 2 types of leather are manufactured in separate establishments, which had a combined employment of 12,100 wage earners in 1929.
(3) Calfskin. This industry, which employed 7,600 wage earners in 1929, produces leatherfrom calfskin and small kipskins, which are not too large to handle in 1 piece. Calfskins are much smaller than cattle hides, averaging 10 square feet as compared with 35 for the latter. 1
(4) Kid Leather. The establishments in this industry make leather from goatskins and kidskins, almost all of which are imported. These skins are expensive and require a high degree of finishing. The Philadelphia area accounts for about 85 percent of the total output of kid leather, most of the remainder is produced in Massachusetts. About 10,300 wage earners were employed in this industry in 1929.
(s) Sheep and Miscellaneous Leather. Sheepskins, which are comparatively cheap and more suitable for mechanical treatment than most hides and skins, are manufactured into a
number of special forms, such as shoe-lining stock; glove, fancy, garment, roller, and chamois leather; hat sweats; skivers; and shearlings. Some fancy leather is also manufactured from sealskins, pigskins, deerskins, etc. This industry employed 7,700 wage earners in 1929.

\section*{Prodection}

The 2 NRP group indexes are, except for 1920, harmonic means of the production relatives for the 5 component industries, one with changing employment and the other with changing man-hour weights. The former was used in determining output per wage earner and the latter in determining output per man-hour. The figures for 1920 were interpolated by the use of an index constructed by BLS from Tanners' Council statistics. \({ }^{1}\) The products included in the index represent about gopercent of the value of the group's output.

Arithmetic means of the series of production relatives with 1929 man-hour and employment weights agree very closely with the NRP group indexes. A composite index which employs 1929 value weights is also shown in the tabulation which follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Index of Changing weights} & \multicolumn{2}{|l|}{Fixed weights (1929)} & \multirow[t]{2}{*}{```
    Fixed
    value
weights
    (1929)
```} \\
\hline & \[
\begin{gathered}
\text { Employ- } \\
\text { ment }
\end{gathered}
\] & Manhours & \[
\begin{gathered}
\text { Employ- } \\
\text { ment }
\end{gathered}
\] & Manhours & \\
\hline 1919 & 104.1 & 104.3 & 103.9 & 104.5 & 109.0 \\
\hline 1921 & 84.1 & 84.2 & 83.8 & 83.9 & 87.4 \\
\hline 1922 & 104.9 & 104.7 & 105.2 & 105.1 & 107.7 \\
\hline 1823 & 113.3 & 113.0 & 113.6 & 113.4 & 116.5 \\
\hline 1924 & 87.4 & 96.5 & 97.2 & 96.6 & 99.1 \\
\hline 1925 & 97.4 & 97.1 & 97.6 & 87.3 & 100.6 \\
\hline 1926 & 89.3 & 88.9 & 99.6 & 99.4 & 100.8 \\
\hline 1827 & 104.0 & 103.6 & 103.9 & 103.7 & 105.8 \\
\hline 1828 & 101.6 & 101.7 & 101.5 & 101.7 & 102.2 \\
\hline 1829 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 01.4 & 81.7 & 91.7 & 81.8 & 92.4 \\
\hline 1931 & 83.1 & 83.2 & 83.2 & 83.3 & 82.5 \\
\hline 1932 & 73.6 & 73.6 & 74.1 & 73.8 & 73.3 \\
\hline 1933 & 87.5 & 87.5 & 88.3 & 88.0 & 86.7 \\
\hline 1934 & 85.7 & 95.9 & 96.1 & 98.0 & 96.7 \\
\hline 1935 & 107.4 & 107.4 & 107.9 & 107.9 & 109.3 \\
\hline 1936 & 109.4 & 108.1 & 108.2 & 108.2 & 110.4 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) rnis index was pubilshed in the Konthly Labor Review, october 1928, D. 14.
}

The measure of production for each of the 5 component industries of the group for the years 1919, 1921-31, 1933, and 1935 is an aggregative index with 1929 unit-value weights derived fromCensus quantity statistics. Estimates for 1932, 1934, and 1936 were made through the use of 4 Census-T'anners' Council series published in the Survey of Current Business. No satisfactory data were available for computing relatives for 1920.

Annual production statistics published in the Census of Manufactures were used for 1919 and 1921-31.2 These data include contract work and hence are comparable with the employment statistics. Similar figures for identical products were obtained for 1933 and 1935 by adjusting the regular biennial Census data to include all contract work. \({ }^{3}\) The products \({ }^{4}\) in the index for each industry for 1919, 1921-31, 1933, and 1935 are:
```

1. Sole and Harness Leather
Oak and union sole
Chrome sole
Belting butts (rough and curried)
Offal
Harness leather: union black
Harness leather: oak black and russet
Bag, case, and strap leather
Skirting and collar leather
Lace
2. Side and Upholstery Leather
Upper leather (other than patent): cattle (including
kip side)
Patent leather (other than upholstery): cattle (in-
cluding kip side)
Upper leather: horse, colt, ass, and mule
Glove and garment leather: horse, colt, ass, and mule
Fancy and bookbinders' leather: cowhide
Fancy and bookbinders' leather: buffings (finished)
Splits (other than upholstery; finished and rough)
Upholstery leather: whole-hide grains and machine buffed
Upholstery leather: buffings (russet)
Upholstery leather: splits (main and second)
```

\footnotetext{
\({ }^{2}\) The IIgures for 1910 were obtained by the Bureau of the census in its regular blennial canvass; those for 1921-31 were collected in its monthly Census of Hides, skins, and Leather authorized oy the Kreider act. The monthly census was discontinued after ADril 1932 as a consequence or the repeal of the Kreider act.
\({ }^{3}\) The adjustment factor for each product was the average of the ratios in 1929 and 1931 between the figures including and those excluding contractwork (the latter are also reported by the census).
\({ }^{4}\) For certain years when statistics for some products were deficient, the index numbers were computed from comparable aggregates for as many products as dossible. Minor adjustments were also made to assure the internal comparability of the individual series. For example, foreign tanned patent leather was excluced from the 1923 flgure for patent; and the reported quantity of fancy and bookbinders' cabretta leather in 1922, which referred to only the last 7 months of the year, was raised to represent the entire year oy multiplying the monthly average for this period by 12.
}
```

3. Calfskin
Upper leather: calf and kip (except kip side)
Fancy and bookbinders' leather: calf and kip
4. Kid Leather
Upper leather: goat and kid
Fancy and bookbinders' leather: goat and kid
5. Sheep and Miscellaneous Leather
Upper leather: sheep and lamb (shoe stock) and cabretta
Upper leather: kangaroo and wallaby
Glove and garment leather: sheep and lamb lexcept
shearlings)
Glove and garment leather: shearlings
Glove and garment leather: deer and elk
Fancy and bookbinders' leather: sheep, lamb, and
cabretta
Roller leather
Skivers (including hat-sweat)
Chamois
```

The Census-Tanners' Council leather-production series which were employed to interpolate the 5 industry indexes for 1932 and 1934 and to extend them to 1936 are: \({ }^{5}\)
\begin{tabular}{ll}
\multicolumn{1}{c}{ Industry } & \begin{tabular}{c}
Census-Tanners' \\
Council \\
series
\end{tabular} \\
Sole and Harness Leather & Cattle hides \\
Side and Upholstery Leather & \begin{tabular}{l}
Cattle hides \\
Calfskin \\
Kid Leather \\
Sheep and Miscellaneous Leather and kip
\end{tabular} \\
Goat and kid
\end{tabular}

\section*{Employment and Mas-horis}

The index of employment for the industry group was obtained by completing Census wage-earner statistics for the odd-numbered years through the use of the BLS employment index. The man-hours index was derived from the product of this employment series and an annual index of average weekly hours based on an estimate derived from a BLS study for 1919, \({ }^{6}\) on NICB statistics for 1920-31, and on BLS figures for the remaining years.
The employment andman-hours indexes for the 5 component industries were constructed principally fromdata collected in a survey

\footnotetext{
\(\delta_{\text {The }} 4\) Census-Tanners, council series are based on monthly census data for the
period January 1931 to April 1932 (see frn. 2) and comparable Tanners council
 D. 173).
\({ }^{6}\) Industrial survey in selected Industries in the onited States: 1918 (Bull. No. 265). A weighted average of hours per day for male and female workers was multiplied by to obtain the weekly-hours figure.
}

\section*{114 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY}
of the Leather industry by the National Research Project in cooperation with the Bureau of Labor Statistics. \({ }^{7}\). The NRP-BLS labor series used for this purpose are available for 5 branches of the Leather group which manufacture the principal products of the corresponding industries as defined in this study: Sole, side, calf, kid, and sheepskin. These series are based on 3 different samples of the NRP-BLS survey and on a fourth of an earlier BLS survey: \({ }^{7}\)
(1) A 1935 sample for all 5 branches which represents 67.4 percent of the total employment in the group.
(2) A sample for the sole and kid branches for 1923, the side branch for 1924, the calf branch for 1926 and 1933, and all 4 of these divisions for 1931 and 1934-36.8 The percentage of estimated total production in each branch accounted for by the plants surveyed is as follows:
\begin{tabular}{lcc}
Branch & \begin{tabular}{c}
Earliest \\
year
\end{tabular} \\
Sole & 32 & 1935 \\
Side & 46 & 59 \\
Calf & 26 & 59 \\
Kid & 48 & 37 \\
& & 51
\end{tabular}
(3) A sample which provides annual data for sole and kid leather (1923-36), for side leather (1924-36), and for calf leather (1926-36). \({ }^{8}\) The coverage percentages, estimated in the same manner as for the second sample, are as follows:
\begin{tabular}{lcc}
Branch & \begin{tabular}{c}
Earliest \\
year
\end{tabular} \\
Sole & 23 & 1935 \\
Side & 28 & 39 \\
Calf & 17 & 33 \\
Kid & 28 & 30 \\
& & 30
\end{tabular}
(4) A sample for the sheepskin branch for 1923 and 1931 considered in the earlier BLS survey. The plants canvassed accounted for about 50 percent of the output of the branch in 1931.

\footnotetext{
\({ }^{7}\) The results of the survey are summarized by J. R. Arnold in Labor Productivity in the Leather Industry (WPA National Research Projectin cooperation with U. S. Bur. Labor statistics, Dept. Labor, Report No. B-1, Oct. 1937). More detailed unpublished statistics tabulated by NRP-BLS, as well as an earlier BLS study (Monthly Labor Review, September 1832), were also used in the derivation of these indexes.
8The 1938 figures were estimated on the basis of data for 6 months for sole, side, and calf and for 9 months for kid.
\({ }^{9} 1923\) for sole and \(\mathrm{kIC}, 1924\) for side, and 1928 for calf.
}

The first step indeternining employment and man-hours for each of the 5 industries was to construct continuous sample indexes of output per man-hour for the 5 branches as defined by NRP-BLS: Sole, side, calf, kid, and sheepskin. \({ }^{10}\) This was accomplished by linking series from the several samples, adjusting the several segments to the levels of the series of highest coverage, and filling the gaps by straight-line interpolation. Annual indexes were thus obtained for the sole, kid, andsheepskin branches for 1923-36, for the side branch for 1924-36, and for the calf branch for 1926-36. The index number for the earliest year for each branch was assumed for each of the preceding years of the period 1919-25 (e.g., the 1923 index number for the kid branch was assumed for each of the years 1919-22); the 1935 figure for sheepskin was assumed for \(1936 .{ }^{11}\)
Second, 5 branch indexes of production, comparable to the indexes of output per man-hour derived from the NRP-BLS data, were constructed from Census data for 1919, 1921-31, 1933, and 1935. The quantity series included in these indexes (reported in terms of number of pieces) were reduced to pounds for sole leather and to square feet for the other branches by application of conversion ratios computed from the 1935 Census of Manufactures. The products in the index for each branch are the principal ones included in the corresponding NRP industry index. \({ }^{12}\)

Third, division of these production indexes by the corresponding output per man-hour series yielded indexes of man-hours for the

\footnotetext{
10 The unita for the isrst branch are pounds; and for the others, square feet.
\({ }^{11}\) The output-per-man-hour ratios for sheepskin for 1923 and 1931, which refer to direct labor in 4 large plants, were adjusted to include indirect labor by division by 0.86. (This factor was computed from data shown in Monthly Lador Review, september 1932, p. 474.) The 1935 ratio for this branch, ilke the ratios for all years for the other 4 branches, includes both direct and indirect labor.
12 The producta included in these branch indexes, whichare not to be conrused with those in the induatry indexes (see text, section on "production"), are: sole leather: oak and union sole
chrome sole
orfal
8ide leather: UpDer leather (other than patent): cattle (including kid side)
splits (other than upholstery; finished and rough)
Calfakin: upper leather: calf and kid (except kid side)
Kld lesther: Upper leather: goat and kid
Sheepskin: UpDer leather: sheep and lamb (ahoe stock) and cabretta
Glove and garment: sheep and lamb (except shearlings)
Fancy and bookbinders': sheed and lamb and
cabretta
Roller leather
}

5 branches. These were then converted into actual man-hours through the use of the productivity ratios for the 4 samples described above and the production aggregates (pounds or square feetl for 1935.

Fourth, theman-hours were adjusted to refer to the industries as defined in this study by multiplication by the ratio in each year of the production aggregates (1929 unit-value-weighted quantities) for the individual industries as here defined to the production aggregates for the corresponding branches as defined by NRP-BLS.

Fifth, NRP-BLS average weekly hours for the separate branches were pieced together in continuous series and multiplied by 52 to secure average hours per man per year. \({ }^{13}\) Division of the man-hours by these annual-hours series yielded estimates of the number of wage earners in each industry.
Finally, before reduction to relatives, the employment and man-hours estimates for each industry were adjusted by the same percentage in order to make the sum of the estimates for the 5 industries in each year equal to employment and man-hours in the group as a whole.

\footnotetext{
\({ }^{13}\) The sec ond NRP-BLS sample described above provided average weekly hours for all but the sheepskin branch for 1931 and 1934-36 and, in addition, for sole and kid leather for 1023, forside leather for 1924, and for calf leather for 1926 and 1933. Estimates for intervening years were made through the use of data for the third sample; weekly hours for the earliest year for each branch were assumed for each of the preceding years of the period 1919-25. Weekly hours for the sheepskin branch for 1923-38 are averages of those for the other 4 branches weighted by the number or wage earners inciuded in the respective samples; the 1923 average was assumed for 1910-22.
}
fabla 37.- bumany imozes fol the leathen industay ardup: 1919-36
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Production (enployment weights) & Employment & Output per wage earner & \[
\begin{aligned}
& \text { Produc- } \\
& \text { tion } \\
& \text { (man-hour } \\
& \text { weights) }
\end{aligned}
\] & Man-hours & Output per manhour \\
\hline 1919 & 104.1 & 145.1 & 71.7 & 104.3 & 146.3 & 71.3 \\
\hline 1920 & 86.0 & 131.0 & 85.6 & 86.1 & 127.2 & 67.7 \\
\hline 1921 & 84. 1 & 88.0 & 85.8 & 84.2 & 95.9 & 87.8 \\
\hline 1922 & 104.9 & 117.2 & 89.5 & 104.7 & 117.4 & 89.2 \\
\hline 1923 & 113.3 & 119.6 & 94.7 & 113.0 & 119.8 & 94.5 \\
\hline 1924 & 97.4 & 104.7 & 93.0 & 96.5 & 101.7 & 94.9 \\
\hline 1925 & 97.4 & 104.7 & 93.0 & 97.1 & 104.5 & 92.9 \\
\hline 1928 & 99.3 & 108. 1 & 93.6 & 98.9 & 103. 7 & 95.4 \\
\hline 1927 & 104.0 & 108.0 & 98.1 & 103.6 & 102.0 & 101.6 \\
\hline 1928 & 101.6 & 103.5 & 98.2 & 101.7 & 98.3 & 103.5 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 91.4 & 92.9 & 98.4 & 91.7 & 87.6 & 104.7 \\
\hline 1931 & 93. 1 & 84.2 & 98.7 & 83.2 & 80.0 & 104.0 \\
\hline 1932 & 73.6 & 75.5 & 97.5 & 73.6 & 86.6 & 110.5 \\
\hline 1933 & 87.5 & 88.5 & 98.9 & 87.5 & 78.4 & 114.5 \\
\hline 1934 & 95.7 & 98.2 & 97.5 & 95.8 & 75.9 & 126.4 \\
\hline 1935 & 107.4 & 101.9 & 105.4 & 107.4 & 81.8 & 131.3 \\
\hline 1936 & 109.4 & 103.0 & 108. 2 & 109.1 & 84.9 & 128. 5 \\
\hline
\end{tabular}

Table sa.- sumary indexes for the sole and harness leathen industry: 1919-38
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Han-hour \\
\hline 1919 & 127.0 & 187.5 & 186. 2 & 67.7 & 68.2 \\
\hline 1920 & 2. a. & n.a. & n.a. & - & - \\
\hline 1021 & 107.8 & 132.2 & 127.6 & 80.6 & 84. 1 \\
\hline 1922 & 113.3 & 137.1 & 135.8 & 82. 6 & 83.4 \\
\hline 1923 & 124.4 & 142.2 & 140.9 & 87. 5 & 88.3 \\
\hline 1924 & 89.9 & 116.2 & 111.2 & 86.0 & 89.8 \\
\hline 1925 & 104.4 & 127.2 & 128. 4 & 82.1 & 82.6 \\
\hline 1928 & 98.7 & 120.4 & 116. 5 & 82.0 & 84.7 \\
\hline 1927 & 108. 9 & 113. 5 & 113.8 & 85.9 & 85.7 \\
\hline 1928 & 105.2 & 108. 4 & 105. 7 & 97.0 & 99.5 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 98.0 & 103. 6 & 96.4 & 95.6 & 102.7 \\
\hline 1931 & 78.4 & 87.3 & 77.2 & 89.8 & 101. 6 \\
\hline 1832 & 68. 3 & 81.7 & 62. 6 & 83. 6 & 109. 1 \\
\hline 1939 & 77.5 & 99.4 & 72.9 & 83.0 & 107.2 \\
\hline 1834 & 03.2 & 101.2 & 76. 1 & 82.1 & 119.3 \\
\hline 1835 & 107. 1 & 109. 2 & B3. 3 & 98. 1 & 128.6 \\
\hline 1938 & 110.5 & 107.4 & 90. 1 & 102. 8 & 122.6 \\
\hline
\end{tabular}

\section*{118 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY}

Talla 39.- SUMOARY INDEXES FOR TKE SIDE AND UPKOLSTEAY LEATHER INDUSTRY: 1919-36
(\(1929=100\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1819 & 118.7 & 151.2 & 150.1 & 78.5 & 79.1 \\
\hline 1920 & n. \(\mathrm{ar}^{\text {. }}\) & n. a. & n. a. & - & - \\
\hline 1921 & 77.1 & 82.8 & 79.7 & 93.3 & 98.7 \\
\hline 1822 & 120.1 & 120.9 & 119.8 & 99.3 & 100.3 \\
\hline 1923 & 126.7 & 122.0 & 120.9 & 103.9 & 104.8 \\
\hline 1924 & 117.3 & 123.4 & 115.2 & 97.4 & 101.8 \\
\hline 1925 & 122.4 & 116.2 & 115.5 & 105.3 & 108.0 \\
\hline 1926 & 118.7 & 115.5 & 111.7 & 102.8 & 108.3 \\
\hline 1927 & 114.9 & 119.8 & 107.7 & 95.9 & 108.7 \\
\hline 1928 & 152.1 & 108.2 & 88.8 & 94.4 & 103.3 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 84.2 & 89.1 & 80.7 & 94.5 & 104.3 \\
\hline 1931 & 84.1 & 74.7 & 73.6 & 112.6 & 114.3 \\
\hline 1932 & 77.0 & 72.7 & 70.6 & 105.9 & 109.1 \\
\hline 1933 & 82.1 & 85.9 & 78.1 & 107.2 & 117.9 \\
\hline 1934 & 111.4 & 109.2 & 87.2 & 102.0 & 127.8 \\
\hline 1935 & 128.8 & 114.9 & 95.3 & 112.1 & 135.2 \\
\hline 1936 & 133.0 & 140.7 & 112.5 & 94.5 & 118.2 \\
\hline
\end{tabular}

Tabla 40.- SUMMABY INDEXES FOR THE CALPSKIN IMDUSTRY: 1319-36
(1929 = 100)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 77.9 & 108.2 & 110.4 & 73.4 & 70.6 \\
\hline 1920 & n. a. & n. a. & n. a. & - & - \\
\hline 1921 & 97.0 & 111.3 & 112.5 & 87.2 & 86.2 \\
\hline 1922 & 100.7 & 110.8 & 114.9 & 90.9 & 87.8 \\
\hline 1923 & 118.8 & 122.5 & 227.1 & 97.0 & 83.5 \\
\hline 1924 & 108.8 & 118.7 & 116.9 & 92.5 & 01. 4 \\
\hline 1925 & 90.1 & 97.7 & 101.8 & 92.2 & 88.5 \\
\hline 1926 & 202.1 & 107.4 & 108.8 & 95.1 & 83.8 \\
\hline 1927 & 109.7 & 101.1 & 104.3 & 108.5 & 105.2 \\
\hline 1928 & 101.2 & 85.7 & 93.7 & 105.7 & 108.0 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 92.3 & 86.8 & 86.2 " & 106.3 & 107.1 \\
\hline 1931 & 80.8 & 80.7 & 81.3 & 100.1 & 99.4 \\
\hline 1932 & 77.7 & 65.8 & 65.2 & 117.8 & 119.2 \\
\hline 1933 & 80.3 & 83.3 & 81.2 & 108.4 & 111.2 \\
\hline 1934 & 88.3 & 88.5 & 69.6 & 97.5 & 124.0 \\
\hline 1935 & 88.1 & 87.0 & 77.4 & 112.8 & 126.7 \\
\hline 1938 & 81.1 & 57.3 & 54.7 & 159.0 & 186.5 \\
\hline
\end{tabular}

(\(1929=100\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Production} & \multirow[b]{2}{*}{Employment} & \multirow[b]{2}{*}{Man-hours} & \multicolumn{2}{|l|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 93.2 & 135.9 & 134.9 & 68. 6 & 89.1 \\
\hline 1920 & n. \(\mathbf{a}_{\text {- }}\) & n. \(\mathrm{B}_{\text {. }}\) & n. a. & - & - \\
\hline 1921 & 61.8 & 75.9 & 73.3 & 81.6 & 84.4 \\
\hline 1922 & B8. 4 & 101.6 & 100.7 & 85.0 & 85.8 \\
\hline 1923 & B4.2 & 92.8 & 01.9 & 80.6 & 01.5 \\
\hline 1924 & 63. 0 & 84.4 & 85.5 & 97.8 & 96.2 \\
\hline 1925 & 74.8 & 79.2 & 77.1 & 94.4 & 97.0 \\
\hline 1928 & B8. 7 & 93.6 & 90.5 & 04.8 & 98.0 \\
\hline 1927 & 90.8 & 94.7 & 89.3 & 05.7 & 101.5 \\
\hline 1928 & 88.0 & 98.7 & 93.4 & 98.3 & 104.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 98. 6 & 93.4 & 88.7 & 105.6 & 111.2 \\
\hline 1931 & 87. 1 & 88.1 & 83.3 & 98.9 & 104.6 \\
\hline 1932 & 88.4 & 74.1 & 64.2 & 92.3 & 108.5 \\
\hline 1933 & 84.2 & 88.0 & 75.0 & 85.7 & 112.3 \\
\hline 1834 & B6. 3 & 83.8 & 68.3 & 92.0 & 126.4 \\
\hline 1935 & 03.3 & 101.8 & 77.2 & 91. 8 & 120.9 \\
\hline 1938 & 81.8 & 98.7 & 74.6 & 94.9 & 123.1 \\
\hline
\end{tabular}

Table 42.- sumpany indexes for the sheep and miscellaneous heathen industay: 1519-38
\((182 s=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1810 & 83.8 & 118.8 & 120.1 & 70.8 & 69.8 \\
\hline 1920 & 2. \({ }^{\text {a }}\) & \(n_{0} a_{4}\) & n. 8. & - & - \\
\hline 1821 & 73.2 & 84.2 & 83.1 & 86.9 & 88.1 \\
\hline 1822 & 98.3 & 108. 5 & 107.7 & 92.3 & 91.3 \\
\hline 1923 & 110.1 & 112.2 & 113.6 & 88.1 & 96.9 \\
\hline 2824 & 87.0 & 103.8 & 101.5 & 93.4 & 85.6 \\
\hline 1928 & 85.2 & 01.7 & 91.2 & 92.9 & 83.4 \\
\hline 2826 & B2. 8 & B4. 1 & 83.0 & 98.6 & 89.8 \\
\hline 2827 & 80.8 & 02.3 & EE. 9 & 98. 2 & 101.8 \\
\hline 1928 & 89.8 & 100.8 & 96.3 & 98.0 & 108. 6 \\
\hline 2829 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 81. 9 & 87.3 & B2. 9 & 93.8 & 88.8 \\
\hline 1981 & 88.8 & 02.0 & E8.7 & 94.3 & 97.9 \\
\hline 1832 & B2. 6 & 81.8 & 72.0 & 101.3 & 114.7 \\
\hline 2033 & 103.2 & 00.4 & 78.4 & 114.2 & 131.8 \\
\hline 1034 & 09.3 & 01.4 & 71.3 & 108.6 & 139.3 \\
\hline 1835 & 105.8 & 84.6 & 68.7 & 124.8 & 153.7 \\
\hline 1838 & 104. 2 & 80.8 & 74.0 & 118.0 & 139.1 \\
\hline
\end{tabular}

\section*{43. LUMBER AND TIMBER PRODUCTS GROUP 44. LOBBING CAMPS \\ 45. SAWMILLS AND SAW-PLANE MILLS}

In addition to Logging Camps, the Lumber and Timber Products group includes Sawmills and Saw-Plane Mills (i. e., merchant sawmills, cooperage-stock mills, and planing mills operated in conjunction with sawnills). The chief products of the logging camp are logs; shingle, stave, and heading bolts; hewn and round poles; mine timbers; fence posts; railway ties; and excelsior stock. Those of merchant sawnills are rough lumber, shingles, lath, sawed railway ties, and cooperage and veneer stock. Cooperage-stock mills make tight and slack staves, headings, hoops, etc. The principal planing-mill products are dressed lumber, sash, doors, blinds, and miscellaneous millwork.
The Lumber and Timber Products group does not include logging camps operated by establishments in the Paper and Pulp group, independent planing mills, boxfactories not conjointly operated with sawnills, and establishments making cooperage (which should be distinguished from cooperage stock). In every year of the decade 1919-29, except 1921, it employed more than a billion manhours. In 1929 it paid 422 million dollars in wages to some 419 thousand wage earners and produced more than a billion dollars' worth of products. The high ratio of wages to value, about 35 percent, is largely a reflection of the fact that logging (which engages over \(\frac{f}{3}\) of the employment in the groupl, as well as the further processing stages, is included.
Lumber production attained its peak in the early years of the present century and has been declining since then. The principal reason appears to be the shift tosubstitute materials, particularly steel and concrete, for building, highway, and engineering construction. The same tendency is observed in the increasing use of metal in automobiles and railroad cars and of paperboard boxes as containers.

The South and Northwest account for almost \(\frac{2}{3}\) of the national production of lumber. The former region, which contributes yellow (southern) pine, cypress, and oak, declined from 37 to 32 percent of the total between 1919 and 1935, while the latter, cutting chiefly Douglas fir, ponderosa (western yellow) pine, hemlock, and white pine, advanced from 22 to. 34 percent.

\section*{Praduetion}

The indexes of production are discussed in the following order: Logging Camps, Sawnills, Saw-Plane Mills, and the composite for the Lumber and Timber Products group. The second and third of these were combined to yield the index for Sawmills and Saw-Plane Mills.

Logging Camps.- Since the total output of logging camps is not reported in detail by the Census except in 1929, \({ }^{1}\) a quantity series was obtained for 1919-36 by measuring what is tantamount to minimum log requirements or apparent consumption of logging-camp products by sawmills. The procedure was to reconvert to log volume, by means of a standard table of equivalents, the annual output of various sawmill products - lumber, lath, shingles, veneers, staves, headings, and hoops - as reported by the Census. \({ }^{2}\)

This technique neglects at least 3 factors - waste, possible changes in actual conversion ratios, and changes in log stocks. It is impossible to appraise the consequent error in the computed total \(\log\) and bolt requirement for each year. \({ }^{3}\)

Sawmills.- The Sawmills index is based on the total output of 3 products forwhich the Census provides annual statistics: Lumber, lath, and shingles. These 3 products account for well over 90 percent of the total quantity produced by this division.
The index is a weighted average of relatives of the 3 series. \({ }^{4}\) The weighting factors were developed by multiplying the unit labor

\footnotetext{
\({ }^{1}\) Census value statistics for logs for sale, however, were available for 1919, 1929, 1933, and 1935 . (Total output includes the amounts produced for sale and for consumption b y redorting companies.)
\(Z_{\text {This method was suggested by R. C. Hall of the U. } \text {. Forest Service. The }}\) equivalents are shown in American Forests and Forest Products (U. S. Dept. Agr. 8tatistical Buli. No. 21, Oct. 1927), D. 27. Since lumber production is reported by the census in board measure, conversion was not necessary. The average overrun ratio for 1929 was applied to log-scale estimates for veneer. overrun is the excess of actual production, boardmeasure the actual cubic content of the sawed timber), over the log-scale estimates (the potential board-measure yield of the unsawed logs). It is possible for the actual yield to be less than the log-scale estimate (underrun), but the reverse is more usual.
\(3_{A}\) rough estimate could be made of the actual volume of production. in 1929 by applying the overrun ratio computed from data representing 30 percent of 1929 output (U. 8. Tariff Commission, Report to the President on Lumber, No. 32, 2d ser., 1932) to the Census log-scale figure, which represents g4 percent of the value of logging-camp production. The resulting quantity, 33 bililon feet \(D\). \(m\).. is lower than the NRP total or about 40 dililion feet. of che dirference, about \(\boldsymbol{z}\) blllion feet appear to de ascribable tochanges in iog stocks, 2 oillion to the incompleteness of the coverage of the census log-scale figure, and the remainder to possible variations in the actual conversion ratios and to the limitations of the other statistics entering into these calculations.
4production for 1919-21 is not precisely comparable with the figures for the remainder of the deriod. Although, in these years, mills cutting less than 50,000 board feet of lumber or itsequivalent were covered by the Census, they were excluded thereafter. In 1919, however, the lumber cut of suchmilis could be determined - it amounted to less than 0.2 percent - and deducted from the
[Continued]
}
requirement for each product in \(1935^{\circ}\) by its output in 1929 , the base year. The series for lumber was constructed by combining regional production figures by means of regional labor weights.

The final Sawmills production index follows:
\begin{tabular}{rrrr}
Year & Index & Year & Index \\
1919 & 98.2 & 1928 & 91.2 \\
1920 & 93.7 & 1929 & 100.0 \\
1921 & 78.5 & 1930 & 68.5 \\
1922 & 89.7 & 1931 & 42.4 \\
1923 & 103.7 & 1932 & 26.4 \\
1924 & 100.7 & 1933 & 36.8 \\
1925 & 108.5 & 1934 & 40.9 \\
1926 & 100.6 & 1935 & 51.9 \\
1927 & 94.0 & 1936 & 64.6
\end{tabular}

Saw-Plane Mills.- The index for this division - planing mills operated in conjunction with sawmills - was constructed from Census production statistics for 1925 and subsequent odd-numbered years. Four quantity series - for dressed lumber, doors, sash, and window and door frames - were reduced to relatives and combined in an arithmetic mean with labor weights corresponding to those used in the Sawmills index. \({ }^{5}\) The absence of any indication of the dimensions of these products (they vary insize) precluded the possibility of reducing the annual output of each tostandard physical units. The quantities included in the index represent over 70 percent of the value of output of saw-plane mills. \({ }^{6}\)

The production index for Saw-Plane Mills follows:
\begin{tabular}{lr}
Year & Index \\
1925 & 108.4 \\
1927 & 115.2 \\
1929 & 100.0 \\
1931 & 54.0 \\
1933 & 43.8 \\
1935 & 59.2
\end{tabular}

\footnotetext{
\({ }^{4}\) [Continued]
total. There is reason to belleve that the proportionsof ath and shingles produced by small mills were also negliglble, but the amounts could not be eliminated. The series for each product, then, may be regarded as uniformiy indicating only the production of the establishments with an output of over 50,000 board feet of lumber or 1 ts equivalent.
Gunit labor requirements for Sawmilis. Saw-Plane Mills, and Logging Camps were derived from B. H. Topkis, Labor Requirements in Lumber production, Monthly Labor Review, May 1937, DD. 1136-52. The sample accounted for 12 percent of sawmill output in 1935.
\({ }^{6}\) absolute quantity production may be understated in each year by an indeterminate amount as a result of the fallure of some respondents to the census questionnaire to distribute their totals. In such cases, the census was obliged either toartempt a detalled distribution or to tabulate the reported value as miscelianeous miliwork, Although the absolute quantities of each product are arfected, their relatives are not necessarily distorted.
}

Lumber and Timber Products Group.- The indexes for Logging Camps and Sawnills, available annually for 1919-36, and for Saw-Plane Mills, available for alternate gears of the period 1925-35, were combined by means of weights which represent the aggregate manhours required by the production of each branch. These weights were obtained by inflating the man-hours for the several products included in each index \({ }^{5}\) by the ratio in 1929 of total value for the branch to the value of these products. These ratios were as follows: Logging Camps, 1.027; Sawmills, 1.140 ; and Saw-Plane Mills, 1.302 .

The procedure consisted, first, in the combination of Sawmills and Saw-Plane Mills relatives of output for odd-numbered years; second, in the interpolation and extrapolation of the resulting indexes by means of the continuous Sawmills series; and, finally, in the combination of this annual Sawmills and Saw-Plane Mills index with the Logging Camps series.

\section*{Emplaymeat}

The number of wage earners in the group was ascertained for the odd-numbered years from the Census of Manufactures. \({ }^{7}\) Intercensal employment in 1924 and thereafter was estimated by use of the BLS index for the group, which conforms to Census trend. Before 1924, interpolation was accomplished through the medium of an annual series obtained by subtracting employment in the Furniture industry from employment in the Census group, Forest Products, as determined in each case from continuous BLS indexes applied to Census totals. 8

The next problem was to allocate the group totals between (1) Logging Camps and (2) Sawnills and Saw-Plane Mills. The number in each branch was computed from Census figures for 1919 and 1923 and from BLS data for 1927 and \(1929 .^{\circ}\) Estimates for

\footnotetext{
7census employment statistics refer toestablishments manufacturing not less than 200,000 feet of lunber annually or its equivalent in lath (\(1,000,000\)) or shingles (\(2,000,000\)), except in 1919 when the minimum was 50,000 feet. To maintain chronological comparability, an adjustment was made to exclude worzers engaged in 1910 in mills which produced less then 200,000 reet of lumber or the equivalent thereof. The emplogment statistics, inany case, are not strictiy comparable in scope with the production statistics (see ftn. 4).
Brhe BLs indezes for "Lumber andallied products" and "purniture were applied to the census-year series for \({ }^{\text {PForest }}\) products" and "Furniture", respectively. 9BL IIgures, published in mages and Hours of labor in the lumber Industry in the Vnited states: 1930 (Bull. No. 580). D. 25 and in Vages and Bours of labor th the luaber Industry in the United States: 1832 (Bull. No. 586). D. 22, purport to shom the number of mage earners engaged in sawmills located in states covered oy special studies in 1927 and 1929. These states (22 in 1827 and 21 in 1929 account for about 95 percent of the number of wage earners in the Lumber and Timber products group. [Continued]
}
the remaining years were obtained by straight-line interpolation and by extrapolation of the percentages of total wage earners in each of the 2 branches.

\section*{Man-haupe}

The determination of man-hours worked in Sawmills and Saw-Plane Mills and in Logging Camps involved two distinct techniques: (1) Multiplication of employment, average hours per man per day, and number of days per year in the period 1919-29; and (2) segregation of man-hours for the group, which were derived by deflation of wages by average hourly earnings inthe years following. The discussion, therefore, may conveniently bedivided into 2 parts.

1919-29.- The estimates for this period are based largely on information obtained fromspecial BLS studies, which are available for the odd-numbered years \(1919-25\) and the even-numbered years 1928-32. \({ }^{10}\)

Sawmills and Saw-Plane Mills.- Each of the above-mentioned studies, which covers only a few months of the year, supplied statistics on average weekly hours and the number of days worked per week. \({ }^{11}\) The hours were adjusted by the ratio of NICB average weekly hours per man for the whole year to the NICB average for the specified months covered by the BLS survey. \({ }^{12}\) They were then joined in a continuous series by means of the NICB data and divided by the average number of days worked per week lestimated

\footnotetext{
\({ }^{9}\) [continued]
For each of the 2 years, the total number of wage earners in all sawmills was assumed to bear the same relation to the number in the states canvassed by BLS as the Census group figure for the Nation bore to the Census group figure for the same states.
\({ }^{10}\) Industrial Survey inselected Industries in the Onited States: 1919 (Bull. No. 265) and Bull. Nos. 317, 383, 413, 497, 560 , and 586 in the series "Wages and Hours of Labor" (the titles vary somewhat) which refer to sawmils. \(\rightarrow\)
\({ }^{11}\) The data for 1921, 1923, and 1925 are shown for pay-roll periods of unequal length; those for later years are shown uniformiy for 1 week. to reduce the earlier figures to the 1 -week standard, a 2 -week or \(\frac{1}{2}\)-month pay-roll period was considered the equivalent of \(2 \frac{1}{1} 1\)-week deriods, while a month was considered the equivalent of \(4 \frac{1}{3}\) 1-week periods. The data for 1919 are presented on a der-diem basis. Since, according to BLS Bull. No. 265, the weekly flgures were standardized on the basis of a 6 -day week, this factor was used to compute a comparable weekly average for 1919.
12 The NICB hours serles - for the "Lumber and Millworkn industry-refers to independent planing mills oniy. Half of the value of planing-mill products, however, is accounted for by saw-plane mills.
No adjustment was possible for 1928, since the months covered by the BLS study are not stated. Since no satisfactory NICB data were avallable for 1919, the adjustment factor for this year was the ratio of the average output per sawmill wage earner in the several months to the average for theyear. (This assumes the constancy of man-hour productivity over the year, in which case wage-earner productivity would adequately reflect changes in hours worked.) The output per sawmill wage earner was computed from the Federal Reserve Board monthly production index for lumber and from Census wage-earner statistics.
}
for several years by straight-line interpolation) to ascertain the average number of hours worked per day. \({ }^{13}\)
The number of days operated annually by Sawmills was read from a graph of BLS statistics plotted at the midpoints of the fiscal years to which they refer and joined by a smooth curve. The indicated days of operation clustered about 270 in all calendar years except 1921, when the number was 236 . The number in each year of the period 1919-29 except 1921 and 1922 was, therefore, fixed at 270; in 1921, at 240; and in 1922, at 255 (the average of 240 and 270).
Finally, estimates of total man-hours worked annually in Sawmills and Saw-Plane Mills were obtained by multiplying wage-earner employment by average daily hours and the average number of days the mills operated during the calendar year.

Logging Camps.- Actual hours perweek were estimated by applying to the actual weekly hours worked in Sawmills and Saw-Plane Mills the ratio of prevailing weekly hours for Logging Camps to those for Sawmills and Saw-Plane Mills in the years for which BLS studies were available. This procedure was necessitated by the fact that actual hours were shown only for the mills, although prevailing hours were presented for both branches. Furthermore, since no indication was given of the number of days worked per week and per year in logging camps, it was necessary to assume these to be the same as for sawmills in corresponding years. Total man-hours were obtained in the manner already described for Savmills and Saw-Plane Mills.

Lumber and Timber Products Group.- The number of man-hours worked in the group in each year of the period 1919-29 was determined by addition of the estimates for the 2 branches. The aggregate thus derived for 1929 is only 0.7 percent below that computed from the man-hours statistics collected by the Census for the same year. \({ }^{14}\)

1930-36.- Total man-hours for the Lumber and Timber Products group were estimated for the years \(1930-36\) by the deflation of pay rolls by average hourly earnings. These man-hour totals were

\footnotetext{
18The 1821 deflator 18 not strictly comparsble with the rest of the series since it represents average number of days istartsumere made.
14The NRP total 1s 1,050 Eillion man-hours; the census' unpublished statistics for the same year indicate i, 057 million. The latter ilgure mas computed by proratiag to the whole industry the census state data for 406 selected eatablishments which employed 82, 675 wage earners, or some 20 percent of the total.
}
apportioned between Logging Camps and Sawmills and Saw-Plane Mills in accordance with the modal relationship in the period 1919-29, during which the relative proportions were practically constant.
Census wage statistics for the group for the odd-numbered years of the period 1930-36 were completed by means of a BLS index. The average-hourly-earnings series for the group was obtained by linking the BLS regular survey series for 1932-36 to figures for 1930-32 which were computed as follows: (1) Earnings for each division of the Lumber and Timber Products group were first approximated for 1930 and 1932 from data for several months collected in special BLS surveys; (2) after adjustment to refer to the entire year, these figures were interpolated by means of an NICB earnings series; \({ }^{15}(3)\) the completed earnings series for the 2 divisions were finally combined in an average for the group with weights proportional to the modal percentage distribution of wages in the interval 1919-29. Wages for each division in the years 1919-29 were determined by multiplying man-hours by hourly earnings computed in a manner similar to average hours for the same period. \({ }^{16}\)

Talla 4s.- sumany ImDEXES for fhe lumben and time ph phoduets INDUSTAY 6RDUP: 1519-38
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 96.0 & 112.0 & 100.2 & 85.7 & 95.8 \\
\hline 1820 & 92.8 & 102.9 & 101.2 & 80.2 & 91.7 \\
\hline 1921 & 78.6 & 88.9 & 74.8 & 88.1 & 102.4 \\
\hline 1822 & 88.4 & 113.9 & 107.9 & 77.8 & 81.9 \\
\hline 1823 & 102.6 & 118.3 & 118.5 & 86.7 & 86.6 \\
\hline 1924 & 99.4 & 112.7 & 112.7 & 88.2 & 88.2 \\
\hline 1925 & 105.5 & 111.3 & 113.7 & 94.8 & 92.8 \\
\hline 1826 & 101.4 & 108.9 & 109.4 & 93.1 & 92.7 \\
\hline 1927 & 95.8 & 98.7 & 99.5 & 97.1 & 98.3 \\
\hline 1928 & 82.7 & 88.2 & 97.7 & 98.4 & 94.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 70.3 & 77.1 & 71.3 & 91. 2 & 98.6 \\
\hline 1831 & 44.6 & 48.9 & 39.9 & 95.1 & 111.8 \\
\hline 1932 & 27.6 & 36.1 & 28.3 & 76.5 & 97.5 \\
\hline 1833 & 38.2 & 45.2 & 36.1 & 84.5 & 105.8 \\
\hline 1934 & 42.1 & 55.3 & 38.8 & 76.1 & 109.1 \\
\hline 1935 & 53.2 & 60.9 & 44.8 & 87.4 & 118.8 \\
\hline 1936 & 68.2 & 65. 9. & 52.4 & 100.5 & 128.3 \\
\hline
\end{tabular}

\footnotetext{
\(15_{\text {see }} \mathrm{ftn} .12\).
\({ }^{18} \mathrm{~A}\) comparison of the NRP and Census (interdolated for even-numbered years in a manner similar to employment) estimates of group wages reveals a sizable discrepancy only in the intercensal year 1920.
}

Table 44.- sumany imazezs pan lossing calips: 1919-3B
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Enployment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 01.5 & 119.9 & 105.8 & 78.3 & 86.5 \\
\hline 1920 & 90.0 & 108.8 & 105.6 & 83.5 & 88.0 \\
\hline 1921 & 73.0 & 90.7 & 76.9 & 80.5 & 94.9 \\
\hline 1922 & 85.7 & 117.3 & 109.5 & 73.1 & 78.3 \\
\hline 1923 & 100.0 & 120.2 & 119.1 & 83.2 & 84.0 \\
\hline 1924 & 96.5 & 114.3 & 113.3 & 84.4 & 85.2 \\
\hline 1925 & 103.1 & 112.8 & 114. 3 & 91.4 & 90.2 \\
\hline 1926 & 99.8 & 110.0 & 110.3 & 90.7 & 90.5 \\
\hline 1927 & 03.9 & 99.6 & 100.5 & 94.3 & 93.4 \\
\hline 1828 & 92.6 & 96.6 & 98.7 & 95.9 & 93.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 71.2 & 77.1 & 71.6 & 92.3 & 99.4 \\
\hline 1931 & 45.6 & 48.9 & 40.1 & 97.2 & 113.7 \\
\hline 1932 & 28.2 & 36.1 & 28.4 & 78.1 & 99.3 \\
\hline 1933 & 38.9 & 45.2 & 30.1 & 86.1 & 107.8 \\
\hline 1034 & 42.7 & 55.3 & 38.7 & 77.2 & 110.3 \\
\hline 1935 & 53.6 & 60.9 & 44.8 & 88.0 & 119.6 \\
\hline 1936 & 86.9 & 65.9 & 52.5 & 101.5 & 127.4 \\
\hline
\end{tabular}

Tabla 45.- sumary indexes for sammiles and gaw-plane mills: 1919-36
(\(1929=100\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 88.5 & 107.4 & 97.0 & 91.7 & 101.5 \\
\hline 1820 & 94.0 & 99.5 & 98.8 & 94.5 & 95.1 \\
\hline 1021 & 78.7 & 84.8 & 73.6 & 92.8 & 108.8 \\
\hline 1922 & 90.0 & 112.0 & 107.0 & 80.4 & 84.1 \\
\hline 1923 & 104.0 & 117.2 & 118.1 & 88.7 & 88.1 \\
\hline 1924 & 101.0 & 111.8 & 112.3 & 90.3 & 89.9 \\
\hline 1825 & 108.8 & 110.7 & 113.4 & 98.5 & 94.2 \\
\hline 1926 & 102.3 & 108.3 & 108.9 & 94.5 & 93.9 \\
\hline 1027 & 98.9 & 88.3 & 99.0 & 98.6 & 97.9 \\
\hline 1928 & 82.7 & 98.0 & 97.2 & 98.6 & 95.4 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 69.8 & 77.1 & 71.2 & 90.5 & 98.0 \\
\hline 1931 & 44.0 & 48.9 & 39.6 & 93.8 & 110.6 \\
\hline 1832 & 27.3 & 36.1 & 28.2 & 75.6 & 98.8 \\
\hline 1933 & 37.8 & 45.2 & 36.1 & 83.6 & 104.7 \\
\hline 1934 & 41.8 & 55.3 & 38.5 & 75.6 & 108.8 \\
\hline 1935 & 52.9 & 60.9 & 44.7 & 86.9 & 118.3 \\
\hline 1930 & 65.8 & 65.9 & 52.3 & 98.8 & 125.8 \\
\hline
\end{tabular}

\section*{46. manufactured gas}

This industry, which employed 43,000 wage earners in 1929 , includes private and municipal utilities engaged primarily in the commercial manufacture and distribution, or in the manufacture only, of illuminating and heating gas for household and industrial purposes. It excludes establishments which merely distribute gas not of their own manufacture or which are engaged primarily in the production and marketing of natural gas. The industry thus defined is by no means the chief producer of gas; in fact, the Coke, Not Including Gas-House Coke industry usually produces much more gas and even sells some of it to the Manufactured Gas industry.

Gas has no uniform chemical composition or properties. Carbon monoxide, hydrogen, and methane comprise 80 to 90 percent of the combustible portion of gas used in the United States. The chief fuels used in its manufacture are bituminous coal, coke, oil, and anthracite. Of these, bituminous coal is the most important and anthracite the least.
The 4 major varieties of manufactured gas are water, coke-oven. coal, and oil. These are usually blended, en riched, or carbureted to yield mixtures which are appropriate to the particular needs of a community. Water gas, the principal variety, is essentially carbon monoxide and hydrogen; it is made by the chemical reaction of incandescent coal or coke with steam. Coke-oven gas, the manufacture of which also yields valuable byproducts, is made by the destructive distillation of bituminous coal. Coal gas, which is being replaced by coke-oven gas, is made by the carbonization of coal in vertical or horizontal retorts. Oil gas is produced by the cracking of petroleum or its derivatives intolower hydrocarbons and hydrogen.

\section*{Praduetion}

The NRP index is based on weighted aggregates of the amount of gas manufactured within the industry and the total distributed by it for sale to customers. \({ }^{1}\) The output series for 1919-35 includes Census totals for the odd-numbered years and estimates for the other years derived from annual data available in the Statistical Bulletin of the American Gas Association. The 2 series relate to almost identical production universes and are in close accord in all common years.

\footnotetext{
\({ }^{1}\) Gas sales alone contributed about 85 percent of the revenue reported by the industry for 1929; the sale of byproducts and the sale and rental of lamps and appliances accounted for the remainder.
}

The distribution series was constructed from Census data for the odd-numbered years only. The amount of gas distributed is equal to the sum of the quantities produced and purchased from outside the industry by reporting establishments minus the sum of the quantities consumed on the premises and not accounted for. \({ }^{2}\) The amount distributed is less than total "send-out", for it excludes losses.

The weights used in combining the 2 series are relative unit wage-earner requirements for 1933. In this year the Census segregated the wage earners engaged in the production and distribution activities of 21 establishments whose primary business was the distribution of purchased gas. \({ }^{3}\) A special tabulation furnished by the Census provided the supplementary statistics which were necessary for the calculation of the average number of wage earners required by these establishments to distribute a cubic foot of gas. This ratio was then applied to the total amount distributed by the industry to ascertain the total number of wage earners occupied in this phase of the work. The difference between all wage earners in the industry and this figure i. e., the number of workers engaged in production - was then divided by total gas output to determine the requirement ratio for production. The preponderance of this weight - 2.3 times that for distribution - makes the composite index fairly similar to relatives for production alone; in no year does the difference exceed 5 units. The production series was therefore used to complete the composite for intercensal years.
\begin{tabular}{cccc}
Year & \begin{tabular}{c}
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Gas- \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Gas- \\
distribution \\
index
\end{tabular} \\
& 78.1 & 79.7 & 6.1 \\
1919 & 82.2 & 86.7 & n. a. \\
1920 & 78.3 & 83.2 & 68.4 \\
1921 & 79.9 & 83.2 & n.a. \\
1922 & 83.3 & 85.2 & 79.5 \\
1923 & 89.0 & 91.8 & n.a. \\
1924 & 91.4 & 85.2 & 83.8 \\
1925 & 99.5 & 102.0 & n.a. \\
1926 & 89.4 & 100.4 & \(87.4 \quad\) [con.] \\
1927 & & &
\end{tabular}

\footnotetext{
The smount computed for 1935 is somewhat understated, for it does not inciude in purcheses the quantity resold without iurther mixing, enriching, or carbureting.
\(3_{\text {These }} 21\) establishments accounted for about 25 percent of the total number of wage earners, 18 percent of production, over 99 percent of purchases, and simost 40 percent of sales.
}
\begin{tabular}{ccccc}
[Con.] & Year & \begin{tabular}{c}
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Gas- \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Gas- \\
distribution \\
index
\end{tabular} \\
& 1928 & 102.5 & 103.0 & n.a. \\
1929 & 100.0 & 100.0 & 100.0 \\
1930 & 94.0 & 93.2 & n.a. \\
1931 & 88.3 & 86.8 & 91.3 \\
& & 77.7 & 75.8 & n.a. \\
& 1932 & 71.6 & 69.4 & 76.2 \\
& 1934 & 73.0 & 70.5 & n.a. \\
& 1935 & 72.2 & 69.5 & 77.5
\end{tabular}

Several varieties of gas exhibit trends which differ significantly from that of the unweighted production index shown above. A weighted index, however, would have the same general contour since water gas, the chief variety, has consistently accounted for almost two-thirds of the total volume. The shifts in the composition of the total are confined to the 3 less-important types: Coke-oven, coal, and oil and other gas. Between 1919 and 1935 the first advanced from 3 percent of the total to 22 , while the second declined from 23 to 11 and the third (which excludes the increasingly popular natural gas) declined from 11 to 2 percent.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & All gias & Water gas & Coal gas & \[
\begin{gathered}
\text { Coke-oven } \\
\text { gas }
\end{gathered}
\] & Oil and other gas \\
\hline 1919 & 79.7 & 77.9 & 141.5 & 15.8 & 105.3 \\
\hline 1920 & 88.7 & 90.2 & 138.5 & 17.3 & 94.3 \\
\hline 1921 & 83.2 & 86.1 & 131.1 & 14.4 & 102.4 \\
\hline 1922 & 83.2 & 91.6 & 110.0 & 12.2 & 96.6 \\
\hline 1923 & 85.2 & 93.0 & 115.8 & 16.6 & 92.7 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{4}\) Labor requirementa are most probably unequal since each important variety of gas is identified with a different process and requires mixing or enriching to a differentextent before distribution to the consumer. Lack of uniformity within each type, due to variations in the fuel or process, makes it impossible to determine suitableweighting factors from avallablestatistics. Fragmentary data are sufficient, however, to indicate that production-labor costs within and among the several varieties differ considerably.
\(5_{\text {The }}\) production relatives for the 4 components, which are consistent with the unweighted aggregates, were constructed by interpolating and extrapolating census statistics for the odd-numbered years \(1925-35\) oy means of continuous AGA series. Coke-oven and coal gas, reported in combination by the Census, were distributed by means of the AGA data. Both sources agree substantially on the quantities in the first 3 categorles in common gears but, not on the quantities in the miscellaneous and relatively unimportant fourth group, particularly arter 1929. One reason for the difference may be the Census transfer of Pintsch gas to the compressed and Liquefied Gas industry (Included by NRP in the Chemicals industry) in 1927; another may be AOA's inciusion of butane-airand reformed natural and oil-refinery gas since 1929. The AGA-Census coke-oven gas quantities are 10 wer in earlier years than the corresponding amounts reported by the Bureau or Mines for coke ovens owned by city gas companies. The a series converge, however, in later years. Although there are reasons to prefer the latter, the totals resulting from its use would not be so close to the totals reported by the census.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline [con.] & \multicolumn{5}{|c|}{Relatives of production \({ }^{5}\)} \\
\hline Year & All gas & Water gas & Coal gas & \[
\begin{gathered}
\text { Coke-oven } \\
\text { gas }
\end{gathered}
\] & Oil and other gas \\
\hline 1924 & 91.8 & 99.6 & 120.3 & 20.3 & 107.6 \\
\hline 1925 & 95.2 & 101.0 & 127.2 & 26.7 & 118.5 \\
\hline 1926 & 102.0 & 109.4 & 124.3 & 38.3 & 118.9 \\
\hline 1927 & 100.4 & 104.0 & 118.7 & 56.4 & 118.0 \\
\hline 1928 & 103.0 & 105.3 & 112.5 & 79.9 & 108.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 93.2 & 95.8 & 93.8 & 105.0 & 51.1 \\
\hline 1931 & 86.8 & 87.1 & 86.4 & 117.2 & 31.7 \\
\hline 1932 & 75.8 & 77.2 & 71.7 & 102.3 & 25.4 \\
\hline 1933 & 89.6 & 68.6 & 65.4 & 108.0 & 18.0 \\
\hline 1934 & 70.5 & 69.6 & 66.4 & 110.6 & 15.8 \\
\hline 1935 & 69.5 & 69.7 & 59.6 & 109.2 & 14.8 \\
\hline
\end{tabular}

It would have been desirable to include the byproducts of gas in the index of output, but no method of apportioning the labor required in their manufacture is altogether satisfactory. An index employing 1929 unit-value weights, \({ }^{6}\) however, differs from the NRP series of gas output by less than 3 units in any 1 year a reflection of the fact that the aggregate value of byproducts in that year is only \(t\) that of gas. A composite of this production index and the gas-distributionseries, weighted by the estimated relative number of wage earners engaged in production and distribution, differs from the NRP index by a maximum of 2 units.
\begin{tabular}{cccccc}
Year & \multicolumn{2}{c}{\begin{tabular}{c}
Index of \\
production
\end{tabular}} & & \multicolumn{2}{c}{\begin{tabular}{c}
Index of production and \\
distribution
\end{tabular}} \\
\cline { 2 - 3 } & \begin{tabular}{c}
Gas and \\
byproducts
\end{tabular} & \begin{tabular}{c}
Gas \\
only
\end{tabular} & & \begin{tabular}{c}
Gas and \\
byproducts
\end{tabular} & NRP \\
1919 & 78.6 & 79.7 & & 75.2 & 78.1 \\
1921 & 80.9 & 83.2 & & 76.4 & 78.3 \\
1923 & 83.0 & 85.2 & & 81.8 & 83.3 \\
1925 & 92.5 & 95.2 & & 89.4 & 91.4 \\
1927 & 98.8 & 100.4 & & 98.3 & 99.4 \\
1929 & 100.0 & 100.0 & & 100.0 & 100.0 \\
1931 & 88.3 & 86.8 & & 89.4 & 88.3 \\
1933 & 71.2 & 69.4 & & 73.0 & 71.6 \\
1935 & 71.2 & 69.5 & 73.5 & 72.2
\end{tabular}

\footnotetext{
\({ }^{6}\) The byproducts are: Coke, breeze, and screenings; tar; crude light oil; and amonis equivalent. The unic value used for gas production is really the value per unit of gas distributed.
}

\section*{Employment ned Man-hoara}

The index of wage earners is based on Census data for the oddnumbered years. \({ }^{7}\) Since no satisfactory interpolating medium could be found, the man-hours and productivity indexes are also deficient in intercensal years. \({ }^{8}\)

A change in the Census schedule for 1935 resulted in the reporting of only those wage earners engaged in production. Therefore an adjustment had to be made for the excluded distribution workers. For this purpose it was assumed that the change in distribution-labor efficiency from 1933 to 1935 was the same as the change in manufacturing productivity between thesame 2 years. It will be recalled that the 2 ratios for 1933 were provided by the Census in a special tabulation. The third known quantity, the manufacturing-productivity ratio for 1935 , was easily derived frompublished Census statistics. The distribution ratio computed for 1935 was then divided into the corresponding quantity of gas distributed to determine the number of excluded wage earners. This estimate was added to the number reported by the Census to obtain a total comparable with those for earlier years.

The man-hours index was computed from relatives of wage earners and average actual hours per week. The weekly-hours series was derived from NICB data for only 1 or 2 months in each year, \({ }^{9}\) but since the industry is not seasonal the difference from the annual average is probably small. The 1919 figure, obtained by straight-1ine interpolation between NICB figures for July 1914 and June 1920, is probably the least reliable.

\footnotetext{
\({ }^{7}\) An unknown number of employees is engaged neither in production nor distribution but in selling and renting lamps and appliances. Such secondary business accounts for about \(e\) percent of total revenue. Most of the workers so engaged are probably salaried andare therefore not included in the index but the number of such wage earners, if any, could not be excluded.
\(B_{\text {An AGA }}\) total-employment serles was rejected because it obviously refers to a larger universe than does the census-AGA gas-production series. Furthermore it shows little resemblance in movement to the wage-earner or total-employment ifgures reported by the census.
\(\boldsymbol{\theta}_{\text {A }}\) BLS hours serles for the Electric Light and Power and the Manuractured Gas industries combined, which is available for several jears, was not used since the total number of emplogees in the former industry is about 4 times the number in the latter.
}

Table 4b.- sumany imozes fon the manupactured aas industay: 1919-35
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1819 & 76.1 & 99.8 & 99.0 & 76.4 & 78.9 \\
\hline 1920 & 82.2 & n. a. & n.a. & - & - \\
\hline 1921 & 78.3 & 81.2 & 83.4 & 96.4 & 93.9 \\
\hline 1922 & 78.8 & n. \(\mathrm{a}^{\text {. }}\) & n.a. & - & - \\
\hline 1923 & 83.3 & 93.2 & 95.4 & 84.8 & 87.3 \\
\hline 1924 & 89.0 & n. a. & n.a. & - & - \\
\hline 1925 & 91.4 & 109.1 & 99.9 & 83.8 & 91.5 \\
\hline 1926 & 99.5 & n. a. & n.a. & - & - \\
\hline 1927 & 92.4 & 112.6 & 105.6 & B8. 3 & 84.1 \\
\hline 1928 & 102.5 & n. a. & n. a. & - & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 94.0 & n.a. & n. a. & - & \(\rightarrow\) \\
\hline 1931 & 88.3 & 80.2 & 78.2 & 110.1 & 112.8 \\
\hline 1932 & 77.7 & n. a. & n.a. & - & - \\
\hline 1933 & 71.8 & 71.0 & 81.1 & 100.8 & 117.2 \\
\hline 1934 & 73.0 & n. a. & n. a. & - & - \\
\hline 1935 & 72.2 & 71.8 & 57.8 & 100.4 & 124.8 \\
\hline
\end{tabular}

\section*{47. MANUFACTURED ICE}

This industry, which employed over 30,000 wage earners in 1929, includes establishments engaged in the manufacture of ice for sale but excludes those engaged in the cutting and storage of natural ice. Delivery service is not classified by the Census as part of this industry.

\section*{Production}

The index was derived from Census tonnage statistics for ice production within the industry and from estimates for intercensal years obtained by interpolation by an annual sales series. \({ }^{1}\) Production and sales agree closely in trend although sales are consistently greater in tonnage.

The NRP production index does not include ice manufactured outside the industry. Although such production statistics are available, the corresponding employment could not be determined. The inclusion of such output would nevertheless result in a similar series:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Index of \\
production in \\
all industries
\end{tabular} \\
1919 & 56.9 & 61.5 \\
1921 & 68.7 & 69.0 \\
1923 & 76.5 & 77.8 \\
1925 & 87.3 & 88.3 \\
1927 & 87.8 & 88.6 \\
1929 & 100.0 & 100.0 \\
1931 & 95.2 & 95.2 \\
1933 & 73.9 & 74.7 \\
1935 & 71.6 & 71.8
\end{tabular}

\section*{Employmant and Man-horia}

The trend of employment was established from Census wage-earner statistics. Satisfactory éstimates for intercensal years could not be obtained.

The Census considers the employment figures for 1919-25 to be somewhat unreliable because of the inclusion, by the reporting

\footnotetext{
\({ }^{1}\) sales are reported in \(H\). B. Drury, Production and Capacity control in the Ice Industry Under II. R. A. (National Recovery Adminisuration, Division of Review, Mar. 1938), pp. 4-5. Data for 1934 and 1935 were supplied by ice publicity Association of philadelphia.
}
establishments, of some delivery employees. \({ }^{2}\) An additional but negligible error is contributed by the inclusion of a small number of wage earners engaged in secondary productive activities. \({ }^{3}\)

The index of man-hours was derived from the employment series and a series of average weekly hours. The lat ter includes Census prevailing weekly hours for 1919, 1921, 1923, and 1929; average actual weekly hours computed from Census surveys \({ }^{4}\) for 1933 and 1935; and estimates for intervening years obtained by straightline interpolation.

Table 47.- sumany indexes por the manupactured ice tndustry: 1919-35
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Kan-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 58.9 & 94.0 & 93.2 & 80.5 & 61.1 \\
\hline 1920 & 00.2 & n. a. & n.a. & - & - \\
\hline 1921 & 68.7 & 74.8 & 74.3 & 89.2 & 89.8 \\
\hline 1922 & 69.4 & n.a. & n.a. & - & - \\
\hline 1923 & 76.5 & 83.4 & 82.6 & 81.7 & 92.6 \\
\hline 1924 & 78.1 & n. \({ }^{\text {a }}\) & n.a. & - & - \\
\hline 1925 & 87.3 & 77.4 & 77.0 & 112.8 & 113.4 \\
\hline 1926 & 85.3 & n.a. & n.a. & - & - \\
\hline 1927 & 87.8 & 68.7 & 88.5 & 127.8 & 128.2 \\
\hline 1928 & 94.7 & n. a. & n.a. & - & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 99.2 & n. a. & n. a. & - & - \\
\hline 1031 & 85.2 & 78.4 & 73.1 & 121.4 & 130.2 \\
\hline 1932 & 77.6 & n. a. & n. a. & - & - \\
\hline 1933 & 73.9 & 68.3 & 57.3 & 111.5 & 129.0 \\
\hline 1934 & 79.2 & n. a. & n. a. & - & - \\
\hline 1935 & 71.6 & 58.1 & 50.6 & 121.2 & 141.5 \\
\hline
\end{tabular}
\({ }^{2}\) See Census of Manufactures: 2825, D. 146.
\(\mathrm{S}_{\text {The }}\) aggregate value of secondary products and recelpts for cold storage never erceeds 5 percent of the totel value of the industry's products in census years.
\({ }^{4}\) Census of Kanufactures: 1833, Men-Hour stetistics for 32 selected Industries: and census of Nomufactures: 1935, Man-Hour Statistics for 59 selected Incustries." The number of wage earners for whom man-hours were reported constituted 43 and 71 percent, respectively, of the totals for the industry in the 2 years.

\section*{48. MOTOR VEMICLES}

The Motor Vehicles industry includes establishments classified by the Census in 2 industries: "Motor Vehicles" and "MotorVehicle Bodies and Motor-Vehicle Parts." These establishments are engaged primarily in the manufacture of automobiles, trucks, chassis, fire-department apparatus, trailers, etc.; motor-vehicle bodies; and a large variety of original and replacement parts (e. g., tops, gears, rims, frames, wheels, radiators, windshields, axles, bumpers, and shock absorbers). Motorcycles, engines (for salel, and accessories such as tires, ignition.apparatus, batteries, and starting and lighting systems are the principal products of other Census industries.

In 1935 the 3 largest manufacturers - General Motors Corporation, Ford Motor Company, and Chrysler Motor Corporation - accounted for about 90 percent of all finished-motor-vehicle production and for a considerable volume of bodies and parts.

The Ford Motor Company shows a high degree of vertical integration. Its River Rouge plant, for example, includes blast furnaces, steel mills, a power station, aglass plant, a foundry, byproduct coke ovens, a cement plant, and a paper mill. Many of the parts (bodies are an exception) are produced on the premises, and a large proportion of the total number of vehicles is also assembled in this plant. The General Motors Corporation, on the other hand, is actually a holding company, the subsidiaries of which manufacture passenger cars, trucks, taxicabs, bodies, hardware, spark plugs, shock absorbers, springs, clutches, batteries, and various other parts and accessories. The Chrysler Motor Corporation is similar to General Motors in organization, but not so highly integrated.

The Motor Vehicles industry is not only the largest producer of machinery but also the largest employer among the manufacturing industries. In 1929 it had 447 thousand wage earners on its pay roll and disbursed 733 million dollars in wages; in 1935 it employed 388 thousand wage earners, to whom it paid 545 million dollars in wages. It also ranked first in the consumption of steel (not only all forms in general but also strip, bars, sheets, malleable iron, and alloys), rubber, plate glass, nickel, lead, and mohair.

\section*{Pradeefise}

The measure of production for the years \(1919-36\) is a weighted index of the total output of finished vehicles (i. e., passenger cars and trucksl and chassis \({ }^{1}\) adjusted to include replacement parts. The unadjusted series for vehicles and chassis comprises 2 segments, each of which is an aggregative index with averages of unit values for the odd-numbered years of the corresponding period as weights. The first segment, for 1919-29, includes the following 11 classes of products:

Open passenger cars
\begin{tabular}{cc}
(1) 2-door & (6. Public conveyances and other \\
(2) 4-door & commercial vehicles \\
(3) Closed passenger cars & (7) Hearses and undertaker \\
(4) Light delivery trucks & wagons \\
(under 1 ton) & (8) Ambulances \\
(5) Heavy trucks (1 ton and & (9) Fire-department apparatus \\
over) and truck & (10) Other vehicles and apparatus \\
tractors & (11) Chassis
\end{tabular}

The second segment, for 1929-36, includes 17 classes, which result from a more detailed classification of the 11 in the first segment. These 17 comprise, in addition to items (1), (2), (4), (5), and (7)-(10) of the above list, the following 9 products:

Closed passenger cars
\begin{tabular}{lc}
(1) 2-door & (6) Taxicabs and other \\
(2) 4-door & commercial vehicles \\
Motor buses & Chassis \\
(3) Under 21 passengers & (7) Passenger \\
(4) 21-32 passengers & (8) Commercial \\
(5) 33 passengers and over & (9) Bus
\end{tabular}

The quantity series were obtained for the odd-numbered years 1919-35 from Census of Manufactures; they were completed for the even-numbered years \(1920-36\) by distributing total sales (published in Automobile Facts and Figures), \({ }^{2}\) which had first been adjusted to the level of total production, among the Census product classes. The adjusted sales were distributed in accordance with averages of the percentages of total output accounted for by each class of vehicles in adjacent odd-numbered years. \({ }^{3}\)

\footnotetext{
\({ }^{1}\) Chassis are relatively unimportant. In all years except 1919 and 1929 , they comprised soout 5 percent of the total number or motor vehicles and chassis; in these 2 years, they accounted for about 10 percent.
RThe sales serles, whichrefers to the same group of establishments as the production series, was complied by the Census in cooperation with the Automobile Manufacturers issociation. The 2 series never differ by more than 4 dercent. \(\delta_{\text {the }}\) percentage distrioution for 1985 was assumed for 1936.
}

As has already been indicated, the establishments in the industry are engaged in the manufactureof replacement parts as well as of finished vehicles and original parts. Since replacement parts constitute an important though varying proportion (from one-eighth to one-fourth) of the unduplicated value of the industry's output (i. e., exclusive of original parts), it was desirable to include them in the NRP index. \({ }^{4}\) Although no quantity statistics were available, this purpose could be accomplished by the adjustment of the index for vehicles and chassis by means of value figures. The adjustment consisted in the division of this index by relatives of the ratios of (1) the value of finished vehicles and chassis to (a) the total value of finished vehicles, chassis, and replacement parts made in the whole industry (i. e., in the Census industries, "Motor Vehicles" and "Motor-Vehicle Bodies and Motor-Vehicle Parts"). The validity of the premise underlying this adjustment (viz, a constant relation between the price levels of the 2 types of products from year to yearl could not be tested.

The above-mentioned adjustment factors were derived from 3 value series - one for finished vehicles and chassis and the others for replacement parts made in the 2 branches. The series for finished vehicles and chassis includes Census statistics for the odd-numbered years and intercensal-year estimates derived from Automobile Manufacturers Association sales data. The series for replacement parts produced in the Motor Vehicles branch was constructed (1) for census years by subtracting the value of assembled vehicles and chassis from the total value of products; \({ }^{5}\)
(2) for the intercensal years 1920-24 by multiplying the value of vehicles and chassis by interpolated census-year ratios of

\footnotetext{
\({ }^{4}\) Replacement parts, such as wheels, radiators, axles, gears, and shock absorbers, are made by both automobile manufacturers (sometimes in separate plants) and independent partsmakers. Spare parts for older modelsare of ten produced with equipment that might otherwise have been dismantled or modernized, while parts for current models are usually produced in the automodile factory itself. (Cf. H. L. Carver, HHow the Factories Are meeting the complex problem of Replacement Parts Production and Distribution, " lutomotive Industries, September 30, 1930, pD. 530-4; and Supplying Service parts," dererican Nachinist, May 20, 1926, D. 485.)
In 2928, when ford began the production of Model-A cars, the manuracture of Model-T parts Corders for which were filled at the rate of \(\$ 10,000,000\) per month) still required as much as one-eighth of the iactory equipment. By 1932, however, parts sales had been cut over 50 percent (to about \(\$ 3,830,000\) per month), reflecting the increasing use of the improved Model-A car. (F. L. Faurote, Ford Shop Changes Estimated at \(\$ 25,000,000\), " Iron Age, April 1928, D. 1080; and Mr. Ford Doesn't Care, " Fortune, December 1933, p. 87.)
\(5_{\text {The }}\) remainder is here assumed to represent only replacement parts. According to the census, it comprises the value or bodies and parts, particularly the latter, produced for sale to dealers or to ultimate consumers for replacement and as additional equipment. For 1919-23, the remainder had to be adjusted to exclude a small amount of contract and repair work.
}
the value of replacement parts to the value of vehicles and chassis; and (3) for the intercensal years 2926-36by means of an index of replacement-parts shipments (value) \({ }^{6}\) compiled by the Motor and Equipment Manufacturers Association and published in Survey of Current Business. Shipments and production of replacement parts (value) moved as follows in common years:
\begin{tabular}{lcc}
Year & \begin{tabular}{c}
Census production \\
(Motor Vehicles \\
branch)
\end{tabular} & MEMA shipments \\
1925 & 82.5 & \\
1927 & 89.3 & 87.9 \\
1929 & 100.0 & 100.0 \\
1931 & 60.5 & 75.7 \\
1933 & 58.1 & 68.9 \\
1935 & 82.5 & 86.6
\end{tabular}

The third series, value of replacement parts made in the Bodies and Parts branch, which could not be determined from Census of Manufacturers data, was constructed for 1929 and 1935 from value of sales reported (by mode of disposition) in other Census publications; \({ }^{7}\) and for remaining years in the interval 1925-36 by means of the annual shipments series mentioned above. In treating the sales data for 1929 and 1935, it was assumed that all sales made to the manufacturers' own outlets, to independent wholesalers, jobbers, and retailers, and to ultimate consumers represent replacement sales only; the remainder (interplant transfers, receipts for contract and repair work, and sales to industrial and other large consumers) was assumed to refer only to original equipment for use in the assembly of motor vehicles. \({ }^{8}\) Since the relatives of replacement-parts shipments and of sales by this branch are almost identical in \(1935 \quad 187.7\) and 86.6 , respectively, base 2929), the former series was considered suitable for the completion of the latter from 1925 to 1936 . The estimates could not be extended back to 1919 , but the failure to do/so has a negligible effect on chronological comparability. \({ }^{9}\)

\footnotetext{
The original serles was adjusted by NRP to show the same percentage change from 1929 to 1935 as did the value of ssles reported by the Census (see discussion of value of replacement parts made in the Bodies and Parts oranch).
The atatistics for 1929 were obtained from Pifteenth Census of the United states, Distribution of Sales of Manufacturing Plantsm, and those for 1935 from Census of Business: 1935. Distribution of Manuiacturers; Sales." The figures for total salea are inciose accord with the total value of production shown in the Census of Marufactures for the Bodies and Parts branch.
\({ }^{\text {A }}\) smad amount of replacement parts may be includedinthis residue. In 1935 sales not distriouted chrough any of the above-mentioned channels or not allocated (only about 1.4 percent of the total) were assumed to be replacement parts.
pootnote \(\theta^{\prime}\) appears on following pags.
}

The NRP index of production is higher in most years than the unadjusted series for finished vehicles and chassis; both, however, have the same general movement:
\(\left.\begin{array}{lcc}\text { Year } & \begin{array}{c}\text { NRP } \\ \text { production } \\ \text { index }\end{array} & \begin{array}{c}\text { Unadjusted } \\ \text { production } \\ \text { index for } \\ \text { vehicles }\end{array} \\ \text { and chassis }\end{array}\right\}\)

The Census classification of vehicles is not entirely satisfactory for our purposes since it includes in the same category cars which may differ considerably in quality and unit labor requirements. Amore detailed classification, like one which takes account of at least price differences within each specified type or model, was not available. It was possible, however, to construct a comparative index fromseries for cars of different makes grouped according to the estimated average price of all models of each make, but this could be done only with the sacrifice of other significant criteria of classification. The series included in this comparative index represent the output of trucks and of

\footnotetext{
In 1923, however, and probably in earlier years also, 1 large establishment classifiedby the census in the Motor venicies branch made a combined report for both vehicies and chassis and bodies and parts; hence its replacementparts production is presumabiy incorporated in our estimates for this branch. The changein the reporting practice of this establishmentin 1926 accounted, according to the census, for the major part of the decinine of over 43,000 in the number of wage earners in the branch between 1923 and 1926.
The percentage which the value of replacement parts comprised of the unduplicated value of products in both branches (i. e., exciusive of original parts) is higher in 1024 and eariier years despite the omission of the esparts) is hlaner in ieat and earifer value of replacement parts (except for the establishment noted above) produced in the Bodies and Parts branch.
}
passenger cars grouped in 4 price ranges: Low-priced, medium-Low-priced, medium-high-priced, and high-priced. \({ }^{10}\) The form of the basic data made numerous estimates necessary; moreover, since the cars of a particular make are not necessarily included in the same price category from year to year, the continuity of the quantity series is only nominal. The following tabulation shows the NRP index, the index based on the price classification, and a third measure, which is a series of relatives of the unweighted total number of vehicles and chassis. \({ }^{11}\) Although the 3 indexes sometimes differ considerably, they move in the same direction from year to year.
\begin{tabular}{|c|c|c|c|}
\hline Year & NRP production index & Unweighted production index for vehicles and chassis & Index of production based on price classification \\
\hline 1919 & 32.0 & 39.8 & 35.4 \\
\hline 1920 & 36.2 & 45.4 & 41.1 \\
\hline 1921 & 25.8 & 30.7 & 30.1 \\
\hline 1922 & 40.7 & 49.7 & 46.9 \\
\hline 1923 & 64.3 & 73.0 & 73.5 \\
\hline 1924 & 57.6 & 64.9 & 68.1 \\
\hline 1825 & 71.3 & 81.2 & 78.7 \\
\hline 1826 & 75.4 & 86.8 & 79.5 \\
\hline 1927 & 65.0 & 73.7 & 63.0 \\
\hline 1928 & 83.0 & 89.4 & 81.1 \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 65.1 & 60.9 & 61.3 \\
\hline 1931 & 47.6 & 43.7 & 43.4 \\
\hline 1932 & 30.0 & 24.4 & 24.9 \\
\hline 1933 & 40.9 & 31.9 & 34.9 \\
\hline 1934 & 56.3 & 44.9 & 50.9 \\
\hline 1935 & 77.7 & 66.7 & \(74.1{ }^{\circ}\) \\
\hline 1936 & 85.3 & 78.2 & 83.6 \\
\hline
\end{tabular}

\footnotetext{
\(10_{\text {The total }}\) number of passenger cars produced in the United States and Canada was distributed among the 4 price classes in accordance with percentages of total sales of cars of various makes (the sales statistics represent 93 to 100 percent of sil output). These 4 series were first combinedinan aggregative indez with estimated average retail prices for 1929 as weights; this index, in turn, was combined with a series of relatives for trucks by means of 1920 value weights derived from Census of Manufactures.
The quantity atatistica were obtained from 4 nnubl Reports of General Notors Corporation; Moody's Manual of Investments: Industrials; Poor's Industrials; standard Corporation Records (Standerd statistics co.); Automobile pacts and Higures; dutomotive Industries; R. C. Epstein, iutomodile Industry (chicagos A. W. Bhaw Co.. 1928); and L. H. Seitzer, pinancial Bistory of the American Automobile Industry (Boston: Houghton Miffilnco., 1928). Theretail prices were estimated from statistics published in Automobile rrade Journal and dutomobile pacts and Pigures.
\({ }^{11}\) The series of unweighted relatives was derived in the course of constructing the unadjusted index for vehicies and chassis from statiatics reported in Cansus of Manufactures and Iutomobile Pacts and Figures.
}

It was not possible to make any quantitative adjustment in the NRP index for the revolutionary improvement in the quality of the automobile since the war. Not only has this complex unit undergone change in materials, weight, power, engineering design, and body structure, but it. has also been transformed by such innovations as the self-starter, knee-action wheels, syncromesh transmission, independent front-wheel suspension, 4-wheel and hydraulic brakes, aluminum piston heads, vibration dampeners, and, more recently, automatic and semiautomatic shifting devices. The net result of these improvements has been a progressive increase in durability, speed, economy of operation, comfort, and aesthetic appeal.

\section*{Emplaymant and Man-herea}

The index of employment, which conforms to the trend of the Census totals for both branches, was constructed by BLS. The man-hours index was derived from this employment series and an annual index of average actual weekly hours which includes adjusted Census prevailing hours for 1919, NICB actual hours for 1920-1931, and BLS actual hours thereafter. The average computed from the Census frequency distribution for 1919 was reduced to actual hours by multiplication by the average of the actual-prevailing-hours ratios for 1921 and 1923.

The production and labor indexes are not strictly comparable in scope since some of the workers are engaged in the manufacture of secondary products, which include springs, ignition apparatus, starting and lighting systems, and other original and replacement parts normally produced, according to the Census, in other industries. The lack of comparability, however, is restricted to the Bodies and Parts branch. \({ }^{12}\) The value of secondary products not included in the index is consequently very small; it does not exceed 5 percent of the total value of finished vehicles, chassis, and replacement parts made in both branches. There is a counteracting tendency to understate employment in the omission of those wage earners in other industries who are engaged in the manufacture of items normally made in the Bodies and Parts branch. The value of such production constituted only about 2 percent

\footnotetext{
12 all the secondary products of the motor Vehicles branch (1. e.. assembly plants) were assumed to represent in toto replacement parts (see discussion of Production).
}
of the total value of all bodies and parts in the odd-numbered years 1925-29. \({ }^{18}\)

Another possible reason for differences in scope between the production and labor indexes is the changing integration of the industry. Although the Census excludes the employment of separate plants lowned by automobile companies) which are engaged wholly or primarily in activities preceding automobile manufacture (e. g., the production of pig iron, steel, wire, glass, etc. by the Ford Motor Companyl, it does include the employment for such products as engines made for consumption or interplant transfer and castings made for consumption in the same plant. When these products are made ontside theindustry (for sale, presumably, to assembly plants), their value is reported. The failure, however, to assign a value to, or report the quantity of, their production within the Motor Vehicles industry makes impossible an evaluation of the lack of comparability resulting from year-to-year changes in the proportion manufactured by establishments classified in the Motor Vehicles industry. \({ }^{14}\)

\section*{Pradecisuity}

It is of interest to compare the NRP indexes of productivity with others derived from the nnadjusted production index for finished vehicles and chassis. As in the case of the production

\footnotetext{
\({ }^{18}\) Comparable percentages could not be computed for other years.
14 8ome fragmentary information on the changing proportion of engines and castings made in the industry suggests that the infiuence on employment may be signiflcant. For example, the number of engines manufactured as primary products of the Census industry, Engines, Turbines, [Tractors, Water Wheels, and Windmills, comprised the following percentages of the total number of motor vehicles produced in corresponding zears:
\begin{tabular}{rlrrll}
1919 & \(\ldots\). & 11.9 & 1938 & \(\ldots .\). & 1.4 \\
1925 & \(\ldots .\). & 7.5 & 1935 & \(\ldots .\). & 1.6 \\
1929 & \(\ldots\). & 5.8 & & &
\end{tabular}

Kost of the remaining engines were produced (for consumption) in the Motor Vehicles inaustry.
The proportion of castings made within the Motor Vehicies industry appears to fluctuate considerabiy. Four illustrations follow: (1) Before 1933, outside foundries made the bulk of the castings for the cars of the Chrysier Corporation, but the modernization, in that year, of the roundry of the corporation's Dodge disnt perasted the manufacture of all castings except during rush periods. (2) In 1928 Genersi Motors corporstion opened a foundry to sake about 90 percent of the castings for Pontiac and oakiand cars. From 1032 to 1936 this foundry was closed, but it resumed operation in 1836 to make all the castings for Pontiac cars. (3) The production of castings in the Buick foundry, constructed in 1917, was supplemented by the production of oucside firms and other General Motors foundries until 1927. In that year the foundry was remodeledand made self-sufficient. (4) The Ford Motor Company cast the \(v \rightarrow 8\) crankshaft in its own foundry for the first time in 1933. On the other hand, it also ordered 700 to 800 eylinder biocks for Y-s engines rrom an outside company in the same year. In 1936 it began operation of a new alloy-steel casting department at the River Rouge foundry. (These and other illustrations may be found in various issues of imerican Machinist, Blast Furnace and stee l Plant, Ihe Moundry, and Iron ige.)
}
indexes, the NRP productivity measures are higher in most years than those based on the unadjusted measure of output. Both series for output per wage earner, however, like those for output per man-hour, usually move in the same direction from year to year:
\begin{tabular}{c}
Output per wage earner \\
\hline NRP
\end{tabular}
\begin{tabular}{lrrrrr}
Year & NRP & \begin{tabular}{c}
Comparative \\
index
\end{tabular} & NRP & \begin{tabular}{c}
Comparative \\
index
\end{tabular} \\
1919 & 41.8 & 35.3 & 42.7 & 36.0 \\
1920 & 45.7 & 40.3 & 46.4 & 40.9 \\
1921 & 54.3 & 50.1 & 56.8 & 52.4 \\
1922 & 83.0 & 59.1 & 61.2 & 57.4 \\
1923 & 71.1 & 68.1 & 69.8 & 66.9 \\
1924 & 68.5 & 68.8 & 70.8 & 71.1 \\
1925 & 75.0 & 75.6 & 74.2 & 74.8 \\
1926 & 80.0 & 80.7 & 78.5 & 79.2 \\
1927 & 78.7 & 76.2 & 79.4 & 76.8 \\
1928 & 85.5 & 83.4 & 83.9 & 81.9 \\
1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
1930 & 90.3 & 86.3 & 105.9 & 101.1 \\
1931 & 74.6 & 68.8 & 94.6 & 87.3 \\
1932 & 55.1 & 46.1 & 82.4 & 69.0 \\
1933 & 75.2 & 84.5 & 100.0 & 85.8 \\
1934 & 71.8 & 65.0 & 99.8 & 90.6 \\
1935 & 89.6 & 85.9 & 112.4 & 107.8 \\
1936 & 95.2 & 93.8 & 115.7 & 114.0
\end{tabular}

(\(1929=100\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 32.0 & 78.5 & 75.0 & 41.8 & 42.7 \\
\hline 1920 & 30.2 & 79.2 & 79.0 & 45.7 & 46.4 \\
\hline 1921 & 25.8 & 47.5 & 45.4 & 54.3 & 56.8 \\
\hline 1922 & 40.7 & 64.6 & 68.5 & 63.0 & 81.2 \\
\hline 1823 & 64.3 & 90.4 & 82.1 & 71.1 & 69.8 \\
\hline 1924 & 57.6 & 84.1 & 81.4 & 88.5 & 70.8 \\
\hline 1925 & 71.3 & 05.1 & 98.1 & 75.0 & 74.2 \\
\hline 1926 & 75.4 & 04.2 & 88.0 & 80.0 & 78.5 \\
\hline 1927 & 85.0 & 82.6 & 81. 9 & 78.7 & 79.4 \\
\hline 1928 & 83.0 & 87.1 & 98.9 & 85.5 & 83.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 65.1 & 72.1 & 81.5 & 90.3 & 105.9 \\
\hline 1931 & 47.0 & 83.8 & 50.3 & 74.6 & 84.6 \\
\hline 1932 & 30.0 & 54.4 & 36.4 & 55.1 & 82.4 \\
\hline 1939 & 40.9 & 54.4 & 40.8 & 75.2 & 103.0 \\
\hline 1934 & 50.8 & 78.6 & 50.4 & 71.8 & 89.8 \\
\hline 2935 & 77.7 & 86.7 & 00.1 & 89.8 & 112.4 \\
\hline 1036 & 85.8 & 89.6 & 73.7 & 95.2 & 115.7 \\
\hline
\end{tabular}

\section*{49. NEWSPAPER AND PERIODICAL PRINTINg and puglishing}

The establishments in this industry are engaged primarily in the printing and publishing or publishing only of newspapers and periodicals. Contrary to the usual Census practice, establishments which do any pribting or publishing whatever, even though these activities account for but a small portion of their income, are considered a part of this industry. In 1929 the industry employed almost 130,000 wage earners and 143,000 salaried workers.

\section*{Praducifon}

Production is represented by total newsprint consumption, which was estimated by adding imports \({ }^{1}\) to "shipments from mills" and subtracting from the sum exports, changes in "stocks at publishers", and changes in "stocks in transit to publishers." The import and export series were compiled by the Bureau of Foreign and Domestic Commerce and published in Foreign Commerce and Navigation of the United States. \({ }^{2}\)

Although some newsprint is consumed outside the industry, the bulk of it is usedin the manufacture of newspapers. \({ }^{3}\) Book paper, only 5 or 6 percent of which is accounted for by books in bound form, \({ }^{4}\) is also used in the production of certain newspaper sections and of many periodicals, butit was not feasible to include such paper in the NRP index since the quantities could not be determined in every year and no satisfactory weighting system could be devised. It should be noted, however, that relatives of the total tonnage of newsprint and book paper consumed \({ }^{5}\) in census years resemble closely the index for newsprint alone:

\footnotetext{
\(1^{\prime \prime}\) (eneral imports" were reported to 1933 and "imports for consumption" thereafter. Thie change in definition, however, probably has no significant eifect on comparability since the 2 groups of 1 mports differ oniy in that the former on comparability since the 2 groups of 1 mports dirfer oniy in chat the former
inciudes commodities entered into bonded customs warehouses for storage while inciudes commodities entered into bonded customs warenouses ior siorage w.
the letter incluces witharawais for consumption from bonded warehouses.
\(2_{\text {prior to }}\) June 1923 "shipments frommills", "stocks at pubilshers", and "stocks in transit to publishers" were reported by the Federal Trade Commission to the Survey of Current Business. After that date the first series was continued by the Newsprint Bervice Bureau; the second and third, by the American Newspaper publishers' Associacion. The 2 stocks series hac to be adjusted for incomplete coverage.
\(3_{0}\). 8. Congress, Benate, Mewsprint Paper Industry: Letter Prom the Chairman of the Federal Prade Comsission, B. Doc. No. 214, 71st Cong., spec. sess., 1930, D. 01 .
40. 8. Wicnam, Kodern Pulp and Paper Naking (New York: Chemical Catalogue Co. 1920), D. 40. It is significant that the periodicals of the Curtis Pubilaning company, which have an aggregate circulation of \(16,000,000\) coples per month, are made of smooth, surface-coated book pader.
\({ }^{5}\) Book-paper consumption was estimated from Census production data and from Bureau of Foreign and Domestic commerce statistics for imports and exports.
}
\begin{tabular}{lcc}
Year & \begin{tabular}{c}
Newsprint- \\
consumption \\
index \\
(NRP)
\end{tabular} & \begin{tabular}{c}
Newsprint and \\
book-paper \\
consumption
\end{tabular} \\
1921 & 54.0 & index \\
1923 & 71.7 & 53.8 \\
1925 & 79.6 & 74.4 \\
1927 & 90.2 & 82.7 \\
1929 & 100.0 & 90.0 \\
1931 & 85.8 & 100.0 \\
1933 & 71.0 & 84.4 \\
1935 & 87.8 & 71.4 \\
& & 87.3
\end{tabular}

An attempt to construct a production index from Census statisticsforthe number, publication period, and aggregate circulation. per issue of the various classes of newspapers and periodicals was not successful because of the absence of an adequate series for average linage per copy", which would have permitted the reduction of aggregate annual circulation to additive (linage) units. Indexes of advertising linage per issue are available, but these are not suitable for our purpose since the ratio of advertising to editorial and news matter varies according to the phase of the business cycle. Thus an index of the aggregateannual circulation of newspapers and periodicals reduced toadvertising-linage equivalents by use of the Printer's Ink series \({ }^{8}\) approximates the consumption index in the period 1921-29, during whichno serious recessions occurred. After 1929, however, the aggregate-linage index falls considerably below the consumption series, reflecting the decline in the ratio of advertising to total linage concurrent with the retardation of business activity:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
Newsprint- \\
consumption \\
index (NRP)
\end{tabular} & \begin{tabular}{c}
Aggregate- \\
linage \\
index
\end{tabular} \\
1921 & 54.0 & 57.9 \\
1923 & 71.7 & 73.7 \\
1925 & 79.6 & 81.8 \\
1927 & 90.2 & 94.3 \\
1929 & 100.0 & 100.0 \\
1931 & 85.8 & 72.6 \\
1933 & 71.0 & 46.2 \\
1935 & 87.8 & 63.7
\end{tabular}

\footnotetext{
\({ }^{6}\) This series of advertising linage is based on a group of approximately 90 newspapers in 62 cities.
}

\section*{Enploymeat and Man-henra}

The inder of wage-earner exployment, which conforms to Census trend, is based on BLS relatives for \(1923-36\), the number of wage earners reported by the Census for 1919 and 1921, and the NICB index for 1920 and 1922.

The index of man-hours was obtained from the index of wage-earner employment and an annal series for average weekly hours computed frow adjusted Census prevailing hours for 1919, NICB actual hours for 1920-31, and similar BLS statistics for remaining years. Census prevailing hours for 1919 were adjusted by the 1921 ratio of actual to prevailing hours.

The labor and production indexes arenot strictly comparable in scope since some secondary activities - e. g., comercial or job printing - are carried on by establishments engaged primarily in the printing and publishing of newspapers and periodicals. Available data are not adequate for adjusting the employment index. \({ }^{7}\)

Publishers who do no printing employ practically nowage earners, and even those who do their own printing doubtless have a large staff of salaried employees. In fact, according to the Census of Hanufactures, the wage earnersand salaried workers in the industry are about equal in number. If salaried emplogees were included with wage earners, the relatives of emplogment and productivity would compare as follows with the corresponding NRP indexes:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Inder of employment} & \multicolumn{2}{|l|}{Index of output per -} \\
\hline & \[
\begin{aligned}
& \text { Hage } \\
& \text { earners } \\
& \text { (NRP) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Al1 } \\
\text { enployees }
\end{gathered}
\] & Wage
earner (NRP) & Eaployee \\
\hline 1921 & 82.9 & 75.2 & 65.1 & 71.8 \\
\hline 1923 & 89.1 & 84.9 & 80.5 & 84.5 \\
\hline 1925 & 90.2 & 88.2 & 88.2 & 90.2 \\
\hline 1927 & 92.1 & 92.0 & 97.9 & 98.0 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1831 & 92.2 & n. 8. & 93.1 & - \\
\hline 1933 & 84.1 & 77.2 & 84.4 & 92.0 \\
\hline 1935 & 91.5 & 83.7 & 96.0 & 104.9 \\
\hline
\end{tabular}

\footnotetext{
Tonly the value of secondary production 18 mown. Such value constituted the following percencages of che rotal for the industry:

148 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Caution should be used in interpreting these indexes since the NRP production series is not an adequate measure of the output of salaried employees and hence of all workers in the industry.
fatle 48.- sumeary ingexes por the mewspapen and periodical phinting and Punlishing industay: 1919-36
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 51.8 & 92.8 & 91.6 & 55.8 & 56.6 \\
\hline 1820 & 58.0 & 85.4 & 89.4 & 65.6 & 67.1 \\
\hline 1921 & 54.0 & 82.9 & 80.6 & 65.1 & 67.0 \\
\hline 1922 & 64.7 & 85.7 & 84. 2 & 75.5 & 76.8 \\
\hline 1923 & 71.7 & 89.1 & 87.8 & 80.5 & 81.7 \\
\hline 1824 & 75.1 & 91.0 & 89.4 & 82.5 & 84.0 \\
\hline 1825 & 79.6 & 90.2 & 89.2 & 88.2 & 89.2 \\
\hline 1826 & 81.0 & 91.6 & 90.8 & 99.3 & 100.2 \\
\hline 1927 & 90.2 & 92. 1 & 92.1 & 97.9 & 97.8 \\
\hline 1928 & 94.4 & 94.1 & 92.9 & 200.3 & 101.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 94.4 & 99.3 & 88.2 & 95. 1 & 98.1 \\
\hline 1931 & 85.8 & 92.2 & 88.0 & 83.1 & 97.5 \\
\hline 1932 & 75.3 & 84.0 & 78.3 & 89.6 & 88.2 \\
\hline 1933 & 71.0 & 84.1 & 72.9 & 84.4 & 97.4 \\
\hline 1934 & 80.7 & 89.9 & 73.4 & 89.8 & 109.8 \\
\hline 1935 & 87.8 & 91.5 & 78.7 & 88.0 & 119.1 \\
\hline 1936 & 96.1 & 94.9 & 78.9 & 101.3 & 125.0 \\
\hline
\end{tabular}
50. NOMPERROUS METALS BROUP
51. PRIMARY SMELTERS AND REPINERIES
52. SECONDARY SMELTERS AND REFINERIES
53. ALLOYERS, ROLLING MILLS, AND FOUNDRIES

The Nonferrous Metals group, which employed about 114,000 wage earners in 1929, comprises 3 industries: (1) Primary Snelters and Refineries (which corresponds tothe Census industry "Smelting and Refining, Copper, Lead, and Zinc"), (2) Secondary Smelters and Refineries (which corresponds to the Censusindustry "Smelting and Refining, Nonferrous Metals Other Than Gold, Silver, or Platinum, Not From the Ore"), and (3) Allovers, Rolling Mills, andFoundries (which corresponds to the Census industry "Nonferrous-Metal Alloys and Products, Not Including Aluminum Products").
Primary Smelters and Refineries, which in 1929 employed almost 31,000 wage earners, are engaged principally in smelting and refining primary copper, lead, andzinc. In addition, they produce some secondary copper, lead, and zinc labout 20 percent of the totall; gold, silver, nickel, andother metals from complex non-ferrous-metal ores; and some chemicals, such as sulphuric acid, copper sulphate, and lead and zinc pigments.
Secondary Smelters and Refineries, which employed 4,100 wage earners in 1929, are engaged primarily in recovering copper, lead, zinc, nickel, and alloys of these metals from scrap and dross. The recovery of secondary metals has become increasingly important since the World War. In 1919 secondary output accounted for 22 percent of the total tonnage of primary and secondary copper, lead, and zinc; by 1929 the percentage was 28 , and by 1936, 34.
Alloyers, Rolling Mills, and Foundries, which employed over 79,000 wageearners in 1929, manufacture nonferrous-metal alloys, plates, sheets, rods, bars, tubing, pipe, bearings, forgings. and rough and finished castings.

\section*{Padustien}

Nonferrous Ketals Group.- The 2 NRP measures of production for the Nonferrous Metals group are harmonic means of the production indexes for the 3 component industries; one, with changing man-hour weights, was used in determining output per man-hour, and the other, with changing employment weights, in determining output per wage earner. Both are not only almost identical but are
also in close accord with arithmetic means of the production indexes weighted by 1929 employment. and man-hours:

Index of production with -
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Changing weights} & \multicolumn{2}{|l|}{Fixed weights(1929)} \\
\hline & Employment \({ }^{\text {' }}\) & Man-hours & Employment & Man-hours \\
\hline 1919 & 43.4 & 43.8 & 44.8 & 45.2 \\
\hline 1921 & 24.9 & 25.2 & 28.0 & 26.3 \\
\hline 1923 & 60.0 & 80.1 & 59.7 & 60.0 \\
\hline 1925 & 69.7 & 89.9 & 89.8 & 70.1 \\
\hline 1927 & 88.8 & 89.0 & 69.8 & 70.2 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 53.3 & 53.4 & 53.4 & 53.4 \\
\hline 1933 & 38.7 & 38.7 & 39.1 & 39.1 \\
\hline 1935 & 54.1 & 54.0 & 54.4 & 54.4 \\
\hline
\end{tabular}

Primary Smelters and Refineries.- The index of production for the period 1919-36 is based on Bureau of Mines statistics \({ }^{1}\) for the following 14 products, which represent over 95 percent of the value of the industry's output:
\begin{tabular}{lc}
(1) Primary copper & Produced at primary refineries \\
(2) Secondary copper & \\
(3) Primary lead & Produced at primary smelters \\
(4) Antimonial lead & and refineries \\
(5) Secondary pig lead & Produced at primary zinc- \\
(6) Primary zinc & reduction plants \\
(7) Redistilled secondary & \begin{tabular}{c}
zinc \\
(8) Silver
\end{tabular} \\
(9) Gold & Mine production from \\
(10) Nickel & nonferrous-metal ores \({ }^{2}\) \\
(11) Copper sulphate & Produced at primary-copper \\
(12) Sulphuric acid from & refineries \\
(13) Sulphuric acid from & Produced in zinc-blende \\
sulphur & roasting plants \\
(14) Sulphuric acid, & Produced at copper smelters
\end{tabular}

Annual statistics were available for the whole period for 9 of these products - i. e., for all but antimonial lead, redistilled secondary zinc, and the 3 types of sulphuric acid. The series

\footnotetext{
\({ }^{1}\) The basic production statistics are reported in annual issues of Mineral Resources of the United States and Ninerals Yearbook.
\(2_{\text {Copper, }}\) lead, zinc, copper-lead, copper-lead-zinc, and lead-zinc ores.
}
for antimonial lead (1929-36) and for secondary zinc (1919 and 1928-36) were completed by means of estimates derived from other Burean of Mines statistics. \({ }^{3}\) The 3 series for sulphuric acid, however, could not be completed. The one for acid from blende, available for 1919, 1920, and 1924-36, was interpolated for 1921 and 1923 by means of Census statistics for the odd-numbered years 1919-25 for sulphuric-acid production fromzinc ores. The series for acid from sulphur could not be extended to the years prior to 1924. The thirdseries, for acid produced at copper smelters, \({ }^{4}\) available for 1919, 1920, and 1927-36, was interpolated for 1921, 1923, and 1925 by means of comparable Census statistics for the odd-numbered years 1919-27.

An aggregative index was constructed from these 14 series with estimated unit values added for 1929 as weights. In 7 years Iewer than 14 products were represented (13 in 1919-21, 1923, 1924, and 1926 andil in 1922); the weighted aggregates for these years were therefore raised to the level of the 14 -product aggregates for adjacent years before conversion to relatives. The weights are the differences between unitvalues before and after processing (the products are numbered as in the above list):
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{Product} & \multicolumn{2}{|l|}{Estimated unit value in 1929 \({ }^{5}\)} \\
\hline & Before processing & After processing \\
\hline (1) Primary copper & & Weighted average \\
\hline & Average unit value & price of all grades of \\
\hline (3) Primary lead & of metal at mine (Census of Nines and & primary metal sold by \\
\hline & Quarries: 1929) & \begin{tabular}{l}
producers (Nineral \\
Resources of the Dnited
\end{tabular} \\
\hline (6) Primary zinc & & States: 1830, Part I) \\
\hline \multirow[t]{8}{*}{(2) Secondary copper} & Average dealers' buy- & Assumed to be the same \\
\hline & ing price at New York & as for primary metals \\
\hline & for principal grades & \\
\hline & of copper scrap, "heavy & \\
\hline & copper", and "No. 1 Con- & \\
\hline & position." (American & \\
\hline & Metal Market, Netal & \\
\hline & Statistics: 1934) & [con.] \\
\hline
\end{tabular}

\footnotetext{
The series for antimonial lead includes 2 varieties: (1) Bydroduct antimonisi lead (59 percent of the total in 1929) and (2) secondary antimonial lead produced at primary-lead refineries. Estimates were made for 1919-2 by the multiplication of annual figures for byproduct antimonial lead by ratios of the antimony content of all antimonial lead (1. e., both byproduct and secondary) made in primary refineriesto the antimony content of byproduct antimonial lead only.
Estimates of the output of redistilled secondaryzinc at primaryzinc-reduction Dlants were made for the years 1920-27 by means of a series for the total outDut of redistilled secondary zinc. In 1918 and 1928 primary plants accounted for 65 and 28 percent, respectively, of the total output of redistilled secondary zinc.
Footrotes 4 and 5 appear on p. 153.
}

152 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{[con.] Product} & \multicolumn{2}{|l|}{Estimated umit value in \(1929{ }^{5}\)} \\
\hline & Befare processing & After processing \\
\hline (10) Nickel & Assumed to be the same as the unit value of copper at mine (since urrecovered nickel reaches the market as an impurity in copper) & Average unit value of metallic nickel and the nickel cortent of nickel salts made as byproducts of copper refining (Nineral Pesources of the United States: 1929, Fart I) \\
\hline \multicolumn{3}{|l|}{(12) Sulphuric acid from blende} \\
\hline (14) Sulphuric acid, byproduct, produced at copper smelters & Assuned to be neglisible since these are byproducts & \\
\hline (13) Sulphuric acid from sulphur & Value of sulphur consumed per short tan of \(60^{\circ}\) Baune sulphuric acid (computed from value per long ton reported in Mineral Resources of the United States: 1929, Part II and quantity of sulphur consumed per short ton of acid made at zino-blende roasting plants reported in Mineral Resources of the Dnited States: 1930, Part I) & Average unit value of sales of \(60^{\circ}\) Baumé sulphuric acid (Minerals Tearbook: 1937) \\
\hline
\end{tabular}

Secondary Smelters and Refineries.- The production index for this industry was constructed for the odd-numbered years 1927-35 from Census quantity statistics; it was extended back to the odd-numbered years 1919-25, for which no satisfactory quantity data were available, by means of a series of deflated values based on Burear of Mines and Census data.

The index for 1927-35 comprises 3 segments, each of which is an aggregative index for ingots and pigs of various metals with

\footnotetext{
4mis series excludes the acid produced by the Anaconda copper company in 1933-30 and the acid produced from pyrites concentrate in Tennessee in 1934-36.
6The unit-valve ilgures are subject to certain linitations. For example, Drice includes such extraneous costs as transportation fron the sinelter to the refinery, and unit value at the mine excludes transportation cost to both the gelter and refinery: price does not always refer to the grades of the metsi Inciuded in the quantity statistics; unit value or price after processing is not almays comparabie to unit value before processing; and the unit values before processing assigned to dyproducts (viz, nickel and 2 varieties of aniphuric acid) are somewhat arbitrary.
}

1929 unit values as weights. \({ }^{6}\) The first segment, for 1927 and 1929, includes thefirst 7 of the following 10 metals; the second segment, for 1929 and 1931, includes the eighth and ninth in addition to the first 7; and the third segment, for 1931, 1933, and 1935 , includes all 10:7
\begin{tabular}{|c|c|}
\hline Copper & Solders \({ }^{10}\) \\
\hline Lead \({ }^{8}\) & Type metal \({ }^{10}\) \\
\hline Zinc \({ }^{8}\) & Tin \({ }^{10}\) \\
\hline Brass and bronze \({ }^{10}\) & Aluminum \({ }^{\text {8, 10, } 11}\) \\
\hline Antifriction bearing metal \({ }^{10}\) & Miscellaneous metals \({ }^{10,12}\) \\
\hline
\end{tabular}

The series of deflated values for the odd-numbered years 1919-27 was computed from Census value statistics for the total output of the industry and unit values derived from Nineral Resources of the United States and Minerals Yearbook. The unit values which refer to the secondary metals aluminum, antimony, brass, copper, lead, zinc, and tin - were combined into an aggregative
\({ }^{8}\) Since value and quantity statistics for miscellaneous metals" are not avallable for 1929, the unit value for this year was assumed to be the same as an estimate for 2 census industries combined. (One of these industries corresponds to secondary Smelters and Refineries, and the other to Alloyers, Rolling Mills, and Foundries.) The estimate for these industries was made on the assumption that the 1931 relationshid between the unlt value for "miscellaneous metals" and the weighted average unit value for the other 9 metals prevalled in 1829.
\(7^{7}\) The products included in the 3 segments represent the following percentages of the value of the industry's output:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & cts & \multicolumn{2}{|l|}{9 products} & \multicolumn{2}{|l|}{10 products} \\
\hline 1927 & 72.7 & 1929 & 85.9 & 1931 & 95.1 \\
\hline 1929 & 77.7 & 1931 & n.a. & \[
\begin{aligned}
& 1933 \\
& 1935
\end{aligned}
\] & \[
\begin{gathered}
\cdots . .95 .0 \\
\hdashline \cdot 92.8
\end{gathered}
\] \\
\hline
\end{tabular}
\({ }^{8}\) The quantities for all years include both common and antimonial lead.
\({ }^{\theta}\) The quantity for Secondary Smelters and Refineries for 1935 was segregated from the reported total for. 2 Census industries (see ftn. 6) on the basis of the 1933 relationship. (The output of zine is reported in census of Nanufactures: 1935; the figure for aluminum was furnished by the Bureau of the census.)
\(10_{\text {A }}\) portion of the output in 1935 was reported by value only for 2 census industries combined (see itn. 6). The quantity was estimated by dividing this ilgure by the unit value for the total quantity reported for both industries and then distributed in accordance with the proportions of the quantities reported separately, The percentages of the value for which quantities had to be estimated are:
\begin{tabular}{lrlr}
Brass and bronze & 1.4 & Tin & 1.6 \\
Antifriction bearing & 1.4 & Aluminum & 0.3 \\
metal & 15.4 & Miscellaneous metals & 39.9 \\
Solders & 10.7 & & \\
Type metal & 4.8 & All metals in index & 10.8
\end{tabular}
\({ }^{11}\) The value for 1929 and the quantities and values for 1931 and 1933 were estimated by subtraction of revised figures which exciude aluminumingots and pigs (shown in census of Manufactures: 1935) irom unrevised figures which include them (shown in Census of Manufactures: 1833). The quantity for 1929 was derived by deflation of the value for this year by an estimate of unit value; the latter was computed on the assumption that the 1931 ratio of the unit value of aluminum ingots and pigs made in secondary Smelters and Refineries to the unit value of the quantity made in both this industry and Alloyers, Rolling Mills, and Foundries prevalled in 1929. (An unpublished ilgure for the total quantity of ingots and pigs made in the 2 industries In 1928 was supplied by the Bureau of the census.)
12A portion of the output for 1933 (7.8 percent of the value) was estimated in the manner described in itn. 10.
index with 1929 quantity weights. \({ }^{15}\) The deflated-values series was extended to the years \(1927-35\) for comparison with the NRP index:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
NRP \\
production \\
inder
\end{tabular} & \begin{tabular}{c}
Deflated-values \\
inder
\end{tabular} \\
1927 & 78.5 & \\
1929 & 100.0 & 80.6 \\
1931 & 61.4 & 100.0 \\
1933 & 74.0 & 54.9 \\
1935 & 86.7 & 68.9 \\
& & 90.4
\end{tabular}

No satisfactory interpolating index could be constructed for this industry. \({ }^{14}\)

Alloyers, Rolling Mills, and Foundries.- The index was constructed for the odd-numbered years 1919-35 from Census quantity statistics for secondary nonferrous metals and for nonferrousmetal alloys and products made chiefly in this industry. \({ }^{15}\) It consists of 5 segments:
\begin{tabular}{|c|c|c|}
\hline Years & Number of series & Percentage of value of industry's output (excluding production for consumption in same works) \\
\hline 1919-25 & 10 & 55 (1925) \\
\hline 1925-27 & 20 & 68 (1925); 65 (1927) \\
\hline 1927-29 & 21 & 67 (1927); 76 (1929) \\
\hline 1929-31 & 29 & 65 (1929) \\
\hline 1931-35 & 31 & 68 (1931); 65 (1933-35) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{13 The weight for each product excedt brass represents the total amount produced in 1929, including the estimated quantity of pure metal contained in} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{14An aggregative index of the output of 8 secondary nonferrous metals made In all industries compares as follows with the NRP index:}} \\
\hline & & \\
\hline Year & \[
\begin{aligned}
& \text { NRP } \\
& \text { production } \\
& \text { index }
\end{aligned}
\] & Comparative production index \\
\hline 1919 & 42.0 & 47.6 \\
\hline 1921 & 18.5 & 35.3 \\
\hline 1923 & 35.2 & 66.8 \\
\hline 1925 & 72.2 & 72.6 \\
\hline 1927 & 78.5 & 84.4 \\
\hline 1929 & 100.0 & 100.0 \\
\hline 1931 & 61.4 & 58.4 \\
\hline 1933 & 74.0 & 58.6 \\
\hline 1935 & 88.7 & 76.7 \\
\hline
\end{tabular}

The weights (i929 unit values) and the quantities were derived from Kineral Resources of the Jnited States, Part I, and Minerals Iearbook. The a metals, about 35 to 40 percent of the aggregate tonnage of which is produced in secondary smeiters and Refineries, are copper, remelted brass acrap, lead, sinc, tin, antisony, aluminum, and nickel. The series for codper and zinc include the anounts of the respective metels in alloys other than brass; for aluninum, antimony, and lead, the amounts of the respective metals in alloys; and for nickel and tin, the amounts in alloya and salts.
footnote 15 appeors on following page.

\section*{156 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY}

In a11, 34 different series, weighted by 1929 unit values, enter into the index. . Their names and the years for which they were available are as follows:

Twenty-seven of the 34 series include consumption in the same works and production for sale and interplant transfer; the remaining 7 refer to production for sale and interplant transfer only: \({ }^{16}\)

\footnotetext{
\({ }^{15}\) Unpublished figures for aluminum rough castings for 1919-35 were supplied by the Bureau of the Census. (See rtn. 19 for adjustment made for 1935.)
A small portion of the output included in the index (about 1 or 2 percent by value) is accounted for by establishments other than liloyers, Roiling milis, and Foundries.
\({ }^{18}\) The 7 products are:
Seamless tubing and pipe
Copper
Lesd
Nickel-alloy
Miscellaneous-metal

Copper Lead
Nickel-alloy
Miscellaneous-metal

Plates and sheets
Lead
Zinc
Miscellaneous-metal
}

Various minor adjustments which are not likely to impair the validity of the NRP index were required in the Census statistics:
(1) The quantities of ingots and pigs were estimated for some years in the same manner as the quantities made in Secondary Smelters and Refineries. (The methods are described in ftns. 9-12.)
(2) For 6 products, the quantities in the years prior to 1929 and the values in 1929 were reported for production for sale and interplant transfer only; they were raised to include consumption in the same works by means of the quantity figures for the 2 types of output reported for \(1929 .{ }^{17}\)
(3) The quantities of 5 brass, bronze, and copper products were reported for only a part of the industry for 1919-23; they were multiplied by the ratio between output in the entire industry and in this branch only in 1925. \({ }^{18}\)
(4) The quantities of brass, bronze, and copper rough castings for 1919 and 1921 were rendered comparable with those for later years by the exclusion of finished castings, the amounts of which were estimated on the basis of the 1923 relationship between rough and finished castings.
(5) The quantities and values of heat-corrosion-resistant and nickel-alloy rough castings, reported in combination for 1929, were separated on the basis of the 1931 relationship.
(6) For 9 products, a portion of the output was reported in terms of value only for some years; the corresponding quantity of each was estimated on the assumption that the unit value was the same as for the remainder reported in terms of both quantity and value. In 1935 the estimated quantities

\footnotetext{
27The quantities for the following 6 products were adjusted for the years Indicated in parentheses:

Plates and sheets Rods
Copper (1919-27)
Brass and Dronze (1919-27)
Nickel-alloy (1927)

Copper (1919-27)
Brass and bronze (1919-27)
Seamless tubing and pipe
Brass and bronze (1919-27)
}

For a seventh product, nickel-alloy and other rods, only the value in 1929 required adjustment.
\({ }^{18}\) The 5 producte are:

Brass and bronze
Seamless tubing and pipe
Seamless tubing and pipe
Diant saie and inter-
ough castings
Wlre
The atatistics for \(1919-23\) refer to the census industry brass, Bronze, and Other Nonferrous Alloys, and Manufacture of These Alloys and of Copper Not Bpecifically classifledw, which was consolidated with 2 other Census industries ("Babbitt Metal, White Metal. Type Metal, and Solder and Lead: Bar, Pipe, and Sheeti) In 1829 to form the industry which corresponds to alloyers. Rolilng Mills, and Foundries.
of the 9 products together represented only 7.1 percent of the value of all the items in the index. \({ }^{19}\)

No satisfactory data were available for the completion of the index for the even-numbered years of the period 1919-36.20

\section*{Emplayment end Man-heurs \({ }^{21}\)}

Nonferrous Hetals Group.- The NRP group indexes of employment and man-hours, which are available for only the odd-numbered years 1919-35, are based on the sums of the estimated number of wage earners and man-hours, respectively, for the 3 component industries.
\({ }^{19}\) The 9 products, the years, and the percentages of total value for which the estimates were required are:
\begin{tabular}{|c|c|c|}
\hline Product & Year & Percentage of total value \\
\hline Copper rough castings & 1935 & 45.5 \\
\hline Brass and bronze rough castings & 1925 & 11.9 \\
\hline & 1927 & 10.5 \\
\hline & 1933 & 28.1 \\
\hline & 1935 & 42.7 \\
\hline Aluminum rough castings & 1935 & 25.6 \\
\hline Miscellaneous-metal & & \\
\hline Plates and sheets & 1935 & 23.5 \\
\hline Seamless tubing and pipe & 1935 & 5.6 \\
\hline Rough castings & 1835 & 19.2 \\
\hline ```
Heat-corrosion-resistant rough
 castings
``` & 1935 & 22.4 \\
\hline Nickel-siloy rough castings, other than heat-corrosionresistant & 1935 & 2.4 \\
\hline Tubing, other than seamless, all metals & 1935 & 81.5 \\
\hline
\end{tabular}
\(20_{\text {A }}\) continuous aggregative index with \(192 \theta\) unit-value weights, which was constructed from domestic-output statistics for the 8 principalmetals treated by Alloyers, Rolling Mills, and Foundries (primary and secondary antimony, nickel, lead, copper, and zinc - exclusive of the amounts of the last 2 metals contained in brass; secondary tin; secondary aluminum; and brass scrap remelted), agrees with the NRP series only after 1929:
\begin{tabular}{ccc} 
Year & \begin{tabular}{c} 
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c} 
Comparative \\
production \\
index
\end{tabular} \\
1918 & 37.7 & 59.6 \\
1921 & 21.8 & 37.0 \\
1923 & 55.7 & 71.9 \\
1925 & 63.9 & 80.6 \\
1927 & 62.1 & 87.4 \\
1929 & 100.0 & 100.0 \\
1931 & 62.8 & 55.6 \\
1933 & 38.5 & 40.0 \\
1935 & 53.8 & 58.0
\end{tabular}

The statistics for the comparative indezwere obtained from Mineral Resources of the United States, Part I, and Minerals Yearbook.
\({ }^{21}\) The several labor indexes do not correspond precisely to the production indexes in scope. Some of the output included in the index for one industry may have been contributed by another, possidiy outside the group; and some of the workers included in the labor indexes may be engaged in making products normally reported by the census with the statistics for other industries within or outside the group. The possible lack of comparability between the production and labor indexes cannot be estimated, but, from some calculations based on value statistics which are not altogether satisfactory, it appears to be negligible.

Primary Smelters and Refineries.- The employment index for this industry was constructed for the odd-numbered years 1919-35 from Census wage-earner statistics. Interpolation for the evennumbered years 1920-30 was accomplished by means of a series for man-shifts of direct and indirect labor \({ }^{22}\) derived from Bureau of Mines data; estimates for 1932,1934 , and 1936 were made through the use of the BLS index for "Smelting and Refining, Copper, Lead, and Zinc" (which corresponds to the NRP industry).

The man-hours series was constructed in the following manner:
(1) Bureau of Mines man-hours figures for 1931-36 were adjusted to include both direct and indirect labor at smelters and refineries. \({ }^{23}\)
(2) Census prevailing weekly hours for each of the 3 branches of the industry (Copper, Lead, and Zinc) for 1919, 1921, 1923, and 1929 were multiplied by 52 times the corresponding Census employment figure; the results for these 3 branches were then totaled.
(3) Estimates for 1925, 1927, and the even-numbered years 1920-30 were interpolated by means of the continuous employment series for the industry.

Secondary Smelters and Refineries.- The index of employment for this industry, which is based on Census wage-earner statistics, was constructed for only the odd-numbered years 1919-35. The man-hours index was derived from the employment series and another for average actual weekly hours. The weekly hours were estimated from the final hours series for Alloyers, Rolling Mills, and Foundries (described below) by means of ratios between the prevailing-hours figures for the 2 industries. These ratios were computed for 1919, 1921, 1923, and 1929 from Census figures and for 1925 and 1927 by straight-line interpolation; the 1929 ratio was assumed for 1931, 1933, and 1935.

\footnotetext{
22 The series for man-shifts includea, in addition todirect labor at smelters and refineries, the estimated man-shifts of indirect labor at auxiliary works"assignadie to this industry. The man-shifts for "auxiliary works" Works assignadie to this industry. The man-shifts for aisxiliary works Were distributed betwegn smelters and refineries and orearessing plants in
accordance with the proportions of the man-shifts of direct labor reported separacely for both. (The necessary statistics are published in iccidents at Wetallurgical Vorks in the Onited States: 1932.)
\(23^{T h e}\) method of estimating the man-hours of indirect labor at auxiliary works"is anelogous to the method of estimeting man-shifts (see itn. 2R). The man-hours statistics for 1932-35 for ore-dressing plants, smelters and refineries, and Dauxiliary works are published in Bureau of mines reports on ficcidents at Metallurgical Yorksi those for 1938 were supplied by the Bureau of mines in advance of publication.
}

Alloyers, Rolling Mills, and Foundries.- The index of employment for this industry was constructed for the odd-numbered years 1919-35 from Census statistics; relatives for 1924-36 were computed by means of the BLS index for "Brass, Bronze, and Copper Products", which is comparable to the NRP industry. The index of man-hours was derived irom the employment series and another for average actual weekly hours. The latter was constructed from BLS actual hours for 1927 (obtained from a special study), \({ }^{24}\) 1933, and 1935; from Census prevailing hours for 1919, 1921, 1923, and 1929 reduced to the level of actual hours by means of the 1927 ratio of BLS actual to BLS prevailing hours; and from estimates for 1925 and 1931 made by straight-line interpolation. The estimate for 1931 was interpolated between the adjusted figure for 1929 and a BLS actual-hours figure for 1932 (unpubilished).

Table 50.- sumpary indexes for the manpernous metals industay gnoup: CEMSUS YEARS 1919-35
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Production (employment weights) & Employment & Output per wage earner & ```
Produc-
    tion
(man-hour
weights)
``` & Man-hours & Output per manhour \\
\hline 1919 & 43.4 & 103.5 & 41.9 & 43.8 & 105.1 & 41.7 \\
\hline 1921 & 24.9 & 54.3 & 45.8 & 25.2 & 54.6 & 46.2 \\
\hline 1923 & 60.0 & 90.8 & 66.1 & 60.1 & 91.9 & 65.4 \\
\hline 1925 & 69.7 & 88.4 & 78.8 & 69.8 & 89.9 & 77.8 \\
\hline 1927 & 68.8 & 88.8 & 79.3 & 69.0 & 88.5 & 78.0 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 53.3 & 61.3 & 86.9 & 53.4 & 48.4 & 110.3 \\
\hline 1933 & 38.7 & 57.1 & 67.8 & 38.7 & 41.9 & 92.4 \\
\hline 1935 & 54.1 & 78.0 & 69.4 & 54.0 & 62.4 & 86.5 \\
\hline
\end{tabular}

24 BLS rejorts both actual and prevailing hours for 1927 in Monthly Labor Review, August 1938, \(D .138\), for a sample of 20 brass and copper sheet, rod, tube, wire, and shape mills, which employed 17 percent of the total number of wage earners in the industry.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1918 & 63.8 & 121.3 & 124.2 & 52.2 & 51.0 \\
\hline 1920 & 61.8 & 126.1 & 129.6 & 49.0 & 47.7 \\
\hline 1921 & 37.9 & 80.0 & 61.9 & 63.2 & 81.2 \\
\hline 1922 & 52.1 & 80.5 & 91.4 & 57.6 & 57.0 \\
\hline 1923 & 73.2 & 112.6 & 111.3 & 65.0 & 65.8 \\
\hline 1924 & 80.3 & 111.1 & 110.0 & 72.3 & 73.0 \\
\hline 1925 & 84.4 & 108.5 & 105.7 & 79.2 & 79.8 \\
\hline 1926 & 89.3 & 105.3 & 104.7 & 84.8 & 85.3 \\
\hline 1927 & 88.2 & 88.5 & 98.1 & 89.5 & 89.9 \\
\hline 1928 & 92.3 & 88.7 & 98.5 & 93.5 & 93.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 80.2 & 91.4 & 84.1 & 87.7 & 95.4 \\
\hline 1931 & 53.8 & 59.6 & 50.1 & 80.3 & 107.4 \\
\hline 1932 & 30.6 & 45, 3 & 34.0 & 67.5 & 90.0 \\
\hline 1933 & 38.0 & 47.0 & 36.4 & 76.6 & 88.9 \\
\hline 1934 & 41.8 & 62.5 & 43.9 & 68.9 & 95.2 \\
\hline 1936 & 51.3 & 72.6 & 60.3 & 70.7 & 85.1 \\
\hline 1936 & 64.3 & 80.8 & 71.4 & 79.8 & 90.1 \\
\hline
\end{tabular}

Tabla s2.- EUMOAY INDEXES POR SECOMDARY SMELTERS AND REPINERIES: CEMSUS YEARS 1919-35
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Tear} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 42.0 & 52.4 & 53.6 & 80.2 & 78.4 \\
\hline 1821 & 18.5 & 29.0 & 30.4 & 63. 8 & 60.9 \\
\hline 1923 & 35.2 & 38.4 & 40.8 & 81.7 & 86.3 \\
\hline 1825 & 72.2 & 71.2 & 75.0 & 101. 4 & 96.3 \\
\hline 1027 & 78.5 & 67. 2 & 69.9 & 116.8 & 112.3 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 61.4 & 63.5 & 48.9 & 96.7 & 125.6 \\
\hline 1833 & 74.0 & 70.7 & 51.3 & 104.7 & 144.2 \\
\hline 1935 & 88. 7 & 91.0 & 72.0 & 95.3 & 120.4 \\
\hline
\end{tabular}

162 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY
 1918-38
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 37.7 & 89.2 & 89.8 & 38.0 & 37.8 \\
\hline 1920 & n. a. & n. \({ }^{\text {a }}\). & n.a. & - & - \\
\hline 1921 & 21.8 & 53.4 & 52.9 & 40.8 & 41.2 \\
\hline 1922 & n. a. & n.a. & n. a. & - & - \\
\hline 1923 & 55.7 & 85.0 & 86.5 & 65.5 & 64.4 \\
\hline 1924 & n.a. & 79.5 & n.a. & - & - \\
\hline 1925 & 83. 8 & 82.9 & 84.1 & 77.8 & 78.0 \\
\hline 1928 & n. a. & 84.5 & n. a. & - & - \\
\hline 1927 & 62.1 & 83.3 & 85.4 & 74.5 & 72.7 \\
\hline 1928 & n. \(\mathrm{B}^{\text {. }}\) & 88.3 & n. a, & , & . \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & n. \(\mathrm{B}^{\text {. }}\) & 79.5 & n. s . & - & - \\
\hline 1931 & 52.8 & 61.8 & 47.8 & 85.4 & 110.9 \\
\hline 1932 & n. \({ }^{\text {a }}\) & 51.4 & n. \({ }^{\text {a }}\) & - & - \\
\hline 1833 & 38. 5 & 60.3 & 43.7 & 63.8 & 88.1 \\
\hline 1834 & n. a. & 71.4 & n.a. & - & - \\
\hline 1935 & 53.8 & 79.5 & 62.8 & 87.8 & 85.8 \\
\hline 1936 & n.a. & 88.8 & n. \(\mathrm{a}_{\text {, }}\) & - & - \\
\hline
\end{tabular}

\section*{54. PAIMTS AND VARNISHES}

This industry, which employed over 29,000 wage earners in 1929, includes establishments engaged primarily in the manufacture of pigments or colors (other than bone black, carbon black, and lampblack - which are classified elsewherel; paints in paste form; paints mixed ready for use; water paints and calcimines; varnishes, japans, and lacquers; and miscellaneous products, like fillers, putty, bleached shellac, driers, and stains.

\section*{Praductian}

The index of output was constructed for the odd-numbered years of the period 1919-35 from Census quantity statistics for 19 classes of products; 1929 unit values were used as weights. These 19 products, which represent over 95 percent of the value of paint-and-varnish production, are:
\begin{tabular}{ll}
White lead, dry & Paints mixed, ready for use \\
Lead oxides & Varnishes, oleoresinous \\
Zinc oxide & Varnishes, spirit not turpentine \\
Lithopone & Varnishes, other than oleoresinous \\
Iron oxides & and spirit \\
Chrome yellow, orange, & Drying japans and driers \\
and green & Baking japans \\
Pulp colors, sold moist & Enamels and pyroxylin lacquers and \\
All other pignents & thinners \\
Water paints and calcimines & Putty \\
Paints in paste form & Shellac, bleached
\end{tabular}

The production index was completed for the even-numbered years of the period 1919-36 by means of 2 additional series. The first, used for interpolation between 1919 and 1927, is an index based on annual Census output statistics for 3 groups of products paints in oil in paste form, paints in oil in mixed form, and varnishes - weighted by 1929 unit values. This series is similar in contour to the 19 -product index. \({ }^{1}\) The gaps in the even-numbered years after 1927 were filled by means of an annual series of deflated sales of paints, varnishes, and lacquers. \({ }^{2}\) The sales statistics were compiled by the Census from data furnished monthly

\footnotetext{
The data for the 3 groups, available for the years 1920-27, were derived from semiannual Census surveys covering from 53 to 59 percent of the establishments in the industry. The firms reporting in ig2z accounted in the previous year for 89 percent of the production of paste paints in 011, 85 percent of ready-mixed paints, and 80 percent of varnishes, lacquers, and japans.
 to the Census production value for 1927 the ratio of sales to value of production in 1929.
}
by establishments accounting for about 80 percent of the industry's output. The deflater is a weighted average of 19 BLS series of wholesale-price relatives. \({ }^{3}\)

\section*{Emplayment and Man-houra}

The NRP employment index, which conforms to Census trend, is based on the BLS series for 1923-25, 1927, 1929, and 1931-36; Census wage-earner figures for 1919 and 1921; and the NICB index for the remaining years of the period 1919-36.

The man-hours index was derived from the employment series and an annual index of average actual weekly hours. The latter is based on adjusted Census prevailing hours for 1919, NICB actual hours for 1920-31, and BLS actual hours thereafter. Prevailing weekly hours for 1919 were adjusted by the average of the 1921 and 1923 ratios of actual to prevailing hours.

It should be noted that the production and labor indexes are not precisely comparable in scope. Some of the labor consumed in the industry is devoted to the manufacture of secondary products, which accounted for 10.5 percent of total value in 1919 and only 4.0 to 7.0 percent thereafter. On the other hand, some of the production of paints and varnishes is contributed by establishments not classified in the industry. The value of such output comprised 12.0 percent of the total production of paints and varnishes in all industries in 1919 and 5.3 to 8.8 percent thereafter.

\footnotetext{
3The items in the price index, which are typical of products having about the same coverage as the sales series, were weighted by estimated salesvalues in 1826.
}

Talle 54.- sumeary indexes fan the paints and varmishes industay: 1919-3g
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|l|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1019 & 50.8 & 73.8 & 88.7 & 68.0 & 73.9 \\
\hline 1920 & 54.9 & 89.1 & 84.3 & 61.8 & 65.1 \\
\hline 1921 & 44.9 & 61.7 & 56.3 & 72.8 & 79.8 \\
\hline 1922 & 59.8 & 68. 5 & 63.9 & 89.8 & 83.8 \\
\hline 1923 & 68. 3 & 78.2 & 75.2 & 87.3 & 90.8 \\
\hline 1924 & 71.4 & 79.8 & 81.5 & 89.5 & 87.6 \\
\hline 1925 & 78.7 & 87.3 & 88.8 & 80.1 & 88.6 \\
\hline 1926 & 82.2 & 101.8 & 99.9 & 80.7 & 82.3 \\
\hline 1927 & 87.6 & 98.1 & 93.7 & 91.2 & 93.5 \\
\hline 1928 & 96.4 & 97.0 & 95.2 & 99.4 & 101.3 \\
\hline 2929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 81.6 & 88.5 & 80.0 & 94.3 & 102.0 \\
\hline 1931 & 70.6 & 77.2 & 66.2 & 91.5 & 106.6 \\
\hline 1932 & 55.4 & 71.4 & 58.3 & 77.6 & 98.4 \\
\hline 1933 & 80.4 & 78.4 & 61. 3 & 77.0 & 88.5 \\
\hline 1934 & 70.7 & 90.1 & 86. 3 & 78.5 & 108.6 \\
\hline 1935 & 87.1 & 94.8 & 72.8 & 91.9 & 119.6 \\
\hline 1938 & 97.2 & 98.9 & 80.0 & 98.3 & 121.5 \\
\hline
\end{tabular}

\section*{55. PAPER AND PULP GRDUP \\ 56. PAPER \\ 57. PULP}

The Paper industry includes mills engaged principally in the manufacture of paper and the paper-making departments of mills which are also engaged in the manufacture of pulp. Similarly, the Pulp industry embraces mills which make pulp as their chief product and the pulp-making departments of mills which also produce paper. Together, all these mills constitute the Paper and Pulp group.

The Paper industry, which is by far the larger, employed about \(\frac{4}{5}\) of the 128,049 wage earners in the group in 1929. In 1927, 545 of the 764 mills in the group produced paper only, while 54 produced pulp only and 165 made both.

The inḍustries are both physically and financially interrelated. About \(\frac{6}{7}\) of total pulp production is intended for consumption in the same mill or in others operated by the same company. In some instances integration extends beyond the processing stages to ownership of pulpwood reserves, light and power stations, and chemical plants.

The requirement of a large fixed investment in most of the branches of manufacture is conducive to the development of a few dominant companies. In 1931, for example, 6 companies controlled 54 percent of the newsprint capacity of North America; 7 controlled 52 percent of the book-paper capacity of the United States; and 10 accounted for 37 percent of national wrapping-paper capacity. A general tendency toward concentration is indicated by the fact that in 1920 the 10 largest American companies and their chief subsidiaries controlled 20 and 26 percent, respectively, of the national paper and pulp capacity; by 1933 the corresponding percentages were 26 and 34 . Similarly, the 20 largest organizations controlled 29 and 38 percent, respectively, of the total paper and pulp capacity in 1920 , and 36 and 42 percent by \(1933 \cdot\)

Technologically, both industries are well advanced. In 1929 the group ranked second only to Iron and Steel in total primary horsepower and was also among the highest in the average per wage earner. Electric power was introduced at a very early date. The most important technological advances were made in the 19th century - viz, the invention of the Fourdrinier paper-making
machise, which laid the foundation for large-scale manufacture; the invention of the wood grinder, which opened a new unlimited source of raw material for the manufacture of pulp; and the development of chemical processes of pulping (particularly the sulphite process), which made possible the production of finer paper froma greater variety of wood species. Although the period since 1919 is characterized by a great increase in productivity, it is more distinguished, perhaps, for the rapid commercial development of the sulphate process for making a cheap variety of pulp (used for kraft paper and paperboard) thanfor any fundamental technological innovation. One of the chief factors accounting for the rise in productivity is the increase in the average capacity of such important items of equipment as wood grinders, chemical digesters, and paper machines. Between 1939 and 1929 the average grinder increased in capacity by \(\$\) and the average digester by over \(\dot{\&}\). A generation ago the belt of the newsprint machine was only about 100 inches wide and traveled forward at a speed of less than 600 feet per minute; now the belt is about 230 inches wide and has a speed of 2,400 feet per minute. Highspeed machines have also been adapted to the manufacture of better grades of paper. Sulphite bond, for example, which was made at the rate of 100 feet per minute at the beginning of the century, is now produced at the rate of 900. Other important factors are the introduction of various technical refinements (which resulted, for example, in the increased pulp yield percord of wood) and the increased use of conveying and handling equipment and automatic control devices.

The traditional center of the Paper and Pulp industries is the Northern spruce region, which comprises New England, the Middle Atlantic States, and the Lake States. With the depletion of domestic spruce reserves fuponwhich mechanical pulpand newsprint are dependent) and the development of the sulphate process (which is adaptable to the pulping of the abundant yellow pinel, the industries have spread to Canada and the South. Between 1920 and 1933 the percentage of the national pulp capacity located in the South increased from 9 to 20 and in the Pacific States from 7 to 16, while the percentage located in the New England and Middle Atlantic States declined irom 61 to 42 and in the Lake States from 23 to 21.

The United States consumes more paper than any other country. It also has the highest per capita consumption - about 3 times
as large as Great Britain's and 10 times the average for the world. Much of the pulp and paper consumed, however, is of foreign origin, and the volume of exports is equal to only about \(\frac{1}{k}\) of the volume imported. In 1919,16 percent of the total tonnage of pulp consumed was imported (from Canada, the Scandinaviar countries, etc.l; in 1935,29 percent. In the same 2 years imports of newsprint (from Canada), which practically constitute the total paper imports, accounted for 34 and 72 percent, respectively, of domestic newsprint consumption.

\section*{Production}

Paper and Pulp Group.- The 2 NRP production indexes for the group are harmonic means of the relatives for the separate industries. One, which incorporates changing employment weights, was used to determine wage-earner productivity; the other, with changing man-hour weights, was used to compute output per man-hour. These indexes are not only very similar to each other but alsc to indexes with fixed (1929) labor weights:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Indexes of production with -} \\
\hline & \multicolumn{2}{|l|}{Changing weights} & \multicolumn{2}{|l|}{Fixed weights (1929)} \\
\hline & Employment & Man-hours & Employment & Man-hours \\
\hline 1919 & 59.8 & 59.7 & 80.1 & 59.9 \\
\hline 1920 & 68.5 & 88.5 & 88.7 & 88.5 \\
\hline 1921 & 51.9 & 52.0 & 52.0 & 51.9 \\
\hline 1922 & 86.7 & 68.8 & 66.8 & 66.7 \\
\hline 1923 & 74.8 & 74.8 & 74.7 & 74.7 \\
\hline 1924 & 72.8 & 72.8 & 72.7 & 72.7 \\
\hline 1925 & 82.7 & 82.7 & 82.7 & 82.8 \\
\hline 1926 & 88.7 & 88.7 & 88.7 & 88.7 \\
\hline 1827 & 89.7 & '89.7 & 89,8 & 89.8 \\
\hline 1928 & 93.3 & 93.3 & 93.3 & 93.4 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 92.4 & 92.4 & 92.5 & 92.4 \\
\hline 1931 & 85.8 & 85.8 & 85.9 & 85.8 \\
\hline 1932 & 72.8 & 72.7 & 72.8 & 72.8 \\
\hline 1933 & 83.0 & 83.0 & 83.2 & 83.1 \\
\hline 1934 & 83.3 & 83.2 & 83.5 & 83.3 \\
\hline 1935 & 94.2 & 94.1 . & 94.4 & 94.3 \\
\hline 1936 & 104.8 & 104.8 & 105.3 & 105.1 \\
\hline
\end{tabular}

Paper.- The Paper industry production index was derived for the odd-numbered years \(1919-35\) from Census quantity data for 6 varieties of paper for which unit man-hour requirements could be
ascertained: Book paper, newsprint and similar paper, paperboard, tissue paper, wrapping paper, and writing (fine) paper. These products have consistently represented over 85 percent of the value of the whole output of the Paper industry and over 90 percent of the total value and tonnage of paper. The index was completed for the even-numbered years by the use of a continuous, unweighted productionseries constructed by the Survey of Current Business from data supplied by the Federal Trade Commission, the American Paper and Pulp Association, the Newsprint Service Bureau, and the National Paperboard Association. \({ }^{1}\)

The weighting factors, all of which refer to the NRA Code period (1934-35) represent the most satisfactory set which could be developed from available data. Those for book, writing, and tissue paper and newsprint are averages of unit man-hour requirements distributed by mill capacity and weighted by the midpoints of the respective capacity intervals. The weight for wrapping paper is an average of the requirement ratios for the North and the South, weighted by the relative production of the 2 regions. Finally, the weight for paperboard is a simple average of 12 monthly figures supplied by the National Paperboard Association. \({ }^{2}\)

It is of interest to compare the NRP index with an unweighted index of the same 6 products. Although the man-hour weights show considerable dispersion (the maximum, forwriting paper, is almost 5 times the minimum, for paperboard) and the pattern of production changes significantly (between 1919 and 1935 newsprint declined from 24 percent of the total tonnage to \(\mathbf{1 2}\), while paperboard rose from 32 percent to 45), these 2 indexes never differ by as much as 3 units:

\footnotetext{
\(1^{1}\) The Survey of current Business tonnage figures for 1935 and 1936 were raised to the census level by use of the 1935 ratio of the census total to the reported tonnage. The figure for 1920 is an unpublished revision.
The dats for the first 4 weights and for wrapping paper (South), which represent about 300 mills, are shown by J. P. Hagenauer in nabor cost of Production in the Pader and Pulp Industry, " Paper Irade Journal, April 25, 1935, D. 30. C. W. Boyce, Labor Costs and Value of Paper Produced," Paper Wiliand Wood Puiphew, February 23, 1935, provided the wrapping-paper figure for the North. Hagenaueris data really refer to nKraft, which is made of sulphate puip, 8 variety produced principally in the South. The weights used to combine the 2 wrapping-paper estimates represent 80 percent of the used to combine the 2 wrapping-paper estimates represent 80 percent of the
total of such output; they were odtained irom Census state data for 1929 , the last year for which a regionalanalysis of production is presented. The monthly man-hour-requirement ratios for paperboard were computed by the National Paperboard association from a virtually complete sample. (In 1936 the paperboard branch employed 19,600 wage earners, or almost \(f\) of the total in the Paper industry.)
8ome of these sources presented additional statistics from which less satisfactory weights could be developed. Fragmentary material is also avaliable in L. P. Alford and J. O. Hannum, A Basis for Evaluating Manufacturing Operations, Hechantcel Ingineering, Karch 1929. DD. 184, 185; in babor Cost of Production and Vages and Bours of Labor in the Paper Box-Board Industry (BLs Bull. No. 407); and Inamerican Engineering Council, Safety and Production (New York: Harper and Bros., 1928), DD. 294-309.
}
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Unweighted \\
production \\
index
\end{tabular} \\
1919 & 57.6 & 54.9 \\
1921 & 50.7 & 49.5 \\
1923 & 74.4 & 72.7 \\
1925 & 83.4 & 81.7 \\
1927 & 90.2 & 89.8 \\
1929 & 100.0 & 100.0 \\
1931 & 85.0 & 85.8 \\
1933 & 81.9 & 84.2 \\
1935 & 92.4 & 95.1
\end{tabular}

It is also noteworthy that, although wages constitute but 15 percent of the value of products, percentage distributions of unit man-hour requirements and unit values resemble each other:
\begin{tabular}{lrrr}
& \multicolumn{3}{c}{ Percent of total } \\
\cline { 2 - 4 } \multicolumn{1}{c}{ Product } & \begin{tabular}{c}
Man-hours \\
per ton
\end{tabular} & \multicolumn{2}{c}{ Value per ton } \\
\cline { 2 - 4 } & 22.49 & 1929 & 1935 \\
Book paper & 10.04 & 9.48 & 18.09 \\
Newsprint & 5.83 & 7.86 & 8.34 \\
Paperboard & 18.17 & 21.12 & 8.77 \\
Tissue paper & 16.45 & 15.84 & 20.11 \\
Wrapping paper & 27.03 & 28.64 & 16.03 \\
Writing paper & & &
\end{tabular}

An index embodying value weights therefore differs but little in no year by as much as 2 units - from the NRP index:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c}
Production index \\
with 1929 unit- \\
value weights
\end{tabular} \\
1919 & 57.6 & 56.0 \\
1921 & 50.7 & 49.4 \\
1923 & 74.4 & 72.8 \\
1925 & 83.4 & 82.1 \\
1927 & 90.2 & 89.5 \\
1929 & 100.0 & 100.0 \\
1931 & 85.0 & 85.5 \\
1933 & 81.9 & 83.4 \\
1935 & 92.4 & 94.0
\end{tabular}

In view of the foregoing and of a comparison of unweighted and value-weighted indexes of the 6 NRP products and of all paper (including alsobuilding and absorbent paper and other relatively minor varieties), it may be concluded that the NRP index adequately represents the movement of all paper production:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|c|}{Unweighted production indexes} & \multicolumn{2}{|l|}{Production indezes with unit-value weights} \\
\hline & A11 paper & products & All pape & products \\
\hline 1919 & 54.7 & 54.9 & 57.0 & 56.0 \\
\hline 1921 & 48.8 & 49.5 & 49.0 & 49.4 \\
\hline 1923 & 72.1 & 72.7 & 72.7 & 72.8 \\
\hline 1925 & 82.4 & 81.7 & 82.9 & 82.1 \\
\hline 1927 & 89.8 & 89.8 & 89.2 & 89.5 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 84.2 & 85.8 & 84.3 & 85.5 \\
\hline 1933 & 82.5 & 84.2 & 82.6 & 83.4 \\
\hline 1935 & 94.1 & 95.1 & 94.1 & 94.0 \\
\hline
\end{tabular}

Pulp.- The measure of production for the Pulp industry is composed of 2 segments, both of which are aggregative indexes for 6 varieties of wood pulp (including screenings) \({ }^{3}\) weighted by unit man-hour requirements: Sulphite, bleached and unbleached; sulphate, bleached and unbleached; soda; and mechanical (ground wood).

The quantity data for the odd-numbered years were obtained from the Census of Hanufactures and those for even-numbered years from the annual Census publication, Forest Products: Pulpwood Consumption and Wood-Pulp Production (the title varies). Before constructing the index, 2 adjustments were made in the reported quantities. First, mechanical screenings were added to mechanical pulp, and chemical screenings were distributed between the 2 chief chemical varieties, sulphate and sulphite. Second, the combined production of bleached and unbleached sulphite pulp in each even-numbered year fromig20 to 1926 was apportioned in accordance with the average distribution inadjacent (odd-numbered) years. Since the 2 constituents of sulphate pulp could not be segregated satisfactorily before 1930, 1 segment of the NRP index is based on 6 series (\(1930-36\)), and the other (\(1919-30\)) on 5 series representing the same products.

The products included in the index presumably account for all pulp production in the industry until 1927 , in which year the Census extended its canvass from wood pulp only to pulp made from other fiber - like rags, waste paper, cot ton linters, and manila. Apparent coverage has declined somewhat since then; by 1935 the

\footnotetext{
\(\mathbf{3}_{\text {Bcreenings, }}\) an inferior and unimportant grade of pulp (which is separated out by means of screens), accounted for a maximum of only 1.6 percent of total tonnage (1925).
}
included products represented 96 percent of total pulp tonnage (or 90 percent of the value of the industry's products). 4

The weights, relative man-hours per ton in 1935, refer to. practically the same period as those for paper. Each weight except the one for soda pulp was computed by dellation of average unit labor cost by average hourly earnings for a sample of characteristic occupations. The basic labor-cost data (distributed by product and region) and the occupational wage rates were supplied by the Tariff Commission. \({ }^{5}\) The unit labor requirement for soda pulp was assumed to be the same as for sulphate upon the authority of McGraw-Hill's Chemical and Metallurgical Flow Sheets of Process Industries (2d ed.).

The distributions of man-hour and unit-value weights are not so close as in the Paper industry although the labor component of value - about 14 percent - is only slightly lower:
\begin{tabular}{cccc}
& \multicolumn{2}{c}{ Percent of total } \\
\cline { 2 - 4 } & Man-hours & \begin{tabular}{c}
Value \\
per tor ton \\
\((1935)^{6}\)
\end{tabular} & \\
Sulphite & & \\
Unbleached & 16.7 & 16.4 & \\
Bleached & 19.2 & 24.4 & [Con.]
\end{tabular}

\footnotetext{
\({ }^{4}\) Although in 1927 the census revised its 1925 figure for total tonnage by including pulp other than wood fiber, itidid not revise the number of establishments or wage earners. If this production - comparable with the amount reported for 1927 - was contributed only by establishments within the scope of the old definition, coverage was never complete, and the major consequence of the change in definition was the recording of pulp production irom other fiber in the establishments normally canvassed. In 1929 only 3 of 208 mills were engaged exclusively in the manufacture of such puld.
In 1927 the census for the first time also presented data for semichemical puld, which is a chemically treated ground wood. It is not indicated whether this variety was included with mechanical pulp before this year.
\(\sigma_{\text {Regional labor-cogt data for January-September } 1935 \text { were supplied by the }}\) Tariff commission in advance of publication ofits Report to the United States Senete on Vood Pulp and Pulpwood (Rep. No. 128, 1938). They represent operating (conversion) labor (exclusive of Dower, repairs, and miscellaneous) employedinthe production of pulp in siush form and, in the case of bleached pulp, include the additional cost of bleachermen, in the absence of regional production Iigures, productive capacity was used in combining the regional costs for each product into a national average. Such cadacity statistics, compiled Irom Lockwoodis Directory of the Paper and Alifed Industriss: 1936 and presented by states in 0. C. Holleran, Basic Industrial Narhets in the United States: Pulp and Paper Industry (U. S. Dept. Com. Bur. For. and Dom. Com., Market Res. Ser., No. 14.4, Aug. 1937), had to be regrouped to represent regions corresponding to those designated by the Tariff commission.
The hourly earnings computed by the tariff commission from records of 34 mills are also distributed by regions. Since not every region is represented by each occupation, itwas necessary in some instances to make estimates on the basis of relationsinips existing in others. occupational earnings are also reported for May 1929 and 1933 by \(J\). \(P\). Hagenauer, loc. cit. but these were not so satisfactory for our purdoses as the tariff comission figures.
\({ }^{6}\) Shown only for 1935 and not for 1920 because of the absence of segregated statistics for bleached and unbleached sulphate pulp before 1930. Furthermore, the 2 sets of weights presented here are strictiy comparabie insofar as both refer to 1835.
}
\begin{tabular}{|c|c|c|c|}
\hline [con.] & \multirow[b]{2}{*}{Product} & \multicolumn{2}{|l|}{Percent of total} \\
\hline & & Man-hours per ton & \[
\begin{aligned}
& \text { Value } \\
& \text { per ton } \\
& (1935)^{8}
\end{aligned}
\] \\
\hline \multicolumn{4}{|c|}{Sulphate} \\
\hline & Unbleached & 16.6 & 11.2 \\
\hline & Bleached & 19.0 & 18.1 \\
\hline & Mechanical & 11.7 & 8.9 \\
\hline & Soda & 16.8 & 21.0 \\
\hline
\end{tabular}

Furthermore, as in the case of paper, the production pattern has been modified greatly since the end of the war. For example, sulphate pulp (first reported in 1914) advanced from less than 4 percent of all wood-pulp output in 1929 to 30 percent in 1935, while mechanical pulp declined from 44 to 28 percent in the same interval. Despite the differences in the 2 weighting systems and the change in the composition of production, indexes incorporating labor weights or value weights or no weights at all (i. e., equal weights) are very similar. In general, however, the NRP series is slightly lower before 1929 and slightly higher thereafter. Most striking is the fact that an unweighted index which includes pulp made of fiber ot her than wood in 1927 and subsequent years differs from the NRP index by a maximum of 1.2 units.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{6-product production index with -} & \multirow[b]{2}{*}{Index of production of all pulp (unweighted)} \\
\hline & ```
Man-hour
require-
 ment
welghts
 (NRP)
``` & \[
\begin{gathered}
1935 \\
\text { unit- } \\
\text { value } \\
\text { weights }
\end{gathered}
\] & ```
    No
weights
    (equal
weights)
``` & \\
\hline 1919 & 70.3 & 72.0 & 73.0 & 71.3 \\
\hline 1921 & 57.4 & 58.3 & 59.6 & 58.3 \\
\hline 1923 & 78.3 & 77.2 & 78.6 & 78.7 \\
\hline 1925 & 80.0 & 80.9 & 82.2 & 81.2 \\
\hline 1927 & 87.9 & 88.3 & 89.2 & 88.5 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 89.7 & 87.5 & 89.6 & 90.7 \\
\hline 1933 & 88.4 & 85.4 & 86.9 & 88.4 \\
\hline 1935 & 102.7 & 100.3 & 100.2 & 101.9 \\
\hline
\end{tabular}

The NRP index for the group is a series of relatives of total wage-earner employment in the component industries.
The Census reports only group employment for the odd-numbered jears 1919-25 but provides separate figures for subsequent years.

Because of the stability of the relationship between the industry employment figures from 1927 to 1935 (approximately, Paper, 4; Pulp, 1), the group totals for the preceding census years were distributed in accordance with the 1927 proportions. \({ }^{7}\)

The number of wage earners in the group in the intercensal years 1920-36 was determined by interpolation of the Census figures by means of the continuous BLS index. These group totals were then distributed in accordance with the average percentage represented by each industry in adjacent odd-numbered years.
The NRP production and employment indexes are not precisely comparable in scope since the former exclude some secondary products, which are reported only by value, although the latter include the wage earners making them. The percentages such products (paper bags, boxes, etc.) comprise of the total value of output of the Paper industry range from about 3 to 8 ; the percentages such items (wood flour, fiber conduit, tannic acid, caustic soda, etc.) comprise of the total value of production in the Pulp industry are always less than 2.

\section*{Men-hours}

The group index of man-hours is based on totals for the 2 component industries. The man-hours series for these components include 2 types of figures. One set, for 1919, 1923, 1929, 1933, and 1935, was obtained by methods determined by the nature of the most reliable statistics available for each industry. For 2 of these 5 years, 1919 and 1923, the pay rolls of each industry (the derivation of which will be discussed later) were divided by average hourly earnings, which were computed from statistics presented in 2 BIS bulletins. \({ }^{8}\). The, number of man-hours worked

\footnotetext{
7 other more complicated methods gave results which were considered less satisfactory. One such method involved the use of the Census distributions In the odd-numbered years 1919-25 of employment and wages by establishments producing paper oniy, pulp only, and paper and pulp. The average annual wages per man for establishments making only 1 kind or product (1, e., paper or puld) were assumed for the whole corresponding industry and divided into estimated total wages (see ftn. 12). The quotients for 1019-25, adjusted to equal the Census group totals, did not show the fixed relationshid which might be expected in view of the stability in later years - 4:1 for 1918, 8:1 for 1921, 5:1 for 1923, and 7:1 for 1925.
 365 S supplies averages of hourly earnings for the pulp industry and for 4 branches of the Paper industry: Book, newsprint, writing, and wrapping (excluding manila, bogus or wood manila, and heavy). The average for the paper industry was computed by welghting these 4 figures by corresponding annual wages (estimated on the assumption that the ratio of wages to value for the whole industry in 1823 is addicable to each branch) and then dividing the sum or the products by the sum of the weights.
Industrial Survey in Selected Industries in the Onited States: 1819 (Bull. Nu. 265) supplied only detalled statistles forselected occupations in papef
}
in each industry in 1929 was determined by adding the products of average monthly hours per wage earner (computed principally from statistics for NRA "zones", which were compiled by the American Paper and Pulp Association) and the average number of wage earners for each zone in corresponding months (as estimated from Census data for States). \({ }^{9}\) The man-hours for 1933 and 1935 were also computed by summing the products of monthly employment, as reported by the Census, and average monthly hours per man, as shown in companion volumes to the usual biennial Census reports. \({ }^{10}\)

The figures for the remaining years of the period 1919-36. (i. e., for the years \(1920-22,1924-28,1930-32,1934\), and 1936) are simple averages of estimates of total man-hours made by 2 methods: (A) The multiplication of employment by 52 times the average weekly hours per man, and (B) the division of annual pay rolls by average hourly earnings. The estimated man-hours are based largely on statistics for the group as a whole which had to be distributed between the 2 component industries. Each series of estimates was so constructed as to be consistent with the totals obtained for the 5 years described in the preceding paragraph (i. e., for 1919, 1923, 1929, 1933, and 1935).

\footnotetext{
[Continued]
and pulpmilis. Average bourly earnings for each industry in 1919 were therefore computed as follows: (1) Tha averages for those occupations for which detailed statistics were also reportedin the ig23 bulletin were weighted by corresponding sample employment and combined in an arithmetic mean; (2) this mean was then adjustedby the ratio in 1923 of the average for alloccupations to the average for the several occupations (siso weighted by corresponding sample employment).
The total number of workers included in the 1928 canvass, 30,067 , zepresented 32.4 percent of the total for the Paper and Pulp group; those included in the 1010 survez, 0,826, accounted for 7.8 percent of the group total.
OThe statistics, which refer to May 1029, were derived from redorts by 209 paper \(\mathrm{mill}^{2}\) employing 81,127 workers (or 30.1 percent of the industry total) and 73 pulp milis employing 7,i95 workers (or 29.1 percent of the industry total): they are cited in Brief and Reports Submitted by the Paper Industry dethority to the lational Recovery ideinistration (June 29. 1934).
The 8 NRA zones established for the Paper and Pulp group (NRA, Codes of fair Competition, vol. III, November 11-December 7, 1933, D. 122), were central (Del., D. C., Ey., Md., N. C., Tenn., Va., andW. Va.), Southern (Ala., Ark., Fla., Ca., La., Miss., 8. C., and Tex.), and Northern (all other States).
After sverage monthly hours per wage earner were computed for May 1928 from APPA and Census figures, estimates were made for the remaining 11 months of the year on the assumption that average monthly and weekly hours (the latter, complied by MICB ior the group, will be discussed later in the text had the sameseasonsl pattern. (The pange of the NICB hours for 19291851.1 to 62.9.)
\({ }^{10}\) cenews of Mamufactures: 1939, Man-hour Btatistics for 82 selected Industries preaents monthiy man-hours for 84.1 percent of the wage earners in the Paper industry and 87.0 percent of the number in the pulp industry. The corresponding coverage percentages for census of ranufactures: 1835. Man-hour 8 tatistics for 59 8elected Industries" are 88.9 and 87.7.
A variation in procedure was necesaary in computing 1933 man-hours for the Paper industry since the smaller establishments reported on abbreviated schedules which requested wage-arner ilgures for only ispeified months. By uee of employment weights for establishments reporting on the standard 12-month schedule, an annual average per man was obtained which was then rultiplied by the number of wage earners for the whole industry, as computed by the census irom both sets of schedules.
}

Method A required the development of a continuous series of average weekly hours for each industry. This was done by dividing man-hours for 1919, 1923, 1929, 1933, and 1935 by corresponding employment and interpolating the quotients by means of a weeklyhours series for the group, which includes NICB figures for a919-32 and BLS figures thereafter. \({ }^{11}\)

Method \(B\) necessitated the construction of continuous series of pay rolls and average hourly earnings for each industry. As in the case of employment, separate pay-roll statistics are provided for the odd-numbered years 1927-35 by the Census of Manufactures; the figures for the earlier odd-numbered years were again obtained by distributing the Census group totals in accordance with the ratio of Paper to Pulp in 1927 (approximately 4:1);12 and wages in the remaining (even-numbered) years were determined by distributing the totals derived from the BLS group index, which conforms to Census trend. Hourly earnings for each industry were derived by interpolating the figures for 1919, 1923, 1929, 1933, and 1935 (those for the latter 3 years are quotients of Census pay rolls and NRP man-hours) by means of a series for the group, which includes NICB earnings for 1919-32 and BLS earnings thereafter. \({ }^{13}\)

\section*{Praducititiy}

Tons of output per wage earner and per man-hour can be estimated for each industry if an adjustment is made in the NRP employment and man-hours series to exclude the labor attributable to secondary products. The basis for the adjustment - the assumption of equal

\footnotetext{
\({ }^{11}\) Extrapolation to 1938 was accomplished on the basis of the 1935 relationships between average annual and weekiy hours per man.
The NICB ifgure for 1919 is a welghted mean of the averages presented in Wartime Changes in Wages: September 1914 -Narch 2919 (Boston; 1919), p. 78, for 986 females and 9,579 males employed in the paper industry (about io percent of the total) in the month of March. The inciusion of this ifgure for the paper industry in the series for the group is permissibie inasmuch as weekly averages derived from 1918 man-hours and employment in the paper and Pulp industries are 53.4 and 62.6, respectively. The hours for March, furthermore, should be representative of the whole year since the mean ratio to the annual average in later years is 1.001 and the dispersion is smail. The NICB figures for the years 1920-32 were obtained from Nages, Howrs, and Employment in the United States: 1914-1938 (New York; 1936).
12 other methods of apportioning wages before 1827 gave results which were considered less satisfactory. one such method invoived the assumption that the ratio of wages to value of products of mills producing paper only is typical of the paper industry as a whole (wages for the pulp industry were to be obtained by subtraction). The distribution of wages estimated on the basis of this assumption showed no stability-4:1 in 1919, 8:1 in 1921, 6:1 in 1923, and 7:1 in 1925 (see itn. 7).
\({ }^{13}\) The 1935 relationshid was assumed in extrapolation of each series to 1936. The NICB figure for 1919 was computed from Vartime changes in Vages (see ftn. 11); although it refers to March, no adjustment was considered necessary since the ratio to the annual average in later years is 0.999.
}
value productivity and equal average annual hours for workers engaged in the manufacture of primary and secondary products - may not be tenable; nevertheless, since secondary products comprise but a small percentage of total value, particularly in the Pulp industry, the possible consequent error in the absolute man-hours series is small.

The output (short tons) per wage earner and per man-hour for pulp is about twice as high as for paper:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Output (short tons) per -} \\
\hline & \multicolumn{2}{|l|}{Wage earner} & \multicolumn{2}{|c|}{Man-hour} \\
\hline & Paper & Pulp & Paper & Pulp \\
\hline 1919 & 70.3 & 156.4 & 0.025 & 0.057 \\
\hline 1920 & 69.8 & 149.1 & . 027 & . 057 \\
\hline 1921 & 66.2 & 138.1 & . 027 & . 055 \\
\hline 1822 & 83.1 & 162.5 & . 033 & . 060 \\
\hline 1923 & 85.9 & 158.7 & . 036 & . 060 \\
\hline 1924 & 87.9 & 180.3 & . 037 & . 065 \\
\hline 1925 & 98.3 & 163.7 & . 041 & . 066 \\
\hline 1926 & 101.5 & 176.2 & . 041 & . 071 \\
\hline 1927 & 107.0 & 179.5 & . 043 & . 075 \\
\hline 1928 & 113.1 & 194.3 & . 046 & . 083 \\
\hline 1929 & 115.4 & 203.1 & . 046 & . 087 \\
\hline 1930 & 109.4 & 202.7 & . 045 & . 089 \\
\hline 1931 & 116.2 & 223.8 & . 052 & . 108 \\
\hline 1932 & 107.7 & 210.0 & . 052 & . 105 \\
\hline 1933 & 113.3 & 221.0 & . 054 & . 108 \\
\hline 1934 & 98.6 & 198.5 & . 052 & . 108 \\
\hline 1935 & 110.0 & 215.4 & . 055 & . 108 \\
\hline 1936 & 119.5 & 245.0 & . 056 & . 115 \\
\hline
\end{tabular}

The relatives of the foregoing ratios for paper compare as follows with the corresponding NRP indexes. The greatest differences - almost 6 units - occur in the period 1919-23:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Paper} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
NRP index \\
of output per -
\end{tabular}} & \multicolumn{2}{|l|}{Relatives of tonnage per -} \\
\hline & \[
\begin{aligned}
& \text { Wage } \\
& \text { earner }
\end{aligned}
\] & Manhour & Wage earner & Manhour \\
\hline 1919 & 65.5 & 59.6 & 60.9 & 55.4 \\
\hline 1820 & 65.4 & 63.2 & 80.5 & 58.5 \\
\hline 1921 & 62.3 & 64.5 & 57.4 & 59.4 \\
\hline 1922 & 77.6 & 77.0 & 72.0 & 71.4 \\
\hline 1923 & 79.7 & 83.2 & 74.4 & 77.8 \\
\hline
\end{tabular}

178 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{[cor.] \(\begin{aligned} & \\ & \\ & \text { Year }\end{aligned}\)} & \multicolumn{4}{|c|}{Paper} \\
\hline & \multicolumn{2}{|l|}{NRP index of output per -} & \multicolumn{2}{|l|}{Relatives of tonnage per -} \\
\hline & \[
\begin{aligned}
& \text { Wage } \\
& \text { earner }
\end{aligned}
\] & Manhour & \[
\begin{aligned}
& \text { Wage } \\
& \text { earner }
\end{aligned}
\] & Manhour \\
\hline 1924 & 79.7 & 85.5 & 76.1 & 81.6 \\
\hline 1925 & 87.1 & 91.0 & 85.2 & 89.0 \\
\hline 1926 & 89.7 & 91.5 & 87.9 & 89.7 \\
\hline 1927 & 94.5 & 97.0 & 92.7 & 95.1 \\
\hline 1928 & 98.9 & 100.9 & 98.0 & 99.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 94.6 & 98.3 & 94.8 & 98.4 \\
\hline 1931 & 100.1 & 113.6 & 100.6 & 114.3 \\
\hline 1932 & 92.5 & 112.9 & 83.3 & 113.8 \\
\hline 1933 & 97.0 & 116.5 & 98.1 & 117.9 \\
\hline 1934 & 83.7 & 111.8 & 85.4 & 114.0 \\
\hline 1935 & 92.4 & 116.1 & 95.3 & 119.7 \\
\hline 1936 & 100.2 & 117.8 & 103.5 & 121.6 \\
\hline
\end{tabular}

The relatives of the foregoing ratios for pulp differ from the corresponding NRP indexes by less than 2 unit in most years and always by less than 3:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Pulp} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
NRP index \\
of output per -
\end{tabular}} & \multicolumn{2}{|l|}{Relatives of tonnage per -} \\
\hline & Wage earner & Manhour & Wage earner & Manhour \\
\hline 1919 & 76.0 & 64.6 & 77.0 & 65.4 \\
\hline 1920 & 73.1 & 84.5 & 73.4 & 64.8 \\
\hline 1821 & 67.1 & 61.9 & 68.0 & 62.8 \\
\hline 1922 & 79.5 & 68.6 & 80.0 & 69.0 \\
\hline 1923 & 77.8 & 68.9 & 78.2 & 69.3 \\
\hline 1924 & 77.8 & 72.8 & 78.9 & 73.9 \\
\hline 1925 & 79.4 & 74.6 & 80.6 & 75.6 \\
\hline 1926 & 85.6 & 80.7 & 86.8 & 81.8 \\
\hline 1927 & 87.6 & 85.5 & 88.4 & 86.2 \\
\hline 1928 & 95.0 & 94.3 & 95.7 & 94.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 100.2 & 102.8 & 99.8 & 102.4 \\
\hline 1931 & 109.7 & 121.2 & 110.2 & 121.7 \\
\hline 1932 & 102.8 & 119.1 & 103.4 & 119.8 \\
\hline 1933 & 108.9 & 121.3 & 108.8 & 121.1 \\
\hline 1934 & 98.2 & 121.9 & 97.7 & 121.4 \\
\hline 1935 & 107.5 & 125.9 & 106.0 & 124.1 \\
\hline 1936 & 123.0 & 134.8 & 120.6 & 132.2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { Produc- } \\
& \text { tion } \\
& \text { (employ- } \\
& \text { ment } \\
& \text { weights) }
\end{aligned}
\] & Employment & Output per wage earner & ```
Produc-
 tion
(manmhour
weights)
``` & Man-hours & Output per manhour \\
\hline 1919 & 59.8 & 88.8 & 67.3 & 59.7 & 98.9 & 60.4 \\
\hline 1920 & 68.5 & 102.6 & 66.8 & 68.5 & 107.9 & 63. 5 \\
\hline 1821 & 51.9 & B2. 2 & 63.1 & 52.0 & 81.1 & 64.1 \\
\hline 1922 & 68. 7 & 85.6 & 77.9 & 68.8 & 88.7 & 75.3 \\
\hline 1923 & 74.8 & 84.2 & 79.4 & 74.8 & 93.2 & 80.3 \\
\hline 1924 & 72.8 & 91.7 & 79.4 & 72.8 & 87.8 & 82.9 \\
\hline 1925 & 82.7 & 98.7 & 85.5 & 82.7 & 84.4 & 87.6 \\
\hline 1926 & 88. 7 & 99.7 & 88.0 & 88.7 & 99.2 & 89.4 \\
\hline 1927 & 89.7 & 98.3 & 93.1 & 89.7 & 94.8 & 94.8 \\
\hline 1828 & 93.3 & 95.0 & 98.2 & 93.3 & 93.7 & 99.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 82.4 & 90.6 & 95.7 & 92.4 & 93.3 & 99.0 \\
\hline 1931 & B5. 8 & - 84.3 & 101.8 & 85.8 & 74.6 & 115.0 \\
\hline 1932 & 72.8 & 77.1 & 94.4 & 72.7 & 63.8 & 113.9 \\
\hline 1933 & 83.0 & 83.8 & 99.0 & 83.0 & 70.7 & 117.4 \\
\hline 1934 & 83. 3 & 96. 6 & 86.2 & 83.2 & 73.4 & 113.4 \\
\hline 1935 & 94. 4 & 99.2 & 95.0 & 94.1 & 80.0 & 117.6 \\
\hline 1836 & 104.8 & 100.8 & 103.9 & 104.8 & 87.0 & 120.5 \\
\hline
\end{tabular}

Talle 56. - sumany indexas for the papen imdustay: \(1919-36\)
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Manmhours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 57.8 & 88.0 & 98.7 & 85.5 & 59.6 \\
\hline 1920 & 68.4 & 101.6 & 105.0 & 65.4 & 63.2 \\
\hline 1921 & 50.7 & 81.4 & 78.6 & 62.3 & 64.5 \\
\hline 1922 & 65.8 & 84.8 & 85.5 & 77.6 & 77.0 \\
\hline 1823 & 74.4 & 93. 3 & 89.4 & 79.7 & 83.2 \\
\hline 1924 & 72.4 & 90.8 & 84.7 & 79.7 & 85.5 \\
\hline 1925 & 83. 4 & 95.8 & 91.6 & 87.1 & 91.0 \\
\hline 1926 & 88.6 & 98.8 & 98.8 & 88.7 & 81.5 \\
\hline 1927 & 90.2 & 95.4 & 93.0 & 94.5 & 97.0 \\
\hline 1928 & 93.6 & 94.6 & 92.8 & 98.9 & 100.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 91. 8 & 97.0 & 93.4 & 94. 6 & 98.3 \\
\hline 1931 & 85.0 & 84.8 & 74.8 & 100.1 & 113.6 \\
\hline 1932 & 71.9 & 77.7 & 63.7 & 92.5 & 112.9 \\
\hline 1933 & 81.9 & 84.4 & 70.3 & 97.0 & 116.5 \\
\hline 1834 & 81.5 & 97.4 & 72.9 & 83.7 & 111.8 \\
\hline 1935 & 92.4 & 100.0 & 79.6 & 02.4 & 116.1 \\
\hline 1936 & 102.0 & 101.8 & 86.6 & 100.2 & 117.8 \\
\hline
\end{tabular}

180 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Tahle 57.- sumany INDEXES FOR THE PULP INDUSTRY: 1919-3B

\section*{58. PETROLEUM REFINING}

The Petroleum Refining industry, which emploged about 81,000 wage earners in 1929, includes establishments engaged primarily in the refining of crude petroleum by distillation and cracking processes. It does not embrace either the production of gasoline from natural gas (about 8 to 12 percent of all gasoline) or the compounding of refined or partly refined petroleum products outside petroleum refineries.

The principal products of the Petroleum Refining industry are gasoline, kerosene, fuel oil, and lubricants. The relative yields of the several products are dependent in part on the kind of crude petroleum run tostills but can be varied to a considerable degree by the use of different processes. Thus, with the displacement of the kerosene lamp by the gas and electric light and the increase in the demand for gasoline concomitant with the development of the automobile, the pattern of production has nndergone considerable change since the beginning of the century. This is shown by the percent of crude petroleum run to stills accounted lor by the principal products of the industry:
\begin{tabular}{ccccr} 
Year & \begin{tabular}{c} 
Gasoline \\
and \\
naphtha
\end{tabular} & Kerosene & \begin{tabular}{c} 
Gas oil \\
and \\
fuel oil
\end{tabular} & \begin{tabular}{c} 
Lubri- \\
cating \\
oils
\end{tabular} \\
1899 & 12.9 & 57.6 & 14.0 & 9.1 \\
1909 & 10.7 & 33.0 & 33.6 & 10.7 \\
1919 & 25.2 & 15.4 & 50.2 & 5.6 \\
1929 & 39.3 & 5.7 & 45.5 & 3.5 \\
1935 & 44.2 & 5.8 & 37.3 & 2.9
\end{tabular}

The growing market for gasoline stimulated the development of newer processes capable of producing more gasoline than is naturally contained in the crude petroleum. The introduction of cracking, which involves distillation under high pressure, made possible the formation of the lighter gasoline molecules from the heavier hydrocarbons in petroleum. In 1919 there was only 1 commercial cracking process; in 1935 the Bureau of Mines recorded 33. Between 1919 and 1936 the percentage of gasoline produced by cracking rose from 16.4 to 47.5 . A more recently developed technique, polymerization (i. e., the synthesis of lighter hydrocarbons into molecules of gasolinel, has been making rapid strides. The other common methods of petroleum refining like skimming or topping, which does not carry the distillation process tocompletion, and straight-run distillation, which con-
verts crude oil or the semicrude residues of the skimming plants into lubricants and byproducts - merely recover the amount of gasoline naturally contained in the petroleum.
The progress of automotive engineering has provided a stimulus for the improvement of the quality of gasoline. It is estimated that between 1925 and 1936 the average octane rating increased from 55 to 71 .

\section*{Praductian}

The index of production, which is continuous for the period 1919-36, is a series of relatives of the total volume of crude petroleum refined. This series was constructed from Bureau of Mines data by subtracting the estimated volume of shortage from the number of barrels of crude petroleum run to stills. \({ }^{1}\) To maintain internal comparability of the shortage series, an adjustment was made to exclude some still gas burned at refineries in the years 1925-30. No adjustment was possible for the years 1919-24, but the error is probably*negligible since still gas became important only with the extensive introduction of cracking units in 1925; no adjustment was required for 1931-36, for which years the total output of still gas was reported separately. The quantities of still gas to be deducted from shortage in the years 1925-30 were estimated on the basis of the percentage of all still gas burned which was included in shortage in 1930; and the quantity included in shortage in this year was assumed to be the difference between the total burned (considered equal to total production) and reported production. \({ }^{2}\)

This series for crude petroleum refined is tantamount to an unweighted index of the total volume of finished products. The joint nature of many of the processes and the high proportion of maintenance labor (about 50 percent) precluded the construction of an index with satisfactory labor-requirement weights. \({ }^{3}\) That

\footnotetext{
\(1^{1}\) The basic statistics are published in Petroleum Refining Statistics: 1930, Minerals Yearbook: 1936, and Kinerals Yearbook: 1938.
 sumption at Refineries in 1931 (R. I. 3198); and those necessary to estimete the volume of still gas included in shortage in 1930, from Nineral Resources of the United States: 1831, Part II. Still gas burned. reported in cubic reet, was convertea to oll equivalents in barrels by use of a factor ( \(1 \mathrm{bbl}=\) 3,989 cu. It. derived from statistics for 1931 in terms of both units pubilshed in Ninerals Yearbook: 1936.
3 Available labor statistics (e. g. those in the mimeographed BLS release datea Dec. 1935, Changes in Average Wage Rates per four and Average Pull- ilme Hours per Week in 29 Important Occupations in the Refinery Branch of the Oil Industry, 1929-34) were not adequate for even rough estimates of the labor imputable to the major products of the industry. Unit-value weights are mos. [continued]
}
an inder with such weights might differ considerably from the NRP series is apparent from the differences in movement of the chief products of the industry:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multirow[b]{3}{*}{NRP production index} & \multicolumn{4}{|r|}{Relatives of production of -} \\
\hline & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Gasoline \({ }^{4}\) Kerosene}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Gas oil } \\
& \text { and } \\
& \text { fuel oil }
\end{aligned}
\]} & \multirow[b]{2}{*}{Lubricants} \\
\hline & & & & & \\
\hline 1919 & 35.5 & 23.5 & 99.7 & 40.5 & 58.7 \\
\hline 1920 & 42.7 & 29.1 & 98.7 & 47.0 & 72.6 \\
\hline 1921 & 43.6 & 30.9 & 82.8 & 51.3 & 60.8 \\
\hline 1922 & 49.6 & 37.1 & 98.2 & 56.8 & 67.8 \\
\hline 1923 & 57.8 & 44.9 & 100.0 & 84.0 & 76.0 \\
\hline 1924 & 64.1 & 51.6 & 107.3 & 71.4 & 80.0 \\
\hline 1925 & 74.4 & 61.7 & 106.7 & 81.3 & 90.4 \\
\hline 1926 & 78.4 & 70.7 & 110.4 & 81.3 & 94.0 \\
\hline 1927 & 68.4 & 76.8 & 100.3 & 87.6 & 92.3 \\
\hline 1928 & 92.5 & 87.9 & 106.1 & 95.2 & 100.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 94.1 & 100.1 & 88.0 & 83.0 & 99.5 \\
\hline 1931 & 90.0 & 102.0 & 75.9 & 75.1 & 77.7 \\
\hline 1932 & 82.2 & 94.3 & 78.4 & 65.7 & 65.3 \\
\hline 1933 & 86.8 & 96.8 & 87.6 & 70.5 & 69.2 \\
\hline 1934 & 90.4 & 100.0 & 96.3 & 74.7 & 76.8 \\
\hline 1935 & 98.1 & 109.8 & 99.8 & 80.2 & 81.1 \\
\hline 1936 & 108.9 & 121.2 & 100.3 & 92.2 & 90.0 \\
\hline \multicolumn{6}{|l|}{laymat and Man-haria} \\
\hline
\end{tabular}

The index of employment was derived from Census wage-earner statistics for the odd-numbered years \(1919-35\) and rendered continuous for the period \(1923-36\) by means of the BLS index. No satisfactory employment data were available for 1920 and 1922.

The man-hours index was constructed from the index of employment and another for average weekly hours. The lat ter series is based on actual weekly hours computed for the odd-numbered years 1929-35 Irom Census statistics for man-hours and employment \({ }^{5}\) and on figures

\footnotetext{
8 [continued]
probably not proportional to unit labor requirements since the ratio of wages to vaiue of output for the industryss a whole is very small (4 to 7 percent) and the relative prices of the individual products are determined largeiy by market conditions. Another possible weighting system = derived byapportioning the total labor equally among the yields of the several products Is also unsatisfactory since, in addition to common treatment, the several products undergo separste processing.
A relatively small amount of natural gasoline blended is exciuded in all yesrs.
SThe hours for \(192 \theta\) and 1981 Fere computed from unpublished data supplied by the Census; those for 1933 , frow Censes of Mamufactures: 1833 , Man-hour statistics for 82 selected Industries"; and those for 1935, from Censoss of Manufactures: 1035 . Man-hour gtatistics for 59 Selected Industries. The 1931 sample inciuded 85 percent of the total number of establishments In the industry; the sample for each of the other years accounted for 97 percent of the total number of wage earners employed.
}

\section*{184 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY}
for other years obtained by interpolation and extrapolation of these actual hours. Thus Census prevailing hours for 1919, 1921, 1923, and 1929 were used to estimate actual hours for the first 3 of these years; BLS actual hours for 1932-36 were used to derive the hours for the even-numbered years of this period; Pennsylvania data for 1929-31 \({ }^{\circ}\) provided the basis for the 1930 estimate; and in the absence of data for 1924-28, hours for these years were obtained by straight-line interpolation.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 35.5 & 73.1 & 71.9 & 48.8 & 49.4 \\
\hline 1920 & 42.7 & n. 3. & n. . & - & - \\
\hline 1921 & 43.6 & 78.4 & 77.5 & 55.6 & 56.3 \\
\hline 1922 & 49.8 & n.a. & n. a. & - & - \\
\hline 1923 & 57.8 & 82.8 & 80.8 & 69.8 & 71.4 \\
\hline 1924 & 84.1 & 77.3 & 75.8 & 82.9 & 84.6 \\
\hline 1925 & 74.4 & 81.1 & 79.8 & 91.7 & 93.2 \\
\hline 1926 & 78.4 & 88.1 & 88.0 & 88.0 & 89.1 \\
\hline 1827 & 83.4 & B8. 4 & 87.7 & 94.3 & 85.1 \\
\hline 1928 & 92.5 & 84.2 & 83.9 & 109.8 & 110.3 \\
\hline 1829 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 94.1 & 100.4 & 98.3 & 93.7 & 95.7 \\
\hline 1931 & 90.0 & 85.4 & 77.1 & 105.4 & 116.7 \\
\hline 1932 & 82.2 & 79.3 & 68.3 & 103.7 & 124.0 \\
\hline 1933 & 88.8 & 85.7 & 65.0 & 101.3 & 133.5 \\
\hline 1934 & 90.4 & 98.2 & 88.8 & 84.0 & 135.8 \\
\hline 1835 & 98. 1 & 98.0 & 68.4 & 102.2 & 147.7 \\
\hline 1936 & 108.9 & 97.3 & 68.9 & 111.8 & 158.1 \\
\hline
\end{tabular}
\({ }^{6}\) Average weekly hours for Pennsylvania were computed from employment and man-hours series published in the Nonthly Bulletin of the Pennsylvania Dedartment of Labor and Industry. The coverage of the sample ranged from 6 to 9 percent of the total number of wage earners in the industry.

\section*{53. PLANINB-MLLL PRDDUCTS}

This industry, which employed over 90,000 wage earners in 1929, embraces "independent" planing mills, i. e., mills not operated in conjunction with sawnills. (Those which are attached to sawmills are classified in the Lumber and Timber Products industry. The principal products of this industry are dressed lumber, sash, doors, window and door frames, interior woodwork, and molding.

\section*{Praderifea}

The index of production for the odd-numbered years 1925-35 was derived from Census quantity statistics for 4 products, which account for about 40 percent of the total value of planing-mill products made in the industry: Dressed lumber, doors, sash, and window and door frames. The 4 series were weighted by their respective unit values in 1929 and combined in an aggregative index.

For the years 1925-29 only the production within the industry is reported, but in the later years the output of establishments classified in other industries lexcept Lumber and Timber Products) is also included. Such production constitutes only about 1 percent of the total. More serious is the possible impairment of internal comparability of the quantity statistics as a result of the lack of uniformity in reporting throughout the period. \({ }^{1}\)

The production index constructed from Census quantity statistics was extrapolated for the years 1919, 1921, and 1923 by means of a value series deflated by a price index. The value series, which was obtained from Census data, includes planing-mill products made in the industry and receipts for custom planing. \({ }^{2}\) The price index was constructed from BLS wholesale-price quotations for 12 kinds of lumber for \(1919-25\) and 16 kinds for the remaining years. In combining these prices in an aggregative index, use was made of BLS weights which represent the average production of each species in 1927 and 1929 as reported by the Census. \({ }^{3}\)

\footnotetext{
1According to the Census, some of the manufacturers, inciuding several of the more important ones, falled to sudply data in regard to the principal classes of planing-mili products manufactured. This necessitated in some cases the maxing of estimstes and in others the inciusion of the total output of the establishment in question in the item 'Miscellaneous miliwork."
\({ }^{2}\) For the odd-numbered jears \(1919-27\) secondary products were excluded on the basis of the percentage (4.5) which their value comprised of the total value of the industry's output in 1929.
\(\mathrm{B}_{\text {Three }}\) sets of weighting pactors are employed by BLS for these kinds of lumber during different periods, but these reveal ilttle change in relative magnitude.
The price indez is defective in at least 2 respects: (i) most of the series are for rough lumber; and (2) the welghts refer, not to specific grades or to the amount of each produced in the industry, but to the total production of rough lumber of each Eind.
}

The deflated-value series and the index derived from Census quantity statistics compare as follows in common years:
\begin{tabular}{ccc} 
Year & \begin{tabular}{c} 
NRP production \\
index (based \\
on, weighted \\
quantities)
\end{tabular} & \begin{tabular}{c} 
Index of \\
deflated \\
value
\end{tabular} \\
1925 & 123.8 & \\
1927 & 97.4 & 121.8 \\
1929 & 100.0 & 108.4 \\
1931 & 48.7 & 100.0 \\
1933 & 29.6 & 57.9 \\
1935 & 45.2 & 29.7 \\
& & 40.4
\end{tabular}

\section*{Emploxmant and Men-houra}

The employment index, which conforms to Census trend, is based on the BLS series for the years 1923-36. Census data were used for 1919 and 1921; the figures for 1920 and 1922-are based on the NICB employment index.

The index of man-hours was computed from the employment index and an annual series for average actual weekly hours, which includes an estimate for 1919 from Census data, NICB figures for the years 1920-32, and BLS hours for 1933-36. The estimate for 1919 was obtained by applying to the Census prevailing-hours figure for that year the average of the ratios of NICB actual to Census prevailing hours for 1921 and 1923.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{- Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 77.1 & 86.5 & 105.7 & 79.8 & 72.9 \\
\hline 1920 & n.a. & 107.9 & 115.0 & - & - \\
\hline 1921 & 92.4 & 88.8 & 80. B & 108.7 & 101.8 \\
\hline 1922 & n. a. & 108.1 & 115.4 & - & - \\
\hline 1823 & 108.0 & 114. 3 & 124.4 & 94.5 & 86.8 \\
\hline 1924 & n. a. & 116.8 & 125.6 & - & - \\
\hline 1925 & 123.8 & 123.5 & 133.3 & 100.2 & 82. 9 \\
\hline 1928 & n.a. & 121.4 & 128.1 & - & - \\
\hline 1927 & 87.4 & 107.2 & 112.3 & 80.9 & 86.7 \\
\hline 1928 & n. a. & 102.5 & 107.4 & - & - \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & n. a. & 76.1 & 73.7 & - & - \\
\hline 1831 & 48.7 & 80.4 & 53.5 & 80.6 & 81.0 \\
\hline 1832 & n.a. & 41.4 & 33.2 & - & - \\
\hline 1933 & 29.6 & 39.2 & 31.1 & 75.5 & 95.2 \\
\hline 1934 & n. a. & 44.0 & 93. 8 & - & - \\
\hline 1835 & 45.2 & 53.5 & 46.4 & 84.5 & 87.4 \\
\hline 1938 & n. a. & 83.1 & 89.9 & - & - \\
\hline
\end{tabular}

\section*{60. BAYON}

The Rayon industry, which employed over 39,000 wage earners in 1929, manufactures rayon yarn and, in addition, staple fibre, transparent sheets, sausage casings, and cellulose caps and bands. It has been classified by the Census as a separate industry since 1925, before which year it had been included in the plastics subdivision of the Chemicals industry.

The 3 processes now used for making rayon in the United States viscose, cellulose acetate, and cuprammonium - were all developed in Europe. A fourth, nitrocellulose, which was discontinued in 1934, had been patented half a century earlier in France, where it had been introduced commercially in 1891. The newest process, cellulose acetate, had made such rapid strides since its introduction at the end of the war that by 1935 it contributed 22 percent of the total domestic output of ragon yarn. In the same year the viscose and cuprammonium processes accounted for 75 and 3 percent, respectively.
The growth of rayon production has been phenomenal. Since the beginning of rayon manufacture in the United States in 1911, the output of yarn has increased from 363 thousand pounds to over 312 million, while world production has advanced from less than 19 million to over a billion.

\section*{Paduction}

The index of production, which is continuous from 1919 to 1937, is based upon statistics supplied by the Census and by the Textile Economic Bureau in its publication, Rayon Organon. It was constructed for the odd-numbered years \(1923-35\) by extending relatives of the total poundage of rayon yarns for \(1923-29\) by means of an index of 4 groups of products with 1929 unit-value weights: Yarns finer than 125 denier, yarns of 125 to 150 denier, yarns heavier than 150 denier, and rayon staple fibre. \({ }^{1}\) The total poundage of rayon yarns was provided by the Census of Manufactures for 1923-27 and by Rayon Organon for 1929. The statistics for the first 3 products of the weighted index were also obtained from the

\footnotetext{
\({ }^{1}\) The welghted and unweighted production indexes compare as follows in common years:
\begin{tabular}{ccc} 
Year & Weighted & Unweighted \\
1929 & 100.0 & 100.0 \\
1931 & 130.7 & 124.8 \\
1933 & 190.5 & 175.9 \\
1935 & 222.8 & 212.2
\end{tabular}
}
former source; those for the fourth, from the latter. \({ }^{2}\) Since the Census reports sales rather than production for 1929, the Rayon Organon figure for total production was used instead for that year; the Census figures for the 3 types of yarn were accordingly raised by the ratio of the 2 totals. 3

The series for the odd-numbered years 1923-35 was then completed for the period \(1919-37\) by means of an index which was constructed from statistics available in Rayon Organon. The latter was derived by splicing relatives of the total poundage of yarn for 1919-27 to a weighted index of 4 products: Yarns finer than 113 denier, yarns of 113 to 162 denier, yarns heavier than 162 denier, and rayon staple fibre. 4 Although the Rayon Organon classification of yarns is not identical with that of the Census, the degree of correspondence warranted the use of 1929 Census unit values as weights. The interpolating medium is similar to the basic series for the odd-numbered years 2923-35:
\begin{tabular}{ccc} 
Year & \begin{tabular}{c} 
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c} 
Interpolating \\
production \\
index
\end{tabular} \\
1923 & 30.0 & \\
1925 & 42.8 & 28.3 \\
1927 & 62.2 & 61.4 \\
1929 & 100.0 & 100.0 \\
1931 & 130.7 & 129.0 \\
1933 & 190.5 & 188.4 \\
1935 & 222.8 & 221.3
\end{tabular}

As the industry developed, products other than rayon yarn and staple fibre increased in relative importance. Thus the items included in the NRP production index accounted for practically all reported value in 1925 but for only 80 percent by 1935:
\begin{tabular}{cc} 
Year & \begin{tabular}{c} 
Percent of total \\
value of products
\end{tabular} \\
& 99.9 \\
1925 & 96.9 \\
1927 & 94.4 \\
1929 & 85.0 \\
1931 & 82.9 \\
1933 & 79.7
\end{tabular}

\footnotetext{
2The weight for staple flore is the price for a specific type, \(1 \downarrow 1 \mathrm{n}\). \(1 \pm\) denier no.n
\(3_{\text {The }}\) q quantity series for total yarns are in close accord; even in 1928 the difference was only 4 percent. In all other years since 1927 Rayon Organon has adjusted its figures to the Census level.
\({ }^{4}\) Rayon-staple-fibre production was not redorted for 1927. In 1928 it amounted to onif 185,000 pounds in contrast with \(20,100,000\) pounds in 1937.
}

An adjustment for excluded products, although desirable, could have been made only for these few years on the assumption that their ragon-quantity equivalent is indicated by the ratio of their value to the total. Such a procedure, however, did not appear to be justifiable in view of the precipitous decline in the price of rayon yarn. 5 Hence the NRP indexes of production and productivity should be regarded as conservative statements of the phenomenal increases which took place during this period.

It is interesting to note that a measure of production which agrees closely with the NRP index in all bnt 1 of the odd-numbered years 1919-35 may be obtained by deflating an index of the total value of rayon yarn by a series of price relatives for only 1 grade of an important type: \({ }^{6}\)
\begin{tabular}{ccc} 
Year & \begin{tabular}{c} 
NRP \\
production \\
index
\end{tabular} & \begin{tabular}{c} 
Deflated- \\
Value index
\end{tabular} \\
1919 & 7.1 & 6.9 \\
1921 & 12.8 & 12.0 \\
1923 & 30.0 & 18.7 \\
1925 & 42.8 & 38.1 \\
1927 & 62.2 & 63.4 \\
1929 & 100.0 & 100.0 \\
1931 & 130.7 & 132.8 \\
1933 & 190.5 & 187.9 \\
1935 & 222.8 & 227.4
\end{tabular}

\section*{Emplaymat and Man-haris}

The index of wage-earner employment, which extends from 1923 to 1937, is based on Census statistics for the odd-numbered years 1923-35 and on the BLS employment index, which is available for the entire period except 1926 and 1928 . The relatives for these a jears were interpolated by means of an index \({ }^{7}\) which closely resembles the BLS series.

\footnotetext{
Gfor example, the \(118 t\) price per pound of 150 -denier yarn (first grade, minimus illament, yiscose process, f. O. b., N. Y.), as quoted by the largest Fiscose producer, decilned steadily between 1925 and 1935 from \(\$ 2.05\) to \$0.57. (Payon Organow, "Bpecial supplement, = January 21. 1938, pp. 24-5.)
The grade ofyarn to which the price relatives refer is describedinftn. 5. The Census value statistics had to be adjusted in 1019 and 1021 to exclude other plestics with which rayon wes grouped.
This index was constructed in the following manner: First, Census value figures for total production were completed by means of a continuous Rayon Organon series; second, the interpolated (straight-inine) census-year ratios of wages to value (which are not only high - about 20 percent - but stable) were spplied to the intercensal-year values to complete the series for wages: third, annual wages were divided by NICB hourly earnings for the chemicals industry to obtain estimates of man-hours; and finaliy, relatives of these man-hours were divided by the inder of average actual hours described sub-man-hours
}

The man-hours index was derived from the employment series and an annual index of average actual weekly hours. The latter includes BLS statistics for 1932-37, Census (prevailing) hours for 1929, \({ }^{8}\) an estimate for 1930 based on a BLS study, \({ }^{9}\) and figures for 1931 and 1923-29 obtained by means of the continuous NICB index for the Chemicals industry. \({ }^{10}\)

Table so. - Smeany INDEXES POR TME RAYOM IMDUSTAY: \(1919-37\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\((1929=100)\)} \\
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment.} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|c|}{output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 919 & 7.1 & n. \(\mathbf{B}_{\text {a }}\) & n. \({ }^{\text {a }}\) & & \\
\hline 1920 & 8.7 & n. \(\mathbf{a}_{\text {. }}\) & n.a. & - & - \\
\hline 1921 & 12.8 & n. \(\mathbf{B}_{\text {\% }}\) & B. \(\mathbf{a n}_{\text {a }}\) & - & - \\
\hline 1922 & 20.7 & n. \(\mathbf{a r}^{\text {a }}\) & n.a. & - & - - \\
\hline 1923 & 30.0 & 36.8 & 38.9 & E1. 5 & 77.1 \\
\hline 1924 & 30.8 & 38.7 & 40. 1 & 79.6 & 78.8 \\
\hline 1925 & 42.8 & 48.9 & 51.2 & 87.5 & 83. 6 \\
\hline 1928 & 52.1 & 48.8 & 48.4 & 107.2 & 107.6 \\
\hline 1927 & 82. 2 & - 67.4 & 86.9 & 92. 3 & 93.0 \\
\hline 1928 & 80.0 & 79.8 & 79.3 & 100.3 & 100.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 106.8 & 99.2 & 84.8 & 107.8 & 126. 1 \\
\hline 1831 & 130.7 & 99. 1 & 86.8 & 131.9 & 150.6 \\
\hline 1932 & 120.3 & 87. 8 & 77.8 & 137.0 & 154. 6 \\
\hline 1933 & 190.5 & 113. 3 & 95.1 & 168. 1 & 200.3 \\
\hline 1934 & 185.1 & 119.4 & 90.0 & 155.0 & 205.7 \\
\hline 1935 & 222.B & 129.3 & ' 99.8 & 172. 3 & 223.2 \\
\hline 1936 & 247.4 & 133.8 & 105. 2 & 184.9 & 235. 2 \\
\hline 1937 & 281.5 & 148. 3 & 118. 6 & 189.8 & 241.4 \\
\hline
\end{tabular}

\footnotetext{
A ferage preyalling hours for \(182 \theta\) were not reduced because they show almost the same relationship to actual hours in 1938 as existed between the actual hours in the chemicals industry in the same 2 years.
This estimate was made on the assumption that the ratio between the actual nours for 1830 and 1932 was the same as that indicated by sample figures for these 2 years in Wages and Hours of Labor in Rayon and other Synthetic Farn Manufacturing: 1832 (Bull. No. 587). D. 3.
\({ }^{10}\) The estimate for 193118 based on the percentage change sinown between 1931 and 1936 by NICB Ifgures for the Chemicals industry; those for 1923-29 were obtained by extrapolation. In general, the Rayon and chemicals aeries agree excedt in the depression years 1932 and 1933 , when, as might be expected. hours in the growing Rayon industry were not curtailed so much as in the Chemicals industry.
}

\section*{Ei. RUBEER PADDUCTS EROUP \\ 62. RUBEER TIAES ANB INNER TUBES \\ E3. DTMER RUBEER BDODS}

The Rubber Products group, which employed 149,000 wage earners in 1929, comprises 2 industries: (1) Rubber Tires and Inner Tubes and (2) Other Rubber Goods. The former, which employed 65,000 wage earners in 1929, embraces the manufacture of all tires and tubes in establishments included in the group; the latter embraces the manufacture of other rubber products within the group - such as boots, shoes, belting, fabrics, and hose.

A few companies account for most of the production of tires and tubes. In 1935 tire sales of the 4 largest companies constituted about 90 percent of the total by value. Most other rubber goods, except boots and shoes, are manufactured principally in small establishments.

The automobile casing, the most important product of the group, has been improved considerably since the end of the war. Between 1921 and 1933 its average weight increased from 16.4 to 24.2 pounds; between 1921 and 1930 its estimated average life increased from 1.2 to 2.5 years.

\section*{Prodecitan}

Rubber Products Group.- The NRP group indexes were constructed for the years \(1921,1923,1925\), and \(\mathbf{1 9 2 7}\) - 35 by combining relatives for the 2 component industries in harmonic means, one with changing employment weights and the other with changing man-hour weights. The former was used in determining output per wage earner and the latter in determining output per man-hour.

The NRP composite indexes are almost identical, except in 1921 and 1923, with arithmetic means of the relatives for the 2 industries weighted by 1929 employment and man-hours. The indexes with fixed weights for these 2 years are higher than those with changing weights because the relatives of production and productivity for the Other Rubber Goods industry are considerably higher than those for Rubber Tires and Tubes.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{4}{|c|}{Index of production with -} \\
\hline & \multicolumn{2}{|l|}{Changing weights} & \multicolumn{2}{|l|}{Fixed weights (1929)} \\
\hline & Employment \({ }^{\text {' }}\) & Man-hours & Employment & Man-hours \\
\hline 1921 & 45.8 & 47.6 & 52.3 & 54.4 \\
\hline 1922 & - & - & - & - \\
\hline 1923 & 70.1 & 72.2 & 74.2 & 78.4 \\
\hline 1924 & - & - & - & - \\
\hline 1925 & 79.7 & 80.4 & 80.2 & 80.8 \\
\hline 1926 & - & - & - & - \\
\hline 1927 & 93.8 & 94.9 & 94.6 & 95.7 \\
\hline 1928 & 103.5 & 103.6 & 103.5 & 103.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 80.4 & 80.6 & 80.3 & 80.6 \\
\hline 1931 & 68. 1 & 67.8 & 88.4 & 68.1 \\
\hline 1932 & 61.7 & 61.6 & 81.7 & 61.7 \\
\hline 1933 & 70.7 & 70.7 & 70.7 & 70.7 \\
\hline 1934 & 74.4 & 74.3 & 74.6 & 74.5 \\
\hline 1935 & 78.4 & 78.3 & 78.8 & 78.6 \\
\hline
\end{tabular}

Rubber Tires and Inner Tubes.- The index for this industry is an arithmetic mean of 4 series of relatives: (1) The poundage of automobile casings, (2) the poundage of automobile inner tubes, (3) the number of motorcycle and bicycle casings and inner tubes, and (4) the number of solid and cushion tires. 1 These 4 groups of products, which together represent 99 percent of the value of the industry's output, were weighted by estimated man-hours in 1929.

Weight was used as the measure of production for automobile tires and inner tubes in an endeavor to take account of the variation in labor requirements resulting from differences in tire sizes. 2 The 2 continuous poundage series were derived by multiplying the number of casings and inner tubes (obtained by completing Census figures for odd-numbered years of the period 1921-36 by means of annual statistics compiled by the Rubber

\footnotetext{
\({ }^{1}\) since the quantities ror only the first 2 groups of products could be determined in 1936, the index for this year is based on the 1935 relationship between chese 2 and all 4.
\(2_{\text {According to B. Stern (Labor Productivity in the Automobile Tire Industry, }}\) Ind BLS Buli. No. 585, p. 6), the larger-size tires require more labor time.
The extent of variation in the same year and over the period in average weight of casings is apparent from the foliowing tabulation for 8 plants which produce about half the total number (Bull, No. 685, DD. 13-4):
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Plant 1 & Plant 2 & Plant 3 & Plant 4 & P1ant 5 & Plant 6 \\
\hline 1919 & n.a. & n.8. & 11.4 & 20.8 & n.a. & n.a. \\
\hline 1821 & n, a. & n. \({ }^{\text {a }}\) & 11.9 & 21.7 & 18.9 & n. \(\mathbf{B .}^{\text {a }}\) \\
\hline 1923 & 17.1 & 12.3 & 11.6 & 21.8 & 15.6 & 18.6 \\
\hline 1925 & 17.4 & 14.0 & 12.3 & 21.0 & 17.1 & 21.0 \\
\hline 1927 & 19.8 & 14.4 & 13.3 & 24.5 & 18.4 & 28.0 \\
\hline 1929 & 22.3 & 17.0 & 14.8 & 27.2 & 20.1 & 35.6 \\
\hline 1831 & 21.8 & 18.4 & 16.1 & 30.6 & 22.8 & 32.8 \\
\hline
\end{tabular}

Manufacturers Association \({ }^{3}\) ) by annual series of average poundage per casing and per tube, respectively las estimated from a BLS report \({ }^{4}\) and from an article published in Rubber Age \({ }^{5}\) ). The average poundage of automobile casings was ascertained for 1922-31 from the combined weight of rubber, chemical ingredients, and fabrics required in the production of casings in 6 plants canvassed by BLS; \({ }^{4}\) for 1921, from an average for 3 plants raised to the 6-plant level; \({ }^{6}\) and for 1932-33, from Rubber Age. The average poundage of inner tubes was also determined for 1922-31 from the BLS study (s plants); for 1920 and 1933, fromRubber Age; and for 1921 and 2932, by straight-line interpolation.

A different method was employed in determining total poundage of casings and of inner tubes for 1934-36. First, their combined weight in these years was estimated by means of a consumption index for crude and reclaimed rubber and tire fabrics, \({ }^{7}\) which corresponded in movement with the total weight of casing-and-tube production in earlier years; then the combined weight was apportioned between casings and inner tubes in accordance with the 1933 distribution.

The production of motorcycle and bicycle casings and tubes and of solid and cushion tires may be satisfactorily measured by their number since they vary \(1 i t t 1 e\) in size and weight. \({ }^{8}\) The number of motorcycle and bicycle casings and tubes was supplied by the Census for odd-numbered years and estimated for others by straight-

\footnotetext{
3The 2 RMA serles, which are puolished in Survey of Current Birsiness, cover about 80 percent of the total number of casings and tubes produced, except during the period January 1934-July 1935, when they represent 97 percent. These series, which had been raised to Census levels by Bureau of Foreign and These series, which had been raised to census levels by Bureau of Foreign and
Domestic Commerce through 1933, wereadjusted by NRP for the remaining years.
\({ }^{4}\) Bull. No. 585 (see t tn. 2). The plants included in the survey produced 45-59 percent and 45-86 percent of the total number of casings and inner tubes, respectively.
 figures were supplied oy a large tire manufacturer whose estimates for 1925, 1930, and 1981 agreed with those published by BLS.
\({ }^{\text {Bince }}\) the averages for 3 and \(\theta\) plants move similarly in other years, the percentage change indicated by the former between 1921 and 1922 was applied to the latter.
7 This inder 18 s series of relatives of the cotal welght of the 3 materials, as estimeted from Census and RMA statistics. Figures for crude-rubber consumption reported by the former were supplemented by comparable RMA data representing about 80 percent of the industry; the continuous series was then used to complete census statistics for reclaimed-rubber consumption. The RMA rubber-tire-fabrics consumption series was adjusted to the Census level oy application of the ratios employed in the completion of the Census crude-rubber series.
These 3 items comprised 82.7 percent of the total weight of the most important raw materials consumed in the manufacture of automobile casings and tubes in 1829, as reported by the Census. Chemicals represenced the remaining 17.3 percent.

In any event, these 2 classes of products are of minor importance. Together, they accounted for a maximum of 0.1 percent of the total value of products included in the production index in 1923; by 1935 they represented only 1.6 percent.
}
line interpolation. The Census also provided adequate statistics for solid and cushion tires for the odd-numbered years 1921-29; \({ }^{8}\) these were supplemented by an RMA series for the remaining years throught 1935 .

In determining the weighting factors for the 4 types of tires and tubes, the adjusted aggregate number of man-hours \({ }^{10}\) required in their production in 1929 was first divided into 3 parts in accordance with the proportions of total value accounted for in that year by (1) automobile casings and inner tubes, (2) motorcycle and bicycle casings and tubes, and (3) solid and cushion tires.

The next step was to apportion man-hours between automobile casings and inner tubes. "Direct" man-hours for each were first estimated by dividing the total weight of casings and tubes produced in 1929 by the pounds of each produced per man-hour of "direct" labor as indicated in the BLS report referred to above. \({ }^{11}\) Finally, "indirect" man-hours of labor (the difference between "direct" man-hours and all man-hours for both casings and tubes) were allocated to casings and tubes on the basis of their respective total poundage, 12 and "direct" and "indirect" man-hours were summed to obtain the weights.

Other Rubber Goods.- The index for Other Rubber Goods, available for 1921, 1923, 1925, and 1927-35, is based on Census statistics for alternate years of the period 1921-35 and on RMA statistics for the intercensal years. A weighted arithmetic mean of relatives for 8 products in the odd-numbered years 1921-27 was spliced to a similar index of 25 products for census years 1927-35. The weights for the several products are their relative values in \(1929 .{ }^{13}\)

\footnotetext{
\({ }^{8}\) Census statistics for solid and cushion tires after 1929 were not used since they are not comparable with those for earlier years.
\({ }^{10}\) See discussion or Employment and Man-hours.
\({ }^{11}\) See rins. 2 and 4.
12 From a consideration of the nature of the manufacturing processes and incidental activities, it appears thet poundage is the most suitable basis for the allocation of indirect" labor."
\({ }^{13}\) The 8 products for 1921-27, ranging from 45 to 54 percent of the total value of the industry's output are: Rubber boots, canvas footwear, reclalmed rubber, heels, soles, auto and carriage tabrics, shoes and overshoes, and rubberized fabrics.
of the 25 products for which statistics are avaliable during 1927-35 (these accounted for from 48 to 64 percent of total value), 8 are the same as the first \(\theta 11 s t e d\) in the preceding paragraph; 3 (lumbermen's shoes and overshoes, arctics and gatters, and other shoes and overshoes) result from a more detailed classification of the seventh listed above; and 3 more (raincoat fab-
rics, hospita sheeting, and other rubobrized fabrics) result from a more detailed ciassification of the elghth and last-named product above. The 13 additional products are: Transmission belting; all other rubber beiting; rubber packing; washers, gaskets, and valves; rudoer and friction tape; water bottles and fountain syringes; rubber bands; rubber gloves; rubber cement; rubber flooring; rubber thread; jar rings; and bathing caps.
}

Interpolation for the even-numbered years \(1928-34\) was accomplished by means of an annual 8-product index based on Census and RMA data. Relatives of the 8 quantity series were combined in an arithmetic mean with 1929 value weights. \({ }^{14}\)

\section*{Emplaymant and Man-hanra}

Three sets of employment and man-hours indexes were constructed 1 for the group as a whole and 2 others which correspond to the production of tires and tubes and of other rubber goods, respectively.

The first step was to determine the number of wage earners in the whole group and in the Rubber Tires and Inner Tubes industry as defined by the Census. This was done by completing Census statistics for 1921-35 by the use of BLS indexes for 1923-36, the NICB group employment index for 1921-23, and Ohio State tire-and-tube figures for the same 3 years, \({ }^{15}\)

The second step was to derive man-hours series for the group and the Rubber Tires and Inner Tubes industry by averaging the quotients of pay rolls and average hourly earnings and the products of the employment series and average actual hours per man per year (i.e., weekly hours times 52). The necessary pay-roll series were obtained in the same manner as employment for 1921 and for 1923-36; the 1922 estimates are based on the NICB group index. The average-weekly-hours and hourly-earnings figures were derived by splicing NICB series \({ }^{18}\) for 1921-31 to corresponding BLS series for subsequent years. \({ }^{17}\)

\footnotetext{
\(14_{\text {RMA }}\) series were used to supplement the census statistics for 1927-36 for rubber heels and rubber soles and for 1929 -35 for tennis footwear and reclaimec rubeer. Because of a change tin census ciassification, reciatmedruboer production for 1935 was estimated oy multiplication of the RMA rigure for that year oy the average of the ratios for 1929, 1931, and 1933 of census to rma data. An rma production serles for waterproof footwear was used for the period \(1829-36\) to complete the guantities reported by the census for each of the 4 constituents - Doots, lumbermenis shoes and overshoes, arctics and galters, and other shoes and overshoes. Estimates for 1928 , except for rubber heele and soles, were made oy stralght-11ne interpolation.
Togetner, the e products account for from 28 to 44 percent of total value of the industryis output. The 5 RMA interpolating series ranged in coverage from \(57-75\) percent of the census quantities for rubder soles to 88-100 percent for reclasmed rubder.
\({ }^{15}\) The series for ohio, which represents more than half the number of wage earners engaged in the manufacture of tires and tubes, is shown in pluctwation in gaployment in Ohio, 1914 to 1828 (BLS Bull. No. 563), DD. 262, 294, 330.
\({ }^{16}\) nics hours and earnings (as well as employment and pay rolls) refer only to the Rubber Products group, Dut in view of their ciose agreement in 1932-38 with bls statistics for the RuDDer tires and Inner tubes industry, they wore conesdered applicable to this industry in the earlier years.
\({ }^{17}\) The bls group sertes was derived by combination with proper weignts of pubilshed staristics for 3 subgroups: Rubber Tires and Inner Tubes, Rubber Boots and Enoes, and other Rubber coods.
}

The thirdstep was to determine employment and man-hours for the Other Rubber Goods industry by subtraction. Finally, employment and man-hours in the group were redistributed so as to correspond exactly with the total production of tires and tubes and of other rubber goods. This was accomplished (see appended note) on the assumptions that the (Census) RubberTires and Tubes and the Other Rubber Goods industries:
(1) Have the same value output per wage earner and per man-hour for (a) tires and tubes and for (b) other rubber goods.
(2) Together produce all tires and tubes and all other rubber goods.
(3) Produce only these 2 classes of products.

The validity of the first assumption cannot be tested; the last 2 appear to be justifiable since secondary products constitute less than 2 percent of the group's value of output and the value of rubber goods produced outside the group is also less than 2 percent of the total.

Note on tha Method of Sagragating Emplayment and Man-houra
for Tifan and Tubea and for Dther Rubber Goodat
Let \(X=\) employment or man-hours required for total production of tires and tubes,
\(Y=\) employment or man-hours required for total production of other rubber goods,
\(T_{t}=\) value of tires and tubes produced in the Tires and Tubes industry,
\(T_{r}=\) value of tires and tubes produced in the Other Rubber Goods industry,
\(T=\) total value of tires and tubes,
\(R_{t}=\) value of other rubber goods made in the Tires and Tubes industry,
\(R_{r}=\) value of other rubber goods made in the industry of the same name,
\(H_{t}=\) total employment or man-hours worked in the Tires and Tubes industry,
\(M_{r}=\) total employment orman-hours worked in the Other Rubber Goods industry,

\footnotetext{
\({ }^{18}\) This method was used for census years. For intercensal years \(\boldsymbol{N}_{t}\) was used to interdolate \(X\). Since Fr is known only in 1923 and 1925 , it had to de estimated in other years on the assumption of the average relationshid of Ir to 2 in these 2 jears.
}
employment orman-hours consumed in production of tires and tubes in the Tires and Tubes industry, and
employment or man-hours consumed in production of tires and tubes in the Other Rubber Goods industry.
The assumptions are:
\[
\begin{aligned}
& \text { 1. (a) } \frac{T_{t}}{m_{t}}=\frac{T_{r}}{m_{r}} \\
& \text { (b) } \frac{R_{r}}{H_{r}-m_{r}}=\frac{R_{t}}{M_{t}-m_{t}} \\
& \text { 2. (a) } T=T_{t}+T_{r} \\
& \text { (b) X}=m_{t}+m_{r} \\
& \text { 3. } Y=M_{t}+M_{r}-X
\end{aligned}
\]

Solving equations \(1(a)\) and \(1(b)\) for \(m_{t}\) and \(m_{r}\) and using 2 , we obtain:
\[
X=\frac{T\left(H_{t} R_{T}-H_{T} R_{t}\right)}{\left(T_{t} R_{T}-T_{\tau} R_{t}\right)}
\]

Table El.- sumany indexes fan the nubien phoducts industay ghoup: igei-3g
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Tear & \[
\begin{aligned}
& \text { Produc- } \\
& \text { tion } \\
& \text { (employ- } \\
& \text { ment } \\
& \text { melehtsi }
\end{aligned}
\] & Employment & Output per wage earner & Produetion (man-hour welghts) & Man-hours & Output per man= hour \\
\hline 1921 & 45.8 & 09.2 & 08.2 & 47.6 & 88.0 & 70.0 \\
\hline 1028 & n. \({ }^{\text {a }}\) & 88.5 & - & 7. \({ }^{\text {a }}\) & 01.0 & - \\
\hline 1923 & 70.1 & 82.4 & 75.8 & 72.2 & 82.5 & 78.1 \\
\hline 1924 & n.a. & 82.7 & - & n. \(\mathrm{Ba}_{\text {. }}\) & B2. 5 & - \\
\hline 102s & 79.7 & 95.1 & 83.8 & 80.4 & 03.9 & 85.6 \\
\hline 1928 & H.发。 & 84.7 & - & n.a. & 94.1 & - \\
\hline 1027 & 83.9 & 85.2 & 98.5 & 04.9 & 98. 1 & 98.8 \\
\hline 2008 & 103. 5 & 100.1 & 103.4 & 103.6 & 103.3 & 100.3 \\
\hline 1920 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1030 & 80.4 & 77.4 & 103.9 & 80.6 & 72.7 & 110.9 \\
\hline 3931 & 68. 2 & 68.8 & 202.3 & 87.8 & 65.8 & 121.5 \\
\hline 1932 & 81.7 & 60.9 & 101.3 & 81.6 & 44.8 & 137.5 \\
\hline 1038 & 70.7 & 71.3 & 99.2 & 70.7 & 52.3 & 135.8 \\
\hline 1984 & 74.4 & 78.7 & 93.4 & 74.3 & 54.7 & 135.8 \\
\hline 2038 & 78.4 & 77.0 & 101.8 & 78.3 & 55.8 & 140.3 \\
\hline 1038 & n. \(\mathrm{B}_{4}\) & 81.7 & - & n. \(\mathrm{ac}^{\text {a }}\) & 84.3 & - \\
\hline
\end{tabular}

Tabla \(62 .-\) sumary indexes fon the muger tiges and inner tuges industay: 1921-35
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1921 & 32.1 & 88.5 & 89.0 & 46.9 & 48.5 \\
\hline 1922 & 48.8 & 88.4 & 92.1 & 55.2 & 53.0 \\
\hline 1923 & 53.6 & 89.1 & 89.7 & 60.2 & 59.8 \\
\hline 1924 & 58.7 & B5. 8 & 85.4 & 68.3 & 68.7 \\
\hline 1825 & 74.3 & 97.2 & 94.9 & 76.4 & 78.3 \\
\hline 1926 & 78.7 & 95.7 & 94.8 & 80.1 & 81.1 \\
\hline 1927 & 84.4 & 94.3 & 94.8 & 89.5 & 89.0 \\
\hline 1928 & 103.2 & 100.2 & 103.6 & 103.0 & 99.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 78.2 & 72.8 & 69.5 & 107.7 & 112.5 \\
\hline 1931 & 71.7 & 60.3 & 52.1 & 118.9 & 137.6 \\
\hline 1932 & 82.4 & 53.7 & 40.1 & 116.2 & 155.6 \\
\hline 1933 & 70.8 & 80.6 & 43.5 & 116.8 & 162.8 \\
\hline 1934 & 78.1 & 85.8 & 45.9 & 115.5 & 165.8 \\
\hline 1935 & 80.8 & 59.4 & 43.6 & 136.0 & 185.3 \\
\hline 1936 & 91.3 & 82.2 & 50.1 & 146.8 & 182.2 \\
\hline
\end{tabular}

Table 63. - SUMMARY INDEXES FOR THE OTHER GUBBER BODDS INDUSTRY: 1921-36
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{5}{|c|}{\((1923=100)\)} \\
\hline & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1921 & 87.9 & 89. B & 87.5 & 97.3 & 100.6 \\
\hline 1922 & n. a. & 90.4 & 80.4 & - & - \\
\hline 1923 & 90.2 & 95.0 & 94.2 & 94.9 & 95.8 \\
\hline 1924 & n. a. & 80.2 & 80.8 & - & - \\
\hline 1925 & 84.7 & 93.5 & 93.3 & 90.6 & 90.8 \\
\hline 1928 & n. a. & 93.9 & 93.8 & - & - \\
\hline 1827 & 102.5 & 95.9 & 96.9 & 108.9 & 105.6 \\
\hline 1928 & 103.8 & 100.0 & 103.1 & 103.8 & 100.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1830 & 82.0 & 81.1 & 74.7 & 101.1 & 109.8 \\
\hline 1931 & 85.9 & 71.4 & 50.1 & 92.3 & 113.4 \\
\hline 1932 & 61.2 & 68.4 & 47.7 & 92.2 & 128.3 \\
\hline 1933 & 70.7 & 79.5 & 57.7 & 88. 9 & 122.5 \\
\hline 1834 & 73.5 & 80.3 & 80.0 & 81.4 & 122.5 \\
\hline 1935 & 77.3 & 80.6 & 63.2 & 85.3 & 122.3 \\
\hline 1838 & n. a. & 98.8 & 72.8 & - & - \\
\hline
\end{tabular}

\section*{64. sILK and rayon godis}

This industry, which employed 130,000 wage earners in 1929 , includes 2 groups of establishments: (3) Those engaged primarily in the manufacture of silk and rayon fabrics and other finished silk and rayon products and (2) those engaged primarily in the manufacture of silk yarn (known as organzine, tram, and hard or crepe twistl; in throwing, twisting, or otherwise changing rayon into different forms from those in which it was purchased; and in the dressing of warps. The first group of establishments is much larger than the second. Establishments which manufacture rayon yarn, knit fabrics, hosiery, and other knit goods made of silk and rayon are classified in other industries.

In 1935 the Bureau of the Census divided the Silk and Rayon Goods industry into 2 separate industries: Silk Manufactures and Rayon Manufactures. Together, however, these 2 embrace the same types of establishments as were included in the Silk and Rayon Goods industry in earlier years.

The increasing consumption of rayon in the industry since 1929 is illustrated bythe production statistics (inmillions of square yards) for all-silk and all-rayon broad goods:
\begin{tabular}{ccc} 
Year & All-silk & All-rayon \\
1929 & 424 & 66 \\
1931 & 386 & 109 \\
1933 & 201 & 273 \\
1935 & 239 & 732
\end{tabular}

\section*{Pradualian}

The production index for the odd-numbered years of the period 1919-35 is composed of 2 segments derived from Census quantity statistics \({ }^{1}\) which were linked in 1929. The first, extending from 1919 to 1929 , is an aggregative index with 1929 unit-value weights

\footnotetext{
\({ }^{1}\) The census reports both the number of square yards and the number of pounds for each product. In this study the square yard was preferred as the unit of production since value per square yard is probably more closely related to labor requirements than is value per pound, which is largely dependent upon such factors as the type of yarn used and the amount of weighting mater rial added. (Weighting is a drocess by which silk is made heavier through the addition of vegetabie materisis or an iron or tin sait.)
}
of the output of the following 5 types of broad goods: \({ }^{2}\) All-silk, \({ }^{3}\) mixed, \({ }^{3}\) velvets, plushes, and upholsteries and tapestries. The second segment, also an aggregative index, includes 9 series which represent a more detailed classification of the 5 types of broad goods in the first segment: \(\mathbf{4}^{\prime \prime}\)
```

All-silk, including upholsteries}\mp@subsup{}{}{5
All-rayon and velvets, other than all-silk
and silk-and-rayon mixed}\mp@subsup{}{}{6
Silk-and-rayon mixed }\mp@subsup{}{}{3
Silk-and-cotton mixed and other mixed silk
or rayon }\mp@subsup{}{}{3
Rayon-and-cotton mixed }\mp@subsup{}{}{8
Silk-and-rayon mixed velvets
Plushes and all-silk velvets
Upholsteries other than all-silk
Tapestries

```

Although no wage-earner data are available for the individual products included in the second segment, it was possible, through the use of 1935 Census wage-earner and production statistics for the 2 branches of the industry (Silk Manufactures and Rayon Manufactures), to compute weights which reflect, to some extent, the differences in labor requirements for silk and for rayon goods. In computing these weights, the wage earners employed in each of the industry branches were first allocated to the several products of the same branch in accordance with the percentages which their values constituted of the total value of the primary products of the branch. \({ }^{7}\) The total number of wage earners assigned to each product (some are made in both branches) was then divided by the corresponding production (number of square yards) in 1935.

\footnotetext{
\({ }^{2}\) The quantities for 1919, reported in innear yards, were converted into square yards on the assumption that the average width for each fabric was the same as in 1921, when both the number of square yards and of linear yards were reported. The average wldth changed little between 1921 and 1923:
\begin{tabular}{lcc}
\multicolumn{1}{c}{ Fabric } & Average width (1nches) \\
& 1921 & 1923 \\
All-silk broad goods & 37.2 & 38.4 \\
Mixed broad goods & 34.0 & 36.9 \\
Velvets & 20.1 & 19.2 \\
Plushes & 35.5 & 39.7 \\
Upholsteries and tapestries & 47.2 & 48.9
\end{tabular}
}
\(3_{0}\) ther than veivets, plushes, upholsterles, and tapestries.
\({ }^{4}\) The 1936 statistics for some products are not strictly comparable with those for earlier years, but the error introduced into the production index is probably negligible. For example, in 1935 all-silk tapestries and draperies (relatively unimportant items) are included with all-silk broad goods, and silk-andmayon mixedvelvets inciude a smallquantity of silk-and-cotton mixed velvets with silk warp.
\({ }^{5}\) other than velvets, plushes, and tapestries.
\({ }^{6}\) Other than plushes, tapestries, and upholsteries.
7All-silk brosd goods (Including upholsteries) comprised over 75 percent of the value of products of the Silk Manufactures industry; sll-rayon broad goods and velvets accounted for over 80 dercent of the value of the output of Rayon Manufactures.

This index of production, which includes from 80 to 90 percent of the value of all silk and rayon goods, \({ }^{8}\) was interpolated for the even-numbered years 1920-32 by the use of an index of raw-silk consumption in the industry. The inadequacy of available data did not permit the construction of index numbers for 1934 and \(1936 .{ }^{\circ}\)

The first step in constructing the raw-silk consumption index was the derivation of an annal series for raw-silk consumption in all the textile industries. \({ }^{10}\) Census statistics were used for 1919 and the odd-numbered years 1925-35, \({ }^{11}\) except 1933 ; for remaining years, estimates were made by use of a series for silk deliveries to mills, which is published in the Survey of Current Business. \({ }^{12}\) Second, the ratios of raw-silk consumption in the Silk and Rayon Goods industry tototal consumption in the textile industries were computed from Census data for 1919 and the oddnumbered years 1925-35, except 1933, and estimated by straightline interpolation for remaining years. Finally, multiplication of the total consumption in all textile industries by this series of ratios yielded the annual consumption of raw silk in the Silk and Rayon Goods industry. This annual consumption series was then converted into relatives.

\footnotetext{
\({ }^{8}\) Silk yarns and threads were not included in the production index (nor considered in the computation of coverage) since the quantities reported by the Census, which represent only the amounts produced for sale and on commission, probabiy do not comprise a constant proportion from year to year of either total production or sales to estabilshments outside the industry for the following reasons: (1) Many of the sales are made to establishments within the industry, (2) some of the yarns and threads made on commission may be sold, and (3) the yarns and threads made on own machinery from owned materials for use in further production may represent a varying proportion of the total output.
The detalled census quantity statistics are not strictiy comparable over the period 1910-36, but the errors introduced are belleved to be negligible. The statistics for \(1919-27\) refer to silk and rayon goods made only in the silk and Rayon 000ds industry; chose for 1929, 1931, and 1933 include the secondary production of establishments classifiedin other industries except certain products made in the Cotton Goods industry; and those for 1935 also include such products of the cotton Goods industry.
\({ }^{0}\) The silk-consumption index does not reflect the large increase in rayon-goods production after 1933. A rayon-consumption index, derived from census and Rayon organon statistics, shows a trend significantiy different from that of the NRP production indez for census years. It was not possible to devise satisfactory weights for combining the silk- and rayon-consumption indexes Into a composite resembling the NRP production index.
\({ }^{10}\) Cotton Ooods, Cotton 5 mall Wares, Felt Goods, xnit goods, Lace coods, silk and Rayon Goods, and Woolen and Worsted Goods.
\({ }^{11}\) Consumption in the Woolen and Worsted goods industry for 1931 was estimated on the basis of the relationship between consumption in this industry and consumption in the fint Goods and Silkand Rayon Goods industries combined In 1929 and 1935.
12 Deliveries tomills, complled monthiyby the commodity Exchange (in earlier gears, by the National Federation of Textiles and the silk Association of America), represent the difference between imports and the change in the United states stock position during the month.
}

\section*{Employment and Man-hours}

The employment index was constructed for the odd-numbered years from Census wage-earner statistics and completed for the period 1919-36 by the use of the BLS index.

The NRP index understates employment for 1935 (and hence for 1934 and 1936 alsol as a consequence of the exclusion of the small number of wage earners indyeing departments operated at the same location as the mill lexcept those engaged in dyeing yarn for use in the same establishment) from the number of wage earners reported by the Census for 1935 . Wage-earner and man-hour productivity in 1935 are consequently somewhat overstated by the NRP indexes.

The production and employment indexes are not strictly comparable since some wage earners in the Silk and Rayon Goods industry are engaged in the manufacture of secondary products not included in the production index and, after 1929, the production index includes some products of wage earners in other industries. In both cases, however, the production involved constitutes less than 3 percent of the total value of the industry's output.

The man-hours index was derived from the employment index and another for average weekly hours, which is based on adjusted Census prevailing hours for 1919, NICB actual hours for 1920-31, and BLS actual hours for the remaining years. Prevailing hours for 1919, computed froma Census frequency distribution, were reduced to actual hours through the use of the average of the ratios of NICB actual to Census prevailing hours in 1921 and 1923.

(1828-100)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1918 & 57.0 & 97.2 & 92.5 & 59.6 & 62.6 \\
\hline 1920 & 36.9 & 89.0 & 87.3 & 37.0 & 42.3 \\
\hline 1921 & 51.2 & 93.0 & 87.3 & 55.1 & 58.6 \\
\hline 1022 & 69.0 & 01.1 & 87.1 & 69.2 & 72.3 \\
\hline 1023 & 07.5 & 08.0 & 93.4 & 70.3 & 72.3 \\
\hline 1024 & 64.7 & 91.3 & 86.7 & 70.9 & 74.8 \\
\hline 1025 & 82.3 & 101.6 & 98.7 & 81.0 & 82.5 \\
\hline 1926 & 80.2 & 09.2 & 93.8 & 80.8 & 85.5 \\
\hline 1027 & 85.8 & 97.8 & 93.8 & 87.8 & 81.5 \\
\hline 1928 & 91.3 & 87.4 & 88.4 & 93.7 & 94.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 90.5 & 91.6 & 88.0 & 98.8 & 105.2 \\
\hline 1931 & 88.8 & 83.7 & 77.6 & 108.2 & 114.6 \\
\hline 1938 & 84.1 & 71.3 & 57.8 & 118.0 & 145.5 \\
\hline 1035 & 71.5 & 84.6 & 65.6 & 84.5 & 109.0 \\
\hline 1934 & n.a. & 91.9 & 64.2 & - & - \\
\hline 1035 & 107.8 & 98.5 & 70.3 & 111.7 & 153.3 \\
\hline 1038 & n.a. & 86.9 & 65.7 & - & - \\
\hline
\end{tabular}

\section*{65. Slaughterina and meat packing}

The Slaughtering and Meat Packing industry as here defined embraces 2 Census industries: "Meat Packing, Wholesale" and "Sausage, Meat Puddings, Headcheese, Etc., and Sausage Casings." The former, which employed 122,500 wage earners in 1929, includes establishments engaged in wholesale slaughtering and meat packing and abattoirs engaged wholly or chiefly in custom slaughtering; it does not include establishments which slaughter for the retail trade unless they also wholesale considerable quantities of meat. The latter, which employed almost 5,900 wage earners in 1929, comprises establishments engaged primarily in the manufacture of the products from which it derives its name. The 2 Census industries were combined to minimize the effect of changes in the classification of establishments which may result from changes in the nature of their primary output. The Slaughtering and Meat Packing industry usually ranks first among manufacturing industries with respect to value of output.

\section*{Production}

The index of production was computed from Census quantity statistics for the odd-numbered years of the period 1919-36 and completed for the even-numbered years by means of Department of Agriculture data. The index for the odd-numbered years comprises 3 segments, each of which, in turn, is an aggregative index with 1929. unit values as weights. \({ }^{1}\) The first segment, for 1919 and 1921, includes the first 19 of the following 21 products; the second, for 1921-27, includes the first 20 ; and the third, for 1927-35, includes all 21:

\footnotetext{
\({ }^{1}\) An attempt was made to derive labor-requirement weights from man-hours stat1stics reported in BLS Bul1. Nos. 262, 294, 373, 421, 472, 535 , and 576 for estabilshments employing 30 to 50 percent of the wage earners in the industry. The results were not satisfactory, however, for various reasons: (1) There are meny joint products, and some of these may be obtained at more than one stage; (2) the man-hours are reported by department with no basis for allocation to, or distribution among, the various products except the number and description or operations in Bull. No. 472, DD. 131-83; (3) the estabilshments surveyed in the seversi years (1917 and the odd-numbered years 1921-31) vary in number and represent plants at different levels of integration; (4) shrinkage, losses, and waste fromstage to stage could not be estimated; and (5) the man-hours assignable to certain classes of products, such as canned meats, could not be segregated according to animai. Although the weights derived from these statistics (for 9 classes of products) areadmittedly crude, their use in conjunction with census quantities yields an index which resembles the NRP index in all years but 1918.
}
\begin{tabular}{|c|c|}
\hline Fresh meat Beef & Sausage (not canned), meat puddings, headcheese, etc. \\
\hline Veal & Sausage casings \\
\hline Mutton and lamb & Lard \\
\hline Pork & Stearin (oleo and other) \\
\hline Edible organs, tripe, etc. \({ }^{2}\) & Hides \\
\hline Other fresh meat \({ }^{2}\) & Cattle hides, cured and uncured \\
\hline Cured meat & Calfskins, cured and uncured \\
\hline Beef, pickled and other cured & Sheep and lamb pelts, cured and uncured \\
\hline Pork, smoked; and hams, & Wool \\
\hline cooked \({ }^{\text {8 }}\) & Hair, hog and other \\
\hline Pork, not smoked \({ }^{3}\) & Oleo oil and stock \\
\hline Canned meat and sausage \({ }^{4}\) & Pickled sheep and lamb skins \\
\hline
\end{tabular}

Since Slaughtering and Meat Packing embraces 2 Census industries ("Meat Packing, Wholesale" and "Sausage, Meat Puddings, Headcheese, Etc., and Sausage Casings"), the quantities of "sausage (not canned), meat puddings, headcheese, etc." and "sausage casings" made in both were included in the NRP index. \({ }^{5}\) These 2 products account for almost all of the output of the "Sausage, Meat Puddings, Headcheese, Etc., and Sausage Casings" industry. \({ }^{6}\)

The series included in the NRP index for the odd-numbered years account for well over 90 percent of the total value of the production of Slaughtering and Meat Packing despite the exclusion of some of the primary output, which is reported in terms of

Regdible organs, tripe, etc. \({ }^{\text {a }}\) and other fresh meat", reported in combination from 1919 to 1923, were separated in accordance with their 1925 proportions.
\(\mathbf{3}_{\text {Includes }}\) epickled and dry-cured" and "dry-salted" pork. The statistics for -Dork, smoked; and hams, cooked" are not strictly comparable throughout the period since they do not include all cooked hams for the years prior to 1927.
4Does not include a small amount or canned sausagen made in the census industry Sausage, Meat Puddings, Headcheese, Etc., and Sausage Casings. In 1031 and 1935, however, the output of canned sausage" in this census industry accounted for less than 1 percent of the amount of canned meat and sausage" included in the inder; no statistics were available for other years.
The amounts of the 2 products made in the sausage. Meat Puddings, Headcheese, Etc., and Sausage Casings industry were reported by the census for 1929, 1931, and 1935. (The quantity figures for 1935 had to be adjusted to include shell additional amounts reported in comolnation by value only. The combined value was distributed in the same proportion as the values reported separately; the value for each was then deflated by a unit value computed from the separate value and quantity figures.) The quantities for the remaining years were eatimated (interpolated and extrapolated) by means of series of deflated values. The necessary value series include census figures for 1919 , 1921, 1927, 1929, 1931, and 1935 (those for 1935 were adjusted in the same manner as the reported quantities) and figures for 1923, 1925, and 1933 interpolated by mesns of a serles for the value of products normally belonging to this Census industry (estimated for 1933 by means of statistics for the total value of chis industry's output). The unit values used in defiating the 2 value series were computed rom quantity and value data for the same products made in Mest Packing, Wholessle.
Because of the nature of the reported g tatistics, the estimated quantities of gausage (not canned), meat puddings, headcheese, etc. made in this Census industrymay include smali amounts of canned sausage", which is also a primary product of the industry. This fact is of no consequence, however, since canned sausage accounted for less than 0.2 percent of the output (by weight) of all sausage, meat puddings, headcheese, etc. made in the industry in both 1931 and 1985. (See tins. and 5.)
undistributed value only. \({ }^{7}\) It should be noted, however, that coverage is somewhat overstated by percentages computed from Census value figures since some duplication results from intra-industry sales (presumably, for further processing only, not for resalel. \({ }^{8}\)

The index for the odd-numbered years was completed by means of another computed from the following 11 annual series, which were derived from Department of Agriculture data and adjusted to the levels of the quantities for corresponding Census products:
\begin{tabular}{|c|c|}
\hline Department of Agriculture series \({ }^{9}\) & Corresponding Census product \\
\hline \begin{tabular}{l}
Dressed weight of cattle \\
slaughtered under Federal inspection
\end{tabular} & Beef, fresh \\
\hline \begin{tabular}{l}
Dressed weight of calves \\
slaughtered under Federal \\
inspection
\end{tabular} & Veal, fresh \\
\hline Dressed welght of sheep and lambs slaughtered under Federal inspection & Mutton and lamb, fresh \\
\hline ```
Dressed weight of hogs
    slaughtered under Federal.
    inspection
``` & Pork, fresh \\
\hline Pork placed in cure under Federal inspection & Pork, smoked; and hams, cooked Pork, not smoked \\
\hline Canned meat prepared under Federal inspection & Canned meat and sausage \\
\hline Sausage prepared under Federal inspection & Sausage (not canned), meat puddings, headcheese, etc. \\
\hline Number of calves slaughtered under Federal inspection & Calfskins, cured and uncured \\
\hline
\end{tabular}

\footnotetext{
\({ }^{7}\) Many of the secondary products of "Sausage, Meat Puddings, Headcheese, Etc., and Sausage Casings" are primary products of Slaughtering and Meat Packing (principaliy smoked, cured, and pickled meats, according to a communication from the Bureau of the Census).
\(8_{A}\) rough estimate made from Census value statistics for meat purchased (dressed weight) in 1829 indicates that the duplication may be as high as 11 percent of the total value. Another estimate based on Census quantity statistics for 1929 (viz, the ratio of dressed weight of purchased meat to the total weight of specified meat products) indicates about the same degree of duplication.
\({ }^{9}\) The basic statistics for these series were obtained from the following pubifications of the Department of Agriculture: Narket Reviewand Statistical Sumaries of Livestoch, Kaats and Wool (mimeo., June 15, 1938); Livestoch, Meats, and Hool Market Statistics and Related Data: 1830 and same for 1937; Veather, Crops, and Narhets (Monthiy Supplement, Feb. 4, 1922); Yearbook of Agriculturs: 10st; and Agricultural stetistics: 1037.
The data lor the fifth, aizth, and seventh series, which refer to years ending June 30 , could not be satisfactorily adjusted to refer to calendar years, but the consequent effect upon the interpolating index is belleved to be negligible.
}
```

    Department of Agriculture
    series}\mp@subsup{}{}{\circ
    Lard rendered from hogs
Lard
slaughtered under Federal
inspection
Edible organs, tripe, etc. Edible organs, tripe, etc.
lestimated from the live
weight of cattle, calves,
sheep and lambs, and hogs
and the yield of edible
offal per pound live
weight of each of these
animals)
Cattle hides (estimated from Cattle hides, cured and uncured
the total live weight of
cattle and the yield of
hides per pound live
weight)

```

The 11 adjusted series were combined in an aggregative index for the whole period 1919-36 except 1920; the 1929 unit values for the corresponding Census products were used as weights. Since figures for 1919 and 1920 were lacking for the last 3 of the 11 series, the index number for 1920 was obtained from a weighted aggregate for only 8 raised to the level of the aggregates for all 11 for 1919 and 1921.10

\section*{Employment aad Man-hours}

The employment index was constructed for the odd-numbered years 1919-35 from the combined wage-earners figures for the 2 Census industries; it was completed for the even-numbered years 1920-36 by means of the BLS index which corresponds to "Meat Packing, Wholesale", the larger of the 2 . The man-hours index was derived from the employment index and another for average actual weekly hours. The weekly-hours series, which refers to "Meat Packing, Wholesale", was computed from: (i) Census prevailing hours for 1919 reduced to the level of actual hours lby means of the average of the ratios of NICB actual to Census prevailing hours for 1921 and 2923), (2) the NICB series for 1920-32, (3) Census statistics

\footnotetext{
10 For 1919, as for all other odd-numbered years, the Department of Agriculture series were rendered identical with the corresponding Census ifgures; hence, the weighted aggregate for 11 series could be constructed for 1919 even though Department of Agriculture ilgures were lacking for 3 of them. The third and fourth aeries could be considered complete for the same reason although no figures were avallable for 1819.
}
for man-hours and employment for 1933 and 1935, \({ }^{11}\) and (4) BLS hours for 1934 and 1936 adjusted to the level of the Census hours for 1933 and 1935.

Table if. - gumany indexes pon the glaughterima and meat packina INDUSTRY: 1919-38
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 91.1 & 128.1 & 122.6 & 71.1 & 74.3 \\
\hline 1920 & 84.3 & 112.1 & 107.4 & 75.2 & 78.5 \\
\hline 1921 & 79.3 & 94.2 & 87.3 & 84.2 & 90.8 \\
\hline 1922 & 88.8 & 82.6 & 90.0 & 93.7 & 98.4 \\
\hline 1923 & 98.3 & 107.0 & 105.1 & 91.9 & 93.5 \\
\hline 1924 & 100.8 & 102. B & 100.5 & 98.1 & 100.3 \\
\hline 1825 & 84.2 & 97.6 & 95.6 & 98.5 & 98.5 \\
\hline 1926 & 98.7 & 95.8 & 94.3 & 100.9 & 102.5 \\
\hline 1827 & 98.6 & 96. 6 & 95.8 & 100.0 & 100.8 \\
\hline 1828 & 98.5 & 97.7 & 97.7 & 100.8 & 100.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 97.2 & 95. 8 & 84.7 & 101. 5 & 102. 0 \\
\hline 1831 & 95.8 & 88. 0 & 85.2 & 108.9 & 112.4 \\
\hline 1932 & 80.9 & 84.7 & 80.7 & 107.3 & 112.6 \\
\hline 1933 & 08. 6 & 94. 2 & 82.0 & 102.5 & 117.8 \\
\hline 1934 & 98.4 & 116.2 & 94.4 & 84.7 & 104.2 \\
\hline 1935 & 82.7 & 98.0 & 78.2 & 84.4 & 105.8 \\
\hline 1938 & 82.6 & 103.2 & 86. 1 & 89.7 & 107. 5 \\
\hline
\end{tabular}

11Average weekly hours were computed ror 1933 from Census of Manufactures: 1933, "Men hour Statistics for 32 Selected Industries" and for 1936 from Census of Nanufactures: 1835, "Man-hour Statistics for 59 Selected Industries." The sample for 1933 included 88 percent of all wage earners in the meat Packing, Wholesale" industry; the sample for 1935, 81 percent.
```

65. taBacco phoducts group
66. CIGARS
67. CIBARETTES
68. ChENINB AND SMOKINS tobacco and snupf
```

The Tobacco Products group, which employed over 116,000 wage earners in 1929, consists of the following 3 industries whose principal raw material is leaf tobacco: (1) Cigars, (2) Cigarettes, and (3) Chewing and Smoking Tobacco and Snuff.

The Cigarettes industry has been growing rapidly, while the Cigars and the Chewing and Smoking Tobacco and Suuff industries have been declining. This shift in relative importance is reflected in the changing percentage distribution of the quantities of leaf tobacco consumed in the manufacture of the 3 types of products:
\begin{tabular}{cccc}
& Percent of leaf tobacco used for - \\
\cline { 4 - 5 } & Cigars & Clgarettes \begin{tabular}{c}
Chewing and \\
smoking \\
tobacco \\
and snuff
\end{tabular} \\
1919 & 23.4 & 25.7 & 50.9 \\
1929 & 19.1 & 43.5 & 37.4 \\
1936 & 14.9 & 53.5 & 31.6
\end{tabular}

The decline of the Cigars industrysince the war is attributable primarily tothe increasing preference for the cigarette. Nevertheless, this industry still employed about three-fourths of the wage earners in the group in 1929 and almost two-thirds in 1936. The significance of the price factor in the competition between cigars and cigarettes is reflected in the fact that cigars manufactured to retail at 5 cents or less increased in both absolute and relative number (from 26 to 86 percent of the total between 1919 and 1936), while the production of cigars in all higher price classes declined.

The introduction in 1919 of a long-filler-cigar machine, capable of turning out in 1 continuous series of operations a finished cigar comparable in quality to the hand-made product, marked the beginning of a long period of mechanization. Although in 1919 only 3 percent of the total number of cigars were made by machine, by 1936 over 50 percent were machine-made. During this period the average size of the cigar plant increased. Between 1921 and 1934 the number of cigars produced by factories with an annual
production of over 500,000 cigars rose from 86.3 to 94.1 percent of the total, while the percentage accounted lor by those with an annual output of over \(40,000,000\) advanced from 15.7 to 54.3.1

The Cigarettes industry, which employed about one-eighth of the wage earners in the group in'1929, has long been highly mechanized. In 1937 the cigarette was manufactured and packed, the package sealed and stamped, and the stamp canceled by automatic machinery. Machines now in use can turn out about 600 cigarettes per minute, and equipment capable of greater speeds is being developed.

Mechanization has favored the development of large cigarette factories. From 1919 to 1936 the estimated average annual output of cigarettes per factory increased from 202 million to 1,655 million. It is estimated that in 1934,8 companies produced over 95 percent of the total number of cigarettes and that 4 of these accounted for about 85 percent.

North Carolina maintained its position as principal cigaretteproducing State throughout the period of interest. Its output rose from 53.7 percent of the total in 1919 to 63.8 percent in 1930 but receded to 53.7 percent in 1936. Since 1919 New York has declined considerably while Virginia and Kentucky have grown in importance:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|l|}{Percent of total number of cigarettes produced in -} \\
\hline & New York & Virginla & Kentucky \\
\hline 1919 & 27.9 & 11.3 & Less than 0.1 \\
\hline 1936 & 0.1 & 30.4 & 7.2 \\
\hline
\end{tabular}

In 1929 the Chewing and Smoking Tobacco and Snuff industry employed slightly more wage earners than the Cigarettes industry. Chewing tobacco, made principally from burley, is produced in a variety of forms: "Scrap", or loosely packed scrap leaves; "plug", or compressed leaves; "twist", or an intact leaf in which others have been rolled; and "fine-cut", which is similar to smoking tobacco. All of these varieties are usually "cased", i. e., treated with sweetening and flavoring agents such as

\footnotetext{
Fpor further discussion of this industry see. "Technological Changes in the Cigar Industry and Their Effects on Labor, Nonthly Labor Review, December 1931; pp. 11-7; D. Creamer and G. V. Swackhamer, Cigar Nakers - After the Lay-Off (WPA National Research Project, Report No. \(L-1\), Dec. 1937); and W. D. Evans, Effects of Nechonization in Cigar Nanufocture. (Wpa National Research project in cooperstion with the bureau of Labor statistics, U. S. Department of Labor, Report No. B-4, May 103a).
}
licorice paste, cane or maple sugar, molasses, and rum. Snuff, a minor product of the industry, is manufactured chiefly in the highly mechanized establishments of 3 companies.

\section*{Prodection}

Tobacco Products Group.- The 2 NRP group indexes of production are weighted harmonic means of the production relatives for the 3 component industries. The first, with changing employment weights, was used in determining output per wage earner, and the second, with changing man-hour weights, was used in determining output perman-hour. The harmonic mean with changing employment weights compares as follows with an arithmetic mean of relatives with fixed (1929) employment weights:
\begin{tabular}{ccc}
Year & \begin{tabular}{c}
Index of production with -
\end{tabular} \\
\cline { 3 - 3 } \begin{tabular}{c}
Changing \\
employment \\
weights
\end{tabular} & \begin{tabular}{c}
Fixed \\
employment \\
weights \\
\((1929)\)
\end{tabular} \\
1919 & 92.0 & 102.7 \\
1920 & 97.2 & 111.5 \\
1921 & 90.2 & 97.2 \\
1922 & 92.7 & 98.4 \\
1923 & 97.4 & 100.4 \\
1924 & 95.7 & 97.7 \\
1925 & 95.4 & 98.5 \\
1928 & 97.0 & 97.4 \\
1927 & 97.8 & 98.3 \\
1928 & 96.9 & 97.1 \\
1929 & 100.0 & 100.0 \\
1930 & 92.7 & 92.8 \\
1931 & 86.0 & 85.9 \\
1932 & 73.0 & 73.3 \\
1933 & 72.3 & 72.7 \\
1934 & 77.5 & 77.0 \\
1935 & 79.7 & 88.2 \\
1938 & 87.0 &
\end{tabular}

Cigars. - The production index for the period 1919-36 was derived by reducing the total annual output of large and small cigars to relatives. \({ }^{2}\) The Bureau of Internal Revenue reports the number of large and small cigars manufactured each year, \({ }^{3}\) as "compiled from

\footnotetext{
\({ }^{\text {RCigars arc }}\) classified as large or small depending on whether they weigh more or 18 ses chea 3 pounds per thousand.
Sphese ifgures are published in the Annual Report of the Comisissioner of Incernal Revenue.
}

\section*{212 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY}
statements of accounts prepared from manufacturers' inventories and monthly returns filed under the United States internal-revenue laws." It was necessary to add to this series the production of large cigars which are made in bonded warehouses under customs supervision wholly from imported tobacco \({ }^{4}\) (principally Cuban). The output of these cigars (reported monthly to the Collector of Customs by the manufacturers operating the warehouses, and published by BIR) was available for every year of the period of interest except 1919 and 1920. Estimates for these years were made on the basis of the percentage that such cigars comprised of the total manufactured in the United States in 2921.5
No account is taken in the NRP production index of differences in labor requirements for long-filler and short-filler cigars and of shifts in production between these types. Although the paucity of existing datadid not permit the construction of a satisfactory weighted index of the production of long- and short-filler cigars, it was possible, by making a number of rough estimates, to construct for comparative purposes 4 such indexes with unit-laborrequirement weights. Each of these is restricted to large cigars since nodata are available for labor requirements of small cigars. \({ }^{B}\)

In constructing the 4 indexes, the number of long-filler and short-filler cigars was first estimated from the total production of large cigars on the basis of the proportions which (i) leaf tobacco and (2) scraps, cuttings, and clippings (which are used principally for short-filler cigars) represented of the total unstemmed equivalent weight of tobacco used for large cigars. The same average weight was assumed for the 2 types of cigars. Failure to take account of the amount of leaf tobacco used for wrapper and binder leaves in short-filler cigars and in all cigars produced in bonded warehouses probably has a negligible effect upon the estimated quantities of the 2 types.

\footnotetext{
\({ }^{4}\) This practice takes advantage of the lower import duties prevailing for cigar-leaf tobacco as compared with finished cigars and also of the guarantee of the tobacco's origin provided by the stamp placed upon each boz or package of such cigars.

\({ }^{6}\) Small cigars constitute a decifing percentage of the total:
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1919 & 9.1 & 1825 & 6.4 & 1931 & 5.9 \\
\hline 1820 & 7.2 & 1926 & 5.8 & 1932 & . . . 5.9 \\
\hline 1821 & 9.0 & 1827 & 6.3 & 1933 & 4.6 \\
\hline 1922 & 8.8 & 1828 & 6.1 & 1934 & 4.6 \\
\hline 1923 & 6.7 & 1829 & 6.0 & 1935 & 3.6 \\
\hline 1924 & 7.4 & 1930 & 6.1 & 1938 & 3.3 \\
\hline
\end{tabular}

The fallure of the NRP Index to take account of differencesinlabor requirements forlarge and small cigars is of little consequence since an unweighted index of large cigars alone never differs from the NRP index by more than 3.3 percent.
}

Four unit-labor-requirement weights referring to 1935-36 were derived froma study of plant records made by the National Research Project in cooperation with the Burean of Labor Statistics:?
(1) Long-filler cigars. The unit labor requirement for this type is an average of unit labor requirements for machine-made and hand-made cigars weighted by the respective production in 1935. \({ }^{\text {B }}\) The onit labor requirement for hand-made long-filler cigars is, in turn, a weighted average of the figures reported in the NRP-BLS study for 3 retail price classes; the weights used were the percentages of total production in 1935 accounted for by the cigars in each of the 3 price classes.
(2) Short-filler cigars made on 2 -operator cigar machines.
(3) Short-filler cigars made by hand (teamwork system).
(4) Short-filler cigars bunched by machine and rolled by hand.

Since the number of short-filler cigars made by each method could not be determined, 4 different assumptions were made with respect to the weight to be applied to them; each ultimately yielded a different index:
(1) Weighted index A is based on the assumption that all shortfiller cigars are machine-made.
(2) Weighted index \(B\) is based on the assumption that all shortfiller cigars are made by hand (teamwork system).
(3) Weighted index C is based on the assumption that all shortfiller cigars are bunched by machine and rolled by hand.
(4) Weighted index \(D\) is based on the assumption that an equal quantity of short-filler cigars is made by each of the 3 methoas.
In view of the nature of these assumptions, the resemblance of the 4 indexes to the NRP index indicates that the latter, although based merely on the unweighted total number of cigars produced, may be regarded as reliable:

\footnotetext{
7productivity of Labor in the cigar kanufacturing industry. preliminary report by W. D. Evans (NRP in cooperation with BLS). June 1937. The survey, the results of which are swinarized in Sffects of Mechanization in Cigar Manefacture (WPA National Research Project in cooperation with U. S. Bur. Larefacters (MPA National Research Project in cooperation with ing. Bur. Labor statistics, Dedt. Labor, Redort No. B-4, May 1936). covered i5 cigarmanufacturing plants in Pennsylvania, Mew Jersey, and Nen Yorin in the months october. 1936. The figures shownin the reportare averagesfor these months.
© The number of machinemade cigars was estimated by pultiplying the number of -operator, automatic, long-ililer-cigar machines leased to cigar manuof toperator, automatic, long-ilier-cigar machines leased to cigar manuCompany) by the estinsted annual prodnction der machine (Monthiyhabor Reviem Decenber 1931).
As fesult of the maried shift from hand-made to machine-made cigars since 1919, the milt labor requirenent derived for long-rilier cigars on the basis of che estimated 1935 proportions or hand-made and machine-tade is lower than that for earlier jears. The consequent effect upon the 4 comparative production indexes is, however, negilgible.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[t]{2}{*}{NRP production inder} & \multicolumn{4}{|c|}{Weighted production index} \\
\hline & & A & B & C & D \\
\hline 1919 & 112.3 & 109.4 & 108.3 & 108.0 & 108.5 \\
\hline 1920 & 125.9 & 127. 2 & 123.4 & 122.5 & 124.3 \\
\hline 1921 & 106. 7 & 105.0 & 102.7 & 102. 2 & 103.2 \\
\hline 1922 & 108.1 & 105.1 & 102.6 & 102.0 & 103.2 \\
\hline 1923 & 107.8 & 108.6 & 106.1 & 105.5 & 108.7 \\
\hline 1924 & 102.8 & 101.8 & 101.0 & 100.9 & 101. 2 \\
\hline 1925 & 99.7 & 99.3 & 99.1 & 99.1 & 99.2 \\
\hline 1928 & 99.6 & 99.3 & 99.8 & 99.9 & 99.7 \\
\hline 1927 & 100.3 & 100.1 & 100.0 & 100.0 & 100.0 \\
\hline 1928 & 97.9 & 97.6 & 97.8 & 97.9 & 97.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 90.4 & 88.8 & 90.9 & 91.3 & 90.4 \\
\hline 1931 & 81.9 & 79.9 & 82.6 & 83.3 & 82.0 \\
\hline 1932 & 87.3 & 65.8 & 87.6 & 88.1 & 87.2 \\
\hline 1933 & 65.5 & 84.6 & 66.3 & 86.8 & 85.9 \\
\hline 1934 & 68.8 & 86.9 & 70.1 & 70.9 & 69.4 \\
\hline 1935 & 70.5 & 88.8 & 72.7 & 73.6 & 71.8 \\
\hline 1938 & 77.6 & 75.5 & 80.4 & 81.6 & 79.3 \\
\hline
\end{tabular}

Cigarettes. - The index of production is based on the total number of large and small cigarettes reported annually by BIR. Since large cigarettes (those which weigh more than 3 pounds per thousand) constitute a very small proportion of the total, weighting the 2 types before combination was not considered necessary.

Chewing and Smoking Tobacco and Snuff.- The production index was constructed from the total poundage of chewing and smoking tobacco and snuff reported by BIR. The 3 classes of products show dissimilar trends: \({ }^{8}\)

Index of production of -
\begin{tabular}{|c|c|c|c|c|}
\hline Year & ```
 Chewing
 and
 smoking
 tobacco
and snuff
 (NRP)
``` & Chewing tobacco & Scrap chewing and smoking tobacco \({ }^{10}\) & Snuff \\
\hline 1919 & 111.2 & 145.3 & 99.6 & 85.1 \\
\hline 1920 & 108.2 & 143.9 & 95.5 & 83.5 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{9}\) It would have been desirable co construct a weighted index of these products, but no data for their respective labor requirements were avaliable. Census value statistics, moreover, are not suitable for the construction of welghts since they are not sufficientiy detalled, include tazes, and reflect differences in lear-tobacco prices for the several products.
Pootnote 10 appears on following page.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{[con.1} & & \multicolumn{4}{|c|}{Index of production of -} \\
\hline & Year & Chewing and smoking tobacco and snuff (NRP) & Chewing tobacco & Scrap chewing and smoking tobaceo \({ }^{10}\) & Snuff \\
\hline & 1921 & 101.5 & 117.2 & 97.0 & 84.3 \\
\hline & 1822 & 110.0 & 124.9 & 106.0 & 82.7 \\
\hline & 1823 & 108.3 & 125.4 & 102.3 & 95.4 \\
\hline & 1924 & 108.7 & 116.0 & 107.6 & 94.9 \\
\hline & 1925 & 108.6 & 116.1 & 107.9 & 92.0 \\
\hline & 1926 & 107.7 & 114.0 & 107.3 & 82.9 \\
\hline & 1927 & 104.0 & 107.0 & 103.6 & 97.7 \\
\hline & 1928 & 101.3 & 103.8 & 100.7 & 98.4 \\
\hline & 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline & 1830 & 97.5 & 89.8 & 101.1 & 99.1 \\
\hline & 1931 & 97.4 & 78.8 & 108.4 & 96.8 \\
\hline & 1932 & 91.1 & 63.6 & 105.0 & 87.5 \\
\hline & 1933 & 89.7 & 62.9 & 103.0 & 87.8 \\
\hline & 1934 & 80.7 & 64.1 & 103.6 & 89.7 \\
\hline & 1935 & 89.9 & 64.1 & 102.7 & 87.8 \\
\hline & 1936 & 01.3 & 63.9 & 104.3 & 92.5 \\
\hline
\end{tabular}

\section*{Empluymat: Unadestad}

Census data were available for the number of wage earners in the Tobacco Products group and the 3 component industries for the odd-numbered years 1919-35. \({ }^{11}\) The close agreement between taxes paid by establishments in the industry group which reported to the Census and the value of internal-revenue stamps sold by BIR in 1931, 1933, and 1935 (the only years for which tax figures are published by the Census) attests the comparability of the Census employment statistics for the group as a whole with the total output of tobacco products. In the case of the Cigars

\footnotetext{
\(10^{\text {The }}\) production of scrap chewing tobacco is not shown separately prior to 1931. Since that year it has constituted about 20 percent of the combined production of scrap chewing and smoking tobacco. From 1931 to 1938 the output of scrap chewing tobacco has decreased, and since it has probably been deciining over the entire period, the increase in gmoking tobaccoalone has in resility been greater than that shown by the index for both combined.
21as derined in this section and in the one which follows (Man-hours: Unadjusted), each industry, in accordance with the usual Census practice, inciudes establishmenta which are engaged primarily in the manufacture of the products which give the industry its name. After the employment and man-hours series have been adjusted for comparability with production, however, each Industry refers to the total output, wherever manufactured, of the products which give it its name.
The Census did not pubilsh separate employment ilgures for the Cigars and Cigarettes industries in 1925. The combined total for that year was distributed in accordance with the average proportions of the components in the 2 adjacent census years.
}
industry alone, \({ }^{12}\) however, the figures of the 2 agencies agreed for 1931 and 1935, but the 1933 ratio of the value of internalrevenue stamps reported by the Census for the Cigars industry to the total value of such stamps reported by BIR for large cigars was only 0.8153 . Therefore, to render employment comparable with the total production of cigars in this year, the reported number of wage earners was divided by \(0.8153 .{ }^{13}\)

The Census employment series for the industry group was interpolated for intercensal years 1920 and 1922 through the use of a comparable BLS index of employment. BLS indexes \({ }^{14}\) were also utilized to render continuous over the period 1923-36 the employment series for the Chewing and Smoking Tobacco and Snuff industry, the Cigars industry, and the Cigars and Cigarettes indistries combined. \({ }^{15}\) Employment inthe Cigarettes industry in the intercensal years 1924-36 was determined by subtracting the estimates for the Cigars industry from the figures for the Cigars and Cigarettes industries combined. Thus wage-earner estimates were available for the 3 industries separately for the years 1919, 1921, and 1923-36. The series were completed by distributing group employment in 1920 and 1922 among the 3 component industries in accordance, respectively, with their proportions in 1921 and the average of their proportions in 1921 and \(2923 .{ }^{16}\)

\footnotetext{
\({ }^{12}\) Separate comparisons could not be made for the cigarettes and the chewing and smoking Tobacco and snuff industries because each of these produces considerable quantities of the normal products of the other: In 1933 and 1935 , however, Census and BIR quantity-production statistics for cigarettes differed by less than 1 percent.
13 The exclusion by the census of establishments with an annual production of less than \(\$ 5,000\) appears to account for only a small portion of the discrepancy, since, according to BIR data, such establishments produced less than 6 percent of the total number of cigars in 1933. The census statistics for "Cigar Manufactures"in this year were complied from replies to mailed questionnalres rather than, as in previous years, fromdata collected by a direct canvass. The consequent fallure of a large number of firms to redort accounts for the major portion of the difference in the 2 sets of figures for 1933.
14 all of the BLS emploment indexes used for interpolation were adjusted to the census trend. The attempt made by both the census and BLS to exciude employees engaged in stemming (the process of removing the hard midrib of the tobacco leaf) was not always successful. Strict internal comparability of the employment data may not therefore be preserved over the entire period 1919-36.
\({ }^{15}\) No separate BLS index was available for the cigarettes industry. an unpubilshedannual employment indez for the Cigars industry for 1923-36was obtained through the courtesy of Dr. Isador Lubin, Commissioner of Labor Statistics.
\({ }^{16}\) An examination of the production series for the 3 industries indicated that, In making the estimates for 1920, the 1921 prodortions were preferable to the average of the proportions for 1918 and 1921. The production of cigars rose in 1920 and deciined in 1921; cigarettes deciined in 1920 and rose in 1921; and chewing and smoking tobacco and snuff decilned in both years. It appeared probsble, therefore, that the ratio of Cigars to total group employment was higher in 1920 than in 1919 and 1921. Sinceit was not possibie to determine exactly how much higher that ratio should be, the 1921 proportions, which give greater importance to cigars, were used.
}

\section*{Man-herra: Unedjeatod}

Man-hours were computed for each of the 3 industries by multiplying the employment estimates by corresponding annual series of average weekly hours. The latter were pieced together from a variety of sources.

Cigars.- Census statistics for preyailing weekly bours were available for the Cigars and Cigarettes industries combined for 1919, 1921, 1923, and 1929 and for the Cigars industry alone for 1929. The latter is an unpublished figure furnished by the Bureau of the Census.) The 1929 ratio of prevailing hours for the Cigars industry to prevailing hours for the Cigars and Cigarettes industries combined was utilized to obtain prevailing hours for Cigars in the earlier census years. Estimates for the intermediate years for both the Cigars and the Cigars and Cigarettes industries combined were obtained by straight-1ine interpolation.

Actual weekly hours for the Cigars industry were available for 1929 and later years fromseveral sources. First, actual weekly hours for 1933 were computed from the Census of Hanufactures. \({ }^{17}\) Second, a study of the industry by Rossmoore, Robbins, and Co. supplied actual-weekly-hours data for 1929, 1932, and May-July, 1933. \({ }^{18}\) The ratio of Census to Rossmoore-Robbins actual hours for May-July, 1933 was used to reduce the latter for 1929 and 1932 to the Census level. Third, the Pennsylvania State Department of Labor and Industry furnished actual-hours data for 1929, 1930, and 1931; \({ }^{19}\) these were linked to the adjusted Rossmoore-Robbins figure for 1929 to obtain the estimates for 1930 and 1931. Fourth, unpublished actual weekly hours for 1935 and 1936 were secured Irom BLS. Finally, interpolation by means of weekly-hours figures for the Cigars and Cigarettes industry combined lobtained from the Census of Manufactures for 1933 and from BLS for 1934 and

17Census of Manufactures: 2833, MMan-hour statistics for 32 selected Industries. The Census survey covered 85. 8 percent of the estimated total number of wage earners in the cigars industry in 1933.
18 Rossmoore, Roboins and CO. Investigatyon of the Cigar Kanufacturing Industry in tre Establishment of a Code of fait Competition (NRA flles, Nov. 3, 1933, as transcribed by W. D. Evans). A weighted average was computed rrom the figures shown for cigar makers, other processors, and other factory workers in hand and machine factories. The sample (excluding strippers) inciuded 25.3 and 30.3 Dercent of the total number of wage earners in 1929 and 1932 , respectively.
\({ }^{19}\) Heighted annual averagea were computed from the rigures published in the Monthly Bulletin of the Department. The industry is designated as "Cigars and Tobacco", but since tobacco products in Pennsyivania are dredominantiy clgars the statistics were assumed to refer to cigars alone. The sample covered between 2 and 5 percent of the cotal number of wage earners in the industry.
1935) yielded the estimate for 1934. The prevailing- and actualhours series were spliced in 1929.

Cigarettes.- Prevailing weekly hours in the Cigarettes industry for the years 1919-29 were estimated by subtracting prevailing weekly man-hours (the product of prevailing hours and employment) in the Cigars industry from the corresponding figures for the Cigars and Cigarettes industries combined and dividing the result by Cigarettes employment. Since both prevailing and actual hours for 1930 were available from a BLS study, \({ }^{20}\) the prevailing weekly hours for 1919-29 were reduced, to the level of actual hours by application of the 1930 actual-prevailing ratio. Actual hours for 1933 were derived from the Census of Manufactures. \({ }^{21}\) In order to obtain the figures for the 5 remaining years, it was first necessary to secure actual weekly hours for the Cigars and Cigarettes industries combined. This was accomplished for 1931 and 1932 by applying to actual hours for Cigars the ratio in 1931 of Census prevailing hours for Cigars and Cigarettes combined to those for Cigars alone. (The latter is an unpublished Census figure.) Hours for the 2 industries combined were furnished for 1934-36 by BLS. Average actual weekly hours in the Cigarettes industry for 1931, 1932, and 1934-36 were then computed in the same way as prevailing hours for the earlier period.

Chewing and Smoking Tobacco and Snuff.- Average weekly hours worked in the Chewing and Smoking Tobacco and Snuff industry agree closely with those for the combined Cigars and Cigarettes industries for the years \(1933-36: 22\)
\begin{tabular}{ccc} 
Year & \begin{tabular}{c} 
Chewing and \\
Smoking Tobacco \\
and Snuff \\
industry
\end{tabular} & \begin{tabular}{c} 
Cigars and \\
Cigarettes \\
industries \\
combined
\end{tabular} \\
1933 & 34.3 & 34.7 \\
1934 & 34.5 & 35.4 \\
1935 & 34.9 & 35.0 \\
1936 & 35.7 & 35.7
\end{tabular}

\footnotetext{
\(20_{\text {Wages }}\) and Hours of Labor in the Cigarette Nanufacturing Industry: 1930 (Buil. No. 532). The survey covered establishments in North Carolina, Kentucky, and Virginia in representative pay-roli periods of March, April, and May, 1930. About 50 percent of the total number of wage earners in the industry were included in the sample. Wage earners engaged in stripping operations were excluded to make the figures comparable with the employment data of the census.
\({ }^{21}\) For source see ftn. 17. The census sample included 98.9 percent of the estimated total number of wage earners in the clgarettes industry in 1933. Pootnote 22 appears on following page.
}

The series shown for the Chewing and Smoking Tobacco and Snuff industry was used for 1933-36 and extended back to 1919 by applying to the average weekly hours for the Cigars and Cigarettes industries combined for 1919-32 the ratio of the 2 hours figures shown for 1933.

\section*{ Comparalitiy Mith Predection}

Since secondary products constituted a negligible percentage of the total value of products of the Cigars industry in 1931, 1933, and 1935 (the only years for which data were available), the unadjusted employment and man-hours series appeared to be sufficiently comparable with production to require no further correction. Hence these labor series were converted into relatives to secure the NRP indexes.

The labor series for the other 2 component industries of the Tobacco Products group had to be adjusted for comparability with production since a considerable quantity of chewing and smoking tobacco and snuff is manufactured in the Cigarettes industry, \({ }^{23}\) and some cigarettes are made in the Chewing and Smoking Tobacco and Snuff industry. To estimate the number of wage earners and man-hours required for the total production of cigarettes and of chewing and smoking tobacco and snuff, respectively, it was assumed (see appended note) that the (Census) Cigarettes and the Chewing and Smoking Tobacco and Snuff industries:
(1) Both have the same value output per wage earner and per man-hour for (a) cigarettes and for (b) chewing and smoking tobacco and snuff.
(2) Together produce all chewing and smoking tobacco and snuff and all cigarettes.
(3) Produce only these 2 types of products.

The second and third assumptions are not strictly correct since some cigars and insecticides are made in these 2 industries and some cigarettes and chewing and smoking tobacco and snuff are made in the Cigars industry. The amounts involved, however,

\footnotetext{
22 Por source of both 1935 figures see ftn. 17; those for the other years were complled by Bls. Hours reported by BLs for the Chewing and smoking Tobacco and snuff industry in 1932 and 1933 were considered unreliable since in both years the BLs sample was probably small and the estimate for 1833 (38.8) differed considerabiy irom that derived from the censts of Nanufactures. The census figure is based on a sample representing 82.6 percent of the estimated total number of wage earners in the Chewing and Smoking Tobacco and Bnuff industry in 1938.
23 In 1936, 36.0 percent of the total value of chewing and smoking tobacco and snutf mas produced in the cigarettes industry.
}
are so small that they may be neglected without introducing any significant error into the final results.

Note on the Mothod af Segragating Employmat and Man-houfa for Cigerettes and for Chaming and Smiking Tobecia end 5nafter

Let \(\boldsymbol{X}=\) employment or man-hours required for total production of cigarettes,
\(Y=\) employment or man-hours required for total production of chewing and smoking tobacco and snuff.
\(C_{c}=\) value of cigarettes produced in the Cigarettes industry,
\(C_{s}=\) value of cigarettes produced in the Chewing and Smoking Tobacco and Snuff industry,
\(C=\) total value of cigarettes,
\(S_{c}=\) value of chewing and smoking tobacco and snuff made in the Cigarettes industry,
\(S_{s}=\) value of chewing and smoking tobacco and snuff made in the industry of the same name,
\(M_{c}=\) total employment or man-hours worked in the Cigarettes industry,
\(M_{s}=\) total employment or man-hours worked in the Chewing and Smoking Tobacco and Snuff industry,
\(m_{c}=\) employment or man-hours consumed in production of cigarettes in the Cigarettes industry, and
\(m_{s}=\) employment or man-hours consumed in the production of cigarettes in the Chewing and Smoking Tobacco and Snuff industry.
The assumptions are:
1. (a) \(\frac{C_{c}}{m_{c}}=\frac{C_{s}}{m_{s}}\)
(b) \(\frac{S_{s}}{M_{s}-m_{s}}=\frac{S_{c}}{M_{c}-m_{c}}\)
2. (a) \(C=C_{c}+C_{s}\)
(b) \(X=m_{c}+m_{s}\)
3. \(\quad Y=M_{c}+M_{s}-X\)

Solving equations \(1(a)\) and \(1(b)\) for \(m_{c}\) and \(m_{s}\) and using 2 , we obtain:
\[
X=\frac{C\left(M_{c} S_{s}-M_{s} S_{c}\right)}{\left(C_{c} S_{s}-C_{s} S_{c}\right)}
\]

\footnotetext{
\({ }^{24}\) This method was utilized for census years. For intercensal years \(N_{c}\) and \(\mu_{s}\) were used to interpolate mc and ( \(N_{s}-m_{s}\) ), respectively.
}
-

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { Produc- } \\
& \text { tion } \\
& \text { (employ- } \\
& \text { ment } \\
& \text { welghts) }
\end{aligned}
\] & Employment & output per wage earner & ```
Produc-
    tion
(man-hour
weights)
``` & Man-hours & Output per manhour. \\
\hline 1810 & 92.0 & 135.3 & 88.0 & 93.9 & 137.8 & 88. 1 \\
\hline 1920 & 97.2 & 132.7 & 73.2 & 97.8 & 137.5 & 71. 1 \\
\hline 1821 & 90.2 & 129.2 & 68.8 & 82.0 & 130.9 & 70.3 \\
\hline 1922 & 92.7 & 126.1 & 73.5 & 94.4 & 128.0 & 73.8 \\
\hline 1923 & 97.4 & 126.0 & 77.3 & 98.7 & 127.9 & 77.2 \\
\hline 1924 & 95.7 & 117.7 & 81.3 & 98.0 & 119.1 & 81.1 \\
\hline 1825 & 85.4 & 113.8 & 83.8 & 98.1 & 114.9 & 83.6 \\
\hline 1926 & 97.0 & 108. 1 & 89.7 & 97.5 & 109.0 & 89.4 \\
\hline 1927 & 97.9 & 111.4 & 87.9 & 88.2 & 111.9 & 87.8 \\
\hline 1928 & 98. 0 & 108. 3 & 89.5 & 87.1 & 108.4 & 88.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 92.7 & 93.3 & 99.4 & 92.6 & 93.9 & 88.6 \\
\hline 1931 & 88.0 & 85.9 & 100.1 & 86.0 & 76.7 & 112.1 \\
\hline 1932 & 73.0 & 84.3 & 88.6 & 72.9 & 69.1 & 105.5 \\
\hline 1933 & 72.3 & 85.8 & 84.3 & 71.9 & 62.6 & 114.9 \\
\hline 1934 & 77.5 & 87.0 & 89.1 & 77.5 & 64.6 & 120.0 \\
\hline 1935 & 79.7 & 78.0 & 102.2 & 80.2 & 57.4 & 139.7 \\
\hline 1836 & 87.0 & 77.7 & 112.0 & 88.7 & 58.3 & 148.7 \\
\hline
\end{tabular}

Table 67.- sumahy indzies fog the cibars industry: 191s-3E
(182s = 100)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow{2}{*}{production} & \multirow{2}{*}{Employment} & \multirow{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 112.3 & 135.8 & 138.0 & 82.7 & 81.4 \\
\hline 1920 & 125.9 & 136.5 & 138.5 & 82.2 & 90.9 \\
\hline 1921 & 106.7 & 132.9 & 134.3 & 80.3 & 79.4 \\
\hline 1922 & 108. 1 & 129.6 & 131.2 & 81.9 & 80.9 \\
\hline 1923 & 107.6 & 129.3 & 130.9 & 83.2 & 82. 2 \\
\hline 1924 & 102.8 & 118.5 & 119.7 & 88. 8 & 85.9 \\
\hline 1925 & 99.7 & 114.8 & 115.8 & 86.8 & 88.1 \\
\hline 1928 & 99.6 & 108. 7 & 109.4 & 91.6 & 91.0 \\
\hline 1927 & 100.3 & 112.3 & 112.8 & 89.3 & 88.9 \\
\hline 1828 & 97.8 & 108.7 & 108.8 & 91.8 & 91.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 80.4 & 82.2 & 91.8 & 98.0 & 98.5 \\
\hline 1931 & 81.9 & 81.0 & 71.0 & 101.1 & 115.4 \\
\hline 1932 & 67.3 & 79.7 & 64.2 & 84.4 & 104.8 \\
\hline 1933 & 85.5 & 79.5 & 67.8 & 82.4 & 113.3 \\
\hline 2934 & 88.8 & 75,0 & 54. 5 & 91.7 & 126.2 \\
\hline 1035 & 70.5 & 68.6 & 48.9 & 105.9 & 150. 3 \\
\hline 1936 & 77.6 & 68.5 & 49.8 & 116.7 & 156.5 \\
\hline
\end{tabular}

222 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table 88.- SUMMARY INDEXES POR THE CIBARETTES INDUSTRY: 1919-3B
\((1929=100)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 43.4 & 136.4 & 140.3 & 31.9 & 30.9 \\
\hline 1920 & 38.8 & 118.3 & 135.1 & 32.8 & 28.7 \\
\hline 1921 & 42.6 & 110.3 & 110.4 & 38.8 & 38.8 \\
\hline 1922 & 45.6 & 103.9 & 103.7 & 43.9 & 44.0 \\
\hline 1923 & 54.5 & 99.9 & 99.4 & 54.6 & 54.8 \\
\hline 1924 & 59.4 & 97.7 & 97.7 & 80.8 & 60.8 \\
\hline 1925 & 67.2 & 97.8 & 97.9 & 88.7 & 88.6 \\
\hline 1928 & 75.3 & 93.0 & 93.2 & 81.0 & 80.8 \\
\hline 1927 & 81.6 & 105.1 & 105.6 & 77.0 & 77.3 \\
\hline 1928 & 88.8 & 114.1 & 115.2 & 77.8 & 77.1 \\
\hline 1929 & 100.0 & 100.0 & 200.0 & 100.0 & 100.0 \\
\hline 1930 & 101.1 & 89.6 & 88.0 & 112.8 & 105.3 \\
\hline 1931 & 95.6 & 88.6 & 88.5 & 107.9 & 108.0 \\
\hline 1932 & 87.1 & B6. 5 & 78.3 & 100.7 & 111.2 \\
\hline 1933 & 93.9 & 100.4 & 78.6 & 93.5 & 122.8 \\
\hline 1934 & 108.3 & 123.7 & 104.5 & 85.9 & 101.7 \\
\hline 1935 & 114.4 & 113.8 & 101.4 & 100.5 & 112.8 \\
\hline 1936 & 129.8 & 114.1 & 95.2 & 113.8 & 136.3 \\
\hline
\end{tabular}

Table gs. - summary indexes for the chewing and smoking taraceo AND SNUFP INDUSTAY: 1919-36
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 111.2 & 131.5 & 134.1 & 84.6 & 82.9 \\
\hline 1920 & 108.2 & 126.7 & 134.7 & 85.4 & 80.3 \\
\hline 1921 & 101.5 & 128.3 & 130.3 & 79.1 & 77.9 \\
\hline 1922 & 110.0 & 130.0 & 132.2 & 84.6 & 83.2 \\
\hline 1923 & 108.3 & 134.8 & 136.8 & 80.3 & 79.2 \\
\hline 1924 & 108.7 & 133.0 & 134.8 & 81.7 & 80.6 \\
\hline 1925 & 108.6 & 124.1 & 125.3 & 87.5 & 86.7 \\
\hline 1928 & 107.7 & 120.1 & 120.8 & 89.7 & 89.2 \\
\hline 1927 & 104.0 & 112.3 & 112.5 & 92.6 & 92.4 \\
\hline 1823 & 101.3 & 110.8 & 110.6 & 91.6 & 81.8 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 87.5 & 102.9 & 103.3 & 84.8 & 94.4 \\
\hline 1931 & 97.4 & 109.0 & 87.1 & 89.4 & 100.3 \\
\hline 1932 & 91.1 & 106.3 & 67.5 & 85.7 & 104.1 \\
\hline 1933 & 89.7 & 104.7 & 78.1 & 85.7 & 117.8 \\
\hline 1934 & 90.7 & 113.3 & 84.0 & 80.1 & 108.0 \\
\hline 1935 & 89.9 & 102.3 & 75.7 & 87.8 & 118.8 \\
\hline 1936 & 91.3 & 100.3 & 73.4 & 91.0 & 124.4 \\
\hline
\end{tabular}
```

70. WOBLEN AND WORSTED GOQDS EROUP
71. WOOLEN BOODS
72. Warsted agoDS
```

The Woolen and Worsted Goods group, which emploged 147,000 wage earners in 1929, comprises 2 industries: Woolen Goods and Worsted Goods. The former, which employed almost 59,000 wage earners in 2929, embraces the manufacture of all woolen yarns and goods in establishments incladed in the group; the latter embraces the manufacture of all worsted yarns and goods in these establishments. Both industries are concentrated largely in New England; there was little shift in location, even within this region, in the period 1919-36.

The manufacturing activities of each industry include (1) spinning of yarns, (2) weaving of goods, and (3) wool scouring, dyeing, and finishing in woven-goods establishments. Woolen goods are made of carded yarns, in which the fibers are crossed; worsted goods are made of combed yarns, in which the short fibers have been removed and the long ones left more nearly parallel.

\section*{Proluction}

Foolen and Morsted Goods Group. - The NRP group production indexes for the odd-numbered years 1919-31 are harmonic means of the production relatives for the component industries; one, with changing employment weights, was used in determining output per wage earner, and the other, with changing man-hour weights, in determining output per man-hour. The index numbers of group production for 1933 are based on weighted aggregates computed from Census statistics for 45 woolen and worsted products for 1931 and 1933; those for 1935 are based on the anweighted output (square yards) of 11 classes of goods for which quantity statistics were reported by the Census for both 1933 and \(1935 .^{1}\) The group indexes were rendered continuous for the period 1919-36 by means of the Federal Reserve index of machinery activity, \({ }^{2}\)

\footnotetext{
The 2 additional segments were required after 1931 because of changes in classificetion in 1933 and 1935 . The 45 products in the \(91 r 8 t\) segment, which embrace practicaliy all the output of woven goods and yarns, were weighted by 1931 unit values. The 11 classes in the second represent about 93 percent of the total number of square gards of woven goods (yarns are ezcluded) produced in 1935. For the gears prior to 1935 , relatives of the unveighted toral fardage of woven goods are usually in ciose accord with the NRP inder toral jardage of woven good
RThis Index was obtained Irom Federal Reserve Index of Industris 1 Production (almeo.: April 1936) for the Fears 1919-35 and Federal Reserve Bulletin for (036 ; it is based on the percentage of loom and spindie hours activen, as conputed from data complied by the Bureau of the Censub.
}

The NRP group indexes are almost identical with arithmetic means of the production relatives for the 2 industries weighted by employment and man-hours in 1929:

Index of production with -
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Changing weights} & \multicolumn{2}{|l|}{Fixed weights (1929)} \\
\hline & Employment & Man-hours & Employment & Man-hours \\
\hline 1919 & 101. 3 & 101. 3 & 101. 2 & 101.2 \\
\hline 1921 & 99.2 & 99. 1 & 99. 3 & 99.2 \\
\hline 1923 & 128.2 & 128.2 & 128.2 & 128.2 \\
\hline 1925 & 110.9 & 111.1 & 111. 1 & 111. 2 \\
\hline 1927 & 104.7 & 104.7 & 104.7 & 104.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 80.8 & 80.7 & 81.0 & B0. 9 \\
\hline
\end{tabular}

Woolen Goods. - The production measure for the Woolen Goods industry comprises 2 segments, each of which is an aggregative index constructed from Census output statistics. The first segment, for the odd-numbered years 1919-27, includes 22 series; the second, for 1927-31, includes 4 . The series entering into each segment were weighted by averages of unit values for the corresponding years.3,4

The change in the number of classes of products entering into the 2 segments results from a change in classification. The 12 classes in the first segment, which include practically all woolen goods and yarns, \({ }^{5}\) are:

\footnotetext{
\(3_{\text {Quantity }}\) statistics for some products are reported by the census for establishments engaged primarily in the manufacture of woolen goods and for those engaged primarily in the manufacture of worsted goods. The quantities produced in the 2 types of establishments were added before being weighted. The quantities (and values) of wall other woolen woven goods" and nall other worsted woven goods" (see discussion of production of the Worsted Goods industry) were reported in combination for each of the 2 Census industries in all years of the first segment. They were segregated in accordance with the ratios for each Census industry of (a) the total quantity (and value) of all specifled woolen woven goods and of (b) the total quantity (and value) of all specifled worsted woven goods to \(\left\{\begin{array}{l}b \\ c\end{array}\right)\) the sum or (a) and (b).
\({ }^{4}\) Avallable data for labor requirements and labor costs were too fragmentary for use in developing moreadequate weights than unit values. Federal Trade Comission statistics, published in reports on fextile Industries (e. g., Jenuary 1937), Dermit the computation of labor cost per dollar of sales in groups of spinning and weaving establishments; these refer to only a rew products which do not correspond exactiy to classes included in the NRP Index. A BLS study of time and labor costs of production (Nonthly Labor Review, September 1928) indicates, however, that in 1827 the relationship between time and labor cost per yard for 4 specific kinds of woolen woven goods and 23 specific kinds of worsted woven goods is fairly uniformo Ratios of man-hours (per unit) to value (per unit) in 1935 for broad classes of products (more strictiy, for estabilishments engaged primarily in the manufacture of these products) are also falriy constant (see ftn. 12 for source of statistics):

Woolen woven goods Woolen yerns 2.316.
(including moven felts) 2.032 Worsted Jarns 2.332
Worsted woven goods 2.492
Footnote 5 appears on following page.
}
\begin{tabular}{|c|c|c|c|}
\hline Woven & goods & & Blankets \\
\hline & Sultings, dress goods, & (8) & All-wool \\
\hline & overcoatings, and & (7) & Cotton mixed \\
\hline & cloakings \({ }^{6}\). & (8) & Cotton warp \\
\hline (1) & All-wool woolen & (8) & Horse \\
\hline (2) & Wool and cotton mixed & (10) & All other woolen woven \\
\hline (3) & Cotton-warp woolen & & \[
\text { goods } 3.7
\] \\
\hline (4) & Domett flannels and & Yarns & for sale. \\
\hline & shirtings & (11) & All-wool \\
\hline (5) & Satinets and linseys & (12) & Union or merino \\
\hline
\end{tabular}

The 4 classes in the second segment embrace the 10 types of woven goods in 1 category, \({ }^{8}\) the 2 varieties of yarn separately, and an additional item, "wool-card rolls, batts, and batting, forsale."

Although the group index was completed for the period 1919-36, it was not possible to extend the Woolen Goods index beyond 1931 or to interpolate relatives for the even-numbered years. \({ }^{*}\)

Worsted Goods Industry. - The NRP production index for the Worsted Goods industry was constructed for the odd-numbered years 1919-31 by splicing 2 segments representing practically allworsted goods and yarns. \({ }^{6}\) The first segment, for 1919-27, contains 8 classes of products:

\footnotetext{
 to the total output of estabilshmeats in the group; those entering into the second segment represent the total output of all industries.
GThe 1927 Canaus quantities for the subclasses of both woolen and worsted -suitings. dress goods, overcoatings, and cloakings are not strictiy comparable with those for earlier years because of a change in the method of reporting. The velue of the items consequentiy ezcluded irom the 2 industry inderes, however, represented only 6 percent or the total for woolen and worsted isuitings, dress goods, overcoatings, and cloakings" and less than 4 percent or the total for all woolen and worsted gocds.
Tro maintein internel comparability, the quantities of mali-wool and cottonmized flannels for undervear" were included in the jears 1919-25.
\(8_{\text {The }}\) quantities (and values) of ewoolen woven goods" and worsted woven goodsi, reported in combination for each of the 2 Census industries for 1929 and 1931, were separated in the same manner as the quantities (and values) of "all other woolen woven goods" and "all other worsted woven goods" for 1919-27 (see ftn. 3).
OThree series avallable for all years did not concur sufficientiy with the NRP Index for the Woolen ooods industry to be used for completion of the latter. one of these series, for raw-wool consumption, was derived from the Census of Manufactures; the others, for machinery activity (sidining apindles and sets of cardsj, are based on figures computed from Census data and published in survey of Curfent Business. The 3 series compare as follows with the MRP index:
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { MRP } \\
\text { production } \\
\text { index }
\end{gathered}
\]} & \multicolumn{3}{|c|}{Inder of -} \\
\hline & & Raw-W001 consumption & \[
\begin{aligned}
& \text { 8pinning } \\
& \text { spindles }
\end{aligned}
\] & \[
\begin{gathered}
\text { 8ets of } \\
\text { cards }
\end{gathered}
\] \\
\hline 1919 & 102.3 & 82 & 108 & 102 \\
\hline 1921 & 82.2 & 101 & 92 & 87 \\
\hline 1923 & 127.7 & 122 & 118 & 120 \\
\hline 1925 & 117.4 & 112 & 108 & 105 \\
\hline 1927 & 108.4 & 100 & 100 & 96 \\
\hline 1929 & 100.0 & 100 & 100 & 100 \\
\hline 1931 & 72.2 & 75 & 73 & 70 \\
\hline
\end{tabular}
```

    Woven goods
    Suitings, dress goods,
                overcoatings, and
                    cloakings}\mp@subsup{}{}{6
    (1) All-wool worsted
(2) Cotton warp worsted
(3) All other worsted woven
goods }\mp@subsup{}{}{3

```
(4) All-wool
(5) Union or merino
(b) All other
(7) Noils and wool waste,
 for sale

Yarns for sale
(4) All-wool
(5) Union or merino
(6) All other
(7) Noils and wool waste, for sale
(8) Tops and slubbing, for sale

The second segment, for \(1927-31\), is based on 6 classes; the reduction in number is a result of the Census' consolidation of the figures for all worsted woven goods. \({ }^{8}\) The series entering into each segment were weighted by averages of unit values for the corresponding years. \({ }^{3,4}\)

No satisfactory series was available for the completion of the Worsted Goods index for the period 1919-36.10

\section*{Employmant and Man-hourg}

The group employment index was constructed for the odd-numbered years 1919-35 from Census wage-earners statistics; \({ }^{11}\) it was interpolated for the years 1919-23 by means of the NICB index for "Wool Manufacturing") and completed for the years \(1923-36\) by means of the BLS index.

The man-hours index for the group was constructed for the period 2919-36 from the employment series and another for average actual weekly hours. The latter is based on (1) figures for 1933 and 1935 computed fromCensus statistics for man-hours and employment

\footnotetext{
10 As in the case of the Woolen Goods industry, 3 serfes avaliable for all years were not considered satisfactory for interpolation or extrapolation. These serles - 1 ror raw-wool" consumption, which was derived irom the census of Nanufactures, and 2 for machinery activity (spinning spindies and sets of combs), which are based on figures computed from Census data and published in Survey of Current Business - compare as rollows with the NRP indez:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { NRP } \\
& \text { production } \\
& \text { Index }
\end{aligned}
\]} & \multicolumn{3}{|c|}{Index of -} \\
\hline & & \[
\begin{aligned}
& \text { Raw-wool } \\
& \text { consumption }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spinning } \\
& \text { spindles }
\end{aligned}
\] & \[
\begin{gathered}
\text { Sets of } \\
\text { combs }
\end{gathered}
\] \\
\hline 1919 & 100.5 & 124 & 118 & 99 \\
\hline 1921 & 104.2 & 133 & 122 & 108 \\
\hline 1923 & 128.5 & 138 & 137 & 117 \\
\hline 1925 & 106.8 & 111 & 100 & 92 \\
\hline 1927 & 103.5 & 92 & 100 & 95 \\
\hline 1929 & 100.0 & 100 & 100 & 100 \\
\hline 1931 & 87.0 & 80 & 92 & 106 \\
\hline
\end{tabular}
\({ }^{11}\) because of a change in industry classification, itwas necessary to estimate the number of wage earners in the group in 1935. First, a sum was obtained for the corresponding new census industries (Woolen Woven Goods, Including Woven Felts; Woolen Yarns; Worsted Woven Goods; and Worsted Yarns); Irom this sum, the estimated number of workers engaged in the production of woven felts was deducted. The latter figure is an average or estimates computed on 2 alternative assumptions: (1) The value per wage earner for woven felts is the same as the value per wage earner for all products or the Felt Goods, Except Woven Felts Industry; and (2) the value perwage earner forwoven felts is the same as the value per wage earner for all products of the Woolen Woven Goods, Including Woven Felts industry.
}
and (2) figures for other years derived by means of a continuous series which inclndes NICB actual hours for 1920-36 and adjusted Census prevailing hours for 1919.12

The employment and man-hours indexes for the separate industries, which were constructed for only the odd-numbered years 1919-31, correspond to the respective production indexes. \({ }^{13}\) First, preliminary series were prepared for the Census industries, which embrace establishments engaged primarily in the manufacture of woolen goods or worsted goods. The Census of Manufactures provided the necessary employment statistics. The 2 man-hours series were constructed from these employment statistics and figures for average actual weekly hours. The latter were obtained by the multiplication of actual weekly hours for the group by (i) the ratios of Census prevailing weekly hours for each industry to Census prevailing weekly hours for the group in 1919, 1921, 1923, and 1929; (2) similar ratios for 1925 and 1927 obtained by straight-line interpolation; and (3) ratios for 1931 derived by straight-line interpolation between those for 1929 and others for 1933 based on Census actual hours. These preliminary employment and man-hours series were then adjusted so as to correspond to the total production of woolen goods and of worsted goods. \({ }^{13}\) The redistribution was accomplished (see appended note) on the assumptions that the (Census) Woolen Goods and Worsted Goods industries:
(1) Have the same value output perwage earner and per man-hour for (a) woolen goods and for (b) worsted goods.
(2) Together produce all woolen and worsted goods.
(3) Produce only these 2 kinds of products.

\footnotetext{
12 The average weekly hours for 1933 and 1935 , respectively, were computed fron Census of Manufactures: 1933, Man-hour statistics for 32 selected Industries and Census of Nanufactures: 1835, Man-hour statistics for 59 8elected Industries. The gample for 1033 included 84 percent of all wage earners in the group; the sample for 1935. o1 percent.
The mics series is not only continuous since \(1 \theta 20\) but closer than the BLS regular-survey series to the computed Census figures for 1933 and 1935:
\begin{tabular}{cccc}
Year & Census & NICB & BLS \\
1933 & 39.4 & 39.5 & 41.3 \\
1935 & 36.0 & 36.7 & 36.8
\end{tabular}
}

Census prevalling hours for 1919 were adjusted by the average of the ratios of wICB ectual to Census prevailing hours for 1921, 1923, and 1929.
13 phe final labor series, however, are not exactly comparable with the production inderes in scope for (1) they include some wage earners engaged in the fabrication of secondary products (less than 2 percent of the total value of the output of the group) which do not normally belong to either component industryand (2) they exclude some wage earners producing woolen and worsted goods outside the group (8180 less than 2 percent of the total by value) in 1827, 2929, and 1931. (8ee fin. 5.)
Mo attempt was made to extend the labor inderes for the 2 industries beyond 1931 because the production indezes were not available after this year.

The validity of the first assumption cannot be tested; available evidence indicates that the others are tenable. \({ }^{13}\)

\section*{Kote an the Mothed of gefrejatiag Empleymat and Man-herpe for Weelea geode and fer Worated geodel \({ }^{14}\)}
\(\begin{aligned} \text { Let } X= & \text { employment or man-hours required for total production } \\ & \text { of woolen goods, }\end{aligned}\)
\(Y=\) employment or man-hours required for total production of worsted goods,
\(L_{i}=\) value of woolen goods produced in the Woolen Goods industry,
\(L_{r}=\) value of woolen goods produced in the Worsted Goods industry,
\(L=\) total value of woolen goods,
\(R_{\boldsymbol{l}}=\) value of worsted goods produced in the Woolen Goods industry,
\(R_{r}=\) value of worsted goods made in the Worsted Goods industry,
\(N_{l}=\) total employment or man-hours worked in the Woolen Goods industry,
\(N_{r}=\) total employment or man-hours worked in the Worsted Goods industry,
\(m_{l}=\) employment or man-hours consumed in production of woolen goods in the Woolen Goods industry, and
\(m_{r}=\) employment or man-hours consumed in the production of woolen goods in the Worsted Goods industry.

\footnotetext{
\({ }^{14}\) In order to obtain \(L 2, L_{r}, R_{2}\), and \(\mathbb{R}_{r}\) for some zears, \(1 t\) was necessary to distribute the values of certain productswhich were not reportedin sufficient detail. In 2 instances similar woolen and worsted products were reported separately for the group but in combination for each industry: (1) Uunion or merino woolen yarns" and "union or merino worsted yarns for 1921-27 and (2) Wool-card roils, batts, and batting, for sale" and "tops and siubbing, for ssien for 1927 and 1929. In the first instance the value of each type of yarn in the years 1921-27 was determined for each census industry through the use of the 1919 ratio of the value of each type to the total for both for the Woolen Goods industry; in the other instance the ratio for the woolen Goods industry in 1931 was used to effect the separation. In other cases, in which the total value of a woolen or worsted product was reported only for the group as a whole, the separation was accomplished on the asaumption that the proportions of the total for the 2 Industries were the same in each year as in the years for which the detalled statistics wers available. This method was applied to the separation of cotton-warp woolen suitings, dress goods, overcoatings, and cioakings" in 1927 (on the basis of the averages of the proportions in 1918-26); cotton-warp morsted suitings, drese goods, overcostings, and cioakingsi in 1927 (on the basis of the averages of the proportions in 1919-26); Rell-wool Dianketai in 1921-27 (on the dasis of the 1919 proportions): "domett flannels and shirtings" in 1921 (on the basis of the 1919 proportions): "ali-wool woolen yarns" In 1931 (on the Dasis of the averages of the proportions in 1987-29); and mohair and similar yarns: in 1927 and 1981 (on the basis of the 1929 proportions).
In several other instances no bssis was provided for the resilocstion of value; aithough in some years the value of output in one industry was included in the statistics for the other, in no year were the values for the \(\mathcal{L}\) industries reported separstely. For example, the value of "cotton-warp \(\begin{gathered}\text { continued] }\end{gathered}\)
}

The assumptions are:
1. (a) \(\frac{L_{L}}{m_{L}}=\frac{L_{r}}{m_{r}}\)
(b) \(\frac{R_{r}}{M_{r}-m_{r}}=\frac{R_{t}}{M_{I}-m_{l}}\)
2. (a) \(L=L_{i}+L_{r}\)
(b) \(X=m_{l}+m_{r}\)
3. \(\quad Y=M_{l}+M_{r}-X\)

Solving equations \(1(a)\) and \(l(b)\) for \(m_{l}\) and \(m_{r}\) and using 2 , we obtain:
\[
X=\frac{L\left(M_{i} R_{r}-H_{r} R_{l}\right)}{\left(L_{i} R_{r}-L_{r} R_{l}\right)}
\]
 BROUP: 1919-35
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{gathered}
\text { Produc- } \\
\text { tion } \\
\text { (employ- } \\
\text { ment } \\
\text { weights) }
\end{gathered}
\] & Employment & Output per wage earner & ```
Produc-
 tion
(man-hour
weights)
``` & Man-hours & Output per manhour \\
\hline 1919 & 101.3 & 113.5 & 89.3 & 101.3 & 114.0 & 88.9 \\
\hline 1920 & 89.8 & 102.3 & 87.8 & 89.8 & 92.4 & 97.2 \\
\hline 1921 & 99.2 & 110.5 & 89.8 & 99.1 & 109.3 & 90.7 \\
\hline 1922 & 106.0 & 113.5 & 93.4 & 108.0 & 116.4 & 91.1 \\
\hline 1923 & 128.2 & 132.4 & 96.8 & 128.2 & 135.5 & 94.6 \\
\hline 1924 & 108.9 & 118.6 & 90.1 & 107.0 & 110.9 & 96.5 \\
\hline 1925 & 110.9 & 112.4 & 98.7 & 111.1 & 106.8 & 104.0 \\
\hline 1926 & 103.6 & 101.9 & 101.7 & 103.7 & 99.3 & 104.4 \\
\hline 1927 & 104.7 & 105.0 & 99.7 & 104.7 & 102.1 & 102.5 \\
\hline 1828 & 89.3 & 100.6 & 88.7 & 99.3 & 86.3 & 103. 1 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 73.6 & 81.5 & 90.3 & 73.6 & 73.1 & 100.7 \\
\hline 1931 & 80.8 & 81.3 & 90.4 & 80.7 & 73.3 & 110.1 \\
\hline 1932 & 67.0 & 67.9 & 98.7 & 68.9 & 57.5 & 116.3 \\
\hline 1933 & 88.5 & 88.6 & 99.9 & 88.4 & 73.7 & 117.2 \\
\hline 1934 & 72.4 & B1. 3 & 89.1 & 72.3 & 57.2 & 126.4 \\
\hline 1935 & 114.2 & 107.8 & 105.8 & 114.0 & 83.9 & 135.9 \\
\hline 1936 & 111.4 & 103.1 & 108.1 & 111.1 & 78.8 & 141.0 \\
\hline
\end{tabular}

\footnotetext{
14 [continued]
blankets: reported for the Hoolen Goods industry for 1923, 1925, and 1927 includes the value of such blankets made in the worsted ooods industry; the figures for 1919 and 1921, however, refer only to the output of the woolen Coods industry.
}

230 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

\section*{Table 71.- SUMOARY INDEXRS FOR THE WDOLEN GODDS INDUSTRY:} cznsus years 1819-31
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow[t]{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 102.3 & 121.5 & 123.6 & 84.2 & 82.8 \\
\hline 1921 & 92. 2 & 105.5 & 105.2 & 87.4 & 87.6 \\
\hline 1923 & 127.7 & 130.4 & 138.5 & 97.9 & 92.2 \\
\hline 1925 & 117.4 & 112.6 & 109.6 & 104.3 & 107.1 \\
\hline 1927 & 108.4 & 108. 1 & 104.5 & 100. 3 & 101. 8 \\
\hline 1929 & 100.0 & 100.0 - & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 72.2 & 74.1 & 66.7 & 87.4 & 108. 2 \\
\hline
\end{tabular}

Table 72. - sumany indexes for the wanstad adods industay: CEMSUS YEARS 1819-31
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|r|}{Output per -} \\
\hline & & & & Wage earner & Man-hour \\
\hline 1919 & 100. 5 & 107.9 & 107.2 & 93.1 & 93.8 \\
\hline 1921 & 104.2 & 113.8 & 112.2 & 91.5 & 92.9 \\
\hline 1923 & 128. 5 & 133.7 & 133.4 & 96.1 & 98.3 \\
\hline 1925 & 106.8 & 112.3 & 104.9 & 95.1 & 101.8 \\
\hline 1927 & 103.5 & 104.3 & 100.4 & 99.2 & 103.1 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1931 & 87.0 & 88.3 & 77.9 & 100.8 & 111.7 \\
\hline
\end{tabular}

\title{
PRODUCTION EMPLOYMENT AND PRODUCTIVITY
} IN 59 MANUFACTURING INDUSTRIES

\author{
PART THREE: APPENDIXES
}

MUSA*
WORK
PROGRAM
EWPA

WORKS PROGRESS ADMINISTRATION NATIONAL RESEARCH PROJECT

\title{
VORES PROGRESS'ADMINISTRATION \\ F. C. HARRINGTON Administrator \\ CORRINGTON GILL \\ Assistant Administrator
}

\author{
NATIONAL RESEARCH PROJECT \\ On \\ Reemployment Opportunities and Recent Changes \\ in Industrial Techniques \\ DAVID WEINTRAUB \\ Director
}
```

Studies of the Labor Supply, Productivity, and Production
Harry Magdoff, Statistician in Charge

```

\title{
PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY \\ IN 59 MANUFACTURING INDUSTRIES, 1919-36 \\ With an Appendix on the Electric Light and Power and Telephones Industries
}
by
Harry Magdof \({ }^{\text {P }}\)
and
Irving H. Siegel Milton B. Davis

PART THREE: APPENDIXES

WORIS PROGRESS ADMINISTRATION, NATIONAL RESEARCH PROJECT
Report No. S-1, Part Three
Philadelphia, Pennsylvania
May 1939

\section*{CONTENTS}
Appendix Page
NOTE ON PART THREE ..... xV
A. basic tables for 59 manufacturing industries ..... 1
Explanatory notes ..... 1
Tables ..... 6
b. ELECTRIC LIGHT AND POWER AND TELEPHONES INDUSTRIES ..... 143
Electric light and power ..... 143
Production ..... 143
Employment and man-hours ..... 148
Productivity ..... 147
Telephones ..... 153
Production ..... 153
Employment and man-hours ..... 156
Productivity ..... 160
charts
Figure
B-1. Summary indexes for the electric light and power industry: 1917 and 1920-37 ..... 144
B-2. Summary indexes for the telephones industry: 1919-37 ..... 154
tables
Table
1. AGRICULTURAL IMPLEMENTS
A-1. Production of principal agricultural implements: 1920 to 1931. ..... 6
A-2. Production of principal agricultural implements: 1929 and 1933 ..... \(\varepsilon\)
A-3. Production of principal agricultural implements: 1929. 1935, and 1936. ..... 9
A-4. Number of wage earners and average weekly hours in the agricultural implements industry: 1920 to 1936. ..... 10
2. BEET SUGAR
A-5. Beet slicing and sugar production in the beet
sugar industry: 1918 to 1936 ..... 11
A-6. Campaign, intercampaign, and fiscal-year man-hours in the beet sugar industry: 1918 to 1935 ..... 12

\section*{TABLES-Continued}
Table
Page
3. BOOTS AND SHOES
A-7. Production of boots and shoes: 1919 to 1936. ..... 13
A-8. Number of wage earners and average weekly hours in the boots and shoes industry: 1919 to 1936 ..... 14
4-6. SREAD AND OTHER BAKERY PRODUCTS GROUP
A-9. Production of principal bakery products: census years 1923 to 1935. ..... 15
A-10. Index of wheat-flour consumption in the bread and other bakery products group: 1923 to 1936. ..... 16
A-11. Number of wage earners and average weekly hours in the bread and other bakery products group: 1923 to 1936 ..... 17
7. CANE-SUGAR REFINING
A-12. Production in the cane-sugar refining industry: 1819 to 1836 ..... 18
A-13. Number of wage earners, average weekly hours, wages, and average hourly earnings in the cane-sugar refining industry: 1919 to 1936 . . 19
8-10. CANNING AND PRESERVING GROUP
A-14. Production of principal canned and preserved fruits and vegetables: census years 1919 to 1935 ..... 20
A-15. Production of selected canned fruits and vegetables: 1919 to 1936 ..... 21
A-16. Production of principal canned and cured fish: census years 1919 to 1935 ..... 22
A-17. Production of selected canned fish: 1821.to 1935 ..... 23
A-18. Number of wage earners and average weekly hours in the canning and preserving group: 1919 to 1936 ..... 24
11. CEMENT
A-10. Production and shipments of hydraulic cements: 1918 to 1936 ..... 25
A-20. Number of wage earners and output per man-hour in the cement industry: 1919 to 1936 ..... 28
12. CHEMICALS
A-21. Production of principal chemicals: census years 1918 to 1935 ..... 27
A-22. Production of selected chemicals: 1918 to 1936. ..... 28

\section*{TABLES-COntinued}
Table Page
A-23. Number of wage earners and average weekly hours in the chemicals industry: 1919 to 1936... . . 30
13. CLAY PRODUCTS (OTHER THAN POTTERY)AND NONCLAY REFRACTORIES
A-24. Production of principal clay products lother than potteryl and nonclay refractories: 1919 to 1936 ..... 31
A-25. Number of wage earners, wages, and average hourly earnings in the clay products lother than pottery) and nonclay refractories industry: 1919 to 1936. ..... 33
14-16. COKE GROUP
A-26. Production at beehive coke ovens: 1919 to 1936. ..... 34
A-27. Production at byproduct coke ovens: 1919 to 1936 ..... 35
A-28. Number of wage earners and man-hours worked at beehive and byproduct coke ovens: 1919 to 1936 ..... 36
17. CONFECTIONERY
A-29. Production of confectionery: census years 1925 to 1935. ..... 37
A-30. Sales of candy: 1925 to 1936 ..... 38
A-31. Interpolating series for confectionery production index: 1925 to 1938. ..... 39
A-32. Number of wage earners and average weekly hours in the confectionery industry: 1925 to 1936. . 39
18. COTTON GOODS
A-33. Production of principal cotton goods: census years 1919 to 1935 ..... 40
A-34. Index of raw-cotton consumption: 1919 to 1936. ..... 41
A-35. Production of principal cotton goods, New England States: census years 1918 to 1933. ..... 42
A-36. Production of principal cotton goods, cotton- growing States: census years 1919 to 1933. . . ..... 43
A-37. Production of principal cotton goods, by regions: 1933 and 1935 ..... 44
A-38. Number of wage earners and man-hours in the cotton goods industry: 1919 to 1936 ..... 45
A-39. Number of wage earners and man-hours in the cotton goods industry, by regions: census years 1919 to 1935. ..... 46
TABLES-Continued
Table Page
19. ELECTRIC LAMPS
A-40. Production in the electric lamps industry: 1920 to 1931. ..... 47
A-41. Number of wage earners in the electric lamps industry: 1920 to 1931 ..... 48
A-42. Man-hours in the electric lamps industry: 1920 to 1931 ..... 48
20. FERTILIZERS
A-43. Production of principal fertilizers: census years 1919 to 1935. ..... 49
A-44. Consumption of fertilizers: 1919 to 1936 ..... 50
A-45. Number of wage earners and average weekly hours in the fertilizers industry: 1919 to 1936 ..... 51
21. FLOUR AND OTHER GRAIN-MILL PRODUCTS
A-46. Production of wheat flour and other principal grain-mill products: census years 1919 to 1935 ..... 52
A-47. Wheat ground: 1919 to 1936 ..... 53
A-48. Number of wage earners and average weekly hours in the flour and other grain-mill products industry: 1919 to 1936 ..... 54
22. FURNITURE
A-49. Value of furniture and wholesale-price index: 1919 to 1936 ..... 55
A-50. Number of wage earners and average weekly hours in the furniture industry: 1919 to 1936. ..... 56
23-27. GLASS GROUP
A-51. Production of window and obscured glass:
1919 to 1936. ..... 57
A-52. Production of plate and wire glass: 1919 to 1936 ..... 58
A-53. Production of glass containers: census years 1919 to 1935. ..... 59
A-54. Production of glass containers: 1926 to 1936 . ..... 60
A-55. Production of principal kinds of pressed and blown glass: census years 1919 and 1925 to 1935. ..... 60
A-56. Weights used in construction of N.R.P. production index for the glass group ..... 81
A-57. Average number of wage earners in the glass group and component industries: 1919 to 1936 ..... 62

\section*{TABLES-COntinued}
Table ..... Page
A-58. Average weekly hours in the glass group: 1919 to 1838. ..... 63
28. ICE CREAM
A-59. Production of ice cream and related products: 1919 to 1936. ..... 64
A-60. Number of wage earners and average weekly hours in the ice cream industry: 1919 to 1936. ..... 65
29-31. IRON AND STEEL GROUP
A-61. Production of principal iron and steel products: 1919 to 1936. ..... 66
A-62. Number of wage earners and average weekly hours in the iron and steel group: 1919 to 1936. ..... 68
32-36. KNIT GOODS GROUP
A-63. Production of hosiery: by material and style,census years 1819 to 1925, and by material,1925 and 192769
A_64. Production of hosiery: census years 1927 to 1935 ..... 70
A-85. Production of underwear: census years 1919 to 1935. ..... 71
A-68. Production of outerwear: census years 1819 to 1935. ..... 72
A-67. Production of knit cloth: census years 1918 to 1835. ..... 73
A-88. Average number of wage earners in knit goods group and component industries and average hours worked per week in the group: 1919 to 1938 ..... 74
37-42. LEATHER GROUP
A-6日. Production in the sole and harness leather industry: 1919 to 1935 ..... 75
A-70. Production in the side and upholstery leather industry: 1918 to 1935 ..... 78
A-71. Production in the calfskin and kid leather industries: 1818 to 1935 ..... 77
4-72. Production in the sheep and miscellaneous leather industry: 1919 to 1935 ..... 78
A-73. Interpolating series for production in leather group and component industries: 1919 to 1921 and 1931 to 1938. ..... 79

\section*{TABLES-Continued}
Table Page
A-74. Number of wage earners and average weekly hours in the leather group: 1919 to 1936 ..... 80
A-75. Number of wage earnefs and man-hours in thecomponent industries of the leather group:1919 to 193681
A-78. Average annual hours per wage earner in the component industries of the leather group: 1919 to 1936 ..... 82
43-45. LUMBER AND TIMBER PRODUCTS GROUP
A-77. Production in sawmills: 1919 to 1936 ..... 83
A-78. Production of lumber, by regions: 1919 to 1936 ..... 84
A-79. Production of saw-plane mills: census years 1925 to 1935. ..... 85
A-80. Average number of wage earners in the lumber and timber products group and component industries: 1919 to 1936. ..... 86
A-81. Man-hours in the lumber and timber products group and component industries: 1919 to 1936 ..... 87
A-82. Wages and average hourly earnings in the lumber and timber products group: 1930 to 1936. ..... 88
46. MANUFACTURED GAS
A-83. Production and distribution of manufactured gas: 1919 to 1935 ..... 89
A-84. Number of wage earners and average weekly hours in the manufactured gas industry: census years 1919 to 1935. ..... 90
47. MANUFACTURED ICE
A-85. Production and sales of ice: 1919 to 1935. ..... 91
A-86. Number of wage earners and average weekly hoursin the manufactured ice industry: census years1919 to 193592
48. MOTOR VEHICLES
A-87. Production of motor vehicles and chassis:1919 to 1936.93
A-88. Adjustment factors for production of motor-vehicle replacement parts: 1919 to 1936. ..... 94
A-89. Number of wage earners and average weekly hours in the motor vehicles industry: 1910 to 1936. . ..... 95

\section*{TABLES-COntinued}
Table Page
49. NEWSPAPER AND PERIODICAL PRINTING AND PUBLISHING
4-90. Consumption of newsprint: 1919 to 1936 ..... 98
A-91. Number of wage earners and average weekly hoursIn the newspaper and periodical printing andpublishing industry: 1919 to 1836.9750-53. NONFERROUS METALS GROUPA-92. Principal products of primary smelters andrefineries: 1919 to 1936 . . . . . . . . . 98
A-93. Value added per unit of the principal products of primary smelters and refineries in 1929 ..... 100
A-94. Principal products of secondary smelters and refineries: census years 1927 to 1935. ..... 101
A-95. Value of products and index of unit values forsecondary smelters and refineries: censusyears 1819 to 1927. . . . . . . . . . . . . 102
A-96. Principal products of alloyers, rolling mills,and foundries: census years 1818 to 1935 . . 103
A-97. Number of wage earners in the nonferrous metals group and component industries: 1919 to 1936. ..... 105
A-98. Man-hours in the nonferrous metals group and component industries: 1919 to 1936 ..... 106
54. PAINTS AND VARNISHES
A-99. Production of principal paints and varnishes: census years 1919 to 1935 ..... 107
A-100. Production of 3 classes of paints and varnishes: 1920 to 1927. ..... 108
A-101. Sales of paints and varnishes and wholesale-price index: 1927 to 1836. ..... 109
A-102. Number of wage earners and average weekly hours In the paints and varnishes industry: 1919 to 1936. ..... 110
55-57. PAPER AND PULP GROUP
A-103. Production of principal kinds of paper: census yesrs 1919 to 1935. ..... 111
A-104. Index of total paper production: 1919 to 1936. ..... 112
A-105. Production of wood pulp (including screenings): 1819 to 1936. ..... 113

\section*{TABLES-Continted}
\begin{tabular}{|c|c|c|}
\hline Table & & Page \\
\hline A-108. & Number of wage earners and man-hours in the paper and pulp industries: 1918 to 1936. . . . . . & 114 \\
\hline A-107. & Average weekly hours, average hourly earnings, and wages in the paper and pulp industries: 1919 to 1936. & 115 \\
\hline & 58. PETROLEUM REFINING & \\
\hline A-108. & Crude petroleum refined: 1919 to 1936. & 116 \\
\hline A-109. & Number of wage earners and average weekly hours in the petroleum refining industry: 1919 to 1936 & 117 \\
\hline & 59. PLANING-MILL PRODUCTS & \\
\hline A-110. & Production in the planing-mill products industry: census years 1925 to 1835 . & 118 \\
\hline A-111. & Value of planing-mill products and wholesale-price index: census years 1919 to 1935 . & 118 \\
\hline A-112. & Number of wage earners and average weekly hours in the planing-mill products industry: 1919 to 1936. & 119 \\
\hline
\end{tabular}
60. RAYON
A-113. Production in the rayon industry: census years 1923 to 1935. ..... 120
A-114. Auxiliary production series for the rayon industry: 1919 to 1937 ..... 121
A-115. Number of wage earners and average weekly hours in the rayon industry: 1923 to 1937. . . . . 12261-63. RUBBER PRODUCTS GROUP
A-116. Production of rubber tires and inner tubes: 1921 to 1936. ..... 123
A-117. Production of principal rubber goods other than tires and inner tubes: 1921 to 1935. ..... 124
A-118. Number of wage earners in rubber products group and component industries: 1921 to 1938 ..... 125
A-119. Man-hours in the rubber products industries: 1921 to 1936. ..... 128
64. SILK AND RAYON GOODSA-120. Production of principal silk and rayon broadgoods: census years 1919 to 1929127
A-121. Production of principal silk and rayon broad goods: census years 1929 to 1935 ..... 128

\section*{TABLES-Continued}
Table ..... Page
A-122. Raw-silk consumption in the silk and rayon goods industry: 1919 to 1936 ..... 128
A-123. Number of wage earners and average weekly hours in the silk and rayon goods industry: 1919 to 1836. ..... 130
65. SLAUGHTERING AND MEAT PACKINGA-124. Production in the slaughtering and meat packingindustry: 1919 to 1936131
A-125. Number of wage earners and average weekly hoursin the slaughtering and meat packing industry:1919 to 1936.133
80-69. TOBACCO PRODUCTS GROUP
A-126. Production of principal tobacco products:1919 to 1936. . . . . . . . . . . . . . . 134
A-127. Number of wage earners in the tobacco productsgroup and compenent industries: 1919 to 1936. . 135
A-128. Average weekly hours worked in the tobacco products industries: 1919 to 1936. ..... 136
A-129. Weekly man-hours in cigarettes and chewing and swoking tobacco and snuff industries: 1919 to 1930. ..... 137
70-72. WOOLEN AND WORSTED GOODS GROUP
4-130. Production of woolen and worsted goods in thewoolen and worsted goods group: census years1919 to 1927. . . . . . . . . . . . . . . 138
A-131. Production of woolen and worsted goods in allindustries: census years 1927 to 1931. . . . . 139
A-132. Production of woolen and worsted goods in all industries: 1931 and 1933 ..... 140
A-133. Production of woolen and worsted goods in all industries: 1933 and 1935. ..... 141
A-134. Index of machinery activity in the production of wool: 1819 to 1936. ..... 141
A-135. Number of wage earners and weekly man-hours for the woolen and worsted goods industries: 1919 to 1936. ..... 142
ELECTRIC LIGHT AND POWER
B-1. Summary inderes for the electric light and powerindustry, all employees: 1917 and 1920-37. . .149

\section*{TABLES-Continued}
Table Page
B-2. Summary indexes for the electric light and power industry, wage earners: 1917 and 1920-37 ..... 150
B-3. Current distributed to ultimate consumers by the electric light and power industry: 1817 to 1937 ..... 151
B-4. Number of wage earners and all employees and average weekly hours in the electric light and power industry: 1917 to 1937 . . . . . . . . 152TELEPHONES
B-5. Summary indexes for the telephones industry (Bell System), all employees: 1919-37. ..... 161
B-6. Summary indexes for the telephones industry (Bell System), operators: 1919-37. ..... 162
B-7. Number of originating exchange and toll calls in N.R.P. sample of the telephones industry: 1917 to 1937. ..... 163
B-B. Employment in N.R.P. sample of the telephones industry: 1918 to 1937 ..... 163

\section*{PART THREE: APPENDIXES}

This volume comprises the third and final part of Production, Employment, and Productivity in 59 Manufacturing Industries, 1919-36. It consists of Appendix A, "Basic Tables for 59 Manufacturing Industries" and Appendix B, "Electric Light and Power and Telephones." The former is a compendium of the statistics necessary for the derivation of the NRP indexes of production, employment, man-hours, and productivity described and presented in Part Two. The latterincludes indexes of production, employment, man-hours, and productivity for two nonmanufacturing industries (Electric Light and Power and Telephones), a description of the methods of constructing these indexes, and statistical tables similar to those presented for the manufacturing industries in appendix A.

\section*{TABLES-Continued}
Table Page
B-2. Summary indexes for the electric light and power industry, wage earners: 1917 and 1920-37 ..... 150
B-3. Current distributed to ultimate consumers by the electric light and power industry: 1917 to. 1937 ..... 151
B-4. Number of wage earners and all employees and average weekly hours in the electric light and power industry: 1917 to 1937 ..... 152
TELEPHONES
B-5: Sumary indexes for the telephones industry (Bell System), all employees: 1919-37. ..... 161
B-6. Summary indexes for the telephones industry (Bell System), operators: 1919-37. ..... 162
B-7. Number of originating exchange and toll calls in N.R.P. sample of the telephones industry: 1917 to 1937 ..... 163
B-8. Employment in N.R.P. sample of the telephones industry: 1918 to 1937 ..... 163

\section*{PART THREE: APPENDIXES}

This volume comprises the third and final part of Production, Employment, and Productivity in 59 Hanufacturing Industries. 1919-36. It consists of Appendix A, "Basic Tables for 59 Manufacturing Industries" and Appendix B, "Electric Light and Power and Telephones." The former is a compendium of the statistics necessary for the derivation of the NRP indexes of production, employment, man-hours, and productivity described and presented in Part Two. The latterincludes indexes of production, employment, man-hours, and productivity for two nonmanufacturing industries (Electric Light and Power and Telephones), a description of the methods of constructing these indexes, and statistical tables similar to those presented for the manufacturing industries in appendiz A.

\section*{APPENDIX A}

\section*{BASIC TABLES FOR 59 MANUFACTURING INDUSTRIES}

\section*{EXPLANATORY MOTES}

This appendix comprises the more or less final series used in the derivation of the NRP indexes of production, employment, man-hours, and productivity for 59 manufacturing industries. These series incorporate most of the adjustments and ęstimates required for the achievement of continuity and comparability. The description of methods in Part Two of the report will be found helpful in using this appendix.

Many of the terms employed here have already been defined in Part One, chapters I and II. The order of the industries and groups is the same as in Part One, chapter II, table IV, and in Part Two. The tables are numbered consecutively. Those for each industry or group appear together, usually in the following order: Production - basic series, production - auxiliary series, \({ }^{1}\) employment, average weekly hours, \({ }^{2}\) and man-hours. \({ }^{3}\)

In many tables the figures were rounded of so that fewer places are shown than were used in the computation of the NRP indexes. This was done not only to conserve space but also to avoid the implication that certain estimates are correct to the very last digit used incomputations (e. g., employment estimates interpolated for the even-numbered years, or man-hours for all years). If a group emplogment figure for any year is shown as reported, it is not necessarily the sum of those for the component industries, which may have been estimated and, hence, rounded off. If a group employment or man-hours figure was derived by the summation of those for the component industries, it was rounded off if any of the latter had been rounded off.

The procedure as described in the footnotes to the tables may sometimes vary in minor details from the description in Part Two.

\footnotetext{
LAlso called interpolating series or, it they refer toindividual products. series for selected products.
When the series representa only actual hours, the word morked" appears in the colunn heading. This word is onitted, however, if the series includes ens unsdjusted prevsiling hours.
\(3_{\text {Man-hours are generally onitted when both employment and average weekly }}\) hours are presented. series for wages and hourly earnings are also shown if ueed in the derivation of man-hours.
}

The difference results from an endeavor (i) to reduce the number of tables in this appendix necessary for reproducing the NRP indexes and (2) to present absolute figures where relatives were actually used if the former were considered to be of additional interest per se. In any case, the alternative procedures are equivalent to those described in Part Two.

The presentation was simplified through the use of abbreviated foot note references or their omission altogether when common to many industries. Thus whendifferent volumes of a series extending over several years are referred to in the same footnote, every one but the first is designated "ibid.: (year)", or simply by year. The entry "n. a." signifies that satisfactory data were not available, while a dash (-) indicates either that no figure was required or that none could be computed because of a deficiency in one or more underlying series also shown in this appendix. Reports on field surveys made by the National Research Project in cooperation with the National Bureau of Economic Research or the Bureau of Labor Statistics are sometimes referred to simply as "NRP-NBER" or "NRP-BLS" studies.

Since the Census of Manufactures (U. S. Dept.Com., Bur. Census) provides most of the production (quantity) statistics, it is to be understood as the source when none is cited. Furthermore, the specific volume from which the statistics were obtained is seldom indicated by date since they are usually available in others also. The most recent Census figures were used where revisions had been made. Volumes published as part of decennial censuses and those embodying the results of the regular biennial canvass are not distinguished from each other in the footnotes. \({ }^{4}\) The adjective "Census" is used to designate statistics derived from the Census of Manufactures. A "census year" is an oddnumbered year for which a canvass was made by the Bureau of the Census, and an "intercensal year" is aneven-numbered year. The Census of Nanufactures is also the source of value statistics for which no source is cited; these were employed principally in the computation of unit values for use as fixed weights (in absolute or relative form) or in the derivation of unit-valueadded weights.

One of the procedures not indicated in the footnotes is the adjustment of incomplete Census production statistics for the

\footnotetext{
4Thus, Census of Manufactures: 1918 refers to volume \(X\) of the Fourteenth Decennial Census.
}
following 18 industries in 1933 (described in Part One, chapterII, "Census Production Series"): \({ }^{5}\)
1. Agricultural Implements
5. Biscuit and Crackers
6. Bakery Products Other Than Biscuit and Crackers
12. Chenicals
20. Fertilizers
21. Flour and Other Grain-Mill Products
25. Plate Glass
26. Glass Containers
27. Pressed and Blown Ware
38. Sole and Harness Leather
39. Side and Upholstery Leather
40. Calfskin
41. Kid Leather
42. Sheep and Miscellaneous Leather
46. Manufactured Gas
54. Paints and Varnishes
63. Other Rubber Goods
65. Slaughtering and Meat Packing

Similar adjustments of incomplete quantity statistics for years other than 1933 are always indicated.

The fact that the 1929 Census "production" statistics for at least the following 19 industries refer to sales (more strictly shipments or deliveries) is also not noted: \({ }^{6}\)
5. Biscuit and Crackers
C. Bakery Products Other Than Biscuit and Crackers
7. Cane-Sugar Fefining
9. Canned and Preserved Fruits and Vegetables
10. Canned and Cured Fish
17. Confectionery
21. Flour and Other Grain-Mill Products
22. Furniture
24. Window Glass
25. Plate Glass
26. Glass Containers
27. Pressed and Blown Ware
28. Ice Cream
47. Manufactured Ice
48. Motor Vehicles
54. Paints and Varnishes
60. Rayon
e2. Fubber Tires and Inner Tubes
63. Other Rubber Goods

\footnotetext{
\({ }^{5}\) The adjustaent could not be made for a nineteenth industry, confectionery (No. 17). since sufficient dacs were not available.
When unit values for 1933 were required, they were computed from the unadjusted quantity and value statiatics.
Only the 1920 value ilgure was used for furniture (No. 22).
}

In addition toproduction statistics, the Census of Manufactures provided most of the employment and pay-rolls data (wages) for the odd-numbered years. In the absence of a specific citation, it is to be understood as the source of the wage-earner figures for these years. When the year and page of a particular volume are cited, the data are available in no other. The Census employment and pay-rolls series were usually completed, if necessary, by means of the Bureau of Labor Statistics indexes published in Revised Indexes of Factory Employment and Pay Rolls: 1919 to 1933 (Bull. No. 610), Revised Indexes of Factory Employment and Pay Rolls (mimeographed release, November 1936), andvarious issues of the Monthly Labor Review. No mention is made of this fact in the footnotes. Furthermore, since BLS indexes conform to Census trend, \({ }^{7}\) they were of ten used as the NRP series for all years; this, too, is not indicated in the footnotes. \({ }^{6}\) When employment figures were obtained from special BLS studies (usually in the Wages and Hours Series), the specific bulletins are always named.

In addition to BLS series, National Industrial Conference Board statistics were sometimes used in conjunction with Census employment and pay-rolls data. These statistics, which are identified merely as "NICB", were almost invariably obtained from Wages, Hours, and Employment in the United States: 1914-1936 (New York: 1936).

The figures for average weekly hours and average hourly earnings used in the derivation of most of the NRP man-hours indexes are based principally on BLS and NICB series. These are identified simpIy as "BLS" and "NICB" hours or earnings. Most of the BLS hours and earnings weresupplied to NRP in an unpublished report.? The BLS hours for 1932 and subsequent years are sometimes referred to as "regular BLS" hours to distinguish them from those

\footnotetext{
\({ }^{7}\) All the BLS series, which conform to the census levels for 1919-33, were edjusted by NRP for 1934-36 to the Census level of 1935. This adjustment is also not noted in the tables. Recently, after most of the NRP indexes had been constructed. BLS made its adjustment to the 1935 level. Since the differences were usually very small, the adjusted BLS figures for these years were not substituted for those computed by NRP. (See Part one, chapter II, "Census Employment Series and Their Completion," for a description of the BLS series.)
\({ }^{8}\) In order to convert the BLS relatives to absolute ilgures, they were first shifted from the base 1923-25 to the base 1929 and then multiplied by the 1929 Census ilgures.
\({ }^{9}\) The BLS average weekly hours for January-0ctober 1932 for Bread and other Bakery products (No. 4), Canningand Preserving (No. 8), and Furniture (No. 22) were derived from transcriptions made by NRA; the hours for 1937 for Rayon (No. 60) Were obtained from the Monthly Labor Review.
}
obtained from BLS bulletins. These BLS bulletins are always identified by name or number or both.
Unless otherwise indicated, the NICB hours and earnings were derived from Wages. Hours, and Employment in the United States: 1914-1936 and various issues of the Conference Board Service Letter. Whether or not noted in the tables, the NICB annual employment, pay-rolls, hours, and earnings figures for 1920 refer to but 7 months (June-December), and those for 1922 to but 6 months (January-June).

The prevailing weekly hours for 1919, 1921, 1923, and 1929, which are usually referred to as "Census prevailing hours" or simply "prevailing hours", were derived from frequency distributions shown in the Census of Manufactures for these years.

Table A-1.- FRODUGTIOY OF PRTMCTPAL AGRICULTURAL IKPLEMERTS: 1920201981
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produot & Weighta & 1920b & 1921 & 1822 & 1925 & 1924 & 1925 & 1826 & 1927 & 1928 & 1929 & 1930 & 1931 \\
\hline Plome and liaters Moldboand ploma & & & & & & & & & & & & & \\
\hline Horse & & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { Valking } \\
& \text { 1-horsa }
\end{aligned}
\] & 5.87 & 870,979 & 132,548 & 96,298 & 217,384 & 201,422 & 227,218 & 227,155 & 202,349 & 208,809 & 242,186 & 168,212 & 75,561 \\
\hline 2-horst and larger & 12.98 & 346,331 & 179,876 & 190,708 & 285,083 & 219,579 & 182,306 & 211,940 & 165,638 & 183,438 & 204,546 & 172,790 & 64,784 \\
\hline sulky & & & & & & & & & & 18, & 20,64 & 17,700 & 64,764 \\
\hline 1-bottom & 52.36 & 61,911 & 28,741 & 8,814 & 26,528 & 20,901 & 17,331 & 25,461 & 24,246 & 16,379 & 22,817 & 14,274 & 3,805 \\
\hline 2-bottom and lergar & 94.28 & 61,038 & 19,155 & 7,615 & 33,419 & 22,172 & 29,462 & 55,765 & 34,009 & 29,833 & 33,649 & 17,191 \({ }^{\circ}\) & 1,529 \({ }^{\circ}\) \\
\hline Tractor & & & & & & & & & & & & & \\
\hline 2-bottom & 64.10 & 87,059 & 9,846 & 41,580 & 55,479 & 32,124 & 46,966 & 72,304 & 63,365 & 65,658 & 61,698 & 58,408 & 17,818 \\
\hline S-bottom & 105.70 & 44,509 & 9,521 & 2,503 & 4,704 & 1,950 & 3,749 & 11,966 & 14,419 & 26,776 & 88,106 & 22,268 & 4,885 \\
\hline Listers (middle buatere), horse, l-botton & 24.49 & 35,551 & 20,607 & 7,032 & 54,576 & 51,413 & 50,536 & 39,878 & 23,779 & 25,669 & 37,255 & 36,082 & 6,859 \\
\hline \begin{tabular}{l}
Hartows, rollers, pulverizers; and atalk outters \\
Harrow eootiong
\end{tabular} & & & & & & & & & & & & & \\
\hline Spike-tooth & 6.80 & 169,529 & 175,777 & 98,640 & 294,570 & 180,573 & 176,961 & 315,844 & 242,459 & 283,612 & 839,192 & 275,677 & 102,838 \\
\hline Spring-tooth & 11.44 & 92,601 & 82,527 & 67,246 & 120,462 & 87,850 & 109,464 & 117,757 & 117,434 & 233,029 & 126,506 & 104,159 & 44,018 \\
\hline Diak harrowe & & & & & & & & & & & & & \\
\hline Horse & 42.77 & 164,586 & 80,403 & 45,457 & 91,224 & 57,618 & 66,628 & 96,525 & 76,864 & 80,490
53,637 & 81,402 & 62,795 & 20,094 \\
\hline Traotor & 91.04 & 67,095 & 38,118 & 24,492 & 35,415 & 28,081 & 29,086 & 45,439
19,339 & 45,816 & 53,637
18,499 & 51,447
18,831 & 51,969
19,205 & 26,759
5,892 \\
\hline Sosil pulverizery and prozers & 46.72 & 31,085 \({ }^{\text {d }}\) & 7,283 & 2,940 & 11,873 & 9,046 & 6,757 & 19,339 & 22,813 & 18,499 & 18,831 & 19,205 & 5,892 \\
\hline Plenting and fortilizing machinery Corn planters, horso, 2-row Combination aorn and cottom plantore & 55.78 & 69,627 & 35,765 & 12,017 & 41,324 & 37,907 & 41,173 & 63,272 & 42,533 & 45,053 & 55,393 & 53,247 & 27,715 \\
\hline 1-row . & 20.39 & 90,732 & 33,142 & 9,595 & 34,791 & 50,919 & 52,140 & 65,235 & 39,636 & 41,702 & 80,998 & 79,196 & 10,962 \\
\hline 2-rom & 70.48 & 2,854 & 1,869 & 3,801 & 8,955 & 5,830 & 10,787 & 9,013 & 4,893 & 4,013 & 12,966 & 16,243 & 4,451 \\
\hline Combined listors and drilla Grain drills & 86.24 & 8,939 & 12,408 & 5,920 & 4,463 & 17,308 & 20,203 & 22,908 & 9,231 & 5,289 & 7,004 & 15,323 & 2,051 \\
\hline Horse & 130.60 & 100,637 & 41,106 & 16,741 & 29,425 & 15,288 & 51,777 & 46,041 & 52,506 & 63,087 & 61,113 & 54,183 & 8,893 \\
\hline Treotor & 174.10 & 3,406 & 1,465 & 885 & 1,147 & 291 & 805 & 2,072 & 6,123 & 10,347 & 29,296 & 12,683 & 2,487 \\
\hline Portilizor distributors, horso or traotor & 7.76 & 48,540 \({ }^{\circ}\) & 19,563 & 14,845 & 38,398 & 50,780 & 68,058 & 84,407 & 63,427 & 63,154 & 92,741 & 77.817 & 21,096 \\
\hline Yamurs aproadors & 117.86 & 103,036 & 44,145 & 24,023 & 36,548 & 35,842 & 53,839 & 67,322 & 67,722 & 62,559 & 61,000 & 47,722 & 18,707 \\
\hline Potato plentors, horso & 67.14 & 8,471 & 8,458 & 6,618 & 5,760 & 4,068 & 3,539 & 6,340 & 6,357 & 22,543 & 8,540 & 4,294 & 4,150 \\
\hline Cultivetors and weoder: & & & & & & & & & & & & & \\
\hline 1-horso & 4.88 & 516,312 & 86,349 & 58,619 & 154,786 & 129,372 & 156,539 & 236,154 & 132,244 & 159,173 & 202,765 & 156,184 & 57,999 \\
\hline 1-row & & & & & & & & & & & & & \\
\hline Falling & 22.25 & 57,379 & 52,987 & 20,651 & \(\begin{array}{r}54,142 \\ \\ \hline 137\end{array}\) & 71,904
118,036 & 51,975 & 68,121
147 & 54,546 & 57,401
91,978 & 51,694
115,254 & 41,365 & 8,822
40,502 \\
\hline \(\underset{\text { 2-rown }}{\text { Riding }}\) & 36.78
82.32 & 121,837 \({ }_{74,827}\) & 104,832
23,502 & 57,699
11,283 & 137,368
27,844 & 118,036
46,921 & 122,292
60,471 & 147,224
64,723 & 86,691
41,037 & \begin{tabular}{|l}
91,978 \\
87,567
\end{tabular} & 115,254
54,505 & 98,445
44,669 & 40,502
10,405 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Earresting machinery \\
Potato-digeting Elohinea (olovetor type) Grain binders \\
Combines (harrester-threnhers)
\end{tabular} & ( \(\begin{array}{r}80.08 \\ 163.04 \\ 1,372.62\end{array}\) & 11.718
250,572
8,627 & 7,707
72,314
8,927 & 15,585
38,5858
8,840 & 10,099
82,784
4,012 & 7,480
55,781
5,828 & 4,694
42,008
5,151 & 7,088
70.156
\(\mathbf{1 1 , 7 6 0}\) & 12,139
71,090
18,807 & \[
\begin{aligned}
& 16,428 \\
& \text { ar, } 29 \\
& 86,59
\end{aligned}
\] & \[
\begin{gathered}
9,400 \\
\mathbf{8 5 , 0 0 9} \\
36,067
\end{gathered}
\] & \[
\begin{gathered}
7,688 \\
90,264 \\
24,400
\end{gathered}
\] & \[
\begin{gathered}
8,006 \\
\substack{80,5508 \\
8,007} \\
\hline, 0
\end{gathered}
\] \\
\hline Eayting mahiners & & & & & & & & & & & & & \\
\hline Homery & 55.79 & 239,185 & 103,826 & 80,404 & 150,574 & 126,448 & 212,299 & 112,250 & 110,644 & 121,955 & 228,580 & 217,601 & 43,312 \\
\hline Raven, sulky (dump) & 30.69 & 84,498 & 84,228 & 30,019 & 46,592 & \(\begin{array}{r}52,479 \\ \hline 15.494\end{array}\) & 61,050
38.748 & 42,208
19 & 51,068 & 26,298 & 68,154 & \begin{tabular}{l}
46,918 \\
88.222 \\
\hline 88
\end{tabular} & 27,786 \\
\hline Loeders & 79.91 & 85,537 & 21,487 & 15,891 & 25.540 & 15,404 & 25,748 & 19,785 & 25,102 & 24,095 & 24,920 & 28,222 & 10,002 \\
\hline Rakem ( areop) & 58.67 & 22,984 & 14,444 & 0,091 & 16,011 & 13,846 & 11,092 & 18,270 & 12,265 & 17,298 & 18,275 & 17.151
50008 & 7.118 \\
\hline 8tankera & 84.14 & 10,129 & 8,818 & 1,651 & 5,651 & 4,841 & 3,716 & 4.004 & 3,542 & 5,409 & 6,276 & 5,092 & 2,369 \\
\hline \begin{tabular}{l}
Mahingen for proparing orope for martet or for \(u\). 0 \\
orain throohers (ateol) \\
Width of geare
\end{tabular} & & & & & & & & & & & & & \\
\hline 46 inohee or umder & 865.53 & 7,280 & 8,286 & 2,038 & 6,335 & 6,487 & 10,486 & 18,327 & 12,888 & 25,909 & 12,180 & 7,572 & 3,251 \\
\hline 47 Inches or orer & 1,211.45 & 1,512 & 1,357 & 667 & 2,677 & 1.558 & 1,898 & 2,705 & 1,603 & 1,981 & 1,578 & 922 & 557 \\
\hline chailage outtera (silo fillors) & 210.15 & 27,004 & 12,2516 & 25,4638 & 12,8468 & 10,682 & 8,771 & 8,857 & 0,247 & 0,817 & 8,085 & 6,749 & 8,166 \\
\hline Cora thollert, power, oylinder & \$56.99 & 850 & 1,100 & 727 & 2,746 & 1,949 & 1,343 & 1,607 & 1,488 & 1,998 & 2,152 & 1,463 & 1,052 \\
\hline Eay prestes, maging & 410,20 & 5,247 & 2,914 & 1,983 & 8,010
585007 & 2,014 & 3,744 & 1,849 & 2,047 & 1,955 & 2,172
53,108 & 2,069 & 17,311 \\
\hline Food erindere and oruahors, powor & 58.08 & 82,977 & 15,356 & 42,572 & 53,007 & 59,492 & 5s,28s & 41,221 & 40,745 & 47,301 & 53,106 & 25,692 & 27,124 \\
\hline  & 66.49 & 29,766 & 5,962 & 4,842 & 7,148 & 8,899 & 17,529 & 18,880 & 15,257 & 10,120 & 21,635 & 9,125 & 3,642 \\
\hline \multicolumn{14}{|l|}{Tonit value (dollers) in 2089.} \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multicolumn{14}{|l|}{\({ }^{\text {a Soill puiverleme anly. }}\)} \\
\hline \multicolumn{14}{|l|}{Erorao-drame only.} \\
\hline \multicolumn{14}{|l|}{ FLee bindere combinod.} \\
\hline
\end{tabular}
\(E_{\text {Tnoludes }}\) date for fodder cuttere.

Table A-2.~ PRODUCTION OF PRINCIPAL AGRICULTURAL IMPIBNENTS: 1929 AND 1933
\begin{tabular}{|c|c|c|c|}
\hline Produot & Weight \({ }^{\text {a }}\) & 1929 & 1933 \\
\hline \multicolumn{4}{|l|}{Plows and listers} \\
\hline \multicolumn{4}{|l|}{Moldboard plows} \\
\hline \multicolumn{4}{|l|}{Horse} \\
\hline \multicolumn{4}{|l|}{Walking} \\
\hline l-horse & 5.87 & 242,186 & 65,019 \\
\hline 2-horse and larger & 12.93 & 204,545 & 54,501 \\
\hline Sulky & & & \\
\hline 2-bottom & 52.36 & 22,817 & 2,371 \\
\hline 2 -bottcm & 94.28 & 35,649 & 2,171 \\
\hline \multicolumn{4}{|l|}{Traotor \({ }^{\text {Prater }}\)} \\
\hline 1- and 2-bottom & 61.90 & 66,813 & 4,827 \({ }^{\circ}\) \\
\hline 3-bottam and larger & 123.66 & 56,084 & 1.201 \\
\hline Disk plows, tractor & 129.69 & 16,397 & 1,048 \\
\hline 1-way disk tillers & 196.47 & 22,992 & 434 \\
\hline Listers (middle busters), tractor & 140.72 & 2,966 & 784 \\
\hline \multicolumn{4}{|l|}{Harrows, rollers, pulverizers, and atalk outters Harrows} \\
\hline l-horse (spixem and spring-taoth) & 5.24 & 30,885 & 10,967 \\
\hline \multicolumn{4}{|l|}{} \\
\hline Spike tooth & 6.80 & 339,192 & 40,043 \\
\hline Spring tooth & 11.44 & 126,306 & 31,371 \\
\hline \multicolumn{4}{|l|}{Disk harrows} \\
\hline Horse & 42.77 & 81.402 & 8,962 \\
\hline Tractor & 91.04 & 57,447 & 3,477 \\
\hline Stalk outters & 37.57 & 11,696 & 447 \\
\hline \multicolumn{4}{|l|}{Planting and fartilizing machinery Corn planters, horse} \\
\hline 1-rom & 17.29 & 19,385 & 5,082 \\
\hline 2-row & 55.78 & 55,393 & 4,632 \\
\hline \multicolumn{4}{|l|}{} \\
\hline 1-row & 20.39 & 80,993 & 6,052 \\
\hline 2-row & 70.48 & 12,966 & 497 \\
\hline Coubined 11sters and drills Grain dril1: & 86.24 & 7,004 & 1,525 \\
\hline Horse & 130.60 & 51,115 & 3,748 \\
\hline Tractor & 174.11 & 19,295 & 432 \\
\hline Fertilizer distributors, horse or tractor & 7.76 & 92,741 & 8,844 \\
\hline Lins spreaders & 28.20 & 12,265 & 524 \\
\hline Hanure spreaders & 117.87 & 61,000 & 6,415 \\
\hline \multicolumn{4}{|l|}{Cultivators and weeders Cultivators} \\
\hline \multicolumn{4}{|l|}{Horse=drawn, exoegt diak} \\
\hline l-horse & 4.83 & 202,755 & 56,744 \\
\hline Walking & 52.25 & 51,694 & 6,055 \\
\hline Riding & 36.78 & 115,254 & 16,325 \\
\hline 2-row & 82.32 & 54,505 & 2,209 \\
\hline Traotor-dramin & 85.81 & 54,634 & 5,906 \\
\hline Weeders & 17.79 & 25,221 & 4.109 \\
\hline \multicolumn{4}{|l|}{Harvesting machinery} \\
\hline Combines (harvester-threshers) & \[
1,572.42
\] & \[
56,957
\] &  \\
\hline Potato-digging maohines (olevator type) & \[
80.08
\] & \[
9,400
\] & \[
1,643
\] \\
\hline \multicolumn{4}{|l|}{Haying machinery} \\
\hline Mowers & 65.79 & 126,360 & 37,491 \\
\hline Rakes, fulky (dump) & 30.69 & 58,134 & 5,164 \\
\hline Loadera & 79.91 & 24,920 & 955 \\
\hline \multicolumn{4}{|l|}{Maohines for proparing orops for market or for use} \\
\hline Easilage outters (atlo fillers) & 210.15 & 8,065 & 1,536 \({ }^{\text {b }}\) \\
\hline Corn ohellers ( & & & \\
\hline Hand & 10.28 & 34,928 & 9,970 \\
\hline Power & 222,68 & 5,450 & 490 \\
\hline
\end{tabular}

Onit value (doliars) in 2929.
bror a part of the produotion, only value was indioated. The "numbor reported" was, therefore, adjusted by the ratio of value of total production to value of "number reported."

Table Anse Froduction or privicipal agricultural maplaments: 1929, 1935, AND 1936
\begin{tabular}{|c|c|c|c|c|}
\hline Product & Woight \({ }^{\text {a }}\) & 1929 & \(1985{ }^{\text {b }}\) & \(1936{ }^{\text {b }}\) \\
\hline \multicolumn{5}{|l|}{P1owe and 11eters Moldboasd plowe Falling} \\
\hline 1-horse & 5.87 & 242,186 & 159,184 & 156,878 \\
\hline 2-horse and larger & 12.93 & 204,545 & 160,368 & 124,569 \\
\hline 2-bottoa & 64.10 & 61,698 & 58,927 & 85,217 \\
\hline 8-botticm & 105,70 & S8,106 & 9,032 & 15,204 \\
\hline Diek plows, trector, 1-may disk tillera & 196.47 & 22,992 & 6,980 \({ }^{\circ}\) & 9,651 \({ }^{\circ}\) \\
\hline \multicolumn{5}{|l|}{Harrows, rollers, pulverizers, and atalk outtors Hírrown:} \\
\hline Spike- and apring-tooth, horse or tructor & 7.88 & 496,583 & 276,272 & 337.483 \\
\hline Disk harrows, horse or tractor (single or double setion) & 62.74 & 138,849 & 82,756 & 109,680 \\
\hline Plenting end fortilizing machinery Corn plantere. 2-row, horse or traotor & 55.78 & 55,393 & 19,779 & 41,351 \\
\hline Combination corn and cotton planters & & & & \\
\hline 1-row & 20.59 & 80,993 & 58,575 & 49,567 \\
\hline 2-row, horse or tractor & 70.48 & 12,966 & 11,104 & 8,161 \\
\hline Grain drills, horse or traotor & 142.52 & 70,408 & 32,410 & 47,218 \\
\hline Manure spreadera & 117.86 & 61,000 & 31,462 & 53,361 \\
\hline \multicolumn{5}{|l|}{Cultivators and woeders Cultivator:} \\
\hline Eorso-drum, excopt diok & & & & \\
\hline 3-horse & 4.83 & 202,755 & 128,853 & 122,326 \\
\hline 1-700\% & & & & \\
\hline Walking & 52.25 & 51,694 & 16,706 & 15,742 \\
\hline Riding & 36.78 & 115,254 & 34,287 & 46,328 \\
\hline Traotor-drawn & 83.81 & 34,634 & 54,519 & 115,957 \\
\hline \multicolumn{5}{|l|}{Harresting machinery} \\
\hline Grain bindera & 163.84 & 65,069 & 47.140 & 66,970 \\
\hline Cambines (harvester-threshers) & 1,571.42 & 36,957 & 3,872 & 16,983 \\
\hline Cora bindert (row binders) & 140.48 & 15,246 & 19,290 & 19,364 \\
\hline \multicolumn{5}{|l|}{Haying machinery} \\
\hline Mowers & 55.79 & 126,360 & 118,898 & 124,651 \\
\hline Raked, rulky (dump) & 30.69 & 68,134 & 40,730 & 46,549 \\
\hline Louders & 79.92 & 24,820 & 8,815 & 22,742 \\
\hline \multicolumn{5}{|l|}{Mahines for preparing erops for market or for use} \\
\hline Grain threahers & 894.58 & 15,818 & 4,619d & 8,622 \({ }^{\text {d }}\) \\
\hline Ensilage eutters (silo fillors) & 210.15 & 8,065 & 7,294 & 12,850 \\
\hline Cosm muakera and mhreddora & 473.49 & 972 & 1,304 & 1,428 \\
\hline Hiny presees, engine or bolt power & 416.20 & 2,172 & 3.211 & 3,577 \\
\hline
\end{tabular}

Value por unit (dollars) in 1929.
\({ }^{\text {bonta }}\) for 1955 and 1936 Prou Manufacture and Sale of Fama Equipment and Related Pron

"clamaried an "l-may diak plowa or tillers."
dnoluden rico and alfalfa threshers.

Table A-4.- NUMBER OF WAGE EARNERS AND AVERAGE WEEKLY HOURS IN THE AGRICULTURAL INPLEMENTS INDUSTRY: 1920 TO 1936
\begin{tabular}{l|c|c}
\hline Year & \begin{tabular}{c} 
Average number \\
of wage earnersa
\end{tabular} & \begin{tabular}{c} 
Average hours \\
worked per week
\end{tabular} \\
\hline 1920 & 73,900 & 48.4 \\
1921 & 30,500 & 41.1 \\
1922 & 29,400 & 48.2 \\
1923 & 30,962 & 49.2 \\
1924 & 24,800 & 47.9 \\
1925 & 28,696 & 49.6 \\
1926 & 32,500 & 49.3 \\
1927 & 33,346 & 48.9 \\
1928 & 38,800 & 49.6 \\
1929 & 41,663 & 49.3 \\
1930 & 31,200 & 43.2 \\
1931 & 17,529 & 35.3 \\
1932 & 10,400 & 32.7 \\
1933 & & 31,140 \\
1934 & 19,400 & 33.7 \\
1935 & 28,200 & 36.5 \\
1936 & 31,900 & 39.5 \\
& & \\
\hline
\end{tabular}
\({ }^{2}\) The number of wage earners for 1920-22 was estimated through the use of the N.I.C.B. index and for 1935, by means of the B.L.S. - index.
bHours for 1920-32 are the N.I.C.B. series spliced to B.L.S. hours for 1932-36.

\title{
Table A-5.- BEET SLICING AND SUGAR PRODUCTION IN THE BEEF SUGAR IITDUSTRI: \\ 1918 TO 1936 \\ (Thousands of short tons)
}
\begin{tabular}{l|r|r}
\hline \hline \begin{tabular}{c} 
Calendar \\
year in \\
which cam- \\
paign began
\end{tabular} & \begin{tabular}{c} 
Washed beets \\
sliced \({ }^{\text {a }}\)
\end{tabular} & \begin{tabular}{c} 
Sugar \\
production
\end{tabular} \\
\hline 1918 & & \\
1919 & 5,649 & 719 \\
1920 & 5,882 & 684 \\
1921 & 7,873 & 1,023 \\
1922 & 7,977 & 1,046 \\
& 5,786 & 749 \\
1923 & 7,296 & 924 \\
1924 & 7,423 & 1,076 \\
1925 & 7,133 & 906 \\
1926 & 6,711 & 893 \\
1927 & 7,443 & 1,095 \\
1928 & 6,951 & 1,068 \\
1929 & 7,153 & 1,023 \\
1930 & 8,789 & 1,210 \\
1931 & 7,620 & 1,156 \\
1932 & 8,821 & 1,350 \\
& 10,746 & 1,626 \\
1933 & 7,343 & 1,151 \\
1934 & 7,745 & 1,178 \\
1935 & & 1,299 \\
1936 & & \\
\hline
\end{tabular}

Cor even-numbered years 1918-28 and for 1931 and 1935, Census of Manufacturess for other years of period 1918-1933, estimates made by means of statistics obtained from Yearbook of Agriculture: 1934 (U. S. Dept. Agr.), p. 471, and Agricultural Statistics 1936 (U. S. Dept. Agr.). p. 91s and for 1934-36, Iamborn' a Vest Pocket Sugar Data (Lamborn and Co., Inc.). The years to which the Census data refer prior to 1923 were established by correspondence with the Bureau of the Census.
\(b_{\text {For even-rumbered years 1918-28 and odd-mumbered years 1931-35, }}\), Census quantities; for remaining years, estimates obtained by Interpolation of the Census series by another based on Agrioultural Statistics: 1936, p. 91 (for 1918-34) and Lamborn's Vest Pocket Sugar Data (for 1935-36).

Table A-6.- CAMPAIGN, INTERCAMPAIGN, AND FISCAL-YEAR MAN-HOURS IN THE BEET SUGAR INDUSTRY: 1919 TO 1935
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow[t]{2}{*}{Campaign man-hours per ton of sugar produced \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Intercampaign manhours per ton of -} & \multicolumn{3}{|c|}{Thousands of man-hours} \\
\hline & & \[
\begin{aligned}
& \text { Beets } \\
& \text { sliced }
\end{aligned}
\] & \[
\underset{\text { Sugar }}{\text { Suced }}
\] & Campaign \({ }^{\text {d }}\) & Intercampaign \({ }^{\theta}\) & Fiscal yoarf \\
\hline & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline 1919 & 22.64 & 1.98 & - & 15,486 & 11,664 & 27,150 \\
\hline 1920 & 18.53 & 1.54 & - & 18,955 & 12,101 & 81,056. \\
\hline 1921 & 14.69 & 1.52 & - & 15,362 & 12,141 & 27,503 \\
\hline 1922 & 15.25 & 1.60 & - & 11,419 & 9,275 & 20,694 \\
\hline 1923 & 15.20 & 0.82 & - & 14,047 & 5,975 & 20,022 \\
\hline 1924 & 12.71 & 1.02 & - & 13,680 & 7,557 & 21,237 \\
\hline 1925 & 14.87 & 1.14 & - & 13,476 & 8,132 & 21,608 \\
\hline 1926 & 12.54 & 0.92 & - & 11,197 & 6,141 & 17,338 \\
\hline 1927 & 11.29 & 0.84 & - & 12,366 & 6,267 & 18,633 \\
\hline 1928 & 10.16 & - & 5.66 & 10,852 & 6,044 & 16,896 \\
\hline 1929 & 10.92 & 0.86 & 6.02 & 11,175 & 6,164 & 17,339 \\
\hline 1930 & 10.23 & - & 3.78 & 12,383 & 4.574 & 16,957 \\
\hline 1931 & 8.95 & - & 4.63 & 10,344 & 5,358 & 15,702 \\
\hline 1932 & 9.42 & - & 4.07 & 12,716 & 5,489 & 18,205 \\
\hline 1933 & 8.52 & - & 4.47 & 13,854 & 7,268 & 21,122 \\
\hline 1934 & 9.06 & - & 5.78 & 10,426 & 6,659 & 17,085 \\
\hline 1935 & 8.70 & - & 4.65 & 10,254 & 5,473 & 15,727 \\
\hline
\end{tabular}
a Computed from sugar-produotion and man-hours statistios collected by N.R.P.NoB.E.R. in a field studys the reaults of which are sumarized in Productivity and Employment in Seleoted Industries Beet Sugar (Ma. .P. Rep. No. N-I), by R. K. Adamson and M. E. West. The two series are for 31 identical plants which accounted for \(37-55\) percent of the total production of the industry.
\(b_{A}\) first approximation to total intercampaign man-hours was derived as follows: For the odd-numbered yeart 1919-29, the average number of wage earners per intercampaign day (everage Census employment for Mar.-Sept. exoept in 1927. when the average of the intercampaign-to-annual ratios for 1925 and 1929 was applied to the Census average for the year) was multiplied by intercampaign hours per man. The latter is the product of (1) the difference between 357 working days per year ( 365 leas 5 holidays and 3 for faotory delays) and the number of campaign days and (2) 44 hours per week difided by 7 days per week (all based on information colleoted in N.R.P. - N.B.E.R. Pield study). This series, a first approximation, was then raised to the level of the final estimate of intercampaign man-hours in 1929 (see \(f\). c) and divided by the beets-siliced series (Table A-5). The man-hour-requirement ratios thus obtained wers then interpolated by means of a continuous aeries for 1919-27 based on an observed inverse relationship in 1928-55 botwaen intercampaign inbor-requirement ratios and the length of the campaign for 27 identical plants (see fn. c).

CIntercampaign man-hours per ton of sugar (27-plant sample) raised to level of 3l-plant sample (see the a) by use of ratio of campaign beet-slicing man-hour requirements for 31 plants to those for 27. The latter group inoludes 21 of the 31 plants and accounts for 34-55 percent of total beet-sugar production.
\({ }^{\text {d Product of sugar output (Table A-5) and campaign man-hour requirements }}\) (col. 1).
-For 1919-27, tomage of washed beets sliced (Table A-5) multiplied by beet-slicing-requi rement ratios ( \(\infty 1,2\) ): and for 1928-35, produot of ougar output (Table A-5) and intercampaign man-hours per ton of sugar ( 001.5 ).

ISum of 2 preseding columns.

Fable A-T.- PRODUCTION OF BOOTS AND SHOES: 1919 TO \(1936^{a}\)
(Thousands of pairs)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { Mon's } \\
& \text { shoest }
\end{aligned}
\] & Boys' and youths' shoes & Tomen's shoes & Misses' and children's shoes & \begin{tabular}{l}
Slippers \\
and all \\
other \\
footwear \({ }^{\text {c }}\)
\end{tabular} \\
\hline 1919 & 95,017 & 26,503 & 104,813 & 48,538 & 56,353 \\
\hline 1920 & (d) & (d) & (d) & (d) & (d) \\
\hline 1921 & 69,458 & 18,462 & 101,474 & 35,066 & 62,312 \\
\hline 1922 & 89,984 & 21,632 & 105,368 & 39,444 & 67,449 \\
\hline 1923 & 100,283 & 22,239 & 109,676 & 40,136 & 78,781 \\
\hline 1924 & 84,663 & 20,274 & 104,135 & 35,694 & 68,465 \\
\hline 1925 & 86,546 & 21,021 & 104,782 & 38,691 & 72,513 \\
\hline 1926 & 85,600 & 22,290 & 113,872 & 44,290 & 69,760 \\
\hline 1927 & 93,013 & 26,915 & 123,517 & 51,386 & 72,235 \\
\hline 1928 & 92,791 & 24,133 & 129,820 & 44,642 & 69.248 \\
\hline 1929 & 100,747 & 22,616 & 136,010 & 44,206 & 67,629 \({ }^{\text {® }}\) \\
\hline 1930 & 80,465 & 18,139 & 116,011 & 37,519 & 56,360 \\
\hline 1931 & 79,152 & 19,524 & 115,261 & 42,352 & 59,769 \({ }^{\text {e }}\) \\
\hline 1952 & 75,241 & 16,648 & 116,675 & 45,730 & 58,887 \\
\hline 1933 & 88,656 & 17,277 & 133,691 & 49,339 & 60,383 \({ }^{\circ}\) \\
\hline 1934 & 90,021 & 16,519 & 135,040 & 45,848 & 71,698 \\
\hline 1935 & 96,650 & 18,500 & 146,286 & 43,521 & 83,535 \\
\hline 2938 & 100,773 & 17,183 & 162,985 & 43,036 & 95,792 \\
\hline Weight & 8.102 & 2.172 & 3.178 & 1.758 & 1.191 \\
\hline
\end{tabular}
\(a^{\text {Cunantities for even-mmbered years 1926-34 were obtained by interpolation }}\) and for 1936 by extrapolation of Census of Manufactures data by means of statistios published in Survey of Current Business, "1936 Supplement," p. 110, and Mar. 1937, p. 46.

The aupplementary series were "compiled by the U. S. Department of Com= meroc, Bureau of the Consug. The figures for . . . 1922 to date are compiled from monthly reports to the Bureau of the Consus from manufaoturers representing approximately 95 peroent of the total United States production for 1922 to 1929; 98 percent fram 1930 to 1933; and 99 percent for 1984 and 1935." ("1936 Supp.," p. 174, fn. 3 to p. 110.) The monthly averagos were multiplied by 12 to obtain the annual totals.
\({ }^{6}\) Survey of Current Business atatiatios for years prior to 1927 are not striotly comparable with those for subsequent years because large quantities of heavy footwear were included with "athletic" in the earlier period. ("1936 Supp.," pe 174, fn. 4 to p. 110.)
\({ }^{\text {'Incoludes the following kinds of shoess Infants', athletio and sporting, }}\) canvas and other textile-fabric, slippers for housewear, and "other footwear."
\({ }^{d}\) Data not available. The index number for 1920 was extrapolated by means of the F.R.B. index of boot-and-shoe production (Federal Reserve Index of Industrial Production, mimeo., Apr. 1936, P. 19). The F.R.B. index numbers (1923-25 = 100) are 96 for 1920 and 87 for 1921.
\({ }^{\text {0r}}\) Other footwear" not oalled for on schedule.
\({ }^{\text {f }}\) value por pair (dollars) in 1929.

Table A-8.- NUMBER OF WAGE EARNERS AND AVERRAGE WEEKLY HOURS IN THE BOOTS AND SHOES INDUSTRY:

1918 тO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c} 
Average hours \\
worked per weeka
\end{tabular} \\
\hline 1919 & 211,049 & 45.8 \\
1920 & 198,900 & 44.1 \\
1921 & 183,502 & 45.7 \\
1922 & 203,000 & 44.1 b \\
1923 & 225,216 & 45.6 \\
1924 & 205,600 & 44.1 \\
1925 & 206,992 & 45.8 \\
1926 & 203,400 & 44.6 \\
1927 & 203,110 & 45.2 \\
1928 & 197,200 & 44.3 \\
1929 & 205,640 & 44.2 \\
1930 & 191,900 & 40.4 \\
1931 & 181,374 & 44.5 \\
1932 & 179,700 & 41.1 \\
1933 & 190,914 & 39.6 \\
1934 & 202,100 & 37.3 \\
1935 & 202,113 & 37.1 \\
1936 & 199,900 & \\
\hline
\end{tabular}
\({ }^{\text {a }}\) The figure for 1919 was obtained by adjusting Census prevailing hours by the average of the ratios for 1921 and 1923 of N.I.C.B. actual to Census prevailing hours; those sfor 1920-36 are from N.I.C.B.
\({ }^{\text {b Average of the N.I.C.B. Pigure (46.3) for the last } 6 \text { months of }}\) the year and a B.L.S. figure (41.8) for the earlier part of the year, principally April and May. The latter was computed from data for 47,361 wage earners, or 23 percent of the total, which were published in Wages and Hours of Labor in the Boot and Shoe Industry: 1922 (Bull. No. 324). pp. 40-91.

Table A-9.- PRODUCTION OF PRINCIPAL BAKERY FRODUCTS: CEYSUS YEARS 1923 TO 1935
(Thousands of specified units)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Industry and year} & \multicolumn{3}{|c|}{Pounds} & \multirow[b]{2}{*}{Doughnuts, crullers, and other fried cakes (dozens)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Census } \\
\text { coverage } \\
\text { (percent) }
\end{gathered}
\]} \\
\hline & Bread, rolls, and coffee eake & Biscuit, crackers, and cookies & Protzels & & \\
\hline Biscuit and Crackers & & & & & \\
\hline \(1923{ }^{\text {b }}\) & 9,131 & 1,120,378 & n.a. & n. A. & 100.0 \\
\hline 1926 & 30,282 & 1,166,638 & 688 & nea. & 100.0 \\
\hline 1927 & 25,249 & 1,243,364 & 8,535 & no.a. & 100.0 \\
\hline 1929 & 22,077 & 1,322,682 & 43,865 & 699 & 100.0 \\
\hline 1931 & 48,002 & 1,115,229 & 44,235 & 289 & 99.8 \\
\hline 1933 & 35,238 & 1,010,952 & 48,879 & 396 & 100.0 \\
\hline 1935 & 39,052 & 1,259,600 & 56,754 & 153 & 100.0 \\
\hline Weight \({ }^{\text {c }}\) & 0.070 & 0.196 & 0.160 & 0.200 & - \\
\hline Bakery Products Other Than Biscuit and Crackers & & & & & \\
\hline 1923 \({ }^{\text {b }}\) & 8,437,778 & 12,879 & n.a. & n.a. & 100.0 \\
\hline 1925 & 7,293,421 & 30,749 & 26,839 & nea. & 81.1 \\
\hline 1927 & 8,754,848 & 12,693 & 31,293 & n.E. & 86.2 \\
\hline 1929 & 0,842,145 & 26,114 & 1,439 & 200,392 & 89.5 \\
\hline 1931 & 0,044,295 & 21,776 & 946 & 163,097 & 88.6 \\
\hline 1933 & 8,168,105 & 33,613 & 815 & 117,457 & 91.4 \\
\hline 1935 & 9,268,526 & 63,445 & 3,101 & 203,035 & 93.7 \\
\hline Weight \({ }^{\text {e }}\) & 0.077 & 0.165 & 0.186 & 0.200 & - \\
\hline
\end{tabular}

Percentage that value of production reported in detail is of value of total produation. The M.R.P. production indexes for the 2 industries are quotients of the inderes derived from the quantities and weights show in the preceding colvmins and indexes of the coverage peroentages.
\(b_{\text {The quantities for this year were raised by the Census to represent the total }}\) output of these products fram detailed statietics for eatablishments accounting for 96.9 peroent of the total value of products of Bisouit and Craokers and 79.3 peroont of the total value of output of Bakery Products Other Than Biscuit and Crackers.
\({ }^{0}\) Unit value (dollars) in 1929.

Table A-10.- INDEX OF WHEAT-FLOUR CONSUMPTION IN THE BREAD AND OTHER BAKERY PRODUCTS GROUP:

1923 TO 1936
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Total production of wheat flour} & \multicolumn{2}{|l|}{Wheat-flour consumption in industry group} \\
\hline & Thousands of barrels & \[
\begin{gathered}
\text { Index }{ }^{a} \\
(1929=100)
\end{gathered}
\] & \[
\begin{gathered}
\text { Thousands } \\
\text { of } \\
\text { barrels }
\end{gathered}
\] & \[
\begin{gathered}
\text { Index } \\
(1929=100)
\end{gathered}
\] \\
\hline & (1) & (2) & (3) & (4) \\
\hline 1923 & 114,439 & 95.3 & 34,964 & 79.5 \\
\hline 1924 & n.a. & 101.4 & nol. & 87.5 \\
\hline 1925 & 114,690 & 95.5 & 37.538 & 85.1 \\
\hline 1926 & n.8. & 99.5 & noa. & 92.2 \\
\hline 1927 & 118,132 & 98.4 & 41,728 & 94.7 \\
\hline 1928 & n.a. & 99.3 & nor. & 97.4 \\
\hline 1929 & 120,040 & 100.0 & 44,047 & 100.0 \\
\hline 1930 & n.a. & 101.9 & nea. & 101.8 \\
\hline 1931 & 115,364 & 96.1 & 42,205 & 95.8 \\
\hline 1932 & n.a. & 87.2 & noa. & 88.8 \\
\hline 1933 & 101,638 & 84.7 & n.a. & 87.9 \\
\hline 1934 & n.a. & 86.4 & nor. & 91.5 \\
\hline 1935 & 102,327 & 85.2 & 40,507 & 91.9 \\
\hline 1936 & n.a. & 89.2 & nea. & 96.2 \\
\hline
\end{tabular}
afigures for census years computed from preceding column. The series was completed for interoensal years by means of the Federal Reserve Board index of wheat flour milled (Federal Reserve Index of Industrial Production, mimeo., Apr. 1936, pp. 19-20; and Federal Reserve Bulletin, Apr. 1937, p. 352). The F.R.B. Index is based on figures in Russell's Commeroial News and Northwestern Miller.
\({ }^{\mathrm{b}}\) Quotient of the quantity consumed by reporting establishments and the peroentage which the value of products of these establishments comprises of the total value. The 1923 figure was adjusted by the Census in a similar manner. The percentages are:
\begin{tabular}{|c|c|c|c|}
\hline 1923 & 80.6 & 1929 & .... 90.8 \\
\hline 1925 & 86.4 & 1931 & . 85.3 \\
\hline 1927 & 87.9 & 1935 & 86 \\
\hline
\end{tabular}
\({ }^{\text {c Col. (2) multiplied by relatives of the percentage of wheate }}\) flour production consumed in the Bread and Other Bakery Prom ducts group. For census years except 1933, these percentages were computed from 0018 . (1) and (3). For all other years except 1936, percentages were obtained by straight-line interpolation. The 1935 percentage was assumed for 1936.

\section*{Table A-11.- HUXBER of wage caralers and average weexly hours II THE BREAD AND OTHER bak ERY PRODUCTS GROUP: \\ 1923 T0 1936}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|l|}{Average number of wage earners} & \multirow[t]{2}{*}{Average hours per week in the Bread and Other Bakery Products group \({ }^{\text {b }}\)} \\
\hline & Bread and Other Bakery Products group & Biscuit and Crackers \({ }^{\text {a }}\) & Bakery Products Other Than Biscuit and Crackers \({ }^{\text {a }}\) & \\
\hline 1923 & 162,613 & 35,117 & 127,496 & 50.6 \\
\hline 1924 & 164,300 & 34,300 & 130,000 & 50.7 \\
\hline 1925 & 160,411 & 32,377 & 128,034 & 50.7 \\
\hline 1926 & 164,700 & 32,400 & 132,300 & 50.8 \\
\hline 1927 & 171,995 & 32,982 & 139,013 & 50.9 \\
\hline 1928 & 182,400 & 33,000 & 149,400 & 50.9 \\
\hline 1929 & 200,841 & 33,871 & 166,970 & 51.0 \\
\hline 1930 & 197,400 & 32,000 & 165,400 & 49.6 \\
\hline 1931 & 183,161 & 28,397 & 154,764 & 48.1 \\
\hline 1932 & 173,500 & 26,400 & 147,100 & 46.7 \\
\hline 1933 & 182,382 & 27,153 & 155,229 & 44.4 \\
\hline 1934 & 212,300 & 30,200 & 182,100 & 40.5 \\
\hline 1935 & 218,423 & 29,241 & 189,182 & 40.5 \\
\hline 1936 & 225,700 & 30,200 & 195,500 & 42.3 \\
\hline
\end{tabular}

Pigures for wage earners for intercensal years were estimated by distributing the group totals on the basis of the average of the proportions in adjacent (odd-nombered) years. The 1935 proportions were assumod for 1936.
\({ }^{6}\) For 1923 and 1929, Census provailing weekly hours; for 1932-36, B.L.S. actual hours; for all other years, estimates made by straight-line interpolation. B.L.s. hours for the first 10 months of 1932 were supplied by H.ReA. Research and Planning Divisiong those for Hov. 1952 to Dec. 1933, were reported in Yonthly Labor Review, Jan. 1933 to Feb. 1934.

Table A-12.- PRODUCTION IN THE CANE-SUGAR REFINING INDUSTRY:
1919 TO 1936
(Short tons)
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Refined-sugar \\
production
\end{tabular} & \begin{tabular}{c} 
Raw-sugar \\
meltings
\end{tabular} \\
\hline 1919 & \(4,205,400\) & \(4,502,548\) \\
1920 & \(4,357,100\) & \(4,665,024\) \\
1921 & \(3,770,163\) & \(4,036,032\) \\
1922 & \(5,416,300\) & \(5,81,456\) \\
1923 & \(4,429,128\) & \(4,763,136\) \\
1924 & \(4,805,800\) & \(5,173,056\) \\
1925 & \(5,411,717\) & \(5,83,336\) \\
1926 & \(5,460,000\) & \(5,877,312\) \\
1927 & \(5,128,082\) & \(5,511,744\) \\
1928 & \(4,997,100\) & \(5,304,768\) \\
& & \\
1929 & \(5,115,308\) & \(5,365,248\) \\
1930 & \(5,027,400\) & \(5,269,824\) \\
1931 & \(4,429,799\) & \(4,693,488\) \\
1932 & \(4,017,800\) & \(4,185,216\) \\
1933 & \(3,938,468\) & \(4,080,384\) \\
1934 & \(3,931,800\) & \(4,057,536\) \\
1935 & \(4,209,966\) & \(4,328,688\) \\
1936 & \(4,279,800\) & \(4,398,563\) \\
\hline
\end{tabular}
a \(_{\text {The }}\) Census series for the odd-numbered years 1921-35, which represents hard and soft (or brown) sugar production in continental United States, was completed by means of the raw-sugarmeltings series shown in the next column. The Census figure for 1919 ( \(3,521,453\) short tons) was not used since it appeared to be an understatement.
\(b_{\text {Figures }}\) for 1919-35 from Survey of Current Business, " 1936 Supplement," p. 100; and for 1936, from Mar. 1937, p. 44. Data were compiled by Willett and Grey's Statistical Sugar Trade Journal. "Meltings of raw sugar represent operations of refineries located at 8 ports - Boston, New York, Philadelphia, Baltimore, Savannah, New Orleans, Galveston, and San Prancisco, the Baltimore figure being added in 1921 upon the completion of a refinery in that city. The figures are reported weekly, and these figuree have been used to compute monthly totals by prorating the data for the overlapping weeks. The New Orleans figures are partly estimated." ("1936 Supp." " p. 171, in. 1 to p. 100.) The published monthly averages - in long tons - were converted to yearly totals in short tons by multiplication by 13.44.

Table A-13. - NUMBER OF TAGE EARNERS, AVERAGE WEEKLY HOURS, WAGES, AND AVERAGE HOURLY EARNINGS IN THE CANE-SUGAR REFINING INDUSTRY: 1919 TO 1936
\begin{tabular}{l|c|c|c|c}
\hline \hline Year & \begin{tabular}{c} 
Average \\
number \\
of wage \\
earners
\end{tabular} & \begin{tabular}{c} 
Average \\
hours \\
per \\
weele
\end{tabular} & \begin{tabular}{c} 
Wages \\
(dollars)
\end{tabular} & \begin{tabular}{c} 
Average \\
houriy \\
oarnings \\
(dollars)
\end{tabular} \\
\hline 1919 & 18,202 & 58,9 & - & - \\
1920 & 17,300 & 59,6 & - & - \\
1921 & 15,457 & 60.2 & - & - \\
1922 & 18,100 & 58,5 & - & - \\
1923 & 15,254 & 56.7 & - & - \\
1924 & 14,500 & 57.2 & - & - \\
1925 & 14,502 & 57.7 & - & - \\
1926 & 14,000 & 58.3 & - & - \\
1927 & 13,996 & 58.8 & - & - \\
1928 & 13,200 & 59.3 & - & - \\
1929 & 13,912 & 59.8 & - & - \\
1930 & 13,600 & 58.7 & \(17,538,000\) & 0.461 \\
1931 & 11,855 & - & \(15,547,243\) & .454 \\
1932 & 10,900 & - & \(13,002,000\) & .447 \\
1933 & 11,495 & - & \(12,237,321\) & .482 \\
1934 & 13,600 & - & \(13,256,000\) & .549 \\
1935 & 13,832 & - & \(13,913,501\) & .568 \\
1936 & 13,200 & - & \(13,765,000\) & .579 \\
\hline
\end{tabular}
all figures are prevailing hours. Those for 1919, 1921, 1923, and 1929 were computed from Census frequency distributions; those for intermediate years were obtained by straight-line interpolation; and the 1930 estimate was derived from Wages and Hours of Labor in the Cane-Sugar Refining Industry: 1930 (B.L.S. Bull. No. 547). p. 18.

The B.L.S. ample for representative pay periods in 1930 included 11,890 wage earners (in 21 refineries), or about 87 percent of the total number for that year.
The figure for 1930 was obtained fram B.L.S. Bull. No. 547, p. 18 (for description of sample, see fn . a); those for 1932-36, fram the regular B.L.S. series; and that for 1931, by straightline interpolation.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produet & Woight \({ }^{\text {b }}\) & 1919 & 2921 & 1923 & 1925 & 1927 & 1929 & 1951 & 2955 & 1935 \\
\hline Cannod vogotables & & & & & & & & & & \\
\hline Asparagus (*2 \({ }^{\frac{1}{2} \text { ) }}\) & 6.665 & 1,007 & 740 & 1,462 & 1,476 & 1,855 & 2,521 & 1,598 & 1,756 & 2,493 \\
\hline Boune (te) & 2.205 & 14,824 & 21,516 & 20,468 & 24,441 & 25,994 & 51,587 & 24.755 & 26,215 & 50,926 \\
\hline Beots (H3) & 2.632 & 56 & 391 & 545 & 1,214 & 742 & 1,739 & 1,353 & 1,123 & 2,216 \\
\hline Corn ( \({ }_{\text {W }}\) ) & 2.178 & 14,405 & 8,011 & 14,704 & 22,857 & 10,358 & 16,691 & 19,572 & 10,308 & 22,274 \\
\hline Honiny & 1.455 & - & n. & n.a. & - & 1,695 & 1,765 & 1,075 & 1,170 & 1,248 \\
\hline Mraut & 1.994 & \(-\) & nea. & - & - & 5,201 & 4,224 & 3,646 & 3,345 & 4.405 \\
\hline Poat (ta) & 2.507 & 9,526 & 8,222 & 14,454 & 16,796 & 15,242 & 27,757 & 13,412 & 13,462 & 25,446 \\
\hline Pimentos & S.980 & not. & now- & nu.a. & & 487 & 506 & +274 & + 270 & 72 \\
\hline Pumprin and aquash & 1.739 & - & noa. & nos & - & 1,094 & 2.424 & 1,008 & 1,763 & 1,019 \\
\hline spaghetti & 1.965 & not. & n.a. & nea. & - & 2.751 & 4,239 & 2,797 & 3,168 & 3,414 \\
\hline Spinach (\%3) & 2.736 & 676 & 681 & 1,875 & 1,551 & 2,268 & 4,435 & 1,634 & 2,345 & 5,294 \\
\hline Townto sauco & 2.678 & noe. & n.a. & nas. & & 410 & \({ }^{952}\) & 466 & 1,667 & 1,509 \\
\hline Tometoen (*) & 2.491 & 11,836 & 4,154 & 14,781 & 15,303 & 14.419 & 16,928 & 10,990 & 12,577 & 20,708 \\
\hline camned fruita Appies (\#5) & & 2,448 & 2,239 & 2,726 & 2,604 & 5,303 & 4,059 & 2,523 & 2,871 & 2,509 \\
\hline  & 4.185 & 3,940 & 1,057 & 1,562 & 1,941 & 2,975 & 4,096 & 2,031 & 2,589 & 5,143 \\
\hline Berries (ta) & 5.784 & 2,347 & 1,257 & 2,447 & 2,502 & 2,681 & 2,841 & 2,975 & 1,629 \({ }^{\circ}\) & 2,991 \\
\hline Cherries (\%2) & 4.610 & 1,563 & 780 & 2,124 & 1,878 & 1,499 & 2,612 & 2,323 & 5,118 & 3,609 \\
\hline Pruit saled & 6.551 & п.a. & n.a. & & - & 1,101 & 1,680 & 1,575 & 2,242 & 5,091 \\
\hline crapertuit & 3.521 & nes. & noe. & - & - & 465 & 1,175 & 1,599 & 2,280 & 2,058 \\
\hline 01iven, ripe & 5.006 & \({ }_{7}\) & nas. & n. a. & & 458 & \({ }^{984}\) & \({ }^{816}\) & 455 & 608 \\
\hline  & 4.242 & 7,707 & 5,417 & 7,039 & 9,899 & 10,898 & 8,410 & 8,307
5,705 & 10,109
4,586 & 11,087 \\
\hline Peare (trat & 6.246
3.275 & 2,022 & 1,165
nea. & 1,818 & 3,593 & 2,792 & 4,661 & \(\begin{array}{r}5,703 \\ \hline 194\end{array}\) & 4,586 & 4,475


285 \\
\hline Prunioa & 3.017 & - & no.a. & - & - & 519 & 1,069 & 800 & 810 & 1.709 \\
\hline Driod fruita & & & & & & & & & & \\
\hline Applos. & 0.117
0.170 & 46,628
\(\mathbf{2 4 , 1 9 3}\) & 22,975
\(21,812^{\text {c }}\) & 19,598
54,029 & 21,221
88,039 & 22,253
36,755 & 44,620
43,090 & 44,332
74,138 & 53,288
83,007 & 70,388
49,176 \\
\hline Pouchea & 0.120 & 73,379 & 36,407 & 61,616 & 86,867 & 38,058 & 85,850 & 50,504 & 48,668 & 50,696 \\
\hline Prunea & 0.087 & 136,377 \({ }^{\text {c }}\) & 124,442 \({ }^{\text {c }}\) & 245,786 & 397,583 & 438,886 & 547,349 & 447,196 & 405,227 & 473,601 \\
\hline laisina & 0.056 & 293,302. & 275,282。 & 380,068 & 583,722 & 435,292 & 421,204 & 391,921 & 375,909
47,970 & 414,129 \\
\hline Other driod truite & 0.111 & 41,536 \({ }^{\text {c }}\) & 24,987 \({ }^{\circ}\) & 50,905 & 31,605 & 41,573 & 46,587 & 76,494 & 47,970 & 61,700 \\
\hline
\end{tabular}

 remaining 11 carmod produote,
©Hot atriotly acmparable with figurea for othor gans.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Yeap & Aspar(424) & \[
\begin{aligned}
& \text { Groon } \\
& \text { poene } \\
& \text { (14) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Oore } \\
& (\mathrm{fre})
\end{aligned}
\] & Aprs cote (\#2) & \[
\begin{gathered}
\text { Manak- } \\
\text { berrife } \\
\text { (12id) }
\end{gathered}
\] &  & Peachas ( \(100 \frac{1}{1}\) ) & \[
\begin{aligned}
& \text { Peara } \\
& (42 \mathrm{t})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Logan- } \\
& \text { berriea }
\end{aligned}
\] & 01170: & \[
\begin{aligned}
& \text { Groon } \\
& \text { bean! } \\
& \text { (4Re) }
\end{aligned}
\] &  & \[
\begin{gathered}
\text { Booter } \\
(102)
\end{gathered}
\] &  & mappo
barfien
(ent) ( \({ }^{\circ} \mathrm{L}\) ) & \[
\underset{(d a)}{4 \text { P1moh }}
\] & \[
\begin{aligned}
& \text { Prunea } \\
& \left(k k_{1}\right)
\end{aligned}
\] & Pruste for calad \\
\hline & (1) & (8) & (s) & (4) & (6) & (8) & (1) & (8) & (0) & (20) & (1) & (12) & (25) & (1a) & (16) & (28) & (27) & (18) \\
\hline 1910 & 814 & 8, \({ }^{885}\) & 18,550 & no.as & noa. & nowr & now. & not. &  & nop. & nome & nea. & \(\mathrm{a}_{0} \mathrm{E}\). & nome & nowe & nume & \(\mathrm{a}, \mathrm{A}_{1}\) & mol. \\
\hline 1020 & 810 & 18, 817 & 26,040 & mos. & noa. & nat. & not. & \(\mathrm{nama}_{4}\) & nat, & nat & notir & not, & n. \({ }^{\circ}\) & net, & a,n, & no & non, & a.a, \\
\hline 1981 & 701 & 0, 207 & 8, 648 & nos. & n,A. & nu. & note. & \(\mathrm{n}, \mathrm{a}\). & nea. & not. & noa. & noa. & \(\mathrm{ncos}\). & notal & nua, & bees & mate & Bua. \\
\hline 2082 & 080 & 13,042 & 21,40 & mos. & acas. & notas & a.e. & n, \({ }^{\text {a }}\) & \(\mathrm{n}_{0} \mathrm{a}_{1}\) : & nat \({ }^{\text {a }}\) & Bua, & aun. & not. & now & nua. & nok. & noum & anab \\
\hline 1085 & 2,201 & 18,048 & 14,108 & 3,520 & 424 & 915 & 7,822 & 1,692 & 517 & 676 & noen & neas & asab. & a,ome & \(\mathrm{aras}_{1}\) & noa. & neas & nom. \\
\hline 2085 & 1,426 & 28,815 & 12, 181 & 1,995 & 870 & 650 & 6,210 & 2.089 & 674 & 426 & & nom. & a,a, & nom. & not. & a, \({ }^{\text {a }}\) & now. & nom \({ }^{\text {a }}\) \\
\hline 1928 & 1,498 & 17,816 & 24,320 & 2. 188 & \({ }^{681}\) & 610 & 10,861 & 3,676 & 410 & 400 & 4,240 \({ }^{\circ}\) & \(726^{\circ}\) & 8,075 & not. & \(\mathrm{n}_{0} \mathrm{a}_{0}\) & not. & note & a.a. \\
\hline 1926 & 1,766 & 17, 709 & 18,060 & 3,502 & 761 & 1,140 & 14,199 & 3,158 & 896 & 470 & 8,407 & 650 & 1,254 & nea. & B.a. & nol. & a,k. & mon. \\
\hline 1927 & 1,720 & 12,058 & 10,847 & 3,053 & 851 & 68 & 21,121 & 2,828 & 481 & 728 & 4,057 & \({ }^{659}\) & 2,150 & neat & nea. & no.a. & \(\mathrm{ab}_{6} \mathrm{E}_{6}\) & Dat. \\
\hline 1920 & 1,647. & 17.045 & 16,407 & 2,040 & 852 & 845 & 14,650 & 8,987 & 644 & 866 & 5,227 & 088 & 1.206 & nos. & noe. & a,a & n.a. & \(\underline{4 . a .}\) \\
\hline 1029 & 2,186 & 18,580 & 27,487 & 4,162 & 717 & 892 & 8,650 & 4,008 & 355 & SS5 & 7,246 & 1,280 & 2,004 & nee. & now & not & nome & nom. \\
\hline 1 1050 & 8,104 & 22,055 & 16, 698 & 1.901 & 488 & 999 & 23,041 & 4,167 & 234 & 856 & 6,738 & 1,511 & 2,023 & noe & n,0.4 & note & nota & natas \\
\hline 1051 & 1,46 & 13,286 & 10,415 & 2,059 & 656 & 880 & 8,586 & 3,63s & 476 & 417 & 4,871 & 1.106 & 1,616 & not. & noa. & n, as: & non, & a, a, \\
\hline 1882 & 1,054 & 10,867 & 1,358 & 1,760 & 260 & 460 & 7,2050 & 3,593 & 160 & 885 & 3,436 & 689 & 2,044 & , & a,a & noa & n. & Baf \\
\hline 1088 & 1,000 & 12,808 & 20, 108 & 2,487 & 868 & 809 & 10,585 & 4,014 & 166 & 488 & 4,344 & \({ }^{888}\) & 1,216 & 1,069 & 428 & 3,279 & 788 & 2,281 \\
\hline 2836 & 1,697 & 16,742 & 21, 268 & 2,012 & 858 & 484 & 8,796 & 5,699 & 355 & 642 & 8,257 & 1,145 & 2,108 & 2,389 & 415 & 3, \(800^{\text {d }}\) & 1,087 & 2,850 \\
\hline 1056 & 1,088 & 24, 898 & 21,471 & 8,250 & 407 & 402 & 13,484 & 4,465 & 228 & 640 & 6,032 & 1,150 & 2,462 & 2,176 & 408 & 4.518 & 1,728 & 8,090 \\
\hline 1936 & 2,121 & 16,565 & 14, 681 & 2,952 & 510 & 650 & 11,281 & 6,578 & 265 & 680 & 5,475 & 864 & 2,400 & 2,408 & 509 & 4,248 & 1,847 & 8,622 \\
\hline Weighto & \({ }^{6} .665\) & 2.507 & 2.178 & 4.188 & 3.370 & 6.588 & 4.242 & 5.248 & 8.677 & 5,005 & 2.258 & 2.887 & 1.659 & 2.865 & 6.818 & 1.609 & 8.118 & 8.651 \\
\hline
\end{tabular}

 12; for carlier yeari, the reported cotual-case totale were multiplied by the average of the ratios of atandard to actumi oases in 19ss-36.


Ogetimated by multiplying production of poeches in 1952 by the \(1952-1951\) ratio of the totala of the other 5 fruite for whioh statistion are roportod in both yourte



Table A-16.- PRODUCTION OF PRINCIPAL CANNED AND CURED FISH: CENSUS YEARS 1919 TO \(1935^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{7}{|c|}{Canned fish, oysters, etc.} & \multirow[b]{2}{*}{Cured fish} \\
\hline & Clams \({ }^{\text {b }}\) & Oysters & Salmon & Sardines & Shrimpo & Tuna & \[
\begin{aligned}
& \text { All other } \\
& \text { canned } \\
& \text { fish }
\end{aligned}
\] & \\
\hline 1919 & 158 & 718 & 2,186 & 5,778 & 322 & 874 & 309 & 143.899 \\
\hline 1921 & 195 & 464 & 1,250 & 1,702 & 635 & 360 & 296 & 83,012 \\
\hline 1923 & 303 & 525 & 1,367 & 3,385 & 700 & 818 & 335 & 80,703 \\
\hline 1925 & 348 & 568 & 1,559 & 5,163 & 736 & 1,102 & 366 & 88,349 \\
\hline 1927 & 494 & 447 & 1,504 & 6,183 & 1,079 & 1,256 & 293 & 91,213 \\
\hline 1929 & 464 & 455 & 1,561 & 9,273 & 1,240 & 1,541 & 861 & 99,789 \\
\hline 1931 & 400 & 551 & 1,187 & 4,118 & 1,035 & 1,190 & 424 & 66,364 \\
\hline 1933 & 415 & 348 & 1,137 & 3,936 \({ }^{\text {d }}\) & 1,088 & 1,443 & 1,137 & n.a. \({ }^{\text {a }}\) \\
\hline 1935 & 596 & 533 & 918 & 6,737 \({ }^{\text {d }}\) & 1,396 & 2,824 & 2,104 & 77,329 \\
\hline Weighte & 4.685 & 4.778 & 9.163 & 1.962 & 4.464 & 7.007 & 6.146 & 0.176 \\
\hline
\end{tabular}
aQuantities for canned fish are in thousands of standard cases; for oured fish, in thousands of pounds.
\({ }^{\text {b }}\) Includes olam chowder, juice, bouilion, and broth. Figures for 1919 to 1923 are not striotly oomparable with those for 1925 and subsequent years since olam chowder, ote. manufactured by canners of fruits and vegetables were included in the Canned Fruits and Vegetables industry under "soups" prior to 1925.
\({ }^{6}\) The quantities reported for 1927-35 were multiplied by 1.265 to take account of the inorease in the size of the can in 1927 from 4-1/4 oz. to 5 - 5-3/4 (average 5-3/8).
dadjusted to include "pilohard" and "herring" sardines by maltiplying the former by 1.92 and the latter by 1 ; these faotora are proportional to the weights of the standard oases of the two types of sardines (see Census of Manufactures: 1933, p. 75, fn. 10).

Onit value (dollars) in 1929.

Table A-17e- PRODUCTION OF SELECTED CANNED FISH: 1921 TO 1935a
(Thousands of standard cases)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow{2}{*}{Salmon} & \multirow{2}{*}{Oysters} & \multicolumn{2}{|c|}{Serdines} & \multirow{2}{*}{Shrimp} & \multirow[t]{2}{*}{Tuna and tuna-1ike fishes} \\
\hline & & & Pilchard & Herring & & \\
\hline 1921 & 1,003 & 442 & 399 & 1,400 & 655 & 549 \\
\hline 1922 & 733 & 506 & 715 & 1,670 & 580 & 672 \\
\hline 1923 & 1,367 & 525 & 1,100 & 1,272 & 700 & 818 \\
\hline 1924 & 959 & 447 & 1,367 & 1,900 & 719 & 652 \\
\hline 1925 & 1,559 & 655 & 1,715 & 1,871 & 736 & 1,102 \\
\hline 1926 & 836 & 414 & 2,093 & 1,718 & 732 & 851 \\
\hline 1927 & 1,504 & 447 & 2,563 & 1,262 & 853 & 1,256 \\
\hline 1928 & 843 & 504 & 2,772 & 2,056 & 852 & 1,216 \\
\hline 1929 & 1,621 & 519 & 3,831 & 2,026 & 910 & 1,504 \\
\hline 1930 . & 1,054 & 396 & 2,979 & 1,399 & 818 & 2,011 \\
\hline 1931 & 1,336 & 306 & 1,713 & 885 & 821 & 1,217 \\
\hline 1932 & 654 & 393 & - 954 & 546 & 758 & 1,206 \\
\hline 1933 & 1,137 & 348 & 1,539 & 981 & 860 & 1,443 \\
\hline 1934 & 901 & 439 & 1,970 & 1,143 & 1,022 \({ }^{\text {b }}\) & 1,967 \\
\hline 1935 & 895 & 501 & 2,420 & 1,656 & 1,086 & 2,511 \\
\hline Weight \({ }^{\text {c }}\) & 9.63 & 5.26 & 3.13 & 3.40 & 6.08 & 6.56 \\
\hline
\end{tabular}

Data from annual issues of Fishery Industries of the United States (U. S. Dept. Com., Bur. of Fisheries). The 6 products represent \(65-76\) percent of the total Census value of cannedand cured-fish production.
bexeludes production of 1 Alaskan plant.
CUnit value (dollars) in 1929 computed from data in Fishery Industries of the United States. Value is defined as the gross amount received by the packer at the cannery, with no deductions for commissions or expenses (ibid: 1933, p. 233).
table a-18.- number of wage earners and average meekly hours in thb canning AND PRESERVING GROUP: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|r|}{Average mamber of wage} & earmora & \multicolumn{3}{|c|}{Avorage hours por week} \\
\hline & Caming and Preserfing group \({ }^{\text {a }}\) & Camed Fruits and Vegotaples induetry \({ }^{\circ}\) & Canned and Cured Fiah induatry \({ }^{\circ}\) & Camning and Preserving group & Camned Fruits and Vegetables industry \({ }^{-}\) & Camed and Cured Fish industry* \\
\hline 2919 & 89,925 & 77,486 & 22,487 & 64.2 & 54.5 & 52.1 \\
\hline 1920 & n.a. & nelle & noe. & nea. & nea. & nat. \\
\hline 1921 & 59,675 & 51,729 & 7,946 & 53.5 & 58.8 & 51.6 \\
\hline 1922 & nea. & \(\mathrm{n} 4 \mathrm{~A}_{\text {, }}\) & net. & noe: & note & nom. \\
\hline 1925 & 81,678 & 72,534 & 9,144 & 53.7 & 54.0 & 62.3 \\
\hline 1924 & 72,600 & 64,600 & 8,000 & 53.6 & 53.9 & 51.1 \\
\hline 1926 & 96,396 & 85,866 & 10,550 & 53.4 & 55.8 & 50.9 \\
\hline 1926 & 100,900 & 89,400 & 21,500 & 53.3 & 55.7 & 50.7 \\
\hline 1927 & 93,574 & 80,924 & 12,650 & 53.2 & 53.5 & 50.4 \\
\hline 1928 & 104,800 & 92,400 & 12,400 & 63.1 & 55.4 & 60.2 \\
\hline 1929 & 112,478 & 98,866 & 13,612 & 52.9 & 55.5 & 50.0 \\
\hline 1980 & 116,000 & 105,600 & 10,400 & 48.9 & 49.3 & 46.4 \\
\hline 1951 & 88,775 & 80,184 & 8,591 & 46.0 & 45.2 & 42.8 \\
\hline 1932 & 72,000 & 64,500 & 7,500 & \(41.0{ }^{2}\) & 41.2 & \$9.2 \\
\hline 1985 & 94,267 & 84,274 & 9,993 & 38.1 & 58.5 & 36.4 \\
\hline 1984 & 120,300 & 108,000 & 12,300 & \$2.9 & 53.1 & 31.5 \\
\hline 1985 & 129,658 & 116,298 & 18,385 & 35.9 & 36.1 & 54.3 \\
\hline 1986 & 125,100 & 107,400 & 15,700 & 36.5 & 36.7 & 34.9 \\
\hline
\end{tabular}
\(a_{\text {Figures }}\) for interoongel years were obtained by adding wagemearner estimates for the two coaponent Incuatries.
\(b_{\text {The estimate }}\) for 1924 wes made by distributing the interpolated group total in acoordance with the average relationghip of eaoh industry to the group in 1925 and 1925. Figures for interomenal yeare 1926-36 wore dorived from an index of wage earnera conatrueted from data for 5 atatess New York,

 Censuas state levels and then combined in an indox with fixed woights (H.Y.: 53 H.J., 1; and Colif., 8) which conforms to the trend of the national Censue figures; this indox, 1ike that for
Camned and Cured Fish (see fn. e), was thon adjusted in the even-mumbored yoare 1950-56 (multiplied canmed and Cured P1.5h (see fn. c), was thon adjusted in the even-mumbored yeare 1950-56 (multi Togotablon and the Casmod and Cured Figh inductries agreed with the totals indicated by the group index.
Data for M. F. Prom Course of Factory Bmployment in Hew York State fram 1921 to 1930 (M.F. State Dept. Lab.e Dive Stat, and Inf., Spec. Duil. 171) and Jenuary issuea of Industrial Buljetin ( \(\mathrm{K}_{0} \mathrm{Y}_{0}\) State Dept. Lab.).

Data for \(\mathrm{N} . \mathrm{J}\). for Jan. 1927 -Apr. 1932 from monthly isaune of Industrial Bullotin (NoJ. Dopt. Lab.) and for Hov. 1933-Doc. 1936 from Employmont and Wagos in New Jorsoy (NoJ. Dopt. Lab.). Eitimater for K.J. were made for Kay 1952-00t. 19SS by applying the seasonal pattern in the neighboring yoars to date for adjaoont months; for 1925, by miltiplying 1927 eample omployment by the \(1925-27\) ratio of amual Census megeoarner figures; and for 1926, by atraight-ine interpolation.
Data for Calif., from monthly issues of California Labor Markot Bullotin (Cazif. Div. Lab. Stat. and Law Enforcemont).

Sample ooverage, oonyuted in terma of Censua state omployment, wase 22-29 poroent for K.Y., \(80-89\) percent for 1 INJ., and \(58-73\) percent for Csilf. The 3 state camplea combined accounted for 53-66 percent of the cencues totals for the same etates, and for \(37-45\) percent of the mumber of wage earnors in the whole Canned Fruite and Vegotables induatry.
CThe estimate for 1924 was made by diatributing the group total in the mannor desoribed in fn . b . Figures for interomnal years \(1926-56\) wore oomputed from an indox or employmont oonstruoted by interpolating the national conmu atatistion by a sontinuous index for California; the californie serien was constructed in turn by interpolating consue otate figures by a eample eories for the Canning and Proking Fish indurtry. The estimatoa for the even-numbored voars wors edjusted for consistanoy with the interpolated group totals (see in. b). The semple data, which were obtained consistenoy with the interpolated group totals (ses sm. b). The sample data, whioh were obtained
from monthly issues of Galifornia Labor Mariet Bulletin (Cailif. Div. Lab. Stat. and Iavi Maforsement)
 Por Jan. \(1925-\mathrm{Jan}, 1937\), ropr
cont of the naticoal figure.

Sor 1919, 1921, 1925, and 1929, Consua provailing houra; for 1952-53, eotual hours computed from monthly data compiled by B.L.s. and publishod in The Caming Induatry (N.R.A., Div. of Rovier, Evidenee Study No. 47), p. 7 ; for 1934-56, B.Los. aotual houre; and for remaining yoer i, eatimatea made by atraight-line interpolation.

Tor 1919, 1921, 1925, and 1929, Censue provelling hours; for 1952-56, weokly hours for the group multiplied by avorago of the ration in 1919, 1921, 1925. and 1929 of proveiling hourg in each induetry to the group; and for remaining yeara, estimates made by atraight-1ine intorpolation.
\(\mathbf{f}_{\text {Average }}\) for last 10 months.

Table \(\triangle-19 .-\) PRODUCTION AND SHIPMENTS OF EXDRAULIC CEMENTS: 1919 TO \(1936^{\text {a }}\)
(Thousands of barrels)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{3}{|c|}{Portland cement} & \multirow[t]{2}{*}{\begin{tabular}{l}
Masonry, \\
natural. \\
and \\
puzzolan \\
cement \({ }^{\text {b }}\)
\end{tabular}} \\
\hline & Clinker & Finished & Shipments & \\
\hline 1919 & n.a. & 80, 778 & 85,613 & 529 \\
\hline 1920 & n.a. & 100,023 & 96,312 & 767 \\
\hline 1921 & n.a. & 98,842 & 95,507 & 539 \\
\hline 1922 & n.a. & 114.790 & 117,701 & 889 \\
\hline 1923 & n.a. & 137,460 & 135,912 & 1,272 \\
\hline 1924 & n.a. & 149,358 & 146,048 & 1.418 \\
\hline 1925 & 160,098 & 161,659 & 157,295 & 1.729 \\
\hline 1926 & 163,464 & 164,530 & 162,187 & 2,105 \\
\hline 1927 & 169,788 & 173,207 & 171,865 & 2,124 \\
\hline 1928 & 173,742 & 176,299 & 175,838 & 2,210 \\
\hline 1929 & 168,988 & 170,646 & 169,868 & 2,209 \\
\hline 1930 & 160,992 & 161,197 & 159,059 & 1.792 \\
\hline 1931 & 121,814 & 125,429 & 127,151 & 1,242 \\
\hline 1932 & 75,004 & 76,741 & 80,843 & 457 \\
\hline 1933 & 62,965 & 63,473 - & 64,283 & 467 \\
\hline 1954 & 77,757 & 77,748 & 75,901 & 672 \\
\hline 1985 & 75,327 & 76.742 & 75, 233 & 1,006 \\
\hline 1936 & 112,097 & 112,396 & 112,566 & 1,726 \\
\hline Weighto & 0.66 & 0.15 & 0.19 & - \\
\hline
\end{tabular}
\({ }^{2}\) Data fram Yineral Resources of the United States, 1926 to 1951 ( \(\mathrm{J}_{0} \mathrm{~S}\). Dopt. Come, Bur. Lines). Pt. II, "Nommetals;" Statistical Appendix to Minerals Yearbook, 1934 and 1935 (U. S. Dept. Into, Bur. Kines); and Linerale Yearbook: 1937.
\(b_{\text {For }}\) 1919-24, shipments; for all other years, production.
\({ }^{0}\) kuployed to reduce olinker and oement production and cement shipments to "equivalent" portland-cement production. In 1919-24, coment produotion was assigned the combined weight for clinker and cement ( 0.81 ). The woights are averages of 1919 and 1934 ratios of man-hours consumed in olinker production, olinker grinding, and oement shipping, respeotivoly, to total man-hours of direct labor. To clinker production was ansignod the labor involved in quarrying, raw grinding, clinker burning. operating the coal-mill department, and, in addition, 60 percent of the labor in the powor department; the remaining 40 percent of power-departm mont labor was assigned to clinker grinding. The ratios for 1919 were derived from a study by H. E. Hilts (see rable A-20, fn. b); and for 1954, from a study by B. H. Toplis (see Table 1 -20, fn. a).

Table A-20.- NUMBER OF WAGS EARNERS AND OUTPOT PER MAN-HOUR IN THE CEMPNT INDUSTFX: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Average number of wage earners & Output of portlend oement per man-hour \({ }^{a}\) (barrels) & Portland cement production for sampleb (thousands of barrels) & Number of man-hours for sample \({ }^{\text {b }}\) (thousands) & Ratio of "equivalent" to finished portlandcement production \({ }^{0}\) \\
\hline & (1) & (2) & (3) & (4) & (5) \\
\hline 1919 & 25,524 & 1.015 & 32,803 & 32,311 & 1.011 \\
\hline 1920 & 30,500 & 1.066 & 63,500 & 59,586 & 0.993 \\
\hline 1921 & 26,231 & 1.225 & 76,250 & 62,247 & 0.994 \\
\hline 1922 & 32,900 & 1.338 & 85,000 & 63,527 & 1.005 \\
\hline 1923 & 35,091 & 1.324 & 101,500 & 76,641 & 0.998 \\
\hline 1924 & 37,300 & 1.359 & 119,250 & 87,767 & 0.996 \\
\hline 1925 & 38,437 & 1.483 & 144,500 & 97,415 & 0.989 \\
\hline 1926 & 37,700 & 1.486 & n.a. & D.a. & 0.993 \\
\hline 1927 & 36,322 & 1.562 & n.a. & n.a. & 0.985 \\
\hline 1928 & 34,200 & 1.628 & 157,122 & 96,541 & 0.990 \\
\hline 1929 & 33,368 & 1.718 & 152,116 & 88,528 & 0.993 \\
\hline 1930 & 31,300 & 1.787 & 140,772 & 78,771 & 0.997 \\
\hline 1931 & 24,317 & 2.071 & 111,502 & 53,833 & 0.984 \\
\hline 1932 & 16,900 & 1.996 & 67,449 & 33,799 & 0.996 \\
\hline 1933 & 15,829 & 2.013 & 56,464 & 28,048 & 0.997 \\
\hline 1934 & 19,900 & 2.056 & 77,748 & 37,819 & 0.996 \\
\hline 1935 & 20,698 & 1.957 & 76,332 & 39,008 & 0.984 \\
\hline 1936 & 22,800 & 2.195 & 111,238 & 50,689 & 0.999 \\
\hline
\end{tabular}
aligures \(^{\text {for 1919-25 and 1928-36, 001. (3) divided by } 001 . ~(4), ~ f o r ~} 1926\) and 1927, interpolated by means of a productivity series (barrels of portlend cement per man-hour) for other-than-shipping employees supplied by B. H. Topkis ("Labor Requirements in Cement Production," Monthly Labor Review, Mar. 1936, p. 577). These productivity ratios appear to be based on the reoords of member plants of the Portland Cement Association. In 1934, the plants in the sample produced 75 percent of all portiand cement. The aotual produativity ratios for 1925-28 are 1.64, 1.70, 1.85, and 2.00 barrels per man-hour.
b
Figures for 1919 oomputed from H. E. Hilts, "Shall the State Own and Operate Its Own Portland Cement Plant?," Public Roads (J. S. Dept. Agr., Bur. Public Roads), Jan, 1921, p. 14. Basic data refer to 51 plants wich accounted for 41 percent of total production in 1919.

Output and man-hours for 1920-25 computed by American Engineering Counoil (from data compiled by the Portland Cement Association) and published inSafety and Production (New York: Harper and Bros., 1928). p. 118.

Data for 1928-33 from Minerals Yearbook: 1935 ( 0. S. Dept. Int., Bur. Mines), P. 893; for 1934-36, unpublished figures furnished by Bureau of Mines. Prior to 1932, the employment sohedules called for average number of men employed in an active pay-roll period, average number of days worked, average length of work-day, and (aince 1928) total man-shifts; since 1932 they have oalled for total man-hours. The peroentage of total finished portlend-cement production nocounted for by the Bureau of Mines sample is as follows: 1928-29, 1931 and 1933, 89; 1930, 87; 1932, 88; 1934, 100; 1935-36, 99.
\({ }^{\circ}\) Computed for the entire industry from data in Table A-19 (see also Table A-19, fin o). Relatives of this ratio were used to adjust the index of produotivity derived from ool. (2).

Table A-21.- PRODUCTION OF PRINCTPAL CiEMTCALS: CENSUS YEARS 1918 TO 1935*
(Cuantitios in thougands of apeoified units)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produot & Onit \({ }^{\text {b }}\) & Woightc & 1919 & 1921 & 1925 & 1925 & 2927 & 1929 & 1981 & 1985 & 1935 \\
\hline Aolds & & & & & & & & & & & \\
\hline Lootio, dilute & pound & 0.060 & 38,058 & 22,449 & 28,032 & 28,722 & 30,481 & 52,915 & 48,847 & 28,791 & 80,100 \\
\hline Cltrio & poumd & 0.499 & 3,164 & 5,850 & 5,689 & 7,598 & 7,058 & 10,756 & 8,381 & 5,698 & 10,495 \\
\hline Eydroohlorio & tond & 65.600 & 48 & 51 & 50 & 50 & 52 & 63 & 41 & 45 & 55 \\
\hline Nitrie & tand & 150.000 & 18 & 8 & 21 & 25 & 27 & 35 & 32 & 30 & 25 \\
\hline Oleie & pound & 0.087 & 44,351 & 47,896 & 48,786 & 53,276 & 55,686 & 56,948 & 29,946 & 32,492 & 45,765 \\
\hline Fhosphoric & pound & 0.079 & 13,380 & 6,197 & 12,829 & 21,350 & 22,397 & 34,674 & 19,096 \({ }^{\circ}\) & 24,655 \({ }^{\circ}\) & 45,586 \({ }^{\circ}\) \\
\hline Steario & pound & 0.123 & 16,970 & 14,332 & 22,478 & 26,877 & 37,277 & 39,154 & 24,868 & 25,330. & 27,458 \\
\hline Sulphuria & tonf & 9.290 & 2,209 & 2,003 & 3,301 & 3,283 & 3,266 & 4.141 & 2,846 & 2,8545 & 3,1645 \\
\hline Hitrogen and E1xed-nitrogen compoumds Ammonia, anhydrous & pound & 0.162 & 25,684 & 21,127 & 23,529 & 31,725 & 45,115 & 173,349 & 127,099 & 150,185 & 138,779 \\
\hline Sodium eompounds & ton & 27.960 & 142 & 101 & 145 & 123 & 121 & 140 & 128 & 130 & 137 \\
\hline Sodium bichromate and chromate & ton & 151.454 & 23 & 18 & 27 & 28 & 31 & 39 & 25 & 29 & 42 \\
\hline Sodivm borate & tom & 82.791 & 50 & 18 & 53 & 50 & 65 & 92 & 80 & 94 & 106 \\
\hline Caustio soda (sodivn hydroxide) & ton & 53.907 & 302 & 231 & 431 & 487 & 547 & 725 & 634 & 645 & 720 \\
\hline Sodium silloate & ton \({ }^{\text {h }}\) & 14.901 & 287 & 222 & 331 & 395 & 505 & 590 & 664 & 656 & 608 \\
\hline Soda ash (sodium oarbonate) & ton & 23.297 & 1,033 & 776 & 1,259 & 1,369 & 1,466 & 1,814 & 1.509 & 1,654 & 1,872 \\
\hline Sodium sulphate (salt caice) & ton & 16.334 & 123 & 96 & 141 & 141 & 175 & 170 & 99 & 115 & 1313 \\
\hline Sodium sulphate (niter oake) & ton & 9.280 & 81 & 49 & 129 & 102 & 121 & 83 & 31. & 17 & 19 \\
\hline Potassium compounds Potassium bitartrate & pound & 0.273 & 4,856 & 5,779 & 5,971 & 7,073 & 7,595 & 7,853 & 6,881 & 5,789 & 3,855 \\
\hline Alums and aluminum ocmpounds & & & & & & & & & & & \\
\hline Aluminum abrasives
Aluminum aulphate & ton & \[
\begin{array}{r}
132.675 \\
29.002
\end{array}
\] & 11
313 & 9
155 & 20 284 & 16
284 & 20
314 & 33
345 & 7
309 & 8
322 & \(\xrightarrow{\text { n. }} 3.0\) \\
\hline Coal-tar produota Dyesk & pound & 0.580 & 63,402 & 39,009 & 93,668 & 86,345 & 95,168 & 111,422 & 85,2001 & 100,953 & 101,933 \\
\hline \begin{tabular}{l}
Phastica \\
Pyrozylin
\end{tabular} & pound & 0.889 & n.a. & n.a. & 23,980 & 13,703 & 16,298 & 16,991 & 12,008 & 10,096 & 13,341 \\
\hline Comprossed and liquefied gases & & & & & & & & & & & \\
\hline Acetylene & M cu. ft. & 21.542 & 311 & 291 & 522 & - 526 & 682 & 970 & 748 & 754 & 1,143 \\
\hline Carbon dioxide \({ }^{\text {m }}\) & pound & 0.078 & 59,771 & 54,616 & 51,096 & 59,721 & 74,344. & 136,930 & 158,575 & 117,382 & 87,657 \\
\hline Chlorine & pound & 0.034 & 34,392 & 57,223 & 76,118 & 104,960 & 180,163 & 289,855 & 255,511 & 249,126 & 414,760 \\
\hline Oxygen & M ou. ft. & 10.289 & 1,173 & 1,060 & 2,058 & 2,074 & 2,360 & 3,140 & 2,050 & 1,822 & 2,684 \\
\hline
\end{tabular}

Footnotes appear at ond of table.

(Quantities in thousands of apecified units)

acuantities represent production for aale and interplant transfor.
bThe unit "ton" refers to the short ton of 2,000 pounds.
©Average unit value of production for sale for all consus years for which available; for dyes, average unit value of sales.
\({ }^{\text {d}}\) Ton of 100 -peroont equivalents, Roported quantities for \(1919-27\) wore converted to \(\mathbf{1 0 0}\)-peroant equivalents on the basis of the relationship betwesh actual tons and 100-percent equivalonts in 192s.
\({ }^{\circ}\) Pound of 50 -percent phosphorio-acid equivalentis.
\({ }^{\text {Pron }}\) Tof \(50^{\circ}\) Baumb oquivalents.
Estimated on the bagis of the average relationship in earlier years of production for aale by the chemicals industry to production for sale by all induatries.
\(\mathrm{h}_{40^{\circ}}\) besis, oxoopt in 2919.
JCensus produotion figure minus natural-brine output as reported in Sodium Sulphate (U. S. Tariff Gommisaion, Report No. 124, 1937), P. 8.
Kiotal production, as reported in the publioation usually entitled Consus of Dyes and Other Synthotio Organio Choricale (U. S. Tariff Comisaion, Tariff Intormation Sories) for 1927 and lator years.
\(1_{\text {Sales }}\) (rounded off), not total produotion, as reported in Fextile Forld (Feb. 28, 1936). P. 136.
moes not include dry ice, but does inolude carbon dioxide gas piped to companies producing dry ioo.
\(n_{\text {Sum }}\) of monobaaio, dibasio, and tribasie caloium phosphates.

(Pmantities in thoucapds)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 8 mer & \[
\begin{aligned}
& \text { coett } \\
& \text { antd }
\end{aligned}
\] & \[
\operatorname{cosilfe}_{\text {ail }}^{\text {and }}
\] & \[
\begin{gathered}
\text { Butyl } \\
\text { ecotante }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Carbasa } \\
& \text { tertrew } \\
& \text { anlo } \\
& \text { ride }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Omat ja } \\
& \text { (torana }
\end{aligned}
\] & Ohlarise & Dyos \({ }^{\circ}\) &  &  & Pornaldohyde enine &  & \[
\begin{aligned}
& \text { Mepthem } \\
& \text { 1en0 }
\end{aligned}
\] &  & \begin{tabular}{l}
8ule \\
phuria andd
(tremat
\end{tabular} & \[
\underset{21 \pi^{\circ}}{\nabla-0.0}
\] & \[
\begin{gathered}
\text { Intere } \\
\text { polating } \\
\text { indez } \\
(19290 \\
100)
\end{gathered}
\] \\
\hline 1019 & n.en & - & nome & n.t. & 808 & - & - & \(\mathrm{n}_{0} \mathrm{Ca}_{0}\) & nose & \(\mathrm{nem}_{4}\) & n.ces & - & 2,038 & 2,209 & Data & 50.8 \\
\hline 2020 & 8.0 & & noso & ates & 87 & nome & - & 7, \(0_{0}\) & not. & a, & noter & & 1,804 & 2,000 & n.0 & 63.6 \\
\hline 2022 & Bua, & 8,089 & - & a.20 & 851 & - & - & - & 8,025 & Mam. & 902 & 18,564 & 776 & 2,008 & 206 & 41.0 \\
\hline 2028 & Mac. & 21,408 & - & 11,166 & name & ana. & - & 16,114 & 4,017 & 23,958 & 2,016 & 27,420 & mox. & nea, & 221 & 58.4 \\
\hline 2028 & n.e. & 26,072 & - & 25,514 & 451 & & - & 25,888 & 8,204 & 24,081 & 2,384 & 20,284 & 1,269 & 8,801 & 870 & 64.4 \\
\hline 1986 & noE. & - & 9,096 & 14,275 & 404 & now. & 68,679 & 27,225 & 6,515 \({ }^{5}\) & 26.158 & 1,288 & - & 1,288 & 8,027 & 820 & 61.0 \\
\hline 2026 & 10.en & - & 16,473 & 16,108 & 487 & - & 86,346 & 26,670 & 5,365 & 81,466 & 1,658 & - & 1,569 & 8,288 & 816 & 72.4 \\
\hline 1926 & nomb & & 27,240 & 18,999 & 542 & n.as & 07,979 & 45,661 & 6,898 & 81,965 & 1,496 & & 1,620 & 8,408 & 857 & 78.7 \\
\hline 1927 & 90,464 & - & 26,304 & 10,650 & 547 & - & 95.168 & 49,208 & 5,865 & 29,920 & 2.815 & & 2.466 & 8,286 & 801 & 79.8 \\
\hline 1928 & 207,568 & - & 80,050 & 19,788 & 585 & asab & 96,625 & 58,678 & 8,985 & 88,72 & 2,662 & - & 1,574 & 8,098 & 282 & 64.2 \\
\hline 1029 & 213,716 & 85,745 & 30,702 & 34,720 & 725 & 280,865 & 111,422 & 75,898 & 6,147 & 51,786 & 2,568 & 81,144 & 2,014 & 4,142 & 887 & 100.0 \\
\hline 2980 & 81,698 & 28, 388 & 35,466 & 34,208 & 618 & noco & , & 69,870 & 8,6895 & 40,765 & 2,072 & 82,966 & 1,028 & 3,762 & - & 88.0 \\
\hline 1981 & 86,188 & n.ant \(^{\text {a }}\) & -1.00 & noll. & 684 & - & - & note. & num & 8.8. & 7.E00 & n.e.t & 1,809 & 2,846 & noe. & 80.8 \\
\hline 2958 & 7,466 & 206 & no. & a.E. & 668 & noll & - & nea. & nome & nos. & nea, & n.a. & 1,246 & 2,588 & - & 60.9 \\
\hline 1988 & 205,828 & 29,495 & 82,808 & 85,707 & 846 & - & - & 41.121 & 7,495 \({ }^{\text {h }}\) & - & not. & 42,700 & 1,064 & 2,854 & & 84.4 \\
\hline 2084 & actir & 20,578 & 42,212 \({ }^{\text {E }}\) & 46,920 & 694 & nome & - & 67,67 & 8,184 & nomb & nom. & 83,730 & 1,706 & 2,873 & & 89.9 \\
\hline 1985 & nate. & 32,675 & 47,5926 & 85,780 & 720 & 416,760 & 101,983 & 87,885 & 7,072 \({ }^{\text {h }}\) & nome & nos. & 46,564 & 2,072 & 8,264 & - & 97.4 \\
\hline 2986 & nome. & - & - & - & 788 & 468,264 \({ }^{4}\) & 117,427 & - & - & n.E6 & n.e. & - & 2,119 & 8,581 & - & 210.0 \\
\hline Molcint \({ }^{\text {x }}\) & 0.080 & 0.100 & 0.210 & 0.062 & 68.907 & 0.054 & 0.680 & 0.098 & 0.250 & 0.091 & 0.740 & 0.050 & 28.297 & 0. 200 & 6. 760 & - \\
\hline
\end{tabular}


 information soriss).


\({ }^{\bullet}\) coumputed frain precoding oolumnge see \(\mathrm{En}_{\mathrm{n}} \mathrm{k}\) for woights.
\(f_{\text {Inoludes teohnioal ether. }}\)
Fontaine mome leobutyl aootate in addition to normal and scosondary. \(h_{\text {Inoludes teohnioal and absolute ethor. }}\)


Table A-23.- NUMBER OF WAGE EARNERS AND AVERAGE WEEKLY HOURS IN THE CHBMICALS INDUSTRY: 1919 TO 1936
\begin{tabular}{|c|c|c|}
\hline Year & Average number of wage earners \({ }^{\text {a }}\) & Average hours worked per week \({ }^{\text {b }}\) \\
\hline 1919 & 72,918 & 53.6 \\
\hline 1920 & 59,000 & 49.2 \\
\hline 1921 & 42,138 & 50.0 \\
\hline 1922 & 53,800 & 53.2 \\
\hline 1923 & 62,853 & 53.2 \\
\hline 1924 & 58,600 & 52.2 \\
\hline 1925 & 57,890 & 52.8 \\
\hline 1926 & 56,600 & 50.2 \\
\hline 1927 & 55,559 & 50.0 \\
\hline 1928 & 59,000 & 50.1 \\
\hline 1929 & 65,589 & 50.4 \\
\hline 1930 & 59,900 & 47.5 \\
\hline 1931 & 51,366 & 44.5 \\
\hline 1932 & 45,700 & 40.7 \\
\hline 1933 & 55,953 & 39.1 \\
\hline 1934 & 69,700 & 38.5 \\
\hline 1935 & 69,626 & 39.3 \\
\hline 1936 & 74,300 & 39.9 \\
\hline
\end{tabular}
acensus data for odd-numbered yoars 1919-23 wers adjusted to exclude wage earners engaged in rayon production; the figures for odd-numbered years 1927-35 are sums of those for Chemicals, NoE.C. and Compressed and Liquefied Gases; those for 1920, 1922, 1926, and 1928 are estimates based on N. I.C.B. index; and those for 1924 and intercensal years 1930-36 were derived by means of B.L.S. index.

The number of wage earners for rayon for 1923 is reported in Comerce Yearbook: 1932 (U. S. Dept. Come, Bur. For. and Dome Come), I, 423, which cites the Bureau of the Census as its source; the numbers for 1919 and 1921 were estimated by the division of rayon-yarn production by output-per-wagenearner ratios extrapolated on the assumption of the average biennial rate of change between 1923 and 1929.
bror 1920-36, N.I.C.Be; for 1919, the quotient of Census pay \(^{\text {19 }}\) rolls and average hourly earnings (Wartime Changes in Wages. N.I.C.B., 1919, P. 96) divided by the product of average number of wage earners and 52 (weeks per year).

Table A-24.- PRODUCTION OF PRINCIPAL CLAY PRODUCTS (OTHER THAN POTTERY) AND NONCLAY REFRACTORIES: 1918 TO \(1936^{*}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Comon brick (thousands) & Fire briok and olay briok, blook, or tile (thousands) & Face briok (thousends) & \[
\begin{aligned}
& \text { Sewer pipe } \\
& \text { (tons) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Hollow } \\
& \text { building } \\
& \text { tile } \\
& \text { (tons) }
\end{aligned}
\] & Silica
brick (thoum sands) & Architeo tural terre cotta (tons) & \[
\begin{array}{r}
\text { Wall tile } \\
(1,000 \\
\text { Bq. } \mathrm{ft.})
\end{array}
\] & Enamelod (thou* sands) \\
\hline 1919 & 4,751,887 & 963,439b & 791,068 & 1,155,151 & 2,329,217 & 211,420 & 20,6100 & 7,496 & 14,166 \\
\hline 1920 & 4,851,626 & 1,114,809b & 786,614 & 1,187,378 & 2,579,068 & 250,582 & 77,826 & 10,217 & 21,178 \\
\hline 1921 & 4,447,987 & 621,009b & 873,346 & 1,366,265 & 2,017,543 & 104,990 & 68,360 & 10,946 & 12,712 \\
\hline 1922 & 5,898,898 & 836.724b & 1,416,878 & 1,422,162 & 2,870,308 & 186,547 & 107,224 & 16,606 & 15,380 \\
\hline 1923 & 7,282,181 & 1,105,573 & 1,931,175 & 1,777,584 & 3,764, 744 & 258,388 & 138,462 & 26,301 & 19,502 \\
\hline 1924 & 7,158,714 & 940,948 & 2,030,403 & 1,951,612 & 3,534,784 & 204,338 & 140,624 & 30,658 & 21,074 \\
\hline 1925 & 7,561,501 & 990,113 & 2,474,690 & 2,138,672 & 4,224,902 & 235,877 & 152,441 & 30,366 & 26,981 \\
\hline 1926 & 7,517,211 & 1,007,784 & 2,439,820 & 1,994,333 & 4,096,417 & 266,409 & 155,564 & 39,010 & 15,441 \\
\hline 1927 & 7,060,984 & 866,397 & 2,412,903 & 2,115,688 & 4,114,309 & 245,881 & 155,932 & 59,587 & 18,097 \\
\hline 1928 & 6,412,810 & 854,895 & 2,411,575 & 1,895,487 & 3,976,511 & 241,523 & 142,720 & 33,805 & 15,407 \\
\hline 1929 & 5,505,359 & 958,218 & 2,139,408 & 1,675,453 & 4,163,521 & 294,402 & 133,958 & 30,443 & 17,137 \\
\hline 1930 & 5,631,436 & 738,934 & 1,481,825 & 1,270,527 & 3,148,005 & 212,640 & 96,396 & 17.675 & 13,402 \\
\hline 1931 & 2,514,664 & 416,041 & 903,226 & 823,303 & 1,927,658 & 103,557 & 54,706 & 17,716 & 8,605 \\
\hline 1932 & 1,013,000 & 217,000 & 384,000 & 439,000 & 829,000 & 40,000 & 25,000 & 7,703 & 6,000 \\
\hline 1983 & 1,019,810 & 372,523 & 270,323 & 451,272 & 607,685 & 110,889 & 25,604 & 9,930 & 4,000 \\
\hline 1934 & 1,098,689 & 390, 214 & 305,208 & 661,222 & 685,70 & 103,534 & 13,281 & 7,306 & n.a. \\
\hline 1935 & 1,811,341 & 481,679 & 472,587 & 670,181 & 913,090 & 149,621 & 17,552 & 10,706 & n.a. \\
\hline 1936 & 2,966,521 & 615,498 & 848,780 & 990,984 & 1,534,886 & 229,325 & 22,944 & 13,096 & n.a. \\
\hline Weightd & 10.7 & 38.6 & 16.9 & 12.7 & 7.2 & 51.5 & 103.9 & 369.7 & 73.5 \\
\hline
\end{tabular}
te SLOncoyd IVTD :SATGVL OISVG
Footnotea appear at ond of table.

Table A-24-- prodvction of primetpal clay products (Other than fotyery) and yonclay refractories: 1918 to 1936a - continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{aligned}
& \text { Drain- } \\
& \text { tile } \\
& \text { (tona) }
\end{aligned}
\] & Vitrified brick, blook, (thousendif) & Roofing ( 100 eq . rt.) & \[
\begin{gathered}
\text { Ploor } \\
\text { tilie } \\
(1,000 \\
\text { sq. Pt. })
\end{gathered}
\] & Coramate mosaio
\((1,000\) sq. ft.) & Vitrified brlck or block, other than for paving (thousanda) & \[
\begin{aligned}
& \text { Rnamoled } \\
& \text { nd faionoe } \\
& \text { tile (1,000 } \\
& \text { eq. ft.) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Cliay zold } \\
\text { (raw or } \\
\text { proparad) } \\
\text { (tona) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Aluninum } \\
\text { brick } \\
\text { (thoucands) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Store } \\
& \text { lining } \\
& \text { (tons) }
\end{aligned}
\] & Mgnoeito and ohrome brick (thousands) & Refractory
cempont
(tons) \\
\hline 1919 & 1,241,168 & 892,528 & 94,148 & 7,791 & 7,472 & 96,716 & n.a. & n.e. & no.a. & n.a. & no.a. & nomo \\
\hline 1920 & 1,191,290 & 566,205 & 98,561 & 8,007 & 10,949 & 102,289 & nota & M.E. & n. & nea. & n.a. & not. \\
\hline 1921 & 976,518 & 466,945 & 181,866 & 7,794 & 10,672 & 93,001 & nome &  & ne.a. & n.e. & no.e. & now. \\
\hline 1922 & 594,848 & 440,588 & 211,588 & 6,788 & 16,608 & 76,899 & n.a. & n. & noE. & n.E. & no \(\mathrm{A}_{\text {- }}\) & now. \\
\hline 1928 & 615,640 & 658,658 & 251,462 & 15,320 & 20,976 & 160,611 & 1,865 & 647, 768 & 26,850 & 54,684 & 13,045 & 95,812 \\
\hline 2924 & 592,641 & 448,439 & 304,615 & 18,163 & 20,879 & 206,001 & 2,565 & 368,208 & 14,451 & 41,986 & 12,752 & 27.448 \\
\hline 1925 & 660,673 & 448,492 & 209,966 & 19,244 & 20,386 & 80,609 & 4,916 & 656,918 & 4,966 & 25,862 & 12,732 & 79,477 \\
\hline 1928 & 519,40S & 882,804 & 408,724 & 24,920 & 22,673 & 85,898 & 7.703 & 478,020 & 9,095 & 11,578 & 16,130 & 77,604 \\
\hline 1927 & 734,592 & 405,012 & 368,451 & 20,454 & 20,508 & 97,688 & 10,157 & 487,801 & 11,561 & 18,646 & 13,941 & 105,957 \\
\hline 1028 & 694,205 & 280,852 & 351,360 & 17.785 & 20,055 & 87,827 & 15,585 & 607,502 & 23,860 & 9,708 & 14,116 & 121,434 \\
\hline 1929 & 858,621 & 274,155 & 370,772 & 15,887 & 18,052 & 95,496 & 19,367 & 464,215 & 23,911 & 16,805 & 17,599 & 158,354 \\
\hline 2030 & 676,278 & 229,523 & 297,429 & 12,041 & 10,573 & 70,542 & 18,436 & 842,165 & 11,883 & 9,386 & 15,452 & 98,662 \\
\hline 1051 & 255,309 & 278,693 & 206,253 & 12,183 & 8,744 & 28,698 & 21,481 & 214,168 & 7,020 & 8,877 & 8,565 & 74. 219 \\
\hline 1932 & 149,000 & 125,000 & 128,000 & 6,467 & 4,973 & 18,000 & 9,453 & 136,000 & 5,000 & 5,000 & 5,000 & 30,000 \\
\hline 1058 & 167,980 & 65, 814 & 105,257 & 5,798 & 4,229 & 9,297 & 8,401 & 182,207 & 9,563 & 5,827 & 9,027 & 88,474 \\
\hline 1954 & 268,126 & 99,718 & 113,327 & 5,234 & 3,936 & 14,079 & 8,826 & 265,311 & 15,719 & 4,626 & 10,640 & 65,518 \\
\hline 1955 & 264,128 & 7,800 & 134,922 & 7,556 & 6,416 & 11,452 & 12,825 & 262,870 & 18,220 & 7,614 & 12,112 & 76,192 \\
\hline 1936 & 358,428 & 79,043 & 211,284 & 12,317 & 8,585 & 18,169 & 21,565 & 377,844 & 11,361 & 12,970 & 20,403 & 96,404 \\
\hline weight \({ }^{\text {d }}\) & 7.6 & 21.8 & 10.6 & 237.6 & 207.1 & 16.4 & 523.6 & 4.7 & 88.5 & 27.9 & 525.6 & 22.5 \\
\hline
\end{tabular}

Data for interoongal years apparently do not inolude clay produote made in othor induatrios. Suoh output, however, amountod to only \(0.18-0.98\) poroant of the aggrogate velue of cley producta in census yeara 1921-s5.
\({ }^{\text {b Inoludes deter for high-aluming briok. }}\)
satimated by dividing value in 1919 by value per unit in 1920.
conit velue (doliars) in 1929.

Table A-25.- YWMER OF FAGB EARNERS, WAGES, AND AVERAGE HOURLY EARIFIIGS II THE CLAY PRODUCTS (OTHER THAN POTTERY) AND HONCLAY REFRACTORIES INDUSTRY: 1919 TO 1936
\begin{tabular}{|c|c|c|c|}
\hline Year & Average number of wage earners \({ }^{\text {a }}\) & Wages \({ }^{\text {b }}\) (thousands of dollars) & Average hourly
earnings
(dollars) \\
\hline 1919 & 76,915 & 78,256 & 0.456 \\
\hline 1920 & 82,700 & 106;100 & . 576 \\
\hline 1921 & 68,759 & 73,726 & . 471 \\
\hline 1922 & 84,500 & 91,100 & . 465 \\
\hline 1923 & 102,723 & 123,773 & . 531 \\
\hline 1924 & 100,700 & 127.700 & . 543 \\
\hline 1925 & 102,777 & 127,127 & . 531 \\
\hline 1926 & 105,000 & 128,400 & . 534 \\
\hline 1927 & 100,972 & 121,968 & . 539 \\
\hline 1928 & 94,200 & 110,400 & . 543 \\
\hline 1929 & 93,336 & 106,918 & . 524 \\
\hline 1930 & 73,600 & 78,500 & . 532 \\
\hline 1931 & 51,128 & 44.368 & . 475 \\
\hline 1932 & 32,500 & 19,600 & . 388 \\
\hline 1933 & 31,944 & 18,967 & . 367 \\
\hline 1934 & 39,300 & 27,300 & . 437 \\
\hline 1935 & 44,583 & 34,603 & . 450 \\
\hline 1936 & 66,000 & 51,000 & . 453 \\
\hline
\end{tabular}
\({ }^{\text {a Figures for }} 1920\) and 1922 computed fram interpolated relatives (based on the B.L.S. employment index for the Stone, Clay, and Glass Products group) and the mumber of wage earners in the base year.

Figures for 1931-36 include a small number (less than 1 peroent of the total) of wage earners employed in the Crucibles industry.
\({ }^{\text {brigures }}\) for 1920 and 1922 are estimates interpolated by means of a series for the total value of the industry's output. (The ratio of wages to value, \(57-38\) peroent, is quito stable.) The value figures, in thousands of dollars, are: 1919, 208,404; 1920, 282,030; 1921, 195,503; 1922, 243,954; 1923, 333,508.
\({ }^{0}\) For 1932-36, B.L.S. 3 for earlier years, figures from an N.R.P.Y.B.E.R. field study - the results of which are summarized in M. E. West, Productivity and Employment in Selected Industries: Brick and Pile (NoR.P. Rep. No. N-2) - adjusted to the B.L.S. level.

The field study presents average hourly earnings for the following 5 regions: Calif., Iowa, Kans., Mo., Okla.; Inde, Ill. (oxcluding Chicago area); H. J., W. Y., Ohio, Pa.; Fla., Ga., Md., No C., Va.; Chicago area. A simple average of the earnings for these regions was used to interpolate a harmonic mean with Census pay-roll weights for the odd-mmbered years. The resulting series, as noted above, was adjusted to the level shown by the B.L.S. data for 1932-36 (the ratio of the 2 seriea varied from 1.06 to 1.09).

PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

\section*{Table A-26.- PRODUCTION AT BEEHIVE COKE OVENS: 1919 TO \(1936^{\text {a }}\) \\ (Short tons)}
\begin{tabular}{|c|c|c|}
\hline Year & Coke & Coke breeze recovered \\
\hline 1919 & 19,042,936 & \(45,200{ }^{\text {b }}\) \\
\hline 1920 & 20,511,092 & 173,900 \({ }^{\text {b }}\) \\
\hline 1921 & 5,538,042 & 41,200 \({ }^{\text {b }}\) \\
\hline 1922 & 8,573,467 & 64,681 \\
\hline 1923 & 19,379,870 & 140,827 \\
\hline 1924 & 10,286,037 & 225,814 \\
\hline 1925 & 11,354,784 & 160,057 \\
\hline 1926 & 12,488,951 & 183,361 \\
\hline 1927 & 7,207,417 & 128,475 \\
\hline 1928 & 4,492,803 & 111,277 \\
\hline 1929 & 6,472,019 & 203,708 \\
\hline 1930 & 2,776,516 & 83,311 \\
\hline 1951 & 1,128,337 & 15,230 \\
\hline 1932 & 651,888 & 34,931 \\
\hline 1933 & 911,058 & 52,236 \\
\hline 1934 & 1,028,765 & 28,194 \\
\hline 1985 & 917,208 & 19,068 \\
\hline 1936 & 1,706,063 & 32,565 \\
\hline Conversion factor \({ }^{\circ}\) & 1.000 & 0.877 \\
\hline
\end{tabular}
a Data for 1919-31 from Mineral Resources of the United States (U. S. Dept. Come, Bur. Mines), Pt. II, "Nonmetals;" and for 1932-37. From Minorsls Yearbook (U. S. Dept. Int., Bur. Mines). Breeze recovered represents the difference between breeze production and waste.
bstimated by multiplying breeze production by the 1922 ratio of breeze reoovered to breeze production.
\({ }^{\text {CRelative heat value (B.t.u.) per short ton. The absolute }}\) values are: 22.8 million for coke and 20.0 million for breeze.

\section*{Table A-27.- PRODUCTION AT BYPRODUCT COKE OVENS: 1919 to \(1936^{\text {a }}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tear} & \multicolumn{2}{|l|}{Thousands of short tons} & \multirow[t]{2}{*}{Millions of ou. Pt. of gas reooveredb} & \multicolumn{2}{|l|}{Thousands of gallons} \\
\hline & Coke & Coke breeze reoovered & & Tar produced & Light oil produced \\
\hline 1919 & 25,138 & 1.8280 \({ }^{\circ}\) & 405,046 & 288,902 & 92,473 \\
\hline 1920 & 30,834 & 2,434 \({ }^{\circ}\) & 466,118 & 360,664 & 109,710 \\
\hline 1921 & 19.750 & 1,811 & 301,338 & 253,052 & 76,917 \\
\hline 1922 & 28,551 & 2,362 & 434,622 & 327,780 & 101,438 \\
\hline 2923 & 37.598 & 3,283 & 588,610 & 440,907 & 135,647 \\
\hline 1924 & 33,984 & 2,879 & 630,502 & 422,074 & 128,957 \\
\hline 1925 & 39,912 & 3,494 & 628,366 & 480,849 & 146,443 \\
\hline 1926 & 44,377 & 4,136 & 694,345 & 529,483 & 164,060 \\
\hline 1927 & 43,885 & 4,081 & 689,160 & 546,859 & 164.488 \\
\hline 1928 & 48,313 & 4,354 & 757,221 & 631,845 & 188,598 \\
\hline 1929 & 53,412 & 4,830 & 824,391 & 680,864 & 200,594 \\
\hline 1930 & 45,196 & 4,312 & 707,769 & 602,488 & 178,326 \\
\hline 1931 & 32,356 & 3,111 & 517,990 & 450,856 & 122,529 \\
\hline 1932 & 21,137 & 2,105 & 344,544 & 303,812 & 73,763 \\
\hline 1933 & 26,678 & 2,521 & 423,930 & 363,299 & 96,632 \\
\hline 1934 & 30,793 & 2,726 & 485,440 & 408,710 & 115,695 \\
\hline 1935 & 34,224 & 2,859 & 536,459 & 450,308 & 133,697 \\
\hline 1936 & 44,569 & 3,568 & 687,765 & 560,386 & 170,234 \\
\hline Conversion factord & 1.000 & 0.877 & 0.0241 & 0.00658 & 0.00570 \\
\hline
\end{tabular}
\({ }^{\text {asee Table A-26, fne }}\).
\(b_{\text {Difference }}\) between production and waste.
Ostimated by multiplying breeze production by the 1921 ratio of breeze recovered to breeze production.
delative heat value (B.t.u.) per specified unit. The absolute values are: 22.8 millias per ton of coke, 20.0 million per ton of breeze, 550 per ou. ft . of ooke-oven gas, 150 thousand per gallon of tar, and 130 thousand per gallon of light oil.

Table A-28.- NUMBER OF WAGE EARNERS AND MAN-HOURS WORKED AT BEEHIVE AND BYPRODUCT COKE OVENS: 1919 TO 19368
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{2}{|r|}{Beehive ovens} & \multicolumn{2}{|l|}{Byproduct ovens} \\
\hline & Wage earners \({ }^{\text {b }}\) & Man-hours & Wage earnersc & Man-hours \\
\hline 1919 & 13,766 & 28,110,000 & 16,828 & 50,863,000 \\
\hline 1920 & 12,924 & 26,202,000 & 21,488 & 59,868,000 \\
\hline 1921 & 3,656 & 7,360,153 & 12,871 & 33,312,778 \\
\hline 1922 & 6,348 & 12,427,654 & 14,928 & 40,168,014 \\
\hline 1923 & 9,598 & 18,511,452 & 19,546 & 48,125,693 \\
\hline 1924 & 4,903 & 10,238,636 & 16,772 & 41,709,401 \\
\hline 1925 & 5,617 & 13,125,934 & 18,085 & 47,827,266 \\
\hline 1926 & 5,244 & 12,450,986 & 18,293 & 49,183,524 \\
\hline 1927 & 3,284 & 7,900,745 & 18,652 & 50,333,202 \\
\hline 1928 & 2,422 & 5,906,048 & 16,981 & 48,251,099 \\
\hline 1929 & 2,706 & 6,585,657 & 19,016 & 57,071,083 \\
\hline 1930 & 1,737 & 3,711,647 & 18,141 & 52,257,408 \\
\hline 1931 & 841 & 1,609,295 & 15,237 & 42,964,986 \\
\hline 1932 & 663 & 1,251,843 & 11,999 & 31,964,730 \\
\hline 1933 & 893 & 1,633,556 & 13,858 & 35,580,210 \\
\hline 1934 & 920 & 1,478,012 & 17,248 & 41,414,825 \\
\hline 1935 & 866 & 1,370,478 & 17,538 & 39,570,695 \\
\hline 1986 & 1,231 & 1,942,072 & 20,899 & 47,377,028 \\
\hline
\end{tabular}
aData for 1919-34 from annual issues, 1930-34, of Coke-Oven Aocidents in the United Statos (U. S. Depts. Come and Inte, Bur. Kines); and for 1935-36, fron Aooidents at Coke Opens During 1936 (U. S. Dept. Int., Bur. Wines), P. 2.
bensus \(^{\text {Cege-earner series was completed for even-numbered }}\) years and 1933-35 by means of relatives of man-shifts as reported by Bureau of Mines in Coke-Oven Accidents in the United States (annual series, 1930-34) and Accidents at Coke Ovens During 1936.
\({ }^{\text {C }}\) The figures for the odd-numbered years \(1919-35\) were derived from Census statistics for 1919-31 and estimates for 1933 and 1935 obtained by subtracting employment for Beehive Coke fram the Census totals for the 2 industries; they were adjusted to include employment at oity gas ocrnpanies. (The adjustment factor is the ratio of the output - in terms of aggregate coke equivalents = of wage earners at all byproduct coke ovens to the output of those at byproduct ooke ovens not owned by city gas oompanies.) The employment series was ocompleted for the period 1919-36 by means of a camparable Bureau of Mines series for man-shifts published in Accidents at Coke Ovens during 1936.

Table A-29.- PRODUCTION OF CONFECTIONERY: CENSUS YEARS 1925 TO 1935*
(Thousands of pounds)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Product & Weight \({ }^{\text {b }}\) & 1925 & 1927 & 1929 & 1931 & 2933 & 1935 \\
\hline \multicolumn{8}{|l|}{Chooolates} \\
\hline Fancy & 0.493 & 124,613 & 131,999 & 149,240 & 103,869 & 94,070 & 138,688 \\
\hline Bulk & . 256 & 171,091 & 189,780 & 171,121 & 132,897 & 138,991 & 188,534 \\
\hline Count & . 170 & n.a. & 53,976 & 63,966 & 53,923 & 47,355 & 65,496 \\
\hline \multicolumn{8}{|l|}{Bars} \\
\hline Chooolate-covered & . 185 & 190,489 & 271,677 & 367. 772 & 324.319 & 337.972 & 836,669 \\
\hline Others & . 203 & 58,488 & 75,003 & 86,529 & 62,292 & 58,419 & 69,267 \\
\hline Hard candy & . 149 & 190,350 & 223,481 & 227. 798 & 237,038 & 205,170 & 226,303 \\
\hline Caramels and ohewing candy & . 163 & n.a. & 102,258 & 92,855 & 70,654 & 79,584 & 121,045 \\
\hline Gum work & . 112 & n.a. & 83,181 & 96,522 & 72,203 & 75,527 & 96,617 \\
\hline Pan work & . 138 & 59,499 & 72,990 & 68,022 & 64,390 & 64.145 & 90, 718 \\
\hline Marshmallows & . 157 & n.a. & 54,498 & 53,754 & 59,225 & 45,930 & 59,340 \\
\hline Lozenges & . 211 & n.a. & 23,725 & 29,265 & 22,174 & 21,542 & 24,978 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) In 1925 and 1927, a number of establishments did not report production in detail. In the same years, the Census did not report detailed production statistios for confectionery produced as secondary products of other industries. Index numbers for 1925 and 1927 were, therefore, adjusted for comparability with subsequent years. This was done by multiplying the two relatives by the ratio of the total value of confectionery produced in all industries to the value of confeotionery reported in detail by establishments within the industry. The ratios are 1.148 in 1925 and 1.095 in 1927.
bvalue per pound (dollars) in 1929.

Table A-30e- SALES OF CANDY: 1925 TO 1936a
(Thousands of pounds)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Peckage goods} & \multicolumn{2}{|l|}{Bulk candy} & \multicolumn{3}{|c|}{Candy bars} & \multirow[t]{2}{*}{Fiveand toncont paokagea} & \multirow[b]{2}{*}{Ponny goods} \\
\hline & Plain & Fanoy & Chooolate & Other & Molded ohocolate & \[
\begin{gathered}
\text { Chooo- } \\
\text { late } \\
\text { covered }
\end{gathered}
\] & Other typoet & & \\
\hline 1925 & 83,805 & 47,170 & 160,885 & 521.101 & 64,840 & 218,967 & 36,627 & 48,606 & 164,643 \\
\hline 1926 & 94,210 & 62,993 & 165,471 & \$25,143 & 61,944 & 259,027 & 40,198 & 49,375 & 166,548 \\
\hline 1927 & 70,062 & 41,887 & 138,328 & 326,636 & 52,642 & 278,661 & 66,400 & 60,510 & 182,217 \\
\hline 1928 & 72,092 & 40,564 & 134,354 & 333,306 & 54,995 & 282,907 & 45,773 & 65,260 & 174,618 \\
\hline 1927 & 72,535 & 46,217 & 144,044 & 334,176 & 102,191 & 255,350 & 63,035 & 64,961 & 201,302 \\
\hline 1928 & 64,245 & 44,088 & 142,559 & 337, 423 & 112,568 & 262,357 & 51,449 & 58,943 & 191,790 \\
\hline 1929 & 66,396 & 42,742 & 137,442 & 348,146 & 112,056 & 351,842 & 59,069 & 56,425 & 203,125 \\
\hline 1929 & 75,936 & 43,252 & 133,921 & 342,865 & 99,379 & 347,866 & 59,357 & 48.612 & 209,376 \\
\hline 1980 & 75,402 & 35,707 & 109,351 & 338,806 & 100,604 & 374,216 & 51,866 & 52,804 & 196,862 \\
\hline 1933 & 97,228 & 11,236 & 108,334 & 265,281 & 97,830 & 299,107 & 22,657 & 58,874 & 206,228 \\
\hline 1934 & 117,322 & 14,279 & 131,043 & 296,227 & 129,399 & 285,014 & 25,824 & 52,859 & 247,135 \\
\hline 1934 & 119,299 & 14,316 & 136,746 & 291,861 & 132,125 & 290,252 & 25,304 & 66,838 & 254,113 \\
\hline 1935 & 141,119 & 14,364 & 152,956 & 313,264 & 153,952 & 296,879 & 31,433 & 57,858 & 250, 817 \\
\hline 1935 & 135,619 & 13,247 & 149,416 & 301,919 & 153,283 & 282,313 & 29,323 & 47,491 & 224.855 \\
\hline 1936 & 146,980 & 15,171 & 166,024 & 320,225 & 154,360 & 311,295 & 35,563 & 54,397 & 236,128 \\
\hline Weight \({ }^{\text {b }}\) & 0.364 & 0.767 & 0.242 & 0.151 & 0.325 & 0.195 & 0.203 & 0.220 & 0.148 \\
\hline
\end{tabular}
\({ }^{a_{\text {Data }}}\) from Confectionery Distribution in the United States (U. S. Dept. Coms, Bur. For, and Dome Come ). For each group of years, the figures are from the most reoent issue in which they were available. Data were compiled "in cooperation with the
National Confectioners' Assooiation, the National Wholesale Confeotioners'
Association, the Assooiated Retail Confectioners of the United States, local
confectionery esscoiations, and the trade press."
A cortain amount of dupiloation results fram sales of manufacturers to each other. The percentages of resales to total sales are:
\begin{tabular}{llllllllll}
1925 & \(\ldots\). & 7.0 & 1927 & \(\ldots .\). & 5.6 & 1929 & \(\ldots\). & 4.7 \\
1926 & \(\ldots .6\) & 6.0 & 1928 & \(\ldots .\). & 6.1 & 1930 & \(\ldots\). & 5.5 \\
1927 & \(\ldots .\). & 5.0 & 1929 & \(\ldots .\). & 5.2 & &
\end{tabular}

In the 1935-54, 1934-35, and 1935-36 surveys, resales were not included in the data oolleated.

The coverage of the various surveys, in terms of value and the number of identical establishments, are, approximately as follows:
\begin{tabular}{rcc} 
Survey & \begin{tabular}{c} 
Peroent of value of \\
ocmuercial produotion
\end{tabular} & \begin{tabular}{c} 
Number of identioal \\
establishmenta
\end{tabular} \\
\cline { 2 - 2 } \(1925-28\) & 80 & 482 \\
\(1927-29\) & 87 & 499 \\
\(1929-30\) & 86 & 517 \\
\(1933-34\) & \(75-80\) & 343 \\
\(1934-35\) & 75 & 402 \\
\(1935-36\) & 70 & 348
\end{tabular}
balue per pound (dollars) in 1929.

Table A-31. - ITTERPOLATING EERIES FOR CONFECTIONERY FRODUCTION INDEX: 1925 TO 1936
\begin{tabular}{|c|c|c|}
\hline Yoar & Index of candy sales \({ }^{\text {a }}\) & Millions of pounds of candy produced \\
\hline 1925 & 92.7 & nome \\
\hline 1926 & 100.4 & n.a. \\
\hline 1927 & 95.0 & n.a. \\
\hline 1928 & 93.5 & no.a. \\
\hline 1929 & 100.0 & 1,680 \\
\hline 1930 & 96.8 & 1,543 \\
\hline 1981 & n.a. & 1,457 \\
\hline 1932 & noa. & 1,355 \\
\hline 1933 & \(88.4{ }^{\circ}\) & 1,443 \\
\hline 1934 & 100.0 \({ }^{\circ}\) & 1,571 \\
\hline 1935 & \(108.5{ }^{\circ}\) & 1,614 \\
\hline 1936 & \(116.9^{\circ}\) & 2,830 \\
\hline
\end{tabular}

Computed from Table A-30. Relatives of the aggregates computed for each of the survers were linked to yield the index numbers, which are on a 1929 base for 1925m50 and on a 1934 base for 1933-36.
\({ }^{\text {bonternational Confectioner, Mar. 1937, p. 22. Figures for 1929, 1932, and }}\) 1956 were reported; those for other years were read from a bar graph prepared by the Corn Industries Research Foundation. Quantity coverage, ap= parently quite high, could not be determined exactly beoause some confectionery is reported by the Census only in terms of value.
\({ }^{\circ}\) Not on same base as figures for 1925-30. See fn. a.

Table A-32.- NUMBER OF FAGE EARNERS AND AVERAGE WEEKTY HOURS 1A THE CONFECTIONERY INDUSTRY: 1925 TO 1936
\begin{tabular}{|c|c|c|}
\hline Year & Average number of wage earnera & Average houra per week \\
\hline 1925 & 63,600 & 50.6 \\
\hline 1926 & 66,000 & 50.6 \\
\hline 1927 & 63,163 & 50.6 \\
\hline 1928 & 61,700 & 50.6 \\
\hline 1929 & 63,501 & 50.6 \\
\hline 1930 & 57,500 & 47.5 \\
\hline 1931 & 51,262 & 44.4 \\
\hline 1932 & 46,700 & 41.5 \\
\hline 1983 & 50,609 & 37.2 \\
\hline 1934 & 51,600 & 36.3 \\
\hline 1985 & 52,109 & 36.7 \\
\hline 1936 & 50,400 & 39.5 \\
\hline
\end{tabular}

\footnotetext{
Figure for 1925-28 were estimated by straight-line interpolation between those for 1923 and 1929, which represent prevailing weekly hours. Data for 1932-56, B.L.S. Estimates for 1930-31 were made by straight-line interpolation.
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produot & Woight \({ }^{\text {b }}\) & 1929 & 1021 & 1928 & 1925 & 1827 & 1829 & 1982 & 1958 & 2985 \\
\hline Shooting: & 0.088 & 1,586,946 & 1,000,989 & 1,895,520 & 1,688,169 & 1,857,476 & 1,808,167 & 1,359,088 & 1,680, 823 & 2,390,465 \\
\hline Pillow tubing & 0.188 & 12,118 & 28,116 & 17,286 & 80,529 & 25,662 & 21,264 & 12,462 & 0,640 & 1, 11,842 \\
\hline Print eloth & 0,072 & 997,485 & 1,167,880 & 1,578,106 & 1,168,374 & 1,588,861 & 1,708,026 & 1,586,889 & 1,709,800 & 1,628,480 \\
\hline Leome, reincooks, ombrties, and eladiar zublian & 0.112 & 417,808 & 392,208 & 367,208 & 826,087 & 272 ,454 & 226,654 & 181,897 & 296,42 & 216,899 \\
\hline Yobacas, ahesse, butter; buntings
and bamdage oloths & 0.029 & 259,866 & 274,258 & 402,312 & 451,688 & 660,424 & 617,411 & 687,167 & 634,498 & 641,680 \\
\hline Ginchems & 0.120 & 568,308 & 656,609 & 571,865 & 366,478 & 280,619 & 147,120 & 56,518 & 69,569 & 0,580 \\
\hline Monquito notilay and tarlatan & 0.071 & 84,426 & 88,068 & , \(37.584^{\circ}\) & 21,096 & 14,727 & 33,288
\(\mathbf{8 1 7}\) & 88,782 & 8,002 & \\
\hline 8hirtinge & 0.144 & 352,180 & 300,720 & \({ }_{8}^{341,225}{ }^{80}\) & 455,397 & 378,580
847,776 & 817,046 & 278,178
184,646 & 279,549 & 278, 389 \\
\hline Drilla & 0.128 & 314,822 & 191,715 & 803,421
489,880 & 286,115
552,881 & 847,776
418.897 & 323,041
284,117 & 184,446
201,434 & 181,987 & 178,698 \\
\hline Twlls and satomas & 0.182 & 424,478 & 584,688 & 489,880 & 682,881 & 418,997 & 284,127 & 201,434 & 274,188 & 278,168 \\
\hline Trokinga & 0.219 & 68,688 & 46,525 & 68,498 & 48, 862 & 60,288 & 42,421 & 82,416 & 47,285 & 56,574 \\
\hline Denima & 0.197 & 166,898 & 268,127 & 225,640 & 180,482 & 264,118 & 249,891 & 202,117 & 288,788 & 206,887 \\
\hline Happod Eabrios & 0.150 & 260,089 & 294,718. & 381,897 & 840,416 & 400,097 & 823,140 & 288,078 & 877,791 & 297,700 \\
\hline Cottoneder and cotton moratode & 0.240 & 21,182 & 22,980 & 20,952 & 29,181 & 82,697 & 84,888 & 44,986 & 57,882 & 45,967 \\
\hline tire fabrios & 0.869 & 160,271 & 95,667 & 226,555 & 242,126 & 225,082 & 802,864 & 168,837 & 146,208 & 146,969 \({ }^{\text {d }}\) \\
\hline Ounoe duok (exaept tira) & 0.269 & 178,540 & 97,088 & 139,221 & 181,884 & 178,807 & 208,058 & 211,578 & 182,780 & 126,905 \\
\hline Mhmbered duak (excogt tire) & 0.889 & 84,496 & 38,167 & 27,862 & 81,460 & 89,688 & 42,088 & 25,004 & 18,519 & 22,628 \\
\hline Enpoetrier & 1.828 & 21,706 & 10,414 & 20,884 & 16,787 & 18,819 & 8,810 & 9, 288 & 9,978 & 9,072 \\
\hline Pluchas, velvats, and voivoteors & 0.774 & 20,821 & 11,510 & 27.711 & 58,478 & 42,689 & 82,8686 & 28,784
15,702 & 18,106
24,628 & 20,693
81,778 \\
\hline Cordarcy: & 0.380 & 19,808 & 16,856 & 27,889 & 22,588 & 28,17 & 27,284 & 16,702 & 24,625 & 81,778 \\
\hline Blarisete & 0,270 & 98,621 & 81,520 & 88,060 & 92,077 & 107,268 & 94,061 & 71,889 & 103,168 & nom. \\
\hline Bodapreade and quilta & 0.810 & 24,072 & 81,820 & 85,801 & 62,687 & 71,288 & 62,902 & 65,927 & 50,472 & \\
\hline cotton garne produced for anle & 0.891 & 818,086 & 484,219 & 620,725 & 626,857 & 684,385 & 647,726 & 424.468 & 498,488 & 889,211 \\
\hline \[
\begin{aligned}
& \text { Throed } \\
& \text { nirine }
\end{aligned}
\] & 1.489
0.360 & \[
\begin{aligned}
& 26,42 \\
& 11,880
\end{aligned}
\] & 28,278
13,440 & \[
\begin{aligned}
& 81,046 \\
& 18,698
\end{aligned}
\] & 84,167
21,292 & \[
\begin{aligned}
& 29,892 \\
& 28,280
\end{aligned}
\] & 25,250 & 19,578
47,088 & 87,756
89,076 & \[
\begin{aligned}
& 84,8546 \\
& 60,7755
\end{aligned}
\] \\
\hline Batting, mudding, and mettreen folts & 0.180 & 68,517 & 48,858 & 100,570 \({ }^{\text {a }}\) & 90,691 & 129,858 & 140,481 & 114,524 & 95,888 & na. \\
\hline  & \[
\begin{aligned}
& 0.174 \\
& 0.075
\end{aligned}
\] & \[
\begin{aligned}
& 4,280 \\
& 814,954
\end{aligned}
\] & \[
\begin{aligned}
& 47,548 \\
& 271,775
\end{aligned}
\] & \[
\begin{array}{r}
4,585 \\
\mathbf{8 7 8 , 6 4 0}
\end{array}
\] & \[
\begin{aligned}
& 6,957 \\
& \text { 4it,094 }
\end{aligned}
\] & \[
\begin{array}{r}
8,418 \\
484,418
\end{array}
\] & \[
\begin{array}{r}
20,134 \\
445,016
\end{array}
\] & \[
\begin{array}{r}
\text { 5,462 } \\
\mathbf{8 1 5 , 8 0 8}
\end{array}
\] & \[
\begin{array}{r}
7,578 \\
861,051
\end{array}
\] & \[
\begin{array}{r}
8,910 \\
858,678
\end{array}
\] \\
\hline \multicolumn{3}{|l|}{2tigurbi for yaran for anle and subeqquent produots reprasont thoutende of poumdes for all other produots, thouamade of aquare yarda.} & \multicolumn{4}{|l|}{\({ }^{4}\) Hot etrictly ocomparable with prior yeare booaune of exc olusion of date for "tire corde on oanas" (the only flgure reportad for this item ia in pounda).} & \multicolumn{4}{|l|}{\begin{tabular}{l}
\({ }^{2}\) rbides 1927, D. 227. \\
BFor 2985, finiahed throed manufnotured in all indurt
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Bonit ralue (dollara) in 1929.} & \multicolumn{4}{|l|}{\({ }^{4}\) gbeder_2981, pe 280.} & \multicolumn{4}{|l|}{} \\
\hline \({ }^{0}\) granue of Manfeotareni_1927, p. 226. & & & & & & & & & & \\
\hline
\end{tabular}

Table A-S4e- IHDEX OF RAN-COTTON CONSUMPTION: 1919 TO 1936 \({ }^{\text {a }}\)
\begin{tabular}{l|r}
\hline \hline Year & \begin{tabular}{r} 
Index \\
(1929a100)
\end{tabular} \\
\hline 1919 & 84 \\
1920 & 83 \\
1921 & 77 \\
1922 & 87 \\
1923 & 93 \\
1924 & 79 \\
1925 & 91 \\
1926 & 96 \\
1927 & 105 \\
1928 & 94 \\
1929 & 100 \\
1930 & 76 \\
1931 & 77 \\
1932 & 71 \\
1933 & 89 \\
1934 & 77 \\
1935 & 81 \\
1936 & 101 \\
\hline
\end{tabular}
afigures for 1919-34 from Federal Reserve Index of Industrial Production (Federal Reserve Board, mimeo., Apr. 1936), ppe 19, 20; and For 1935-36, Federal Reserve Bulletin, Mar. 1937, pe 256. The base was shifted from 1923-25 to 1929. The original data were "compiled by the U. S. Department of Commerce, Bureau of the Census, from reports of all cotton consuming plants, textile mills, for the most part. The consumption figures are taken as the bales of cotton are opened at the mills." (Record Book of Business Statistics, U. S. Dept. Come, Bur. For. and Dome Come, Pt. I, "Textiles," 1927, p. 20, fh. 1.)

Table A-S5, - Production of primeipal cotton goods, nam encland states: census years 1919 to 1933a
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Product & Weight \({ }^{\text {b }}\) & 1919 & 1921 & 1923 & 1925 & 1927 & 1929 & 1931 & 1933 \\
\hline \multicolumn{10}{|l|}{Woven goods (over 12 inches in width)} \\
\hline Sheotings & 0.130 & 271,010 & 352,571 & 329,036 & 270,166 & 236,977 & 176,482 & 146,166 & 142,933 \\
\hline Print cloth & . 080 & 407,633 & 435,17 & 544,161 \({ }^{\text {c }}\) & 257,097 & 281,097 & 181,683 \({ }^{\circ}\) & 129,203 & 102,597 \\
\hline Tire fabrica & . 370 & 117,162 & 60,160 & 97,743 & 90,937 & 87,572 & 102,425 & 63,300 & 48,151 \\
\hline Shirtings & . 191 & 166,768 & 167,789 & 123,853 & 156,852 & 93,464 & 70,411 \({ }^{\circ}\) & 36,665 & 47,027 \\
\hline Napped fabrics & . 182 & 138,233 \({ }^{\text {c }}\) & 149,466 & 189,208 & 156,002 & 131,190 & \(80.048^{\text {d }}\) & 68,617 & 97,092 \\
\hline Twills and. sateens & -129 & 289,461 \({ }^{\text {d }}\) & 234,428 & 288,704 \({ }^{\text {d }}\) & 274,709 & 203,689 \({ }^{\circ}\) & 120,412 & 58,082 & 70,649 \\
\hline Denims & . 212 & 43,218 & 30.559 & 34,802 \({ }^{\text {d }}\) & 22,950 & S1,491 & 21,977 & 15,272 & 14,885 \\
\hline Lawns, nainsooks, cambrics, and similar maslins & . 113 & 361,875 \({ }^{\text {d }}\) & 313,824 & 268,066 & 215,967 & 235,188 & 178,777 \({ }^{\text {d }}\) & 138,692 & 219,434 \\
\hline Bodspreads and quilts & . 328 & 14,743 & 19,893 & - 23,518 & 24,983 & 22,288 & 19,790 & 15,701 & 10,234 \\
\hline Other woven goods \({ }^{\text {e }}\) & . 160 & 966,626 & 977,295 & 1,073,979 & 955,390 & 972,388 & 875,061 & 633,026 & 548,279 \\
\hline Cotton yarns produced for sale & .511. & 208,965 & 104,393 & 113,310 & 109,123 & 92,730 \({ }^{\text {P }}\) & 90,682 \({ }^{6}\) & 33,196 & 42,423 \\
\hline Cotton waste produced for sale & . 088 & 180,971 & 144,113 & 172,783 & 172,548 & 161,907 & 134,714 & 89,849 & 97,791 \\
\hline
\end{tabular}
aThe New Fangland States are: Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connectiout. Figures for last 2 produots represent thousands of pounds; for others, thousands of square yards.
\(b_{\text {Unit }}\) value (dollars) in 1929.
"Output of 1 establishent included by Consus with "other woven goods."
\(d_{\text {Output of }} 2\) establishments inoluded by Census with "other woven goods."
Consus statiation were adjusted insofar as possible for variation in the composition of this olass from year to year. In addition to itame not enumerated, it includes: Tobacoo, ohoese, butter, bunting and bandage oloths; ginghams; mosquito netting and tarlatan; drilla; ounce duck (oxoopt|tire); numbered duok (except tire); plushes, velvets and velvoteens; corduroys; cotton table damaski draperies (exaept velvats and plushes); tapedtries; voilea; pajama oheoki, dimities, and similar fabrios; crepes; rugs (oxcept bath mats); pillow tubing; bath mats; and torry-woven fabrips (except towels, towelings, wash cloths, and beth mats).
\({ }^{P_{\text {Cengui }}}\) or Manufactured 1927. p. 232.
Egatimated by multiplying national output in 1929 by the ratio of Now England to national output in 1927.

Table A-S6.- PRODUCTION OF PRINCIPAL COTTON GOODS, COTTON-GROWING STATES: CENSUS YEARS 1919 TO 1983a

aThe Cotton-growing States ares Alabama, Arkanaas, California, Georgia, Kentucky, Louisiana, Miseiseippi, Missouri, North Carolina, Oklahoma, South Caroilina, Temnessee, Toxas, and Virginia. Figures for inat 2 produotr represent thousands of pounds; for others, thousands of square yards.
b-f See corresponding footnotes, Table A-35.
Estimated by multiplying national output in 1929 by the ratio of the produotion of Cottonegrowing States to the national total in 1927.

Table A-37.- PRODUCTION OF PRINCIPAL COTTON GOODS, BY REGIONS: 1933 AND \(1935^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Product} & \multicolumn{3}{|c|}{New England States} & \multicolumn{3}{|r|}{Cotton-growing States} \\
\hline & Weight \({ }^{\text {b }}\) & 1933 & 1935 & Weight \({ }^{\text {b }}\) & 1933 & 1935 \\
\hline Cotton woven goods (over 12 inches in width) & 0.102 & 1,438,528 & 1,349,534 & 0.083 & 6,263,102 & 5,609,135 \\
\hline Cotton yarns produced for sale & . 444 & 42,423 & 32,177 & . 288 & 446,371 & 353,411 \\
\hline Cotton twine & . 325 & 1,118 & 1,458 & . 234 & 53,205 & 44.846 \\
\hline Cotton cordage and rope & . 368 & 4,651 & 4,389 & . 212 & 21,526 & 16,910 \\
\hline Cotton wiste produced for sale & . 057 & 97,791 & 83,108 & . 045 & 254,763 & 249,616 \\
\hline
\end{tabular}

Quantities for first product represent thousands of square yards; for remaining products, thousands of pounds.
baverage unit value (dollars) in 1933-35.

Table A-38- HWBER OF WAGE EARHERS AND MAN-EOURS II
IHE COTYOX GOODS INDUSTRY:
1919 TO 1936
\begin{tabular}{|c|c|c|c|c|}
\hline Tear & Average minber of vage earnera & \begin{tabular}{l}
Wages \\
(thousends of dollars)
\end{tabular} & \[
\begin{gathered}
\text { Avorage } \\
\text { hourly } \\
\text { oarnings } \\
\text { (dollare) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Man-hours }{ }^{\text {b }} \\
& \text { (thousands) }
\end{aligned}
\] \\
\hline 1919 & 430,966 & 355,475 & n.e. & 1,003,100 \\
\hline 1920 & 432,600 & 452,300 & 0.480 & 942,300 \\
\hline 1921 & 412,058 & 328,227 & . 347 & 945,900 \\
\hline 1922 & 415,100 & 315,700 & . 330 & 956,600 \\
\hline 1923 & 471,503 & 396,603 & -378 & 1,049,200 \\
\hline 1924 & 409,200 & 330,100 & . 372 & 887,500 \\
\hline 1925 & 445,184 & 353,883 & -350 & 1,011,100 \\
\hline 1926 & 450,000 & 354,800 & -328 & 1,081,700 \\
\hline 1927 & 467,596 & 380,910 & -323 & 1,179,300 \\
\hline 1928 & 422,400 & 318,400 & -324 & 982,900 \\
\hline 1929 & 424,916 & 824,289 & - 324 & 1,000,900 \\
\hline 1930 & 357,300 & 250,000 & - 325 & 769,100 \\
\hline 1931 & 329,962 & 219,680 & -281 & 781,800 \\
\hline 1932 & 296,900 & 157,900 & -239 & 660,800 \\
\hline 1933 & 379,445 & 216,384 & -277 & 781,200 \\
\hline 1934 & 393,100 & 244,300 & . 378 & 646,200 \\
\hline 1935 & 369,062 & 236,339 & - 376 & 628,600 \\
\hline 1936 & 391,000 & 265,600 & -368 & 721,200 \\
\hline
\end{tabular}

Qarnings for even-mumbered years 1920-30, from Figes and Hours of Labor in Cotton-Goods Manufacturing: 1910 to 1930 (B.L.S. Bull. 539). Pe 2. The B.L.S. samples represented the following percentages of total employments in 1920, 13.8; 1922, 15.2; 1924, 19.1; 1926, 18.4; 1928, 20.9; and 1930, 25.3. Figures for odd-numbered years 1921-31 are unpublished B.L.S. estimates: data for 1932-36, regular B.L.S. survey.
\({ }^{0}\) For all years except 1919, quotients of mages and average hourly earrings. Por 1919, the product of weekly man-hours (i. ©., rage earners tines average meekly hours) and the estimated average number of weeks in the year (i. e., 50.6, the average for 1920-36). Average weekly hours for 1919 are Census prevailing reduced to actual by means of the average of the 1921 and 1923 ratios ( 0.865 ) of aotual (B.L.S.-N.I.C.B.) to prevailing. The average number of weaks was obtained fran the quotients of anmual man-hours and weekly men-hours (derived from aployment and B.L.S.-N.I.C.B. actual weakly hours). The I.I.C.B. actual hours for the United States are averages (with employment weights) for the Forth and South.

Table A-39. - HIMBER OF WAGE EARNERS AND MAN-HOURS IN THE COTTON COODS INDUSTRY, BY REGIONS: CENSUS YEARS 1919 TO 1935
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{New Fingland States} & \multicolumn{4}{|c|}{Cotton-growing States} \\
\hline & Average number of mage earners \({ }^{\text {a }}\) & Wages \({ }^{\text {a }}\) (thousands of dollars) & Average hourly carnIng: (dol1ars) & Yanc hours \({ }^{\circ}\) (thousands) & \begin{tabular}{l}
Average \\
number of wage earners
\end{tabular} & Fages \({ }^{\text {a }}\) (thousands of dollars) & \[
\begin{aligned}
& \text { Average } \\
& \text { hourly } \\
& \text { earne } \\
& \text { fngs } \\
& \text { (dol- } \\
& \text { lars) }
\end{aligned}
\] & Manhours \({ }^{\text {P }}\) (thousands) \\
\hline 1919 & 203,589 & 184.150 & n.a. & 399,903 & 193,451 & 139.706 & n. \({ }^{\text {a }}\) & 421,815 \\
\hline 1921 & 187,051 & 173,938 & 0.415 & 419, 128 & 193,847 & 121,910 & 0.320 & 380,969 \\
\hline 1923 & 195,947 & 199,373 & .445 & 448,029 & 239,562 & 156,686 & . 352 & 445,136 \\
\hline 1925 & 164,954 & 158,774 & . 428 & 370,967 & 247,384 & 157,010 & -309 & 508,123 \\
\hline 1927 & 155,642 & 154,795 & . 433 & 357,494 & 281,769 & 190,032 & . 324 & 586,519 \\
\hline 1929 & 127,041 & 119,053 & . 420 & 283,460 & 274.851 & 179,143 & . 322 & 566,345 \\
\hline 1231 & 90,906 & 77,097 & . 392 & 196,676 & 222,488 & 126,768 & n.a. & 457,673 \\
\hline 1933 & 91,566 & 63,184 & . 358 & 176,492 & 273,470 & 142,418 & nea. & 477,547 \\
\hline 1935 & 76,581 & \(58,500{ }^{\text {g }}\) & . 448 & 130,580 & 278,674 & 166,992 & 7.a. & 395,526 \\
\hline
\end{tabular}
aDerived from Census statistics for individual New England States (see Table A-35, fin. a). Figurea for Vermont for 1931 were estimated on the assumption that they bore the aame proportion to the national totals as the average for all the other oddnumbered years except 1929 and 1935.
\({ }^{b}\) H. I.C.B. series for North (viz., Conneoticut, Illinois, Maino, Massaohusetts, New Hampshire, New Jersey, How Yoric, Penneylvania, and Rhode Island).

CFor all yeara except 1919, wages divided by average hourly earninga; for 1919, the product of weekly man-hours and the average number of weeks per year in census years 192l-35. Weokly man-hours wore obtained by maltiplying total man-hours for the 2 regions in 1919 (1. e.. the product of total omployment in New England and Cottongrowing States and the hours figure desoribed in Table A-38, fn. b) by the 1921 ratio of man-hours for New England to the sum for New Pngland and the Gotton-growing States. The average number of weoks per year is the quotient of anmal and weekly man-hours; the series for the latter was derived by mitiplication of employment by N.I.C.B. average weekly hours.
\({ }^{\text {d Complied from Census statistics for indifidual cotton-growing States (see Table A-36, }}\) fn. a). Sinee separate figures were not always reported, estimates were made by applying to the national total the average ratio of employment (or wages) in the state (or group of atates) for whioh separate statistios are not presented to employment (or wages) in the whole United Stater.

ON.I.C.B. series for South (Fize, Alabama, Georgia, Kentuoky, Maryland, Masisaippi, North Carolina, South Carolina, Tennessee, and Virginia).
 For 1919, the method papallels that desoribed in In. ©. For 1931-55, estimates for both rogions oombined (1. ... New England and Cotton-growing States) were first made on the ansumption that the average ratio in 1919-29 of their total man-hours to manhours in the United States (Table A-33) wan typical of the later years; then, manhours for New England were deducted from these estimates.
gThe Cenaus figures, whioh include data for the Cotton Marrow Pabries and the Fish Nots and Soines industries, were adjusted by maltiplication by the average of the ratios for 1931 and 1933 of Cotton Goods to the Cotton Goods and Cotton Narrow Fabrios inductries combined. Fo adjustment was possible for the Fleh Nets and Seizes industry.

Table A-40.- PRODUCTION IN THE ELECTRIC LAMPS INDUSTRY:
1920 TO \(1931^{\text {a }}\)
(Thousands of wits)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{3}{|c|}{Manufacture of -} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Assembly of lampa}} \\
\hline & \multicolumn{2}{|c|}{Bulb 8} & \multirow{2}{*}{Bases} & & \\
\hline & Large & Miniature & & Large & Miniature \\
\hline 1920 & 255,815 & 117,170 & 432,068 & 234.770 & 127,370 \\
\hline 1921 & 199,989 & 71,850 & 187,648 & 161,665 & 80,850 \\
\hline 1922 & 257,892 & 95,646 & 348,932 & 206,019 & 105,246 \\
\hline 1923 & 308,707 & 145,979 & 442,751 & 248,347 & 155,879 \\
\hline 1924 & 244.218 & 173,400 & 435,901 & 251,752 & 183,420 \\
\hline 1925 & 299,517 & 175,030 & 463,571 & 274,087 & 185,188 \\
\hline 1926 & 327,649 & 188,891 & 488,024 & 281,588 & 200,867 \\
\hline 1927 & 377,910 & 194,135 & 565,616 & 340,545 & 203,967 \\
\hline 1928 & 334,915 & 232,459 & 573,129 & 313,475 & 243,478 \\
\hline 1929 & 388,159 & 269,711 & 713,849 & 362,826 & 281,131 \\
\hline 1930 & 360,726 & 205,740 & 559,017 & 335,001 & 218,198 \\
\hline 1931 & 348,203 & 168,143 & 513,001 & 326,613 & 176,737 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Data from Witt Bowden, Technological Changes and Employment in the Electric-Lamp Industry (B.L.S. Bull. No. 593), pp. 46, 48, 52, 33. According to this report, "the figures of the volume of output and of labor are estimates derived from the best available sources. For relatively amall portions of the industry, only the production figures are available, but manufacturing methods. are known and the approximate amounts of labor can be apportioned. For other small portions of the industry, records of labor are not available for some of the years 1920 to 1931, but for these years reasonably close approximations can be made. In some of the minor details, the figures are not comparable for the entire period. For example, in the volume of labor employed in lamp-assembly plants there is included a small amount of labor used in making ministure bulbs before this work was completely transferred to separate plants. On the other hand, a counterbalanoing illustration is the extension of dining-room facilities in lamp-assembly plants, which tended to increase the volume of labor in these plants during the later years of the period from 1920 to 1931.
"While the basio figures given in the tables are not to be regarded as exact transcriptions of records, and while there is undoubtedly a margin of error, at the same time it is believed that the actual trends in lamp-assembly plants of the industry as a whole are shown with an unimportant margin of error." (P. 33.)

Table A-41.- NUMBER OF WAGE EARNERS IN THE ELECTRIC LAMPS INDUSTRY: 1920 TO 19318
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{3}{|l|}{Number engaged in manufacture of -} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Number ongaged in assembly of lamps}} \\
\hline & \multicolumn{2}{|r|}{Buibs} & \multirow{2}{*}{Bases} & & \\
\hline & Large & Miniature & & Large & Miniature \\
\hline 1920 & 2.892 & 259 & 455 & 12,196 & 5,087 \\
\hline 1921 & 2,878 & 330 & 275 & 7,826 & 3,103 \\
\hline 1922 & 1,485 & 226 & 314 & 8,387 & 3,737 \\
\hline 1923 & 1,288 & 214 & 375 & 8,844 & 3,989 \\
\hline 1924 & 1,093 & 193 & 589 & 6,574 & 3,639 \\
\hline 1925 & 863 & 161 & 352 & 5,915 & 3,147 \\
\hline 1926 & 1,092 & 142 & 330 & 5,383 & 2,907 \\
\hline 1927 & 1,042 & 155 & 350 & 5,442 & 2.657 \\
\hline 1928 & 905 & 202 & 361 & 4,564 & 2,689 \\
\hline 1929 & 836 & 204 & 405 & 4,425 & 2,833 \\
\hline 1930 & 919 & 196 & 348 & 3,987 & 2,473 \\
\hline 1931 & 988 & 140 & 317 & 3,753 & 2,064 \\
\hline
\end{tabular}

Table A-42.- MAN-HOURS IN THE ELECTRIC LAMPS INDUSTRY: 1920 TO \(1931^{\text {a }}\) (Thousands)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{3}{|l|}{Number consumed in manufacture of -} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Number consumed in assembly of lamps}} \\
\hline & \multicolumn{2}{|r|}{Bulbs} & \multirow{2}{*}{Bases} & & \\
\hline & Large & Miniature & & Large & Miniature \\
\hline 1920 & 6,587 & 623 & 1,024 & 25,194 & 10,951 \\
\hline 1921 & 6,227 & 342 & 619 & 15,764 & 5,946 \\
\hline 1922 & 3,362 & 810 & 708 & 16,484 & 8,065 \\
\hline 1923 & 2,886 & 57 & 843 & 18,459 & 8,362 \\
\hline 1924 & 2,538 & 460 & 875 & 14,240 & 7,839 \\
\hline 1925 & 1,943 & 405 & 789 & 13,056 & 6,698 \\
\hline 1926 & 2,467 & 550 & 786 & 11,498 & 6,078 \\
\hline 1927 & 2,346 & 331 & 803 & 12,064 & 5,858 \\
\hline 1928 & 2,032 & 347 & 806 & 9,902 & 6,074 \\
\hline 1929 & 2,005 & 535 & 1,006 & 10,097 & 5,906 \\
\hline 1980 & 2,077 & 296 & 798 & 8,521 & 4,903 \\
\hline 1931 & 1,840 & 210 & 642 & 7,520 & 5,928 \\
\hline
\end{tabular}
asee Table A-40, fin. a.

Table A-45.- PRODUCTION OF PRINCIPAL FERTILIRERS: CENSUS YEARS 1919 TO 1935
(Thousands of chort tone)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Yoar} & \multirow[b]{2}{*}{Complete fortilizers} & \multirow[t]{2}{*}{Super phosphates produced for eale} & \multirow[b]{2}{*}{Floh sorap} & \multicolumn{4}{|c|}{Other fertilizers} \\
\hline & & & & Total & Potash super phosphates & Bone meal & \[
\begin{gathered}
\text { "Other" } \\
\text { fertilizera }
\end{gathered}
\] \\
\hline 2019 & \(4.273^{\text {a }}\) & 2,515 & 48 & 1,450 \({ }^{\text {a }}\) & nom, & \(n_{0} a_{0}\) & \(\mathrm{n}, \mathrm{L}_{0}\) \\
\hline 2821 & 2,985 & 1,977 & 45 & 1,032 \({ }^{\text {b }}\) & nop. & nod. & n, \(\mathrm{A}_{0}\) \\
\hline 1923 & 4,033 & 2,468 & 76 & 1,059 \({ }^{\text {b }}\) & noas & not. & a, \({ }^{\text {a }}\) \\
\hline 1825 & 4,926 & 2,639 & 72 & 592 & 248 & 48 & 296 \\
\hline 1927 & 5,088 & 2,435 & 96 & 504 & 233 & 42 & 229 \\
\hline 1929 & 8,992 & 2,531 & 85 & 718 & 211 & 40 & 462 \\
\hline 2931 & 4,545 & 1,968 & 46 & 409 & 149 & 52 & 208 \\
\hline 1935 & 3,336 & 1,549 & 67 & 398 & 89 & 61 & 246 \\
\hline 2835 & 4,202 & 1,765 & 114 & 389 & 142 & 58 & 191 \\
\hline Weight \({ }^{\text {c }}\) & 28.18 & 11.21 & 38.30 & 31.26 & 22.97 & 38.04 & 34.36 \\
\hline
\end{tabular}

To make the 1919 figure for "oomplete fortilizers" comparable with those for later years, the amount of "aumoniated fortilizers" inoluded by the Census (estimated on the basis of the 1921 ratio) was deduoted and transforred to "other fortilizers, total."
b"Ammoniated fertilizers" added to maintain oomparability, with later years.
evalue per ton (dollars) in 1929.

Table A-44.- CONSUMPTION OF FERTILIZERS : 1919 TO 1936
\begin{tabular}{|c|c|c|}
\hline Year & Short tonse & \[
\begin{gathered}
\text { Indexb } \\
(1929=100)
\end{gathered}
\] \\
\hline 1919 & 6,858,522 & 84.9 \\
\hline 1920 & 7,176,754 & 88.0 \\
\hline 1921 & 4,862,931 & 60.2 \\
\hline 1922 & 5,669,915 & 70.2 \\
\hline 1923 & 6,442,314 & 79.7 \\
\hline 1924 & 6,824,911 & 84.5 \\
\hline 1925 & 7,333,166 & 90.8 \\
\hline 1926 & 7,328,268 & 90.7 \\
\hline 1927 & 6,843,199 & 84.7 \\
\hline 1928 & 7,985,019 & 98.8 \\
\hline 1929 & 8,078,548 & 100.0 \\
\hline 1930 & 8,163,870 & 101.1 \\
\hline 1931 & 6,306,083 & 78.1 \\
\hline 1932 & 4,355,607 & 53.7 \\
\hline 1933 & 4,870,471 & 60.3 \\
\hline 1934 & 5,546,220 & 68.7 \\
\hline 1935 & 6,218,131 & 77.0 \\
\hline 1936 & 6,815,814 & 84.4 \\
\hline
\end{tabular}
\({ }^{\text {a Data }}\) for 1919 from American Fertilizer Handbook: 1931 (Philadelphia: Ware Brose, 1931), P. 23; 1920-28, Fertilizer Review (National Fertilizer Association), May-June 1931s pe 15; 1929s Apr.-May-June 1932, p. 14; 1930-31, Jan.-Feb.-Mar. 1933, p. 6; 1932, Apr.-Hay-June 1936, p. 13; 1933-36, Mar•-Apr. 1937, pe 13.

The figures represent total consumption of fertilizers in the U. S. The estimates made by the National Fertilizer Association are based primarily on records of fertilizer tag sales. and where these are not available, on estimates of state authorities and of the Association itself. All but 5 states have laws regulating the manufaoture and sale of fertilizers, and in none of these 5 is the consumption of fertilisers important. Many require that sellers attaah tags to "commercial fertilisers" and, with few exceptions, to any other materials whiah may be used for fertilizing purposes. These tags are purchased from state authoritios and give suoh information as weight of package, brand name, and guaranteod analysis. (American Fertilizer Handbook: 1932. Pp. 65-97.)
bComputed from preceding colum.

Table A-45.- NUMBER OF WAGE EARNERS AND AVERAGE WEEXLY HOURS IT THE FERTILIZERS INDUSTRY:

1919 TO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c} 
Average hours \\
Worked per week \({ }^{\mathrm{a}}\)
\end{tabular} \\
\hline 1919 & 26,296 & 49.6 \\
1920 & \(31,200^{\mathrm{b}}\) & 52.8 \\
1921 & 16,898 \\
1922 & \(22,600^{\mathrm{b}}\) & 48.9 \\
1923 & 18,572 & 49.0 \\
1924 & 17,200 & 50.0 \\
1925 & 19,644 & \(49.4^{\mathrm{c}}\) \\
1926 & 20,800 & 49.4 \\
1927 & 18,612 & 49.3 \\
1928 & 19,900 & 49.3 \\
1929 & 20,926 & 49.2 \\
1930 & 20,500 & 49.2 \\
1931 & 14,551 & 46.9 \\
1932 & 10,400 & 44.6 \\
1933 & 15,063 & 42.3 \\
1934 & 17,600 & \\
1935 & 17,473 & \\
1936 & 16,200 & 31.1 \\
\hline
\end{tabular}
\({ }^{\text {a Pigures }}\) for 1919 and 1929 represent Census prevailing weekly hours adjusted by the average of the 1921 and 1923 ratios of N.I.C.B. actual to Census prevailing hours. The actual hours for 1920-24 were derived from N.I.C.B. figures /for 1920, fram Wages, Hours, and Employment in American Manufacoturing Industries. July 1914-January 1923 (New Fork: N.I.C.B., 1923), p. 116; for 1921-22, ibides July 1914-July 1923 (1923). p. 116; for 1923. ibid. July 1914-January 1924 (1924). p. 83; and for 1924, from Wages and Hours in American Industry (1925), p. 160\%. The hours for \(1932-36\) were supplied by B.L.S.; and those for 1925-28 and 1930-31 are estimates derived by straight-line interpolation.
brage earners for 1920 and 1922 were determined from the number in the base year and interpolated relatives. Interpolation was acocmplished by means of X.I.C.B. figures for 1920-23 (for souroes, see fr. a). Sinoe the data for 1920 and 1922 were available for only 7 and 6 months, respectively, they had to be adjusted by the mean ratio (ocmputed from Census statistics) of the annual average to the average for the same manths in the adjacent years.
\({ }^{6}\) Average for first 9 months.

Table A-46e- PRODUCTION OF WHEAT FLOUR AND OTHER PRINCIPAL GRAIM-MILL PRODUCTS: CENSUS YEARS 1919 TO 1935
(Thousands of specified units)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & \[
\begin{gathered}
\text { Wheat } \\
\text { flour } \\
\text { (barrel }{ }^{\mathrm{a}} \text { ) }
\end{gathered}
\] & Bran and middlings (short tons) & Feed, soreenings, otc. (short tons) & Corn meal and corn flour (barrels \({ }^{\circ}\) ) & \[
\begin{aligned}
& \text { Rye fl our } \\
& \text { (barrel sa }
\end{aligned}
\] & Buckwheat flour (pounds) \\
\hline 1919 & 132,466 & 4,760 & 3,270 & 10,683 & 2,528 & 90,137 \\
\hline 1921 & 110,846 & 4,041 & 3,506 & 10,932 & 1,335 & 65,438 \\
\hline 1923 & 114,439 & 4,188 & 3,922 & 12,155 & 1,635 & 49,181 \\
\hline 1925 & 114,690 & 4,527 & 3,430 & 9,707 & 1,698 & 47,873 \\
\hline 1927 & 118,132 & 4,638 & 2,749 & 9,867 & 1,724 & -44,559 \\
\hline 1929 & 120,094 & 4,682 & 2,472 & 11,077 & 1.679 & 38,453 \\
\hline 1931 & 115,419 & 4,826 & 1,549 & 8,889 & 1,568 & 31,092 \\
\hline 1933 & 101,638 & 3,959 & 1,232 & 8,922 \({ }^{\text {d }}\) & 1,909 & 22,013 \\
\hline 1935 & 102,327 & 4,103 & 1,368 & 7,519 & 1,509 & 25,198 \\
\hline Teight* & 6.14 & 30.33 & 37.96 & 5.01 & 6.47 & 0.041 \\
\hline
\end{tabular}

\section*{Barrels of 196 pounds.}
 estimated on the basis of the 1923 proportion (determined from Consus of Manufactures: 1925, p. 116) and then deducted.
\({ }^{\text {C Barrela }}\) of 200 pounds.
\({ }^{\text {d Does not include data for oorn flour, which, however, comprised less than } 0.3 \text { percent of the total for corn meal and }}\) flour in 1927, 1929, and 1981.
\({ }^{\circ}\) Value per unit (dollars) in 1929.

Table A-A7.- WHEAT GROUND: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|l|}{Flour production (thousands of barrels)} & \multicolumn{2}{|l|}{Bushels of wheat required per barrel of flour \({ }^{\circ}\)} & \multirow[t]{2}{*}{Wheat ground \({ }^{\text {d }}\) (thousands of bushels)} \\
\hline & Total \({ }^{\text {a }}\) & \[
\begin{aligned}
& \text { First } \\
& \text { halp } \\
& \text { yearab }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Seoond } \\
& \text { half } \\
& \text { year }^{\text {b }}
\end{aligned}
\] & First half year & Second half year & \\
\hline & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline 1919 & 134,321 & n.a. & n.a. & 4.450 & 4.645 & 612,235 \\
\hline 1920 & 107,500 & n.a. & n.a. & 4.645 & 4.712 & 502,778 \\
\hline 1921 & 112,493 & n.a. & n.a & 4.712 & 4.727 & 531,079 \\
\hline 1922 & n.a. & n.a. & n. 8 & 4.727 & 4.632 & 543,167 \({ }^{\circ}\) \\
\hline 1923 & 116,267 & n.a. & n.a. & 4.632 & 4.632 & 538,548 \\
\hline 1924 & 120,300 & n.a. & n.a. & 4.632 & 4.582 & 653, 981 \\
\hline 1925 & - & 52,600 & 63,335 & 4.562 & 4.635 & 533,519 \\
\hline 1926 & - & 62,452 & 66,311 & 4.635 & 4.568 & 546,024 \\
\hline 1927 & - & 65,715 & 63,464 & 4.568 & 4.620 & 547,710 \\
\hline 1928 & - & 56,891 & 64,406 & 4.620 & 4.578 & 557,687 \\
\hline 1929 & - & 68,373 & 63,722 & 4.578 & 4.603 & 560,544 \\
\hline 1930 & - & 57,610 & 63,020 & 4.603 & 4.613 & 555,890 \\
\hline 1931 & - & 53,375 & 61,295 & 4.613 & 4.575 & 526,644 \\
\hline 1932 & - & 51,281 & 56,312 & 4.575 & 4.585 & 492,802 \\
\hline 1933 & - & 54,183 & 49,108 & 4.585 & 4.582 & 473,442 \\
\hline 1934 & - & 51,286 & 53,189 & 4.582 & 4.561 & 477,587 \\
\hline 1935 & - & 50,038 & 52,884 & 4.561 & 4.628 & 472,970 \\
\hline 1936 & - & 51,621 & 56,134 & 4.628 & 4.608 & 497,567 \\
\hline
\end{tabular}
awheat Studies (Palo Alto, Calif.: Leland Stanford University Food Resoarch Institute), Vol. XII, YO. 8, p. 276 for odd-numbered years; IV, 2, pp. 90, 102 for even-numbered years. Data for even-numbered years were adjusted slightly.
\(b_{\text {For }}\) 1925-31, ibid., XII, 9, p. 335; for 1932-36, XIV, 1, p. 33.
\({ }^{\text {cFor 1919-35, }}\) 2bid., IV, 2, p. 101, and XIII, 4, p. 225; for 1936, XIV, 4. p. 175.
\(\mathrm{d}_{\text {For }}\) 1919-21 and 1923-24, col. (1) multiplied by woighted average of cols. (4) and (5); for 1925-35, the sum of the products of cols. (2) and (4) and cols. (3) and (5). The weights for earlier years are ratios (and their complements) of first-half-year to full-year flour production as givon in Whoat Studies, IV, 2, Pp. 90, 102: 1919, 0.446; 1920, 0.525; 1921, 0.414 ; 1924, 0.458 . (No average is necessary for 1923, since the: two yield ratios ars identical.)
©The product of wheat ground in 1929 and the relative for 1922 interpolated by means of the Federal Reserve Board index of flour production (Federal Resorve Indox of Industrial Production, mireo., Apr, 1936, P. 9). The F.R.B. index numbers (shifted from base 1923-25 to 1929) are: 1921, 94.1; 1922, 97.0; 1923, 97.0.

Table A-48.- NUMBER OF WAGE EARNERS AND AVERAGE WEEKLY HOURS IN THE FLOUR AND OTHER GRAIN-KIIN PRODUCTS INDUSTRY: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow[t]{2}{*}{Average number of wage earners} & \multicolumn{2}{|l|}{Average weekly hours} & \multirow[b]{2}{*}{Average yearly man-hoursb} & \multirow[t]{2}{*}{Average hours woriced per week \({ }^{\circ}\)} \\
\hline & & Actua \({ }^{\text {a }}\) & \[
\begin{gathered}
\text { Prevail- } \\
\text { ing }
\end{gathered}
\] & & \\
\hline & (1) & (2) & (3) & (4) & (5) \\
\hline 1919 & 45,481 & n.ai & 54.5 & - & 50.6 \\
\hline 1920 & 40,800 & n.a. & n.a. & - & 50.5 \\
\hline 1921 & 35,378 & n.a. & 54.0 & - & 50.2 \\
\hline 1922 & 35,800 & nor. & n.8. & - & 50.2 \\
\hline 1923 & 35,194 & n.a. & 54.0 & \(\pm\) & 50.2 \\
\hline 1924 & 33,400 & n.a. & n.a. & - & 50.0 \\
\hline 1925 & 31,988 & n.a. & n.a. & - & 49.8 \\
\hline 1926 & 30,800 \({ }^{\circ}\) & n.a. & n.a. & 2.458.0 & 49.6 \\
\hline 1927 & 29,982 & n.a. & noa. & 2,456.8 & 49.5 \\
\hline 1928 & 28,700 & n.a. & n.a. & 2,462.9 & 49.7 \\
\hline 1929 & 27,028 & no.a. & 52.9 & 2,438.5 & 49.2 \\
\hline 1930 & 24,800 & n.a. & n.a. & 2,488.2 & 50.2 \\
\hline 1931 & 22,840 & n.a. & n. 2 . & 2,416.0 & 48.7 \\
\hline 1932 & 22,000 & 47.9 & n.a. & 2,396.1 & 47.9 \\
\hline 1933 & 23,207 & 43.4 & n.a. & 2,167.8 & 43.4 \\
\hline 1934 & 26,600 & 38.6 & n.a. & 1,918.4 & 38.6 \\
\hline 1935 & 26,495 & 39.4 & n.a. & 1,917.3 & 39.4 \\
\hline 1936 & 25,900 & 43.8 & n.a. & n.e. & 43.8 \\
\hline
\end{tabular}
aB.L.S.
 tablishments producing 14-33 percent of value of the industry's output. The results of this survey are summarized in Productivity and Employment. in Seleoted Industries: Wheat Flour, by R. T. Bowman (in preparation).
\({ }^{C}\) For 1932-36, col. (2) for 1926-31, col. (4) multiplied by the average ratio of col. (2) to (4) in 1932-35; for 1919-26, 001. (3) splioed to the 1929 figure in col. (5) after oampletion for this period by straight-line interpolation.

Table A-49.- VALEE OF PURTITURE AND WHOLESALS-PRICE THDEX 1919 TO 1956
\begin{tabular}{|c|c|c|}
\hline Year & \begin{tabular}{l}
Value of furniture produced in Purnitare industrye \\
(thousands of dollars)
\end{tabular} & Wholesale-price index for furnitureb (1929:100) \\
\hline 1919 & 557.522 \({ }^{\circ}\) & 110.8 \\
\hline 1920 & 715,700 & 168.4 \\
\hline 1921 & 529,1670 & 128.6 \\
\hline 1922 & 682,700 & 116.7 \\
\hline 1923 & 746,847 & 119.0 \\
\hline 1924 & 744,000 & 110.4 \\
\hline 1925 & 823,737 & 106.3 \\
\hline 1926 & 868,200 & 103.2 \\
\hline 1927 & 849,194 & 100.9 \\
\hline 1928 & 838,100 & 101.1 \\
\hline 1929 & 912,942 & 100.0 \\
\hline 1980 & 639,100 & 99.6 \\
\hline 1981 & 462,094 & 94.1 \\
\hline 1982 & 273,900 & 82.0 \\
\hline 1985 & 286,223 & 80.9 \\
\hline 1934 & 333,200 & 83.9 \\
\hline 1955 & 415,025 & 80.5 \\
\hline 2986 & 508,500 & 83.7 \\
\hline
\end{tabular}

Estimates for intercensal years were obtained by interpolation by means of the B.L.S. pay-rolls index.
bouputed from B.L.S. wholesale-price ralativea as published in its wholesaleprice bulletins. The index is composed of three segments - one for 1919-25, one for 1925-26, and the third for 1926-36 = which ware linked in their comenon yeare. The three segmente inolude, respectively, the first 10, 12, and all 17 of the following producte:
\begin{tabular}{|c|}
\hline Bedroon furniture Eede, wood Chaire \\
\hline Dining-room turaiture \\
\hline Buffots \\
\hline Chairs (sot of 6) \\
\hline trables \\
\hline Sitohen furniture \\
\hline Chaire \\
\hline Thbles \\
\hline Living-roon Surnitur \\
\hline Devenporte \\
\hline Tables \\
\hline
\end{tabular}
 Iypewriter

The releht for each relative is the Census value in 1929 for the correaponding product. In the onec of bedrocm ohaire, the weighting reotor is the eambined value of "ohnirs" and "bonchof." In 2 other cases (armchairs and desks) the Census weighte wore applied to the sinple averages of price relatives for 2 variotie: (aide and awivel amohaire and flat-top and typewriter deska).
CIn 1919 and 1921, the census did not segregate the value of products not normally belcaging to the industry and of ocntract, oustom, and repair work. The velue of suoh produotion, eatimated on the basis of the 1923 proportion, was therefore dedueted fro the value of all products of the industry. The 1919 figure was further adjumted to inolude the value of hamocks (for other years, this had been dove by the census).

56 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table Am50.- NUMBER OF WAGE EARNERS AND AVERAGE WEEKLI HOURS IN THE FURNITURE INDUSTRY: 1919 TO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c} 
Average hours \\
worked per week \({ }^{2}\)
\end{tabular} \\
\hline 1919 & 140,252 & 49.0 \\
1920 & 154,700 & 46.8 \\
1921 & 124,362 & 44.4 \\
1922 & 147,800 & 48.4 \\
1923 & 168,157 & 48.2 \\
1924 & 164,800 & 47.1 \\
1925 & 181,016 & 47.5 \\
1926 & 189,900 & 48.0 \\
1927 & 188,143 & 47.7 \\
1928 & 184,500 & 46.8 \\
1929 & 193,399 & 46.9 \\
1930 & 153,800 & 42.4 \\
1931 & 127,605 & 39.8 \\
1932 & 99,200 & 34.5 \\
1933 & 105,488 & 36.2 \\
1934 & 112,600 & 34.6 \\
1935 & 130,781 & 48.9 \\
1936 & 145,400 & \\
\hline
\end{tabular}
\({ }^{\text {a For }}\) 1919, prevailing hours adjusted by the 1923 ratio of actual to prevailing; for 1920-31, N.I.C.B. actual; and for 1932-56. BoI.S. aotual hours.

Table A-51e- FRODUCTIOM OF WINDON AND OBSCURED GLASS: 1919 тO 1936
(Thousands of square feet)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Yoar} & \multicolumn{2}{|c|}{Census zeries} & \multicolumn{2}{|c|}{Auxiliary series} \\
\hline & Window gless & Obscured glass & Cylinder crown, end shoet gless \({ }^{\text {a }}\) & \begin{tabular}{l}
Windorw \\
gless \({ }^{\text {b }}\)
\end{tabular} \\
\hline 1919 & 368,912 & 33,822 & n.a. & 368,900 \\
\hline 1920 & n.a. & n.t. & n.a. & 400,000 \\
\hline 1921 & 260,065 & 20,902 & n.8. & 260,050 \\
\hline 1922 & n.a. & n.a. & n.a. & 507,900 \\
\hline 1923 & 510,215 & 46,376 & n.a. & 510,200 \\
\hline 1924 & n.a. & n.a. & n.a. & 538,675 \\
\hline 1925 & 567,151 & 53,951 & noa. & 567,150 \\
\hline 1926 & n.a. & n.a. & 529,998 & n.a. \\
\hline 1927 & 481,021 & 41,545 & 481,021 & n.e. \\
\hline 1928 & n.a. & n.a. & 425,088 & n. \(0_{0}\) \\
\hline 1929 & 402,559 & 34,294 & 402,559 & n.a. \\
\hline 1930 & n.a. & n.8. & 266,792 & n.a. \\
\hline 1931 & 266,772 & 17.796 & 219,252 & n.e. \\
\hline 1932 & n. \(0_{0}\) & n.a. & 162,885 & n.a. \\
\hline 1933 & 249,443 \({ }^{\text {c }}\) & 11,600 \({ }^{\text {d }}\) & 246.756 & n.a. \\
\hline 1934 & n.a. & \(\mathrm{n}_{0} \mathrm{a}_{\text {a }}\) & 315,264 & n.a. \\
\hline 1935 & 428,938 & 14,372 & 406,755 & n.e. \\
\hline 1936 & n.a. & n.a. & 352,854 & n.e. \\
\hline Weight \({ }^{*}\) & 0.0663 & 0.1278 & - & - \\
\hline
\end{tabular}

The statistics were obtained from Flat Glass and Related Products (U. S. Tariff Comission, Report No. 123, 2nd Series), p. 44. The figures for 1926-30 are based on data obtained directly from manufacturers; those for later years were furnished by the Window Glass Manufacturers sssociation and exclude some of the smaller establishments included in the earlier period. (In interpolating Census statistics by means of the Tariff Comission series, the 1929 Census-Tariff Comission ratio was applied to the Tariff Comission figure for 1930.)
\(b_{\text {The }}\) figures, supplied by \(H_{0}\). Jerome, were collected in the course of preparation of Mechanization in Industry (National Bureau of Economic Research, 1934). Production for 1924 was estimated by straight-line interpolation.
\({ }^{C}\) This figure did not require the usual adjustment for incomplete coverage since, according to the Census, the data "were so nearly complete as to be fairly comparable with those for 1935."
\(\mathrm{d}_{\text {The }}\) oambined output of obscured and wire glass for 1933 was distributed between the 2 producte in accordance with their 1931 proportions.
Average unit value (dollars) for odd-mmbered years 1919-35.

\section*{Table A-62.- PRODUCTION OF PLATE AND WIRE GLASS: 1919 TO 1936 \\ (Thousands of square feet)}
\(\left.\begin{array}{l|c|c|c}\hline \text { Year } & \begin{array}{c}\text { Polished } \\ \text { plate glass }\end{array} & \text { Wire glass } & \begin{array}{c}\text { ( } \\ \text { series for } \\ \text { polished }\end{array} \\ \text { plate glass }\end{array}\right]\)
\({ }^{\text {astatistics for 1919-20 were obtained from Cast Polished Plate }}\) Glass (U. S. Tariff Comission, 1929). p. 3; they were compiled by the Plate Glass Manufacturers of America and are directly comparable with those for subsequent years. Data for 1921-35, from Survey of Current Business, "1936 Supplement." p. 139; and for 1936, from later monthly issues. "The data were compiled by the Plate Glass Manufacturers of America, and starting in 1925, represent practically. the entire industry. In earlier years the coverage was slightly less." (Ioides pe 18l; fn. 4 to p, 139.) \(^{\text {. }}\)
\(\mathrm{b}_{\text {Estimated }}\) through use of production series shown in last column.
\({ }^{\circ}\) See Table A-51, fn. d.
daverage unit value (dollars) for oddenumbered years 1919-35.

Imble A－68．－PRODUCTION OF OLASS CONTAINERS 1 CENBUS YEARS 1919 TO 1985
（Thousands of groan）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Toar & \[
\begin{aligned}
& \text { 4l2 sluse } \\
& \text { cone } \\
& \text { tainarye }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Preasure } \\
& \text { ware }
\end{aligned}
\] & Mone pressure ware & \begin{tabular}{l}
Gonoral \\
purpose 00n talnor：
\end{tabular} & \[
\underset{\text { bottion }}{\text { Mile }}
\] & Truit jasa & Medioi－ nal． tosist． －to． &  & \[
\begin{aligned}
& \text { Widoe } \\
& \text { mouth } \\
& \text { bottle: }
\end{aligned}
\] & Prosied mare （paok ors1） \\
\hline 2819 & 22，296 & mot． & nome & mon。 & note & noter & now． & Mon． & noter & noma \\
\hline 1921 & not． & notor & notor & net。 & nome & neas & mens． & mone & nome & not． \\
\hline 2928 & 28，398 & mus． & ment & nos． & nos． & nomen & m， \(\mathrm{m}_{\text {。 }}\) & nus． & nemo & note \\
\hline 1925 & 28，044 &  & not． & motob & ment． & neas & men． & n．e． & n．te & I．as． \\
\hline 1927 & 84，682 & 8,740 & 413 & 4，223 \({ }^{\text {b }}\) & 2，281 & 1，615 & 12，097 & 8，801 & 6，290 & 783 \\
\hline 1929 & 35，688 & 4.130 & 487 & 1，368 & 2，810 & 1，153 & 15，792 & 2，968 & 6.488 & 761 \\
\hline 1931 & 81，924 & 8，858 & 877 & 1，029 & 2，138 & 2，082 & 12，765 & 2，837 & 6，838 & 822 \\
\hline 1988 & 84，887 & 8，073 & 487 & 1，353 & 1，880 & 1，104 \({ }^{\text {c }}\) & 14，120 & 2．768 \({ }^{\text {d }}\) & 6，618 \({ }^{\text {d }}\) & \({ }^{36}{ }^{\circ}\) \\
\hline 1955 & 40，956 & \(7.838{ }^{\circ}\) & 1．276 \({ }^{\circ}\) & 1，925 & 2.124 & 2，388 & 14．579 & 3，361 & 7，826 & 852 \\
\hline Welght？ & － & 8.77 & 4.01 & 8.51 & 4.86 & 7.39 & 2.41 & 8.26 & 2.99 & 2.77 \\
\hline
\end{tabular}

Sum of figures for individual producta．The Census doss not res－ port eparate statistios for each product prior to 1927．Statise tios for 1919，1923，and 1928 were derived from Produotivity of Labor in the Glasa Industry（B．L．S．Buil．No．441），D．15．
bcommunioation with the Bureau of the Census established the faot that this ligure，though reported．as representing thousande of dosens，cotually ropresents thousands of grose．

OData for fruit jars and prosied ware（packers＇），reported in combination by the census，were segregated on the basis of their 1951 proportions．

Date for narrow－neak and widemouth bottlen，reported in ocmbin－ ation by the Census，were segregated on the basic of their 1981 proportions．

OThe total for＂beer bottles＂，＂Ilquor ware＂，and＂other pressurs and non－pressure ware＂was alloosted to prosaure mare and to non－ preseure ware on the basis of their 1931 proportions．
\(\mathrm{f}_{\text {Average }}\) unit value（dollarg）for odd－numbered years \(1927-85\).

Table A-54,- PRODUCTION OF GLASS CONTANNERS: 1926 T0 1936 a
(Thousands of gross)
\begin{tabular}{l|c|c}
\hline \hline Year & 31 oompanies & 42 companies \\
\hline 1926 & 24,552 & - \\
1927 & 25,404 & - \\
1928 & 28,392 & - \\
1929 & 29,316 & - \\
1930 & 27,276 & - \\
1931 & 24,684 & 26,568 \\
1932 & 20,558 & 33,362 \\
1933 & 23,522 & \\
1934 & - & 35,796 \\
1935 & - & 45,760 \\
1936 & - & \\
\hline
\end{tabular}
aThe 2 beries, which were used for completion of the indox derived from Table A-53, were compiled by the Glass Containor Association and published in Survey of Curront Business, "1932 Annual Supplement," pp. 258-9; "1936 Supplenont," P. 139; Maroh 1933, p. 52; and Karoh 1934, pe 52. The 31 companies account for over 80 persent of the industry's output, and the 42 companies, for approximately 95 percont.

Table A-55.- PRODUCTION OF PRNCIPAL KINDS OF PRESSED AND BLOKN GLASS: CENSUS YEARS 1919 ARD 1925 TO 1935
(Unite in thousanda)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Pressed armblers and gobleta (dozens) & Chimeya (dozens) & Lantern globes (dozens) & Tubing (pounds) & Bulbs for electrio lamps \\
\hline 1919 & 25, 182 & 6,615 & 1,986 & 18,147 & 220,363 \\
\hline 1925 & 29,678 & 3.439 & 1,080 & 16,860 & 474,547 \\
\hline 2927 & 27,281 & 2,987 & 869 & 21,519 & 572,045 \\
\hline 1929 & 17,542 & 3,019 & 942 & 23,067 & 657,870 \\
\hline 1931 & 8,334 & 1,597 & 404 & 17.292 & 516,346 \\
\hline 1933 & 11,522 & 2,591 & 377 & 14.370 & 475,150 \\
\hline 1935 & \(10,120^{\circ}\) & 2,433 & 616 & 27,302 & 696,552 \\
\hline Weight \({ }^{\circ}\) & 0.355 & 0.656 & 0.805 & 0.187 & 0,028 \\
\hline
\end{tabular}

AThe figure for 1919 was obtained from census of Manufactures; those for odd-numbered years 1926-51, from Witt Bowden, Teohnologioal Changes and Employment in the Electric-Lamp Industry (BoL.S. Bull. No. 593). pp. 46, 48. The estimates for 1933 and 1935 were made through the use of a aeries for incandesoent-filament lampa (included by the Census as a normal produat of the Eleatrical Machinery, Apparatus, and Supplies industry). The figures for inoandescent-filament lamps for those two years were multiplied by the avarage of the ration ( 1,099 ) in the odd-mumbered years 1921-sl of the output of bulbs roported by BeLeS. to the output of lampe ree ported by the consus.
Estimated from total whioh inoludea blown tumblera, goblots, and barware on basis of 1931 value ratio.
\({ }^{\text {o Avarage unit value (dollars) for odd-mumbered yoars } 1925-35, \text { excopt for bulbs. }}\) Woight for bulbs is unit value (dollars) for 1925.

Table A-56.- WEIGHTS USED IN CONSTRUCTION OF N.R.P. PRODUCTION INDEX FOR THE GLASS GROUPa.
\begin{tabular}{l|c|c|c|c}
\hline \hline Year & \begin{tabular}{c} 
Tindow \\
Glass
\end{tabular} & Plate Glass & \begin{tabular}{c} 
Glass \\
Containers
\end{tabular} & \begin{tabular}{c} 
Pressed and \\
Blown Ware
\end{tabular} \\
\hline 1919 & 13.8 & 14.2 & 33.2 & 38.8 \\
1920 & 13.8 & 14.2 & 33.2 & 38.8 \\
1921 & 13.8 & 14.2 & 33.2 & 38.8 \\
1922 & 13.8 & 14.2 & 33.2 & 38.8 \\
1923 & 13.8 & 14.2 & 33.2 & 38.8 \\
1924 & 15.4 & 16.5 & 32.0 & 36.1 \\
1925 & 16.8 & 18.4 & 32.1 & 32.7 \\
1926 & 15.3 & 17.8 & 32.8 & 34.1 \\
1927 & 13.8 & 17.1 & 33.7 & 35.4 \\
1928 & 11.6 & 17.5 & 35.3 & 35.6 \\
1929 & 10.0 & 18.4 & 34.5 & 37.1 \\
1930 & 8.8 & 15.5 & 36.1 & 39.6 \\
1931 & 7.2 & 12.0 & 40.5 & 40.3 \\
1932 & 7.3 & 10.3 & 44.0 & 38.4 \\
1933 & & 8.1 & 9.6 & 41.5 \\
1924 & 8.4 & 10.3 & 40.6 & 40.8 \\
1935 & 8.5 & 10.7 & 41.3 & 40.7 \\
1936 & 8.3 & 10.4 & 42.9 & 39.5 \\
& & & & 38.4 \\
\hline
\end{tabular}

The weights, which represent the percents of group employment in the 4 industries, were computed for the odd-mumbered years 1923-35 from the wage-earner statistics shown in Table A-57; the 1923 distribution was assumed for 1919-22; the weights for the remaining even-numbered years were computed from the series for Glass Containers (Table A-57) and estimates for the other 3 industries derived by distributing the differences between the group totals and employment in Glass Containers in accordance with the average proportions in adjacent census years.

Table Am57-- average nunber of hage earuers in the glass group
AND COAPONENT INDUSTRIES: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Glabe group \({ }^{\text {b }}\) & Tindow Glase & Plate Glass & Glasa Containers \({ }^{\circ}\) & Pressed and Blom Fare \\
\hline 1919 & 72,700 & n.e. & nod. & n.a. & noa. \\
\hline 1920 & 75,700 & n.a. & n.a. & n.a. & nea. \\
\hline 1921 & 51,300 & -8. & n.a. & n.a. & n.a. \\
\hline 1922 & 62,100 & n.e. & n.e. & n.a. & n.a. \\
\hline 1923 & 68,800 & 9,500 & 9,800 & 22,900 & 26,600 \\
\hline 1924 & 62,200 & n. 8 & n.a. & 19,900 & n.a. \\
\hline 1925 & 64,500 & 10,900 & 11,900 & 20,600 & 21.100 \\
\hline 1926 & 67,500 & n.a. & n.a. & 22,200 & n.a. \\
\hline 1927 & 61,500 & 8,500 & 10,500 & 20,800 & 21,700 \\
\hline 1928 & 61,700 & n.a. & n.8. & 21,800 & n.a. \\
\hline 1929 & 65,700 & 6,600 & 12,100 & 22,600 & 24,400 \\
\hline 1930 & 56,100 & n.e. & n. 2. & 20,300 & n.a \\
\hline 1931 & 47,100 & 3,400 & 5,700 & 19,000 & 19,000 \\
\hline 1932 & 39,000 & n.a. & n.\&. & 17,200 & n.a. \\
\hline 1933 & 46,400 & 3,700 & 4,500 & 19,300 & 18,900 \\
\hline 1934 & 59,200 & n.e. & n.a. & 24,000 & n.a. \\
\hline 1935 & 62,000 & 5,300 & 6,600 & 25,600 & 24,500 \\
\hline 1936 & 63,600 & n.a. & n.a. & 27,300 & nea. \\
\hline
\end{tabular}
\({ }^{2}\) The number of wage earners in each industry was adjusted for comparability with the production series. The unadjusted series for each industry was obtained for odd-numbered years 1929-35 from a special Census tabulation of wage earners, wages, and value of products; for 1923 and 1925 from Boris Stern, Productivity of Labor in the Glass Industry (B.L.S. Bull. No. 441), P. 15; and for 1927, by distributing the total for the Glass group among the component industries in accordance with the average of the 1925 and 1929 proportions. The B.L.S. figures did not include data for obscured glass in the Window Glass industry and for wire glass in the Plate Glass industry. The number of wage earners engaged in the manufacture of these products in 1923 and 1925 was estimated by subtracting the sum of the B.L.S. industry figures from the total for the Glass group and apportioning the difference between the 2 products on the basis of their value proportions in these years.

The series thus obtained were adjusted for comparability with the corresponding production indexes. The adjustment factors for each series for odd-numbered years 1929-35 were the ratios of (a) the total value reported by the Census for those products normally belonging to the industry of the same name (regardless of the industry in which produced) to (b) the total value indicated by the special Census tabulation for all products made in that industry; the average of these ratios was used for 1923, 1925, and 1927.

\footnotetext{
\(b_{\text {Employment }}\) for odd-numbered years 1923-35 is the sum of the wage earners in the component industries; for 1919-22 and interoensal years 1924-36, estimates were made through the use of the B.L.S. index.
\({ }^{\text {C Estimated }}\) for even-numbered years 1924-36 were made through the use of statistics supplied in an unpublished B.L.S. tabulation.
}

Table A-58.- AVERAGE WEEKLY HOURS IN THE GLASS GROUP:
1919 TO 1936
\begin{tabular}{l|c}
\hline \hline Year & \begin{tabular}{c} 
Average \\
hours \\
per week
\end{tabular} \\
\hline 1919 & 49.4 \\
1920 & 49.3 \\
1921 & 49.2 \\
1922 & 49.1 \\
1923 & 48.9 \\
1924 & 49.1 \\
1925 & 49.2 \\
1926 & 49.4 \\
1927 & 49.5 \\
1928 & 49.7 \\
1929 & 49.8 \\
1930 & 45.6 \\
1931 & 41.5 \\
1932 & 37.3 \\
1933 & 35.9 \\
1934 & 33.8 \\
1935 & 35.4 \\
1936 & 36.8 \\
\hline
\end{tabular}

Pigures for 1919, 1921, 1923, and 1929 are Census prevailing hours: those for 1932-36 are B.L.S. actual hours; and those for remaining years are estimates obtained by straight-line intorpolation.

Table A-59.- PRODUCTION OF ICE CREAM AND RELATED PRODUCTS: 1919 TO 1936
(Quantities in thousands of gallons)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[t]{2}{*}{Ice cream, ices, and specialties} & \multicolumn{2}{|c|}{Ice cream} \\
\hline & & Quantity \({ }^{\text {a }}\) & \[
\begin{gathered}
\text { Index } \\
(1929=100)
\end{gathered}
\] \\
\hline 1919 & n.a. & 133,056 & 52.3 \\
\hline 1920 & n.a. & 148,298 & 58.2 \\
\hline 1921 & n.a. & 147,949 & 58.1 \\
\hline 1922 & n.a. & 161,609 & 63.5 \\
\hline 1923 & 224,992 \({ }^{\text {c }}\) & 273,412 & 68.1 \\
\hline 1924 & n.a. & 181,564 & 71.3 \\
\hline 1925 & 243,907 & 214,382 & 84.2 \\
\hline 1926 & n.8. & 215,248 & 84.5 \\
\hline 1927 & 252,339 & 226,756 & 89.1 \\
\hline 1928 & n.a. & 232,185 & 91.2 \\
\hline 1929 & 279,776 & 254,618 & 100.0 \\
\hline 1930 & n.a. & 240,750 & 94.6 \\
\hline 1931 & 230,930 & 208,239 & 81.8 \\
\hline 1932 & noa. & 154,604 & 60.7 \\
\hline 1933 & 166,391 & 148,913 & 58.5 \\
\hline 1934 & n.a. & 179,594 & 70.5 \\
\hline 1935 & 227,349 & 199,385 & 78.3 \\
\hline 1936 & nea. & 243,000 & 95.4 \\
\hline
\end{tabular}

Quantities for 1919-20 from Yearbook of Agricultures 1923
(U. S. Dept. Agr.), p. 911; for 1921-28 from ibid.: 1930, p. 904; for 1929-35 from Agricultural Statistics: 1937 (U. S. Dept. Agr.). p. 301s and for 1936 from Moody' s Manual of In= vestments, "Industrials: 1937," p. al3.
\({ }^{b}\) Computed from preceding column.
\({ }^{C}\) Adjusted to include the output of specialties, which was assumed to bear the same proportion to the total as in 1925.

Table A-60. NUMBER OF WAGB EARNERS AND AVERAGE WEEKLY HOURS II THE ICE CREAM INDUSTRY: 1919 TO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c} 
Average hours \\
per week
\end{tabular} \\
\hline 1919 & 19,155 & 54.9 \\
1920 & \(19,700^{\text {b }}\) & 55.1 \\
1921 & 20,209 \\
1922 & \(21,700^{b}\) & 55.3 \\
1923 & 23,132 & 55.6 \\
1924 & 23,800 & 55.8 \\
1925 & 23,043 & 55.7 \\
1926 & 22,500 & 55.6 \\
1927 & 21,927 & 55.5 \\
1928 & 22,300 & 55.4 \\
1929 & 22,399 & 55.3 \\
1930 & 20,800 & 55.2 \\
1931 & 17,819 & 54.1 \\
1932 & 15,100 & 52.9 \\
1933 & 14,367 & 51.8 \\
1934 & 16,800 & 47.6 \\
1935 & 17,321 & 44.1 \\
1936 & 17,600 & 45.4 \\
\hline
\end{tabular}
a \(_{\text {For 1 1919, 19 }}\) 1921, 1923, and 1929, Census prevailing hours, which were computed for the first 2 years by multiplying the average for the Confeotionery and Ice Cream industries combined (olassified together by the Census prior to 1923) by the mean ratio for 1923 and 1929 of hours for Ice Crean to the average for both; for 1932-36, B.L.S.; and for remaining years, estimates obtained by straight-line interpolation.
\(b_{\text {Estimated }}\) by straight-line interpolation.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{20}{|c|}{(thoucende of long tens)} \\
\hline Produot & Weight \({ }^{\text {b }}\) & 1919 & 1920 & 1921 & 1922 & 1925 & 1924 & 1925 & 1926 & 1927 & 1928 & 1929 & 1980 & 1951 & 1932 & 2985 & 2934 & 1885 & 1886 \\
\hline Pig dron and forromalloys & - & 50,867 & 86,778 & 16,618 & 27,111 & 40,165 & 31,249 & 56,498 & 39,097 & 36,250 & 87,927 & 42.487 & 31,593 & 18,269 & 8,720 & 15,257 & 16,010 & 21,164 & 80,719 \\
\hline Ingote, ateol Cantinge, twel Pall. & \[
\begin{array}{r}
10.77 \\
140.80
\end{array}
\] & 85,290
757 & 40,541 & \begin{tabular}{|r|r|r|r|c|}
18,885 \\
415
\end{tabular} & 84,198 & \[
\begin{array}{|}
\mathbf{2 5 , 4 0 1} \\
1,120
\end{array}
\] & 36,800 \(\begin{array}{r}866\end{array}\) & \[
\begin{array}{|c}
44,111 \\
1,000
\end{array}
\] & \[
\left.\begin{array}{|c|}
46,996 \\
1,057
\end{array} \right\rvert\,
\] & 45,774
985 & \[
\begin{array}{r}
50,167 \\
1,181
\end{array}
\] & \[
\begin{array}{r}
54,794 \\
1,567
\end{array}
\] & \[
\left.\begin{array}{r}
39,725 \\
862
\end{array} \right\rvert\,
\] & 25,438
469 & 18,449
205 & 22,884 & 25,798 & [85891 & \begin{tabular}{|c}
47,475 \\
723
\end{tabular} \\
\hline Imm & 8.84 & 2,089 & 2,490 & 2,100 & 2,075 & 2,748 & 2,384 & 2,704 & 5,122 & 2,716 & 2,591 & 2,692 & 1,869 & 1,141 & 592 & 398 & 976 & 695 & 1,187 \\
\hline Paroilede & 22.54 & \({ }^{98}\) & 88 & 54 & \({ }^{69}\) & 118 & 77 & 70 & 90 & 88 & \({ }^{69}\) & 57 & 87 & \(21^{\text {d }}\) & 12 & 18 & 35 & 20 & 84 \\
\hline Paid fointe and fastoning: & 21.22 & 465 & 579 & \(\mathbf{3 8 5}\) & 568 & 772 & 664 & 818 & 984 & 398 & 821 & 877 & 694 & s84 & 162 & 202 & 358 & 272 & 476 \\
\hline Struotural shapos
Hoevy & 8,94 & 2,2070 & 2,903 & 2,159 & 2,454 & 2,991 & & & & & & & & & & & & & \\
\hline 21 gh & 8, 88 & 2,200 & 2.803 & 2,159 & 2,454 & 2,992 & 2,910 & 3,218 & 3,370 & 8.304 & 3,892 & 5,946 & 2,928 & 1,7368 & 741 & \({ }^{820}\) & 1,054 & 1,295 & 2,140 \\
\hline 2 Lght & 12,88 & 3200 & 574 & 138 & 365 & 510 & 460 & 449 & 568 & 608 & 622 & 690 & 527 & \(813{ }^{2}\) & 178 & 240 & 387 & \(44^{4}\) & 744 \\
\hline Conorete-reinforeing bara Horohant bert & 11.67 & 501 & 460 & 202 & 517 & 817 & 581 & 709 & 745 & 785 & 957 & 072 & 936 & 617 & 87 & 557 & 464 & 525 & 966 \\
\hline 1 Iram & 20.53 & 459 & 734 & 218 & 415 & 410 & 260 & 271 & 255 & 218 & 259 & 198 & 109 & 54 & 28 & 47 & 49 & 55 & 7 \\
\hline Open-hoarth and Bossemort & 27.18 & 8.8830 & 5,752 & 1,651 & 8,965 & 6,548h & 4,061 & 5,077 & 5,008 & 4,559 & 6,085 & 6,508 & 4.151 & 2,444 & 1,542 & 2,378 & 2,795 & 3,521 & 4,825 \\
\hline Craoible and oleotrios & 282.82 & 1450 & 214 & 58 & 110 & 1086 & 84 & 118 & 107 & 90 & 142 & 175 & 216 & 72 & 37 & 61 & \(\underline{91}\) & 142 & 194 \\
\hline Fire rode & 10.49 & 2,500 & 5,129 & 1,578 & 2,874 & 3,092 & 2,599 & 3,000 & 2,839 & 2,869 & 8.140 & 3,152 & 2,358 & 1,646 & 1,188 & 2,0ss & 1,705 & 2,577 & 2,920 \\
\hline Plater & 22.28 & 4,427 & 5,051 & 1,722 & 5,441 & 4,506 & 3,284 & 3,955 & 4,394 & 5,864 & 4,090 & 5,286 & 5,855 & 2,046 & 956 & 1,462 & 1,806 & 1,820 & 3,161 \\
\hline 8hoots & 39.23 & 3,377 & 4.258 & 2,221 & 4,171 & 5,038 & 4,625 & 5,608 & 6,018 & 5,760 & 6,945 & 7,286 & 5,427 & 4.172 & 2,637 & 5,028 & 5,116 & 7,8025 & 10,877 \\
\hline \({ }_{\text {Skelp }}^{\text {Skitom }}\) Cies, hoops, bande, & 7.29 & 2,589 & 3,558 & 2,312 & 3,122 & 3,647 & 8,241 & 3,445 & 8,058 & 8,503 & 5.435 & 3,550 & 2,874 & 1,472 & 809 & 1,017 & 1,144 & 1;376 & 2,188 \\
\hline and stripa & 22.69 & 852 & 1,217 & 480 & 1,084 & 1,405 & 1,259 & 1,753 & 1,687 & 1,724 & 2.512 & 2,764 & 1,789 & 3,450 & 1,034 & 1,558 & 1,812 & 2,206 & 2,687 \\
\hline Wrought-meldod -Oil-apountry onsing, tribing, and pipe & 38.87 & 922 & 1,151 & 762 & 1,017 & 1,2246 & 965 & 959 & 1,136 & 2,114 & 963 & 888 & 481 & 152 & 68 & 69 & n & 69 & 105 \\
\hline Other bleck pipe & 84.59 & 772 & 936 & 692 & 848 & 2,081 \({ }^{\text {d }}\) & \({ }^{909}\) & 968 & 1,061 & 948 & 905 & 949 & 821 & 465 & 200 & 294 & 355 & 399 & 815 \\
\hline Calamatised plpe & 54.07 & 211 & 268 & 177 & 258 & 3544 & 323 & 384 & 398 & 532 & 352 & \(402{ }^{1}\) & 546 & 193 & 100 & 174 & 182 & 177 & 273 \\
\hline Tis plator & 75.52 & 1,059 & 1,549 & 731 & 1,198 & 1,410 & 1,351 & 1,554 & 1,882 & 1,589 & 1,712 & 1,800 & 1,650 & 2,589 & 983 & 1,681 & 1,600 & 1,692 & 2,099 \\
\hline Semalore pipe and tube & 88.60 & 165 & 265 & 115 & \({ }^{225}\) & S03- & 220 & 535 & 755 & \({ }^{875}\) & 1,098 & 2,3291 & 1,211 & \({ }_{722}\) & 358 & \({ }_{4} 476\) & \({ }^{725}\) & 859 & 1,385 \\
\hline \begin{tabular}{l}
Bloomsa and blilets, and slabs, exoept for forging \\
Rolled blooms and billote for
\end{tabular} & 2.85 & 25,3680 & n.a. & 14,010 & nom. & 84,6812 & nom. & 32,395 & nat. & 30,491 & noe. & 58,819 & nom. & 18, 724 & nome & 16,550 & nos. & 25,182 & nos. \\
\hline forging & 12.95 & 811 & n.c. & & n.e. & 2550 & nom. & & n.0. & & nam. & 658 & \(\square \sim\) & 173 & nom. & 121 & name & 267 & ncan \\
\hline Sheet and tin-plate bars Bolt and mot rods and apike & 1,64 & 4,154 & n.E. & 2,908 & nom. & 6,353 & n.a. & 7,236 & nom. & 7,121 & n.E. & 8,711 & no. & 4,565 & nea. & 4,787 & n.a. & 8,463 & me. \\
\hline notand ahain roda & 15.70 & 258 & noc. & 251 & noa. & 490 & nome & s80 & noa. & 848 & maco & 48 & mone & 180 & 20. & 52 & Eatas & 157 & mos. \\
\hline Yuak mend sorap bars & 50,64 & 908 & nos. & 457 & \(\mathrm{n}_{\mathrm{a}} \mathrm{E}_{0}\) & 653 & nues & 461 & nat. & 572 & nea. & 341 & nome & 123 & ma & \({ }^{86}\) & \(\mathrm{m}_{0}\) & 80 &  \\
\hline Axles, rolled and forgod & 45.98 & 98 & n.a. & 85 & no.a & 197 & naed & 256 & nome & 118 & nua. & 350 & no & 27 & nee. & 53 & noa, & 42 & nome \\
\hline car end loscmotive wheols & 87.48 & 128 & not. & 85 & no.a. & 257 & nome & 147 & no.a & 156 & not. & 209 & nome & 84 & no.t. & 69 & nat. & 83 & nam. \\
\hline \(\Delta\) muor plate and oxdranco \(0^{\circ}\) & \$51.70 & - 1101 & noa. & 71 & nos : & & nom. & & \({ }_{\text {noab }}\) & \({ }^{8} 8\) & nol. & 10 & \({ }_{n \rightarrow 0}\) & 17 & noa & & not & 22 & \({ }^{n} 0\). \\
\hline Sorap iron and stool & 15.83
75.48 & 11,468 74 & \begin{tabular}{l} 
noc. \\
nam \\
\hline
\end{tabular} & 5,440 & noa. & 21,500 & \({ }_{\text {noas }}\) & 15, 817 & nas. & 13,283 & not. & 16,818 & nana & 8, \({ }_{\text {cos }}\) & not & 7,207 & now. & 10,172 & \(\mathrm{n}=0\)
\(\mathrm{n}=0\) \\
\hline & 75.48 & 74 & nemat & 39 & noe. & \({ }^{1}\) & nom. & 81 & notu & 86 & nos. & 154 & nac. & 71 & aca. & 89 & no. & 191 & noa. \\
\hline
\end{tabular}
 theal growe







\section*{Produetion for sele and interplent trumafor.}


\section*{}






tcogeve of Yanufuotareal 2025, po Me.

Produotion in all induatrles.

Prodcotian for sale anily.

Table A-62. NWMBER OF WAGE EARNERS AND AVERAGE WEEKLY HOURS IN THE IRON AND SIEEL GROUP: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|l|}{Average number of wage earners} & \multirow[t]{2}{*}{Average hours worked per week in the Iron and Steel group \({ }^{\circ}\)} \\
\hline & Iron and Steel group & Blest b & Steel Horks and Rolling Mills \({ }^{\text {b }}\) & \\
\hline 1919 & 419,092 & 44,004 & 375,088 & 63.7 \\
\hline 1920 & 429,200 & 38,200 & 391,000 & 60.7 \\
\hline 1921 & 254,213 & 18,698 & 235,515 & 51.9 \\
\hline 1922 & 324.700 & 26,000 & 298,700 & 55.8 \\
\hline 1923 & 424.913 & 36,712 & 388,201 & 55.4 \\
\hline 1924 & 394,800 & \$1,200 & 363,600 & 49.2 \\
\hline 1925 & 399,914 & 29,188 & 370,726 & 51.5 \\
\hline 1926 & 410,700 & 29,600 & 381,100 & 52.2 \\
\hline 1927 & 389,270 & 27,958 & 361,312 & 51.0 \\
\hline 1928 & 391,000 & 25,400 & 365,600 & 51.8 \\
\hline 1929 & 419,534 & 24,960 & 394,574 & 52.7 \\
\hline 1980 & 367,100 & 19,800 & 347,300 & 46.9 \\
\hline 1931 & 278,206 & 13,572 & 264.634 & 41.7 \\
\hline 1932 & 234,900 & 10,600 & 224,300 & 26.1 \\
\hline 1933 & 288,945 & 12,098 & 276,847 & 32.5 \\
\hline 1934 & 347,400 & 14,300 & 333,100 & 30.5 \\
\hline 1935 & 374,808 & 15,178 & 359,630 & 34.9 \\
\hline 1936 & 427,100 & 17,100 & 410,000 & 40.9 \\
\hline
\end{tabular}

AFigures for intercensal years 1924-36 were computed from B.L.S. index; for 1920 and 1922, from an index constructed from a monthly series of link relatives of the number of wage earners in identical ostablishments (Monthly Labor Roview, Mar. 1919. Mar. 1923). This index was adjusted to Consus trond.
\(\mathrm{b}_{\text {Estimates }}\) for intercensal years were obtained by multiplying group totala by the average of the ratios in adjacent consus years of the number of wage earners in each industry to employment in the group. The 1935 ratios were assumed for 1936.

OFor 1932-36. B.L.S.; for 1920-31. N.I.C.B. series multiplied by 1932 ratio of B.L.S. to N.I.C.B. hours; and for 1919, an estimate obtained by applying the percentage change in prea vailing hours for selected occupations between 1919 and 1920 (Fages and Hours of Labor in the Iron and Steel Industry: 1907 to 1920, BeL.S. Bull. No. 305) to actual hours for 1920.

Table \&-63.- PRODUCTIOM OF HOSIERY: BY MATERIAL AND STYLE, CENSUS TEARS 1919 TO 1925, AND BY MATERIAL, 1925 AND 1927
(Thousand dosen pairs).


Average unit value (dollars) in years for which quantity statistios are shown.

Table A-64.- FRODUCTIOM OF HOSIERY: CENSUS YEARS 1927 TO 1935
(Thousand dosen peira)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Product & Weighta & 1927 & 1929 & 1951 & 1985 & 1935 \\
\hline \multicolumn{7}{|l|}{Men's hosie} \\
\hline All motton & & & & & & \\
\hline Pull-fashioned & 5.115 & 159 & 28 & 16 & 22 & 40 \\
\hline Seamless & 1.217 & 21,585 & 16,406 & 11,520 & 12,456 & 12,357 \\
\hline All-woil, full-fashioned and soamlase & 5.858 & 442 & 357 & 245 & 380 & 881 \\
\hline All-puro-thread-silk, and pure-thread-silk with lisle or cotton tops, heels, and toes, full-fashioned and seamloss & 4.936 & 1,817 & 2,206 & 1,614 & 2,091 & 1,674 \\
\hline All-rayon, prinoipally soemleas & 2.383 & 472 & 402 & 1,796 & 1,010 & \({ }^{1,674}\) \\
\hline Rayon with sotton tops, heels, and toos, fullfashioned and seanless & 2.235 & 5,351 & 7,826 & 10,675 & 9.492 & 12,985 \\
\hline Cotton and wool, prinoipally seamleas & 2.686 & 3,648 & 5,222 & 1,172 & 2,712 & 3,614 \\
\hline Silk and rayon, prinoipally seamloas & 4.545 & 2,479 & 1,719 & 2.141 & 1,146 & 1,473 \\
\hline Rayon and mool, prinoipally seamless & 4.720 & 404 & 343 & 190 & 504 & s1 \\
\hline Rayon and cotton, prinoipally aeamlasa & 1,915 & 5,959 & 9,615 & 8,485 & 7,370 & 7,927 \\
\hline Othor mixtures, principaily aemmiosib & 5.730 & 2,145 & 2,687 & 3,569 & 2,169 & 663 \\
\hline \multicolumn{7}{|l|}{Wamen's hosiery All-motton} \\
\hline All-motton & & & & & & \\
\hline Full-fashioned & 3.120 & 571 & 341 & 198 & 179 & 38 \\
\hline Soamleas & 1.676 & 10,456 & 6,928 & 4,261 & 5,748 & 4,220 \\
\hline All-pure-thread-ailk Full-fashi oned & 11.589 & 8,079 & 5,816 & 9,075 & 13,370 & \\
\hline Soamlosa & 6.367 & 297 & 665 & 466 & 489 & 1,115 \\
\hline Pure-thread-sill with lisle or ootton tops, hools, and toes Full-fachioned & 10.006 & 14,758 & 19,224 & . 410 & & \\
\hline Sosmioas & 6.725 & 2,853 & 2,624 & 835 & 1,384 & 2,966 \\
\hline All-rayon and rayon with ootton tops, heola, and toos & & & & & & \\
\hline Full-fashioned & 6.135 & 95 & 1,665 & 1,106 & 538 & \(65^{\circ}\) \\
\hline Soamloas & 2.847 & 5,027 & 5,475 & 6,020 & 4,250 & 3,918 \\
\hline All-wool and cottion and mool, full-fashioned and somiless & 4.540 & 280 & 250 & 85 & 104 & \\
\hline Other mixtures, full-fashioned and seamless* & 6.190 & 6,946 & 7,875 & \$, 150 & 3,914 & 1,650 \\
\hline \multicolumn{7}{|l|}{Boyd', misees', and ohildren's hosiery, prinoipally sommess} \\
\hline All-rayon and rayon with cotton tops, heels, and & & & 9,694 & 7,060 & 8,429 & 8,788 \\
\hline toor & 2.417 & 597 & 1,032 & 811 & 658 & 345 \\
\hline Cotton and mool & 3.189 & 327 & 359 & 62 & 157 & 141 \\
\hline Reyon and ootton & 2.526 & 3,745 & 3,480
579 & 4,343 & 3,271 & 1,652 \\
\hline Other mixtures \({ }^{\text {P }}\) & 4.161 & 583 & 579 & 858 & 290 & 199 \\
\hline \multicolumn{7}{|l|}{Infanta \({ }^{\text {' hosiory, principally seanleas }}\)} \\
\hline All-00tton & 1.449 & 5,052 & 1,778 & 1.677 & 2,369 & 2,144 \\
\hline Rayon and mool & 2.505 & 170 & 182 & & 115 & 61 \\
\hline Rayon and ootton & 1.712 & 961 & 1,468 & 2,594 & 2,180 & 1,264 \\
\hline Other mixtureag & 2.075 & 2,656 & 2,746 & 2,374 & 1,480 & 2,021 \\
\hline
\end{tabular}
\({ }^{4}\) Onit value (dollaris) in 1929.
\(b_{\text {Silk }}\) and cottoy, silk and wool, and tripio mixtures, except in 19s5, whan no montion is made of nilk and wool.
"Wot etriotly ocmparable with prior census years since "all-rayoz" hose is not reported in 1935 ".
\(\mathrm{d}_{\text {Mot }}\) atriotiy comparable with prior census yeare since "all-mool" hose is not reported in 1935.
\({ }^{\circ}\) silk and ootton, silk and wool, ailk and rayon, rayon and cotton, and triple nixturea.
\(f_{\text {Silk }}\) and cotton; ailk and mools silk and rayon; rayon and wool; purouthread-silk with lisle or cotton tops, heals, and toas; all-purenthrand ailk; and triple mixtures.
GAll-wools all-puro-thread ailk; pure-throad-silk with lisio or ootton tope, hoels, and toess allrayon; rayon with cotton topa, hools, and toas; cotton and wool; allk and rayon; silk and cotton; silix and wool; and triple mixturan.

(Thousand doses pleove)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produot & Welght \({ }^{\text {a }}\) & 1919 & 2921 & 1028 & 2026 & 1987 & 2929 & 1981 & 2988 & 1085 \\
\hline Shirts and drawers \({ }^{\text {b }}\) & & & & & & & & & & \\
\hline All-aotton & 8.816 & 14,666 & 10,288 & 21,650 & 0,867 & 7,176 & 7,180 & 0,447 & 9,084 & 0.108 \\
\hline A11-7001 & 16.320 & 816 & 4 74 & 118 & 67 & 61 & 80 & 40 & 64 & \(10^{\circ}\) \\
\hline cotton and wool mixad & 11.818 & 1,849 & 1,077 & 728 & 680 & 878 & 880 & 150 & 458 & \(785^{\circ}\) \\
\hline Rayon & 0.946 & n.E. & n.e. & nos. & n.e. & 784 & 2,002 & 738 & 667 & 668 \\
\hline Othar \({ }^{\text {d }}\) & 18.179 & 860 & 278 & 854 & 680 & 268 & 180 & 880 & 260 & 21.7 \\
\hline Union aufte & & & & & & & & & & \\
\hline A11-00tton & 0.831 & 7.519 & 8,164 & 0,418 & 10,249 & 8,340 & 7.878 & 5,898 & 7,488 & B,298 \\
\hline All-rool & 22.628 & 77 & 29 & 25 & 70 & 104 & 286 & 26 & 78 & \(81^{\circ}\) \\
\hline cotton and wool mixad & 14.467 & 1,184 & 788 & 1.285 & 808 & 708 & 811 & 889 & 417 & \(700^{\circ}\) \\
\hline Rayon, & \({ }^{8.944}\) & nemen & n.A. & nela & no. & 442 & \({ }_{88}^{88}\) & 889 & 108 & 215 \\
\hline Othor & 18.528 & 482 & 846 & 174 & 236 & 197 & 86 & 201 & 89 & 128 \\
\hline Blocmars and atep-ing 5 & & & & & & & & & & \\
\hline All-ootton & 8.659
20.924 & E.A. & M.A. & n.t. & nom. & 458
150 & 482 & 786 & 2,077 & 990 \\
\hline Rayon & 8.054 & n.t. & nom. & nom. & nome & 1,098 & 1,75 & 011 & -78 & 1.430 \\
\hline Othes \({ }^{\text {h }}\) & 0.830 & nota & n.e. & n.a.t & noe. & 87 & 94 & 78 & 219 & 835 \\
\hline 81ipy and patticonts & 8.186 & 20.4. & no.a & nom. & nom. & 218 & 259 & 208 & 82 & 148 \\
\hline
\end{tabular}

\section*{TJuit value (doliara) in 1929.}
bin 1936, sum of following oategories, shirte and veats, athlotios ohirts and veats, other than athletioj drawers and shorts, athletio, and drawera and ehorts, other than athlotio.

CThe reported number of women' all-mool and ootton-and-mool draware and shorts, othar then athletio (see fn, b) was diatributed by materiel in the ame proportions as the oorrasponding iteme for men.
\({ }^{\text {dinolucos eilk and, for 1927-35, allk and rayon mixturoa (not aalled }}\) for on achodule prior to 1827).

The raported number of women's all-rool and cotton-and-wool undon euita way distributed by material in the eame proportions af the corresponding it em for mer.

Inciudes allk, silk and rayon (for 1927-33), and silk or rayon mixad With other fibers.
SIn 1935, elasaified an "pantioa, atep-ins, and blocmers."
Knoludos wool, cotton and wool, and ilik and rayon for 1927-38; and for 1985, wool and ootton, and "other Ilbers and other mixturos."
(Thousands of dozens)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Product & Woight \({ }^{\text {a }}\) & 1919 & 1921 & 1923 & 1925 & 1927 \\
\hline Sweaters, sweater coats, jerseys, cardigans, jackots, etc. & 24.292 & 2,133 & 2,748 & 4,455 & 3,714 & 3,781 \\
\hline Bathing suits & 19.474 & 301 & 909 & 972 & 695 & 740 \\
\hline Scarfs and shawls & 13.375 & 298 & 363 & 980 & 492 & 188 \\
\hline Headwear, except infants' & 6.145 & 558 & 508 & 843 & 805 & 700 \\
\hline Neckties & 4.952 & 548 & 1,757 & 3,324 & 2,705 & 1,810 \\
\hline Sueded cotton gloves (pairs) & 9.445 & 163 & 469 & 95 & 70 & 28 \\
\hline Gloves and mittens, except sueded (pairs) & 7.319 & 3,408 & 2,216 & 1,999 & 1,231 & 1,022 \\
\hline & Weight \({ }^{\text {b }}\) & 1927 & 1929 & 1931 & 1933 & 1935 \\
\hline Sweaters, sweater coats, jerseys, cardigans, jackets, etc. & 18.604 & 3,781 & 4,807 & 4,032 & 4,999 & 4,386 \\
\hline Bathing suits & 21.630 & 740 & 1,021 & 963 & 833 & 990 \\
\hline Scarts and shewls & 9.157 & 188 & 127 & 58 & 178 & \(334^{\text {c }}\) \\
\hline Headwear, except infants' & 4.831 & 700 & 783 & 1,078 & 1,147 & 969 \\
\hline Neckties & 2.734 & 1,810 & 628 & 131 & 56 & 425 \\
\hline Athletic and golf hose (pairs) & 4.317 & 950 & 1,105 & 2,132 & 2,295 & 3,079 \\
\hline Dresses and suits & 10.909 & 868 & 1,023 & 2,906 & 2,908 & 4,675 \\
\hline
\end{tabular}

Average unit value (dollars) in 1919-27.
bonit value (dollars) in 1929.
\({ }^{\text {cheported as }}\) "scarfs, shewls, and mufflers."

Table A-67.e PRODUCTIOM OF EMIT CLOTH: CENSUS YEARS 1919 TO \(2985^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Jersey eloth (Inoluding milanege and tricot) and tricolette & Sueded cotton oloth & \[
\begin{aligned}
& \text { Towols } \\
& \text { and } \\
& \text { toweling }
\end{aligned}
\] & W002 jorsoy & Othor knit woolens & Silk jersoy, inoluding Mlanee & \[
\begin{gathered}
\text { Rayon } \\
\text { tubing, } \\
\text { fnoluding } \\
\text { tricolotte }
\end{gathered}
\] & Other knit rayons & Cotton jersey & Corsat sloth \\
\hline 1919 & 25,343 & 265 & 597 & - & - & - & - & - & - & - \\
\hline 2921 & 38,112 & 42 & 754 & - & - & - & - & - & - & - \\
\hline 1925 & 58,703 & 102 & 1,055 & - & - & - & - & - & - & - \\
\hline 2925 & 42,172 & 111 & 976 & - & - & - & - & - & - & - \\
\hline 1927 & 44,459 & 24 \({ }^{\text {b }}\) & 1,035 \({ }^{\text {b }}\) & - & - & - & - & - & - & - \\
\hline Weight \({ }^{0}\) & 1.085 & 2.555 & 0.848 & - & - & - & - & - & - & - \\
\hline 1827 & - & - & - & 10,256 & 1,875 & 3,509 & 28,829 & - & - & - \\
\hline 1929 & - & - & - & 7,212 & 2,509 & 4,127 & 49,948 & - & - & \\
\hline Weight \({ }^{\text {d }}\) & - & - & - & 1.089 & 1.606 & 0.777 & 0.860 & - & - & - \\
\hline 1929 & - & - & - & 7,212 & 2,509 & 4,127 & 49,948 & 1,614 & 14,234 & 4,858 \\
\hline 1951 & - & - & - & 12,959 & 4,565 & 6,025 & 74,106 & 3,302 & 15,250 & 5,621 \\
\hline Weight \({ }^{\circ}\) & - & - & - & 0.831 & 1.435 & 0.590 & 0.428 & 0.489 & 0.238 & 0.714 \\
\hline 1938 & - & - & - & 5,425 & 4.911 & 687 & 19,705 & 5,051 & 7,588 & - \\
\hline 1935 & - & - & - & 3,048 & 5,321 & 277 & 24,010 & 4,567 & 10,796 & - \\
\hline Weight \({ }^{\text {f }}\) & - & - & - & 1.204 & 1.272 & 2.113 & 0.751 & 0.889 & 0.328 & - \\
\hline
\end{tabular}
\({ }^{\text {a Figuren }}\) for 1933 and 1935 reprasent thousands of pounds; for other years, thousands of square yards.
\({ }^{b}\) Census of Manufactures: 1927. p. 314.
\({ }^{0}\) Average unit value (doilars) in 1919-27.
\(\mathrm{d}_{\text {Average unit }}\) value (dollars) in 1927-29.
Average unit value (dollars) in 1929-31.
\(f_{\text {Average unit value (dollars) in 1933-35. }}\)

Table A-68.- AVERAGE NUMBER OF WAGE EARNERS IN KNIT GOODS GROUP AND COMPONENT INDUSTRIES AND AVERAGE HOURS WORKED PER KIEEK IN THE GROUP: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Number of wage earners \({ }^{\text {a }}\)} & \multirow[t]{2}{*}{Average hours worked per week} \\
\hline & Knit Goods group & Hosiery & Under. wear & Outerwear & \begin{tabular}{l}
Knit \\
Cloth
\end{tabular} & \\
\hline 1919 & 172,572 & 79,901 & 57.984 & 29,992 & 5,695 & 46.6 \\
\hline 1920 & 179,500 & 84,700 & 56,600 & 32,100 & 6.100 & 45.1 \\
\hline 1921 & 161.880 & 77,864 & 47,431 & 30,919 & 5,666 & 46.8 \\
\hline 1922 & 193,500 & 94,800 & 52,600 & 39.100 & 7,000 & 46.8 \\
\hline 1923 & 194.244 & 96,957 & 48,552 & 41,503 & 7,232 & 46.3 \\
\hline 1924 & 173,600 & 91.100 & 42,700 & 34,000 & 5,800 & 43.7 \\
\hline 1925 & 186,668 & 103,930 & 48,328 & 27,986 & 6,424 & 45.1 \\
\hline 1926 & 187,400 & 106,300 & 49,400 & 25,500 & 6,200 & 45.1 \\
\hline 1927 & 190,283 & 112,842 & 46,227 & 24,662 & 6,552 & 47.0 \\
\hline 1928 & 190,300 & 114,600 & 42,600 & 26,600 & 6,500 & 46.8 \\
\hline 1929 & 208,488 & 129,542 & 41.487 & 28,968 & 8,491 & 47.6 \\
\hline 1930 & 189,900 & 119,000 & 35,900 & 26,500 & 8,500 & 43.3 \\
\hline 1932 & 178,011 & 112,374 & 31,951 & 26.142 & 7,544 & 42.2 \\
\hline 1932 & 173,900 & 110,800 & 30,000 & 26,300 & 6,800 & 38.5 \\
\hline 1933 & 189,698 & 117.919 & 35,915 & 26,908 & 8,956 & 39.2 \\
\hline 1934 & 204,600 & 128,900 & 35,000 & 30,200 & 10,500 & 34.6 \\
\hline 1935 & 219.776 & 138,021 & 34,930 & 35,455 & 11,370 & 34.5 \\
\hline 1936 & 224,200 & 142,400 & 38,000 & 32,200 & 11,600 & 35.8 \\
\hline
\end{tabular}

\footnotetext{
a The number of wage earners in each of the component industries in 1919 was estimated from a percentage distribution of over 60 percent of the workers in the group (Census of Manufactures: 1919, p. 214): similar distributions required for 1920-22 were determined by straight-line interpolation between 1919 and 1923. The numbers for all other odd-numbered years were reported by the Census; and those for all other even-numbered years were derived by means of unpublished B.L.S. indexes for the 4 industries.
\(\mathrm{b}_{\text {Figures }}\) for 1920-36 from N.I.C.B. \(\mathrm{f}_{\text {, for 1919, Census prevailing }}\) hours multiplied by the average ratio in 1921, 1923, and 1929 of N.I.C.B. actual to Census prevailing hours.
}

(Quantities in thougands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tear} & \multicolumn{4}{|c|}{Sole and bolting luathor} & \multicolumn{2}{|r|}{Harmese leather} & \multirow[b]{2}{*}{Bag, eane, and etrap lesther (sides)} & \multirow[b]{2}{*}{8kirting and collar lenthor (sides)} & \multirow[b]{2}{*}{La00 (esden)} \\
\hline & Oak gid union mole \({ }^{6}\) (backe, benda, and cldes) & Chrame sole (becks, bonde, and nidos) & Belting butte, rough and ourriod (butte, and butt benda) & Offal (pounda) & \[
\begin{aligned}
& \text { Dnion bleok } \\
& \text { (sidee) }
\end{aligned}
\] & Onk black and suleot (alder) & & & \\
\hline 1019 & 19,133 & 583 & 1,503 & (0) & \(378{ }^{\text {d }}\) & 1,339 \({ }^{\circ}\) & 1,226 & 582 & 498 \\
\hline 1920 & n.s. & nom. & n.E. & nom. & nos. & nom. & nom. & n.E. & n.e. \\
\hline 1921 & 17,576 & 488 & 1,196 & 100,104 & 305 & 506 & 821 & 410 & 151 \\
\hline 1922 & 17,143 & 692 & 1,014 & 121,637 & 554 & 823 & 1,249 & 663 & 207 \\
\hline 1928 & 18,104 & 629 & 1,471 & 136,167 & 659 & 896 & 1,200 & 928 & 211 \\
\hline 1926 & 14,080 & 560 & nom. & 104,938 & 545 & 724 & 1,056 & 685 & 187 \\
\hline 1925 & 14,827 & 552 & noe. & 109,873 & 548 & 745 & 1,175 & 859 & 170 \\
\hline 1926 & 18,163 & 462 & 1,852 & 104,512 & 511 & 658 & 1,183 & 500 & 145 \\
\hline 1927 & 15,194 & 635 & 1,891 & 118,392 & 458 & 858 & 1,105 & 545 & 148 \\
\hline 1928 & 16,854 & 485 & 1,625 & 116,360 & 377 & 435 & 812 & 426 & 186 \\
\hline 1929 & 13,939 & 577 & 2,088 & 106,858 & 258 & 386 & 947 & 857 & 118 \\
\hline 1950 & 14,072 & 541 & 1,432 & 117,249 & 189 & 817 & 761 & 518 & 106 \\
\hline 1951 & 12,542 & 418 & 931 & 92,505 & 86 & 272 & 624 & 186 & 98 \\
\hline 1982 & n.a. & nop. & nom. & non. & n.a. & notes & n.en & n.E. & n.a. \\
\hline 1988 & 21,836 & 67 & 1,026 & 88,426 & 177 & 286 & 493 & 27 & 126 \\
\hline 1984
1936 & \[
\begin{gathered}
\mathrm{m}_{1} 0.0 \\
16,655
\end{gathered}
\] & \[
\begin{aligned}
& \text { nole } \\
& 1,123
\end{aligned}
\] & no.
1,427 & \[
\begin{gathered}
\text { noln. } \\
100,879
\end{gathered}
\] & Mon** & noa.
560 & nog.
986 & noE**
519 & noE.

105 \\
\hline Woight \({ }^{2}\) & 6.850 & 6.704 & 18.033 & 0.250 & 8.712 & 7.850 & 6.929 & 6.054 & 6.384 \\
\hline
\end{tabular}

Pigures for 1921-31 were oollected by the Bureau of the Census in its Monthly Consus of Hidas, Skins, and Leather (authorized by the Kroider Aot) and published in the Census of Manufactures; those for 1919, 1933 , and 1935 wore colleated in the rogular biennial oanvass. The 1933 and 1935 figures for publishod in the Census of Manufactures; those for 1919, 1933 , and 1935 wore colleated in the rogular bionnial oanvass. The 1933 and 1935 figures oach product were adjusted to include eontract
(bionnial) Congua of Manu factures quantitios.
bequntities for 1919-23 inolude nemlock mole. eneported, figure ( \(40,041,363\) pounds) was not used since it is probably a serious understatemente
dinciudes ohromes oIncludes hemlock, which is probably reported with oak in later yeare.
fonit value (dollars) in 1929 ocmputed from (biennial) census of Mamuractures data (see fn. a),
(Guantitien in thousende)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tear} & \multicolumn{2}{|l|}{Cattle (inoluding kip 14de) 1eather} & \multicolumn{2}{|l|}{Horse, solt, nant, and mile louthor} & \multicolumn{2}{|l|}{Faney and bookbindera' leather} & \multirow[t]{2}{*}{splitt (other than upholatery), finimhad and rough (equivalent cide eplita)} & \multicolumn{3}{|c|}{Orholatary leather} \\
\hline & Upper, other than patenatb (aides) & Petent, other than upholsteryo (aides) & \[
\begin{aligned}
& \text { Oppor } \\
& \text { (equivalant } \\
& \text { haif tronta) }
\end{aligned}
\] & Olove and germent (equivalent half fronts) & \begin{tabular}{l}
Cowhide \\
(sides)
\end{tabular} & Burfings, FIniched (hirdet) & & Whole-hide graing and mohino buffed (hides) & \[
\begin{gathered}
\text { Buffings, } \\
\text { (hueser) } \\
\text { (hiden) }
\end{gathered}
\] & Splita, man and seoond (pisease) \\
\hline 1919 & 16,698 & 2,564 & 1,721 & 989 & 655 & nato & nono & \(955{ }^{\text {d }}\) & nuas & 1,621 \\
\hline 1920 & nec. & none & noe. & & nome & note & nome & now. & noto & mate \\
\hline 1921 & 22,549 & 2,278 & 8980, 5 & 544,9 & 80 & 74 & Dose & 414 & nos. & 676 \\
\hline 1922 & 16,321 & 6,472 & \(182{ }^{\text {f }}\) & \({ }^{688}{ }^{\text {\% }}\) & 187 & 210 &  & 716 & nota & 2,182 \\
\hline 1928 & 18,427 & 5,542 & 198 & 950 & 252 & 197 & 24,7628 & 745 & 179 \({ }^{\text {h }}\) & 1,250 \\
\hline 1924 & 24,500 & 8,854 & 112 & 1,000 & 285 & 100 & 20,5625 & 649 & 142 & 917 \\
\hline 1926 & 15,528 & 8,628 & 108 & 1,146 & 502 & 89 & 24,025 & 626 & 115 & 858 \\
\hline 1926 & 15,473 & 7,469 & 116 & 1,009 & 209 & \({ }^{68}\) & 24,617 & 601 & 201 & 807 \\
\hline 1927 & 13,459 & 8,388 & 92 & 1,459 & 202 & 59 & 24,646 & 502 & 158 & 958 \\
\hline 1928 & 11,485 & 7,851 & 80 & 1,500 & 156 & 78 & 21,946 & 470 & 149 & 709 \\
\hline 1929 & 12,610 & 5,954 & 106 & 2,057 & 240 & 64 & 22,466 & 414 & 219 & 672 \\
\hline 1950 & 11,112 & 4,623 & 150 & 2,270 & 182 & 50 & 10,315 & 259 & 85 & 889 \\
\hline 1881 & 12,004 & 4,501 & 92 & 2,846 & 186 & 88 & 17,886 & 248 & 59 & s93 \\
\hline 1982
1988 & \[
\begin{gathered}
\text { noene } \\
16,8,047
\end{gathered}
\] & \({ }_{\mathbf{5}, \mathbf{8 5 8}}\) & \({ }_{86}\) & 2,s5ss & \(n_{\text {nota }}\) & 5000* & \({ }^{\text {nen }}\) & nome & \(\mathrm{n}_{0} \mathrm{am}_{0}\) & \({ }^{2989}\) \\
\hline 1934 & not. & not. & nomo & noa. & neat & nome & note & no. & notor & noen \\
\hline 1885 & 20,885 & nome & 106 & 1,564 & 516 & 29 & 25,274 & 508 & 12 & 354 \\
\hline Worght & 4.225 & 4.375 & 8.703 & 5.456 & 5.940 & 8.020 & 0.920 & 14.287 & 5.655 & 6.989 \\
\hline \multicolumn{6}{|l|}{ssoe fable A-69, ta. a.} & \multicolumn{5}{|l|}{IThe quantitios, roported in whole fronta and hall trontr, wore sombined on the asaump tion that 2 half fronts are equivalent to 1 whole front.} \\
\hline \multicolumn{11}{|l|}{\(\mathrm{brac}_{\text {celudes }}^{\text {Foreign-tarned outtle asdos. }}\)} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
ocmane quantition for 2010-28 inolvde forelpo-tannod patent lenthory the 1928 figure mes adfunted by subtracting limports of patont lonthor (about 2 porcont of the total) an roported in Poreign Comeree and Mavtration of the Dnitod 8tatos; 292S (J. 8. Dopt. \\

\end{tabular}}} & \multicolumn{5}{|l|}{Whole oplits and butt splite were reduced to equivalont alde splite by multipliontion by 2.} \\
\hline & & & & & & \multicolumn{5}{|l|}{\(\mathrm{hrigure} \mathrm{oh}^{\text {ghew }}\) is average for 5 monthe multiplied by 12.} \\
\hline & & & & & & \multicolumn{5}{|l|}{\multirow[b]{2}{*}{\(j_{0 n i t}\) valua (dollare) in 1929 computed from (biennial) Censue of Manufnotures duta}} \\
\hline \multicolumn{2}{|l|}{dmolehide eralne conly.} & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{\({ }^{\bullet \prime \prime}\)} \\
\hline
\end{tabular}
\(J_{\text {Unit }}\) value (dollars) in 1929 somputed froan (biennial) Gongue of Manufuotures datm


Table A-71. - PRODUCTION IN TEIE CALPSKIN AND IID LEATHER INDUSTRIES: 1919 TO 1935a
(Quantities in thousands)
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Calfskin industry} & \multicolumn{2}{|l|}{Kid Leather industry} \\
\hline Year & \begin{tabular}{l}
Upper \\
leather, calf and kip, excopt kip side (skins and whole skins)
\end{tabular} & Fancy and bookbinders: leather, calf and kip (skins) & \begin{tabular}{l}
Upper \\
leather, goat and kid (skins)
\end{tabular} & Fanoy and bookbinders' leather, goat and kid (skins) \\
\hline 1919 & 11,697 & 277 & 51,509 & 336 \\
\hline 1920 & n.a. & n. \({ }^{\text {a }}\) & n.a. & n. \(0^{6}\) \\
\hline 1921 & 14,827 & 119 & 34,356 & 165 \\
\hline 1922 & 15,435 & 97 & 47,880 & 254 \\
\hline 1923 & 18,004 & 281 & 46,537 & 291 \\
\hline 1924 & 15,981 & 430 & 34,641 & 338 \\
\hline 1925 & 13,621 & 249 & 40,887 & 541 \\
\hline 1926 & 14,943 & 704 & 48,415 & 664 \\
\hline 1927 & 16,150 & 674 & 49,417 & 717 \\
\hline 1928 & 14,975 & 558 & 52,862 & 1,116 \\
\hline 1929 & 14,541 & 766 & 54,355 & 889 \\
\hline 1930 & 13,589 & 564 & 54,451 & 398 \\
\hline 1931 & 12,080 & 381 & 47,980 & 422 \\
\hline 1932 & n.a. & n.e. & n. A. & n.a. \\
\hline 1933 & 13,379 & 473 & 46,804 & 162 \\
\hline 1934 & n.a. & n. . \(^{\text {a }}\) & n.a. & n. 2. \\
\hline 1935 & 13,837 & 1,125 & 51,769 & 220 \\
\hline Weight \({ }^{\text {b }}\) & 5.447 & 4.019 & 1.289 & 2.283 \\
\hline
\end{tabular}
asee Table A-69, In. A.
buit value (dollars) in 1929 computed from (biennial) Census of Manufaotures data (see Table A-69, fn. a).

Table A-72.- PRODUCTION II THE SHEEP AND MISCELLANDOUS LEATHER INDUSTRY: 1919 20 1935²
(Quantitios in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|c|}{Upper leather} & \multicolumn{3}{|c|}{Glove and garment leather} & \multirow[t]{2}{*}{Fancy and bookbinders' leather sheop, lamb, and cabrotta (skina)} & \multicolumn{3}{|c|}{Miscellaneous leather} \\
\hline & ```
Sheap, lamb,
    and
    cabretta
    (akine)
``` & \[
\begin{aligned}
& \text { Kangaroo and } \\
& \text { walleby } \\
& \text { (skins) }
\end{aligned}
\] & Sheop and lamb, except shearlings (skins) & \[
\begin{aligned}
& \text { Shearlings } \\
& \text { (skins) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Deer and olk } \\
& \text { (akins) }
\end{aligned}
\] & & \begin{tabular}{l}
Roller \\
leather \\
(skins)
\end{tabular} & Skivers inoluding hat-nweat (dorans) & \begin{tabular}{l}
Chamols \\
(dozens)
\end{tabular} \\
\hline 1919 & 15,236 & n.2. & 4,976 & 644 & \$24 & 1,755 \({ }^{\text {b }}\) & n.e. & 692 & n.e. \\
\hline 1920 & n-a. & n.a. & n.a. & n.a. & n.e. & n.a. & n.e. & n.a. & n.e. \\
\hline 1921 & 16,259 & 963 & 3,813 & 1,243 & 370 & 1,995 & 511 & 502 & 244 \\
\hline 1922 & 20,127 & 1,072 & 6,776 & 2,001 & 410 & 2,886 \({ }^{\text {c }}\) & 969 & 380 & 278 \\
\hline 1923 & 21,986 & 1,263 & 7,789 & 2,559 & 540 & 3,038 & 1,009 & 462 & 265 \\
\hline 1924 & 20,528 & 1,105 & 5,561 & 1,978 & 574 & 3,022 & 738 & 404 & 267 \\
\hline 1925 & 16,536 & 820 & 5,326 & 1,985 & 665 & 2,078 & 849 & 392 & 256 \\
\hline 1926 & 16,817 & 680 & 5.297 & 2,519 & 634 & 2,432 & 827 & 266 & 244 \\
\hline 1927 & 16,399 & 705 & 7,575 & 2,727 & 596 & 2,861 & 930 & 272 & 237 \\
\hline 1928 & 19,016 & 883 & 9,026 & 3,297 & 522 & 3,394 & 943 & 220 & 179 \\
\hline 1929 & 19,424 & 854 & 8,633 & 3,990 & 614 & 2,781 & 2,083 & 212 & 154 \\
\hline 1930 & 12,926 & 926 & 9,298 & 3,551 & 558 & 1,998 & 842 & 132 & 156 \\
\hline 1981 & 14,078 & 967 & 10,934 & 3,172 & 546 & 2,066 & 769 & 79 & 203 \\
\hline 1932 & n.en. & n.e. & n.m. & n.a. & n.a. & n.a. & n.e. & n.a. & n.a. \\
\hline 1933 & 12,215 & nom. & 18,424 & 3,309 & n.e. & 1,519 & n.a. & n.a. & n, \({ }_{\text {a }}\) \\
\hline 1984 & n.en. & 2.a. & n .8 .8.
18.478 & 3,460. & n.e. & n, \({ }_{\text {n, }}\) & n.8. & n.a.
94 & \\
\hline 1935 & 14,979 & 845 & 18,478 & 3,450 & & 1,128 & n.e. & 94 & n. \({ }^{\text {a }}\) \\
\hline Woight \({ }^{\text {d }}\) & 1.084 & 1.614 & 1.326 & 2.785 & 2.629 & 1.557 & 1.743 & 15.856 & 15.327 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Soe Table A-69, \(\mathrm{m}_{\mathrm{n}}\) a。
Sheop and lamb only.
\({ }^{\text {C Produotion of cabrette, reported }}\) epparately only for 7 monthe, was raised to yoarly total by maltiplying 7 month average by 12. donit value (dollare) in 1929 oamputed from (biennial) Consus of Manufaotures data (see Table A-69, fn. a).

Table A-73.- IITPERPOLATITG SERIES FOR PRODUCTION II LEATHER GROUP AND COMPONENT INDUSTRIES: 1919 TO 1921 AND 1931 TO 1936
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[t]{2}{*}{Index of 1eather production \({ }^{2}\) (1921: 100)} & \multicolumn{4}{|r|}{Leather production \({ }^{\text {b }}\) (thousends)} \\
\hline & & Cattlo hides & Cale and Kip skins & Goat and kid skins & Sheep and lamb skins \\
\hline 1919 & 126.9 & - & - & - & - \\
\hline 1920 & 103.5 & - & - & - & - \\
\hline 1921 & 100.0 & - & - & - & - \\
\hline 1951 & - & 16,236 & 12,444 & 48,636 & 32,448 \\
\hline 1932 & - & 14,580 & 11,580 & 37,020 & 28,836 \\
\hline 1933 & - & 17,112 & 13,044 & 44,316 & 33,876 \\
\hline 1984 & - & 19,776 & 12,444 & 44,988 & 54,260 \\
\hline 1935 & - & 21,936 & 14,136 & 48,252 & 38,460 \\
\hline 1936 & - & 22,628 & 13,127 & 47,450 & 37,942 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{0}\) Produotivity of Labor in the Cement, Leather, Plour, and Sugar-Refining Industries, 1914 to 1925," Monthly Labor Review, Oot. 1926, pe 14. The index is an aritheetic mean of relatives of the production of all sole and belting leather and of all upper leather, weighted 1 and 2, respectively. Sole and belting leather was reduced to pounde, and upper leather, to square foet by means of conversion factors used by the Bureau of the Census.
\({ }^{\text {b Surver of }}\) Curpent Business, " 1936 Supplement," p. 109, and later issues. "Data vere compiled by the \(U_{0} S\). Department of Conmarce, Bureau of the Census for the period through April 1932, and subsequently by the tamers' Council of Amerioa. The consus returns colleoted under the Kreider Act represented a complote coverage of the industry, and the Tamers' Council etates that their figures are directly comparable with the cemsue Iigures." (Ibide, p. 175, fn. 2 to p. 109.)
}

Table A-74.- NUMBER OF WAGE EARNERS AND AVERAGE WEEKLY HOURS IN THE LEATHER GROUP: 1919 TO 1936
\begin{tabular}{|c|c|c|}
\hline Year & Average number of wage, earners & Average hours worked per week \({ }^{\text {n }}\) \\
\hline 1919 & 72,476 & 48.0 \\
\hline 1920 & 65,400 & 46.2 \\
\hline 1921 & 48,955 & 46.6 \\
\hline 1922 & 58,500 & 47.7 \\
\hline 1923 & 59,703 & 47.6 \\
\hline 1924 & 52,300 & 46.2 \\
\hline 1925 & 52,263 & 47.5 \\
\hline 1926 & 53,000 & 46.5 \\
\hline 1927 & 52,924 & 45.8 \\
\hline 1928 & 51,700 & 45.2 \\
\hline 1929 & 49,932 & 47.6 \\
\hline 1930 & 46,400 & 44.9 \\
\hline 1931 & 42,047 & 45.2 \\
\hline 1932 & 37,700 & 42.0 \\
\hline 1933 & 44,191 & 41.1 \\
\hline 1934 & 49,000 & 36.8 \\
\hline 1935 & 50,877 & 38.2 \\
\hline 1936 & 51,400 & 39.2 \\
\hline
\end{tabular}

For 1920-31, N.I.C.B.: for 1932-36, B.L.S. The figure for 1919, computed from Industrial Survey in Selected Industries in the United States: 1919 (B.L.S. Bull. No. 265), pp. 37-8, represents average actual hours per man per day multiplied by 6.

TABle A-7E.- NOMBER OF WAGE EARNERS AND MAN-HOURS \({ }^{\text {b }}\) IN THE CONPONENT INDUSTRIES OF THE LEATHER GROUP, 1919 to 2936
(Man-houry in thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Tear} & \multicolumn{2}{|l|}{Sole and Harnesa Leather} & \multicolumn{2}{|l|}{Side and Opholatery Leather} & \multicolumn{2}{|c|}{Calfacin} & \multicolumn{2}{|r|}{Kid Leather} & \multicolumn{2}{|l|}{Sheep and Misoellaneoun Leather} \\
\hline & Wage carners & Yanhoure & Tage earnert & Manhours & Wago earnore & Manhours & \[
\begin{aligned}
& \text { Fage } \\
& \text { earnera }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Hana } \\
& \text { houry }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Wage } \\
& \text { earnere }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Mane } \\
& \text { houre }
\end{aligned}
\] \\
\hline 1919 & 23.100 & 60,024 & 18,300 & 43,801 & 8,000 & 18,783 & 14,000 & 35,577 & 9,100 & 22,715 \\
\hline 1920 & n.e. & n.a. & n.a. & not. & n.a. & n.a. & n.a. & n. \(\mathrm{R}^{\text {a }}\) & n.a. & n.a. \\
\hline 1921 & 16,300 & .41,160 & 10,000 & 23,269 & 8,400 & 19.136 & 7,800 & 19,334 & 6,500 & 15.729 \\
\hline 1922 & 16,900 & 43,787 & 14,700 & 34,935 & 8,400 & 19.530 & 10,400 & 26,522 & 8,200 & 20,381 \\
\hline 1923 & 17,500 & 45,334 & 14,800 & 35,217 & 9,300 & 21.578 & 9,500 & 24.193 & 8,600 & 21,455 \\
\hline 1924 & 14,300 & 55,785 & 14,600 & 33,541 & 8,800 & 19,854 & 6,600 & 17,245 & 8,000 & 19.170 \\
\hline 1925 & 15,600 & 40,680 & 14,100 & 33,653 & 7,400 & 17,274 & 8,100 & 20,267 & 7,000 & 17,216 \\
\hline 1926 & 14,800 & 57,503 & 14,000 & 32,578 & 8.100 & 18,478 & 9,600 & 23,840 & 6,500 & 15,702 \\
\hline 1927 & 14,000 & 36,656 & 14,500 & 31,378 & 7,600 & 17,708 & 9,700 & 23,505 & 7,100 & 16,797 \\
\hline 1928 & 13,300 & 34,020 & 13,100 & 28,791 & 7,200 & 15,904 & 10,200 & 24.564 & 7,700 & 18,190 \\
\hline 1929 & 12,300 & 32,215 & 12,100 & 29,153 & 7,600 & 16,988 & 10,300 & 26,333 & 7,700 & 18,903 \\
\hline 1930 & 12,700 & 31,060 & 10,800 & 23,524 & 6,600 & 14,661 & 9,600 & 23,379 & 6,700 & 15,680 \\
\hline 1931 & 10,700 & 24,877 & 9,100 & 21,453 & 6,100 & 13,808 & 9,000 & 21,916 & 7.100 & 16,773 \\
\hline 1932 & 10,000 & 20,173 & 8,800 & 20,560 & 5,000 & 11,090 & 7,600 & 16,906 & 6,300 & 13,606 \\
\hline 1935 & 11,500 & 23,289 & 10,400 & 22,788 & 6,300 & 13,789 & 9,000 & 19.761 & 6,900 & 14,818 \\
\hline 1934 & 12,400 & 25,176 & 13,200 & 25,396 & 6,700 & 11,815 & 9,600 & 17,976 & 7,000 & 13,467 \\
\hline 1935 & 13,400 & 26,807 & 13,900 & 27,792 & 6,600 & 13,147 & 10,500 & 20,334 & 6,500 & 12,982 \\
\hline 1936 & 13,200 & 29,021 & 17,000 & 32,771 & 4,300 & 9,284 & 9,900 & 19,618 & 7,000 & 14,141 \\
\hline
\end{tabular}
aman-hours divided by corresponding average annual hours per wage earner (Table A-76).
bror details of derivation of the man-hours series, see Fart Two L Leather Group.

Table A-76. AVERAGE ANNUAL HOURS PER WAGE EAFRNER IN THE CONPONENT INDOSTRIES OF THE LEATHER GROUP: 1919 TO \(1936^{\circ}\)
\begin{tabular}{l|c|c|c|c|c}
\hline \hline Year & \begin{tabular}{c}
Sole and \\
Harness \\
Leather
\end{tabular} & \begin{tabular}{c}
Side and \\
Ophol- \\
stery \\
Leather
\end{tabular} & Calfskin & \begin{tabular}{c}
Kid \\
Leather
\end{tabular} & \begin{tabular}{c}
Sheep and \\
Miscel- \\
laneous \\
Leather
\end{tabular} \\
\hline 1919 & 2,548 & 2,340 & 2,288 & 2,496 & 2,444 \\
1920 & 2,548 & 2,340 & 2,288 & 2,496 & 2,444 \\
1921 & 2,548 & 2,340 & 2,288 & 2,496 & 2,444 \\
1922 & 2,340 & 2,288 & 2,496 & 2,444 \\
1923 & 2,548 & 2,50 & & & \\
1924 & 2,548 & 2,340 & 2,288 & 2,652 & 2,444 \\
1925 & 2,548 & 2,340 & 2,288 & 2,444 & 2,392 \\
1926 & 2,548 & 2,340 & 2,288 & 2,496 & 2,444 \\
1927 & 2,652 & 2,184 & 2,340 & 2,444 & 2,392 \\
1928 & 2,600 & 2,236 & 2,236 & 2,444 & 2,392 \\
1929 & 2,548 & 2,340 & 2,184 & 2,496 & 2,392 \\
1930 & 2,444 & 2,184 & 2,236 & 2,444 & 2,340 \\
1931 & 2,236 & 2,288 & 2,184 & 2,340 & 2,288 \\
1932 & 1,924 & 2,236 & 2,132 & 2,132 & 2,080 \\
1933 & 1,976 & 2,132 & 2,132 & 2,132 & 2,080 \\
1934 & 2,028 & 1,924 & 1,768 & 1,872 & 1,924 \\
1935 & 1,976 & 1,976 & 1,976 & 1,924 & 1,976 \\
1936 & 2,080 & 1,820 & 2,028 & 1,872 & 1,924 \\
& & & & &
\end{tabular}
\({ }^{\text {afor }}\) details of derivation of these series of average hours, see Part Two: Leather Group. The figures for most of the years are based on data collected in a field survey made by N.R.P. in cooperation with B.L.S. Estimates were necessary for the earlier years for which no N.R.P.-B.L.S. figures were available.

(xallioni of foet, boerd meafure)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Imaber \({ }^{\text {b }}\) & Lets \({ }^{\circ}\) & 6ningios \({ }^{\circ}\) & \[
\begin{gathered}
\text { Loge quna } \\
\text { avaed 12 } \\
\text { Fonger } \\
\text { produotson }
\end{gathered}
\] & \[
\begin{aligned}
& \text { IIght } \\
& \text { atares }
\end{aligned}
\] & Tight hoading & 81ank atevas & 81mok heading & Eoops & \(\underset{\text { prodatota }}{ } 11\) \\
\hline 2919 & 38,788 & 848 & 010 & 641 & 864 & 96 & 870 & 174 & 47 & 86,786 \\
\hline 2080 & 85,799 & 891 & 616 & nana & none & mol. & 20.as & none & EnA. & 86,412 \\
\hline 2921 & 26,981 & 804 & 884 & 456 & 266 & 84 & 298 & 184 & 48 & 29,508 \\
\hline 1922 & 81,569 & 588 & 818 & mone & ment & mond & noab & nol. & noto & 86,388 \\
\hline 1928 & 37,166 & 66 & 751 & 748 & 223 & 76 & 295 & 160 & 62 & 40,138 \\
\hline 2924 & 35,091 & 592 & 68 & nosas & nome & nola & nomo & nea. & nomot & 88,785 \\
\hline 2925 & 88,859 & 682 & 732 & 849 & 240 & 92 & 310 & 162 & 49 & 41,885 \\
\hline 2926 & 80,958 & 617 & 601 & nowe & nom: & noas: & mon. & nos. & non. & 40,062 \\
\hline 1927 & 84,552 & 474 & 644 & 1.112 & 824 & 104 & 817 & 118 & 46 & 87.870 \\
\hline 2928 & 84,142 & 888 & 580 & nome & new. & neat & n.a. & 70.0. & nollo & 87.188 \\
\hline 2929 & 86,886 & 841 & 811 & 1,290 & 857 & 120 & 845 & 148 & 4 & 40,288 \\
\hline 1980 & 26,061 & 219 & 888 & noa. & nom. & noE. & n.a. & neat & nolat & 20,680 \\
\hline 1981 & 16,523 & 123 & 871 & 812 & 205 & 80 & 177 & 86 & 82 & 18,808 \\
\hline 2882 & 10,161 & 81 & 231 & nea. & \(\mathrm{n}_{6} \mathrm{E}_{6}\) & nom. & ner. & nose & nelab & 11,881 \\
\hline 1985 & 18,961 & 82 & 288 & 821 & 166 & 62 & 142 & 74 & 80 & 15,599 \\
\hline 1954 & 16,494 & \({ }^{83}\) & 278 & nuse & note & noa. & nome & E.E. & now. & 17.189 \\
\hline 1956 & 19,559 & 124 & 553 & 987 & 222 & 60 & 145 & 72 & 17 & 21.499 \\
\hline 1985 & 24,366 & 162 & 472 & note. & now- & noa, & nom, & noma & nome. & 26,858 \\
\hline Couveral on
faotore & - & 0.2 & 0.2 & 1.1788 & 2.0 & 4.0 & 0.85 & 2.0 & 0.88 & - \\
\hline
\end{tabular}

The producta were originally reported in the following unitas thousande - EExcludes imported loge。
ath, ehinglea, tight and Elack staves, and hoops; thouanand foot, log
coale - veneere, thousond sets etight and slack headings and thousand feet, o For odd-numbered years, totale of quantitios in preseding ooluma, for board meatoure - l lumber. hiltiplioation by indionted conversion faotors ytelded board-mpanure equivalonte.
betatiatios for 1919-54 are from humber Productions 1869-1934 (\(0_{0}\) S. Dept. Agro, Foreat Bervice); for 1935, fram Conaue of Manufactures, and for 1956,

OStatiation for 1980-56 are fram Forest Products: 1932 (\(\mathrm{U}_{\mathrm{C}}\) 8, Dopt, Come, Bure Cone), "Lumber, Lath and Shingles," Ppe 5-6; 要idet 1934, po 4; and bides 1936. p. 60
other years, eatimat

Pcomputed from American Foreata and Forast Produotis (D. S. Dept. Agre, 8tat. Bul2. No. 21). P. 27.
govarrun ratio for 1929 derived from Roport to the Prosident on Lumber (V . S. Tariff Commiesion, 2nd Sor., No. 32, 1937). The ratio was oomputed from regional data represonting approxinately 30 percont of 1928 logging produotion.
basic tables: LUMBER AND timber products group 83

Table A-78.- FRODUCTION of LUNBBR, BY REGIONS: 1919 TO 1936a
(killions of feet, board measure)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & \[
\underset{\text { regions }}{\text { All }}
\] & Southern pine & Western - pene & Douglas rir & Redwood & Southern hardrood & \[
\underset{\text { other }}{\text { All }}
\] \\
\hline 19190 & 53,788 & 12,774 & 5,913 & 6,498 & 401 & 3,388 & 6,814 \\
\hline 1920 & 33,799 & 11,091 & 4,328 & 7,792 \({ }^{\text {d }}\) & 477 & 5,385* & 6,748 \\
\hline 1921 & 26,961 & 10,960 & 8,063 & 5,198 & 468 & 2,414 & 4,868 \\
\hline 1922 & 31,569 & 11,501 & 3,933 & 7,817 & 566 & 2,682 & 5,070 \\
\hline 1923 & 37,186 & 12,949 & 4,958 & 9,309 & 595 & S.420 & 5,957 \\
\hline 1924 & \$5,931 & 12,487 & 4,686 & 8,626 & 604 & 3,626 & 5,902 \\
\hline 1925 & 38,339 & 13,236 & 5,262 & 9,598 & 511 & 8,704 & 6,028 \\
\hline 1926 & 36,936 & 11,752 & 5,099 & 10,582 & 488 & 8.801 & 5,464 \\
\hline 1927 & 34,532 & 10,891 & 4,715 & 9,910 & 570 & 3,514 & 4,934 \\
\hline 1928 & 34,142 & 10,610 & 4,800 & 10,103 & 487 & 8,386 & 4,656 \\
\hline 1929 & 36,886 & 11,630 & 5,150 & 10,274 & 486 & 4,191 & 5,175 \\
\hline 1950 & 26,051 & 7,450 & 4,082 & 7,666 & 408 & 2,585 & 3,866 \\
\hline 1951 & 16,523 & 4,450 & 2,729 & 5,372 & 211 & 1,444 & 2,337 \\
\hline 1932 & 10,151 & 3,069 & 1,819 & 3,131 & 156 & 759 & 1,237 \\
\hline 1983 & 23,961 & 4,446 & 2,355 & 4,808 & 164 & 1,246 & 1,443 \\
\hline 1954 & 16,494 & 4,473 & 2,761 & 4,365 & 282 & 1,553 & 2,070 \\
\hline 1935 & 19,539 & 5,960 & 3,672 & 5,085 & 329 & 1,870 & 2,623 \\
\hline 1988 & 24.355 & 7,113 & 4,382 & 6,794 & 408 & 2,396 & 8,267 \\
\hline Weight \({ }^{\text {t }}\) & - & 36.0 & 9.4 & 16.0 & 1.5 & 17.9 & 13.2 \\
\hline
\end{tabular}

PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY
\({ }^{2}\) statiotios for 1919-54 wore obtained fram Lumber Produotion: 1869-1934 (D. 8. Dopt. Agr., Forest Servioe); for 1936, from Conaus of Manufacturea;
and for 1936, fram and for 1936, frai humber Produotion: 1956 (J. S. Forest Sorviae). The sovornl regions are represented by the following aeries: 8outhorn pine pine, tugar pine, weatern yollow (ponderoan) pine, and larohs Douglas fir produotion of Douglas fir, oedar hemlook, and spruee in Yorth Paoific etates (i.e., Washington and orogon)s redrood - national produotion of radroods, couthorn hardmood - haxdrood output of Rant Gulf statose (Ala.. Fla., OM.) lowir Misalsaippi regicn (Ark., La., Miss., Okla., Tex.), Kentuoky, Temessea,
\(b^{\text {birat }}\) colvmin minus mue of auccooding colvmas.
\({ }^{\text {a }}\) The Pigures reported for 1919 were rendored acumarable with those for later yoarl by crolusion of the output of all oustom mills and of morohant alaw
mills produoing loss than 50 thousand board foot por year (aea Consus of

The figures for anoh spaios in this rogica ware adjusted by multiplioation by the ratio of a "scupputed total" (which inoludes the estimated output of mall mills not raporting) to the reportod totel.
"Adjusted by ratio or a "acmputed total" to reported total for national hardwood produotion (mee in. d).

Fiath apd shinglen (shown in Table A-77), which are inoluded in the samills index, wore woightod by 1.5 and 4.6, respootively. These woignting raotors. whi ch were applied to the relativen of the 2 produotion eories, wore derived
 Lebor Roviow, Hay 1937, pp. 1156-52).

Table A-79.- FRODUCTIC: OF SAT-PLANE MILIS: CENSUS YRARS 1925 TO \(1935^{\text {a }}\)
\begin{tabular}{l|c|c|c|c}
\hline \hline Year & \begin{tabular}{c}
Dressed \\
leber
\end{tabular} & Doors & Sash & \begin{tabular}{c}
Tindow and \\
door frames
\end{tabular} \\
\hline 1925 & 14,336 & 7,975 & 7,166 & 1,954 \\
1927 & 15,853 & 4,212 & 5,650 & 1,511 \\
1929 & 13,689 & 5,209 & 2,076 & 971 \\
1931 & 7,350 & 3,125 & 1,264 & 535 \\
1935 & 6,042 & 2,111 & 863 & 224 \\
1935 & 8,248 & 2,102 & 817 & 288 \\
Woightb & 94,60 & 4,34 & 0,43 & 0.63 \\
\hline
\end{tabular}
anpressed lumber" is quoted in millions of feot, board measure; other products, in thousands of units.
\(b_{\text {The }}\) meights, wich were applied to relatives of the produotion ceries, wore derived by multiplying the output of eaoh product in 1929 by the corresponding unit labor requirement obtained fran B. H. Toplis, "Labor Requirements in Lumber Produotion," Yonthly Labor Roviow, Kay 1937. pp. 1136-52.

Table A-80.- AVERAGE NUMBER OF WAGE EARNERS IN THE LUNBER AND. TIMBER PRODUCTS GROUP AND COMPONENT

INDUSTRIES: 1919 TO 1936
\begin{tabular}{|c|c|c|c|}
\hline Year & Lumber and Tinber Producta group & \[
\begin{aligned}
& \text { Logging } \\
& \text { Camps }^{\text {e }}
\end{aligned}
\] & \[
\begin{gathered}
\text { Sawnills } \\
\text { and Saw- } \\
\text { Plane Mills }
\end{gathered}
\] \\
\hline \(1919{ }^{\text {b }}\) & 469,297 & 183,683 & 285,614 \\
\hline 1920 & 431,200 \({ }^{\text {c }}\) & 166,600 & 264,600 \\
\hline 1921 & 364,247 & 138,900 & 225,300 \\
\hline 1922 & 477,300 \({ }^{\text {c }}\) & 179,700 & 297.700 \\
\hline 1923 & 495;932 & 184,210 & 311.722 \\
\hline 1924 & 472,300 & 175,100 & 297,200 \\
\hline 1925 & 467,090 & 172,800 & 294,300 \\
\hline 1926 & 456,400 & 168,500 & 287,800 \\
\hline 1927 & 413,946 & 152,600 & 261,400 \\
\hline 1928 & 403,200 & 148,000 & 255,200 \\
\hline 1929 & 419,084 & 153,200 & 265,900 \\
\hline 1930 & 323,100 & 118,100 & 205,000 \\
\hline 1931 & 196,647 & 71,900 & 124.800 \\
\hline 1932 & 151,300 & 55,300 & 96,000 \\
\hline 1933 & 189,367 & 69,200 & 120,100 \\
\hline 1934 & 231,800 & 84,700 & 147,000 \\
\hline 1935 & 255,230 & 93.300 & 161,900 \\
\hline 1936 & 276,200 & 101,000 & 175,200 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Figures for 1923 were obtained from Census Manufactures: 1923, pp. 444, 4463 those for the remaining years were ocmputed from the group employment series and fram percentage distributions which were obtained for 1919 from Census of Manufactures: 1919, p. 423; for 1923, from the Census figures; for 1927 and 1929, from Wages and Hours of Labor in the Lumber Industry in the U. S. 1930 and ibid.: 1933 (B.L.S. Bull. No. 560, p. 25, and Bull. No. 586, p. 22); and for the remaining years before 1929, by straight-line interpolation. The distribution for 1929 was assumed for later years.
\(b_{\text {Adjusted for comparability with later years by exclusion of }}\) establishments producing less than 200,000 board feet of lumber or the equivalent thereof.
\({ }^{\text {C Estimates made by interpolation of number of wage earners re- }}\) ported by the Census by means of a B.L.S. series derived by subtracting employment for "Furniture" industry from that for the Census group, "Lumber and Allied Products."

Tabla A-81. MY-fiouns In THE IMMAER AMD THMER PRODUCTS GROUP ABD COAPOMEII INDUSTRIESE 1929 T0 1956
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{milyens of manhours} & \multicolumn{2}{|l|}{Average mumber of hours morked per diad} & \multirow[b]{2}{*}{Days of operation per year \({ }^{\text {e }}\)} \\
\hline & \begin{tabular}{c|}
IUbber and \\
Timber Produste \\
groupp
\end{tabular} & logeding
Cenpe & \[
\begin{gathered}
\text { Sand Sew } \\
\text { and Se yilis }
\end{gathered}
\] & Logging Cenpa & Samailla & \\
\hline 1919 & 1,062 & 899 & 658 & 0.05 & 8.49 & 270 \\
\hline 1020 & 1,068 & 898 & 665 & 8.85 & 0.51 & 270 \\
\hline 1924 & 785 & 290 & 496 & 8.69 & 9.15 & 240 \\
\hline 1922 & 1,158 & 415 & 720 & 9.02 & 9.48 & 255 \\
\hline 1923 & 1,244 & 449 & 796 & 9.02 & 9.44 & 270 \\
\hline 1923 & 1,185 & 427 & 768 & 9.04 & 0.42 & 270 \\
\hline 1928 & 1,194 & 451 & 765 & 9.25 & 9.60 & 270 \\
\hline 1828 & 1,149 & 416 & 735 & 9.14 & 9.45 & 270 \\
\hline 1927 & 1,045 & 579 & 666 & 9.21 & 9.44 & 270 \\
\hline 1023 & 1,026 & 872 & 854 & 8.31 & 9.50 & 270 \\
\hline 1929 & 1,060 & 571 & 675 & 9.11 & 9.38 & 270 \\
\hline 1950 & 749 & 270 & 479 & now. & nome & nos. \\
\hline 1951 & 419 & 151 & 268 & nome & nome & not. \\
\hline 1982 & 297 & 107 & 190 & nete & need & nue. \\
\hline 2088 & 379 & 186 & 245 & noter & neas. & nota. \\
\hline 1954 & 405 & 146 & 259 & nax. & nomor & nome \\
\hline 1985 & 470 & 169 & 501 & nea. & nome & nas. \\
\hline 1988 & 650 & 198 & 858 & notion & now. & now. \\
\hline
\end{tabular}

Prigures for \(1919-29\) are man of those in the following 2 colvins; those for 1930-56 are the quotiate ef trager and average hourly earninga (table A-82).
bpigurea for 1929 are the produote of employnent (Table A-80), average hours per day, and days of operntion par jear (ammend to be the sace as for Semailia and Sam-Flane Milis): thote for 1980-ss were derived by multiplication of manmoure for the Lumbor und Timber Produote group by the modal ratio (0.36) for the yeare 1919-29 of man-houra in Logging Campe to those in the group.
\({ }^{\circ}\) Foe mothod of eoaputatic., tee m . b. The modal ratio for Savenills and Saw-plane Milla mas 0.64.

Arigures ace guotimete of average hours per week and avernge number of days morked per meek. For Sanille and Saw-Plane Milla, the Formor mat obtained for 1919 from Industrial Survey in Solected Induatriea in the tinited Staten: 1919 (B.L. S. Bull. Fio. 265), p. 57 (hours per man per day times
 Houre of Labor in Luaber Manuraoturing (Bull. Mo. 317, Pp. 22-9; Bull. Mo. 36s, Pp. 24-32; Bull.

 for 1921, 192S, 1926, and 1930 wore ratios, as ecmputed from M. I.C.B. weokly hours for "Lumbar and wilvoris' of avornge wookly hours in the acnthe oovared by the B. Les. atudies to the yearly averagea, and for 1919, the ratio of avorago output-por-mage-barner for the seleoted mantha to the jearly avernge. lo

For Logging Caspe, avorage houra per meok wore obtained for several yoars by maltiplying average mokly hours for samailis and Smimplane inlle by the ratio of prevelifing hours for logging canps to thoee for gamille and Saim-Plans mila. Prevailing hours for Logging Canps for 1921, 2925, 1920. and 1950 are fra s.L. s. bulleting oited ebove; the figure for 1919 was derived by multiplying provilling houre for Samalli: and Saw-Flans Mills by the 1921 ratio of provailing hour: V otraight-lino interpolation. Preniling hours for Samaile and samoplanc Mills are from
 hours for all copupation to howre for those ocoupations represented in 1919.

The W.I.C.B. eerion for mumer and Milmorkin wat uted to ocmplete the averagemeekiy-hours

The everego maber of deja worked per wook th Sawilile and Eaw-plano mila was derived for 1919, 1921, 1923, 1925, 1928, and 1930 fro the B.L. S. ballotina olted gbove; the 2921 figurs wan asm

The maber of Anye worked per week In Logging comps man asouned to be the samo at for Samaill: and fam-plane Mile in eorrespanding yourl.
The Ifguree were osticated for sawnille and gaw-Plane Mila ind asoumed to be the sars for loging campl. The entimete made for onlonder year by mans of a mooth ourve olustered about 270 in all yware, axoept 1921, when the reading wai 236 . Therefore, the number 270 whe ancuned 8 or all yeers but 1921-22; 240 man assumed for 1921; and 255, the averago of 240 and 270, tas ascuad for 1922.

Table A-82. WAGES AND AVERAGE HOURLY EARNINGS IN THE LUMBER AND TIMBER FRODUCTS GROUP: 1930 TO 1936
\begin{tabular}{l|c|c}
\hline Year & \begin{tabular}{c}
Wages \\
(nillions of \\
dollars)
\end{tabular} & \begin{tabular}{c}
Average hourly \\
earnings \\
(dollars)
\end{tabular} \\
\hline 1930 & 314 & 0.419 \\
1931 & 156 & \(\bullet 372\) \\
1932 & 85 & \(\bullet 286\) \\
1933 & 113 & .298 \\
1934 & 154 & \(\bullet 380\) \\
1935 & 183 & \(\bullet 389\) \\
1936 & 224 & \(\bullet 407\) \\
\hline
\end{tabular}

AFor 1930-32, harmonio means of average hourly earnings for Logging Camps and Sawmills, weighted by 42 and 58 , respectively (the modal percentage distribution of wages in 1919-29); for 1933-36; B.L.S. hourly earnings linked to the figure for 1932.

Wages for the 2 oomponent industries for 1919-29 were computed by the multiplication of man-hours (Table A-81) by average hourly earnings. Hourly earnings were derived from B.L.S. studies in a manner analogous to that described for average weekly hours in Table A-81, fn. d (the 1932 figure for Sawmills and Saw-Plane Mills was computed from data published in B.L.S. Bull. No. 586). The 2 series were completed for the period 1919-32 by means of the N.I.C.B. earnings series for "Lumber and Millwork."

Table A-83.- FRCDUCTION AND DISTRIBUTION OF MANUFACTURED GAS:
1919 TO 1935
(uillions of cubic feot)
\begin{tabular}{|c|c|c|}
\hline Year & Production \({ }^{\text {a }}\) & Quantity distributed to ultimate consumers \({ }^{b}\) \\
\hline 1919 & 277,014 & 278,434 \\
\hline 1920 & 301,124 & n.a. \\
\hline 1921 & 289,259 & 275,798 \\
\hline 1922 & 289,256 & n.a. \\
\hline 1923 & 295,936 & 320,388 \\
\hline 1924 & S18,919 & n.a. \\
\hline 1925 & 330,951 & 337,675 \\
\hline 1926 & 354,594 & n.a. \\
\hline 1927 & 348,839 & 392;728 \\
\hline 1928 & 357.809 & n.a. \\
\hline 1329 & 347,508 & 403,119 \\
\hline 1930 & 323,931 & n.a. \\
\hline 1931 & 301,471 & 367,883 \\
\hline 1932 & 263,532 & n.a. \\
\hline 1933 & 241,043 & 307,031 \\
\hline 1934 & 245,138 & nob. \\
\hline 1935 & 241,498 & 312,224 \\
\hline Weight \({ }^{\text {c }}\) & 2.3 & 1.0 \\
\hline
\end{tabular}
acensus figures for odd-numbered years were interpolated by a continuous American Gas Association series obtained from Annual Statistics of the Manufactured Gas Industry in 1930 (A.GoA., Stat. Bull. Io. 9, Oct. 1931), p. 31, and succesive annual bulletins (Hos: 10-12, 17, 21).
\(b_{\text {Figures represent difference between total sales and intra- }-10}\) industry saies.
\({ }^{0}\) The woighte represent the relative number of wage earners required in 1933 for the production and distribution, respectively, of a fixed volume of gas. The number of mage earners required per thousand cu. ft. distributed was determined from a special tabulation profided by the Bureau of the Census for 21 plants engaged principally in gas distribution. These 21 plants accounted for 18 percent of production and 40 percent of sales in 1933. The number of production wage earners (used to calculate the requirement for production) is the difference between the total number of wage earners in the industry and the number engaged in distribution of all gas (1.0 .0 , the product of thousands of cu. ft. distributed by the industry and the computed labor requirement for 21 plants).

Table A-84.- NOMBER OF WAGE EARNERS AND AVERAGE WEEXLY HOURS IN THE MANUFACTURED GAS INDUSTRY: CENSUS YEARS 1919 TO 1935
\begin{tabular}{|c|c|c|}
\hline Year & Average number of wage earners & Average hours worked per week \({ }^{\text {a }}\) \\
\hline 1919 & 42,908 & 51.1 \\
\hline 1921 & 34,956 & 52.8 \\
\hline 1923 & 42,282 & 49.9 \\
\hline 1925 & 46,998 & 47.1 \\
\hline 1927 & 48,497 & 48.2 \\
\hline 1929 & 43,065 & 51.4 \\
\hline 1931 & 34,523 & 50.1 \\
\hline 1933 & 30,586 & 44.2 \\
\hline 1935 & 30,952 \({ }^{\text {b }}\) & 41.3 \\
\hline
\end{tabular}
\({ }^{\text {a }}\).I.C.B. The hours for 1919 were estimated by atraight-line interpolation between those for July 1914 and June 1920; those for 1921 refer to December only; the figure for 1923 is an estimate by N.I.C.B.; and those for ramaining years are unweighted averages of hours for January and July.
\({ }^{b}\) Includes the estimated number of wage earners (11,211) engaged solely in the distribution of gas, who were excluded by the Census in 1935. The estimate was made on the assumption that the percentage change between 1933 and 1935 in the wage-earner requirement per thousand cu. ft. of gas was the same for distribution as for production. For the 21933 wage-earnerrequirement ratios, see Table A-83, fin. c; the 1935 requirement ratio for production was computed from Census statistics.
```

Table A-85.- PRODUCTION AND SALES OP ICE: 1919 TO 1935
(Thousands of short tons)

```
\begin{tabular}{|c|c|c|}
\hline Tear & \begin{tabular}{l}
Production in \\
Manufactured \\
Ice industry
\end{tabular} & Sales \({ }^{\text {a }}\) \\
\hline 1919 & 25,295 & 51,616 \\
\hline 1920 & n.a. & 32,641 \\
\hline 1921 & 29,668 & 35,317 \\
\hline 1922 & n.a. & 36,429 \\
\hline 1923 & 34,032 & 39,916 \\
\hline 1924 & n.a. & 41,292 \\
\hline 1925 & 38,814 & 46,864 \\
\hline 1926 & n.a. & 45,927 \\
\hline 1927 & 39,058 & 47,543 \\
\hline 1928 & n.a. & 50,994 \\
\hline 1929 & 44,477 & 53,554 \\
\hline 1930 & no. & 56,239 \\
\hline 1931 & 42,355 & 57,365 \\
\hline 1932 & n.a. & 43,625 \\
\hline 1933 & 32,888 & 39,005 \\
\hline 1934 & n.a. & 39,785 \\
\hline 1935 & \$1,855 & 34,325 \\
\hline
\end{tabular}

Elgures for 1919-33 were obtained from Horace B. Drury, Pro= duction and Capacity Control in the Ice Industry Under the H.R.Ag (Hational Recovery Administration, Division of Review, Mar. 1936). pp. 4-5; those for 1934-35 were supplied by the Ise Publioity Association of Philadelphia.

Table A-86. - NUMBER OF WAGE EARNERS AND AVERAGE WEEKIY HOURS IN THE WANUFACTURED ICE INDUSTRY: CENSUS YEARS

1919 TO 1935
\(\left.\begin{array}{l|c|c}\hline \text { Year } & \begin{array}{c}\text { Average } \\
\text { number } \\
\text { of wage } \\
\text { earnerse }\end{array} & \begin{array}{c}\text { Average } \\
\text { hours }\end{array} \\
\text { per weekb }\end{array}\right]\)\begin{tabular}{l|l}
\hline 1919 & 30,247 \\
1921 & 24,066 \\
1923 & 26,852 \\
1927 & 24,915 \\
1929 & 22,120 \\
1931 & 32,184 \\
1935 & 25,217 \\
\hline
\end{tabular}
athe figures for 1919-23 include some omplojees engaged in delivery service and hence are not atrictly oomparable with those for later years (of. Census of Manufactures: 1925. p. 146).
\(b_{\text {Figures }}\) for 1919-23 and 1929 are Census prevailing hours; those for 1933 and 1935 are actual hours computed from Census of Manufactures: 1933, "Man-Hour Statistios for 32 Selected Industries", pp. 2, 39 and from ibid.: 1935, "Man-Hour Statistics for 59 Seleoted Industries", p. 84; and those for the remaining years are estimates made by etraight-line interpolation.

\begin{tabular}{|c|}
\hline \multirow{3}{*}{ranr} & \multirow{3}{*}{tomib} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{cioned priseagor}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Open pactangor}} & \multicolumn{5}{|r|}{Public ocuroyanooe and othor oameralal vohlolet} & \multirow[b]{3}{*}{Light trueks (under)} & \multirow[t]{3}{*}{} & \multirow[b]{3}{*}{} & \multirow{3}{*}{\[
\left\lvert\, \begin{gathered}
\text { Anbur } \\
\text { Hencond }
\end{gathered}\right.
\]} & \multirow[b]{3}{*}{} & \multirow[b]{3}{*}{} & \multicolumn{4}{|c|}{\multirow{2}{*}{Craceis}} \\
\hline & & & & & & & \multirow[b]{2}{*}{rotel} & \multicolumn{3}{|c|}{motor butes} & \multirow[t]{2}{*}{} & & & & & & & & & & \\
\hline & & stom & 2-\$00\% & 4-door & 2-door & 4-door & & & \[
\int_{-s}{ }^{21} \text { to }
\] & & & & & & & & & stand & Renaes & Coner & Ina \\
\hline 2014 & 2,076,368 & 167, 720 & noe. & a,o. & 178, ass & 1,225,127 & 2,504 & nat. & nom. & noa. & noa, & 16, 128 & 302,457 & 587 & 302 & 760 & 1,036 & 102,40 & noc. & M.a. & a,0. \\
\hline 1020 & 2,170,128 & 309,716 & n-a. & acas. & 25, 208 & 1,320,173 & & \(\mathrm{n}=\) \& & nek. & ane. & noa. & 80,034 & 121,175 & \({ }^{898}\) & 519 & 998 & 1,076 & 165,940 & & noe. & \\
\hline \({ }_{2021} 2082\) & 1,502,670 & 804.418 & nes. & noc: & 108, 577 & 1,272,252 & 2,2659 & noe & \({ }^{\text {n.a. }}\) & nos. & \({ }_{\text {nasas }}\) & 15,085 & -90,263 & 619 & 184 & 818 & 288 & 70,326 & 88,223 & not. & ane \\
\hline 1083 & 8, 890,850 & 1,204,286 & nea. & \({ }_{n \rightarrow 0}\) & 252,152 & 1,782, 992 & 12,9789 & nac. & \({ }_{\text {anab }}\) & & not: & 20,0022 & 262,585 & 878 & 197 & 926 & \({ }_{85}\) & 175, \({ }_{\text {1173 }}^{17}\) & (17,236 & a.a. & nan: \\
\hline 2984 & 8,408, 852 & 1,418,501 & non. & nos. & 356, 178 & 1,261,805 & 12,216 & n.a. & noat & n.a. & nua. & 27,721 & 241,180 & 1,237 & 145 & 888 & 73 & 170,987 & 80,818 & a.a. & a,h. \\
\hline 1985 & 4, 185,074 & 2,080, 997 & nea. & noe. & 390,002 & 1,095, 186 & \({ }^{15,2950}\) & n.a. & nos. & \({ }^{\text {nos. }}\) & neas: & 85,978 & 305, 824 & 2,011 & 129 & 1,020 & 86 & 240, 790 & \({ }^{87,780}\) & nos, & n, a. \\
\hline 1998 & & 2, 570,410 & ara. & ancoio & - \(\begin{array}{r}321,011 \\ 197,880\end{array}\) & cis6, 210 & 23,2866 & & anat & mos. & \({ }_{\text {arain }}\) & 边 60,646 & \({ }_{\text {3e8,492 }}\) & 2,404
8,200 & 228 & - 1,238 & 291 & 234,268
178,487 & 76,725 & \({ }_{\text {aneat }}\) & a, en \\
\hline 1928 & 4, 201,085 & 3,158,578 & moa & nut. & 246,198 & 206, 251 & 17,0ө9 & n, \({ }^{\text {a }}\) & nos. & a & a. & 89,641 & 277, 880 & 2,564 & 287 & 1,285 & 258 & 328, 880 & 67,087 & \({ }_{\text {noas }}\) & mon. \\
\hline 1029 & 8,294,087 & 3,017,870 & 2,213,232 & 1,704,139 & 298,401 & 146,44 & 29,400 & 8,638 & 2,532 & 1,101 & 20,368 & 124,414 & 261,628 & 2,516 & 501 & 1,850 & 248 & 512,219 & 76,401 & 488,112 & 2,706 \\
\hline 2050 & 3,270,200 & 2,482,688 & 1,405,268 & 1,079, 538 & 186, 219 & 80,480 & 16,065 & 2,569 & 2,112 & 2,243 & 10,242 & 96,294 & 197, 774 & 1,651 & 261 & & 288 & 246,035 & 28,980 & 228, 737 & 1,116 \\
\hline 1951 & 2,209,085 & 2,708,308 & 1,010,178 & 776, 216 & 103,947 & 21,377 & 9,787 & 1,147 & 1,987 & 1,127 & 5,546 & 79,021 & 264,226 & 1,145 & 198 & 888 & 292 & 127,213 & 7,556 & 129,264 & \({ }^{398}\) \\
\hline 1932 & 2,817,007 & 2,063,695 & 507,849 & 465, 747 & 83,488 & 8,823 & 8,651 & 474 & 881 & 424 & 3,772 & 51,068 & 96,200 & \({ }^{625}\) & 206 & 278 & 100 & 88,802 & 5,292 & 65,412 & 178 \\
\hline 1085 & 1,840,015 & 1,516,345 & 865, 254 & 665, 109 & 10,211 & 7,812 & 7,688 & 407 & 888 & 281 & 6.1144 & 78,011 & 254, 7726 & 825 & 428 & 24 & & 90,745 & 0,756 & 81,804 & 188 \\
\hline 2054 & 2, 893,093 & 2,200,466 & 1,287,949 & 962,507 & 11,364 & 8,962 & 7,977 & \({ }^{693}\) & 1,444 & 664 & 5.176 & 126,000 & 205,056 & 1,178 & 592 & \({ }^{862}\) & 76 & 132,348 & 20,314 & 212,867 & 307 \\
\hline 1085 & 3,923,062 & 8,191,877 & 1,774,145 & 1,417,782 & 11,432 & 9,526 & 6,921 & 1,158 & 2,525 & 1,5s8 & 2,104 & 20R, 197 & 505,495 & 1,681 & 265 & 658 & 124 & 195,010 & 40,508 & 151,675 & 739 \\
\hline 1936 & 4,438,945 & 3, 010 ,064 & 2,002,022 & 1,599,852 & 12,901 & 10,760 & 7,810 & 1,506 & 2,623 & 1,508 & 2,574 & 228, 168 & 344,731 & 1,697 & \({ }_{288}\) & 607 & 140 & 217,801 & 45,010 & 171,157 & BSt \\
\hline \multirow[t]{2}{*}{} & & 886 & & & 582 & & 2,568 & & & & & & 1,020 & 2,018 & 8,305 & 8,855 & 4,180 & 89 & & & \\
\hline & - & - & 401 & 671 & \({ }^{528}\) & 668 & - & 1,42 & 5,208 & 7,993 & 1,402 & 44 & 683 & 2,396 & 2,168 & 6,147 & , 040 & & 48 & 88 & 725 \\
\hline
\end{tabular}

 induatry.: ("19s6 supplemont," p. 195, fn. 1 to p. 147.)
"Other oameroici vehiclen" not reported,
Average unit value (dollars) in oenma yours 1919-29.
\({ }^{d}\) rruck trectora ineluded mith "taxionbe and othor commeroial vohisoloe."
fivorage unit value (dollara) in aoneue yoart 2929-s5.

Table 4-88.- ADJUSTNENT FACTGRS FOR FRCDDCTIOII OF MOTOR-VEHICIE
REPIACEMENI FARTS: 1919 TO 1986
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Value of roplacement parts} & \multirow[b]{2}{*}{Value of motor vehicles and chassis \({ }^{\text {c }}\)} & \multirow[b]{2}{*}{Adjustment factor \({ }^{\text {d }}\)} \\
\hline & \begin{tabular}{l}
Motor-Vehicle \\
Bodies and Motor-Vehicle Parta branch \({ }^{\text {a }}\)
\end{tabular} & Motor Vehicles branch \({ }^{\text {b }}\) & & \\
\hline & (1) & (2) & (3) & (4) \\
\hline 1919 & n.t. & \$615,967 & \$1,729,125 & 84.5 \\
\hline 1920 & n.a. & 675,754 & 2,252,512 & 88.2 \\
\hline 1921 & n.a. & 523,349 & 1,326,559 & 92.2 \\
\hline 1922 & n.a. & 407,622 & 1,844,445 & 93.9 \\
\hline 1923 & n.a. & 615,905 & 2,611,560 & 95.8 \\
\hline 1924 & n. \({ }^{\text {a }}\) & 529,066 & 2,350,471 & 100.6 \\
\hline 1926 & \$165,439 & 237,459 & 2,946,370 & 100.9 \\
\hline 1926 & 170,961 & 253,737 & 3,082,911 & 100.8 \\
\hline 1927 & 186,252 & 285,531 & 2,540,117 & 96.7 \\
\hline 1928 & 213,648 & 308,458 & 2,986,499 & 97.6 \\
\hline 1929 & 212,574 & 287.659 & 3,410,858 & 100.0 \\
\hline 1950 & 183,118 & 223,088 & 2,042,974 & 95.6 \\
\hline 1981 & 160,748 & 174,069 & 1,386,082 & 92.5 \\
\hline 1932 & 131,502 & 146,299 & 749,958 & 85.7 \\
\hline 1933 & 146,399 & 167,253 & 928,606 & 85.8 \\
\hline 1934 & 174,688 & 212,664 & 1,474,696 & 90.8 \\
\hline 1935 & 183,979 & 237,332 & 2,152,509 & 95.9 \\
\hline 1986 & 182,510 & 235,414 & 2,552,821 & 98.5 \\
\hline
\end{tabular}
\({ }^{\text {a Figurea }}\) for 1929 and 1935, which represent sales, were derived from two Census priblications: Fifteenth Census of the United States: 1930, "Distribution of Sales of Manufacturing Plants," pp. 38-9, 54; and Census of Buainese: 1935, "Diotribution of Manufacturere' Sales," \(p\). 185. The totals for these years inolude alea made by bodiea and parts manufacturers to their own wholesale branches, to wholesalers and jobbers, to their own retail stores, to rotailere of all types, direct to household consumers, and eales not distributed through the uaual ohannels or not allocated (the last two items, not reported separately in 1929, mountod to only 1.4 percent of total sales in 1935). The following items were oxoluded: Sales to industrial and other large usors (whioh consist in the main of original equipeont for use in motorvehiole assembly), transfers to other plants in the same organication (whioh appear to represent intra-industry shipments), and receipts for oontract and repair work. For the remaining years of the period 1925-36, estimates were made by means of an index of velue of replacement-parts shipments, which was oonstructed by the Motor and Equipment Manufacturers Assooiation from reports of a representative group of manufacturers and publishod in the Survey of Current Buaineas, "1956 Supplement," p. 147, and later 1ssues.
\({ }^{\text {b The figures for eensus years wore obtained by subtracting the value of as- }}\) aemblod vehiclas and ohassis from the total value of products of the Motor Vehiolen branch (for 1919-23, the remainder was adjusted to exolude a mall amount of ocntract and repair work); those for intercensal years 1920-24, by multiplying the value of vehioles and ohassis by interpolated oessus-year ratios of value of replacement parts to value of vehicies and chassiss and those for the remaining yeart, by interpolation by means of an index of the value of replacement-parta sales (see fa. a).
\({ }^{\text {Cror census }}\) years, reported value of motor vehiclea and ohassis (trailers produced outaide the Motor Vehicles Industry were exoluded in 1919, 1921, and 1925 on the basis of the 1925 ratio) f for interoensal yoars, astimatea made by means of an annual sales (value) serios (see Table A-87, she b).
\(d_{\text {Relatives }}(1929: 100)\) of ratios of value of notor vehioles and ohasala (00) 8) to total value of motor vohiclea, chassis, and roplacement parts (sum of cols. 1-5).

Tablo A-89.- HOMBER OF WAGE EARNERS AND AVERAGE WEEKLY HOURS IN THIS YOTOR VEHICLES INDUSTRY: 1919 TO 1936
\begin{tabular}{|c|c|c|}
\hline Ioar & Average number of wage earners & Average hours worked per week \({ }^{\text {a }}\) \\
\hline 1919 & 343,115 & 45.9 \\
\hline 1920 & 354,400 & 46.1 \\
\hline 1921 & 212,777 & 44.7 \\
\hline 1922 & 289,100 & 48.2 \\
\hline 1925 & 404,886 & 47.7 \\
\hline 1924 & 376,300 & 45.3 \\
\hline 1925 & 426,110 & 47.3 \\
\hline 1926 & 421,500 & 47.7 \\
\hline 1927 & 369,399 & 46.4 \\
\hline 1928 & 434,500 & 47.7 \\
\hline 1929 & 447,448 & 46.8 \\
\hline 1930 & 322,600 & 39.9 \\
\hline 1931 & 285,515 & 36.9 \\
\hline 1932 & 243,400 & 31.3 \\
\hline 1933 & 243,614 & 35.2 \\
\hline 1954 & 351,700 & 33.6 \\
\hline 1935 & 387,801 & 37.3 \\
\hline 1936 & 400,900 & 38.5 \\
\hline
\end{tabular}
aFor 1920-51, H.I.C.B.; for 1932-36, B.L.S.; and for 1919, Cen-tus prevailing hours multiplied by average of the ratios in 1921 and 2923 of II.I.C.B. actual to Consus provailing hours.

\author{
Table A-90.- CONSUMPTION OF NEWSPRINT: 1919 TO 1936
}
(Thousands of short tons)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Estimated consumptiona} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Shipmenta } \\
& \text { from } \\
& \text { mills }
\end{aligned}
\]} & \multirow[b]{2}{*}{Imparts \({ }^{\circ}\)} & \multirow[b]{2}{*}{Exports \({ }^{\text {d }}\)} & \multicolumn{2}{|l|}{Inorease in atooke \({ }^{\text {a }}\)} \\
\hline & & & & & \[
\stackrel{\text { At }}{\text { publishera }}
\] & In traneit to publishore \\
\hline & (1) & (2) & (5) & (4) & (5) & (6) \\
\hline 1919 & 1,957 & 1,379 & 628 & 110 & -87 & 7 \\
\hline 1920 & 2,116 & 1,503 & 730 & 46 & 80 & -10 \\
\hline 1821 & 2,040 & 1,226 & 793 & 17 & -28 & -10 \\
\hline 1922 & 2,442 & 1,452 & 1,029 & 28 & -3 & 17 \\
\hline 1925 & 2,708 & 1,477 & 1,509 & 16 & 72 & -10 \\
\hline 1924 & 2,835 & 1,481 & 1,367 & 17 & -22 & 8 \\
\hline 1925 & 3,005 & 1,534 & 1,448 & 23 & 44 & -2 \\
\hline 1926 & 3,435 & 1,685 & 1,851 & 19 & 69 & 13 \\
\hline 1927 & 3,404 & 1.475 & 1,987 & 12 & 89 & 6 \\
\hline 1928 & 3,566 & 1,399 & 2.167 & 11 & -28 & 7 \\
\hline 1929 & 8.776 & 1,409 & 2,423 & 19 & 50 & 7 \\
\hline 1930 & 3,665 & 1,268 & 2,280 & 10 & -5 & -25. \\
\hline 1931 & 3,241 & 1,158 & 2,067 & 10 & -28 & 2 \\
\hline 1932 & 2,845 & 1,010 & 1,792 & 8 & -29 & -20 \\
\hline 1985 & 2,681 & 950 & 1,794 & 11 & 34 & 17 \\
\hline 1934 & 3,045 & 967 & 2,210 & 28 & 97 & 11 \\
\hline 1935 & 3,515 & 917 & 2,583 & 22 & -46 & 9 \\
\hline 1936 & 3,627 & 916 & 2,752 & n.a. & 14 & 1 \\
\hline
\end{tabular}

Sum of cols. (2) and (5) minus sum of cols. (4), (5), and (6) for all years excopt 1936. Consumption in this year was assumed to boar the same relation as in 1935 to an estimate which ignores exports.
\({ }^{6}\) Survey of Current Business, "1936 Supplement," \(p_{0} 181\) and Mar. 1957, p. 52. The series mas compiled prior to June 1925 . . . ©y the7 Federal Trade Commission! since then . . Eby the7 Newsprint Service Bureau. The figures cover practioally the entire industry, wocording to the Consus of Manufactures. to p. 181.)
\({ }^{0}\) Fran annual issues or Foreign Commeroe and Navigation of the United States (U. S. Dept. Conn. Bur. For. and Dom. Cam.). The series represents "general imports through 1933. . . . and imports for ocnsumption thereafter." "General imports of merohandise inolude canmoditios ontered immediately upan arrival into merchandising or ocnsumptica ohanniels, plus ocmmodities ontered into boaded custans warehouses for storage Imports for oomsumption include oamoditios entered immediately upon arrival into merchandising or oonsumption channels plus ocmodities withdram for ocneumption from bonded warehouses," (Ibid.) This change in olassifioation probably does not aignificantly affect the internal comparability of the eeries.
dSame source an for imports (fn, o).
\({ }^{\text {echan }}\) computed from atocks series for Deomber of each year raised to represent ocmplete coverage. The figures for 1920-36 were taicen from various monthly iesued of the Survey of Current Business, from the "1932 Annual Supplement," pp, 242-43, and from the "1936 Supplement, " \(p_{0}\) 1S1. The flguree, an of the ond of the month, are "compiled by the Amerioan Newspaper Publishers' Association and are based on the reporta of 422 publiehers from June 192S through Ootober 2926, 423 in November and December 1926, 45 from Jenvary 1927 through Deoember 2950, and 434 mubsequently. According to the assoodation, this eerion represents approximintely 80 peroent of all newreprint ooneumed. Earlier deta for a larger number of publishors. . . Worg campiled by the Federel
 1919 were obtained fran House Dooumants (U. S. Library of Congress), Vol. 97, Doc. 696, "Distribution and Consumption of Print Paper in the U. Sa," prepared by the Seoe ratary of Cameroc for the Committee on Interstate and Foreign Cameroe.

The adjuatmont for ooverage was made in tro ateps. Firat, the IIgures previous to June 1925 were multiplied by the May S1, 182s ratio of the A.H.P.A. to the F.T.C. figure. second, both sorien were miltiplied in all yeare by 1.25 ainoo oach originally represented but 80 peroent of conoumption,

Table A-91.- HUMBER OF FLAGE EARNERS AND AVERAGE WEEKLY HOURS II THIS NEWSPAFER AND PERIODICAL PRINTING AND PUBLTSHENG INDUSTRY: 1919 TO 1936
\begin{tabular}{l|c|c}
\hline Year & \begin{tabular}{c}
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c}
Average hours \\
worked per week
\end{tabular} \\
\hline 1919 & 120,381 & 45.1 \\
1920 & \(110,700^{\mathrm{b}}\) & 44.6 \\
1921 & 107,534 \\
1922 & \(111,100^{\mathrm{b}}\) & 44.4 \\
1923 & 115,646 & 44.9 \\
1924 & 118,000 & 45.0 \\
1925 & 117,001 & 44.9 \\
1926 & 118,800 & 45.2 \\
1927 & 119,399 & 45.3 \\
1928 & 122,000 & 45.7 \\
1929 & 129,660 & 45.1 \\
1930 & 128,800 & 45.7 \\
1931 & 119,503 & 45.2 \\
1932 & 108,900 & 43.6 \\
1933 & & 42.6 \\
1934 & 109,087 & 39.6 \\
1935 & 116,600 & 37.3 \\
1936 & 118,684 & 36.8 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) For 1920-31, II.I.C.B.; 1932-36, B.L.S.; and for 1919, Census prevailing hours adjusted by the 1921 ratio of actual to prevailing hours.
\({ }^{\text {b }}\) Computed from I.I.C.B. employment index.

Table A-92.- PRINCIPAL FRODUCTS OF PRTMARY SMELTERS AND REFINERIES: 1919 TO \(1056^{\text {a }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multicolumn{2}{|r|}{Copper \({ }^{\text {b }}\)} & \multirow{3}{*}{Copper uulphato produoed at primary ooppor refineries \({ }^{\circ}\)} & \multicolumn{3}{|c|}{Lead} & \multicolumn{2}{|l|}{2ino produced at primary zino-reduotion plante} & \multirow{3}{*}{Niokel \({ }^{\text {j }}\)} & \multirow{3}{*}{Goldk} & \multirow{3}{*}{S11vor \({ }^{\text {k }}\)} & \multicolumn{3}{|l|}{Sulphurio acid produoed at -} \\
\hline & \multirow{2}{*}{Primary} & \multirow{2}{*}{Seooudary} & & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Refined } \\
& \text { primaryd }
\end{aligned}
\]} & \multirow{2}{*}{Antimoniel \({ }^{\text {e }}\)} & \multirow[b]{2}{*}{\[
\underset{\text { pig }^{\text {Socondary }}}{\substack{\text { Sos }}}
\]} & \multirow{2}{*}{Primary} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Redie- } \\
\text { tilled } \\
\text { secondary }
\end{gathered}
\]} & & & & \multicolumn{2}{|l|}{Zino-blende roasting planta} & \multirow[b]{2}{*}{\[
\underset{(\text { byproduot })^{n}}{\substack{\text { Coppar } \\ \text { samiters }}}
\]} \\
\hline & & & & & & & & & & & & \[
\begin{aligned}
& \text { Pronn } \\
& \text { blende }
\end{aligned}
\] & From oulphuri & \\
\hline 1919 & 1,770,168 & 71,285 & 81,081 & 964,440 & 32,050 & 25,090 & 931,486 & 21,534 & 1,022 & 268 & 52,778 & 446,518 & not. & 864,991 \\
\hline 1920 & 1,526,165 & 81,987 & 29.880 & 1,059,314 & 80,360 & 25,574 & 926,754 & 22,040 & 750 & 267 & 36,986 & 731,702 & nam 。 & 497,808 \\
\hline 1921 & 950,778 & 106,485 & 26,098 & 897,178 & 24,030 & 29,598 & 401,000 & 17,080 & 222 & 119 & 22,134 & 282,300 & nat. & 294,800 \\
\hline 1922 & 1,265,516 & 146,011 & 33,408 & 1,065,324 & 27,050 & 64,086 & 708,654 & 30,110 & 416 & 196 & 82,516 & n.a. & nea. & n.a. \\
\hline 1925 & 1,979,886 & 131,438 & 81,365 & 1,238,644 & 84,620 & 73,208 & 1,020,868 & 33,650 & 200 & 345 & 42,661 & 415,100 & nea. & 427,000 \\
\hline 1924 & 2,260,076 & 154,818 & 22.658 & 1,580,986 & 65.790 & 62,796 & 1,034,678 & 28,180 & 582 & 391 & 43,631 & 520,561 & 419,865 & n.a. \\
\hline 1925 & 2,204,574 & 198,360 & 26,515 & 1,535,938 & 69,240 & 70,292 & 1,145,892 & 28,790 & 544 & 467 & 49,560 & 564,339 & 517,425 & 480,200 \\
\hline 1928 & 2,822,485 & 225,118 & 33,363 & 1,697,882 & 87.710 & 64,998 & 1,236,844 & 27,580 & 648 & 479 & 48,870 & 585,700 & 536,756 & noz. \\
\hline 1927 & 2,525,764 & 209,869 & 86,039 & 1,598,060 & 67.200 & 76,848 & 1,285,082 & 26,870 & 2,720 & 493 & 47,800 & 588,544 & 602,709 & 469,561 \\
\hline 1928 & 2,487,608 & 232,646 & 44.46s & 1,562.142 & 92,250 & 111,860 & 1,205,162 & 27.108 & 3,044 & 585 & 46,886 & 658.587 & 546, 204 & 603.100 \\
\hline 1929 & 2,740,112 & 354,158 & 40,259 & 1,549,266 & 86,488 & 150,718 & 1,250,894 & 22,850 & 880 & 576 & 49,707 & 627,018 & 646,980 & 633,438 \\
\hline 1980 & 2,157,059 & 280, 529 & 36,976 & 1,286,066 & 49,694 & 96. 270 & 996,090 & 17,000P & 616 & 481 & 88,940 & 536,014 & 474.092 & 651,702 \\
\hline 1981 & 1,601,442 & 156,128 & 85,266 & 886,528 & 43,684 & 87.548 & 583,992 & 10,6869 & 746 & 300 & 25,441 & 426,818 & 881,218 & 436,111 \\
\hline 1932 & 680,868 & 120,465 & 24,909 & 665,882 & \$2,040 & 67.222 & 414,296 & 5,192 & 390 & 165 & 15,405 & 841.340 & 244, 644 & 258, 894 \\
\hline 1988 & 741,679 & 171,088 & 25,487 & 627.362 & 85, 610 & 83,264 & 614,364 & 28,460 & 252 & 162 & 16,039 & 565,027 & 242.493 & 301,075 \\
\hline 1954 & 890,720 & 245,920 & 24,863 & 622,472 & 35,214 & 67.114 & 727,180 & 9,924 & 514 & 203 & 20,467 & 406,984 & 89, 182 & 268,676 \\
\hline 1985 & 1,177,611 & 296,856 & 26,508 & 649,120 & 32,788 & 89,496 & 841,268 & 26,878 & 820 & 308 & 29,000 & 443,478 & 90,884 & 160,151 \\
\hline 1986 & 1,644,977 & 265,880 & 86,445 & 790,812 & 46,460 & 69,112 & 084,264 & 44,284 & 214 & 456 & 84,780 & 505,882 & 161.169 & 226.738 \\
\hline
\end{tabular}

Thnte for first 9 produote are thourande of poundes for gold and ailvor;
bproducod \(^{\text {fram domestic and forelgn oron and blistar. Primary includea }}\) olootrolytio. Jake, onsting, and best seleot coppori and socondary, oleotrolytio and oasting oopper.

 . 263; 1938, P. 80.

Roportod by Minorel Resouroos of tho Un1 tod Statos: 1920 (J. 8. Dopt.

 P. 154; 2938, p. 01.

Mine produotion ram oopper, jead, Eino, oopper-lead, oopper-lead-sino, and lead-sine ores.
The seriea for iflver wal obtainod from Liporal Besouroes of the Unitod

The aerian for gold ras obtainod fram Mineral Renourcon of the United States: 1025, I, 754; 1930, I, B34; 1931, I, 694; and Minorala Xearbook: 1937, Pe 135, and 1938, P. 78.
\(I_{\text {The }}\) quantitien for all yeare but 1821 and 1925 wers obtained from Kinoral

 1923 were intorpolated by means of a serien for 1919, 1921, 192s and 1925 available in Consua of Manufaotures: 1925, p. 725.
 Minoral: Tearbooks 1937, pi 196, and 1938, pe 139.
nThis sories, whioh exaludes a.oid produced by Anaconde Copper Co. in 1933-36 and acid produced fram pyriten conoentrate in Tenneaser in 1934-36, 2933-38 and acid produoed fram pyriten conoentrate in Tennessee in 1934-36, of the Dnited States: 1919, II, 544, and 1920, 11, 307 ; and Minerald Tearm book: 1932-53, p. 672; 1937, P. 1304; and 1998. P. 1164. The flgures for 1921, 1923, and 1925 were intorpolated by means of a geries for the odd numbered years 1919-27 available in Censub of Hanuractures, 1925, p. 723 and 1927 . P . 665.
\({ }^{\circ}\) Inoludes 23,728 tons of "stronger acids" which could not be reduoed to 600 Bautue equivalent.

Pincludes 22 tons of seoondary eleotrolytio zino.
Includen 512 tons of secozdary eleotrolytic zinc.
 AD HEMHERIES II 1920
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Produet} & \multirow[b]{2}{*}{Unit} & \multicolumn{2}{|l|}{Value (dollars) por unit} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Value } \\
\text { added } \\
\text { (dollurs) } \\
\text { por maltan }
\end{gathered}
\]} \\
\hline & & Before proossing & After prooesaing & \\
\hline Coppar & & & & \\
\hline Primary & Pouind & \(0.136{ }^{\text {b }}\) & \(0.178^{\circ}\) & 0.040 \\
\hline Seaondary & Pound & \(0.157{ }^{\text {d }}\) & \(0.176^{\circ}\) & 0.050 \\
\hline Coppor Sulphate & Pound & \(0.035^{2}\) & 0.055 & 0.020 \\
\hline Load & Pound & \(0.045{ }^{\text {b }}\) & \(0.065^{6}\) & 0.018 \\
\hline Sesondary & Pound & \(0.056^{\text {h }}\) & \(0.065^{\circ}\) & 0.000 \\
\hline Antimonial & Pound & 0.0451 & \(0.064^{k}\) & 0.019 \\
\hline Zino & & & & \\
\hline Primary & Pound & 0.0516 & \(0.086^{\circ}\) & 0.086 \\
\hline Sooondary & Pound & 0.0321 & \(0.086^{\circ}\) & 0.034 \\
\hline Niokel & Pound & 0.1368 & \(0.457{ }^{5}\) & 0.501 \\
\hline Gold & Fine ounce & \(14.580^{\text {m }}\) & \(20.670^{\circ}\) & 6.520 \\
\hline Silver & Fins ounoe & \(0.309^{18}\) & \(0.58 s^{\text {n }}\) & 0.227 \\
\hline Sulphurie meid & Short tax & \(0.000{ }^{6}\) & \(9.650{ }^{t}\) & 9.850 \\
\hline Fram sulphur & Short ton & \(4.580^{4}\) & 9.650 \({ }^{\text {t }}\) & 6.250 \\
\hline
\end{tabular}
apifference between vilue por unit before and after prooesainge
\(t_{\text {Unit }}\) value at mine, Hinen and Quarrien 1929 (U. S. Dept. Come, Bur. Cone), po 292.
Troighted average price of all grades of primary motal sold, Mineral Besouroen of the

dAverage doelors' buying prices at Mew Yoric for prinoipal grades of copper sorap ("hoavy coppor" and "Ho. 1 Couposition"), Notal Statistioss 1954 (Amorioan Motal Market), yo 288e

finco velua of oopper ocontent of a pound of ooppor sulphate. Thia figure wae oomputed from the ratio (0,2547) in 1929 of total copper content to total copper sulphate produced at oopper refinories (Hingrel Resources of the United Statosz 19SO, I, Till) and the average mine vilue of oopper.

\(h_{\text {Avorago of }}\) How York doalora' (weokly) buying prices for "hoavy load", Kinerni Benourceat of then Onited Statest 2929. I, 288.

Kingeral Rosoureas of the Onlted Statas: 1930, I, 487.
 I, 189。

Meuotient of total mine velue of metal produoed by "ooppor-mining", "lead-mining", and "sino-
 and total quantity of motal produced from coppor ore, iend ore, zine ore, ooppormiend and copper-lead-zino oren, and lead-zino ore (Linerel Resourose of the United Statens 19SO. I. B34 and 840).
\(n_{\text {Average }}\) Now York price for all illver (for souroe, see \(\mathrm{m}_{\mathrm{c}} \mathrm{o}\)) .
omint vilue of fine gold (for mouroe, see \(\mathrm{m}_{\mathrm{p}} 0\))
Qassumod to be same as for ooppor, sineo niokol whioh is not reoovored remohes marbet an an impurity in oopper.
TAvorage velue of motallic niokel and the niokol oontained in the malte yielded as byproduote in oopper refining. Computed from quantity and velue data in Minoral Renouroes of the Onited Staten_ 2929, I, A65.

Ancumed to be negilgible.

uvalue of sulphur oannumed per ton of \(60^{\circ}\) Baumb nold. Computed frem guoted mive of \(\$ 18.00\) por long ton fooob. (Yinorel Benourgee of the Dnitad 8 tatese 1929. II, 176), and the mabor of
 plante (ibide: 1950, Is 44S).

Table A-94.- PRIMCIPAL PRODUCTS OF SECOMDARI SIGLITERS AND REPINERIES: CENSUS YEARS 1927 TO 1985 \({ }^{\circ}\)
(Quantities in ehort tons)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Produot } \\
\text { (Ingote and } \mathrm{Figs} \text {) }
\end{gathered}
\] & Woight \({ }^{\text {b }}\) & 1927 & 1929 & 1981 & 1985 & 1935 \\
\hline Copper & 351.29 & 16.426 & 44.215 & 25,820 & 29,164 & 29,147 \\
\hline 8rasg and bronce & 297.77 & 94.770 & 112,269 & 54,156 & 48,483 & 61,850 \({ }^{\circ}\) \\
\hline Lead \({ }^{\text {d }}\) & 138.88 & 84,429 & 107,920 & 87,069 & 105,208 & 104,862 \\
\hline zino & 159.39 & 48,978 & 38,184 & 18,908 & 22,917 & 30,500 \({ }^{\circ}\) \\
\hline Aluinur & 409.77 & nea. & 18,500 & 15,410 & 20,490 & 29,440 \({ }^{\circ}\), \({ }^{\text {c }}\) \\
\hline Pin & 857.64 & na. & 1,361 & 1,274 & 1,385 & 2,524 \({ }^{\circ}\) \\
\hline Antifriotion bearing metal & 362.84 & 15,222 & 11,611 & 5,989 & 4,975 & 6,589 \({ }^{\text {c }}\) \\
\hline Solders & 456.06 & 10,221 & 15,935 & 10,859 & 13,928 & 16,590 \({ }^{\circ}\) \\
\hline Type motal & 199.86 & 10,845 & 11,845 & 9.627 & 7,979 & 10,200 \({ }^{\circ}\) \\
\hline Misoellanecus motals & 328.75 & n, \({ }_{\text {a }}\) & now. & 19.3205 & 41,7405.h & 44.980 \({ }^{\circ}\) \\
\hline
\end{tabular}

Pigures for 1927-29 are from Comaus of Mamufactures: 1929, 11, 1072; for 1931 and 1935, from 1935. Pp. 517-6; and for 1935. from 1935. Pp. 1014-5.
onnt value (dollarts) in 1929. The figure for "miscellaneous metals" was derived fro etretiotios for 2 Consus industrios ocombined (Smelting and Rofining, Metals Other Than Gold, Ssiver, or Platime, Fot From the Ore; and HonferrousHetal Alloge and Products, Not Inoluding Alvainum Products) on the assumption that the 1931 rolationship between the unit value for this product and the weighted average mint value for the other 9 metals (1.20) provailed in 1929.

A portion of the output in 1935 was reported by value only for 2 Census industrien acmbinad (see fin, b). This figure was divided ty the unit value for the count reported for both industries and then distributed in accordance with the propartions of the quantities roportad for each. The percentages of the total value of output for wich quantities had to be estimated are:
\begin{tabular}{lr}
Brass and bronze & 1.4 \\
Artifriotion bearing metal & 15.4 \\
Solders & 10.7 \\
Type motal & 4.8 \\
Min & 1.6 \\
Aluniman & 0.5 \\
Misoellaneous metals & 39.9 \\
All motals in index & 10.8
\end{tabular}

Ancludea both common and antinonial lead.
-Segregated on the basis of the 19ss relationship from the reported total for the 2 Censum industries corresponding to Secondary Smelters and Refineries and
Alloyers, Rolling Mills, and Foundries. The figure for sinc is reported in
Census of Manuffectures: 1935; and the figure for alumimm, which ia unpublished, was farniched by the Bureau of the Census.

IThe value for 1929 and the quantitios and values for 1931 and 1953 were estimated in eubtreating rericed IIgrrea which oxolude alluninum ingota and pigs
 them (chown in Consus of Manufactures: 1935). The quantity for 1929 was estimated by donnation of the value for this year by unit value. The lattor was computed an the mavimption that the ratio of the unit value of alvminum ingota and pige ade in this industry to the unit value of alunimen ingots and piga mada In both this induetry and Alloyers, Rolling Mille, and Foundries was the same in 1929 as in 1981. (An unpublished figuro for the total quantity or ingota and pige mide in the 2 induetries in 1929 mas oupplied by the Bureau of the Consuse)
8roviced to erolude alvinum Ingote and pigse
\(h_{\text {a portion of the output (} 7.8 \text { peroent of the total velue) was estimated in the }}\) ennor desortbed in m . 0 .

Table A-95.- VALUE OF PRODUCTS AND INDEX OF UNIT VALUES FOR SECONDARY SMELTERS AND REFINERIES: CENSUS YEARS 1919 TO 1927
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item & 1919 & 1921 & 1923 & 1925 & 1927 & Weight \({ }^{\text {a }}\) \\
\hline Value of industry's products (thousands of dollars) Relatives (1927=100) & \[
\begin{array}{r}
50,246 \\
62.2
\end{array}
\] & \[
\begin{array}{r}
15,150 \\
18.8
\end{array}
\] & \[
\begin{array}{r}
35,786 \\
44,3
\end{array}
\] & 82,138
101.7 & \[
\begin{array}{r}
80,771 \\
100.0
\end{array}
\] & - \\
\hline Index of unit values (\(1927=100)^{\text {b }}\) & 119.4 & 81.7 & 101.4 & 113.5 & 100.0 & - \\
\hline Value (dollars) per ton of \({ }^{\circ}\) Aluminum & 643 & 424 & 508 & 564 & 508 & 18.5 \\
\hline Antimomy & 163 & 98 & 156 & 350 & 247 & 8.9 \\
\hline Brass & 504 & 215 & 234 & 232 & 212 & 112.3 \\
\hline Copper & 372 & 258 & 294 & 284 & 262 & 44.2 \\
\hline Lead & 106 & 90 & 140 & 174 & 126 & 116.4 \\
\hline Tin & 1,243 & 572 & 838 & 1,136 & 1,255 & 9.3 \\
\hline zino & 146 & 100 & 136 & 152 & 128 & 38.2 \\
\hline
\end{tabular}

Weight for every product except brass represents total amount (thousands of tons) produced in 1929, inoluding the estimated quantity of pure metal contained in alloys (Census of Manufactures: 1929, II, 1072). The weight for brass represents the output of brass and bronee.
\({ }^{\mathrm{b}}\) Computed from weights (see fn . a) and unit values for the 7 metals shown in this table.
\({ }^{\text {c Computed from quantity and value statistios reported in Mineral Resources of the United States, 1920, }}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produot & Weight \({ }^{\text {b }}\) & 1919 & 2921 & 1828 & 1025 & 1927 & 1929 & 1082 & 1988 & 1035 \\
\hline Coppar & & & & & & & & & & \\
\hline Trgota and piga \({ }^{\circ}\) & 816 & moa．d & noad & nof． & 15，027 & 410 & 6，907 & 458 & 118 & 154 \\
\hline Plates and shoote & 466 & 43，140 & 34，650 & \({ }^{68,6800}\) & \({ }^{82,070}{ }^{\text {a }}\) & 93，640 & 189，228 & 75，885 & 70，514 & 94，782 \\
\hline teamlest tubing and pipe & 825 & \(20,100^{\circ}\) & 9，187＊ & \({ }^{20,380}{ }^{\text {S }}\) & 28，977 & 56，164 & 69，062 & 32，258 & 29，575 & 35，992 \\
\hline Rode， & 357 & 82，450d， & 87．550d，＊ & 226，6004，\({ }^{\text {c }}\) & 284，500d & 275，8009 & ［69，540 & 201，084 & 142，046 & 168，417 \\
\hline Tire，bare & 452 & 49，369 & 47.225 & 92，658 & 95，2859 & 79，882\％ & 303，8092 & nea． & \(\mathrm{mac}_{\text {a }}\) & \\
\hline Mough ountingals & 549 & 5，215 & 1，392 & 3，889 & 2，454 & 2，256 & 4，899 & 1，645 & 1，867 & 3，862h \\
\hline Ingote and piga \({ }^{\circ}\) & 305 & & naty & & 25，734 & 80，062 & 35，231 & 26，728 & 20，168 & 18，570 \\
\hline Plates and oheots & 421 & 154，500d & 67，590d & 186，100d & 206，500d & 178，800 & 266，256 & 126，976 & 128，194 & 167，220 \\
\hline Somalest tubing and pipe & 608 & 54，490d，0 & 20，530d，0 & 41，260d，\({ }^{\text {d }}\) & 51，510 \({ }^{\text {d }}\) & 62，570 d & 7，589 & 49，512 & 59，178 & 48，440 \\
\hline Rods & 868 & 80，470d & 28，100d & 91，560 \({ }^{\text {d }}\) & 109，500 & 224，600 & 270，228 & 145，065 & 86，658 & 121，270 \\
\hline Wire，bere & 480 & 21，870 \({ }^{\circ}\) & 15，680 \({ }^{\circ}\) & 35，5609 & 42，152 \({ }^{\text {t }}\) & 32，579 \({ }^{5}\) & 81，622 \({ }^{\text {¢ }}\) & not． & nala & \\
\hline Rough anat inga 5 & 478 & 126，9000 & 76，370 \({ }^{\circ}\) & 167，800＊ & 172，500 \({ }^{\text {b }}\) & 171，900 \({ }^{\text {h }}\) & 206，756 & 104，658 & 50， \(820{ }^{\text {h }}\) & 90，180 \({ }^{\text {h }}\) \\
\hline Inadeote and plge \({ }^{\text {a }}\) K & 145 & n－m． & n．a． & nuas & 24，739 & 24，258 & 45，122 & 51，627 & 13，887 & 24，860 \\
\hline Prates and abeetm & 181 & nu．a & nome & nom． & 25，582 & 26，296 & 85，802 & 16，588 & 12，284 & 27，852 \\
\hline Seamlean tublict and pipe & 189 & nem。 & nu．a． & n．a． & 52，888 & 45，85\％ & \＄7，026 & 22，104 & 18,485 & 16，829 \\
\hline \({ }_{\text {Zing }}^{\text {Ingote and plea }}\) & 118 & & & & 595 & \({ }^{838}\) & & 288 & 420 & 5692 \\
\hline plates and ahooty & 176 & noat & ． & nome & n．a． & n， \(\mathrm{ma}_{0}\) & 54，135 & 66，562 & 24，957 & 49，951 \\
\hline Aluminum & & & & & & & & & & \\
\hline Ingote and piga \({ }^{0}\) Rough anotinga & 418 & nus． & nata． & & n．a． & nome & \[
\begin{gathered}
768^{11} \\
5,104
\end{gathered}
\] & \[
{ }_{2,687}^{67}
\] & \[
\begin{aligned}
& 940^{19} \\
& 722
\end{aligned}
\] & \[
\begin{aligned}
& 1,880 \mathrm{j}, 1 \\
& 4,29 \mathrm{~s}^{\mathrm{h}}
\end{aligned}
\] \\
\hline Exn & & & & & & & & & & \\
\hline Ingota and pliga
Alloys，other than brata and bronse & 884 & nam． & nam． & n．a． & \(n_{0} a_{*}\) & noas & 1，795 & 2，070 & 1，074 & 267 d \\
\hline Ingota ond pige & & & & & & & & & & \\
\hline Antifriction bearing motal & 376 & nia． & nom， & nom． & 85，570 & 25，524 & 42，758 & 8，587 & 7，859 & 18，880才 \\
\hline Soldera & 627 & noa． & noas & nome & 58，312 & 58，629 & 40，488 & 24，218 & 12，812 & 27，050 \\
\hline Type motal & 181 & \(\square \mathrm{CBO}\) & noa & n．a & 25，586 & 26，290 & 80，445 & 19，827 & 14，449 & 20，620J \\
\hline Hent－oorronionmresietent alloyn， not inoluding forromalloy Rough anstings & 1，190 & n．a． & no．a． & none & nos． & nom． & 1，881n & 1，464 & 2，683 & 1，869h \\
\hline 四ckel－alloy producta & & & & & & & & & & \\
\hline Plates and aheots & 675 & noto & now． & nos． & neas & 18，850 \({ }^{\text {d }}\) & 27，648 & 14，682＇ & 10，823 & 16，264． \\
\hline Soamiesa tubing and pipa & 1，421 & nos． & noll & n．a． & n， \(\mathrm{A}_{4}\) & na．a． & 1，789 & 1，226 & 792 & 1，304 \\
\hline Hods，inaluding sano of misoollancous metale & 822 & －0． & non． & n．as． & n．a． & n．a． & 11，692 & 5，254 & 5，488 & 8，497 \\
\hline Rough asatings，other than haat－ corronion－reaistent & 960 & n．a． & n．a． & n．E． & n．a． & nap． & \(733^{\text {n }}\) & 570 & 630 & 1，223 \({ }^{\text {h }}\) \\
\hline Miscolianeous motale & & & & & & & & & & \\
\hline Ingots and piga \({ }^{\circ}\) & \(829^{\circ}\) & nea． & n．a． & n．a． & n．8． & n－a． & n．e． & 18，6958 & 30，3909， 5 & 39，720 \\
\hline Plates and aheotr & 615 & noter & n．a． & n．a． & nos， & n．a． & 2，419 & 2，527 & 1，497 & 2，286 \({ }^{\text {a }}\) \\
\hline Seamiesar tubing and pipo & 635 & n．a． & n．t． & n．E． & nos． & n．A． & 3，888 & 2，829 & 1，587 & 1，289 \({ }^{\text {h }}\) \\
\hline
\end{tabular}

Table A-96.- PRINCIPAL YRODUCTS OF ALLOYERS, ROLLING MILIS, AND FOUNDRIES: CENSUS YEARS 1919 to 1935 \({ }^{\text {a }}\) - Contimued
(Quantition in short tons)

\(9_{\text {Roviced }}\) to exclude aluninum ingots and pige.
\(r_{\text {See Table A-94, fr. }}\) h.

Table A-97e- NUSBER OF WAGE EARNERS IN THE NONFERROUS METALS GROUP AND COMPONENT INDUSTRIES: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Nonforrous Motals groupa & Primary Smelters and Refineriesb & \begin{tabular}{l}
Secondary \\
Smelters \\
and Re- \\
fineries
\end{tabular} & Alloyers. Rolling Kills, and Foundries \({ }^{\circ}\) \\
\hline 1919 & 118.258 & 37.579 & 2,167 & 78,512 \\
\hline 1920 & n.a. & 39.100 & n.e. & nea. \\
\hline 1921 & 62,067 & 18,580 & 1.200 & 42,287 \\
\hline 1922 & nol. & 28,000 & n.a. & n.a. \\
\hline 1923 & 103,765 & 34,889 & 1,587 & 67,289 \\
\hline 1924 & not. & 34,400 & not. & 62,900 \\
\hline 1925 & 101,071 & 32,992 & 2,944 & 65,135 \\
\hline 1926 & nom. & 32,600 & nor. & 66,900 \\
\hline 1927 & 99,209 & 30,510 & 2,776 & 65,923 \\
\hline 1928 & nos. & 30,600 & n. \({ }^{\text {a }}\) & 69,900 \\
\hline 1929 & 114,298 & 30,981 & 4,134 & 79,183 \\
\hline 1930 & noz. & 28,300 & n.a. & 62,900 \\
\hline 1931 & 70,016 & 18,477 & 2,626 & 48,913 \\
\hline 1932 & not. & 14,000 & nea. & 40,700 \\
\hline 1933 & 65,275 & 14.567 & 2,924 & 47.784 \\
\hline 1934 & nod. & 19,400 & nea. & 56,500 \\
\hline 1935 & 89,175 & 22,478 & 3,762 & 62,935 \\
\hline 1936 & n.a. & 25,000 & nor. & 70,300 \\
\hline
\end{tabular}

Sum of the figures for the 3 component industries.
\({ }^{\text {b }}\) Pigures for the odd-numbered years 1919-35 are from Census of Manufactures; those for the even-numbered years 1920-30 are estimates interpolated by means of a series for man-shifts of direct and indirect labor derived from Bureau of Mines data; and those for 1932, 1934, and 1936 are estimates interpolated by means of the BeLoS. index for "Smelting and Refining, Copper, Lead, and Zinc", which corresponds to the NoReP. industry.

The series for man-shifts includes, in addition to the direct labor at somelters and refineries, the estimated number of man-shifts of indirect labor at "auxiliary works" assigmable to this industry. The man-shifts for "auxiliary works" were distributed between smelters and refineries and oremeressing plants in accordance with the proportions of the man-shifts of direct labor reported separately for both (Accidents at Metallurgical Works in the United Statess 1932 (J. S. Dept. Come, Bur. Mines), Technical Paper HO. 557, Po 3.

Origures for the odd-numbered years 1919-35 are from Census of Kanufactures; those for the even-numbered years 1924-36 are estimates interpolated by means of the \(\mathrm{BoL}_{\mathrm{o}} \mathrm{S}\). index for the corresponding industry, "Brass, Bronze, and Copper Products."

Table A-98. - MAN-HOURS IN THE NONFERROUS METALS GROUP AND COMPONENT INDUSTRIES: 1919 TO 1936
(Thousands)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Nonferrous Metals groupa & Primary Smelters and Refineries & \[
\begin{aligned}
& \text { Secondary } \\
& \text { Smelters and } \\
& \text { Refineries }
\end{aligned}
\] & Alloyers, Rolling Mills and Foundries \\
\hline 1919 & 317,500 & 107,500 & 5,916 & 204,100 \\
\hline 1920 & n.a. & 112,200 & n.a. & n.a. \\
\hline 1921 & 165,200 & 53,600 & 3,551 & 108,200 \\
\hline 1922 & n.a. & 79,120 & nele & n.a. \\
\hline 1923 & 277,900 & 96,310 & 4,498 & 177,100 \\
\hline 1924 & n.a. & 95,220 & noa. & n.a. \\
\hline 1925 & 271,900. & 91,500 & 8,267 & 172,100 \\
\hline 1926 & nea. & 90,640 & nea. & n.a. \\
\hline 1927 & 267,400 & 84,920 & 7,708 & 174,800 \\
\hline 1928 & nea. & 85,270 & nal. & nea. \\
\hline 1929 & 302,200 & 86,570 & 11,030 & 204,600 \\
\hline 1930 & nea. & 72,800 & n.a. & n. \(\mathbf{R}_{\text {e }}\) \\
\hline 1932 & 146,200 & 43,370 & 5,394 & 97,420 \\
\hline 1932 & nea. & 29,470 & not. & n.a. \\
\hline 1933 & 126,600 & \$1,480 & 5,656 & 89,450 \\
\hline 1934 & \(\mathrm{n}_{6} \mathrm{~A}_{6}\) & 38,020 & nea. & not. \\
\hline 1935 & 188,700 & 52,180 & 7,942 & 128,600 \\
\hline 1936 & n \({ }_{\text {a }}\) & 61,820 & nobe & n, \({ }^{\text {a }}\) \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Sum of the figures for the 3 component induatries.
\({ }^{\text {b }}\) Bureau of Mines man-hours figures for 1931-36 were adjusted in the manner described for man-shifts in Table A-97, in. b, to inolude both direct and indirsot labor at smelters and refinerios. The original series is based on atatistios published in Aocidents at Metallurgical Works in the Inited States: 1932, Teohnical Paper No. 557, pp. 2-3; Accidents at Metallurgical Plants in 1933, NO. HoSoS. 186, pp. 2-3; and Employment and Acoidonte at Metallurgical Plants in the United States: 1935. No. HoSoS. 249, Pp. 2-5; and unpublished statistios for 1936.

Figures for 1919, 1921, 1923, and 1929 were estimated by multiplying Census prevailing hours for each of the 3 branohes of the industry (Copper, Lead, and 2inc) by 52 times the corresponding Census employment figuress the results for these 3 branches were then totaled. Estimates for the remaining years of the period 1919-30 were interpolated by means of the employment series shown in Table A-9'.
\({ }^{\mathbf{c} T \text { The product of employment (see Table A-97), } 52 \text { (weeks), and average weoldy }}\) hours. The weekly hours were computed from the seriea for Alloyers, Rolling mills, and Foundries by means of ratios between the prevailing-hours figurea for the 2 industries. These ratios were computed for 1919, 1921, 1925, and 1929 from Census figures and for 1925 and 1927 by straight-Line interpolation; the 1929 ratio was assumed for 1931, 1933, and 1935.
\(\mathrm{d}_{\text {The }}\) product of employment (see Table A-97), 52 (weeks), and average weokly hours. The hours series inoludes B.L.S. actual hours for 1927 (both actual and prevailing are shown in Monthly Labor Review, Auge 1928, p. 138), 1935, and 1985; Census prevailing hours for 1919, 1921, 1923, and 2929 roduoed to level of actual hours by means of 1927 ratio of BoL.S. aotual to prevailing hours; and estimates for 1925 and 1951 made by straight-line interpolation. (The estimate for 1931 was interpolated between the adjusted Consus provailing hours figure for 1929 and a B.L.S. figure for 1952.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produot & Natent \({ }^{\text {b }}\) & 1919 & 2021 & 1923 & 1925 & 2087 & 1929 & 2081 & 1938 & 1985 \\
\hline White lead, dry & 0.082 & 80,468 & 123,868 & 140,127 & 142,050 & 148,808 & 260, 588 & 125,17 & 101.879 & 117.67 \\
\hline Lead oxdce & 0.088 & 262,474 & 129,837 & 218,847 & 248,805 & 232,100 & 262,089 & 164,938 & 164,978 & 818,040 \\
\hline Elne oxide & 0.062 & 279,821 & 117.127 & 822,567 & 818,698 & 848,211 & 436,725 & 239,766 & 246,868 & 255,670 \\
\hline Lithopone & 0.047 & 164,622 & 98,435 & 210,521 & -246,402 & 359, 759 & 410,689 & 807.480 & 275,808 & 822,680 \\
\hline Iron axices & 0.082 & 202, 182 & 85,128 & 126, 908 & 88,772 & 108,368 & 105,627 & 64.818 & 86.629 & 212,423 \\
\hline Chrome yeliow, orange, and.green & 0.151 & 0,498 & 15,429 & 26,517 & 28,686 & 88,101 & 42,706 & 88,762 & 87,400 & 47.150 \\
\hline Pulp solors, sold molat & 0.089 & 20,084 & 9,624 & 18,754 & 18,102 & 14.407 & 18,818 & 20,464 & 7,862 & 7,823 \\
\hline 412 othor plemente & 0.062 & 121,055 & 168,358 & 250,487 & 617,641 & 654,647 & 494,726 & 845,225 & 824,110 & 418,696 \\
\hline Weter paints and ouloiminas & 0.046 & 108,798 & 87,746 & 122,217 & 110,618 & 122,466 & 255,812 & 122,823 & 106,092 & 128,165 \\
\hline Paints in paste form & 0.116 & 398,298 & 428,168 & 425,880 & 484,584 & 408, 722 & 401,546 & 242,528 & 189,464 & 256,715 \\
\hline Paints mixed, ready for use & 1.679 & 69,647 & 48,120 & 71,356 & 87,639 & 94,071 & 106,165 & 78,249 & 66.036 & 87,568 \\
\hline Oleoresinous rarnishea & 1.229 & 28,116 & 22,172 & 40,424 & 88,418 & 33,850 & 38,848 & 27,074 & 25,76S & 80, 379 \\
\hline Spirit varaighes not turpentine
Varaiches other than oleoreainous & 1.834 & 2,974 & 8,086 & 6,606 & 7.117 & 6,816 & 7.860 & 6,888 & 6,422 & 7,916 \\
\hline and eplrit & 1.252 & 6,356 & 4,294 & 8,863 & 4,061 & 8,936 & 8,476 & 5,396 & 4,929 & 9,189 \\
\hline Drying japant and driera & 0.782 & 5,941 & 4,528 & 7,511 & 5,764 & 6,562 & 5,188 & 2,481 & 2,204 & 1,881 \\
\hline Baking Japans, & 0.862
1.860 & 8,375 \({ }^{\text {3,099 }}\) & 5,465 & & 6,057 & 4,989 & 4,039 & 2,389 & 2,302 & 8,528 \\
\hline Othar veraishos \({ }^{\circ}\) & 1.860 & 5,009 \({ }^{\text {a }}\) & 8,754 \({ }^{\text {d }}\) & 18,809 \({ }^{\text {d }}\) & 27,283 & 45,289 & 62,847 & 44,981 & 85,088 & 71, 164 \\
\hline Putty & 0.048 & 66,682 & 65,898 & 92,745 & 101,209 & 102,703 & 99,188 & 69,907 & 58,798 & 71,841 \\
\hline Blamohed thallag & 0.488 & 8,789 & 8,801 & 16,280 & 11,186 & 10,611 & 11,140 & 20,751 & 21,156 & 12,625 \\
\hline
\end{tabular}

Quantities for firet 11 producte and last 2 are in thousands of poundif for remaining 6 produote, in thousande of gallone.
Vralue per unit (dollars) in 1929.

Coutput of thinners for pyroxyiln laoquers, eatirated on the baile of the 1825 ratio of the quantity of thinners to olear laequer and laoquar onamel, was inoluded to maintain comparability with lator yeari. Produotion of onamels, estimated by meane of the 1921 ratio of onemols to clear iecquers and laoquer omamol, wat included in 1919 for the same reason.

Table A-100.- PRODUCTION OF 3 CLASSES OF PAINTS AND VARNISHES: 1920 TO 1927 \({ }^{\text {a }}\)
(Quantities in millions)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Paints in oil in -} & \multirow[b]{2}{*}{Varnishes (gallons)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Interpolating index \\
(1925 \(=100\))
\end{tabular}} \\
\hline & Paste form (pounds) & Mixed form (gallons) & & \\
\hline 1920 & 345.7 & 56.7 & 52.7 & 72.7 \\
\hline 1921 & 383.8 & 45.8 & 36.1 & 59.4 \\
\hline 1922 & 436.3 & 66.1 & 55.7 & 83.1 \\
\hline 1923 & 439.2 & 82.1 & 70.7 & 100.0 \\
\hline 1924 & 487.6 & 88.3 & 70.5 & 105.3 \\
\hline 1925 & 465.3 & 99.7 & 82.0 & 116.8 \\
\hline 1926 & 421.6 & 91.0 & 97.3 & 218.1 \\
\hline 1927 & 406.3 & 97.3 & 99.1 & 122.0 \\
\hline Weight \({ }^{\text {c }}\) & 0.116 & 1.679 & 1.549 & - \\
\hline
\end{tabular}
aror 1920-21, from Consus of Manufactures; for 1922-26, from Survey of Curront Business, June 1927. pe 22; and for 1927. from Paint and Varnish Production: 1927, Last 6 Months (U. S. Dept. Come, Bur. Cen.). The data for all years were compiled by the Bureau of the Census. "Although returns for 1922 were received from only 426 of 804 establishments covered by the manufactures census for 1921, these 426 establishments repree sented by far the greater part of the industry, having reported, for 1921, 89 percent of the total production of paste paints in oil, 95 percent of the ready-mixed paints, and 80 percent of the varmishes, japans and laqquers." (Census of Manufactures: 1921, p. 828.)
\({ }^{b}\) Computed from preoeding columns.
CValue per unit (dollars) in 1929 as computed from Census of Manufactures.

Table a-101.e salbs OF PAINTS AND VARNISHES AND YHOLESALE-PRICE INDEX: 1927 TO 1936
\begin{tabular}{l|c|c|c}
\hline \hline Year & \begin{tabular}{c}
Salesa \\
(thousands of \\
dollars)
\end{tabular} & \begin{tabular}{c}
Index of whole- \\
sale prices \\
(1926al00)
\end{tabular} & \begin{tabular}{c}
Interpolating \\
indexc \\
\((1929=100)\)
\end{tabular} \\
\hline 1927 & \(398,494 \mathrm{~d}\) & 99.5 & 87.9 \\
1928 & 420,516 & 97.4 & 96.2 \\
1929 & 434,820 & 96.9 & 100.0 \\
1930 & 348,156 & 94.3 & 82.3 \\
1981 & 278,256 & 86.4 & 71.8 \\
1932 & 202,920 & 78.8 & 57.4 \\
1935 & 220,308 & 77.1 & 63.7 \\
1934 & 276,204 & 82.7 & 74.4 \\
1955 & 334,272 & 81.4 & 91.5 \\
1936 & 382,558 & 83.5 & 102.1 \\
\hline
\end{tabular}

EFor 1928-35, from Survey of Current Business, "1936 Supplement," p. 83; for 1936, Yar. 1937, p. 40. The published monthiy averages were multiplied by 12 to obtain annual totalis. The date were "oompiled by the \(\mathrm{U}_{0} \mathrm{~S}_{\text {. Department of Commerce, Bureau }}\) of the Consus, from reports of 579 establishments, which, aooording to the Ceneus of Manufactures of 1983, produced about 80 percent of the total value of products of this industry." ("1936 Supp.," p. 168, In. 12 to p. 83.)
barithmetic mean of BoL.S. wholesale-price relatives (on a 1926 base) for the following 19 produots weighted by 1926 values in exohanges
\begin{tabular}{ll}
Paint, prepared & Poroh and deck paints \\
Enamel & Roof and barn paints \\
Inide, 1lat, house & Berytes \\
Outside, house & Iron oxide, dry \\
Varnish & Blue, Prussian \\
Lead, red, dry & Chrome green \\
Lead, white, in oil & Putty \\
Litharge & Shellac \\
Lithopone & Fhiting \\
Zinc oxide & Yellow, chrome, dry
\end{tabular}

Price relatives and weights (percentage distribution) appear in B.L.S. wholesale-price bulletins. The 19 products cover about 76-86 percent of total value.
\({ }^{0}\) Relatives of sales deflated by wholesale-prioe index.
destinated by multiplying Census value of products for 1927 by the 1929 ratio of sales to (Census) value.

Table A-102.- NUMBER OF TAGE EARNERS AND AVERAGE WEBELIY HOURS IN THE PAINTS AND VARNISHES INDUSTRY: 1919 TO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c}
Average number \\
of wage oarners
\end{tabular} & \begin{tabular}{c}
4verage hours \\
worked per weok
\end{tabular} \\
\hline 1919 & 21,507 & 48.4 \\
1920 & 26,000 & 49.0 \\
1921 & 18,015 & 47.3 \\
1922 & 19,400 & 49.8 \\
1923 & 22,818 & 49.8 \\
1924 & 23,300 & 52.9 \\
1925 & 25,490 & 52.7 \\
1926 & 29,700 & 50.8 \\
1927 & 28,061 & 50.5 \\
1928 & 28,300 & 50.8 \\
1929 & 29,211 & 51.8 \\
1930 & 25,300 & 47.9 \\
1931 & 22,521 & 44.4 \\
1932 & 20,900 & 40.8 \\
1933 & & \\
1934 & 22,880 & 40.5 \\
1935 & 26,300 & 38.1 \\
1936 & 27,686 & 41.9 \\
\hline
\end{tabular}

Intercensal-year figures computed from N.I.C.B. employment index.
bror 1919, Census prevailing hours adjustad by the average of the 1921 and 1923 ratios of actual to prevailing; for 1920-31. N.I.C.B. aotual hours; and for 1932-36, B.L.S. aotual hours.

\section*{Fable A-103.- FRODUCTION OF PRIMCIPAL XDNDS OF PAPER: CENSUS YEARS 1919 TO 1955}
(Short toms)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Tear & \[
\begin{aligned}
& \text { Book } \\
& \text { paper }
\end{aligned}
\] & Writing (fine) papar & \[
\begin{aligned}
& \text { Neweprint } \\
& \text { and } \\
& \text { similar } \\
& \text { paporsa }
\end{aligned}
\] & Tisaue peper & Wrapping paper & Paper board \\
\hline 1919 & 951,274 & 325,183 & 1,473,719 & 190, 661 & 858,464 & 1,867,064 \\
\hline 1921 & 792,279 & 230,912 & 1,329,638 & 185,800 & 827,403 & 1,739,801 \\
\hline 1925 & 1,207,927 & 377,029 & 1,687,351 & 250,616 & 1.184,254 & 2,792,832 \\
\hline 1925 & 1,343,310 & 473,804 & 1,751,831 & 281.243 & 1,292,049 & 3,286,580 \\
\hline 1927 & 1,328,782 & 508,808 & 1,812,925 & 316,070 & 1,525,305 & 3,773,608 \\
\hline . 1929 & 1,497,912 & 607.590 & 1,772,591 & 387,811 & 1,605,783 & 4,451,187 \\
\hline 1931 & 1,208,674 & 487,598 & 1,514,543 & 394,823 & 1,401,667 & 3,847,823 \\
\hline 1935 & 1,080,196 & 478,356 & 1,213,096 & 406,760 & 1,440,029 & 4,076,290 \\
\hline 1935 & 1,281,870 & 507,325 & 1,221,871 & 475,214 & 1,632,054 & 4,695,890 \\
\hline Weight \({ }^{\text {b }}\) & \(2.239{ }^{\circ}\) & \(2.691^{\circ}\) & \(1.000^{\circ}\) & \(1.638^{\circ}\) & 1.809 \({ }^{\text {d }}\) & \(0.580^{\circ}\) \\
\hline
\end{tabular}

For 1931-35, as reported by Consus of Manufactures: for 1919-27, sums of figures for atandard newsprint, hanging papers, and poster, novel, news-tablet, lining, etc. 1 and for 1929, the total for oatalogue paper (which in earlier years had been reported with poster, novel, news-tablet, lining, etc.) and the varieties mentioned above.
\({ }^{\text {brelative man-hours per ton (newsprint }=1,000 \text {). The derivation of }}\) the metual labor-requirement ratios is described in fns. \(c, d\), and \(e_{0}\)
\({ }^{0}\) The man-hours required per ton of book paper, writing paper, newsprint, and tissue paper (\(42.1,50.6,18.9\), and 30.8 , respeotively) were determined from J. P. Hagenauer, "Labor Cost of Production in the Paper and Pulp Industry," Paper Trade Journal, April 25, 1935, p. 56. Each flgure, which refers to an unspecified date in the HoR.A. Code period, is an average of man-hour ratios distributed by mill capacity and weighted by the midpoint values of the respec. tive intervals (the open-end class was omitted from the oomputation).

The man-hour requirement for wrapping paper is an average (34.0) of Sigures derived for Southern states (Kraft) from Hagenauer, loce ajt., and for the Northern states from C. W. Boyce, "Labor Costs and Value of Paper Produced," Paper Mill and Wood Pulp News, Feb. 23. 1935. P. 45. Boyee's figure refers to September 1934. The weights, derived from Census state data, are the relative quantities of wrapping paper produced in the 2 regions in 1929 (North, 7s South, 3).
\({ }^{0}\) The man-hour requirement per ton of paperboard (10.9) is the average of monthly figures for 1935 supplied by National Paperboard Assooiation.

Table A-104.- INDEX OF TOTAL PAPER PRODUCTION: 1919 TO 1936m
\begin{tabular}{l|r|r}
\hline Year & Short tons & \begin{tabular}{c}
Index \\
\((1929=100)\)
\end{tabular} \\
\hline & & \\
\hline 1919 & \(6,098,530\) & 54.7 \\
1920 & \(7,074,232\) & 63.6 \\
1921 & \(5,431,265\) & 48.8 \\
1922 & \(7,070,820\) & 63.5 \\
1923 & \(8,029,482\) & 72.1 \\
& & \\
1924 & \(7,883,076\) & 70.8 \\
1925 & \(9,182,204\) & 82.4 \\
1926 & \(9,795,924\) & 87.9 \\
1927 & \(10,002,070\) & 89.8 \\
1928 & \(10,403,340\) & 93.4 \\
1929 & \(11,140,235\) & 100.0 \\
1930 & \(10,169,136\) & 91.3 \\
1931 & \(9,381,840\) & 84.2 \\
1932 & \(7,997,868\) & 71.8 \\
1933 & \(9,190,017\) & \\
1934 & \(9,186,600\) & 82.5 \\
1935 & \(10,479,095\) & 82.5 \\
1936 & \(11,579,774\) & 103.9 \\
& & \\
\hline
\end{tabular}
\({ }^{\text {a For 1920, }}\) unpublished figure obtained fran the U. S. Bur. For. and Dame Card. for intercensal years 1922-34, monthly averages in Survey of Current Business, "1936 Supplement," p. 128, multiplied by 12; and for 1936, Survey of Current Eusiness annual quantity ("1936 Suppe," po 129 and Mar. 1937, pe 51) adjusted by NaReP. to the 1935 Census level. The Survey of Current Business figures for census years 1919-33 coincide with those of the Census of Manufactures-

The series for 1922-34 was "computed by the \(\mathrm{U}_{0} \mathrm{~S}\). Department of Commerce, Bureau of Foreign and Damestic Commerce, from data oompiled by the sources specified below. These data, raised to Consus totals.. . represent an attempt to provide a continuous series on paper production... . fran the shifting samples which have been reported. . . . While the results achieved are not entirely satisfactory, they do provide data, with same reasonable degree. of oomparability. . . . The data used in deriving these raised figures were campiled by the following agencies: Prior to June 1923, the Foderal Trade Commission; from June 2923 through December 1935; the American Paper and Pulp Asscoiation for all items except newsprint, which is supplied by the Newsprint Sorvice Bureau, and paperboard, furnished by the National Paperboard Association since 1933. . Back to 1926 the monthly produotion figures are raised to industry totals according to annual data reported by the Census of Manufaotures. . . . In 1922, 1924, and 1926, when no Consus was taken, the monthly figures were adjusted to the Census figures for 1921. 1923, and 1925, in aocordance with the month-to-month change indicated by the original flg ures." ("1936 Supp.:" p. 178, fine 2 to pe 128.)

The 1935-36 segment was "computed by the \(\mathrm{U}_{6}\) S. Department of Comeroe Bureau of Foreign and Danestio Commerce, and represents total paper production as reported by the American Paper and Pulp Association for all items except paperboard, supplied by the Bureau of the Census, and newsprint, obtained from the Newsprint Service Bureau. . . . The present classification of the Asscoiation differs from that . . used FTor intercensal years 1922-347. The industry coverage, however, has been greatly improved. Thus, while the coverage of the old series for total paper production in 1933 was only 52 percent, the 1934 coverage was 87 percent." ("1936 Suppes" p. 178. fi. 1 to p. 129.)

(short tona)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Tear} & \multicolumn{2}{|c|}{Sulphate} & \multicolumn{3}{|c|}{Sulphata} & \multirow{2}{*}{Groundrood} & \multirow{2}{*}{Sode \({ }^{\circ}\)} \\
\hline & Eablecelod & Bleached & Total & Unblowohod & Blacohed & & \\
\hline 1919 & 881,507 & 621,732 & 221,971 & neme & notas. & 1,551,049 & 411,895 \\
\hline 1020 & 1,052,719 & 691,054 & 190,460 & nea. & nen. & 1,695,128 & 465,505 \\
\hline 2021 & 751,764 & 451,275 & 150,549 & n-a. & 7, \({ }^{\text {a }}\) & 1,267,582 & 500,555 \\
\hline 1922 & 849,329 & 624,990 & 243,681 & man. & mam. & 1,483,787 & 419,057 \\
\hline 1928 & 876,046 & 672,644 & 514,267 & mal. & me. & 1,560,565 & 445,162 \\
\hline 2924 & 780,546 & 656,005 & 502,756 & m, e. & n. \({ }^{\text {a }}\) & 1,645.285 & 440,697 \\
\hline 1925 & 616,541 & 631,850 & 412,690 & mot. & man. & 1,629,689 & 472,647 \\
\hline 1026 & 986,086 & 665,710 & 523,878 & 2.E. & nea. & 1,714,192 & 496,920 \\
\hline 2027 & 892,324 & 696,800 & 607,172 & nom. & n.e. & 1,618,638 & 407,478 \\
\hline 1028 & 861.946 & 740,208 & 778.550 & nua, & nom. & 1,615,689 & 488,641 \\
\hline 1929 & 07t,745 & 865,868 & 916,164 & nam. & nom. & 1,649,112 & 620,729 \\
\hline 1980 & 835,014 & 769,477 & 065,742 & 886,727 & 67,016 & 1,566,852 & 474,280 \\
\hline 1051 & 693,180 & 758,869 & 1,057,268 & 985,120 & 54,158 & 1,459,365 & 574,054 \\
\hline 1082 & 659,309 & 608,475 & 1,081,296 & 968,896 & 62,400 & 1,203,322. & 290,586 \\
\hline 2085 & 618,215 & 741,097 & 1,262,800 & 1,108.747 & 68,661 & 1,201,796 & 571,725 \\
\hline 1984 & 646,112 & 851,478 & 1,249,646 & 1,155,911 & 96,757 & 1,298,204 & 854,289 \\
\hline 2986 & 647,062 & 962,641 & 1,471,093 & 1,545,352 & 127,761 & 1,369,721 & \$95,962 \\
\hline 2086 & 708,929 & 1,149,102 & 1,798,516 & 1,642,606 & 165,910 & 1,482,977 & 452,848 \\
\hline Woistt \({ }^{\text {d }}\) & \(1.000{ }^{\circ}\) & 1.1520 & i.0060 & \(0.893 *\) & 1.1359 & 0.7010 & 1.006 \({ }^{\text {r }}\) \\
\hline
\end{tabular}

Aquatition of corseninge, ne roportod or estimated, wore added to respoctive prippproducticu figures. To acreming wore silceated to aode pulpe
 ararage of the adjecont-ybar ratios of gromatwod sorreninge to groumdiood puip; and for 1922 and 1924, by mileiplytas eutputs of groundweod pulp and eoreentige by the everage of adjucent-ytar ration of groundwood esreantige to groundreed pulp and soroentigen.
Totel chendosi (culphite and culphate) eoreentuge for 1919, 1921, 1925, and 1925-35 rore roported by

 by the multiplication of the quantity of aulphite and aulphate pulp by tho average of the 1910 and 1921 ratios of ecereoninge to aulphite and sulphite pulp. Entimates wore made in a niailar minnor for 1922 and 1924 by mean of everages of edjecont-year ration of eoreenings to moreoninge, aulphite pulp, and aulphate pulp:

The cmatus reporte sulphite and aulphate aoreenings separately for 1923 and 1925-27, The 1923 proporticas wore cesmed for \(1919-22\) and the 1927 proportions for 1928-56; arerages of those for 1925 and 1925 ticus wore assund for \(1919-22\) and the 1927 proportions for \(1928-36\); areragen of those for 1923 and bleaehed and blemehed verieties on the basis of unbleached and bleached pulp proportiong in oeah yoar.

Mrip quantitime mere dorived for 1954 fran "Pilpmood Conoumpticn and Food-Pulp Produotioni" for 1985, Pree "Conermptico of Pulpwood and Produotion of Wood Pulp;" and for all other years, from Comaus of Mangentures:
 1932 velatleachip.

Anelative map-bours per tom (umbleached aulphite 2. 2.000). The derivation of the actanl figurea if deseribed is the. a and I .
 5) by (1) doflating regicend operating labor coots por tom by regional average hourly earninge and (2)
 equimelent to produotica).

 Doited Btates Bencto on Wopd puip ard Pulprood (2nd corien, Ilo, 126, 1988). The oost figures erolude Japping for ell Frioties but include bleaching for blemohod pulpe sinow no figure mea reportad for aul-

 1987). Ppe 69-76. The beale data, acoording to EoLleran, wore "ocmpilad fram Direotory of the Paper and Allise Industries. 1986 - Iookrood Publiehing Conpeny."

Table A-106.- HOKBER OF WAGE EARNERS AND MAN-HOURS IN THE PAPER AND PULP IMDUSTRIES: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Average number of wage earners \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Thousands of man-hours \({ }^{\text {b }}\)} \\
\hline & Paper industry & \[
\begin{aligned}
& \text { Pulp } \\
& \text { Industry }
\end{aligned}
\] & Paper industry & Pulp industry \\
\hline 1919 & 90,893 & 22,866 & 252,266 & 62,552 \\
\hline 1920 & 105,000 & 26,400 & 274,091. & 69,570 \\
\hline 1921 & 84,130 & 21,164 & 205,040 & 53,321 \\
\hline 1922 & 87,600 & 22,000 & 223,004 & 59,372 \\
\hline 1923 & 96,421 & 24,256 & 233,152 & 63,659 \\
\hline 1924 & 93,900 & 23,600 & 221,049 & 58,650 \\
\hline 1925 & 98,950 & 24,892 & 239,035 & 61,677 \\
\hline 1926 & 102,100 & 25,700 & 252,593 & 63,369 \\
\hline 1927 & 98,566 & 24,794 & 242,732 & 59,128 \\
\hline 1928 & 97,700 & 24,000 & 242,266 & 56,182 \\
\hline 1929 & 103,320 & 24,729 & 260,924 & 57,512 \\
\hline 1930 & 100,200 & 23,500 & 243,771 & 53,315 \\
\hline 1931 & 87,683 & 20,219 & 195,042 & 42,574 \\
\hline 1932 & 80,300 & 18,500 & 166,187 & 37,075 \\
\hline 1933 & 87,224 & 20,074 & 183,314 & 41,946 \\
\hline 1934 & 100,600 & 23,100 & 190,319 & 43,336 \\
\hline 1935 & 103,344 & 23,627 & 207,730 & 46,942 \\
\hline 1936 & 105,100 & 24,000 & 225,950 & 50,983 \\
\hline
\end{tabular}
\({ }^{\text {A Por }}\) census years 1927-35, the number of wage earners as reported in Census of Manufactures; for census years 1919-25, the reported numbor in the Paper and Pulp group distributed on the basis of the 1927 proportions; and for intercensal years 1920-36, group totals (derived by mesns of the B. LeS. index) apportioned in accordande with the averages of ratios in adjacent odd-numbered years of the number in each industry to the group total.
blen-hours for 1919 and 1923 were obtained by dividing wages by average hourly earnings (see Table A-107). The figures for 1929 represent the evmilated products of monthly averages of wage earners and hours per man. The Census of Manufactures provided the wageearner data; and average monthly hours were computed by multiplication of M.I.C.B. average weakiy hours for the Paper and Pulp group by the ratio for May of average monthly hours for each induatry to average weakly hours for the group. The monthly hours for May were computed from regional statistics of the American Paper and Pulp Associstion quoted in Briof and Reports Submitted by the Paper Industry Authority to the Hational Recovery Adininistration (June 29, 1934). These fligures, whioh are based upon a eurvey of 209 paper mills and 23 pulp mills, are shown for MoRehe zones (Borthern, Central, and Southern); they were combined into national averages with corresponding wage-earner weights for May, as determined from Census state data. The states were sllocated to the zones in accordance with the definitions in Codes of Fair Competition (Netional Recovary Administration, 1934), III, 122. The A.P.P.A. zonal Ifgured for the Paper industry are: Northern, 209.12 hours per month; Central, 220.67; and Southern, 236.54. The figures for the Pulp industry arez Northern, 205.46, Central. 102e21; and Southern, 271.52.

Man-hours for 1933 and 1935 were ocmputed by cumulation of the products of average monthly wage earners and hours per wage earner. The wage-earner statistics were obtained from the Cenaus of Manufactures; and monthly man-hours fram Gensus of Nanufactures: 1933. "ManHour Statiatice for 32 Seleoted Industries," \(p\). 2, and from Cenous of Mamifactures: 1935. "Man-Eour Statistica for 59 Selected Industries," p. 4. Since the monthly employment figurea for the Paper industry did not include workers in all establishnents, the camputed man-hours for this industry required, edjuatment to represent all wage earners. The manhours sempie for the Paper industry represented 84 peroent of the total mmber of wage earnera in 1935 and 89 percent in 1935; and for the Pulp industry, 88 percent in each year.

Man-hours for all other years ropresent averages of 2 estimates (computed from Table A-107): (1) the produots of wage earners, everage weekly hours and 52 (weoks per year): and (2) the quotients of wages and average hourly earninge.

Table L-107.- AVERAGE WEEKLY hoURS, AVERAGE HOURLY RARNIHGS, AND TAGES II THE PAPER AND FULP INDUSTRIES: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Wookly hours morked} & \multicolumn{2}{|l|}{Average hourly earnings} & \multicolumn{2}{|l|}{Wages \({ }^{\circ}\) (thouseands)} \\
\hline & \[
\begin{gathered}
\text { Paper } \\
\text { Induetry }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Pulp } \\
& \text { induatrya }
\end{aligned}
\] & Paper industryb & \[
\underset{\text { industryb }}{\text { Pulp }}
\] & Paper induatry & Pulp industry \\
\hline 1919 & 53.4 & 52.6 & \$0.43s & 80.423 & \$109,231 & \$26,460 \\
\hline 1920 & 58.8 & 68.8 & . 597 & . 570 & 153,591 & 37,205 \\
\hline 1921 & 48.7 & 60.3 & . 519 & . 483 & 102,258 & 24,771 \\
\hline 1922 & 49.7 & 62.6 & . 466 & . 424 & 102,373 & 24,798 \\
\hline 1925 & 46.5 & 50.6 & . 523 & . 464 & 121,939 & 29,538 \\
\hline 1924 & 45.1 & 47.6 & - 544 & -497 & 120,767 & 29,254 \\
\hline 1925 & 46.6 & 47.9 & . 541. & . 609 & 128,917 & 31,228 \\
\hline 1926 & 47.6 & 47.6 & . 535 & . 518 & 135,135 & 32,735 \\
\hline 1927 & 47.4 & 46.1 & . 538 & . 536 & 130,475 & 31,527 \\
\hline 1928 & 47.2 & 44.6 & - 535 & . 648 & 130,915 & 31,108 \\
\hline 1929 & 48.6 & 44.7 & . 538 & . 568 & 140,398 & 52,679 \\
\hline 1930 & 46.7 & 43.3 & . 539 & . 559 & 131,595 & 29,673 \\
\hline 1931 & 42.5 & 40.6 & . 530 & . 638 & 104,042 & 22,844 \\
\hline 1932 & 39.9 & 38.3 & -467 & . 465 & 77,607 & 17,151 \\
\hline 1935 & 40.4 & 40.2 & . 442 & . 432 & 81,091 & 18,103 \\
\hline 1934 & 36.2 & 35.9 & . 515 & . 494 & 98,506 & 21,477 \\
\hline 1955 & 58.7 & 38.2 & . 530 & . 499 & 110,200 & 23,401 \\
\hline 1936 & 41.4 & 40.9 & . 538 & . 606 & 121,350 & 25,741 \\
\hline
\end{tabular}

Average weekly houre for 1919, 1925, 1929, 1933, and 1935 were computed by division of man-houre by the products of wage earnera (Table A-106) and 52 (weeks per year). Eech ceriod was completed by multiplication of average weokly hours for the Paper and Pulp group by intorpolated ratios of tine weakly hours for eaoh industry to oorresponding hours for the group. The interpolated ratios are gecmetrio means insorted betreon sucoessive paira of knom ratios (i.e.s, for 1919, 1923, 1929, 1953, and 1935); the 1935 ratios were assumed for 1936.

The Paper and Pulp hours and oarnings series uaed to interpolate hours and carnings for the component induntries (nee m , b) include N.I.C.B. figures for 1919-32, and B.le8. for 1933-36. The 1919 figures for hourt and oarnings were computed from Wartime Changes in Wages; Soptember 1914 - March 1919 (Boston: N.I.C.B., 1919) Research Report No. 20, P. 78. Averages for males and females employed in "Paper Manufecturing" (asaved to correspond to the group) in March 1919 were combined with appropriate weighte. Ho adjustment was made since the mean relationship of N.I.C.B. figurea for Maroh to the annual average in the period 1921w35 was 1,001 for hours and 0.999 for earninge. The ample represented about 10 percent of group employnent in March 1919.
b flourly earninge for each of the 2 industries were ocaputed for 1919 from Industrial Survey in Seleoted Industries in the United States: 1919 (B.L.S. Bull. No. 265); and for 1923 from Vagoa and Hourn of Labor in the Papar and Pulp Induatry: 1923 (B.L.S. Bull. Ho. 366). The figures for 1929, 2933, and 1935 are quotients of wages and man-hours (see Table A-106); those for remaining years were atimated in the same manner as average weokly hours (ace \(\mathrm{fn}_{\mathrm{i}}\) a). The earnings for each industry in 1919 are averages for soloctod cooupations (weighted by corresponding employment in the B.L.S. asmple) adjusted by the ratio in 1923 of the average for all occupations to the average for the same selected ones. The 1923 figure for the Pulp induatry was roported in Buil. No. 865, but the average for the Paper industry had to be ecmputed by combining earning: for classos of mills (book paper, nowsprint, writing papar, and wrepping paper) in a harmonic mean with estimated wages as weights. The wagee wors computed from Census atatiatice on the assumption that the ratio of magos to velue it the same for each product. For purposes of comparability with the B.L.S. producte, minor adjustments were made in the Censua value figures.
\({ }^{9}\) por nouroe and mothode of derivation, see Table A-106, fn. A.

\({ }^{\text {a For 1919-30, Petroleum Refining Statistics: } 1930 \text { (U. S. Dept. }}\) Com., Bur. Mines Bull. No. 367); for 1931-36, Minerals Yearbook (U. S. Dept. Int., Bur. Mines).
bata for 1919-24 and 1931-36 represent reported shortage. During the period 1925-30 considerable quantities of still gas, whioh were burned as fuel at the refineries, were included in shortage; the reported figure was, therefore, adjusted to exolude this item. The estimates of still gas included in shortage were made by multiplying still gas burned in these years (Survey of Fuel Consumption at Refineries in 1931, U. S. Bur. Kines, Report of Investigations No. 3198, pp. 8, 9) by the 1930 ratio (0.8232) of still gas included in shortage to still gas burned. Still gas inoluded in shortage in 1930 was assumed to be the difference between still gas burned and atill gas included in "other finished products" (Mineral Resources of the United States: 1931, U. S. Dept. Come, Bur. Mines, Pt. II: Nommetals, p. 659). The quantities of still gas were reduced to barrels of oil equivalent by maltiplioation by a conversion factor for 1931 (1 barrel \(=3,989\) oue ft.) which was obtained from Minerals Yearbook: 1936, p. 705.

TAble A-109. NUMBER OF WAGS EARNERS AND AVERAGE WESKIY HOURS IN THE PETROLEUN REFINING ITDUSTRI:

1919 TO 1936
\begin{tabular}{|c|c|c|}
\hline Year & Average number of wage earners & Average hours worked per weela \\
\hline 1919 & 58,889 & 50.5 \\
\hline 1920 & n.a. & 50.6 \\
\hline 1921 & 63,189 & 50.7 \\
\hline 1922 & nea. & 50.4 \\
\hline 1923 & 66,717 & 50.1 \\
\hline 1924 & 62,301 & 50.3 \\
\hline 1925 & 65,324 & 50.5 \\
\hline 1926 & 71,811 & 50.7 \\
\hline 1927 & 71,234 & 50.9 \\
\hline 1928 & 67,862 & 51.1 \\
\hline 1929 & 80,596 & 51.3 \\
\hline 1930 & 80,918 & 50.2 \\
\hline 1951 & 68,824 & 46.3 \\
\hline 1932 & 63,913 & 42.9 \\
\hline 1933 & 69,047 & 38.9 \\
\hline 1954 & 77,583 & 35.6 \\
\hline 1935 & 77,402 & 35.5 \\
\hline 1936 & 78,420 & 36.3 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Census prevailing hours for 1919, 1921, 1923, and 1929 were adjasted to the level of actual hours by multiplication by the 1929 ratio of actual to prevailing hours. Actual hours were computed for 1929 and 1931 from unpublished Census man-hours data, and for 1933 and 1935, from Census of Manufactures: 1933, "Man-Hour Statisties for 32 Selected Industries," P. 27, and Census of Manufactures: 1935, "Man-Hour Statistics for 59 Selected Industries," p. 87, respectively. The series was completed by means of B.L.S. hours for 1932-36, Pennsylvania figures for 1929-31 (derived from data published in various issues of the Monthly Bulletin of the Pemssylvania Department of Labor and Industry), and estimates made by straight-line interpolation for the remaining years.

Tablo A-110.- PRODUCTION IN THE PLANING-NILLL PRODUCTS DIDUSTRY! CENSUS yEARS 1925 TO 1935

> (Thousands)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Dressed lumber (feet, board measure) & Doors & Sashos & Thindow and doot frames \\
\hline 1925 & 4,786 & 15,127 & 40,655 & 10,803 \\
\hline 1927 & 3,492 & 12,138 & 34,188 & 10,593 \\
\hline 1929 & 4,107 & 12,023 & 27,049 & 8,204 \\
\hline 1951 & 1,928 & 5,371 & 17.461 & 4,091 \\
\hline 1938 & 1,082 & 4,147 & 11,864 & 2,007 \\
\hline 1935 & 1,760 & 5.151 & 19,242 & 2.990 \\
\hline Weighta & 51.828 & 3.670 & 0.903 & 8.163 \\
\hline
\end{tabular}

2valuo por unit (dollars) in 1929.

Teble A-111e- VAIUE OF PLANING-MIML PRODUCTS AND WHOLESALB-FRICE INDEX: CENSUS YEARS 1919 TO 1935
\begin{tabular}{|c|c|c|c|}
\hline Year & \begin{tabular}{l}
Yainea \\
(thousands)
\end{tabular} & Tholesale price indexb (1929 = 100) & \(\because\) \\
\hline 1919 & \$477.918 & 119.1 & - \\
\hline 1921 & 441,830 & 92.0 & \\
\hline 1923 & 661,609 & 117.8 & \\
\hline 1925 & 678,872 & 105.5 & \\
\hline 1927 & 555,460 & 98.8 & \\
\hline 1929 & 528,408 & 100.0 & \\
\hline 1931 & 224,280 & 73.2 & \\
\hline 1933 & 117,442 & 74.8 & \\
\hline 1935 & 183,409 & 85.8 & \\
\hline
\end{tabular}
areoludes value of secondary products, which accounted for the following peroentages of total value in the odd-numbered years 1929-35:
\[
\begin{array}{llll}
1929 & \ldots .0 .4 .5 & 1933 & \ldots .0 \\
1931 & 5.5 \\
4.8 & 1935 & \ldots . . & 6.6
\end{array}
\]

The 1929 percentege was assumed in estimating the arounts to be deduoted in the earlier years.
\({ }^{\text {b Conetruoted }}\) from BaLoS. wholesale-price quotations for 16 species woighted by everage production in 1927 and 1929. The prices and weights are shown in various issues of the BoL.S. Wholesale-price bulletins. The index is composed of two segments whioh were linked in 1926, their first conamon year. The 16 spooios ares
\begin{tabular}{ll}
Cypress & Yellow pine, floosing \\
Douglas fir, noe 1 & Yellow pine, timber \\
Dougles fir, noe 2 & Poplar \\
Gum & Spruce \\
Hemlook & Cedar, red \\
Maple & Chostnut \\
Oak & Ponderose pine \\
White pine & Redwood \\
nent inoludes the first 12, and the second, all 16.
\end{tabular}

Table A-112. - HOMBER OF FAGE EARNERS AND AVERAGE WEEKLY HOURS
II THE PLANING-MILL PRODUCTS INDUSTRY: 1919 то 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c}
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c}
Average hours \\
worked per weeke
\end{tabular} \\
\hline 1919 & 86,956 & 49.8 \\
1920 & \(97,300^{\mathrm{b}}\) & 48.5 \\
1921 & 78,033 & 47.7 \\
1922 & \(95,600^{\mathrm{b}}\) & 49.5 \\
1923 & 103,008 & 49.5 \\
1924 & 105,300 & 48.9 \\
1925 & 111,329 & 49.1 \\
1926 & 109,400 & 48.0 \\
1927 & 96,589 & 47.7 \\
1928 & 92,400 & 47.7 \\
1929 & 90,134 & 45.5 \\
1930 & 68,600 & 44.1 \\
1931 & 54,493 & 40.3 \\
1932 & 37,300 & 36.5 \\
1933 & & \\
1934 & 35,388 & 36.1 \\
1935 & 39,700 & 34.7 \\
1936 & 48,297 & 39.5 \\
\hline
\end{tabular}
\({ }^{2}\) For 1920-32, N. I.C.B.; for 1933-36, B.L.S.; and for 1919, prevailing hours adjusted by the average of the 1921 and 1923 ratios of actual to prevailing hours.
bN.I.C.B. employment index used for interpolation.

Table A-113.- PRODUCTION IN THE RAYON INDUSTRY: CENSUS YEARS 1923 TO 1935
(Thousands of pounds)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Rayon yarns} & \multirow[b]{2}{*}{Rayon staple fibre \({ }^{\text {a }}\)} \\
\hline & Total & \begin{tabular}{l}
Finer \\
than 125 denier
\end{tabular} & \[
\begin{aligned}
& 125 \text { to } 150 \\
& \text { denfer }
\end{aligned}
\] & Heavier than 150 denier & \\
\hline 1923 & 36,477 & noter & no.a. & n. \(0^{\text {a }}\) & noa. \\
\hline 1925 & 51,902 & no. & noa. & nod. & n.a. \\
\hline 1927 & 75,556 & n.a. & noto & n.a. & n.a. \\
\hline 1929 \({ }^{\text {b }}\) & 121,399 & 13,338 & 89,025 & 19,038 & 500 \\
\hline 1931 & 150,879 & 32,959 & 100,023 & 17,897 & 880 \\
\hline 1933 & 213,498 & 61,166 & 129,539 & 22,794 & 2,100 \\
\hline 1935 & 257,557 & 58,496 & 152,157 & 46,905 & 4,600 \\
\hline Weight \({ }^{\text {c }}\) & - & 1.7 & 1.2 & 1.0 & \(0.6{ }^{\text {d }}\) \\
\hline
\end{tabular}
\({ }^{\text {a Rayon Organon (New York: Textile Economic Bureau, Inc.), Jan. }}\) 1938, "Statistical Supplement," p. 16.
\(b_{\text {For }}\) 1929, the Census reported sales rather than production: All yarns, 116,632 thousand pounds; yarns finer than 125 denier, 12,814; yarns of 125-150 denier, 85,529; yarns heavier than 150 denier, 18,290. Each of these figures was adjusted by the ratio (1.04087) of total production in 1929 as reported by Rayon Organon (see fn. a) to the Census total for sales.
\({ }^{0}\) Relative unit value (dollars) in 1929.
dWholesale price in 1929 of "l-1/2 inch l-1/2 denier no." fibre (Rayon Organcn, June 1936, p. 97).

Table A-114.- AUXILIARY PRODUCTION SERIES FOR THE RAYON INDUSTRY: 1919 TO 1937
(Thousands of pounds)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Rayon yarns} & \multirow[b]{2}{*}{Rayon staple fibre \({ }^{\text {a }}\)} \\
\hline & Total \({ }^{\text {a }}\) & \begin{tabular}{l}
Finer \\
than 113 \\
denier \({ }^{b}\)
\end{tabular} & \[
\begin{gathered}
113 \text { to } 162 \\
\text { denier }
\end{gathered}
\] & \begin{tabular}{l}
Heavier \\
than 162 \\
denier \({ }^{b}\)
\end{tabular} & \\
\hline 1919 & 8,278 & no. & n.a. & n.a. & n. 2. \\
\hline 1920 & 10,125 & n.a. & n.a. & n.a. & n.a. \\
\hline 1921 & 14,986 & n. \(0^{\text {a }}\) & n.a. & n.e. & n.a. \\
\hline 1922 & 24,067 & n.a. & noa. & n.a. & n.a. \\
\hline 1923 & 34,959 & n. \({ }^{\text {a }}\) & n.a. & n.a. & n.a. \\
\hline 1924 & 36,328 & n. 2. & noa. & n.a. & n.a. \\
\hline 1925 & 51,049 & n.a. & n.a. & n.a. & n.a. \\
\hline 1926 & 62,693 & not. & n.a. & n.a. & n.a. \\
\hline 1927 & 75,555 & 6,422 & 56,138 & 12,995 & (c) \\
\hline 1928 & 97,232 & 9,626 & 71,952 & 15,654 & 165 \\
\hline 1929 & 121,399 & 13,961 & 88,500 & 18,938 & 500 \\
\hline 1930 & 127,333 & 18,081 & 91,298 & 17,954 & 350 \\
\hline 1931 & 150,879 & 28,818 & 104,108 & 17,955 & 880 \\
\hline 1932 & 134,670 & 35,014 & 87,266 & 12,390 & 1,100 \\
\hline 1933 & 213,498 & 56,363 & 134,077 & 23,058 & 2,100 \\
\hline 1934 & 208,321 & 55,830 & 123,951 & 28,540 & 2,200 \\
\hline 1935 & 257,557 & 54,087 & 159,943 & 43,527 & 4,600 \\
\hline 1936 & 277,626 & 67,463 & 171,295 & 38,868 & 12,300 \\
\hline 1937 & 312,236 & 77,747 & 191,088 & 43,401 & 20,100 \\
\hline Weight \({ }^{\text {d }}\) & - & 1.7 & 1.2 & 1.0 & 0.6 \\
\hline
\end{tabular}
\({ }^{\text {a Rayon Organon (New York: Textile Economic Bureau, Ince), }}\) Jan. 1938, "Statistical Supplement," p. 16.
\({ }^{\text {b Computed }}\) from total and a percentage distribution, ibid., \(p\). 19.
\({ }^{\text {CQuantity not reported. The noncomparability resulting from }}\) the omission of rayon staple fibre from the index in 1927 is probably very small because of its known unimportance in this year with respect to both quantity and weight (wholesale price).
\(d_{\text {Assumed to }}\) be same as weights shown in corresponding columns of Table A-113, even though the products are not precisely the same.

Table A-115.- NOMBER OF WAGE EARNERS AND AVERAGE WEEKLI HOURS IN THE RAYON INDUSTRY: 1923 TO 1937
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c}
Average number \\
of wage earners
\end{tabular} & \begin{tabular}{c}
Average hours \\
worked per week \({ }^{\mathrm{a}}\)
\end{tabular} \\
\hline 1923 & \(14,401^{\mathrm{b}}\) & 51.8 \\
1924 & 15,100 & 50.9 \\
1925 & 19,128 \\
1926 & \(19,000^{\mathrm{c}}\) & 51.5 \\
1927 & 26,341 & 48.9 \\
1928 & \(31,200^{\mathrm{c}}\) & 48.7 \\
1929 & 39,106 & 48.8 \\
1930 & 38,800 & 49.1 \\
1931 & 38,735 & 42.0 \\
1932 & 34,300 & 43.0 \\
1933 & 44,306 & 43.5. \\
1934 & 46,700 & 41.2 \\
1935 & 50,550 & 37.0 \\
1936 & 52,300 & 37.9 \\
1937 & 58,000 & 38.6 \\
\hline
\end{tabular}
\({ }^{\text {a For 1932-37, B. L.S. actual hours (the average for } 1937 \text { was ocm- }}\) puted from 12 monthly figures published in the Monthly Labor Review): for 1929, Census prevailing hours; for 1923-28, estimates made by means of the 1929 figure and the N.I.C.B. index of weekly hours for the Chemicals industry; for 1930, the product of B.L.S. hours for 1932 and the ratio between hours for 1930 and 1932 comm puted from statistics published in Wages and Hours of Labor in Rayon and Other Synthetic Yarn Manuracturing: 1932 (B.L.S. Bull. No. 587); and for 1931, an estimate made by means of the B. L.S. figure for 1936 and the N.I.C.B. index of weekly hours for the Chemioals industry for 1931 and 1936.

The B.L.S. study (Bull. No. 587) covered 83 and 74 percent, respectively, of the number of the wage earners in the Rayon industry in 1930 and 1932.
\({ }^{\text {b Commerce Yearbook, } 1932 \text { (U. S. Dept. Cam., Bur. For, and Dom. }}\) Come). I, 423. The Bureau of the Census is cited as the source. Figures for subsequent years coincide with those published in the Census of Manufactures.

Cestimates interpolated by means of an auxiliary employment series which was constructed in the following manner: First, Census value figures for total production were completed by means of a continuous Rayon Organon series; second, this continuous ralue series was used to complete the Census series for wages; third, amual wages were divided by N.I.C.B. hourly earnings for the Chemicals industry to obtain estimates of man-hours; and finally, these man-hours were divided by average weekly hours to obtain the auxiliary employment series.

(2romenala)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tols} & \multicolumn{2}{|l|}{wolent (pomain) \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Hubuer} \\
\hline & \[
\begin{gathered}
\text { Antonoblite } \\
\text { canfinge }
\end{gathered}
\] & Autarobile & \[
\begin{gathered}
\text { Solla and } \\
\text { cuahion tiresb }
\end{gathered}
\] & Motorajale and bicgole cosinge and Inver trabe9 \({ }^{\circ}\) \\
\hline 1821 & 488.779 & 7,864 & 402 & 1,975 \\
\hline 1922 & 659,824 & 105,800 & 896 & 5,145 \\
\hline 1928 & 714.551 & 126,476 & 944 & 4.511 \\
\hline 1204 & 704,661 & 148,598 & 926 & 3.412 \\
\hline 1925 & 1,027,551 & 181,088 & 1.055 & 2.512 \\
\hline 1985 & 1,090,958 & 180,559 & 769 & 2,779 \\
\hline 1927 & 1,216,983 & 177.138 & 618 & 3,046 \\
\hline 1928 & 1,212,951 & 214.421 & 757 & 3,592 \\
\hline 1929 & 1.480,415 & 205,618 & 590 & 3.757 \\
\hline 1950 & 1.182,018 & 148,046 & 295 & \$.286 \\
\hline 1887 & 1,000,329 & 129.509 & 191 & 2,635 \\
\hline 1082 & 970,044 & 98,652 & 145 & 3,372 \\
\hline 1938 & 1,098,099 & 115,696 & 189 & \$,908 \\
\hline 1934 & 1.175,000 & 121,700 & 285 & 3,957 \\
\hline 1936 & 1,242,000 & 128,600 & 577 & 4,005 \\
\hline 1956 & 1,404,000 & 145,600 & nee. & nom. \\
\hline *odgle & 114.988 & 17,608 & 3,894 & 756 \\
\hline
\end{tabular}

 that \(1 \mathrm{~g}^{2} \mathrm{~s}\) fropertione.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Produat & Unit (thoueande) & Woight \({ }^{\text {b }}\) & 1921 & 1925 & 1925 & 1927 & 1828 & 1929 & 1950 & 1931 & 1952 & 1935 & 1934 & 1935 \\
\hline Ezabber boota & pair & 6.1 & 6,632 & 2,098 & 4,739 & 5,632 & 5,545 & 5,464 & 3,652 & 1,971 & 1,920 & 2,622 & 2,845 & 5,029 \\
\hline Shoes and overthoos & pair & 24.8 & 57,191 & 60,103 & 52,539 & 72,577 & 61,467 & 51,357 & 40,951 & 27,145 & 25,247 & 52,984 & 36,448 & 87,810 \\
\hline Lumberson's & pair & 1.7 & n.a. & n.2. & n.a. & 3,778 & 2,795 & 1,817 & 1,467 & 985 & 918 & -1,201 & 1,536 & 1,881 \\
\hline Arotion and gaitors & pair & 12.2 & n.a. & n.a. & n.a. & 36,721 & 27,983 & 19,245 & 15,964 & 10,990 & 11,160 & 15,815 & 17,672 & 19,346 \\
\hline Other mhoen and overthoes & pair & 21.2 & n, a. & n.a. & nom. & 81,085 & 50,689 & \$0,296 & 25,500 & 15,172 & 13,169 & 15,968 & 16,440 & 26,685 \\
\hline Canvie footmear & pair & 11.7 & 15,237 & 26,114 & 25,000 & 28,810 & 36,582 & 43,964 & 36,504 & 28,082 & 33,653 & 29,689 & 24,118 & 25,955 \\
\hline Reolaimed rubber & pound & 9.2 & 68,277 & 181,752 & 243,852 & 530,436 & 547,066 & 365,696 & 269,785 & 216,509 & 127.460 & 158, 757 & 182,245 & 202,245 \\
\hline Hoela & palr & 6.8 & 157,499 & 289,222 & 342,196 & 518,346 & 556,126 & 292,719 & 257,527 & 248,257 & 215,926 & 275,948 & 266,770 & 278,369 \\
\hline 80108 & pair & 3.5 & 5,005 & 23,509 & 86,064 & 40,820 & 53,482 & 46,189 & 15,638 & 59,609 & 7,935 & 92,032 & 86,751 & 69,656 \\
\hline Auto and oarriage fabrios & -90. git & 4.5 & 15,645 & 33,059 & 25,232 & 17,363 & п_a. & 22,408 & nea. & 10,425 & n.a. & 8,620 & nea. & 5,237 \\
\hline Rubberized fabrios & a9. gi. & 8.8 & 19,679 & 18,101 & 25,840 & 38,446 & \(\mathrm{n}_{0} a_{0}\) & 70,560 & nono & 53,574 & none & 65,048 & \(\mathrm{n}_{0} \mathrm{Ha}_{4}\) & 66,118 \\
\hline Rainoont fabrioa & 39- yd. & 5.7 & nom. & nome & no.. & 23,688 & n, \(\mathrm{B}_{0}\) & 25,576 & noa & 16,092 & noa & 18,227 & nod & 19,975 \\
\hline Hospital shoeting & 49. yc. & 0.5 & n.e. & nos. & n. \(\mathrm{A}_{\text {\% }}\) & 8.422 & n.a. & 5,048 & n.a. & 2,685 & & 2,240 & n.a. & 2,509 \\
\hline Othar rubbericod fabrios & sq. yd. & 2.7 & n.a. & n. \(0_{0}\) & n.R. & 11,536 & n.e. & 41,936 & non. & \$5,797 & n.a. & 42.681 & n.a. & 45,654 \\
\hline Transulation belting & pound & 5.0 & n.a. & - & n.a. & 25,175 & n.a & 21,575 & n.as & 14,508 & n.a. & 15,745 & nome. & 25,549 \\
\hline 111 other rubber bolting & pound & 4.8 & n,a. & n.e. & non. & 20,216 & n, a, & 25,449 & nom. & 16,098 & nome & 18,883 & nom. & 32,814 \\
\hline Rubber proking & pound & 2.0 & nome & n.a. & nome & 15,019 & n.a. & 17,925 & notas & 9,268 & n.a. & 9,356 & nom & 11,409 \\
\hline Washors, gackots, velvor, oto. & pound & 2.0 & nom. & n, \% \({ }^{\text {a }}\) & nos. & 12,938 & n.e. & 13,520 & nas. & 5,981 & n.a. & 4,056 & nome & 5,168 \\
\hline Rubber and friation tape & pound & 1.8 & no.a. & n.a. & \(\mathrm{n}_{0} \mathrm{am}_{0}\) & 16,999 & nom. & 20,428 & \(\mathrm{nan}_{0}\) & 14,925 & n, \(\mathrm{IL}_{0}\) & 11,519 & non. & 12,380 \\
\hline Water bottles and rountain syringos & dosen & 1.8 & now. & n, \(0_{0}\) & nome & 514 & \(n\), a. & \({ }^{698}\) & nota & 487 & n.a. & \({ }_{5} 552\) & no. & 579 \\
\hline Rubber bande & pound & 0.7 & n.a. & nam. & not. & 1,738 & nom. & 3,489 & n.m. & 5,456 & notan & 3,509 & neta. & 3,878 \\
\hline Rubber gloven & doz. Pr. & 1.2 & \(\underline{n}, a_{0}\) & 7. 20 & nom. & 817 & nofa & 1,060 & nuan & 997 & 7ras. & 1,125 & not & 1,288 \\
\hline Eubber oursort & gallon & 1.8 & not. & n.2. & now: & 4.827 & \(\mathrm{n}, \mathrm{La}_{0}\) & 6,050 & & 5.545 & nom. & 4.215 & none & 5,971 \\
\hline Rubber flooring & sq. 5 \%. & 1.7 & no. \({ }^{\text {a }}\) & \(\mathrm{n}, \mathrm{a}_{0}\) & \(\mathrm{nanam}^{\text {a }}\) & 8,778 & \(\mathrm{nam}_{4}\) & 8,568 & \(\mathrm{n}_{0} \mathrm{C}_{0}\) & 7.524 & noe. & 4,325 & nom. & 5,908 \\
\hline Rubber throed & pound & 2.0 & noter & n, \(0_{0}\) & nomo & 5,282 & \(\mathrm{n}, \mathrm{E}^{\text {. }}\) & 5.728 & \(\mathrm{n}_{0} \mathrm{ar}_{0}\) & 6,498 & noan & 4,809 & no. & 5,415 \\
\hline Jer ringe & gross & 2.2 & no.a. & nom. & \(\mathrm{n}_{0} \mathrm{Am}\) & 6,769 & nac. & 8,458 & not & 10,950 & n.a. & 7,442 & \(n_{0}\) & 7,5n \\
\hline Jathing eapa & dozen & 0.7 & noi. & n.e. & nomo & 741 & nan. & 1,050 & nam. & 2,178 & nam. & 1,228 & note & 945 \\
\hline
\end{tabular}
 In the Survey of Gurrent bualness, "1936 Supplemont." R.M.A. date for 1928 were available only for hoela nnd soles; est imates for the remaining producta were, therefore, and gaitors, and other zhoes and overshoes for the pariod 2929-35. Because of a change in Consus clasaification, reciamed rubbar production tor 1935 was entimated by multiplication of the R.M.A. figure for that year by the average of the ration of the Consus to the RokeA. figures for 1929, 1931 , and 1933.
BThe woights, whioh were applied to rolatives of the production sories, reprosont the poroentage that the value of each product ocmprised of the total value of the produots inoluded in 1929 in the index for Othor Bubber Goodn.

Table Am118.- ETHBER OF TAGE EARNEES IT RUBBER PRODUCTS GROUP AND COMPONETIT INDUSTRIES: 1921 TO \(1936^{\circ}\)
\begin{tabular}{|c|c|c|c|}
\hline Tear & Robber Producte group & Tires and Inner Tubes & Other Rubber Goode \({ }^{\circ}\) \\
\hline 1921 & 103.273 & 44,500 & 58,700 \\
\hline 1922 & 133,500 \({ }^{\text {d }}\) & 57,500 & 76,000 \\
\hline 1923 & 137,868 & 57,900 & 79,900 \\
\hline 1924 & 123,400 & 55,900 & 67,500 \\
\hline 1925 & 141,869 & 63,200 & 78.700 \\
\hline 1926 & 141,200 & 62,200 & 79,000 \\
\hline 1927 & 141,997 & 61,300 & 80,700 \\
\hline 1928 & 149,300 & 65,100 & 84,200 \\
\hline 1929 & 149,148 & 65,000 & 84,100 \\
\hline 1930 & 115,400 & 47,200 & 68,200 \\
\hline 1931 & 99,259 & 39,200 & 60,100 \\
\hline 1932 & 90,800 & 34,900 & 55,900 \\
\hline 1938 & 106,283 & 39,400 & 66,900 \\
\hline 1934 & 118,800 & 42,800 & 76,000 \\
\hline 1935 & 114,681 & 38,700 & 76,200 \\
\hline 1936 & 121,900 & 40,400 & 81,500 \\
\hline
\end{tabular}

SThe IIgures for the component industries were rounded off after adjuitment for comparability with production. The eme ploynent for the group shown in this table is, therefore, not identical with the com of the estinates for the 2 component industries.

Census statistics for 1921-35 were completed by use of a B.L.S. series for 1923-36 and Ohio State tire-and-tube figures for 1921-23. The completed series was then adjusted for comparability with the production index on the assumptions that the (Census) Tires and Tubes and the Other Rubber Goods industries (1) have the same value productivity for tires and tubes and the same value productivity for other rubber goods, (2) together account for the total output of these 2 types of products, and (3) produce only these 2 types of products. (See note on method in Part Twoz Rubber Products Group.)

OThis series represents the difference between group employment and the preliminary estimates of the number of wage earnors for Tires and Inner Tubes after adjustment for comparability with the production index on the assunptions stated in fin. b.
dobtained by Interpolation by means of N.I.C.B. series for 1921-23.

\section*{Table A-119.- MAN-HOURS IN THE RUBBER PRODUCTS INDUSTRIES: \\ 1921 TO 1936}
(Thousands)
\begin{tabular}{l|c|c|c}
\hline \hline \multicolumn{1}{c|}{ Year } & \begin{tabular}{c}
Rubber \\
Products \\
groupa
\end{tabular} & \begin{tabular}{c}
Tires and \\
Inner \\
Tubes
\end{tabular} & \begin{tabular}{c}
Other \\
Rubber \\
Goods
\end{tabular} \\
\hline 1921 & 247,107 & 94,623 & 152,484 \\
1922 & 330,577 & 126,241 & 204,336 \\
1923 & 335,972 & 123,035 & 212,937 \\
1924 & 299,727 & 117,067 & 182,660 \\
1925 & 341,029 & 130,199 & 210,830 \\
1926 & 341,766 & 129,669 & 212,097 \\
1927 & 348,955 & 130,017 & 218,938 \\
1928 & 375,083 & 142,088 & 232,995 \\
1929 & 363,154 & 137,141 & 226,013 \\
1930 & 264,060 & 95,256 & 168,804 \\
1931 & 202,806 & 71,517 & 131,289 \\
1932 & 162,810 & 54,933 & 107,877 \\
1933 & & 190,025 & 59,717 \\
1934 & 198,582 & 62,889 & 130,308 \\
1935 & 202,807 & 59,855 & 135,693 \\
1936 & 233,335 & 68,766 & 142,952 \\
\hline
\end{tabular}
\({ }^{a_{\text {Computed }}}\) by averaging (1) the quotients of pay rolls and hourly earnings and (2) the products of the employment series (unadjusted series for Tires and Inner Tubes) and average actual hours per man per year (i.e., average weekly hours times 52). The pay-rolls series were obtained in the same manner as employment for 1921 and for 1923-36; the 1922 estimates are based on the N.I.C.B. group index. Average weekly hours and hourly earnings were derived by splicing N.I.C.B. series for 1921-31 to corresponding B.L.S. series for subsequent years. The N.I.C.B. hours and earnings series for the Rubber Products group were used for Tires and Tubes.

The man-hours series for Tires and Tubes was adjusted for comparability with the production index by the method indicated in Table A-118, fn. b.
\(b_{T h i s}\) series represents the difference between man-hours for the group and the preliminary estimates of man-hours for Tires and Tubes after adjustment for comparability with the production index by the method indicated in Table A-118, fn. b.

\section*{Table A-120.- PRODUCTION OF PRINCIPAL SILX AND RAYON BROAD GOODS: CENSUS YEARS 1919 TO 1929 \\ (Thousands of square yards)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{Broad goods (except velvets, pluahes. upholsteries, and tapestries)} & \multirow[t]{2}{*}{Velvets} & \multirow[t]{2}{*}{Plushes} & \multirow[t]{2}{*}{Opholsteries and tapestries} \\
\hline & A11-silk & Mixtures & & & \\
\hline 1919 \({ }^{\text {a }}\) & 254.220 & 60,736 & 9,012 & 5,778 & 677 \\
\hline 1921 & 230,903 & 47,508 & 6,410 & 5,501 & 1,276 \\
\hline 1923 & 271,820 & 104,402 & 9,109 & 7,117 & 3,799 \\
\hline 1925 & 384,725 & 98,391 & 6,078 & 925 & 2,675 \\
\hline 1927 & 385.530 & 127,296 & 5,484 & 1,310 & 3,705 \\
\hline 1929 & 424,607 & 172,507 & 9,651 & 1,957 & 3,403 \\
\hline Weight \({ }^{\text {b }}\) & 0.909 & 0.594 & 2.602 & 1.957 & 1.799 \\
\hline
\end{tabular}

Census quantity statistics, reported in linear yards, were converted to square yards on the assumption of the 1921 average widths.
\({ }^{\mathrm{b}}\) Value per unit (dollars) in 1929.

Table A-121.- PRODUCTION OF PRIMCIPAL SILK AND RAYON BROAD GOODS: CENSUS YEARS 1929 TO 1986
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{(Thousands of square yards)} \\
\hline Product & Woight \({ }^{\text {a }}\) & 1929 & 1951 & 1983 & 1985 \\
\hline All-nill \({ }^{\text {b }}\) & 0.179 & 425,129 & 386,657 & 201,604 & 239,431 \({ }^{\circ}\) \\
\hline all-silk and nilk-and-rayon mixad) \({ }^{\text {d }}\) & . 078 & 71.530 & 111,736 & 274,437 \({ }^{\circ}\) & 729,889 \({ }^{\text {t }}\) \\
\hline Silceanderayon mixedB & . 262 & 31,739 & 13,371 & S0,185 & 9,787 \\
\hline silk-and-ootton mixod and other silk or rayon-mixed \({ }^{8}\) & -190 & 87,502 & 16,782 & 7,482 & 16.580 \\
\hline Rayon-and-cotton mixeds & . 078 & 37,241 & 41,077 & 46,965 & 8,631 \\
\hline silk-and-rayon mixed volvota & . 441 & 8,823 & 4.961 & 6,214 & 8,032 \({ }^{\text {h }}\) \\
\hline Pluthes and all-bilk volvots & . 322 & 2,278 & 1.919 & 1,089 \({ }^{\circ}\) & 1,508 \\
\hline Upholatorien other than all-ailk & - 773 & 2,347 & 2,566 & 1,018 & 594 \\
\hline Tapestries & . 132 & 534 & 925 & 1,712 & 13,641 \\
\hline
\end{tabular}

Ratimeted omployment per equare yard in 1935 computed by (i) apportioning the wago earners in oach of the indurtry branohes in 1936 (Silk Menue faotures and Rayon Manufactures) anong the individual produots in accordance with the percontages thoir valuen constituted of the total value of the primary products of the branch and (2) dividing the total mumber of wege earners assigned to each product by the oorresponding production (mmber of square yardi) in 1935.
bother then velvets, plushes, and tapestries.
\({ }^{\circ}\) Includea all-silk tapestries and draperies.
\(d_{\text {Other than plushes, }}\) upholsteries, and typestries
To establish comparability with other yeare the quantity of all-bilk volvots, which was estimated on the basis of the 1931 ratio of their value to the value of velvets other than allkand-rayon mixed, was subtraoted from the total for all-rayon broad goode and velvets and added to pluahese
Inoludes all-rayon tapestrios and draperies other than Jacquard, upholsteries, and plushes. v
gother than velvots, plushes, upholsteries, and tapestriese
\({ }^{h^{I}}\) Includes small amount of silk-and-cotton mixed velvets with silk warpe

Table -122.- BAN-SIWX COUSWPTION IT THE SILK AND RAYON GOODS INDUSTRY: 1919 TO 1936
(Thousands of pounds)
\begin{tabular}{|c|c|c|c|}
\hline Year & \[
\begin{gathered}
\text { Silk } \\
\text { deliveriesa }
\end{gathered}
\] & ```
 Rawmsilk
 consumption
in all textile
 industriasb
``` & \begin{tabular}{l}
Raw-silk \\
consumption in the Silk and Rayon Goods industryc
\end{tabular} \\
\hline 1919 & n.a. & 27.857 & 25.891 \\
\hline 1920 & 29,452 & 19.114 & 17,394 \\
\hline 1921 & 44,257 & 28.723 & 25,621 \\
\hline 1822 & 48,618 & 51,553 & 27.546 \\
\hline 1923 & 47,401 & 30,763 & 26,272 \\
\hline 1924 & 48,550 & 31,509 & 26,341 \\
\hline 1925 & 66,308 & 4.3,058 & 35.188 \\
\hline 1926 & 66,530 & 43,247 & 55,030 \\
\hline 1927 & 72,919 & 47.755 & 38,278 \\
\hline 1928 & 75,516 & 54.296 & 44,794 \\
\hline 1929 & 81.962 & 64.215 & 54,473 \\
\hline 1930 & 77,000 & 57,981 & 48,762 \\
\hline 1931 & 78,674 & 56,868 & 47,436 \\
\hline 1982 & 78.243 & 51,051 & 41,045 \\
\hline 1933 & 62,082 & 41,595 & \\
\hline 1934 & 61,061 & 39,324 & 29,217 \({ }^{\text {d }}\) \\
\hline 1935 & 65,748 & 40,606 & 28,896 \({ }^{\text {d }}\) \\
\hline 1986 & 60,126 & 37.158 & 26,456 \({ }^{\text {d }}\) \\
\hline
\end{tabular}
\({ }^{2}\) For 1920-35, the figures mere computed from sill deliveries (bales) reported in Survey of Current Business, "1936 Supplement," p. 143; and for 1936, froma statistios shown in ibide Karoh 1937. The average weight of a bale of silk is 132.25 lbs. (ibides "1936 Suppos" p. 182).

Silk deliveries, which were compiled monthly by the Commodity Exohange (in earlior years, by the National Federation of Textiles and the Silc Association of America), represent the difference between imports and the change in the Onited States stook position during the month.
\({ }^{b}\) Por 1919 and the odd-numbered yeara 1925-35 oxoept 1933, from Census statiatios; for remaining years, estinates made by means of the silkdoliverios earles.
"all textile industries" inoluder Cotton Goods, Cotton Small Wares, Felt Goods, Enit Goods, Lace Goods, Silk and Rayon Goods, Woolen Goods, and Worsted Goods. Consumption in the Foolen and Forsted Goods group in 1951 was ostimated on the basis of the ratio to the combined consumption in the Knit Goods and Silk and Rayon Goods industries in 1929 and 1935.

Opigures for 1919 and the odd-numbered years 1925-35 were obtained from the Census of Kanufaotures; those for the remaining years are estinates made by multiplication of the total consumption of silk in the textile industries by a earies of ratios of consumption in the Silk and Rayon Goods industry to total consumption. The ratios for all years except 1936 were obtained by etraight-1ine Interpolation between those oomputed from Census data; the 1985 ratio was assumed for 1936.
drot used for interpolation of \(\mathrm{H}_{\mathrm{R}} \mathrm{R}\).P. produotion inder.

Table A-123.- NUNBER OF HAGE EARNERS AND AVERAGE WEEKIY HOURS IN THE SIIK AND RAYON GOODS INDUSTRY: 1919 TO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Average number \\
of wege earners
\end{tabular} & \begin{tabular}{c} 
Average hours \\
Worked per week
\end{tabular} \\
\hline 1919 & 126,782 & 45.5 \\
1920 & 129,900 & 41.9 \\
1921 & 121,378 & 44.9 \\
1922 & 118,900 & 45.7 \\
1923 & 125,234 & 46.5 \\
1924 & 119,100 & 45.4 \\
1925 & 132,509 & 46.9 \\
1926 & 129,400 & 45.2 \\
1927 & 127,643 & 45.9 \\
1928 & 127,100 & 47.3 \\
1929 & 130,467 & 47.8 \\
1930 & 119,500 & 44.9 \\
1931 & 109,225 & 44.3 \\
1932 & 93,000 & 38.7 \\
1933 & 110,322 & 37.1 \\
1934 & 119,900 & 33.4 \\
1935 & 125,908 & 34.8 \\
1936 & 113,200 & 36.2 \\
\hline
\end{tabular}
aFor 1919, Census prevailing hours multiplied by the average of the ratios of N.I.C.B. actual to Census prevailing hours in 1921 and 1923; for 1920-31, N.I.C.B. actual hours; and for 1932-36, B.L.S. actual hours.



Table A-12h.- production IH the slavghtering and krat packing indistry, 1919 to 1956 - Contimud


Tablo A-125_- KUMER OF TAGE EARNERS AND AVERAGE WEEKIY HOURS IN THB SLADGETERING AND MEAT PACKING INDUSTFX: 1919 TO 1936
\begin{tabular}{l|c|c}
\hline \hline Year & \begin{tabular}{c} 
Number of \\
wage earners
\end{tabular} & \begin{tabular}{c} 
Average hours \\
worked per week
\end{tabular} \\
\hline 1919 & 164,467 & 48.4 \\
1920 & 143,900 & \(48.5 \mathrm{~b}^{\mathrm{b}}\) \\
1921 & 120,914 & 46.9 \\
1922 & 118,900 & \(49.2^{\mathrm{c}}\) \\
1923 & 137,384 & 49.7 \\
1924 & 132,000 & 49.5 \\
1925 & 125,336 & 49.6 \\
1926 & 123,000 & 49.8 \\
1927 & 124,062 & 50.2 \\
1928 & 125,400 & 50.5 \\
1929 & 128,402 & 50.6 \\
1930 & 123,000 & 50.0 \\
1931 & 112,949 & 49.0 \\
1932 & 108,800 & 48.2 \\
1933 & 120,990 & 44.0 \\
1934 & 149,200 & 41.1 \\
1935 & 125,784 & 40.4 \\
1936 & 132,500 & 42.2 \\
\hline
\end{tabular}

The series is based on etatistics referring to the Census induatry "Meat Packing, Wholesale," which constitutes almost the entire Slaughtering and Meat Packing industry. The Iigure for 1919 represents Census prevailing hours reduced to the level of actual hours by means of the average of the ratios of N.I.C.B. actual to Census prevalling hours for 1921 and 1923; those for 1920-32, N.I.C.B. actual hours; those for 1933 and 1935, the quotienta of Census man-hours for large samples of the induatiry and 52 times the corresponding number of wage carners; and those for 1934 and 1936, B. L.S. hours adjusted to the level of the Census hours for 1933 and 1935. The Census houre for 1933 and 1935 were computed from Census of Manuface tures: 1933, Man-Hour Statistice for 32 Selected Industries", and Census of Manufactures: 1935, Man-Hour Statistics for 59 Eelected Industries.a
\({ }^{\text {Barerage for }} 7\) months, June to Decembere
Aarerage for 6 months, July to December.

Table A-126.- PRODUCTION OF PRINCIPAL TOBACCO PRODUCTS: 1919 TO 1936
(Units in millions)
\begin{tabular}{l|c|c|c}
\hline \hline Year & Cigarsa,b & \begin{tabular}{c} 
Cigarettesa
\end{tabular} & \begin{tabular}{c} 
Chewing and \\
smoking tobaoco \\
and snuffo \\
(pounds)
\end{tabular} \\
\hline 1919 & 7,821 & 53,152 & \\
1920 & 8,770 & 47,458 & 424 \\
1921 & 7,428 & 52,100 & 413 \\
1922 & 7,389 & 55,780 & 387 \\
1923 & 7,493 & 66,734 & 420 \\
1924 & 7,161 & 72,725 & 413 \\
1925 & 6,944 & 82,265 & 414 \\
1926 & 6,940 & 92,110 & 414 \\
1927 & 6,988 & 108,820 & 411 \\
1928 & 6,816 & & 396 \\
1929 & & & \\
1930 & 6,964 & 122,402 & 386 \\
1931 & 6,299 & 123,810 & 381 \\
1932 & 5,706 & 117,069 & 372 \\
& 4,687 & 106,636 & 371 \\
1933 & & & \\
1934 & 4,565 & 114,877 & 347 \\
1935 & 4,791 & 130,065 & \\
1936 & 4,913 & & \\
& 5,405 & & \\
\hline
\end{tabular}

QQuantities for 1919-26 were obtained from Annual Report of the Commissioner of Internal Revenue for the Fiscal Year Ended Jume
 1927-36s from ibid. 1 1937. p. 106.
\({ }^{\text {b }}\) Includes large oigars produced in bonded manufacturing warehouses (i,e.s factories which make cigars from tobacoo imported exclusively from one country, principally Cuba). For 1919 and 1920, the number of such cigars was estimated by the use of the 1921 ratio of bonded-marehouse output to domestio production of large cigars.

CData for 1919-26, from Annual Report of the Comaissioner of Internal Revenue . . e, 1927. \(\mathrm{p}_{\mathrm{c}}\) 98; for 1927-35, from ibide: 1936. p. 127; and for 1936, from ibides 1937. p. 97.
 AND COUPONEKI IKDUSTRIES: 1919 TO 1956
\begin{tabular}{|c|c|c|c|c|}
\hline Yaer & Tobwees Produots group \({ }^{\text {a }}\) & Cigara \({ }^{\text {b }}\) & Cigarettes \({ }^{\circ}\) & Chowing and Smoking Tobacoo and Smurf \({ }^{\text {d }}\) \\
\hline 1919 & 157,100 & 114,300 & 21,700 & 21.100 \\
\hline 1920 & 154,000 & 114,900 & 18,800 & 20,300 \\
\hline 1921 & 150,000 & 111,900 & 17,500 & 20,600 \\
\hline 1922 & 146,400 & 109,000 & 16,500 & 20,900 \\
\hline 1923 & 146,300 & 108,800 & 15,900 & 21,600 \\
\hline 1924 & 136,600 & 99.700 & 15,500 & 21.400 \\
\hline 1925 & 132,100 & 96.700 & 15,500 & 19,900 \\
\hline 1928 & 125,500 & 91,500 & 14,800 & 19,200 \\
\hline 1927 & 129,300 & 94,600 & 16.700 & 18,000 \\
\hline 1988 & 125,700 & 89,800 & 18,100 & 17,800 \\
\hline 1929 & 116,100 & 84,200 & 15,900 & 16,000 \\
\hline 1930 & 108,400 & 77,600 & 14,300 & 16,500 \\
\hline 1931 & 99,800 & 68,200 & 14.100 & 17,600 \\
\hline 1938 & 97,900 & 67,100 & 13,700 & 17.100 \\
\hline 1938 & 99,700 & 66;900 & 16,000 & 16,800 \\
\hline 1934 & 101,000 & 63,100 & 19,700 & 18,200 \\
\hline 1935 & 90,500 & 56,000 & 18,100 & 16,400 \\
\hline 1936 & 90,200 & 56.000 & 18.100 & 16,100 \\
\hline
\end{tabular}

Employment wae dotermined for 1920 and 1922 by means of a B.L.S. series and for remaining years by addition of the eatinates for the \(\mathbf{5}\) component industries.
bThe mumber of mage earners for 1925 was estimated by maltiplying combined employment in Cigars and Cigarettes establishments by the average of the ratios in 1923 and 1927 of employment for Cigars to that for both Cigars and Cigarettes; the mamber reported by the Census for 1933 was adjusted for incanplete coverage by the 1933 ratio of Internal Reveme cigar-stamp sales (Ammal Report of the Comil sbioner of Intermal Revemue for the Fisoal Tear Ended June 30, 1934, U. S. Treas. Dept., Bur. Int. Rev., p. 101) to the corresponding figure reported by the Census. Estinates for intercensal years 1923-36 were made through the use of an unpublished B.L.S. enployment index for the Cigars industry; and estimates for 1920 and 1922 wers made by applying to the mumber of wage earners in the Tobacos Products group the 1921 ratio (for 2920) and the average of the 1921 and 1923 ratios (for 1922) of Cigars to group exployment.

The manber of wage earners in factories producing both oigars and cigarettes in 1919 ( 1.832 ) was included to maintain ocmparability with the 1921 employment figure. The figures for intercensal years and 1925 were obtained by subtracting mployment for Cigars from oombined employment for both Cigars and Cigarettes. The latter seriee was derived from Census data for odd-mumbered years, adjusted in 1933 for incomplete ocverage in Cigars (see fin. b); from a B.L.S. series for intercensal years except 1920 and 1922; and fram the difference between the first and last columas for 1920 and 1922.

The amployment series for Cigarettes was adjusted for canparability with the produetion index on the assumptions that the (Ceasua) Cigarettea and the Chewing and Smoking Tobacco and Smuff induatries (1) have the same value productivity for cigarettes and also have the same value productivity for chowing and amoking tobaceo and smuff; (2) together account for the total output of these 2 classes of products; and (8) produce only these 2 classes of products. (See note on method in Part Two: Tobacce Product Group.)
s
The flgurea for 1920 and 1922 were obtained by miltiplying group employment by the 1921 ratio (for 1920) and the average of the 1921 and 1923 ratios (for 1922) of aployment in the (Cemsus) Chewing and Smoking Tobacoo and Smulf induatry to group omployment. The series was adjusted for comparability with production on the asevenptions tated in the eecond paragraph of fn. o.

\begin{tabular}{|c|c|c|c|}
\hline Year & Cigars \({ }^{\text {b }}\) & Cigarottea \({ }^{\circ}\) & Chewing and Smoldng Tobaceo and Snuff \({ }^{\text {a }}\) \\
\hline 1919 & 49.5 & 45.7 & 47.9 \\
\hline 1920 & 49.4 & 49.1 & 48.8 \\
\hline 1921 & 49.2 & 45.2 & 47.6 \\
\hline 1922 & 49.3 & 45.5 & 47.7 \\
\hline 1925 & 49.5 & 45.3 & 67.7 \\
\hline 1924 & 49.2 & 4.54 & 47.6 \\
\hline 1925 & 49.1 & 45.5 & 47.5 \\
\hline 1926 & 49.0 & 45.2 & 47.4 \\
\hline 1927 & 48.9 & 45.2 & 47.2 \\
\hline 1928 & 48.8 & 45.4 & 47.1 \\
\hline 1929 & 48.7 & 45.2 & 47.0 \\
\hline 1930 & 48.5 & 45.5 & 47.3 \\
\hline 1981 & 42.7 & 41.8 & 42.0 \\
\hline 1952 & 59.2 & 58.8 & 38.5 \\
\hline 1935 & 55.4 & 52.6 & 34.8 \\
\hline 1934 & 36.4 & 35.4 & 54.5 \\
\hline 1936 & 34.3 & 56.6 & 34.9 \\
\hline 1986 & 56.8 & 34.3 & 35.7 \\
\hline
\end{tabular}

The weakly-hours series for each industry, which was used to derive unadjusted man-hours, refors to establishmente whioh are engaged primarily in the manufacture of the produote which give the industry its name. (Arter the employment and man-hours have been edjusted for comparability with produotion, however, saoh industry refers to the total output, wherever manufaotured, of the products whioh give it its name. For the adjusted serios, see Tablos A-127 and A-129.)
DA series for provailing weokly hours oxtending from 1919 to 1929 was linkod in the latter year to ma aotual-weekly-houra series for 1929-36.

The prevaliling-hours aeries inoludes: (1) An unpublished figure for 1929 supplied by the Burean of the Consua; (2) ostinates for 1919, 1921, and 1923 seourad by multiplying provailing hourn in the Cigars and Cigarettes industries oombined for these years by the 1929 ratio of provailing houre in the Cigars industry to those in the Cigars and Cigarottos induatries combined; and (3) estimates for the remaining yeara of the period 1919-29 obtained by straight-ino interpolation.

The aotwal-weekly-hours sortes for 1929-36 inoludos: (1) A figure for 1935 conputed from Cenaus of Manufactures: 1935, "yan-Hour Statistics for \(\mathbf{S 2}\) Solected Industries", by dividing amual man-houre per wage earner by 52.14 weeks; (2) hours for 1929 and 1932 derived fram Rossmoore, Robbins and Co. a Investigation of the Cigar Manufacturing Industry in re Betablishment of a Code of Fair Compotition (N.R.A. FHles, November S, 1953, an trensoribed by W. De Evana) and adjusted to the 1935 Cemsun lovel by multiplication by the ratio for May-July 1955 of the Cansua to the Roasmoore-Robbina houra; (S) ostimates for 1930 and 1931 made by splicing woighted amual averagos of the weekly houra for \(1929-31\) reported in the Monthly_Bullotin of the Ponnsylvaia Dopartmont of Inbor and Industry to the adjunted Rossmoore-Robbins figure for 1929; (4) unpublished B.L.S. aotual houra for 1935 and 193e; and (5) an estimste for 1934 interpolated by a sorios for Cigars and Cigaretter oombined whioh is based on Censur houra for 1955 and BoLes. hours for 1954 and 1956.

The Rossmoore-Robbins figurea are welghted averages of the hours for ofgar makers, other prooesnors, and other factory workers in hand and machine factoriea. The eample (oxoluding atrippers) included 25.3 and 30.3 percent of the total number of mege earners in the indugtry in 1929 and 1932, F6apeotively. The induatry to whioh the Pennaylvania figuren refor is deaignated an "chgara and Tobscoo" in the lonthly bullotin, but aigars are the prodeminate produots.

Previliling meekly hours for \(1919-29\) wers firet eatimated by aubtrating prevalling meekly manmoure (produot of everage provailing weokly houre and euployment) in the clgara industry from aimilar man= hours for the Cigara and Cigarettes induetries acmbined and dividing the result by employment in the Cigarettes industry. The proviling-houre aerhea wel then adjusted by the ratio of aotumi to prem vailing hours in 1930, as oomputed from Wiges and Boura of Fabor in tho Cigarotto Vonufanturing
 Conaus euploymont statistice. The BeleS. survey oovored omtabliahmonta in Forth Carolina, Ientualy, and Virginia in ropresentative paymroll poriods of laroh, April, and May, 1950; these eatabliahmentia omployed about half of the mige eamern in the industry.

Aotual hours for 1935 were dorlved from Consus of Yanufactures: 1935, "Yan-Hour Statiation for se Seleoted Industrien", by dividing annul hours per vige earner by 52.14 (weola).

Satimatos of aotual houra for 1931, 1932, and 1934-36 wore computed in the samemaner as provailing hours for 2919-29. Aotual houra for the Cigari and Clgarettes Induatries combined for 2934-S6 were furnishod by B.L.S.i and those for 1931 and 1952 ware darived by miltiplying aotual hours for cigars by the 1981 ratio of the Censue prevaling-hours Agure for Cigarm and Cigarettea ecmbined to an unpubliehed Cenaus provailing-hourn Agure for Cigara.
 from B.LeS.s and eatimatea for the remaining yeare of the period 1919-s6 were made by mitiplying the Feotlywhure aorian for the cigars and Cigaretten induatries combined by the 1955 ratio betarean (1) hours in the Chowing and Sinolding Fobaceo and Sauff induatry and (2) houre in the cigari and cigarettae induetries combined.

Table A-129.- EEEKLI MAM-HOURS II CIGARETTES AND CHETING AND syocivg tobacco and snuff INDUSTRTES: 1919 T0 1936a
\begin{tabular}{l|c|c}
\hline \hline Year & Cigarettes & \begin{tabular}{c} 
Chewing and smoking \\
Tobacco and Snuff
\end{tabular} \\
\hline 1919 & 931,700 & \\
1920 & 897,200 & \(1,015,500\) \\
1921 & 733,500 & \(1,020,200\) \\
1922 & 688,800 & 986,900 \\
1923 & 660,300 & \(1,001,500\) \\
1924 & 648,600 & \(1,036,100\) \\
1925 & 650,000 & \(1,020,900\) \\
1926 & 618,600 & 949,000 \\
1827 & 701,300 & 914,700 \\
1928 & 765,000 & 852,100 \\
1929 & 664,100 & 837,300 \\
1930 & 637,200 & 757,300 \\
1981 & 587,500 & 782,400 \\
1932 & 519,800 & 735,200 \\
1935 & & 662,700 \\
1934 & & \\
1985 & 699,000 & 576,600 \\
1936 & 67,300 & 636,300 \\
& & \\
\hline
\end{tabular}

The unadjusted employment series for the 2 industries were multiplied by corresponding everage weekly hours (shown in Table A-128) and then adjusted for comparability with production on the assumptions stated in Table A-127, fn. c, par. 2.

Table A-150. PRODUCTION OF WOOLEN AND FORSTED GOODS IN THE WOOLEN ARD TORSTED GOODS GROUP: CENSUS YEARS 1919 TO 1927.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Produot & Weight \({ }^{\text {b }}\) & 1919 & 1921 & 1925 & 1925 & 1927 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{3}{*}{Hoolen goods Foven goods Suitings, dress goods over-}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline All-mool woolem & 1.559 & 159,410 & 132,286 & 172,028 & 153,323 & 136,635 \({ }^{\circ}\) \\
\hline Hool-and-cotton-mixed & 0.914 & 24,615 & 18,490 & 24,752 & 26,124 & 50,453 \({ }^{\circ}\) \\
\hline Cotton-marp moolen & 0.634 & 59.147 & 44, 363 & 63.205 & 60,954 & 46,609 \({ }^{\circ}\) \\
\hline \multicolumn{7}{|l|}{Domett flannela and} \\
\hline shirtings & 0.468 & 22,224 & 4,529 & 6.155 & 7,206 & 8,418 \\
\hline Satinets and linseys & 0.450 & 4,638 & 4.523 & 6.107 & 11,877 & 3,874 \\
\hline \multicolumn{7}{|l|}{} \\
\hline A11-mool & 0.924 & 5,916 & 6,754 & 11,872 & 11,084 & 17,295 \\
\hline Cotton-mixed & 0.648 & 9,923 & 5.499 & 8,854 & 8,098 & 12,092 \\
\hline Cotton-warp & 0.557 & 0,244 & 9,296 & 12.187 & 15,070 & 19.916 \\
\hline Horse blankets & 0.648 & 1,696 & 1,942 & 2,475 & 1.410 & 1,069 \\
\hline All other woolen woven goods \({ }^{\text {d }}\) & 0.993 & 17,882 & 13.754 & 23,602 & 14,500 & 4,826 \\
\hline \multicolumn{7}{|l|}{Tarns for sale} \\
\hline All-mool & 0.821 & 28,387 & 30,734 & 47,943 & 45,711 & 41.766 \\
\hline Union or merino & 0.854 & 0.150 & 2,853 & 5,580 & 9,807 & 6,474 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Worsted goods Woven goods}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Suitings, dress goods, overcoatings, and cloakings} \\
\hline All-wool worsted & 1.549 & 175,506 & 185,359 & 210,988 & 179,163 & 173,754 \({ }^{\circ}\) \\
\hline Cotton-warp worsted & 0.656 & 57.897 & 43.151 & 41.188 & 41,379 & 26,889 \({ }^{\circ}\) \\
\hline All other worsted woven gooded & 0.764 & 26.859 & 25,815 & 35,088 & 81,960 & 34.517 \\
\hline \multicolumn{7}{|l|}{Tarns for sale} \\
\hline A11-wool & 1.787 & 74, 557 & 85,861 & 112,935 & 82,587 & 81.274 \\
\hline .thion or morino \({ }^{\circ}\) & 1.855 & 4.218 & 2.647 & 5,685 & 0.602 & S. 277 \\
\hline All other \({ }^{\text {P }}\) & 1.414 & 2.218 & 3,522 & 7.414 & 5.295 & 12,987 \\
\hline Tops and slubbing, for sale & 1.153 & 9,899 & 10,341 & 21.120 & 18,055 & 18.283 \\
\hline Moils and wool wastos, for aale & 0.373 & 52,084 & 40,647 & 55,110 & 42,591 & 48,419 \\
\hline
\end{tabular}

AFigures for woven goods are in thousands of square yards; for other products, in thousands of pounds.
\(b_{\text {Average }}\) unit value (dollars) for the odd-numbered years 1919-27. See fr. d for method of estimating the quantities and valuet of "all other woolen woven goods" and "all other worsted woven goods,"

CThe 2927 figures are not striotly comparable with those for earlise yaara beoause of a ohange in the mothod of roporting; an maistributed olass, woolen and woreted mothor suitings, dress goods, oloadings, and overcoatings," reported by the Consus for the firet time, could not be apportioned.
\(d_{T h e}\) censua reports the quentities and values of "all other woolen woven goods" and "all other worsted woven goods" in combination for oain of the 2 (Census) industries. The quantities of the 2 types of goods were segregated from the combined totals for eaoh Consus industry in acocordanoa with the \(r\) atil os \(f\) or each industry of (a) the total quantity of all spooified woolen moven goods reported separately and of (b) the total quantity of all specified worsted woven goods reported separately to (a) the oambined quantity of (a) and (b) in each year. The quantitios of each type made in the 2 ind ustries were then sdded to yield the group totals shown in the table. The valuea were derived in a similar manner.

OReported by the Census for some years as "wool and cotton combined" or "wool-and-oottor-nixed."
floported by the Cencus for some yoars as "mohair and similar yaras" or "eotton yarn""

BASIC TABLES: WOOLEN AND WORSTED GOODS GROUP 139

Table 4-131.- PRODUCTION OF WOOLEN AND NORSTED GOODS IN ALL INDUSTRIES: CENSUS YEARS 1927 TO \(1931^{\text {a }}\)


AFigures for woven goods are in thousands of square yards; for other products, in thousands of pounds.
b
Average unit value (dollars) for the odd-mumbered years 1927-S1.
\({ }^{6}\) The reported quantities and values for 1927, 1929, and 1931 refer to the aggregate amounts of woolen and worsted woven goods made principally in each Census industry. (The Census reports 2 sets of figures for 1927, one including and the other excluding production outside the group.) The quantities shown in the table (and the values used in the computation of the weights) were derived by distributing the reported quantity (and value) for each Census industry in accordance with the ratio of woolen woven goods to worsted woven goods made in es.ch in 1927 (see table A-130, fn. d).

Table a-152- PRoduction or fooley and worsted coods ill all industriast 1931 AND 1933a

efigures for woven goods are in thousands of equare yardes for other produots, in thpueands of ponnde bunit value (dollare) in 1951.
OInoludes data for a enall mount of worsted auto eloths.

\({ }^{\circ}\) Production in the Woolen Goods and Worated Goods industries only.
basic tables: YOOLEN AND YORSTED GOODS GROUP 141

Table A-153e PRODUCTIOK OF WOOLEN AND WORSTED GOODS ITI ALH IHDUSIRIES: 1933 AND 1935a
\begin{tabular}{|c|c|c|}
\hline Product & 1933 & 1935 \\
\hline Total & 423,295 & 558,948 \\
\hline Yen's-mear fabrice & 231,967 & 317,998 \\
\hline Wacon's-wear fabrics & 128,799 & 158,885 \\
\hline Auto cloths, without pile and with napped pile & 9,710 & 19,471 \\
\hline Billiard oloths & 3.468 & 344 \\
\hline Other nonapparel fabrics & 3.468 & 1,375 \\
\hline Blankets, except crib: \(98 \%\) or more of wool or & & \\
\hline similar fibers & [ & 19,974 \\
\hline 25-97\% of wool or inilar fibers & & 5,630 \\
\hline Lese than \(25 \%\) of wool or ainilar fibers & -49,351 & 33,718 \\
\hline Crib blankets & & 61 \\
\hline Blanketing & & 832 \\
\hline Motor and steamer robes & L & 660 \\
\hline
\end{tabular}
onits in thousands of square jards.

Table A-1S4.- DEDEX OF MACHINERY ACTIVITY IN THE PRODUCTION OF WOOL: 1919 TO 1936 \({ }^{\text {a }}\)
\begin{tabular}{l|c||c|c}
\hline \hline Year & \begin{tabular}{c} 
Index \\
\((1929=100)\)
\end{tabular} & Year & \begin{tabular}{c} 
Index \\
\((1929=100)\)
\end{tabular} \\
\hline 1919 & 111 & 1928 & 96 \\
1920 & 98 & 1929 & 100 \\
1921 & 108 & 110 & 75 \\
1922 & 127 & 1930 & 84 \\
1923 & 104 & 1932 & 73 \\
1924 & 106 & 1933 & 99 \\
1925 & 98 & 1934 & 80 \\
1926 & 98 & 1935 & 122 \\
1927 & & & \\
\hline
\end{tabular}
apata for 1919-35 are from Federal Reserve Index of Industrial Production, ninooes April 1936, ppe 19-20; for 1936 from Pederal Reserve Bullotin. Maroh 1937. p. 256. F\&R.B. figures were converted to a 1929 base.

The index is based on the percentage of loom and spindle hours active. The date were compiled by the Bureau of the Census.

Table A-155 - NOMBER OF WAGE EARNERS AND TEEKCY MAN-EOURS FOR THE WOOLEN AND WORSTED GOODS INDUSTRIES: 1919 TO 1936
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|l|}{Average number of wage earners} & \multirow[t]{2}{*}{Average
hours
worked per
week in the
Woolen and
Horsted
Goode
groupe} & \multicolumn{3}{|c|}{Weekcly man-hours} \\
\hline & Woolen and Worsted Goods groupp \({ }^{\text {a }}\) & Woolon Goods industryb & Worsted Goods industryb & & Woolen and Worsted Goods groupd & \[
\begin{aligned}
& \text { Woolen } \\
& \text { Goods } \\
& \text { Industrye }
\end{aligned}
\] & Worsted Goods industrye \\
\hline 1919 & 166,787 & 73,049 & 93,738 & 46.5 & 7,755,596 & 8,488,375 & 4.267,221 \\
\hline 1920 & 150,300 & . & - & 41.8 & 6,284,770 & - & - \\
\hline 1921 & 162,364 & 63,430 & 98,934 & 45.8 & 7,436,271 & 2,969,388 & 4,466,883 \\
\hline 1922 & 166,800 & - & & 47.5 & 7,922,905 & - & - \\
\hline 1923 & 194,552 & 78,380 & 116.172 & 47.4 & 9,221,765 & 3,910,197 & 5,311,568 \\
\hline 1924 & 174,300 & - & - & 43.3 & 7,546,887 & \(\cdots\) & - \\
\hline 1925 & 165,224 & 67,664 & 97,560 & 44.0 & 7,269,856 & 3,091,890 & 4,187,461 \\
\hline 1926 & 149,800 & & , & 45.1 & 6,753,770 & - & - \\
\hline 1927 & 154,361 & 63,784 & 90.577 & 45.0 & 6,946,245 & 2,948,268 & 3,997,977 \\
\hline 1928 & 147,800 & - & - & 44.3 & 6,549,356 & & . - \\
\hline 1929 & 146,959 & 60,099 & 86,860 & 46.5 & 6,804,202 & 2,822,238 & 3.981.964 \\
\hline 1930 & 119,800 & - & - & 41.5 & 4,970,538 & - & - \\
\hline 1981 & 119,537 & 44.559 & 74,978 & 41.7 & 4,984,693 & 1,882,763 & 3,101,930 \\
\hline 1932 & 99,800 & - & - & 39.2 & 3,911.572 & & - \\
\hline 1983 & 127,227 & - & - & 39.4 & 5,012,744 & - & - \\
\hline 1934 & 119,500 & - & - & 32.6 & 3,894,985 & - & - \\
\hline 1935 & 158,604 & - & * & 36.0 & 5,709,744 & - & - \\
\hline 1936 & 151,500 & - & - & 35.4 & 5,363,631 & - & - \\
\hline
\end{tabular}

A Figures for 1920 and 1922 were computed from N.I.C.B. Index numbers readjusted to the Consus level.
bThe Census wage-earners series for the Woolen Goods and Worsted Goods industries were adjuated to correspond exactly to the production indexes in scope on the basis of the assumptions that both (Censua) industries: (1) have the same value output per wage earner for woolen goods and yarns and for worsted goods and yarns; (2) together account for the total output of such woolen and worsted products; and (s) produce only these 2 types of products. (See note on method in Part Tro: Wooler and Worsted Goods Group.)
\({ }^{\circ}\) Por 1933 and 1935, aotual hours computed from Census of Manufactures: 1933, Man-Hour Statistics for 32 Seleoted Induatries," and Census of Manufactures: 1935, "Man-Hour Statistics for 59 Selected Induetries"; for 1920-32, 1934, and 1936, W.I.C.B. figures adjusted to the level of the Ceneus hours for 1933 and 1935; and for 1919, Census prevailing hours reduced to actual by means of the average of the ratios of D.I.C.B. aotual to Census prevailing hours in 1921. 1923, and 1929.
dobtained by multiplication of average number of wage earners for the group by average actual weokly hours.

Oreekly man-hours were computed by flrst conforming the products of Census employment and average aotual weekly hours for each Consus industry to the group totals and then redistributing these adjusted products in the manner indioated for employment (see \(\mathrm{f} \mathrm{m}_{0} \mathrm{~b}\) and note on method in Part Two). The 2 series of average weekly hours were obtained by applying to the group figures desoribed in fine o (1) the ratio of Census prevailing hours for eaoh industry to Census prevailing hours for the group in 1919, 1921, 1923, and 1929; (2) similar ratioa for 1925 and 1927 obtained by straight-line interpolation; and (3) ratios for 1931 derived by straight-line interpolation between the ratios for 1929 and ratios (based on actual hours) for 1933. The 1933 aotual hours for each industry were computed fram Census of Manufactures: 1933, "Man-Hour Statistios for \(\mathbf{S 2}\) Soleoted Industrieso"

\section*{APPENDIX B \\ ELECTRIC LIGET AND POWER AND TELEPHONES INDUSTRIES}

\section*{llectaic hight and puger}

The scope of this study of the Electric Light and Power industry is the same as that considered by the Bureau of the Census in its quinquennial Census of Electrical Industries, "Central Electric Light and Power Stations." This industry consists principally of comercial and municipal utilities which are engaged in the generation and distribution of electric current for sale to public or private consumers; in the generation of current for sale to other light and power establishments for distribution; or in the distribution of current generated by plants under other ownership. It does not include establishments which are operated by the Federal or a State government, electric railways, mines, manufacturing concerns, hotels, office buildings, etc. unless they sell some of their energy, in which case the Census endeavors to obtain data for their electrical activities only.

The Electric Light and Power industry increased in importance throughout the period of interest. Between 1917 and 1932 total employment more than doubled. In 1929 the number of employees approached 300,000 ; about four-sevenths of these were wage earners. In 1919 the horsepower of motors driven by purchased energy in manufacturing establishments was only one-third greater than the horsepower of motors driven by generated energy; by 1929 the ratio had increased to almost 2 to 1 . It is significant in this connection that the kilowatt capacity of electric generators in central stations more than doubled during the period 1922-32.

\section*{Prodeetion}

The NRP production index is based of the estimated total number (without duplication) of kilowatt-hours of current distributed. The necessary data for \(1917,1922,1927\), and 1932 were supplied by the quinquennial Census of Electrical Industries, "Central Electric Light and Power Stations." The procedure was, first, to add the current generated within theindustry and that received from outside (including imports fromCanada) and then tosubtract from this sum transmission, conversion, distribution, and other

Pigure B-1.- summary indexes for the electhic lioht and power industay: igit and \(1920-37\)


power losses. The remainder, however, had to be adjusted since some electric-railway power plants, which reported revenue from sales of generated current, did not report the corresponding number of kilowatt-hours. Current generated by such plants was estinated on the assumption that their revenue per kilowatt-hour was the same as for those stations which reported quantity and value statistics. \({ }^{1}\)
The series was completed for the period \(1920-37\) by raising estimates made by Electrical Yorld \({ }^{2}\) for 1920, 1921, and 1923-26 and by the Edison Electric Institute \({ }^{3}\) for the remaining years to the level of the adjusted Census totals, with which they were in close accord. No satisfactory data were available for 1918 and 1919.4
If labor-requirement weights had been available, the index for this industry would have been constructed by the combination of the series for distribution and another for current generated. Since the 2 series are almost identical, however, the NRP index may be regarded as equivalent to the composite measure: \({ }^{5}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Index of -} & \multirow[b]{2}{*}{Year} & \multicolumn{2}{|r|}{Index of -} \\
\hline & Current distributed (NRP) & Current generated & & \begin{tabular}{l}
Current \\
distrib \\
uted \\
(NRP)
\end{tabular} & Current generated \\
\hline 1917 & 29.8 & 30.2 & 1920 & 41.7 & 42.5 \\
\hline 1918 & 1.8. & n.a. & 1921 & 39.3 & 39.9 \\
\hline 1919 & n.a. & n.a. & 1922 & 45.9 & 46.5 [ \\
\hline
\end{tabular}

\footnotetext{
IThese electric-railway plants either couldnotsegregate ilgures for light-and-power departments or did not maintain such separate departments at all. The percentages of total revenue accounted forby their sales were as follows:
\[
\begin{array}{rrrrr}
1917 & \ldots . . & 10.6 & 1927 & \ldots . \\
1922 & 1932 & \ldots .9 & .5
\end{array}
\]

ZEisctrical Forla does not describe the Eethod used to obtain its series Ior current ilatributed to nitimate consuners but indicates that it is based on production of centralstations (as reported by thet. 8. Geological Burvey). inports from Cansda (published in Canada Year Book), and Blectrical Worlais own estimates of line losses and current consumed by companies. (Cf. Blec-

Bgason Electric Institute datacollected, since 1926, represent u4 percent of the private industry and 25 percent of the municipal piants or a total eross-section of over 90 percent. \(\mathrm{m}_{\text {the }}\) remaining 10 percent is estimated cross-section of over 90 percent.
iron the quinquennial centes and reports of state pubilc-service comisinions Iron the quinquennial Census and redorts of state public-service commissions
and the Federal Power Comission. (Ci. EBI, fhe Electrichight and Power Indmetry in the frited states, 1836. 8tatistical Bull. No. 4, DD. 1, 26.)
The attempt to estimate current distributed in these gears through the use of continuous serles of significant operating ratios (revenue percustomer. Fevenve per kilowatt-hour, and tilowath-hours per customer) for meompositen (i. E. ges-electric) ecapanies in conjunction with sinilar census series Iof sil companies ended in fallure because of the differences in trends. Tie annual operating ratios were developed by W. H. Handy in his Tarastich of Public \(y t i l i t y\) Operstions and construction costs (Beltimore: Williams and Wilkine Co.s 1929).
Footnote 5 appeors on following page.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline [con.] & \multicolumn{2}{|l|}{Index of -} & \multirow[b]{2}{*}{Year} & \multicolumn{2}{|r|}{Index of -} \\
\hline Year & Current distrib_ uted (NRP) & Current generated & & Current distributed (NRP) & Current generated \\
\hline 1923 & 54.2 & 54.8 & 1830 & 99.4 & 97.4 \\
\hline 1924 & 57.9 & 58.4 & 1931 & 95.2 & 94.2 \\
\hline 1925 & 64.7 & 65.5 & 1932 & 84.2 & 85.0 \\
\hline 1926 & 73.5 & 73.5 & 1933 & 86.9 & 87.3 \\
\hline 1927 & 82.2 & 80.0 & 1934 & 93.7 & 93.8 \\
\hline 1928 & 89.6 & 88.9 & 1935 & 102.1 & 102.2 \\
\hline 1929 & 100.0 & 100.0 . & 1936 & 118.1 & 116.9 \\
\hline Rmpleymant & d Maz-hot & & & & \\
\hline
\end{tabular}

The essential activities of the Electric Light and Power industry comprise not only the generation and distribution of current but also the installation and extension of power lines, meter installation and meter reading, billing and bill collection, etc. Salaried employees, who constituted almost half of the total employment in 1929, are engaged inmany such activities. \({ }^{6}\) As will be seen in the discussion of productivity, a crudegeneral measure of the output of salaried employees could be constructed for only a few years. The NRP distribution series may, however, be regarded as indicative of the movement of the output of all employees as well as of wage earners; hence 2 NRP employment indexes were constructed, one for wage earners and the other for all employees.

Census wage-earner and total-employment figures for 1917, 1922, 1927, and 1932 were, like production, adjusted for incompleteness of coverage. Estimates of tot al employment were made for 1923-26 and 1928 by means of EEI statistics \({ }^{7}\). and for 1929-31 and 1933-37

\footnotetext{
\(5^{5}\) the inder for current generated is dased on Census data (adjusted for incompleteness of coverage) and on data complied by v. S. Geological survey. Wage-earner weights for the generation and distribution series could possidy have been apdroximated for 1930 from occupational statistics avaliable in Pifteenth Census of the Onited States: 1930, V, DP. \(128-30\).- No data at ali were availabie for the computation or total employment weights, which in any case would not be meaningful.
\({ }^{6}\) The Census reports figures for both wage earners and salarled employees. Although the inne of demarcation between them is not clear, the former probadig consist principally of operatives and the construction and maintenance force while the latter probably include all office workers and a considerable proportion of the supervisory and technical employees.
7 The employment data of the institute, avallable annualiy alnce 1923, include both salaried workers and wage earners. They are based on accident reports from 477 companies, supplemented by estimates for all nonredorting companies made on the assumption that the accident experience of those redorting was representative of the industryas a whole. Since EEI data refer to commercial establishments only, they are not strictly comparable with census statistics which also include municipal plants. The latter, however, employed but 9.7 and 6.5 percent, respectively, of the totals in 1822 and 1827.
}
by means of the BLS employment index for the Electric Light and Power and Manufactured Gas industries combined. \({ }^{B}\) The number of wage earners in intercensal jears was derived by applying to the total-employment series the interpolated ratios of the number of wage earners to all employees. The ratio obtained from an EEI survey for \(1933^{\circ}\) was assumed to prevail in all years subsequent to 1932. No satisfactory basis was found for estimating either total or wage-earner employment in the years 1918-21.
The man-hours series for all employees was constructed from the index of total employment and an annual series of average actual weekly hours. The hours series was derived from BLS statistics for 1932-37, NICB figures for 1914, 1920, 1921, 1923, and 1925-31 (adjusted by the average of the ratios of BLS to NICB hours in the years 1932-35), and estimates made by straight-line interpolation for all other years for which both the employment and production indexes were available. \({ }^{10}\) The absence of a suitable week1y-hours series precluded the construction of a man-hours index for wage earners only.

\section*{Praincelvity}

The distribution series was used inthe construction of indexes of output per wage earner and output per employee. Obviously a productivity index based on current distributed is not so appropriate for salaried workers as for either wage earners alone or all employees. An index of customers served per salaried worker, which could be constructed for quinquennial census years only, is, perhaps, a more satisfactory general measure for these employees. Such an index was combined with the NRP index of

\footnotetext{
\({ }^{8}\) in 1927 the ratio or employment in the Electric Light and Power industry to that in the Electric Light and Power and Manufactured Gas industries combined was 0.77. If this ratio was observed in the BLS sampling procedure, the inder probably approzimates the movement of employment in the Electric Light and Power industry. There is no assurance that such is the case, but it may be ncted that the Department of Comerce utilized this indez in a similar fashion to estimate employment for commercial establishments. (Cf. Bur. For. and Dom. Com.. Jational Incose in the Vnited States: 1929-35. Dp. 94. 247.) Data for several water companies were included in the BLS canvass in the earlier zears of the period 1929-36. The effect of the inclusion of the earller Fearg of the period \(1929-36\). The effect of the inciusion of the sinall number of enplofees of such conpanies is negilgibie. The severaica
in the BLS designation, moreover, did not signify changes in coverage.
Geited DF NRA. DIFision of Review, Vages and Hours in Aerican Industry: HRA Source Naterial (Work Materials No. 9). III, 1235. The employment data re based upon a canvass of 223 companies in June and December, 1933 . These companies emplozed about 68 percent of the total number of salaried and wage worters.
\(10_{\text {HIC }}\) ifgures, when represent either averages for but 2 months, January and July. or reports for only 1, are also avallable for \(1932-37\) B BLS hours statistics, which share the derects of BLS employment data (see ftn. B), are superior to the NICB figures, for they are probably based on a larger sample and refer to each monch in the year.
}
current distributed perwage earner (translated to the base 1932) in a harmonic mean with 1932 labor weights; the resulting composite index differs but slightly from the NRP series for current distributed per employee:
\begin{tabular}{ccc} 
& \multicolumn{2}{c}{ Index of output per employee } \\
\cline { 2 - 3 } Year & NRP & Composite \\
& & \\
1917 & 73.7 & 72.3 \\
1922 & 81.8 & 83.5 \\
1927 & 94.8 & 92.4 \\
1932 & 100.0 & 100.0
\end{tabular}

Detailed Census production and employment statistics permitted the construction of comparative productivity indexes for commercial and municipal establishments. The predominance of commercial establishments is reflected in the similarity of the trends of their output-per-wage-earner and per-employee ratios to those for the entire industry: \({ }^{11}\)
\begin{tabular}{lllll} 
& 1917 & 1922 & 1927 & 1932 \\
Output per wage earner & & & & \\
Entire industry (NRP) & 60.8 & 70.7 & 87.3 & 100.0 \\
Commercial establishments & 63.6 & 72.8 & 83.2 & 100.0 \\
Municipal establishments & 37.7 & 53.8 & 91.5 & 100.0 \\
Output per employee & & & & \\
Entire industry (NRP) & 73.7 & 81.8 & 94.8 & 100.0 \\
Commercial establishments & 76.8 & 83.9 & 90.5 & 100.0 \\
Municipal establishments & 46.2 & 61.5 & 100.0 & 100.0
\end{tabular}

Productivity ratios for operating and maintenance workers engaged in the generation, transmission, and distribution of electric power were computed by BLS for 9 systems. These ratios, which differ not only in absolute level but also in trend, most probably reflect differences insize and type of generating unit: \({ }^{12}\)


\footnotetext{
\({ }^{11}\) The series for commercial and municipal establishments refer to current generated since the necessary statistics for distribution are not avallable generated since the necessary station igh in the discussion or production, however, the relatives for current generated and distributed by the industry as a whole are almost identical, so that the series for the 2 types of es tablishments may be compared with the corresponding NRP indexes.
\(12_{\text {Cf. }}\) Labor Productivity and Displacement in the Electric Light and Power Industry, " Nonthly Labor Review, August 1932, D. 254. The annual series (apparentiy based on current generated), which are not completefor all systems, are shown above for only selected years.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline [cone] & \multicolumn{5}{|c|}{Kilowatt-hours per man-hour} \\
\hline & 1917 & 1922 & 1927 & 1928 & 1931 \\
\hline C & 429 & 607 & 620 & 601 & 125 \\
\hline D & n.a. & n.a. & 180 & 166 & 144 \\
\hline E & n.a. & 175 & 248 & 320 & 329 \\
\hline \(T\) & 133 & 143 & 195 & 280 & 304 \\
\hline G & n.a. & n.a. & 254 & 307 & 281 \\
\hline H & n.a. & n.a. & 421 & 506 & 607 \\
\hline I & n.a. & n.a. & 709 & 722 & 828 \\
\hline
\end{tabular}
 ALL EMPLDYEEE: 1517 ANE 1520-37
\((1529=100)\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multirow[t]{2}{*}{Production} & \multirow{2}{*}{Employment} & \multirow[t]{2}{*}{Man-hours} & \multicolumn{2}{|c|}{Output per -} \\
\hline & & & & Employee & Man-hour \\
\hline 1917 & 29.8 & 39.9 & 30.5 & 74.7 & 75.4 \\
\hline 1920 & 41.7 & n. a. & n. a. & - & - \\
\hline 1921 & 39.3 & n.a. & n. a. & - & - \\
\hline 1922 & 45.9 & 55.4 & 54.3 & 82.8 & 84.5 \\
\hline 1923 & 54.2 & 54.7 & 53.3 & 99.1 & 101. 7 \\
\hline 1924 & 57.9 & 64.2 & 60.7 & 93.1 & 95.4 \\
\hline 1925 & 84.7 & 70.0 & 88.3 & 92.4 & 94.7 \\
\hline 1926 & 73.5 & 77.7 & 74.2 & 94.8 & 99.1 \\
\hline 1927 & 82.2 & 85.5 & 83.3 & 98.1 & 98.7 \\
\hline 1928 & 89.6 & 90.2 & 89.7 & 99.3 & 99.9 \\
\hline 1929 & 100.0 & 100.0 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 90.4 & 103.0 & 103.6 & 88.5 & 85.9 \\
\hline 1931 & 95.2 & 95.6 & 96.5 & 89.6 & 98.7 \\
\hline 1932 & 84.2 & 83.0 & 78.9 & 101.4 & 106.7 \\
\hline 1933 & 86.9 & 78. 8 & 71.6 & 110.3 & 121.4 \\
\hline 1934 & 93.7 & 83.8 & 69.8 & 111.8 & 134.2 \\
\hline 1935 & 102. 1 & 84.8 & 71.4 & 120.4 & 143.0 \\
\hline 1936 & 118.1 & 80.5 & 77.9 & 130.5 & 151.6 \\
\hline 1037 & 130.2 & 85.6 & 82.3 & 136. 2 & 158.2 \\
\hline
\end{tabular}

150 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

Table d-2.- gumany indexes far the electaic light and power industay, WAGE EARNERS: 1917 AND 1920-37
, (1929 = 100 )
\begin{tabular}{|c|c|c|c|c|}
\hline Year & & Production & Employment & Output per wage earner \\
\hline 1917 & & 29.8 & 45.9 & 64.8 \\
\hline 1920 & & 41.7 & n. a. & - \\
\hline 1921 & & 39.3 & n.a. & - \\
\hline 1922 & & 45.9 & 60.9 & 75.4 \\
\hline 1923 & & 54.2 & 59.4 & 91.2 \\
\hline 1924 & & 57.9 & 86.7 & 86.8 \\
\hline 1925 & & 64.7 & 74.1 & 87.3 \\
\hline 1926 & & 73.5 & 81.4 & 90.3 \\
\hline 1927 & & 82. 2 & 88.3 & 93.1 \\
\hline 1928 & & 89.6 & 91.6 & 97.8 \\
\hline 1929 & & 100.0 & 100.0 & 100.0 \\
\hline 1930 & & 99.4 & 101.2 & 98.2 \\
\hline 1931 & & 95.2 & 92.5 & 102.9 \\
\hline 1932 & & 84.2 & 78.9 & 108.7 \\
\hline 1933 & & 86.9 & 78.2 & 111.1 \\
\hline 1934 & & 93.7 & 83.2 & 112.6 \\
\hline 1935 & & 102.1 & 84.2 & 121.3 \\
\hline 1938 & & 118.1 & 89.8 & 131.5 \\
\hline 1937 & & 130.2 & 84.9 & 137.2 \\
\hline
\end{tabular}

Table B-3.- CURRENT DISTRIBUTN TO ULTDIATE CONSLMERS BY THE ELECTRIC LIGHT AND PONER INDUSTRY: 1917 TO 1937
(Millions of kilowatt-hours)
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Consus \({ }^{\text {a }}\) & Edison Electric Institute & Electrical Worlac & N.R.P. \({ }^{\text {d }}\) \\
\hline 1917 & 24,135 & nea. & n.a. & 24,135 \\
\hline 1918 & n.a. & n.a. & n.a. & n.a. \\
\hline 1919 & noa. & n.a. & n.a. & n.a. \\
\hline 1920 & na. & n.a. & 32,530 & 33,734 \\
\hline 1921 & n.a. & nole & 30,700 & 31,836 \\
\hline 1922 & 37,130 & n.a. & 35,822 & 37,130 \\
\hline 1923 & n.a. & nod. & 42,220 & 43,867 \\
\hline 1924 & n.a. & noa. & 45,000 & 46,845 \\
\hline 1925 & n,a. & nea. & 50,221 & 52,381 \\
\hline 1926 & n.a. & 58,642 & 56,964 & 59,527 \\
\hline 1927 & 66,581 & 63,710 & 63,612 & 66,581 \\
\hline 1928 & n.a. & 69,552 & 68,695 & 72,543 \\
\hline 1929 & neas: & 77,774 & 77,062 & 80,963 \\
\hline 1930 & not. & 77,396 & n.a. & 80,492 \\
\hline 1931 & n.a. & 74,238 & n.a. & 77,059 \\
\hline 1932 & 68,192 & 65,829 & na. & 68,192 \\
\hline 1933 & n.e. & 67,888 & n.a. & \\
\hline 1934 & n.a. & 73,235 & n.a. & 75,871 \\
\hline 1935 & n.a. & 79,764 & n.a. & 82,636 \\
\hline 1936 & n.a. & 92,321 & n.a. & 95,645 \\
\hline 1937 & n.a. & 101,769 & n.a. & 105,433 \\
\hline
\end{tabular}

The basic statistics for the distribution figure for 1917 were derived Prom Census of Electrical Industries: 1917 ( U . S. Dept. Com., Bur. Cen.), "Central Electrio Light and Power Stations," p. 82; those for 1922, 1927, and 1932, from ibid.: 1932, pp. 15, 21. The amount of current distributed was computed by deducting from the total current available for distribution (i.e., the sum of the amount generated and the amount purchased from outside the industry; the latter was assumed to bear the same proportion to the sum in 1917 as in 1922) the amounts lost in transmission, distribution, conversion, etc, and thon adjusting this difference to include the kilowatt-hours sold by sane electric-railway power plants which reported anly value of sales (the unit value was assumed to be the same as for the remainder of the industry).
\({ }^{\text {b }}\) Statistics fran The Eleotric Light and Power Industry in the United States: 1937 (Edison Electrio Institute, Stat. Bull. No. 5), pp. 2, 3.
\({ }^{\circ}\) Pigures fram Electrical Forld, Vol. 97, No. 1 (Jan. 3, 1931). pp. 28-9.
\({ }^{\text {A For 1917, 1922, 1927, and 1932, Census figures, col. (1); for 1920-21 }}\) and 1923-26, estimates extrapolated and interpolated by means of the Eleotrical World serios; and for 1928-31 and 1933-37, estimates interpolated and extrapolated by means of the Edison Eleotrical Institute pories.

Table B-4.- NUMBER OF WAGE EARNERS AND ALL EMPLOYEES AND AVERAGE WEEKLY HOURS IN THE ELECTRIC LIGHI AND POWER INDUSTRY: 1917 TO 1937
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Number of wage earners \({ }^{\text {a }}\)} & \multicolumn{3}{|c|}{Total employment} & \multicolumn{2}{|l|}{Estimated number of -} & \multirow[t]{2}{*}{Average weekly hours worked (all employees \()^{\mathbf{f}}\)} \\
\hline & & Census \({ }^{\text {a }}\) & \begin{tabular}{l}
B.L.S. index \({ }^{b}\) \\
(1932= 100)
\end{tabular} & \[
\begin{gathered}
\text { Edison } \\
\text { Electria } \\
\text { Institute }
\end{gathered}
\] & \[
\begin{gathered}
\text { Hage } \\
\text { earners }
\end{gathered}
\] & All em ployeese & \\
\hline & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline 1917 & 70.135 & 105,541 & nor. & nea. & 78.500 & 118.100 & 46.3 \\
\hline 1918 & nea. & nor. & nea. & n.8. & not. & not. & nea. \\
\hline 1919 & nos. & nos. & n.R. & nes. & n.a. & n.a. & n.a. \\
\hline 1920. & nee. & nea. & nof. & n.8. & nea. & nol. & 44.6 \\
\hline 1921 & n.e. & n.a. & Z.R. & n.e. & nea. & n. \({ }^{\text {a }}\) & 46.0 \\
\hline 1922 & 95,650 & 150,762 & nor. & nog. & 104,100 & 164,100 & 45.8 \\
\hline 1923 & n.a. & n.a. & n.a. & 176,000 & 101,500 & 162,100 & 45.5 \\
\hline 1924 & n.a. & n.a. & n.a. & 200,000 & 114,000 & 184,200 & 45.6 \\
\hline 1925 & not. & n.er* & note & 225,000 & 126.600 & 207,200 & 45.6 \\
\hline 1926 & not. & n.a. & n.a. & 250,000 & 139.100 & 230,300 & 44.6 \\
\hline 1927 & 149,605 & 251,020 & n.a. & 275,000 & 151,000 & 253,300 & 45.5 \\
\hline 1928 & not. & not. & not. & 290,000 & 156,600 & 267.100 & 46.4 \\
\hline 1929 & neta & n.a. & 120.5 & 285,000 & 170,900 & 296,200 & 46.7 \\
\hline 1930 & noa. & n.a. & 124.1 & 285,000 & 173,000 & 305,000 & 47.0 \\
\hline 1931 & n.a. & nea. & 115.2 & 265,000 & 158,000 & 283,200 & 47.1 \\
\hline 1932 & 134.120 & 244,573 & 100.0 & 236,000 & 134,800 & 245,800 & 44.4 \\
\hline 1933 & nos. & nea. & 94.9 & 216,000 & 133,700 & 233,300 & 42.4 \\
\hline 1934 & nea. & net. & 101.0 & 226,000 & 142,300 & 248,300 & 38.9 \\
\hline 1935 & not. & n.a. & 102.2 & 237,000 & 144,000 & 251,200 & 39.3 \\
\hline 1936 & nea. & nea. & 109.0 & nea. & 153,500 & 267.900 & 40.2 \\
\hline 1937 & n.a. & nea. & 115.2 & nos. & 162,300 & 283,200 & 40.2 \\
\hline
\end{tabular}
aFor 1917, 1922 and 1927, Census of mectrical Industries: 1927 (U. S. Dept. Comes Bur. Cen.), "Central Eleotria Light and Power Stations," ppe 24-5; for 1932, ibidos
1932. PP. 15, 63.
bIncludes salaried workers and wage earnars in both the Electric Light and Power and Manufaotured Gas industries.
\({ }^{0}\) The Electric Light and Power Industry in 1935 (Edison Electric Institute, Stat. Bull. No. 3), p. 10. E.E.I. atatistios refer to commercial establishments anly and are not strictly comparable with Census figures, which include munioipal plante. The latter employed only 9.7 and 6.5 percent, respectively, of the totals in 1922 and 1927.
\(d_{\text {Estimated }}\) by multiplication of the number of all employees, shown in col. (6), by a series of ratios obtained as follows: for 1917, 1922, 1927, and 1932, by division of ool. (1) by col. (2); for the intervening years, by straight-line interpom lation; and for 1933-37, by means of statistios collected in an E.E.I. survey for 1933 (cited by N. R.A. Division of Review, Wages and Hours in American Industry, Work Materials No. 9, Vol. III, Mar. 1936, pe 1235).
efigures for 1917, 1922, 1927, and 1932 are Census statistics in col. (1) adjusted on value basis for incompleteness of coverage (see Table B-3, fin, a). The series Was completed by means of E.E.I. statistios for 1923-28 and the B.L.s. index for 1929-37.
\(f_{\text {N.I.C.B. figures for 190 }}\) 1920-21, 1923, and 1925-31 and estimates made by atraightline interpolation for 1917 (between July 1914 and June 1920), 1922, and 1924 were adjusted to the level of the B.L.S. series for Electric Light and Power and Manufactured Gas for 1932-37 by mesns of the average relationship in 1952-35. The N.I.C.B. figures refer to but or 2 monthe in each year. The B.L.S. hours for 1932-36 were furnished in an unpublished report which antedates the version that supplied the figures for manufacturing industries for the same years; the average for 1937 was computed from 12 monthly figures published in the Monthly Labor Roview.

\section*{telephones}

This study is restricted to the Bell System, which constitutes the major part of the Telephones industry canvassed quinquennially by the Bureau of the Census. The production and employment indexes for this System were not used for completing relatives for the entire Census industry since there were significant differences in common years. The employment figures for the Bell System, furthermore, could more readily be converted to the desired annual averages, and an additional employment index, for operators only, could be constructed for the Bell System but not for the entire industry.
The Bell System accounted for the following percentages of the total number of employees, originating calls, and total operating revenue in the census years 1922, 1927, and 1932: \({ }^{1}\)
\begin{tabular}{lccc}
\multirow{2}{c}{ Item } & \multicolumn{3}{c}{ Percent of total } \\
\cline { 2 - 4 } & 1922 & 1927 & 1932 \\
Employees & 77.8 & 82.3 & 84.2 \\
Originating calls & 87.2 & 74.9 & 83.4 \\
Operating revenue & 83.1 & 87.9 & 90.4
\end{tabular}

\section*{Predeation}

The NRP production index for the Bell System, which extends from 1919 to 1937, is based upon weighted aggregates of the average monthly number of originating (i. e., completed and uncompleted) exchange and toll calls. \({ }^{2}\) The weights represent relative revenue per exchange and toll call in 1929 (approximately, exchange, 1 ; toll, 12). Whether or not these weights accurately reflect relative unit labor requirements cannot be determined, but the labor time expended per toll call is doubtless greater than the expenditure per exchange call.

The statistics for the number of calls were transcribed for 1927-37 from annual reports made by the individual Bell telephone

\footnotetext{
\({ }^{1}\) The tigures on which the tabulation is based were derived from Census of Electrical Industries, Telephones [and Telegrephs]. All the employment statistics except those for the Bell system for 1927 and 1832 refer to June 30 ; the Bell 8yatem figures for these years are annual averages.
\(2_{\text {aboth the Bell system and the larger non-Bell systems ordinarily make actual }}\) counts of their calls at least as often as one day in each month, and their estimates, therefore, may be considered as falriy close approximations to accurscy. . . .
Calls originating and terminating within central offices of a local area are counted as exchange calls, and those which involve any interchange of business between separate companies or between different locallities, and business between separate companies or between airferent 10 caldies, and
whichare therefore subject to toil charges, are counted as long-distance or

}

PIguse B-Z. EUMMARY INDEXES FOR THE TELEPHONES INDUSTBY: 1919-37


companies to the Interstate Commerce Commission (until 1933) and the Federal Communications Commission (1934-37). Comparable figures for 1921-26 were obtained from a BLS study published in Monthly Labor Review. \({ }^{3}\) Estimates for 1919 and 1920 were extrapolated by means of figures for connecting (i. e., completed) calls available in Annual Reports of the American Telephone and Telegraph Company, which is also the source of the revenue statistics necessary for the computation of the weights.

Relatives of exchange and toll calls show little resemblance. Both series rise before 1929 , but the slope of the latter is steeper; both decline from 1929 to 1933 and then rise, the former to a new peak by 1937 while the latter remains far below the level of 1929:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Index for -} \\
\hline & All calls (NRP) & \[
\begin{gathered}
\text { Exchange } \\
\text { calls }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Toll } \\
& \text { calls }
\end{aligned}
\] \\
\hline 1918 & 45.9 & 49.5 & 38.9 \\
\hline 1920 & 48.4 & 53.3 & 38.8 \\
\hline 1921 & 51.7 & 56.4 & 42.5 \\
\hline 1922 & 57.3 & 61.8 & 48.3 \\
\hline 1923 & 63.5 & 68.9 & 53.0 \\
\hline 1924 & 68.0 & 73.2 & 57.9 \\
\hline 1925 & 74.5 & 78.2 & 67.1 \\
\hline 1926 & 81.1 & 83.8 & 75.7 \\
\hline 1927 & 86.2 & 87.5 & 83.5 \\
\hline 1928 & 92.5 & 92.9 & 91.7 \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 97.4 & 100.9 & 90.5 \\
\hline 1931 & 94.0 & 99.3 & 83.8 \\
\hline 1832 & 85.0 & 93.3 & 68.7 \\
\hline 1933 & 77.9 & 86.1 & 61.8 \\
\hline 1934 & 80.0 & 88.2 & 83.7 \\
\hline 1935 & 83.3 & 92.1 & 66.0 \\
\hline 1938 & 90.5 & 98.9 & 74.0 \\
\hline 1937 & 95.1 & 105.1 & 75.3 \\
\hline
\end{tabular}

The index for the Bell System differs considerably from an index of originating exchange and toll calls for all lines and systems computed from statistics presented in the quinquennial Census of Electrical Industries (1922=100):4

\footnotetext{
3.the Dial Telephone and Unemployment, " Honthly Labor Review, February 1932. PD. 235-47.
\({ }^{4}\) The welght appliedto relatives for each type of call represents the average revenue derived from the same type in 1922, 1927, and 1932. The index for the Beil system with such weights is aimost identical with the NRP index converted to the base 1922.
}
\begin{tabular}{ccc} 
& \multicolumn{2}{c}{ Index of production for -} \\
\cline { 2 - 3 } & \begin{tabular}{c} 
All lines and \\
systems
\end{tabular} & Bell System \\
1922 & 100.0 & 100.0 \\
1927 & 137.4 & 150.6 \\
1932 & 132.2 & 148.4
\end{tabular}

The NRP index is not only a measure of the ultimate production of all the employees of the Bell System but also a measure of the specific output of one functional group, operators. A more satisfactory index for all employees, based on the specific output of other important functional classes (e. g., the construction and maintenance force, supervisors and technicians, and clerical and office staff) in addition to operators, could not be constructed. \({ }^{5}\)

\section*{Employment and Man-hosic}

Since the NRP production index measures the output of both all employees and operators only, 2 indexes of employment were constructed for the Bell System for the years 1919-37; one of these refers to all employees and the other to operators lexperienced and in training).
Figures for all employees were obtained for December 31 of each year from Annual Reports of the American Telephone and Telegraph Company. \({ }^{\circ}\) These were converted to annual averages by multiplication by ratios of annual averages to December figures; the ratios were computed for 1929-37 from BLS monthly relatives for Telephones and Telegraphs \({ }^{7}\) and for 1919-28 from statistics for individual Bell companies reporting to \(I C C .^{8}\) The adjustment

\footnotetext{
4 [Continued]
Exchange and toll calls for all lines and systems, reported in combination for 1932, were separated on the besis of the proportions for the Bell system in this year.
\({ }^{5}\) Figures for value of plant, miles of wire, and number of telephones, availadiein Annual Reports, are, at dest, crude indicators of the work periorned by construction and malntenance employees. since these flgures represent nstock", not gross additions for replacement and new investment, the net differences between successive year-end figures are sometimes negative. During the period of expansion (1910-29), however, the bell indez of toll calls bears a striking resemblanceto indexes of value or total plant and miles or wire; a striking resemblance to indexes of value of total plant and miles or wire;
the Bell index of exchange calls resembles the series for the number of telephones. only the relationship between exchange calis and telephones persists after 1920.
\({ }^{8}\) The scope of the redorted employment figures was changed slightly in 1936. An adjustment for comparability of the figures for 1938 and 1937 with those for earlier years, however, could be made on the assumption that the 1936 relationship detween the revised and unrevised figures prevailed thereafter. (A similar adjustment was not required for production since the NRP statistics for these years were not obtained from the \(1 n n u a l\) Peports.)
\(7_{\text {Use }}\) of the BLS figures, which are pubilished in Monthily Labor Revtew, is justifled by the fact that the Telephones industry accounts for over fourfliths of the employment for Telephones and Telegraphs combined.
Pootnote 8 appears on following page.
}
of the annual averages to the levels of Census figures for the Bell System for 1922, \({ }^{9}\) 1927, and 1932 yielded the final employment series.

The series for operators was obtained fer 1921-30 from the same BLS study which provided the production statistics for 1921-26. It was extended back to 1919 and forward to 1937 by means of estimates obtained by the multiplication of the annual averages for all employees by the percentages comprised by operators as determined from ICC and FCC statistics. 10

The indexes for all employees and for operators only show the same general movement throughout the whole period. The former, however, rises more rapidly before 1929 and declines by a smaller percentage thereafter. The difference between them is reflected in the changing composition of employment. Between 1919 and 1937 the percentage of operators declined from 56 to 44 , while the percentages for salaried employees and for construction and maintenance workers rose from 18 to 24 and from 17 to 22 , respectively:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{5}{|r|}{Percentage distribution of employees \({ }^{11}\)} \\
\hline & & -1 & & 1 & \\
\hline & Officials and supervising foremen & Salaried employees (clerical and office staff, engineers, etc.) & Operators & Construction and maintenance force & \[
\begin{gathered}
\text { All } \\
\text { others }
\end{gathered}
\] \\
\hline 1919 & 2.3 & 17.8 & 58.2 & 17.4 & 6.2 \\
\hline 1820 & 2.3 & 16.9 & 58.4 & 16.6 & 5.9 \\
\hline 1921 & 2.5 & 17.8 & 57.1 & 16.7 & 6.1 \\
\hline 1922 & 2.4 & 17.7 & 55.0 & 19.0 & 5.9 \\
\hline 1923 & 2.2 & 17.7 & 54.4 & 19.8 & 5.9 \\
\hline
\end{tabular}

\footnotetext{
\(8_{\text {The }} 2\) series of ratios were 11 nked in 1029. The ICC statistics, reported for the end of June and mid-December (the figure for December 1929 refers to the end of the month). refer to the entire Bell system in 1927-29 and to practically the entire syatem in earlier years. The average for each year was computed in the same manner as the average for 1022 (see ftn. o).
\({ }^{6}\) The reported census rigure for 1022 refers to June 30. A better apdroxiation to the annual average was obtained by the use of bell rigures for December 81, 1921 and December 31, 1022 Dublished in the innual Reports. By means of biraight-line interpolstion (each or the 3 figures was assumed to de typl cil of the whole month). estimates were made for the other 10 months to
of 1922 ; the average for the year was obtalned from these 12 monthiy figures.
10 The estimates for \(1931-37\) were linked to the BLs figures on the assumption that the average relation between the 2 series in 1928-30 drevalled in subsequent years.
The percentage of total employment accounted for oy operatora in each year except 1933 was computed rrom figures for June and December (see ftn. 8). The percentage for 1033 refers to december only.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline [con.] & \multicolumn{5}{|r|}{Percentage distribution of employees \({ }^{11}\)} \\
\hline Year & ```
Officials
    and
    super-
    vising
    foremen
``` & Salaried employees (clerical and office staff, engineers, etc.) & Operators & Construction and maintenance force & \[
\begin{gathered}
\text { All } \\
\text { others }
\end{gathered}
\] \\
\hline 1924 & 2.2 & 18.8 & 53.0 & 20.2 & 5.8 \\
\hline 1925 & 2.3 & 19.1 & 53.3 & 19.5 & 5.8 \\
\hline 1926 & 2.5 & 19.5 & 53.3 & 18.9 & 5.8 \\
\hline 1927 & 2.7 & 20.7 & 51.7 & 19.0 & 5.9 \\
\hline 1928 & 3.0 & 21.6 & 49.8. & 19.7 & 5.9 \\
\hline 1929 & 3.3 & 22.4 & 47.5 & 20.9 & 5.9 \\
\hline 1930 & 3.7 & 23.5 & 46.9 & 19.8 & 6.1 \\
\hline 1931 & 4.0 & 24.5 & 45.8 & 19.5 & 6.2 \\
\hline 1932 & 4.2 & 25.0 & 44.4 & 19.9 & 6.5 \\
\hline 1933 & 4.2 & 25.6 & 43.5 & 20.3 & 6.5 \\
\hline 1934 & 4.3 & 28.0 & 43.1 & 20.3 & 6.4 \\
\hline 1935 & 4.4 & 25.5 & 43.0 & 20.6 & 8.5 \\
\hline 1936 & 4.3 & 25.0 & 43.7 & 20.9 & 6.1 \\
\hline 1937 & 4.2 & 24.4 & 44.1 & 21.5 & 5.9 \\
\hline
\end{tabular}

Even within the class of operators, there has been a significan change in composition. Experienced operators, who had been abou' twice as namerous as operators in training in 1919, were abou' 6 times as numerous by 1937:12

\footnotetext{
11The discribution \(1 s\) based on averages for June and December (December only in 1933) of figures for the following groups of employees transcribed from reports of individual Bell companies to ICC and fcc:
1. General officers and assistants
2. Operation officials and assistants
3. At torneys and right-ol-way agents
4. Engineers
5. Draftsmen, surveyors, and student engineers
6. Accountants
7. Clerical employees
8. Local managers
9. Commercial agents
10. Experienced switchboard operators
11. Operators in training
12. Service inspectors
13. Supervising foremen
14. Centrai-office installation and maintenance men
15. Line and station construction, installation, and maintenance men
16. Cable and conduit construction and maintenance men
17. All other employees (chauffeurs, carpenters, painters, janitors, porters, cooks, waitresses, doctors, nurses, etc.)
- Officials and supervising foremen" includesitems 1. 2, 8, and 13; "salaried employees includes items \(3-7\); 9 , and 12; operatorsi includes 1 tems 10 and 11; and construction and maintenance forcen includes 1 tems 14-16.
12 The percentage of operators in training tends to be high during a period of expansion such as 1919-29; it tends co decilne during periods of depression largely because of the accumulation of a reserve of experienced operators (in part a consequence of the trend toward dialization, discussed later), the diminished demand for new operators in training, and the decrease in number of voluntary separations of experienced operators from the pay roll. An additional factor tending to depress the proportion of oderatorsin training from 1933 to 1935 was the NRA agreement to limit their number co \(\quad\) percent of all operators.
}
\begin{tabular}{lcc}
& \multicolumn{2}{c}{\begin{tabular}{c}
Percentage distribution of \\
Operators
\end{tabular}} \\
\cline { 2 - 3 } & Experienced & In training \\
1919 & 68.8 & 31.2 \\
1920 & 62.9 & 37.1 \\
1921 & 75.4 & 24.6 \\
1922 & 76.8 & 23.2 \\
1923 & 70.8 & 29.2 \\
1924 & 75.5 & 24.5 \\
1925 & 76.1 & 23.9 \\
1926 & 76.7 & 23.3 \\
1927 & 80.3 & 19.7 \\
1928 & 81.4 & 18.6 \\
1929 & 79.1 & 20.9 \\
1930 & 88.7 & 11.3 \\
1931 & 97.5 & 2.5. \\
1932 & 99.2 & 0.8 \\
1933 & 97.9 & 2.1 \\
1934 & 95.8 & 4.2 \\
1935 & 95.3 & 14.1 \\
1936 & 88.9 & 14.1
\end{tabular}

The index for the average number of employees in the Bell System compares as follows with an index for the number employed on June 30 in the entire Census industry (1922=100):13
\begin{tabular}{ccc}
& \multicolumn{2}{c}{ Index of employment for -} \\
\cline { 2 - 3 } & \begin{tabular}{c}
All lines and \\
systems
\end{tabular} & Bell System \\
1922 & 100.0 & 100.0 \\
1927 & 120.3 & 129.3 \\
1932 & 107.1 & 117.6
\end{tabular}

Statistics were not available for the construction of indexes of man-hours for the period 1919-37. BLS averages of actual weekly hours for Telephones and Telegraphs for 1932-37, \({ }^{14}\) however, permitted the construction of a man-hours series for all employees for the same years (1932=100):
\begin{tabular}{ccc}
Year & Index of man-hours & \\
1932 & 100.0 & \\
1933 & 83.8 & \\
1934 & 85.0 & [con.]
\end{tabular}

\footnotetext{
\({ }^{13} 3_{\text {see }} \mathrm{ftn}\). 1.
\({ }^{14}\) The BL8 figures for \(1938-36\) were obtained from an undublished report; the monthly \(\$ 1\) gurea for 1887 were published in Monthly Labor Review. (See ftn. 7.)
}
\begin{tabular}{ccc}
Year & & Index of man-hours \\
1935 & 84.1 \\
1936 & 88.0 \\
1937 & & 94.0
\end{tabular}

\section*{Praductivity}

The indexes of output per employee and output per employee-man-hour both increase during the 6-year period for which the latter could be computed:
\begin{tabular}{ccc}
& \multicolumn{2}{c}{ Index of output per - } \\
\cline { 2 - 3 } Year & Employee & \begin{tabular}{c}
Employee- \\
man-hour
\end{tabular} \\
1932 & 100.0 & 100.0 \\
1933 & 102.2 & 109.3 \\
1934 & 105.5 & 110.7 \\
1935 & 111.9 & 116.5 \\
1936 & 117.8 & 121.0 \\
1937 & 115.9 & 119.0
\end{tabular}

As may be seen from the summary tables, the indexes of productivity for all employees and operators show a considerable rise throughout the period; the average rate of increase is much greater for operators because of the progress of dialization. In 1920 practically all telephones owned by the Bell System were manual; by 1937, however, almost half of them had been dialized:
\begin{tabular}{ccr}
Year & \multicolumn{2}{c}{\begin{tabular}{c}
Percentage distribution \\
of Bell telephones \({ }^{15}\)
\end{tabular}} \\
\cline { 2 - 4 } & Manual & Dial \\
1920 & 98.1 & 1.9 \\
1921 & 97.3 & 2.7 \\
1922 & 96.4 & 3.6 \\
1923 & 94.5 & 5.5 \\
1924 & 91.4 & 8.6 \\
1925 & 87.6 & 12.4 \\
1926 & 84.6 & 15.4 \\
1927 & 81.4 & 18.6 \\
1928 & 78.3 & 21.7 \\
1929 & 74.0 & 26.0 \\
1930 & 88.3 & 31.7 \\
1931 & 62.8 & 37.2 \\
1932 & 57.5 & 42.5 \\
1935 & 52.0 & 48.0
\end{tabular}

\footnotetext{
Footnote 15 appears on following page.
}

Indexes of output per employee were computed for the Bell System and the Census industry from the production and employment relatives shown earlier. If the relatives of the Census employment figures for June 30 are representative of the entire year, it appears that the NRP productivity measure for the Bell System is typical of all 1 ines and systems (1922=100):
\(\begin{array}{ccc}\text { Year } & \begin{array}{c}\text { Index of output per employee for }\end{array} \\\)\cline { 2 - 4 } & \(\left.\begin{array}{c}\text { All lines and } \\ \text { systems }\end{array} & \text { Bell System }\end{array}\right]\)

Table n-s.- bumeany indzxis fon the telephangs thdustay (bell systzk), aLl emplayegs: 1919-37
(1929 = 100)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Employment & Output per employee \\
\hline 1919 & 45.8 & 57.3 & 80.1 \\
\hline 1920 & 48.4 & 64.6 & 74.9 \\
\hline 1821 & 51.7 & 63.3 & 81.7 \\
\hline 1822 & 57.3 & 67.0 & 85.5 \\
\hline 1923 & 63.5 & 74.3 & 85.5 \\
\hline 1924 & 88.0 & 79.1 & 88.0 \\
\hline 1925 & 74.5 & 81.2 & 01.7 \\
\hline 1926 & 61.1 & 84.2 & 98.3 \\
\hline 1927 & 86.2 & 86.6 & 99.5 \\
\hline 1828 & 92.5 & 91.6 & 101.0 \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 97.4 & 97.0 & 100.4 \\
\hline 1931 & 84.0 & 86.0 & 109.3 \\
\hline 1932 & 85.0 & 78.8 & 107.9 \\
\hline 2833 & 77.9 & 70.6 & 110.3 \\
\hline 2934 & 80.0 & 70.3 & 113.8 \\
\hline 1935 & 83.3 & 69.0 & 120.7 \\
\hline 1936 & 90.5 & 71.2 & 127.1 \\
\hline 1937 & 95.1 & 76.0 & 125.1 \\
\hline
\end{tabular}

15The percentages were computed for 1921 from Bell systen Fechnical dournal, January 1931, \(D .19\); for 1922 from Monthly Labor Review. February 1932, p. 237; for 1935 from the Felephone in America (American Telephone and Telegraph Co.. Information Dept., 1936). D. 44; and for remaining years from the innuai informat

Tahle E-b. - gumonit indexes por the telepmones Industay (EELL gystem), OPERATORS: 191s-37
- (1929-100)
\begin{tabular}{|c|c|c|c|}
\hline Year & Production & Number of operators & Output per operator \\
\hline 1919 & 45.9 & 65.3 & 70.3 \\
\hline 1920 & 48.4 & 78.6 & 63.2 \\
\hline 1921 & 51.7 & 73.3 & 70.5 \\
\hline 1922 & 57.3 & 78.0 & 73.5 \\
\hline 1923 & 63.5 & 85.6 & 74.2 \\
\hline 1924 & 68.0 & 88.5 & 78.6 \\
\hline 1925 & 74.5 & 92.1 & 80.9 \\
\hline 1926 & 81.1 & 93.2 & 87.0 \\
\hline 1927 & 86.2 & 93.0 & 92.7 \\
\hline 1928 & 92.5 & 94.8 & 97.6 \\
\hline 1929 & 100.0 & 100.0 & 100.0 \\
\hline 1930 & 97.4 & 89.1 & 109.3 \\
\hline 1931 & 94.0 & 80.5 & 116.8 \\
\hline 1932 & 85.0 & 71.7 & 118.5 \\
\hline 1933 & 77.9 & 62.8 & 124.0 \\
\hline 1934 & 80.0 & 81.9 & 129.2 \\
\hline 1935 & 83.3 & 60.7 & 137.2 \\
\hline 1936 & 90.5 & 63.7 & 142.1 \\
\hline 1937 & 05.1 & 68.5 & 138.8 \\
\hline
\end{tabular}

Table B-7-= AVERAGE MONTHLY NUMBER OF OREGIILATING CAIKS II THE BELL TELBPHONB SYSTEM2 1919 TO 1937*
(Mhousands)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Tent & mwhange & 2011 & Year & Ereohange & Toll \\
\hline 1919 & 1,071,586 & 86,501 & 1929 & 2,165,801 & 95,895 \\
\hline 1920 & 1,154,019 & 36,442 & 1980 & 2,185,812 & 84,944 \\
\hline 1921 & 1,220,672 & 39,948 & 1951 & 2,150,077 & 78,701 \\
\hline 1922 & 1,539,085 & 45,361 & 1982 & 2,020,575 & 64,503 \\
\hline 1925 & 1,498,179 & 49,769 & 1985 & 1,864,590 & 57,999 \\
\hline 1924 & 1,685,420 & 54,365 & 1954 & 1,911,278 & 69,842 \\
\hline 1925 & 1,694,519 & 63,044 & 1936 & 1,994,468 & 61,974 \\
\hline 1926 & 1,816,408 & 71,121 & 1936 & 2,141,404 & 69,498 \\
\hline 1927 & 1,896,00\% & 78,416 & 1937 & 2,277,025 & 70,747 \\
\hline 1826 & 2,012,87 & 0,138 & Woight \({ }^{\text {b }}\) & 1.0 & 11.8 \\
\hline
\end{tabular}
\({ }^{\text {Migures }}\) for 1927-s7 were transoribed fros reporta of individual onmpanies of the Bell System to the Interatate Comerce Conmiasion (until 1933) and the Fodoral Communications Commiasion (1954-37). Comparable statiaties for 1921-26 ware obtainad frcw Monthly Iabor Roview. Feb. 1982, pe 24s, The figuras for 1919-20 wore extrapolated by means of statisties for the average daily number of comeoting oxchenge and toll calle publishod in Annual Reports of the American Tolephone and Telograph Compeny.
belative value per oxehange call and per toll oall in 1929, as computed from Annual Report of the American Telophone and Tolegraph Company for 1929.

Table B-Be= AVBRAGE NUMBER OF EIPLOYRES AND OPERATORS IN THE BELL TEAEPHONE SYSTEM 21919 TO 1937
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & 411 employees & Operators \({ }^{\text {b }}\) & Year & 411 employess \({ }^{\text {a }}\) & Operators \({ }^{\text {b }}\) \\
\hline 1919 & 204,397 & 105,650 & 1929 & 556,850 & 161,669 \\
\hline 1920 & 230,665 & 123,787 & 1930 & 546,034 & 143,979 \\
\hline 1921 & 225,875 & 118,470 & 1931 & 306,746 & 130,191 \\
\hline 1922 & 288,972 & 126,080 & 1932 & 281,350 & 115,891 \\
\hline 1928 & 264,962 & 138,486 & 1935 & 251,798 & 101,478 \\
\hline 1924 & 282,350 & 159,891 & 1934 & 250,822 & 100,131 \\
\hline 1925 & 289,892 & 148,856 & 1985 & 246,090 & 98,150 \\
\hline 1926 & 800,568 & 150,758 & 1936 & 254,238 & 103,003 \\
\hline 1927 & 808,866 & 160,801 & 1937 & 271,287 & 110,815 \\
\hline 1928 & 526,995 & 163,260 & & & \\
\hline
\end{tabular}

The figures for all euphoyees are annual averages dorived from atatistios for Dec. 31 publishod in Annul Roports of the Amorican Tolephone and Telegraph Company. (The data for Dec. 1936 and 1957 wore first rendered comparable with those for oarlier years by means of e minor adjustment baed on inforintion from the mame souroe.) The Deorember figurea for 1929-37 were converted to annual averages by miltiplication by ration of B.L.S. manul averages to December relatives for Tolephones and Telegraphs; the employmont sories was then oxtonded back to 1919 by means of retios computed from Intorstate Comeros Couniseion atatistics for individual companies comprising easentially the ontixe Bell Systeme (The I.C.C. ouployment datm, which refer to June and Desember of each yenr, wore converted to anmal averagea after eatimates had boen made for the other 10 monthe of anch year. of the period 1919-29 by means of straight-1ine interpolation.) The finil ceriea chom in the table was obtained by the adjuatment of the annual averagea to the The final cories thom in the table was obtanod by the adjustmont of the annual averggea to the lovels of cemaus figuren for the Ball system 10 1922, 1927 , and 1932 a Amual averages for and 1932 and A Agure for June 30,1922 wore roported in Consus of Electrical Industries, Telephomes [and Telegraphe]" (U. S. Dept. Come, Bur. Cen.)s before the adjustment was made to Congus levela the 1922 Censul figure for Jume mas avoraged with eatimates for the other mont of the gear obtained by ot ral ght-ingo
ifguras for Doo. 1921 and Dec. 1922 .
DThe seriet for operatore meobtained for 1921-50 from Monthly Labor Reviow, Peb. 1932, pa 243, and matended back to 2919 and formerd to 1937 by moans of ostimatoi derived by multiplication of the serties for all employees by retios of operatore to all employess a Theae ratios were computed from detailed employment atatistice for the Bell sompanias transoribed from reporta to the Interetate comores Coniesion (until 293s) and Pederal Commamications Comibsion (1934-37). The percentage for each yoar but 1938 is \(\boldsymbol{m}_{\text {n }}\) everege for June and December; the percentege for 1958 Ffort to December only. The 1921 relationahip between the Monthly Labor Review and oomputed eerics wea used in the extrapolation beok to 1919 , and the average for 1928-30 in the ontruppolation formerd to in the```

[^0]: $1_{\text {Mirlam E. West, Productivity and Paployment in Selected Industries: Brich and }}$ Fils (WPA National Research Project in cooperation with National Bureau of Economic Research, Report No. N-2, Feb. 1039).
 2A. Porter Haskell, JF., and O. E. Klesaling, Fechnology, Buployment and output per Han in Phosphate-Rock Nining, 1880-1937 (WPA National Research Project in cooperatian with U. 8. Dept. Int., Bur. Mines, Report No. E-7, Nov. 1938).
 $\mathbf{S}_{\text {Appendix }} \mathrm{B}$ also contains studies of changing production, employpent, and productivity in the Electric Light and Power industry and in the Telephones industry.

[^1]: ${ }^{1}$ symbolically, the unit labor requirement for any product may be expressed as follows:

 $$
 l=\frac{m}{q}
 $$

 where $l=$ man-hours required per unit or output, $q=$ the quantity manuractured, and
 $m=$ the man-hours utilized in the production of q.
 Though the uitimate unit of measurement of labor time is 1 hour, there are questions concerning unit labor requirements and productivity of labor which may require the use of other labor-time units, such as a man-day or man-week. In this report only two measures of labor are used - total man-hours and average number or wage earners. Only the former is referred to in this chapter. It should be understood that whatever is sald of man-hours applies equally to wage earners.
 $2_{\text {Symbolically, }}$ the labor productivity for any product, which is the reciprocal or the unit labor requirement, may be expressed as follows:

 $$
 \pi=\frac{\lambda}{l}=\frac{q}{m},
 $$

 where $\pi=$ productivity. The term "labor productivity" as used in this report has a definite technical meaning, confined to the ratio of production to the labor time u:ilized, or relatives of such ratios.

[^2]: $3_{\text {see, }}$ for 1 nstance, Arthur P. Burns, "The Measurement of the Physical Volume of Production, ${ }^{-1}$ he Quarterly Journal of Econonics, Vol. XLIV (Feb. 1930), D. 251; Eroward E. Lewls, 1 Bome Basic Problems in Index-Number The ory, e Rconomic Essays Edward s. Lewis is sme Basic Problems Yorki Columbia University Press, 1985),
 PD. 271-8; Gottr
 18R7), DD. $64-6$.

[^3]: ${ }^{10}$ Another suitable formula for relativels long periods characterized by significant changes in the production pattern is a chain index which takes into account the yearges in year-to-gear change in the production composice, racher construction that will progres year to current year. The only method of index construction that the continuous changes in the composition of the productive

[^4]: ${ }^{14}$ The series for production and output per wage earner are published in Fredertck C. Mills, fconomic fendencies in the United States (New York: National Bureau of Economic Research, 1032), D. 33. M1lls presents data for 35 industries. For three of these, however, index numbers are not shown for each of the census years in the 1899-1914 period; all compurations. therefore, are based upon data for 32 industries only. The necessary we ights (the number of wage earners in each industry) were obtained from the Census of Nanufactures.

[^5]: ${ }^{1}$ No indexes of average unit labor requirements were constructed. These, however, are merely reciprocals of the productivity inderes shown in the sumary tables of Part Two.
 $Z_{\text {"Employment" is commonly used throughout this report to refer to wage earners. }}$ The figures for man-hours, usually derived from the employment statistics and corresponding series of average weekly hours, have the same scope as the employment series. The term "labor" is frequently used to designate wage earners, man-hours, or both.

[^6]: $\delta_{\text {see discussion of }}$ "Weights Used in Construction of NRP Production Indexes. !
 ${ }^{4}$ The indexes for two nonmanufacturing industries, Electric Light and Power and Telephones, are discussed in Part Three, appendix B.
 ${ }^{5}$ The Census of Nanufactures has been published blennially since 1919. It was published quinquennially from 1898 to 1918 and decennially prior to 1899. For the sake of orevity, "Census" is used throughout this report as equivalent to "Bureau of the census"; when "Census data" are referred to without mention of the specific source, they are invarlably derived from the Census of Manufactures. Similarly, "Cenors" is sometimes used for "Census of Nanufactures"; and no distinction is made betmeen the usual blennial reports and those incorporated as separate volumes in the fourteenth and Fifteenth Decennial censuses (1. e., vol. X for 1019 and vol. II

 year 18 an odd-numbered year for which the census made a canvass;
 censal year" is an even-numbered year for which no canvass was made.

[^7]: ${ }^{8}$ production and employment statistics for 37 or the 41 industries and production statistics only for the remaining 4 were derived from the Gensus of Nanufactures. The basic employment statistics for these four, which are the component industries of the Class group, were supplied in an unpublished Census tabulation.
 The four industries not accounted for in the enumeration are: (1) Beet Sugar, for which no. satisfactory wage-earner Index could be constructed; (2) Electric Lamps, for which W. Bowden, fechnological Changes and Eiployment in the ElectricLamp Industry (U. S. Dept. Labor, Bur. Labor Statistics. Bull. No. 593, 1033), supplied both the production and labor statistics for all years; and (3) logging Camps and (4) Sammills and Saw-Plane Mills, the production and employment series for which are based on various estimates in addition to Census statistics.
 Two of the nine industries for which the Census provided the basic employment ilgures, Beehive Coke and Byproduct Coke, are really defined according to the scope of the production statistics, which were supplied by the Bureau of Mines. As a consequence, a small amount of duplication results in the area covered by Manuractured Oas, which is Dased primerily on Census production and employment statistics, and Byproduct Coke.
 The establishment, which usualiy consists of one plant or, sometimes, of more than one operated under the same ownershid in the same locality, is, with few exceptions, assigned by the Census to only one industry on the basis of the product or products of chief value. In accordance with Census practice, the terms "products of chief value". "primary products", and "products normally belonging to the industry" are used synonymousiy taroughout this report. Products not normally belonging to an industry are sometimes also referred to as its "secondary products.") One exception is the Newspaper and Periodical Printing and Pubilshing industry, which includes estadilshments doing any printing or pubilshing, regardiess of the importance of such activities as measured by the income derived. Another is the Flour and other Grain-Mill Products industry, which inciudes plants doing any merchant milling whatever, even if their major activity is custom milling; establishments engaged solely in custom grinding are, however, excluded. Since 1827 the Census has classified mills engaged in the production of both paper and pulp in the two industries of the same names and has distributed the output and employment accordingly. (From the census schedule for 1937 it appears that the practice for Paper and Pulp has become the general rule.)
 In addition to Byproduct Coke and Manufactured Gas, three other pairs of NRP industries have primary products in common: Biscuit and Crackers and Bakery Products Other Than Biscult and Crackers; Electric Lamps and Pressed and Blown (Glass) Ware; and Planing-Mill Products and Sawmills and Saw-Plane Mills. The three components of the Nonferrous Metals group also have some primary producte in cozmon.

[^8]: $8_{\text {The }}$ Lumber and Timber products group originated in the subdivision of the census industry of the same name into Logging Camps and Sawmills and Saw-plane Mills. The Paper and Pulp group was established in the same manner by the separation of the component industries for the odd-numbered years 1910-25. Two Census industries were resolved into smaller units by the use of extensive unpubilshed employment statistics: (1) Glass (by means of a special tabulation of the Bureau of the Census) and (2) Leather: Tanned, Curried, and Finished (by means of statistics collected by NRP in cooperation with BLS). Mit Goods, Bread and Other Bakery Products, and Coke are groups by virtue of the fact that they comprise well-defined units which are segregated in the Census but are not included in its industry count. Woolen and Worsted Goods, Canning and Preserving, Tobacco products, Iron and Steel, and Nonferrous Metals are combinations of industries recognized by the Census as such in its industry count. Rubber products is considered a group by the Census as well as by NRP.
 ${ }^{\text {The }}$ ensuing discussion of comparability is restricted to the 41 industries (see ftn. 6) and all the groups for which the census supplied the basic production and employment statistics for the odd-numbered years. Because of the manner in which most of the man-hours series were derived (see ftn. 2), what is sald of employment applies to man-hours.

[^9]: $10_{\text {see }}$ discussion of eadjustment of Employment serles for Comparability With Production ${ }^{\text {later in this chapter. The achievement of comparability of acope on }}$ production establishment basis rather than a primary-product basis was usually not feasible an establishment basis rather than a primary-producties are, with few exceptions. reported in terms of aggregate value only.
 1^{1} The products in the Inderes for Agricultural Implements (No. 1), Clay Products (Other Than Pottery) and Nonclay Refractories (No. 13), and perhaps cotton Goods (No. 18) show general declines in value coverage for which no satisfactory compensatory adjustment could be made. For comparetiva purposes, however, value-adjusted Inderes were constructed for Nos. 1 and 13 and included in Part Two. Value adjustments were made for Hotor vehicles (No. 48) in order to increase the qualitative as wall as the quantitative significance of the NRP inder.
 12 No adjusments could be made for the establishments in samills and sam-Piane Milis (No. 45) and Planing Hill Products (No. 59) reporting part or all of their output in terms of value ouly in years other than 1933.

[^10]: 13 For example, nonmanufacturing labor may be affected unduly by changes in the amount of "goods sold in condition in which purchased" (Fertilizers), the volume of sales activity by the manufacturing establishment (Manufactured Gas), the amount of current generated for dower (Paper and Pulp), or the volume of dellvery service (Manufactured Ice).
 ${ }^{14}$ The Census industry Paper and Pulp was subdivided for the years prior to 1927 into Paper (No. 58) and Pulp (No. 57) and Lumber and Timber Products into Logging Camps (No. 44) and Sawailis and Saw-Plane Mills (No. 46). No satisfactory method of overcoming a similar difficulty could be devised for clay products (Other Than Pottery) and Nonclay Refractorles (No. 13) and Cement (No. 11), both of which are engaged to some extent in the quarrying of raw materials. The production indexes for Cotton Goods (No. 18) and Woolen and Worsted Goods (Nos, 70-2), but not for Slik and Rayon Goods (No. 64). Include the output of different stages although separate productivity measures could not be constructed for these stages.
 $\mathbf{1 5}_{\text {The }}$ Census industries (a) Motor Vehicles and (b) Motor-Vehicle Bodies and Motor-vehicle Parts were combined into Hotor vehicles (No. 48); (a) Meat Packing, Wholesale and (D) Sausage, Meat Puddings, Headcheese, Etc., and Sausage casings were combined into slaughtering and Meat Packing (No. 65) ; and (a) Chemicals, Not Elsewhere Classified and (b) Compressed and Liquefied Gases were combined into Chemicals (No. 12).

[^11]: ${ }^{18}$ inderes of productivity involving annual employment and the output of the peak beason, ilke those for canning and preserving, have detinite meaning and validity; shey should De distingulaned from an 1 ndex, 11 ke the one for the Beet sugar campalign, which is dased on product 1on and man-hours for the peak season only.
 monthis relatives of procuctivity nere not constructed by Mrp since (1) the Census of Manufoctures does not report monthiy quantity statistics, (2) such monthly duantity atatistics as are availabie (e. g., in the survey of Current Business) are
 ueua11y nuch 1ess detalled than cenaus nigures, and the proauction process the reported output of any given month is attributable not mereiy to the employment reparted for that month out also to labor expended in preceding months).
 ${ }^{17}$ such redefinitions mere made by NRP for Agricuitural Implements (No. 1), Chenicals (No. 12), Rurniture (No. 22), and ranufacturea Oas (No. 46). In generais, adjustments could not be made for reaerinitions in 1933 and 1935 of Important text11e induatries (Nos. 18, $32-6,64$, end $70-2$).
 ${ }^{10}$ The Census changed its request from production to sales (more strictiy, sh1pments or deliveries) in 1029 in recognition of the fact that the records kept oy manufacturera in practicaily all cases show the ir eales, but 12 neny ceases do not shou the ir production, during a given period. Furthermore, ithe change from the production to the saies Dasis ror reporting value of products had very inttie peffect on the comparabieness of the statistics for 1029 with those for preceding ceneus years, since 121811 ke 1 y that the excess of sales over production 1 n some eatainishments and the excess of production over salee in othera counteroa lanced each other 1 In large measure. (${ }^{\text {(Census of Manufactures: } 1828,1 \text { II, 3.) For the }}$

 for mich reliadie production statistics mere avaliadie for this year, the fifference between sales and production was found to be only 4 percent.

[^12]: 19 The census made no change in the scope of the canvass of clay products (Other Than Pottery) and Nonclay Refractories (No. 13) arter 1919; all establishments are represented regardless of the value of their output. The minima for employment and production in the Lumber and Timber Products group (NO. 43), which are stated in terms of lumber cut or 1 ts equivalent, are not only different but were changed In 1821 and 1923, respectively.
 $20_{\text {Two }}$ regi onal production indezes - for cotton Goods (No. 18) - are not included in this or any of the subsequent counts.

[^13]: R1 With the advance of technology and the development of new uses the uneconomic output of one period may become economic output in another; the reporting of its quantity would then be specifically requested by the canvassing organization.
 22 It should be noted that, whatever the criterion used, each reported product really represents a number of nore or less heterogeneous items, or a range" within which the gredacions may be either imperceptible or marked.
 The degree of decall or classification is detemined largely by the nature of the The degree of detall or classification is deternined largely by the nature of the collecting agency, tre form of the reporting schedules, etc.
 $28_{\text {appropriate statistical methods were employed to preserve continuity wherever }}$ a chang was made in classification (usually the degree of de tall was increased). see disiussi on of "Completion of Census-Year Indezes' later in this chapter.

[^14]: ${ }^{24}$ A single series may properly be used to represent the total output of Beet Sugar (No. 2), Cane Sugar (NO. 7), or Manuractured Ice (No. 47) Dut is less approprlate for an industry like Clgars (No. 87) or Chewing and Smoking Tobacco and Snuff (No. 69): (See part Two, Clgars, for a comparis on of the NRP index with another measure.)
 ${ }^{25}$ The series for most industries refer to distinct products in the sense of the above definition. The two series for manuactured Gas (No. 46), however, represent different stages (manufacture and distribution), while the several series for cement (No. 11) represent different stages as well as different products.
 ${ }^{26} \sigma_{\text {The }}$ formula is usually $\left[\Sigma q_{i} w_{k}\right] \div\left[\Sigma q_{0} w_{k}\right]$, where w_{h}, the weighting factor, redresents the best approzimation to the unit labor requirement of each product in the Dase year. (See discussion or "Weights Used in construction of NRP Production Inderes" later in this chapter.)
 ${ }^{27}$ Value statistics only were avallable for Furniture (No. 22), the units for Newspaper and Periodical printing and pubilishing (No. 49) were not consicered satisfactory, and only fragmentary data could be obtained for logging camps (No. 44). In the ifrst instance, the index was constructed by the defiation of relatives of total value of output by a weighted price index: in the second and third, substitute measures, the total unkeighted quantity of newsprint and the minimum log requirements for sawmill production, respectively, were employed. Series of deflated values were also used to supplement the physical-quentity statistics for three industries, and supplementary consumption series were used for six others.

[^15]: 28Census value statistics represent net selling values at the plant; they are probably based on average f. 0 . b. prices or prices at which products are invoiced to the sales department. purchases for resale are considersble in industries like Fertilizers (No. 20).
 29production for consumption is reported, for example, for Blast Furnaces (No. 30) and 8 teel Works and Rolling Mills (No. 31).
 30Indexes for Chemicals (No. 12) based on the two types of production are in general agreement (see Part Two).

[^16]: ${ }^{31}$ The Census apparentiy requests quantity statistics for custom, contract, and repair work for Leather: Tanned, Curried, and Finished only. Such work is not, of course, performed in all industries.
 $32_{\text {The }}$ production index for Motor Vehicles (No. 48), however, was adjusted to Include some 1 tems reported in terms of value only which became primary products as a result of the combination of two Census industries (see ftn. 15).
 B3 In a majority of cases the census production series Include the output of all industries. No output in other industries is reported for Glass and Leather: Tanned, Curried, and Finished, from Which Nos. 23 and 37 were derived, and Rayon (No. 60). Outside production was reported separately and hence could be excluded from the indexes for several other industries, like Manufactured Gas (No. 46) and Paper (No. 68).
 ${ }^{34}$ In 1929 the primary output contributed from outside usually amounted to less than z percent; the proportion is higher for three of the chemical industries (Nos. 12, 20, and 54) and Ice cream (No. 28). In the same year the aggregate value of products not normally belonging to the industry and custom, contract, and repair work generally represented less than 5 percent of the total value of output and in many instances leas than 3 percent.
 35 Adjustments of weighted quantities were required for three industries and of single series for four others.
 $3 \theta_{\text {the }}$ names of the 18 industries are given in the "Explanatory Notes" to Part Three, sppendix A. See ftn. 18 and Census of Manufactures: 1927, D. 77, for evidence of the probability that the number of industries is greater than 18 and that sales are sometimes redorted in other years too.
 37The names of the 18 Industries are given in the "Explanatory Notes" to Part Three, appendix A.

[^17]: $38_{\text {The }}$ absence of 1931 statistics for the establishments reporting in detall in 1033 precluded the dossibility of an adjustment for confectionery (No. 17). The value of the output not reported in detail in 1933, however, represented but 3.1 percent of the total for the industry. (Thls index required an adjustment for incompleteness of the quantity statistics in every year. It is one of the three indexes referred to in ftn. 36.)
 ${ }^{39}$ The Census quantity and value statistics for the products of the textile Induetries (Nos. 18, 32-6, 64, and 70-2) represent the output of only the respective industries in 1827 and earlier years; the statistics reported since that year, however, represent output in all industries. strict continuity was achieved in 8 ome of these cases by means of the "splicing" technique described subsequentiy in the text and in rta. 41. The scope of the figures for Planing mill products (No. 59) mas also eniarged in 1931, but no adjustment was made to inciude the negilgible amount (about 1 Dercent by value) contributed fram outs ide.
 The atatistics for the industries canvassed annually by the Census are not strictly comparable from year to year. The figures for the even-numbered years probadiy omit primary products made outside an industry even though the figures for odd-numbered years may include such output.
 ${ }^{40}$ Usually, the changes in classification increased the number of product series without aignificantiy affecting the percentage of total value represented. In at least three cases the number of products was aiminished, but value coverage remained rairly constant. In Clay products (other Than pottery) and Nonclay Refractoriea (No. 13). however, a decline in coverage accompanied a considerable expansion in the number of procucts included in the index.
 Footnotes 41, 42, 43, and 44 appear on following page.

[^18]: 47 It has already been indicated that the census provided annual statistics for 12 Induatries. The statistics for the even-numbered years were in tost of these instances used with litrie or no adjustment to forit continuous series with those instances used with litile or no adjustaent to rorn continuous series with those
 for odd-numered years; in the case of Paints and Varnishes (No. 54). however, for oad-aumbered years; in the case or Paints and
 interpolation and derlation of value oy price were necessary.
 ${ }^{4} \theta_{\text {ror }}$ exampla, the aurillary index for Bread and Other Bakery Products (No. 4) and four other aurillary production series represent consumption.

[^19]: $52_{\text {The }}$ problem of goint products, which at least in view of the nature of avallable statistics appears insoluble, was not considered a matter of special inquiry in this report.
 ${ }^{63}$ For convenience in computation, the product serles for this industry were used In the form of relatives. (The weights were, therefore, the total number of wage earners and man-hours.) Comparable production and labor statistics are avallable for the several products of this industry only because they were collected by bLs for the specific purpose of determining productivity in different departments.
 ${ }^{64}$ NRP producti on indexes with both changing employment and man-hour weights were computed for 8 of the 13 groups; indexes with oniy changing employment weights were computed for 4 others. The measure for the thirteenth, Lumber and TImber Products (No. 43). incluces rixed (man-hour) weights. The relatives for all or most of the
 even-numbered years ror 11 or the 13 groups a aso represent averages of production
 relatives for the component industries; the two exceptions are Bread and other relarives ror the component industries; the two exceptions
 Bekery Products (No. 4) and Woolen and Worsted Goods (No. 70).
 65 pifferences appear in only the early years of indexes for four groups. comparative eroup indexes are shown in part Two.
 $6 \mathrm{~T}_{\text {The }} \mathrm{six}$ industries are Cement (No. 11), Sawmills and Saw-Plane Mills (No. 45), Kanufsctured Gas (No. 48), Paper (No. 6e), Puld (No. 57), and Rubber tires and Inner Tubes (No. 82). The weights for Manufactured Gas represent the relative number of wage earners engaged in the manufacture of a unit of gas (and its oyproducts) and in its alstribution; those for Cement, relative man-hours, were oyproducts) and in its aistribution; those ror cement, relative man-hours, were assigned on a functional ss wellas product oasis. For a seventh nder
 and Rayon Goods (No. 84), estimated wage-earners-per-unit weights for 1935 were used for a short perioc of years (1020-36).

[^20]: 67Unit values computed from census data for the products of some industries probably represent selling price rather than unit value at the plant. Census unit values were used as weights for many of the auriliary indexes, which often include the same or similar products as the segments for the odd-numbered years.
 58 The term "unit labor requirements" is used here in the general sense of both man-hours per unit and wage earners per unit. Or course, the best substitute weighting system for man-hours per unit is likely to be wage earners per unit, since the average annual hours worked tend to be similar for the wage earners engaged in the manufacture of the varlous products of an industry (particularly when these products are made in the same plants, when the technology is similar, When production is concentrated in a single region, or when regional differences are not marked). When any other substitute weights are used in the construction of an NRP production index, the implication is that they are proDortional to both

[^21]: 56 [Cont inued]
 types of unit iabor requirements, since the same production index is employed in the derivation of the indezes of output per man-hour and output der wage earner.
 In actuality, it is often reasible to measure unit labor requirements for only direct labor. In many cases, it would be possible to distribute at least part of the indirect labor if proper records were kept for this purpose.
 59 Prom an investigation made in the course of the construction of the NRP Indexes, it appears that RS percent constitutes a rairly high ratio of wages to total value of an industry's products (the mazimum lies between 36 and 40 percent for the NRP incustries in the post-war period). It should be noted, however, that the indasility of the ratio irom product to product is more significant than the magnitude of the ratio for the entire industry. Thus unit values may be satisfactory not only for an industry such as Clay Products (No. 13), which had the factary ratio in several years, Dut also for Paper (No. 56), which has a very maximum rat
 $60_{\text {see }}$ Part Two, Agricultural Implements (No. 1), Boots and shoes (No. 3), Chemicals (No. 12). Cement (No. 13). Fertilizers (No. 20); Flour and Other Grain-Mill Products (No. 21), 8teel Works and Rolling Mills (No. 81 , Prodp (No. E7), Woolen Ooods (No. 71), and Worsted coods (No. 72):

[^22]: ${ }^{81}$ See Part Two, Boots and Shoes (No. 8), Cotton Goods (No. 18), Plate Glass (No. 26), Motor Vehicles (No. 48), Pader (No. 56), Puld (No. 57), Cigars (No. 87). and Woolen and Worsted Goods (No. 70).
 62If the differences in slope of indexes (based on classifications varying in degree of detali) are considerable, as in the case of Motor Vehicles (No. 48), the less refined indexes may be undependable for even the measurement of long-term changes. The probadle influence of the breadth of product classes on the index for Planing-Mili Products (NO. 69) has already been indicated. The NRP index for Hosiery (No. 33) arfords a striking illustration of the importance of weighting. Between 1918 and 1921 it advanced by 12 percent, while the unwe ighted aggregate of the same products declined by 6 percent. For an lllustration of the magnitude of the error which may result if the substitute unit-value weights tend to be inversely proportional to the desired unit-labor-requirement weights, see chapter I, table I.
 63 "All primary outputn refers to the primary products of an industry made in all Industries, uniess the census 11 gures exclude the output of the industries to which these products do not normally belong. The coverage percentages for all the NRP Indexes are nevertheless fairly comparable, since oniy small amounts of the primary products of each industry are usually made in other industries.
 An indication of the coverage of the NRP production indexes is given in Part Two. When no statement is made, all the primary output is usually included. In cases where substitute series were used for production, meaningful coverage percentages could not, of course, be computed (see ftn. 101).

[^23]: 64 That many of the NRP measures would not be altered appreciably if coverage were increased is suggested by indexes for different numbers of products constructed for several industries. The most striking illustration is that for chemicals (No. 12). Although the NRP index for this industry ranks among the lowest in coverage (49 percent), an index with rewer products and even lower coverage (30 percent) resembles it closely.
 ${ }^{65}$ No employment index was constructed for Beet sugar (No. 2). (For reasons see Part Two.)
 Two regional employment indezes for cotton ooods (No. 18) are not included in this or any of the subsequent counts.
 ${ }^{68}$ Indexes for all employees were constructed for the two nomanu facturing industries (see Part Three, appendix B) since salaried workers, who constitute a large proportion of the total, perform many services which are essential to the main business.
 It should be noted that the distinction between wage earners and salaried employees is based primarily on the type of work done rather than on the method of payment. The Census of Nanufacterres deifnes salarled workers as the principal officers of corporations; managers, superintendents, and other responsible administrative employees; foremen and overseers who devote all or the greater part of their time to supervisory duties; and clerks, stenographers, bookkeepers, and other clerical employees on saisry. "
 Although Newspaper and Periodical Printing and Publishing (No. 49), which is not strictiy a manufacturing industry, engages a considerable number of salaried employees in nonmanufacturing activities, no sumary index for all employees is presented in Part Two since the measure of production for wage earners was not considered appropriate for salaried workers.

[^24]: 07the Bureau of the census also provided a special rabulation of employment in the component industries of the Glass group (No. 23).

[^25]: 68 The schedules for $1919,1921,1925$, and 1927 request the number of wage earners employed on the 15 th day of each monthi those for 1923, the number of names on the pay roll on the $15 t h$ day of each month": those for 1929, 1931, and 1933, the numbers on the pay roll for the week that included the 15 th day of each month, If that was a normal week, or for some normal week in the monthi; and those for 1935, the number . . . on the pay rolls for the week that ended nearest the $15 t h$ day of each month, if that was a normal weak, or for some normal week in the month. The instructions for at least the 1929 enumeration, moreover. indicate that what is desired is the total number employed on the given day, not the total number whose names appear on a given pay roll. " (See census of Distribution, Manufactures, and Mines and Quarries: 1929, Instructions for Preparing Distribution, Manufactures, and Mines and Quarries Reports" [U. S. Dept. Con., Bur. Census, 1930], Cities Having 10,000 or More Inhabitants, $"$. 38.). The lack of uniformity of the dates of reference probably has no serious effect on the chronological comparability of the census employment statistics.
 Before 1935 manufacturers frequently reported employment for the fiscal rather than the calendar year since the Census instructions permitted this alternative. In 2935, however, when the Census requested both types of statistics, the difference was observed to be small.
 $8 \theta_{\text {see }}$ also Adjustment of mployment Series for Comparability With Production later in this chapter.
 $70_{\text {Adjustments }}$ of this nature are the exclusion of the estimated number of workers engaged in the manufacture of rayon from the series for Chemicals (No. 22) for the years 1919-23 and the inclusion of the number engaged in the production of liquefied gases in the years 1827-35, the inclusion of the estimated number of wage earners engaged in gas distribution in the 1935 employment figures ior Manufactured Gas (No. 48), the addition of workers at byproduct coke ovens owned by city gas companies to the series for Byproduct coke (No. 16) for 1919-31, the exclusion of the estimated number of workers engaged in the manufacture of woven telts irom the 1835 employment for Woolen and Worsted ooods (No. 70), the exclusion of wage earners in establishments producing less than 200,000 leet of lumber from the 1819 employment for Lumber and Timber Products (No. 43), and the inflation of the reported figures for cigars (No. 67) for 1933 and for the component industries of KnIt Goods (No. 32) for 1819 to compensate for the incompleteness of the Census canvass.

 In a few instances Census employment ifgures could not be corrected for changes in the scope of the canvass or in industry definition. For example, delivery employees could not be excluded Irom the 1919 figure for Manufactured Ice (No. 47), nor could the wage earners in dyeing departments be included with the number reported for 1935 for cotton Goods (NO. 18) and for $511 k$ and Rayon Goods (No. 64). The impossibility of excluding workers engaged in the manufacture of tractors from the 1835 employment ifgure for Agricultural Implements (NO. 1) led to the use of an estimate derived from another source for this year.

[^26]: 71The BLg statistics are published in L. E. Telbert and A. Olenin, Revised Indexes of Pactory Reployment and Pay Rolls: 1919 to 1933 (Bull. No. 610, 1035); Revised Irdexes of Factory Smployment and Pay Rolls, mimeo. November 1938; and various issues of the Monthly Labor Review. The NICB series were obtained principally from M. A. Beney, Hages, Hours, and Beployment in the United States: 1914-1936 (New York: 1936).
 7 RThe methods employed by both BLS and NICB to adjust the monthly employment relatives are intended, insofar as possible, to preserve the original seasonal pattern. For the BLs method of adjustment to census figures through 1931, see Talbert and olenin, op. cit., DD. 13-8. A more reilned technique designed to reduce the distortion of the monthly pattern was used in the revision to the 1933 Census levels; those revised indezes were published in the mimeographed release of November 1936 (see ftn. 71). Annual BLS relatives for 1934-36 (adjusted by of November 1936 (see ftn. 71). Annual BLS relatives for 1934-36 (adjusted by
 BLs to the 1933 census level), which are published in the mimeographed release BLS to the 1933 Census level), which are published in the mimeographed release
 of November 1936 and various issues of the Monthly Labor Review, were adjusted by NRP to conform to the movement of the census series from 1933 to 1935. A simple method equivalent to interdolation and eztrapolation as described in connection With production was considered adequate for our purpose since we are not concerned with the pattern of the monthly relatives for intercensal years. In September 1938 BLs released its indexes for 1934-36 adjusted to the 1935 Census levels (ior method, see Continuation Adjustment of Biployment and Payroll Indexes, mimeo., February 15. 1938). Since the differences between the NRP and BLS indezes for these years are usually very slight (rarely erceeding 1 percent where the scope is comparable) and since the present study was by that time almost completed, no revision of the NRP inderes was made. The BLS monthly relatives for 1919-22 (published in Bull. No. 810. pp. 90-100) were constructed by the Federal Reserve Board (rron data collected by BLs and cooperating state departments of labor) and ad justed to Census levels for 1919-21; these relatives were inked by BLS to its Beries for 1923-38. The resulting FRB-BLS indexes, which are internally comparable throughout the entire period, are uniformly referred to as bls indezes in the remainder of this chapter, in Part Two, and in Part Three, appendiz A.
 The NICB method of adjusting the annual averages to census trend is described In Beney, ob. cit., pp. 20-2.
 73 Changes were 8 ometimes necessary because the adjusted indexes did not coincide In a few years with relatives computed from Census data (e. g.. Leather, 1919-22). Where census figures were changed, the BLS and NICB indexes were. of course, made to conform to the trend of the adjusted flgures (see rtn. 70).
 ${ }^{74}$ BLs defines factory employees as all skilled and unskilled piece and time workers, working foremen, gang bosses, and straw bosses in production and other departments, auch as maincenance, shipping, power plant, etc. (Schedule for June-December 1937 entitled VVolume of Bmployment - Manufacturing. ${ }^{\text {I }}$)

[^27]: ${ }^{75}$ The employment series for some of the NRP industries were adjusted for greater comparability with production. See IAdjustment of Employment Series for comparability With Production" later in this chapter.
 76 The NICB annusl averages for 1920 and 1922 are therefore based on figures for seven and six months, respectively. NICB also published employment relatives for July 1814.
 ${ }^{77}$ Like the Census and BLS, NICB also classifies establishments according to chief product or products.
 ${ }^{78}$ The eight industries and groups are Agricultural Implements (No. 1), Chemicals (No. 12), Fertilizers (No. 20), Newspaper and Periodical Printing and Publishing (No. 49), Paints and Varnishes (No. 64), Planing-Mill Products (No. 68), Rubder Products (No. 61), and Woolen and Worsted Coods (No. 70). Coverage of the NICB employment samples for these industries is shown in table VII.

[^28]: 79 It alght also be mentiones here that BLS monthly link relatives of employment for Iron and 8 teel (No. 29), Which were published in the Monthly Labor Reviemb were compounded into chain inderes by serial multipilcation and used to extend the regular BLS series fram 2923 to 1010.
 $\mathbf{8 0}_{\text {gee, }}$ for example, Part Two, Bread and Other Bakery Products (No. 4) and Paper and Puld (No. 65).

[^29]: 81For example, the value of secondary products in 1929 represented less than 4 percent of the total value of output in 19 of 29 instances for which the computation could be made. Similarly, the value of products not normaliy belonging to a group was less than 4 percent of the total value of output in six of nine instances. In the same year no primary products made in other industries were included in at least is production indexes, and the value of such extraneous primary output included in 10 of 18 other indexes constituted only 3 percent or less of the total made in all industries.
 82this assumption permitted the adjustment of employment for each component industry in each year by the use of the following formula:

 $$
 E=U\left[\frac{a+b}{a+c}\right]
 $$

 where $E=$ adjusted employment, or the total number of wage earners required to groduce the total output of the products normally belonging to the industry wherever made;
 $U=$ employment reported by the census for the industry, 1.e.. the wage earners engaged in making its primary products and the products not normally belonging to it;
 $a=$ the value of primary products made in the industry;
 $b=$ the value of primary products made in other industries; and
 $c=$ the value of products not normally belonging to the industry.
 U and a were obtained from a special tabulation made by the Bureau of the census; $[a+b]$ was reported in the Census of Nanufactures.
 For similar adjustments made for comparative purposes, see part Two, Ice cream (No. 28) and Paper and Puld (No. 65).

[^30]: $83_{\text {The detalis or the adjustment are shown symbolically in notes appended to the }}$ description of methods for the chree industry groups in Part Two.
 ${ }^{84}$ Four subindexes of man-hours are not inciuded in the count: two for the diviaions of the flacal year for Beet fugar (No. 2); and two for the principal manufacturing regions for Cotton Goods (No. 18).
 B5 $_{\text {The }} 12$ industries are the components of the following groups: Bread and other Bakery Products (No. 4), Olass (NO. 23), Iron and 8 teel (No. 29), and Knit Goods (No..32). Consequentiy, only one production index - with changing employment weighte - could be constructed for each of these groups.
 $8 \mathrm{~B}_{\text {The }}$ three industries are Beehive Coke (No. 15), Byproduct Coke (No. 18), and Electric lamps (No. 19). The annual man-houre totale for the two Coke industries, complled by the bureau of gines, represent essentially the same scope as do the employment figures. Part of the index for Primary smeltera and Refineries (No. 51) is also based on annual man-hours statistics reported by the Bureau of mines (1931-36).
 The census has also collected man-hours figures for large cross sections of various industries but, since these embrace relatively ahort periods, they could not be used in the same manner as census production and employment statistics. They were. used, however, in the derivation of average weekly hours.

[^31]: ${ }^{87}$ The two Industries are clay products (other Than pottery) and Nonclay rerractories (No. 13) and cotton ooods (No. 18). The index for Lumber and Timber Products (No. 43) was also derived in part (ie30-36) by the division of day roils by hourly earnings.
 ${ }^{88}$ The three industries are paper (No. 56), Puld (No. E7), and Rubber Tires and Inner Tubes (NO. 82).
 ${ }^{89}$ The seven Industries are Beet sugar (No. 2), Cement (No. 11), and the components or the Leather groud (Nos. 88-42). The unit-labor-requirement series for Be日t Sugar and for the components of the Leather group were derived fram the results of NRP field surveys made in cooperation with the National Bureau of Economic Research and ELS, respectively.
 ${ }^{90}$ The five industries are Cane-Sugar Refining (No. 7), Logging Camps (No. 44). sawnilis and saw-Plane Milis (No. 46), Primary smeiters and Refinerles (No. 51); and Other Rubber Goods (NO. 83).
 ${ }^{01}$ The detalis of the other methods may be found in Part Two and appendix A. In Darticular, the Day-rolis serles were usually derived from the same sources as for employment (Census, BLS, and NICB) and the carnings series from the same sources as for average actual weekiy hourg (BLS and NICB). The BLS and NICB pay-rolls series refer to the same samples as the corresponding employment etatistics and aliso coniorm to the census relatives for comparable industries. (In this connection it should be noted that not only were wages used in the derivation of indexes of man-hours but also in the interpolation of velue series used in the construction of the production index for Furndture and the employment index for Rayon.) Earnings flgures were derived in some instances, e. g., cotton 000ds (No. 18), from BLS builetins end Clay Products (Other Than Pottery) and Nonclay Refractories (No. 13), from the results of goint NRP-NBER fleld surveys.

[^32]: 02The specific tities of the census publications which refer to large samples of wage earners are Cenwus of Manufactures: 1933, Man-Hour staristics ior 82 selected Industries and idid.: 1835, "Man-Hour statistics for 69 Selected Industries." In computing average weekly hours from the sample man-hours statistics it was first necessary to compute annual man-hours totals for the whole industry by sumation of the products of the average hours per man for each month, as reported for the sample, and the corresponding employment for the industry; this total was then divided by the product of the average annual number of wage earners and 62. (See also Part Two, Pader and Puld. ftn. 10, for additional detalls on the method of computing the man-hours totals for 1933.)
 Averages of such census bours were used in the NRP series for three industries and groups in both 1933 and 1936 and for three industries in 1933 only. (In addition, averages of Census sctual hours were used for 1929 and 1931 for Petroleum refining, and total census man-hours were emploged for 1933 and 1935 for both paper and and total census man-hours were emploged for 1933 and iesb for both paper and of their pubilcation after many of the NRP indezes had been completed. In the Instances mentioned the census hours sigures were regarded as the wost preferred; those derived from other sources were consequently adjusted to the Census level, If the differences warranted such adjustment, in much the same manner as census production and employment statistics were interpolated and extrapolated.
 Census weekly hoúrs would have been incorporated in 9 other NRP series in 1933 and in 8 additional ones, or a total of 17 , in 1935 if they had been avaliable. In 6 of the θ instances in 1033, however, and in 12 of the 17 in .1935, the Census flgures differed by 1 hour or less from the NRP weekly averages; the mazimum aifference in 1933 was 2.8 hours and in 1935, 2.8 bours.

[^33]: ${ }^{93}$ Strictly, employment-welghted means of the seversl hours figures should have been computed for each year instead of simple means. A comparison involving five. highly seasonal industries - Beet Sugar (No. 2), Canning and Preserving (No. 8), Cement (No. 11), Fertilizers (No. 20), and Ice Cream (No. 28) - indicates, however, that the fallure to weight has no serious consequences. For all industries but Beet Sugar the differences between unweighted means and means welghted by BLS and Census employment are, for 1933 and 1936, fractional. The differences between the unweighted means and means weighted by BLS employment for Beet Sugar, the most seasonal industry, are of the same order, but, because of differences in the monthly employment pattern, the average with Census employment weights is about 8 percent higher than the other weighted mean in 1835.
 ${ }^{94}$ The specific sources of the BLS and NICB hours series are usually not noted in Part Two or 1n the tables of Part Three, appendix A. Kost of the BLS data were supplied to NRP in the form of an unpublished manuscript. The BLS hours for January-October 1032 were in three instances, however, derived fram transcridtions made oy NRA. The most common source of the NICB series is Wages, Hours, and Employment in the United States: 1914-1936; in several instances these NICB series were extended to 1836 by the use of additional statistics published in various issues of the Conference Board Service Letter. For one industry. Ferillizers (No. 20), the hours for 1820-24 were derived from other NICB research reports.
 The BLS serles are usually based on figures for each month. The NICB averages for 1920, however, are based on ilgures for but seven months (June-December) and the averages for 1922 on flgures for six months (July-December); the averages for all years for Manufactured Gas (No. 46) refer to but one or two months.

[^34]: ${ }^{95}$ In the 11 instances in which prevalling hours were reduced, an attempt was made to obtain a reasonable approximation to the ratio of actual to prevailling hours in 1919. A comnarison of the levels of production and employment in 1919 and 1ater years provided the basis for selection of the ratio or average of ratios used as the reduction factor in each instance.
 stralght-1ine interpolation between the micB figures for 1914 and 1920 was employed for Manufactured gas (No. 46). The estimates for Iron and steel (No. 29) and Leather (No. 37) were derived from special BLS studies and for chemicals (No. 12). Paper (No. 56), and Pulp (No. 57) from ar Nicb report. (The series for the latter two were not derivad principaliy by the multiplication method.)
 ${ }^{96}$ The reduction of prevaliting hours to the level of actual was accomplished for Cane-sugar Refining (No. 7). Fertilizers (No. 20), Flour and Other Orain-mill Products (No. 21), Alioyers; Roiling Mills; and Foundries (No. 53). Petroleum Ref1ning (No. 58), Cigars (No. eq). and Cigarettes (No. B8). (The series ror Cane-sugar Rerining and Flour and other Orain-M111 procucts are not among those obtained chiefly oy the multiplication of employment and average weekiy hours. Unpub1ished prevailing hours figures for 1829 and 1831 ware provided for C1gars by the census.) No adjustment of prevalling hours could be made for bread and Other Bakery Products (No. 4), Canned and Preserved Fruits and Vegetables (No. 9), Canned and Cured Fish (No. 10), Confectionery (No. 17), Olass (No. 23), Ice Cream (No. 28), Manufacturea Ice (No. 47), and Primary smeiters and Reriner ies (No. 51). see Part Two, Clay products (other Than Pottery) and Nonclay Refractories (No. 13) for a comparison of man-hours indexes cerived from actual hours and adjusted prevaliling hours and by the derlation of pay rolls oy hourly earnings.

[^35]: 07The most serfous defect in the computed averages of prevalling hours doubtiess results from the assumption of concentration points for the class intervals, particularly those with open ends. For some industries the number of wage earners in the open-end classes represents a considerable percentage of the total. In 1919 18 percent of the wage earners in the (census) Olass industry, for example, were concentrated in the lowest class; and $\mathbf{3 2}$ and 43 Dercent in Cane-sugar Reining (No. 7) and Manufactured Ice (No. 47), respectively, were concentrated in the highest cless. In 1921 and 1923 the percentages in the highest class were 41 anghest class. In 1921 and 1823 the percentages in the highest class were 41 Manufactured ice (No. 47); and 25 and 27 percent for secondary smelters and Refinerles (No. 52). The reduction in the number of frequency intervals in 1929 incroduces the danger of noncomparability; it particularly has the effect of increasing the percentages in the highest class. In this year more than hall of the mage earners in Cane-8ugar Rerinlng (No. 7). Fertilizers (No. 20), Ice Cream (No. 27). Manufactured Ice (No. 47), and Secondary smelters and Refineries (No. 53) are in the class over 64 nours"; more than a quarter of the wage earners in Canned and Cured Fish (No. 10), Flour and Other Orain-Mill Products (No. 21), alloyers, Roliling Mills, and Foundries (No. 53), and Petroleum (No.. 58) are also in chis class.

[^36]: $98_{\text {See ftn. }} 96$.
 Pootnote 99 appears on following page.

[^37]: 09The three groups are Rubber Products (No. 61), Tobacco Products (No. 66), and Yoolen and Horsted $000 \mathrm{~A}_{\mathrm{s}}$ (No. 70) For Illustrative adjustments see Fart Two, Noolen and Worsted oods (No. and Pulid (No. 55). For assumptions underlying the Ice Crean (NO. 28) and Paper and Pumpt Aories for Comparability With Production" earller in thla chapter.
 100 The inderes for Olass (No. 23), Leacher (No. 37), and Lumber and Timber Products (No. 43) are probady more valid than those for the component industries.

[^38]: ${ }^{101}$ substitute serles entered into the production indexes for Logging Camps (No. 44) (sawmill equivalents are used to represent actual logging-camp output), Newspaper and Periodical Printing and Publishing (No. 49) (newsprint consumption is used for the production of newspapers and periodicals), Bread and Other Bakery products (No. 4) (flour milled is used instead of the quantities of bread and other bakery products), and Fiour and Other OrainTilil Products (NO. 21) (wheat consumption is substitured for ilour production); into the employment indexes for the component industries of Bread and Other Bakery Products (NO. 4), Iron and Steel (No. 29),
 Knit Goods (No. 32), Lumber and Tlmber Products (No. 43), and Tobacco Products
 (No. 68); and into the man-hours indexes for Rayon (No. 60), Rubber Tires and Inner Tubes (No. 62), and Chewing and Smoking Tobacco and Snupf (No. 80).

[^39]: ${ }^{102}$ When primary producta mede in other industries can be oxcluded from the production statistics, the result is, of course, the asme as if thare were no such extraneous primary output.

[^40]: ${ }^{1}$ since all the NRP production indexes were not avallable for each year, the two general measures for the sample were constructed from a changing number or series.

[^41]: 1 [Cont inued]
 The index number for each year, nowever, is strictly comparable with that for 1829. Wage-earner welghts were used in a few cases where man-hours series were not avallable. Because of the similarity of the distribution of employment and man-hours, however, an inder with man-hour weights cannot differ significantly fram one with wage-earner weights.
 $2_{\text {standard }}$ indexes of production which purport to measure the change in all manufacturing show increases of from 40 to 49 percent from 1919 to 1929. It should be noted, however, that these measures of production are not comparable with the production index presented in table XI. Besides differences in purpose, methods of construction, and composition, the production index in table XI is computed with changing weights whereas the other measures have either fixed (base-year) weights or an average of weights for the base year and each year in the index. Thus while the sample production indez with changing weights shows a rise of 57 percent between 1918 and 1929, the index with base-year weights (table XIII) shows a 44-percent increase, which is similar to the rise in the other indexes of production referred to above.
 $3_{\text {Eaployment for all manufacturing industries as reported oy the cersus of Manufac- }}$ twres declined about 2 percent while employment in the sample showed an increase of slightis less than 2 percent. The employment index for the sample and for all manufacturing industries showed similar jear-to-year movements, and both showed relative stability on the whole.

[^42]: The reduction in the average hours worked per week between 1929 and 1933 does not necessarliy reflect a conscious attempt to spread the worth The methods of production in modern industry (for example, detailed division of labor and integration of tion in modern indusiry (for example, detailed in production the number of man-hours Drocesses) are such that win a sharp deciine in production the number or man-hours utilized may be expected to decline more than the number of workers employed.
 Certain industrial processes require the employment of a minimumumber of men to Certain industrial processes require the employment of a minimum number of men to
 Derform the necessary series of operations (aside from maintenance labor) when Derform the necessary series of operations (aside from paintenance labor): when production drops so low thst this minfmum muber cannot de employed full time, the on part-tise basis.

[^43]: $5_{\text {Although the discussion is restricted to the indexes of output per man-hour, the }}$ relations noted are also characteristic of the indexes of output per wage earner.

[^44]: ${ }^{\text {See table XI, ftn. a. }}$
 Dequivalent to an index whose component indezes were weighted with base-year man-hour weights.

[^45]: © It is interesting to note that the index of productivity for the changing composite, unlike the index for the fixed composite, rises in every year, even between 1881 and 1832.

[^46]: 7The year 103θ was omitted from the comparison since indexes for some industries were not available for this year.

[^47]: ${ }^{8}$ More strictly, the average is a geometric mean of the year-to-year link relatives of the index numbers minus unity. This is equivalent to the nth root of the ratio between the index numbers for the terminal years minus unity, which is the form used in the computation of the annual average rates of change. Thus, if the index numbers are $a_{n}, a_{1}, \ldots . a_{n}$, the average rate of change is

[^48]: ${ }^{9}$ These frequency alstributions cover the entire sample with the exception of Electric lamps (No. 19), for which the indexes could not be extended beyond 1831

[^49]: 1^{10} In subsequent references to employment as an indicator of the significance of rates, the number of wage earners in 1929 is implied; the implied rotal, moreover. is the number. in the 49 industries and groups. For the sake of convenience the industries and groups are referred to simply as industries in the remainder of the chapter.

[^50]: ${ }^{11}$ Economists have long been interested in the movement of productivity during the business cycle. The analysis has usually been concerned with the efficiency of the individual workers or groups of workers rather than with "labor productivity, ${ }^{*}$ one frequentiy encountered line of reasoning holds that the efficiency of the employed wage earners increases particularly during periods of depression owing to (1) the effect of the pressure of a surplus labor supply and (2) the fact that in the interest of cutting unit costs the least efficient workers are dismissed rirst. While the firsi reas on, which cannot be tested with the avallable data, seems plausible, the second is subject to considerable qualirication. The belier that In years of depression the least efficient workers are the ilrst to be laid off rests on the seemingly crude assumption that all employers have a uniform lay-off Dolicy which is based solely on the criterion of eificiency, and that there are no restraints to the execution of this policy. (For some other selective factors in lay-off, see, for instance, WPA National Research Project reports published in the serfes studies of the effects of Industrial Change on Labor Markets" and "Philadelphia Labor Market Studies.") Moreover, declines in employment often occur as a result of complete shut-downs of plants, in which event both the erficient and inefficient workers are dismissed, while other plants, still in operation, may continue to employ relatively less efficient personnel.

[^51]: 12 The more appropriate period 1029-32 was not selected for this purpose because indexes were not avallable for some of the 4θ industries in 1832.

[^52]: $\mathbf{2 3}_{\text {Bee ondjusted and Unadjusted Prevalling-Actual hours series" in chapter II, }}$ In

[^53]: ${ }^{1}$ H. R. Tolley and L. M. Church, phe Kanufacture and Sale of Parn Equipment in 1920.
 $f_{\text {Not }}$ all of these 40 products are identical with those used for 1920-31. $3_{\text {Peport }}$ on the causes of Iigh Prices of farm Iaplements (May 4, 1920).

[^54]: ${ }^{4}$ Though some data are avallable for 1920-22, the percentages which may be computed for these jears ($712,83.5,56.1,47.9$) are unreliable because of the nature of the adjustments required.
 Value coverage is affected considerably by the changing role of actachments and parts (for which the Census presents no quantity statistics) in the production pattern of the industry. Although in other years suchauxiliary items comprise from 20.0 to 27.3 percent of total value of agricultural implements and parts, the percentage in 1922 was only $12 . \theta$, and in 1933 , as nigh as 42.4. $\mathrm{E}_{\text {The }} \mathrm{z}$ figures for 1929 are comparable, respectively, with 1930, 1931 , and earlier years; with 1933; and W1th 1835 and 1938.

[^55]: ${ }^{6}$ The Agricultural Implements industry contributed about θ percent of the total number and 10 percent of the total value of tractors in 1921.
 7 This index was constructed from census production series for wheel-type, track-laying-type, and garden tractors and motor cultivators, weighted by their respective unit values in 192θ.

[^56]: $B_{\text {A }}$ rough indication of the significance or the lack of comparability is given by Census value data for 1931 and 1933. In these years, secondary production comprised 4.5 and 6.6 percent of the total value of the output of the industry. while agricultural implements made as secondary products in other industries accounted for 4.5 and 7.3 percent of the total value of agricultural implements.

[^57]: 1The census and the Department of Agriculture cover the same number of establishments, presumably the whole industry. since the production figures
 of the latter agency (published in Jearbook of Agriculture and igricultural
 statistics) and those shown in Lasborn's Fest Pocket Sugar Data (New York: Lawborn and co.. July 6, 1937) are in close agreement, they were chained without adjustment.
 Ronthly wage-eamer statistics published by the census could, nevertheless, be used for significant periods of less than 1 year. (See discussion of derivation of intercampaign man-hours.)

[^58]: ${ }^{8}$ The required adjustments, moreover, are very great. In 1933 the BLS index had to be raised 26.7 percent and in $1835,11.2$ percent.
 4The results of this survey are summarized in a report entitled Productivity and Paployment in Selected Industries: Beet Sugar (WPA National Research Project in cooperation with National Bureau of Economic Research, Report No. N-1), by R. K. Adamson and M. E. West. The sample for 1918-35 includes 40 to 63 plants, or 47.1 to 76.8 percent of the total number of Census establishments. The range of total production covered by the sample is 58.2 to 79.1 percent.
 ${ }^{5}$ In the following discussion and in the tables showing the summary indexes, the year always takes its number from the calendar year in which the campaign begins.
 ${ }^{6}$ An identical-plants seriesminimizes the decilne inaverage labor requirements for the industry as a whole since it is not affected by the odening of other large, relatively efficient plants and the closing of small, relatively inefficient ones.

[^59]: 7rae beet-sifcing ratio is thequotient of total plant man-hours and tonnage of (washed) beets sliced.
 Bence the census reports only annual employment for 1927, the average for the intercampaign onths was obtained dy apdlying the mean ratio of intercampaign to annual employment in 1925 and 1929 to the Census figure for 1927. ${ }^{9}$ On the bagis of plant records studied by NRP-NBER, the prevailing intercaspaign weekly hours were arbitrarily assumed at 44 in the earlier years. This assumption doubtless results in understatement of man-hours in the lmatediate pobt-war period.
 10The beets-silced series was constructed in a manner analogous to the sugarproduction series irom Census and Department or Agriculture data.
 iithe interpolating series is based on an observed inverse correlation between the number of net campaign days and the magnitude of the intercampaign beet-silcing ratios for 27 plants in 1928-36. Such a series is adequate for interpolation but, if used for all the years, would preclude a trend in intercampalga productivity between 1919 and 1027.

[^60]: ${ }^{1}$ The unit labor requirements were derived from a BLS study, Fine and Labor Costs in Nanufacturing 100 Pairs of Shoes: 1923 (Bull. No. Z60). Comparable Census unit values were avallable for 1935 only.
 $2_{\text {The }}$ silght declines in the proportions of the total production accounted for by boysi and youthsi shoes" and by misses' and children 's shoes reflect the decresse in the percentege of the population included in the lower age groups in recent jears.
 $Z_{\text {This }}$ indez, which could be constructed from Census data for oniy a few years, includes 88 different eypes of shoes weighted by unit values in 1936, the only year for which comparable value data are avsilable. In order to avold only year for which comparable value data are avsilable. In order to avoid
 disclosing data for individual establishments, the Census, in some years, combined certain figures and withheld others from publication. This lack of comparability, however, exists only in the case of the less important types of shoes.
 An even more detalled classification of productsmight result in a still lower index during the depression, when there was a shift to the cheaper Isnes. The relative unit values of the 5 broader classes of shoes, however, ere stable in the census jears 1919 and 1927-35, the only years for which chey are avalladle.

[^61]: ${ }^{4}$ NICB and BLS hours agree closely in other years, except 1930. In this year, the NICB figure, which is an average for 12 months, is lower than that of BLS, based on data collected in the first 3 months of the year. In view of the fact that production and employment were at a higher level in the first 3 months of 1930 than during the entire gear, the NICB average appears to be more reliable.
 In general, the weekly-hours statistics for this industry obtained as a result of the BLS biennial wage studies are iess satisfactory for our purpose than those of NICB. The data refer to only 1 pay-roll period in each establishment In each year; the month in which the pay-roll period occurred varied from establishment to establishment and from study to study. Usually the canvass extended over a period of 4 or 5 months, and most of the data were collected in 2 of these. Finally, the various surveys did not necessarily cover the same establishments.

[^62]: 4The original data upon which this index is based appear in Russell's comercial lews and yorthwestern Miller.
 ${ }^{6}$ Wheat-flour consumption was reported byestablishments whose combined value of products accounted for the following percentages of the total value of products of the 1ndustry:

 No flgures are avallable for 1938. The reported consumption was divided by these percentages to obtain estimates for all the establishments in the industry.

[^63]: ${ }^{1}$ Small amounts of sirup and molasses are obtained as byproducts of the refining process.
 $2_{\text {Complled byWillett and Orey's Statistical sugar Frade Journal and published }}$ In the Survey of Current Bueiness. The melting of raw sugar is one of the early stages of the refining process. The total quantity of raw sugar melted is very ciose in census years to the quantity of raw sugar treated, ss redorted by the Census.
 $3_{\text {BLS }}$ estimates the understatement in 1919 at 500,000 tons ("Productivity of Labor in the Cement, Leather, Flour, and Sugar-Refining Industries, igif to 1925," Nonthly Labor Reviaw, October 1926, D. 19).
 ${ }^{4}$ Wages and Hours of Labor in the Cane-sugar Refining Industry: 1930 (Bull.
 No. 547). This builetin summarizes the results of survey of 21 reifneries during a representative payperiod in 1930. These refineries employed 11,880 wage earners, or about 87 percent of the estimated averege for the whole industry in that year.

[^64]: ${ }^{1}$ The 13 canned products are ehown above (all those without asterisks except dried fruits). The dried imits present no droblem because their quantities are consistentig reported in pounds. The products in each illustrative inare consistentiy reported in pounds. the premphted by comparsple unit values (1.e., per actual or standard dezare weighted by comparsble unit for 1926. The 1923 actual-case quentity ror'beans had to be adjusted (On the basis of the 1825 relationship) to include baked beans.

[^65]: ${ }^{2}$ Despite variation in the distribution of actual cases of cans of different size, the ratios of actual-case to standard-case totals for each product remained fairly stable in the odd-numbered jears 1919-25.
 $\mathcal{Z}_{\text {The segments constructed from National Canners Association statistics re- }}$ present the rollowing percentages of Census total value: 3 products, 12-17; 10 products, 26-31; 13 products, $30-35$; and 18 products, 35 ; The 3 products avallable for all years are asparagus, corn, and pass; the 7 additional ones since 1923 are apricots, blackberries, cherries, peaches, pears, loganberries, and olives; the 3 additional ones since 1925 are green beans, wax beans, and deets; and the last 5 additions are apples. raspberries, spinach, prunes, and fruits for salad.

[^66]: 4ilichard and herring sardines. Which had been reported together before i935, were separated in that yesp. The quantities for 1933 and 1935, therefore, were conbined in the ratio (1.92;i) of the weights of the standard cases of the 2 types. 1 sidilar adjustment was made $\operatorname{cor}^{\circ}$ ghrimp, which was reported in 4t ow. cans befors 1027 and in 5 and 5 a oz cans thereafter. The quantities for the later gears were multiplied by 1.265 , the ratio of the average newsize can (5 j of.) to the original. No adjustment, however, could be made
 theresfter.
 Sthese unit values are higher than those computed from Census data for corres donding products becsuse value reported by the Buresu of Fisheries represents the gross anount received by the packer without deductions for comissions or expenses. For this resson the coversge of the 6 products as measuredin terms of Census totsl value - 65 to 76 percent - is definitely an overstatoment.

[^67]: ${ }^{6}$ Data for New Yorkwere obtained Irom Course of Pactory faployment in Hew York State Prom 1921 to 1930 (N. Y. State Dept. Labor, Div. Statistics and Information. Spec. Bull. No. 171) for January 1925-December 1930 and from January issues of Industrial Bulletin (N. Y. State Dept. Labor) for the remainder of the period; for New Jersey. irom monthly issues of Industrial Bulletin (N. J. Dept. Labor) for January 19z7-April 1932 and from Enployment and Wages in Hew Jersey (N. J. Dept. Labor) tor November 1933-December 1936; and for California, from monthly issues of California Labor Narket Bulletins (Calif. Div. Labor Statistics and Law Enforcement) for January 2925-December 1936.

 The New York sample accounts for about one-quarter of the wage earners indicated for that State by the Census; the New Jerseg sample, over four-fifths; and the California sample, threefifths. Together the 3 samples account for well over half the corresponding Census State totals. In turn, these State totals represent about two-ifiths of national employment. The New York and New Jerseysamples include a small number of wage earners (about 2 to 4 percent in the former State and probably less in the latter) engaged in fish canning: the former, moreover, includes some office labor.
 ${ }^{7}$ The weights used in combining the adjusted sample relatives (New York, 5; New Jersey, 1; and California; 8) were assigned so as to yield a composite resembling the national Census series. The original sample series were computed from monthly data (viz, relatives for a fixed group of establishments in New York, absolute figures for a changing group of estabiishments in New Jersey, and percentage changes between corresponding months in successive years and be tween successive months in ig25 in California) after adjustments had been made for minor discontinuities in the New Jersey and California series and for a serious change in the coverage of the former in 1935. The annual New Jersey serles, avaliable only since 1927, had to be eztended back to 1925, the initial year of the other 2 series. For this purpose the relationship between the Census and sample figures in 1927 was assumed for 1925; the 1928 figure was then obtained by straight-ine interpolation.
 $8_{\text {The }}$ interpolated employment figures for each industry were adjusted in the same proportion - diminished by 3.0 and 5.5 percent in 1930 and 1932 , respectively, and augmented by 5.6 and 3.6 percent in 1934 and 1936 . Since the BLS group index is not avalable for 1926 and 1928 , no adjustment can be made in the estimates for these years. The magnitude of the percentage error in 1928 and 1928 is probably of the same order as in the later years, but the direction of the error is not known.

[^68]: The source of the sample data is the same as for the Californda series for Canned Fruits and Fegetables (see ftn. B). Wage earners in intercensal years could also ba estimated bysubtracting the number indicated by the Fruits and Vegetables series from the total derived from a weighted composite for the industry group based on the New Tork, New Jersey, and 2 California Censusadjusted inderes. Bince the saw-toothed movement of the residusis appesrs to be unressonsble, this method was not used to obtain the NRP indez for Canned and Cured Fish.
 ${ }^{10}$ The ratios for Figh range from 0.945 to 0.983 ; for Pruits and Vegetables, Trom 1.000 to 1.008.

[^69]: I"Bhall the 8 tate Own and Operate Its Own Portland Cement Plantp" Publfc Roads (U.8. Dept. Agr., Bur. Public Roads), January 1921.
 $\mathbf{2}_{\text {Labor Requirements in Cement Production," Nonthly Labor Revietu. March } 1936 .}$

[^70]: Sabor in the power department was allocated to clinker and finished-cement production in the ratio of $3: 2$ in accordance with the experience of cement manufacturers.
 Shipments were used to represent production of these cements for tha years 1919-24.

[^71]: ${ }^{5}$ Comparable percentages coold not be conpnted for other years. Fron fragmentary data it appears that secondary production comprised a higher percentage of the totel value in 1910 and 1021.
 ${ }^{6}$ 8ee ftn. 1.
 7afety and Production (New York: Harper and Bros.. 1928).
 8ee fen. 2.
 Deta for 1028-ss are published in Ninerals Tearbook: 1935. The figures for $1034-36$ were rumished by Dr_{r}. O. B. Hiessiling of the D . B. Burean of hines. OTotal manthours include maintenance and mill overhead isbor, which could not be diatributedin deriving the welghts. These estinates are based upon data presented by Hilts and by Toplis.

[^72]: ${ }^{1}$ The Census, source of statistics for all products but coal-tar dyes in oddnumbered years (see ftn. 3), reports production for sale and transfer; the Tariff commission, source of statistics for dyes and the organic chemicals entering into the interpolating index (see itn. 5), reports total production, which may differ from production for sale and transfer by including consumption for further fabrication in reporting establishments. for 3 organic products reported by both agencies (carbon tetrachloride, ether, and vanililn). however, the 2 kinds of production are usualiy close. For dyes, which are inished products with respect to both the company of origin and the industry, actual sales (also redorted by the Tariff comaission) frequently approrimate total production.

 | Year | Retio of dye sales to | Ratio of total production to production for sale | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | total dye production | Carbon tetrachloride | Ether | Vanillin |
 | 1923 | 0.92 | 1.15 | 1.03 | 1.18 |
 | 1925 | 0.92 | 1.01 | 0.98 | 1.47 |
 | 1927 | 1.02 | 0.87 | 0.96 | 1.00 |
 | 1929 | 0.85 | 1.08 | 0.96 | 1.06 |
 | 1931 | n. 8. | n.a. | n.a. | n.8. |
 | 1933 | 0.97 | 1.18 | 1.01 | n.a. |
 | 1935 | 0.87 | 1.07 | 1.01 | n.a. |

 value and industrial significance from the following mutually exclusive groups:2

 1. Acids, organic and inorganic
 2. Nitrogen and fixed-nitrogen compounds
 3. Sodium compounds
 4. Potassium compounds
 5. Alums and other aluminum compounds
 6. Coal-tar products
 7. Plastics and pyroxylin products
 B. Compressed and liquefied gases
 8. Miscellaneous organic and inorganic compounds

 The relatives for odd-numbered years of the period 1919-36 were derived from comparable weighted aggregates for 34 products from 1919 to 1923, for 38 products from 1923 to 1933 , and for 37 products in 1929 and 1935.3 Before construction of these aggregates, adjustments were made in the reported quantities, whenever necessary and possible, in order to maintain chronological comparability. ${ }^{4}$ The products included in the index account for from 40 to 50 percent of the estimated value of all output for sale or transfer.

 The weighting factor for each product except dyes is a simple average of the unit values of production for sale for as many of the census years of the period 1919-33 as each quantity series was available. For dyes the average of unit sales values was used.

 The production index was completed for the even-numbered years by means of a series derived from comparable aggregates for 3 to 12 of a total of 15 products for which quantities are published by the Tariff Commission, Chemical and Metallurgical Engineering, and the Bureau of Mines. 5 The 11 organic and 4 inorganic chemicals were weighted by averages of unit sales or production values and combined in varying numbers so as to yield relatives which approximated the final census-year series. By selection it was sought to overcome the qualitative bias of the available statistics, which are more complete for organic chemicals and not continuous for each product. The interpolating index compares as follows with the NRP index in common years:

 | Year | NRP
 production
 index | Interpolating
 production
 index |
 | :---: | :---: | :---: |
 | 1919 | 49.1 | 50.8 |
 | 1921 | 38.4 | 41.0 |
 | 1923 | 65.9 | 64.4 |
 | 1925 | 65.7 | 72.4 |
 | 1927 | 74.8 | 79.2 |
 | 1929 | 100.0 | 100.0 |
 | 1931 | 77.9 | 80.3 |
 | 1933 | 79.6 | 84.4 |
 | 1935 | 93.9 | 97.4 |

 Once the final production index was constructed, it was possible to develop several simpler ones which are also satisfactory for census years. It was found, for example, that the 11 products which dominate the final index are sufficient to approximate the movement revealed by more than 3 times their number; ${ }^{8}$ and that 9 group indexes, based on 27 products, yield a composite, when weighted by average group values, which is almost as close. ${ }^{7}$

 | Year | NRP
 production
 index | 11-product
 production
 index | 9-group
 production
 index |
 | :---: | :---: | :---: | :---: |
 | 1919 | 49.1 | 48.2 | 52.8 |
 | 1921 | 38.4 | 37.1 | 41.6 |
 | 1923 | 65.9 | 64.8 | 69.6 |
 | 1925 | 65.7 | 67.8 | 67.2 |
 | 1927 | 74.8 | 74.2 | 76.8 |
 | 1929 | 100.0 | 100.0 | 100.0 |
 | 1931 | 77.9 | 78.5 | 78.0 |
 | 1933 | 7.6 | 82.9 | 78.7 |
 | 1935 | 93.9 | 92.3 | 93.8 |

 The adequacy of value weights, employed in all the series thus far presented, can be tested by the comparison of another pair of indexes which include 18 identical products for which both value and labor weights were available. The ratio of labor cost to value is low in general (about 10 percentl and varies from product to product. ${ }^{8}$ The distributions of unit values and unit labor requirements as percentages of their respective sums compare as follows: ${ }^{9}$

 | Product | Unit | Percentage distribution | |
 | :---: | :---: | :---: | :---: |
 | | | Unit man-hour requirements | $\begin{gathered} \text { Unit } \\ \text { values } \end{gathered}$ |
 | Total, all products | - | 100.00 | 100.00 |
 | Acetic acid, dilute | 1 b | 0.03 | 0.01 |
 | Aluminum sulphate | ton | 5.75 | 7.14 |
 | Ammonia, synthetic anhydrous | 1 b . | 0.04 | 0.04 |
 | Carbon dioxide | 1 l . | 0.003 | 0.02 |
 | Caustic soda | ton | 13.80 | 13. 28 |

 | [oon.] Product | Unit | Percentage distribution | |
 | :---: | :---: | :---: | :---: |
 | | | Unit
 man-hour
 require-
 ments | $\begin{aligned} & \text { Unit } \\ & \text { values } \end{aligned}$ |
 | Chlorine, electrolytic | 1 b . | 0.02 | 0.01 |
 | Glycerin, refined | 1 b . | 0.01 | 0.04 |
 | Hydrochloric acid | ton | 14.95 | 16.18 |
 | Nitric acid, synthetic | ton | 10.35 | 32.02 |
 | Oxygen | M cu. . ft. | 0.72 | 2.53 |
 | Phosphoric acid | 16. | 0.003 | 0.02 |
 | Soda ash | ton | 7.67 | 5.74 |
 | Sodium silicate | ton | 11.50 | 3.67 |
 | Stearlc acid | 1 b . | 0.07 | 0.03 |
 | Sulphur dioxide | 16. | 0.01 | 0.01 |
 | Sulphuric acid | ton | 4.22 | 2.29 |
 | Trisodium phosphate | ton | 30.67 | 15.46 |
 | Vanillin | 1 b . | 0.19 | 1.53 |

 Indexes constructed with the 2 sets of weights ${ }^{10}$ are not only very similar to each other but also resemble the NRP series in most years:

 | Year | NRP production inder | 18-product production index with - | |
 | :---: | :---: | :---: | :---: |
 | | | Man-hourrequirement weights | Unit-value welghts |
 | 1919 | 49.1 | 48.3 | 47.4 |
 | 1921 | 38.4 | 38.4 | 37. 9 |
 | 1923 | 65.9 | 81.7 | 80.5 |
 | 1925 | 65.7 | 67.9 | 68.8 |
 | 1927 | 74.8 | 77.0 | 74.2 |
 | 1929 | 100.0 | 100.0 | 100.0 |
 | 1931 | 77.9 | 82.5 | 81.5 |
 | 1933 | 79.6 | 85.1 | 84.1 |
 | 1935 | 93.9 | 86.1 | 95.3 |

 Two more indexes were coustructed to test the relationship between total production and production for sale and transfer. These indexes, which were derived from comparable unit-value-

 weighted aggregates of 6 to 14 important chemicals, ${ }^{11}$ indicate that the NRPseries closely represents the movement of total production although it is based on production for sale and transfer.

 Year $\left.\begin{array}{ccc}\text { Index of } \\ \text { total } \\ \text { production }\end{array} \quad \begin{array}{c}\text { Index of } \\ \text { production } \\ \text { for sale } \\ \text { and transfer }\end{array}\right]$

 Despite the similarity of several of the indexes presented above, the various types of chemicals differ in movement. As might be expected, the heavy acids and bases, which occupy a strategic position in many industrial processes and in the manufacture of other chemicals, cluster about the summary production index; but other products, like gases, register a sharper rise over the period, while some, like pyroxylin, even decline. The most exceptional behavior, however, is exhibited by the synthetic substances. For example, the output (poundage) of synthetic or organic compounds of non-coal-tar origin - represented by buty1 alcohol, butyl àcetate, carbon bisulphide, carbon tetrachloride, ether, ethyl acetate, etc. - multiplied almost 50 times between 1921 and 1935, while the composite increased but $\mathrm{I}^{\frac{1}{2}}$ times; ${ }^{12}$ in the same period the production of coal-tar resins, which are used in molded plastics, expanded even more rapidly. ${ }^{13}$

 | Product | Production relatives ($1929=100$) | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | 1919 | 1921 | 1923 | 1935 |
 | Acids and bases | | | | |
 | Hydrochloric acid | 78 | 48 | 79 | 87 |
 | Nitric acid | 55 | 24 | 64 | 76 |
 | Sulphuric acid | 53 | 48 | 80 | 78 |

 [Con.] Product
 Caustic soda
 Soda ash
 Gases
 Acetylene
 Carbon dioxide
 Chlorine
 Ammonia
 Pyroxylin
 Synthetic organic chemicals
 Synthetic coal-tar resins

 Production relatives $(192 \theta=100)$

 | 1919 | 1921 | 1923 | 1935 |
 | :---: | :---: | ---: | ---: |
 | 42 | 32 | 59 | 99 |
 | 57 | 43 | 69 | 103 |
 | | | | |
 | 32 | 30 | 54 | 118 |
 | 44 | 40 | 37 | 64 |
 | 12 | 20 | 26 | 143 |
 | 15 | 12 | 14 | 80 |
 | | | 141 | 79 |
 | n.a. | n.a. | 14 | 195 |
 | n. a. | 4 | 17 | 195 |
 | 9 | 5 | 30 | 275 |

 ## Emplormant and Man-hours

 Census wage-earner statistics were utilized in the derivation of employment relatives for odd-numbered years of the period 1919-35. Because of changes in industry definition the figures shown for "Chemicals, Not Elsewhere Classified" had to be adjusted to exclude rayon workers in $1919-23^{14}$ and to include the wage earners engaged in the manufacture of compressed and liquefied gases in 1927-35. 15 The final Census employment relatives were then interpolated by means of the BLS index, which is available only for 1923-25 and 1929-36, and NICB segments for 1920-23 and 1925-29.

 The man-hours index was computed from the products of the completed employment index and an annual series of average actual hours worked per week derived from 3 NICB publications: Wages, Hours, and Employment in the United States: 1914-1936 for 1920-35, Wartime Changes in Wages for 1919, and the supplement to the monthly issues of the Conference Board Service Letter for 1936. Since there was reason to believe that the sample canvassed in the second study would give a more reliable estimate of hourly wages than of weekly hours, the latter figure was computed by successive division of Census total annual wages by NICB average hourly wages and of the resulting quotient (total annual manhours) by 52 times the average number of wage earners

 The production and labor indexes are not precisely comparable in scope. The former includes thequantities of various chemicals made as secondary products of other industries labout 7 to 10 percent of the estimated value of all chemicals made for sale or transfer); the latter include wage earners and man-hours deroted to the production of secondary nonchemical products of the Chemicals industry (about 3 to 8 percent of the estimated total valne of the industry's output for sale or transferl.

 (1928-100)

 | Year | Production | Employment | Man-hours | Output per - | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Wage earner | Man-hour |
 | 1910 | 49.1 | 111.2 | 118.2 | 44.2 | 41.5 |
 | 1920 | 80.5 | 90.0 | 87.8 | 67.2 | 68.8 |
 | 1921 | 38.4 | 64.2 | 63.7 | 59.8 | 60.3 |
 | 1822 | 82.3 | 82.1 | 86.7 | 63.7 | 80.3 |
 | 1023 | 65.9 | 95.8 | 101.2 | 88.8 | 65.1 |
 | 1924 | 58.8 | 88.3 | 92.5 | 66.0 | 63.7 |
 | 1925 | 85.7 | 88. 3 | 92.5 | 74.4 | 71.0 |
 | 1026 | 72.9 | 88.3 | 86.0 | 84.5 | 84.8 |
 | 1827 | 74.8 | 94.7 | 84.0 | 88.3 | 89.0 |
 | 1028 | 81.8 | 90.0 | 89.5 | 80.9 | 01.4 |
 | 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
 | 1030 | B6. 7 | 01.4 | 88.1 | 04.9 | 100.7 |
 | 1031 | 77.0 | 78.3 | 69.1 | 99.5 | 112.7 |
 | 1932 | 68.0 | 69.7 | 58.3 | 96.0 | 118.8 |
 | 1033 | 79.6 | 85.3 | 86.2 | 93. 3 | 120.2 |
 | 1034 | 85. 8 | 108.2 | 81.1 | 80.8 | 105.8 |
 | 1935 | 98. 0 | 108.2 | 82.8 | 88.4 | 113.4 |
 | 1936 | 108.0 | 113.3 | 89.7 | 93.6 | 118.2 |

 ## 13. Clay products (other than pattery) and nonclay refractories ${ }^{1}$

 This industry, which employed about 93,000 wage earners in 1929, embraces establishments engagedprimarilyin the production of brick, draintile and other tile, sewer pipe, stove lining, terra-cotta products, and other refractories, both clay and nonclay. Most of these establishments are located near claypits and extract the clay they consume in manufacture.

 In theperiod 1919-29 this industry had a higher ratio of wages to value of production - about 37 percent - than any other included in this study. During the recent depression, however, it was surpassed by a few others, though its ratio still ranged from 29 to 35 percent.

 ## Produciion

 The measure of production is composed of 3 segments, each of which is an aggregativeindex computed from annual Census quantity statistics and 1929 unit-value weights. ${ }^{2}$ The first segment, containing 15 classes of products, extends from 1919 to 1923; the second, 21 classes (the preceding 15 with 6 additions), from 2923 to 1933; ${ }^{3}$ and the last, 20 classes (the preceding 21 with the omission of "enameled brick"), from 1933 to 1936. Theitems entering into the first 2 segments are, respectively, the first 15 and all 21 of the following:

 Common brick
 Fire brick and clay brick, block, or tile
 Face brick
 Sewer pipe
 Hollow building tile
 Silica brick
 Architectural terra cotta
 Wall tile

    ```
    Enameled brick
    Draintile
    Vitrified brick or block
    (for paving)
    Roofing tile
    Floor tile
    Ceramic mosaic
    Vitrified brick or block
                            (other than for paving)
    ```

 Enameled and faience tile
 Clay sold (raw or prepared) Aluminum brick

 Stove lining
 Magnesite and chrome brick Refractory cement

 Labor expense in this industry comprises about one-third of the value of production. The magnitude of this ratio and, in addition, the similarity of raw materials and processes for the various products favor the assumption that unit-value weights are proportional to unit labor requirements. That this is actually so is indicated by the results of a BLS study of man-hour requirements and by Census wage-earner, value, and quantity statistics for establishments classified according to major product. Unit values and unit wage-earner and man-hour requirements - expressed as percentages of their respective totals - show strikingly similar distributions. The tabulation based on Census material follows: ${ }^{4}$

 | Establishments whose major product was - | Percent of total | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | 1925 | | 1927 | | 1929 | |
 | | Wage earners per unit | Value per unit | Wa ge earners per unit | | Wage earners per unit | Value
 per
 unit |
 | Common brick | 6.0 | 5.2 | 6.1 | 5.6 | 6.4 | 5.6 |
 | Face brick | 9.5 | 8.2 | 10.3 | 8.7 | 10.5 | 8.9 |
 | Terra cotta | 51.3 | 55.7 | 49.3 | 53.4 | 47.5 | 54.4 |
 | Hollow building tile | 3.1 | 3.0 | 3.4 | 3.3 | 3.9 | 3.9 |
 | Roofing tile | 7.0 | 7.9 | 6.6 | 7.5 | 6.6 | 5.6 |
 | Floor, ceramic-mosaic, enameled, faience, and wall tile | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 |
 | Vitrified brick or | | | | | | |
 | block | 11.0 | 10.3 | 11.5 | 10.8 | 11.2 | 10.8 |
 | Draintile | 4.7 | 3.3 | 4.7 | 3.8 | 4.7 | 3.9 |
 | Sewer pipe | 7.2 | 6.2 | 7.9 | 6.9 | 9.1 | 6.8 |

 BLS man-hour requirements, which relate to 1935, have a distribution pattern (percent of total) similar to Census unit-value weights despite differences in scope: ${ }^{5}$

 | Product | Percent of total | | |
 | :---: | :---: | :---: | :---: |
 | | Man-hours per unit in 1935 | Value per unit in - | |
 | | | 1929 | 1935 |
 | Common brick | 9.2 | 8.2 | 9.1 |
 | Face brick | 12.7 | 13.0 | 13.3 |
 | Paving brick | 16.7 | 16.8 | 21.6 |
 | Structural tile | 4.4 | 5.5 | 5.4 |
 | Floor tile | 20.4 | 18.3 | 13.0 |
 | Wall tile | 23.7 | 28.5 | 26.0 |
 | Sewer pipe, wall coping, flue | | | |
 | lining | 12.7 | 9.6 | 11.6 |

 The items in the production index comprise from 83 to 97 percent of the value of all clay products. The percentage tends to diminish, particularly after 1929 , but this tendency may reflect not only an increase in output of products excluded from the index le. g., "fire-clay special shapes", "other clay products", and "other nonclay refractories") but also a relative contraction of the average unit value of the included products. ${ }^{8}$ Adjustment of the production index by division by an index of value coverage which attributes the whole decline in coverage solely to a rise in the volume of excluded output - would ultimately result in somewhat higher estimates of productivity after 1929:

 Year \begin{tabular}{cccccc}
 NRP

 produc-

 tion

 Index

 \quad

 Value-

 adjusted

 production

 index

 \quad Year \quad

 NRP

 produc-

 tion

 index

 Value-

 adjusted

 production

 index
 \end{tabular}

 Employment and Manohouri
 The employment index is based on the BLS series for 1923-36, on the Census wage-earner totals for 1919 and 1921, and on in-

 terpolation by means of the BLS index for the Stone, Clay, and Glass group for 1920 and 1922.7

 The man-hours index was obtained by the deflation of pay rolls by average hourly earnings. The former series was constructed from the BLS pay-rolls index for 1923-36, from Census wages for 1919 and 1921, and from the products of value and interpolated ratios of wages to value in 1920 and $1922 .{ }^{8}$

 The earnings series is based largely on average hourly earnings computed from data collected by NRP in cooperation with NBER from about 80 brick and tile plants. ${ }^{9}$ A national average was computed for odd-numbered years bydividing the median of average plant earnings ${ }^{10}$ in each of 5 regions (which together comprised about one-third of the 48 States) intocorresponding regional pay rolls cumulated from Census (State) wages and then dividing the aggregated quotients into the sum of the regional pay rolls. It should be noted that this procedure is consistent with the fact that hourly rates vary by region rather than by product.

 The next problem was to complete the earnings series. Thefirst step was to determine the ratio, in each odd-numbered year, of the simple average of regional medians to the computed national average described above; the ratios for the even-numbered years were then obtained by straight-line interpolation; and finally, the interpolated ratios were applied to the simple averages of regional medians in intercensal years.

 The earnings series, now continuous, was adjusted to the level of the BLS figures for the whole industry on the basis of the

 average relationship between the 2 series in 1932-35. ${ }^{11}$ Although the absolute BLS earnings are greater, the relationship is so stable that the trends of the 2 series in these years are practically identical.

 It is of interest to compare the NRP man-hours index withanother obtained without resort to field-survey data. The latter is based on the NRP employment series; adjusted Census prevailing weekly hours for 1919, 1921, 1923, and 1929;12 and BLS actual weekly hours for 1932-36:

 | Year | $\begin{gathered} \text { NRP } \\ \text { man-hours } \\ \text { index } \end{gathered}$ | Man-hours index based on employment and adjusted weekly hours | Year | $\begin{aligned} & \text { NRP } \\ & \text { man-hours } \\ & \text { index } \end{aligned}$ | Man-hours
 index
 based on employment and adjusted weekly hours |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1919 | 84.1 | 80.9 | 1928 | 99.7 | 101.3 |
 | 1920 | 90.4 | 86.7 | 1929 | 100.0 | 100.0 |
 | 1921 | 76.8 | 71.6 | 1930 | 72.3 | 70.5 |
 | 1922 | 96.1 | 93.0 | 1931 | 45.9 | 43.3 |
 | 1923 | 114.3 | 112.5 | 1932 | 24.7 | 23.7 |
 | 1924 | 115.3 | 110.0 | 1933 | 25.3 | 23.6 |
 | 1925 | 117.5 | 111.8 | 1934 | 30.6 | 28.7 |
 | 1926 | 117.9 | 114.0 | 1935 | 37.8 | 36.7 |
 | 1927 | 111.0 | 109.2 | 1936 | 55.1 | 53.9 |

 Separate Census data for 9 branches of the industry permitted the construction of subindexes of wage-earner productivity for comparison with the NRP composite in the period 1925-29. In computing these relatives, the assumption was made that all the labor expended in each branch could be imputed solely to the fabrication of the major product; the errors resulting from this oversimplification are believed to be negligible.

 | Branch | Index of output per wage earner (1929=100) | |
 | :---: | :---: | :---: |
 | | 1925 | 1927 |
 | Entire industry (NRP) | 99.7 | 100.1 |
 | Common brick | 101.8 | 105.3 |
 | Face brick | 105.0 | 101.4 |
 | Floor, ceramic, and wall tile | 116.5 | 117.9 |
 | Hollow building tile | 116.1 | 113.2 |
 | Sewer pipe | 118.6 | 114.9 |
 | Terra cotta | 87.1 | 96.8 |
 | Vitrified brick | 95.4 | 98.9 |
 | Draintile | 93.3 | 99.7 |
 | Roofing tile | 89.1 | 100.0 |

 Table 18.- sumany impexzs pon the clay phoducts (ofker than pottery) and momelay mefractorieg industay: 1919-3E

 | Tear | Production | Eoployment | Man-hours | Output per - | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Wase earner | Mas-hour |
 | 1919 | 67.1 | 82.4 | 84. 1 | 83.4 | 79.8 |
 | 1920 | 79.6 | 88.6 | 90.4 | 83.1 | 81.4 |
 | 1921 | 61.6 | 73.7 | 76.8 | 83. 6 | 80.2 |
 | 1922 | 80.8 | 90.5 | 98.1 | 88.7 | 83. 6 |
 | 1923 | 104.4 | 109.9 | 114.3 | 95.0 | 01.3 |
 | 1924 | 99.7 | 107.9 | 115.3 | 92.4 | 88.5 |
 | 1825 | 109.8 | 110.1 | 117.5 | 99.7 | 93.4 |
 | 1928 | 111.2 | 112.5 | 117.8 | 88.8 | 84.3 |
 | 1927 | 108.8 | 108.2 | 111.0 | 100.1 | 97.6 |
 | 1028 | 102.6 | 100.8 | 99.7 | 101.7 | 102.9 |
 | 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
 | 1930 | 72.8 | 78.8 | 72.3 | 92.4 | 100.8 |
 | 1981 | 47.6 | 54.8 | 45.9 | 88.7 | 103.7 |
 | 1982 | 22.3 | 34.8 | 24.7 | 64.1 | 90.3 |
 | 1933 | 25.3 | 94. 2 | 25.3 | 74.0 | 100.0 |
 | 1984 | 28.8 | 42.1 | 30.6 | 63.7 | 87.6 |
 | 1935 | 35.9 | 47.8 | 37.6 | 75.1 | 95.5 |
 | 1036 | 54.1 | 80.0 | 55.1 | 90.2 | 88.2 |

    ```
    14. COKE GROUP
    15. BEEHIVE COKE
    16. BYPRODUCT COKE
    ```

 The Coke group, whichemployed 21,700 wage earners in 1929, includes all establishments engaged in the high-temperature carbonization of coal in beehive orbyproduct coke ovens. In conformity with the practice of the Bureau of Mines, these establishments, which produced about 95 percent of the total tonnage of coke, are classified in the Beehive Coke industry or the Byproduct Coke industry according to the type of oven they operate. The Coke group, as here defined, includes the Census industry "Coke, Not Including Gas-House Coke" and the byproduct plants of city gas companies, which areclassified by the Census inthe Manufactured Gas industry. ${ }^{1}$

 A complete reversal in the relative importance of the Beehive Coke and Byproduct Coke industries has taken place since 1900. In that year the former accounted for 95 percent of the group's coke production and the latter for 5 percent; in 1919 thepercentages were 43 and 57, respectively, and by 1935, 3 and 97 . The Beehive Coke industry employed 45 percent of the group total of 30,600 wage earners in 1919,12 percent of the group total of 21,700 in 1929 , and only 5 percent of the 18,400 in the group in 1935. The number of beehive ovens, furthermore, declined from almost 83,000 in 1919 to about 13,000 in 1936 , while the number of byproduct ovens rose from 10,000 to almost 13,000. In the same interval, the production of byproduct coke advanced 77 percent and the output of beehive coke declined 91 percent.

 ## Praduetian

 Coke Group.- The 2 NRP production indexes for the Coke group are harmonic means of the relatives for the component industries. One of these indexes, with changing employment weights, was used in determining output per wage earner; the other, with changing man-hour weights, was used in determining output per man-hour. The NRP indexes compare as follows with arithmetic means of the

 | 1919 | $\ldots . .4 .8$ | 1929 | $\ldots .$. | 6.1 | |
 | :--- | :--- | :--- | :--- | :--- | ---: |
 | 1922 | $\ldots . .8$ | 8.3 | 1932 | \ldots. | 14.8 |
 | 1925 | $\ldots .$. | 2.8 | 1936 | \ldots. | 8.1 |

 production relatives for the component industries weighted by 1929 employment and man-hours:

 | Year | Index of production with - | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | | Changing weights | | Fixed weights (1929) | |
 | | Employment | Man-hours | Employment | Man-hours |
 | 1819 | 75.1 | 66.6 | 78.7 | 71.7 |
 | 1921 | 42.1 | 41.1 | 42.7 | 41.8 |
 | 1923 | 93.7 | 89.0 | 98.0 | 93.3 |
 | 1925 | 86.3 | 85.1 | 86.9 | 84.9 |
 | 1827 | 85.7 | 85.4 | 85.9 | 85.4 |
 | 1829 | 100.0 | 100.0 | 100.0 | 100.0 |
 | 1931 | 54.3 | 56.3 | 56.1 | 57.0 |
 | 1933 | 43.7 | 45.4 | 46.1 | 46.9 |
 | 1935 | 54.9 | 57.3 | 57.9 | 59.0 |

 Bechive Coke.- The index of production for this industry is based on the aggregate quantities of coke produced and the coke equivalent of recovered breeze (i. e., the difference between breeze production and waste); these 2 products represent the total output of the industry. The Bureau of Mines reports annual statistics of coke and breeze production for the period 1919-36 and of breeze waste for the period 1922-36; ${ }^{2}$ the quantity of breeze waste prior to 1922 was estimated on the basis of the ratio in this year between breeze waste and breeze production. The amounts of recovered breeze were converted to coke equivalents by means of the ratio (0.877) between the thermal values of a ton of breeze and a ton of coke. 3 In no year of the period 1919-36 did the coke equivalent of recovered breeze exceed 4.5 percent of the aggregate tonnage of coke and coke equivalent.

 Byproduct Coke.- The index of production for this industry is based on the aggregate quantities of coke produced and the coke equivalents of recovered breeze, recovered coke-oven gas (i. e., the difference between gas production - including consumption in heating ovens - and wastel, tar, and light oil; these products represent about 95 percent of the value of the industry's output. The Bureau of Mines provided the necessary statistics for all years of the period 1919-36 except for breeze waste for 1919 and

 1920; ${ }^{2}$ the quantities of such waste were estimated for these 2 years on the assumption that the 1921 ratio of breeze waste to breeze production was applicable. The coke equivalents of the several byproducts were determined in the same manner as the equivalent of breeze produced in the Beehive Coke industry. ${ }^{4}$

 Because of the predominance of coke over its byproducts and the stability of the relative yields, ${ }^{5}$ an index of coke production alone adequately indicates the movement of the Byproduct Coke industry's output. Such an index never differs by more than 1 unit from the NRP series:

 | Year | NRP
 production
 index | Index of
 byproduct-coke
 output |
 | :---: | :---: | :---: |
 | 1919 | 46.8 | 47.1 |
 | 1921 | 36.9 | 37.0 |
 | 1923 | 70.2 | 70.4 |
 | 1925 | 74.7 | 74.7 |
 | 1927 | 82.5 | 82.2 |
 | | | |
 | 1929 | 100.0 | 100.0 |
 | 1931 | 61.6 | 60.6 |
 | 1933 | 50.6 | 49.9 |
 | 1935 | 64.2 | 64.1 |

 An aggregative index including the same products as the NRP index but with average unit-value weights $(1919-36)^{6}$ is even closer; the maximum difference is only 0.3 units:

 | Year | NRP
 production
 index | Valueweighted
 production
 index | | |
|---|---|---|---|---|
 | | 46.8 | 47.1 |
 | 1919 | 36.9 | 37.0^{\prime} |
 | 1921 | 70.2 | 70.1 |
 | 1923 | 74.7 | 74.7 |
 | 1925 | 82.5 | 82.5 |\quad| [Con.] |
 | :--- |
 | 1927 |

 | [con.] | Year | NRP
 production
 inder | Value-weighted
 production
 index |
 | :---: | :---: | :---: | :---: |
 | | 1929 | 100.0 | 100.0 |
 | | 1931 | 61.6 | 61.6 |
 | | 1933 | 50.6 | 50.5 |
 | | 1935 | 64.2 | 64.5 |

 ## Emplopant and Man-haras

 The NRP group indexes of employment and man-hours are based on the corresponding totals for the 2 component industries.

 The employment index for the Beehive Coke industry was computed for the odd-numbered gears 1919-31 from Census wage-earner statistics for beehive ovens; ${ }^{7}$ it was completed for the period 1919-36 by means of relatives of man-shifts reported by the Bureau of Mines. ${ }^{8}$

 The wage-earners index for the Byproduct Coke industry was computed for the odd-numbered years 1919-31 from Census statistics for byproduct ovens ${ }^{7}$ after adjustment to include employment at the byproduct ovens owned by city gas companies; the adjustment was made on the assumption that the output (in terms of aggregate coke equivalents) per wage earner in the entire industry is the same as at the byproduct ovens represented in the Census statistics. Employment in 1933 and 1935 was computed by subtracting the estimates for the Beehive Coke industry (based on the NRP index and the 1929 Census figure) from the Census totals for byproduct and beehive ovens and then adjusting the differences Ion the assumption stated abovel to include wage earners at byproduct ovens operated by city gas companies. The employment series was completed for the period 1919-36 by means of comparable Bureau of Mines figures for man-shifts. ${ }^{8}$

 The NRP indexes of man-hours for the Beehive Coke and Byproduct Coke industries are relatives of the corresponding Burean of Mines figures, which are based on plant reports of man-hours, man-shifts, and prevailing hours per shift. ${ }^{9}$

 54 PRODUCTION, EMPLOYMENT, AND PRODUCTIVITY

 Table 14.- 5UMMARY INDEXES FOR THE CDKE INDUSTRY GROUP: 1819-3B
 ($1929=100$)

 | Year | Production (employment weights) | Employment | Output per wage earner | $\begin{aligned} & \text { Produc- } \\ & \text { tion } \\ & \text { (man-hour } \\ & \text { welghts) } \end{aligned}$ | Man-hours | Output per manhour |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1919 | 75.1 | 140.8 | 53.3 | 68.6 | 124.1 | 53.7 |
 | 1920 | 82.0 | 158.4 | 51.8 | 75.6 | 135.2 | 55.9 |
 | 1921 | 42.1 | 78.1 | 55.3 | 41.1 | 63.8 | 64.3 |
 | 1922 | 84.1 | 97.9 | 65.5 | 61.3 | 82. 6 | 74. 2 |
 | 1923 | 93.7 | 134.2 | 69.8 | 89.0 | 104.7 | 85.0 |
 | 1924 | 73.4 | 99.8 | 73.5 | 72.0 | 81.6 | 88.2 |
 | 1925 | 86.3 | 109.1 | 79.1 | 85.1 | 95.8 | 88.8 |
 | 1926 | 95.1 | 108.4 | 87.7 | 93.9 | 86.8 | 97.0 |
 | 1927 | 85.7 | 101.0 | 84.9 | 85. 4 | 91.5 | 93.3 |
 | 1928 | 87.4 | 89.3 | 87.9 | B7. 9 | 85.1 | 103. 3 |
 | 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
 | 1930 | 78.6 | 91.5 | 85.8 | 80.1 | 87.8 | 91.1 |
 | 1931 | 54.3 | 74.0 | 73.4 | 56.3 | 70.0 | 80.4 |
 | 1932 | 35.1 | 58.3 | 60.2 | 36.5 | 52.2 | 69.9 |
 | 1933 | 43.7 | 67.9 | 84.4 | 45.4 | 58.5 | 77.6 |
 | 1934 | 51.1 | 83.6 | 61.1 | 53.1 | 67.4 | 78.8 |
 | 1935 | 54.8 | 84.7 | 64.8 | 57.3 | 64.3 | 89.1 |
 | 1938 | 74.0 | 101.9 | 72.8 | 78.4 | 77.5 | 98.6 |

 Tabla 15.- sumany INDEXES POR THE BEEMIYE COKE INDU8TAY: 1818-35

 | Year | Production | Employment | Man-hours | Output per - | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Wage earner | Man-hour |
 | 1919 | 288.9 | 508.7 | 426.8 | 58.4 | 67.2 |
 | 1820 | 310.7 | 477.6 | 397.9 | 65.1 | 78.1 |
 | 1921 | 83.8 | 135.1 | 111.8 | 62.0 | 75.0 |
 | 1922 | 129.8 | 234.6 | 188.7 | 55.3 | 68.8 |
 | 1923 | 293.3 | 354.7 | 281.1 | 82.7 | 104.3 |
 | 1924 | 157.6 | 181.2 | 155.5 | 87.0 | 101.4 |
 | 1925 | 172.8 | 207.8 | 199.3 | 83.2 | 86.7 |
 | 1826 | 190.2 | 193.8 | 189.1 | 88.1 | 100.6 |
 | 1927 | 110.1 | 121.4 | 120.0 | 90.7 | 91.8 |
 | 1928 | 69.0 | 88,5 | 89.7 | 77.1 | 76.8 |
 | 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
 | 1830 | 42.8 | 64.2 | 56.4 | 68.7 | 75.8 |
 | 1931 | 17. 2 | 31.1 | 24.4 | 55.3 | 70.5 |
 | 1832 | 10.3 | 24.5 | 18.0 | 42.0 | 54.2 |
 | 1933 | 14.1 | S3. 0 | 24.8 | 42.7 | 58.9 |
 | 1934 | 15.8 | 34.0 | 22.4 | 46.5 | 70.5 |
 | 1935 | 14.0 | 32.0 | 20.6 | 43.8 | 67.3 |
 | 1836 | 26.1 | 45.5 | 29.5 | 57.4 | 88.5 |

 Talle 16.- BURMAKY INDEXES FOR TME BYPADDUCT COKE IMDUSTAY: 1919-38
 $(1829=100)$

 | Year | Production | Employment | Man-hours | Output per - | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | Wage earner | Man-hour |
 | 1918 | 48.8 | B8. 5 | B9. 1 | 52.8 | 52.5 |
 | 1920 | 56.8 | 113.0 | 104.9 | 50.3 | 54.1 |
 | 1921 | 36.9 | 67.7 | 58.4 | 54.5 | 63.2 |
 | 1922 | 52.7 | 78.5 | 70.4 | 67.1 | 74.9 |
 | 1923 | 70.2 | 102.8 | 84.3 | 88.3 | 83.3 |
 | 1924 | 63.5 | 88.2 | 73.1 | 72.0 | 86.9 |
 | 1025 | 74.7 | 95.1 | 83.8 | 78.5 | 89.1 |
 | 1926 | B3. 2 | 08.2 | 86.2 | 86.5 | 96.5 |
 | 1927 | 82.5 | 88.1 | 88. 2 | 84.1 | 93.5 |
 | 1828 | 90.9 | 89.3 | 84.5 | 101.8 | 107.6 |
 | 1929 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
 | 1930 | 85.4 | 95.4 | 81.6 | 89.5 | 83.2 |
 | 1931 | 61.6 | 80.1 | 75.3 | 78.8 | 81.8 |
 | 1832 | 40.5 | 63.1 | 58.0 | 64.2 | 72.3 |
 | 1933 | 50.6 | 72.9 | 62.3 | 69.4 | 81.2 |
 | 1934 | 58.0 | 80.7 | 72.6 | 63.9 | 79.9 |
 | 1835 | 64.2 | 92. 2 | 69.3 | 69.6 | 82.6 |
 | 1036 | 82.8 | 109.9 | 83.0 | 75.4 | 89.9 |

 ## 17. CONPECTIDNEAY

 The establishments in this industry, which employed 63,500 wage earners in 2929, are engaged primarily in the manufacture of candy, confections, popcorn balls and cakes, salted nuts, stuffed dates, and similar products. The industry excludes establishments manufacturing chewing gum or chocolate. ${ }^{1}$

 ## Praduction

 Census statistics for the following 11 products (accounting for over 75 percent of the value of all confectionery production were weighted by their respective unit values in 1929 and combined into an aggregative index for the odd-numbered years of the period 1927-35:

    ```
    Chocolates ```

